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Abstract

Stress-induced pattern formations in soft elastic materials are bifurcation phenomena
which can be localized or periodic. Certain localized pattern formations such
as necking or bulging are associated with zero wavenumber, whereas periodic
pattern formations such as wrinkling or buckling are associated with a strictly
positive wavenumber. Whilst the near-critical behaviour of the periodic case is well
understood, studies of the localized case have only recently gathered momentum,
and are conceptually more challenging to undertake. Despite this, a remarkable
amount of analytical progress can be made. We will highlight this generally under-
appreciated fact by studying theoretically the complete bifurcation behaviour of
localized patterns, as well as the competition from periodic patterns, in elastic
materials under various effects.

Firstly, the bifurcation behaviour of soft incompressible hollow tubes under
elasto-capillary effects is studied. Analytical bifurcation conditions for localized
pattern formation are initially derived using established results from a prototypical
problem. A linear bifurcation analysis then shows that an axi-symmetric zero
wavenumber bifurcation mode is favoured over periodic modes for a range of
boundary conditions and loading scenarios. A weakly non-linear analysis provides
an explicit connection between this zero wavenumber mode and localized necking
or bulging, and a phase-separation-like evolution of these localized patterns into a
final Maxwell state is described analytically. The effect of material compressibility
on localized pattern formation in soft cylinders is also studied analytically, and
comparisons with recently published numerical simulation results are made.

We then consider the formation of a self-contacting crease on the free surface
of a compressed elastic half-space. This is a highly unique localized pattern since
its inception is an inherently non-linear bifurcation phenomenon. Therefore, unlike
localized bulging or necking, it is undetectable through a linear analysis. We derive
a new analytical bifurcation condition for creasing by reformulating the analysis
of a recent ground-breaking study.
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1.1 Context

The theory of non-linear elasticity provides a mathematical description of soft

elastic material bodies which can undergo large deformations. The development of

the theory in notable works such as Mooney (1940) and Rivlin (1948) was largely

motivated by the popularity of rubber in World War II for applications such as

vehicle and aircraft tyres, medical equipment, gas and oxygen masks and clothing.

In more recent times, interest in soft materials such as hydrogels and biological

tissue has intensified, and a knowledge of the response to stress and the bifurcation

behaviour of such materials has become highly desirable. In particular, localized or

periodic pattern formation is a bifurcation phenomena in soft materials which has

1
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many useful applications, from the optimization of surface wettability and adhesion

properties to the determination of material properties through buckling-based

metrology. It can also play a prominent role in many biological and physiological

processes; for instance, localized pattern formation has been observed in tunnelling

nanotubes connecting migrating cells (Veranič et al., 2008), and in nerve fibres as

part of the overall neurodegeneration associated with traumatic brain injuries (Kilinc

et al., 2009) and disorders such as Alzheimer’s and Parkinson’s diseases (Datar et al.,

2019). The attainment of a fundamental understanding of pattern formation and

other bifurcation phenomena in a wide range of soft materials will therefore facilitate

many advancements in the scientific, technological and medical communities. To this

end, there have been many extensions of the classical theory which couple elasticity

with additional effects due to electric fields (Dorfmann and Ogden, 2005), biological

growth (Goriely, 2017) and surface tension (Liu and Feng, 2012), among others.

A unifying theme of this thesis is the theoretical analysis of localized pattern

formation in soft materials using non-linear elasticity theory and advanced mathe-

matical techniques. We will study the competition between localized and periodic

pattern formation, as well as the near-critical and fully non-linear post-bifurcation

behaviour of localized patterns, in different contexts.

1.2 Localized pattern formation with zero wavenum-
ber

1.2.1 A prototypical problem

The treatment of localized pattern formation in soft materials as a bifurcation mode

with zero wavenumber has become increasingly prevalent over the last 15 years.

This particular mode is not sinusoidal or constant; the correct spatial variation

of the associated eigenfunction can only be determined through a weakly non-

linear, near-critical analysis (Fu, 2001). A problem which serves as the foundation

for this area of research is the localized bulging of a hollow tube subject to the
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combined effects of axial loading and internal inflation. Despite many experimental

observations in the past (Mallock, 1891; Kyriakides and Yu-Chung, 1990), this

was only recognized as a bifurcation phenomenon with zero wavenumber under the

membrane assumption relatively recently (Fu et al., 2008).

The phenomenon is now well understood to consist of three stages: bulge

initiation, radial growth and axial propagation (i.e. lengthening); see Fig. 1.1.

There has been significant attention towards the so-called limiting-point instability

Figure 1.1: Experimental observations of the bulge initiation, radial growth and axial
propagation (lengthening) states in an internally inflated tube of fixed length (Wang et al.,
2019).

which occurs at the maximum of the pressure – volume loading curve. Historically,

the explicit nature of this instability had not been associated with bulging, and

some thought that it corresponded to snap-through (i.e. instantaneous) buckling

(Alexander, 1971). Interpretations of the bulge propagation stage as a phase-

separation-like phenomenon have also been constructed (Yin, 1977). To elaborate,

the far right configuration in Fig. 1.1 can be viewed as two coexisting solid states

with distinct but uniform amplitude connected by a smooth transition region. Thus,

the process emulates more commonly known phase separation phenomena such as

the formation of gas bubbles in a liquid body, say. Fu et al. (2016) demonstrated that,

for a tube of arbitrary thickness under any type of end conditions, the bifurcation

condition for localized bulging is that the Jacobian determinant of the inflation

pressure P and the resultant axial force N as functions of the axial stretch and

the circumferential stretch on the inner surface must vanish. This condition has

exceptional agreement with experimental results (Wang et al., 2019), and was
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shown by Yu and Fu (2022) to be analytically equivalent to the condition for an

axi-symmetric bifurcation mode with zero wavenumber to exist. A connection

between the zero wavenumber bifurcation mode and localized static solitary wave

bifurcation solutions has been established previously through the general theory

of dynamical systems (Kirchgässner, 1982; Haragus and Iooss, 2010), and more

recently for the inflation problem through a weakly non-linear analysis (Ye et al.,

2020). Earlier linear bifurcation analyses (Haughton and Ogden, 1979a,b) focussed,

however, on periodic axi-symmetric modes, and the zero wavenumber mode was

thought to correspond to an alternate uniformly inflated state (as is incorrectly

predicted by a linear analysis). Since the revelation of Fu et al. (2016), many

additional effects such as rotation (Wang et al., 2017), double fibre-reinforcement

(Wang and Fu, 2018), bi-layering (Liu et al., 2019) and torsion (Althobaiti, 2022)

have been incorporated into the analysis.

The inflation problem has become prototypical in the sense that it often has a

very similar mathematical structure to other more complicated elastic localization

problems. For instance, through a reformulation of the Jacobian determinant

bifurcation condition for the inflation problem, Fu et al. (2018) demonstrated that

the bifurcation condition for localized necking in a dielectric membrane under

in-plane mechanical stretching and an electric field is that the Hessian of the total

free-energy function vanishes. The problem of localized pattern formation in soft

cylinders and tubes under axial loading and surface tension can also be very well

understood as a result of the inflation problem, and this will be illustrated over

a substantial part of this thesis.

1.2.2 Elasto-capillarity and localized pattern formation

In fluid mechanics, surface tension is the architect of many fascinating phenomena

from spherical droplet formation to water striding insects (De Gennes et al., 2004;

Bush and Hu, 2006). It is also heavily implicated in the famous Rayleigh-Plateau

instability (Plateau, 1873; Rayleigh, 1892) where a cylindrical column of fluid breaks

up into a sequence of droplets in order to reduce its surface area, and hence its
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overall surface energy; see Fig. 1.2. It is therefore no surprise that surface tension

is one of the most studied areas of fluid mechanics (Levich and Krylov, 1969).

(a) (b) (c)

Figure 1.2: Examples of surface-tension-induced phenomena in fluids. Surface tension
(a) prevents the submergence of certain insects in water (image by Water Science School)
and (b) triggers spherical droplet formation to minimize the overall surface-to-volume
ratio and surface energy of the fluid (image from phys.org). (c) An illustration of the
Rayleigh-Plateau instability in which a cylindrical stream of water from a tap destabilizes
into a chain of spherical droplets (image by N. Sharp).

Whilst the surface tension effect upon fluids is widely appreciated, in solid

mechanics it is often overlooked. In fluids, there exists a tensile surface stress, σs,

which opposes surface stretching, and minimizes the surface-to-volume ratio of the

liquid. In simple liquids, σs is a spherical, second-order, two-dimensional tensor,

and can be represented by σs = γ̄I, where the scalar γ̄ is the surface tension (with

constant magnitude) and I is the identity tensor. A key difference with solids is the

ability of their surfaces to sustain finite normal and shear stresses. This means that,

in general, the surface stress tensor σs for a solid is non-spherical (anisotropic), and

the surface tension γ̄ is dependent on the deformation Gurtin and Murdoch (1975).

In elastic materials, surface tension operates at the elasto-capillary length scale

γ̄/µ, where γ̄ is the surface tension and µ the ground state shear modulus (Style

et al., 2017; Bico et al., 2018). For many materials, the shear modulus is large

enough to ensure that this length scale is subatomic, and that surface tension can be

safely ignored in the continuum setting. However, for extremely soft and compliant

materials such as gels, creams and biological tissue, the elasto-capillary length has

an order of magnitude ranging from tens of nanometres to millimetres; at such

scales, surface tension effects on these materials are non-negligible in comparison to
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bulk elastic forces. Given the recent surge of interest in the behaviour, functionality

and development of micro-to nano-scale soft materials for various technological

applications, an understanding of surface tension effects upon elastic materials

has never been more important. Examples of such applications are soft robotics

(Wang et al., 2018) and the construction of artificial muscles (Qiu et al., 2019)

and other biomedical devices (Cooke et al., 2018).

Great headway has been made in developing the field of elasto-capillarity, which

concerns itself with the large deformations of elastic materials with bulk and surface

energy. The seminal work in this area can be attributed to Gurtin and Murdoch

(1975), who derived a general surface elasticity theory based on the principles of

continuum mechanics which accounted explicitly for large deformations; tensorial

quantities of surface stress and strain can be non-linearly related to each other using

this theory. Steigmann and Ogden (1997) later generalized this framework to include

the effects of surface bending stiffness. Two-dimensional and three-dimensional finite

element method (FEM) frameworks for non-linear elastic materials under surface

tension have been constructed by Javili and Steinmann (2009, 2010), respectively.

These frameworks were implemented in the commercial FEM software Abaqus (2013)

by Henann and Bertoldi (2014) to investigate various elasto-capillary phenomena.

Further studies have considered the effects of surface stresses on plate bending

(Liu et al., 2017) and elastic materials (e.g. biological tissue) under volumetric

growth (Papastavrou et al., 2013).

1.2.2.1 Soft solid cylinders and hollow tubes

Soft cylinders and tubes are widespread in physiological systems in the form of brain

organoids, nerve fibres, arteries, airways and intestines, for instance. The villification

of the gastrointestinal tract (Shyer et al., 2013), the closure of pulmonary airways

(Seow et al., 2000) and the gyrification of the brain (Balbi et al., 2020) are examples

of physiological pattern formations and bifurcation phenomena which, despite the

compliance of the materials they occur in, have predominantly not been treated as the

result of coupled elastic and capillary effects. However, consideration is given to the

surface-tension-induced buckling of liquid-lined tubes as a model for airway closure in
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Hazel and Heil (2005), and insights into the elasto-capillary circumferential buckling

of tubes under biological growth (Riccobelli and Bevilacqua, 2020) and uniform

pressure and geometric everting (Wang et al., 2021) have very recently transpired.

Soft slender cylinders and tubes have been widely observed in experiments to

adopt a localized axi-symmetric pattern which bears a striking resemblance to beads

on a string; see Fig. 1.3. Consequently, the pattern is often referred to as beading in

the literature. This phenomenon can occur in nerve fibres (Bar-Ziv and Moses, 1994)

and axons under tension from traumatic brain injuries (Kilinc et al., 2009; Lang

et al., 2017), and it has also been implicated in neurodegenerative disorders such as

Alzheimer’s and Parkinson’s diseases (Datar et al., 2019). Furthermore, tunnelling

nano-tubes under tension have been observed between migrating cells; these nano-

tubes allow for inter-cellular communications and migration support (Veranič et al.,

2008). As shown in Fig. 1.3 (g – i), the formation of localized axi-symmetric

patterns has also been observed in these nano-tubes. Bead formation has likewise

been observed in hollow tubes which are filled with magnetic fluids (Ménager et al.,

2002), submerged in hydrophilic polymer solutions (Tsafrir et al., 2001) and under

growth (Hannezo et al., 2012), and has been implicated in the synthesis of soft

matter nano-tubes (Ma et al., 2017) which have a variety of physical, biological and

chemical applications (Shimizu et al., 2020). It is known from Wilkes (1955) that a

cylinder or tube under a purely mechanical axial load cannot form a localized pattern.

Instead, it may admit a periodic pattern in the axial direction provided that the

load is sufficiently compressive. Given the small scale and softness of the cylinders

and tubes in the previously discussed experiments, it is plausible that the additional

effect of surface tension is what triggers localized pattern formation in this context.

The beading of an incompressible solid cylinder under axial loading and surface

tension was initially analyzed using non-linear elasticity theory by Taffetani and

Ciarletta (2015a,b) and Xuan and Biggins (2016). These studies concluded unani-

mously that the preferred bifurcation mode is characterized by infinite wavelength,

or zero wavenumber, in the axial direction. Despite the previously discussed

connections between the zero wavenumber mode and localized inhomogeneous
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bifurcation solutions from the general dynamical systems theory and the inflation

problem, the weakly non-linear analysis conducted in Taffetani and Ciarletta

(2015b) was centred around seeking periodic solutions, and they did not yield

the quadratic amplitude equation which is typically expected to arise in elastic

localization problems. Furthermore, FEM simulations conducted in Abaqus (2013)

by Henann and Bertoldi (2014) suggested that beading is a supercritical bifurcation

phenomenon, but this conclusion would later be challenged.

Xuan and Biggins (2017) and Giudici and Biggins (2020) highlighted that

beading is a phase-transition-like phenomenon which culminates in a two-phase

state characterized by two sections with distinct but uniform axial stretch connected

by a smooth transition zone. The weakly non-linear analysis of Fu et al. (2021)

demonstrated that a subcritical localized bulging or necking solution is indeed the

initial bifurcation behaviour, depending on the loading scenario. The connection

between the initial localized pattern and the final “two-phase” deformation observed

by Xuan and Biggins (2017) and Giudici and Biggins (2020) was also explained both

theoretically and numerically via FEM simulations in Abaqus (2013). The post-

bifurcation process was seen to display a similar pattern of initiation, growth and

propagation as is observed in the inflation problem, and the bifurcation condition

for localized necking or bulging (and equivalently for a zero wavenumber mode to

exist) was shown to take an analytical form analogous to the Jacobian determinant

condition in the inflation problem. The beading instability in incompressible solid

cylinders has since been studied dynamically (Pandey et al., 2021) and through

the active strain approach (Riccobelli, 2021).

Theoretical studies of incompressible hollow tubes under the effect of axial loading

and surface tension are far less prevalent. FEM simulations were conducted by

Henann and Bertoldi (2014) for two separate cases of boundary conditions where the

inner or outer lateral surface is fixed to prevent displacement in the radial direction.

Xuan and Biggins (2016) studied the bifurcation behaviour of a cylindrical cavity in

an infinite solid, and showed that the preferred mode is again associated with zero

wavenumber. A first attempt at a theoretical investigation of the hollow tube case
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Figure 1.3: Examples of elasto-capillary beading in soft slender cylinders/tubes. (a)
Beading of a shrinking acrylamide cylindrical gel immersed in an acetone-water mixture
(Matsuo and Tanaka, 1992). (b) Beading of soft cylindrical gels immersed in toluene
(Mora et al., 2010). (c) Axonal beading due to mechanical trauma (Hemphill et al., 2015).
(d) Beading of nanofibers formed during electrospinning (Fong et al., 1999). (e) Beading
due to thinning of polymer nanofibers (Sattler et al., 2008). (f) Beading of a single
myelinated fiber teased from a rat sciatic nerve stretched with a weight of 4.5 g (Markin
et al., 1999). (g – i) Beading of tunnelling nanotubes connecting migrating cells (Veranič
et al., 2008). (j) Beading of phospholipid tubes filled with a magnetic fluid (Ménager
et al., 2002).
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was made by Wang (2020). Surprisingly, an analytical solution to the governing

equation was obtained. This was contrary to expectations since, in the investigations

of Haughton and Ogden (1979b) into tubes under axial loading and internal pressure,

the boundary value problem could only be solved numerically. There is clearly a need

to resolve this discrepancy and to determine absolutely whether localized or periodic

pattern formation is preferred in the hollow tube case, and how such patterns evolve

in the post-bifurcation regime; this will be the first focus of this thesis.

Localized pattern formation in compressible solid cylinders has also received very

little attention in the literature. This is surprising since, whilst the incompressibility

assumption typically makes the bifurcation analysis far easier, soft hydrogels can

often possess a large degree of compressibility; see Geissler et al. (1988) and

Chippada et al. (2010), for instance. Furthermore, in the case of soft biological

tissue, whilst incompressibility is often assumed due to the high water content of the

material, there is very little supporting experimental evidence for this assumption.

Only Carew et al. (1968) has provided evidence that incompressibility is a suitable

assumption when modelling arterial tissue. Very recently, Dortdivanlioglu and Javili

(2022) analyzed the effect of material compressibility on solid cylinders under axial

loading and surface tension via numerical simulations, extending what is already

known for the incompressible case. Numerical simulation predictions for the initial

bifurcation points are presented, and an extensive post-bifurcation analysis tracking

the axial propagation of the localized pattern is performed. The work offers a

different numerical perspective on the existing literature for the incompressible

case, but does not present any analytical results to compare with the numerical

predictions for the compressible case. The second focus of this thesis is therefore

to make use of the similar mathematical structures of the inflation and elasto-

capillary problems and extend the established analytical bifurcation conditions and

post-bifurcation results of Fu et al. (2021) to the compressible case. A comparison

between our theory and the numerical simulation results of Dortdivanlioglu and

Javili (2022) can then be made.
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1.3 Creasing: a unique localized pattern

When an elastic half-space is subjected to a horizontal compression, the formation

of a crease, which we define as an isolated region of self-contact at the material’s free

surface, will occur at some critical load. Whilst creasing is indeed a localized pattern

formation, it is mathematically dissimilar to the localized bulging and necking

phenomena discussed previously since it is a non-linear bifurcation phenomenon

which is disassociated from the zero wavenumber bifurcation mode. Crease formation

is considered one of the most complex and challenging localized pattern formation

problems to tackle theoretically, and it has attracted a wide range of interest in

the non-linear elasticity community as a result.

In physiology and nature, creasing is widespread. For instance, it may be

observed in the form of sulci patterns across the cerebral cortex of the brain,

on the surface of a contorted elephants trunk and in many soft foods and gels

under stress; see Fig. 1.4. However, there are many motivations for studying

(a) (b) (c)

Figure 1.4: Evidence of creasing on the surface of (a) the human brain, (b) a twisted
elephants trunk and (c) Liangfen, a northern Chinese delicacy, under compression (Hong
et al., 2009).

the fundamental mechanics of creasing aside from the general curiosity stemming

from natural observations. For instance, creases are widely observed in growing

tubular biological tissue (Ciarletta et al., 2014; Razavi et al., 2016), and have also

been shown to influence the in vitro behaviour of cells (Chen et al., 2015) and to

mitigate biofouling (Shivapooja et al., 2013). Even as far back as 100 years ago,
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crease formation greatly influenced the quality of photographs produced through

Collotype (Sheppard and Elliott, 1918).

In the seminal theoretical work of Biot (1963), a linear bifurcation analysis

showed that the surface of a compressed elastic half-space may develop a periodic

wrinkling pattern with undefined wavelength at the critical stretch λ ≈ 0.54. A

discrepancy followed some time later when Gent and Cho (1999) experimentally

observed the formation of creases in bent rubber blocks at the critical stretch

λ ≈ 0.65. A theme ensued where creases were widely observed in experimental

studies of homogeneous elastic bodies under mechanical loading (Ghatak and Das,

2007; Mora et al., 2011), spatially constrained growth or swelling (Tanaka et al.,

1987; Trujillo et al., 2008; Yoon et al., 2010; Dervaux and Ben Amar, 2012) and

electric fields (Xu and Hayward, 2013; Park et al., 2013). In contrast, the periodic

pattern formation predicted by Biot (1963) remained elusive in reality.

Post-bifurcation analyses of Biot’s wrinkling pattern were also formulated (Fu,

1999; Cao and Hutchinson, 2011). In particular, Fu (1999) considered the uni-axial

compression of an elastic half space with a sinusoidal surface profile imperfection,

and showed that static shocks evolved in the elevated surface profiles at smaller

compressions than Biot’s threshold. This suggested that a solution characterized by

locally large displacement gradients was preferred. Hohlfeld and Mahadevan (2012)

showed numerically that creasing is indeed a distinct bifurcation phenomenon to

wrinkling, and determined a prediction of λ = 0.6474 for the onset of the former; see

Fig. 1.5. To elaborate, wrinkling is a solution where the displacement field relative

to a primary uni-axially compressed state is small. In contrast, the displacement

field of the region affected by a crease relative to the uni-axially compressed state

is large. Moreover, whilst wrinkling is a periodic surface displacement which is

non-local in physical space, creasing is a localized phenomenon which produces

a self-contacting region of the free-surface which ends in a sharp singular tip.

Hence, crease formation is inherently non-linear and thus undetectable through a

conventional linear bifurcation analysis such as the one conducted in Biot (1963).
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Figure 1.5: A plot of the crease depth h against the compressive strain ϵ = 1 − λ (right)
from Hohlfeld and Mahadevan (2012). At ϵ = 0.3526 (λ = 0.6474), we have the emergence
of a non-zero h, which corresponds to the initiation of a crease. The deformation fields
labelled 1, 2 and 3 on the left coincide with the identically labelled points on the solid
blue numerically simulated bifurcation curve on the right.

Further numerical studies (Trujillo et al., 2008; Hong et al., 2009; Yoon et al.,

2010; Chen et al., 2012; Tallinen et al., 2013) provided bifurcation points for crease

formation which were agreeable with the one found in Hohlfeld and Mahadevan

(2012). Chen et al. (2012) showed that surface tension effects can delay the onset

of creases. Hohlfeld (2013) then attributed crease formation to the coexistence of

two scale-invariant deformation fields. Jin and Suo (2015) conducted numerical

simulations of strain-stiffening materials in Abaqus (2013) by applying the Gent

material model (Gent, 1996), and found that creasing in this class of materials

occurs supercritically. Most recently, Yang et al. (2021) proposed, and also verified

numerically, a perturbation force-based criterion whereby creasing will occur when

the application of a concentrated force to the primary deformed configuration

would produce infinite displacement (when fully non-linear governing equations are

employed). In conjunction, Pandurangi et al. (2022) conducted a solution branch

following numerical simulation procedure guided by group-theoretic considerations

to study creasing in a functionally graded layer and a thin-film on a substrate layer.

By extending the work in Ciarletta (2018), Ciarletta and Truskinovsky (2019)

produced the first analytical prediction of the critical stretch for crease formation.

The central idea is to assume that the effect of crease formation on the material
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sufficiently far away from the crease tip is equivalent to the action of a concentrated

force, and then to use a conservation law associated with the energy-momentum

tensor to determine the critical stretch. This idea is undoubtedly ground-breaking,

but the paper is notably brief with very limited detail surrounding crucial steps in the

analysis. As a consequence, a reproduction of the presented results is particularly

difficult to achieve, and this arguably restricts the level of attention that this

seminal study should receive. The final focus of this thesis is therefore to present a

rephrasing of the original paper with clearer and more precise derivations produced

independently using, in part, slightly different albeit well-justified approaches. It

will be shown that this in turn leads to slightly different results. It is hoped

that this will generate a greater appreciation of the original idea of Ciarletta

and Truskinovsky (2019) which may well prove to be the final solution to this

fundamentally challenging bifurcation problem.

1.4 Overview of the thesis

The thesis will be organized in the following manner. As a starting point, we will

present in chapter 2 the underlying theory of continuum mechanics and several

other advanced mathematical techniques which play a pivotal role in our research.

Chapters 3 through 5 contain a series of systematic studies into the bifurcation

behaviour of soft incompressible hollow tubes under various elasto-capillary-based

loading types and boundary conditions. These chapters are based, respectively,

on analysis which has been published in Emery and Fu (2021a,b,c). Chapter

3 formulates conjectured analytical bifurcation conditions for localized pattern

formation in these tubes based on known results for the prototypical inflation

problem previously discussed. A linear bifurcation analysis is also performed

to determine if an axi-symmetric pattern formation associated zero wavenumber

or strictly positive wavenumber is favoured. An initial connection between the

zero wavenumber bifurcation mode and localized pattern formation is made. In

chapter 4, we investigate circumferential buckling modes and the competition



1. Introduction 15

with the axi-symmetric bifurcation modes studied in chapter 3 to determine the

overall preferred bifurcation behaviour. Chapter 5 finally focusses on the scenarios

where the axi-symmetric zero wavenumber mode is favoured. A weakly non-linear

analysis is conducted to verify explicitly that this bifurcation mode corresponds

to a localized pattern formation, and to determine whether the localized pattern

arises subcritically or supercritically. Although the corresponding fully non-linear

post-bifurcation behaviour is investigated initially through FEM simulations, it will

be shown, remarkably, that the entire bifurcation process which the tube undergoes

can be understood analytically. In chapter 6, we use the analytical tools established

in chapters 3 through 5 to study elasto-capillary-based localized pattern formation

in compressible solid cylinders. Comparisons between our theory and newly emerged

numerical simulation results are made. The paper associated with this chapter

(Emery, 2023) is currently under peer review. Chapter 7 presents a theoretical

study of crease formation in a compressed elastic material based on the seminal

idea of Ciarletta and Truskinovsky (2019). Conclusions and perspectives on the

entire body of research are finally offered in chapter 8.
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2.1 Introduction

In this chapter, we begin by presenting the classical theory of continuum mechanics

which underpins our research. Specifically, we discuss kinematics, balance laws

and field equations, constitutive equations, hyperelastic materials and strain-energy

functions. For a complete accounting of the fundamental concepts of continuum

mechanics, we refer the reader to Ogden (1997) and Chadwick (1999). We then

move on to summarizing further advanced mathematical techniques employed over

the course of the thesis. To elaborate, we cover: the incremental equations governing

infinitesimal perturbations of a finitely deformed elastic body; a mixed coordinate

stream function approach to satisfying material incompressibility; variational

principles and conservation laws; numerical techniques for solving variable-coefficient

linear eigenvalue problems; and a perturbation approach to weakly non-linear

analysis in the context of non-linear elasticity.

2.2 Theory of continuum mechanics

2.2.1 Kinematics

Consider an elastic material body with an undeformed reference configuration B0

and a deformed current configuration Be. A representative material particle in

B0 and Be has the position vector X and x, respectively, and we may define the

injective mapping function χ : B0 → Be to describe the deformation of the material

body. The vector function χ and its inverse χ−1 are defined through

x = χ(X, t) and X = χ−1(x, t), (2.1)

where t denotes time; see Fig. 2.1. For any coordinate system, the differentials

of X and x, dX and dx, may be defined as follows:

dX = ∂X

∂SA

dSA = GAdSA and dx = ∂x

∂si

dsi = gidsi, (2.2)
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where SA and si are the coordinates pertaining to X and x, respectively, GA and

gi are the associated covariant vectors and Einstein’s summation convention over

repeated indices is employed. We may also introduce the contravariant vectors

GA and gi through

GA · GB = δAB and gi · gj = δij, (2.3)

where δij =
1, if i = j

0, if i ̸= j
, (2.4)

is the Kroenecker delta function.

B0 Be

F = Grad x

F−1 = gradX

X x

Figure 2.1: A schematic of the reference configuration B0 and the current configuration
Be.

The deformation gradient tensor F underpinning the analysis of local defor-

mation and motion is expressible through

dx = FdX, where F = Grad x = ∂x

∂SA

⊗ GA, (2.5)

with Grad denoting the gradient operator with respect to the coordinates in B0

and ⊗ the tensor product between two vectors. Note that F is an invertible

tensor, and we have that

F−1 = gradX = ∂X

∂si

⊗ gi, (2.6)
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where grad is the gradient operator with respect to the coordinates in Be. When

a three-dimensional Cartesian coordinate system is adopted, the position vectors

X and x are expressed generally as follows:

X = XAEA and x = xiei, (2.7)

where (EA) and (ei) are the associated orthonormal bases with i, A = 1, 2, 3. The

corresponding deformation gradient is given by

F = ∂(xiei)
∂XA

⊗ EA = ∂xi

∂XA

ei ⊗ EA. (2.8)

In cylindrical polar coordinates, the position vectors X and x are expressed as

X = RER + ZEZ and x = rer + zez. (2.9)

In terms of the orthonormal bases (ER,EΘ,EZ) and (er, eθ, ez), the corresponding

deformation gradient can be shown to take the following form:

F = ∂r

∂R
er ⊗ ER + 1

R

∂r

∂Θer ⊗ EΘ + ∂r

∂Z
er ⊗ EZ + r

∂θ

∂R
eθ ⊗ ER + r

R

∂θ

∂Θeθ ⊗ EΘ

+ r
∂θ

∂Z
eθ ⊗ EZ + ∂z

∂R
ez ⊗ ER + 1

R

∂z

∂Θez ⊗ EΘ + ∂z

∂Z
ez ⊗ EZ . (2.10)

Let dV and dv denote infinitesimal volume elements in B0 and Be, respectively.

It can be shown directly from (2.5)1 that the following relation holds:

dv = JdV, where J ≡ detF ̸= 0; (2.11)

see Chadwick (1999, pp. 60-62). Thus, the quantity J characterizes the change

in volume of an infinitesimal element due to the effected deformation, and it is

strictly non-zero under the assumption that material cannot be destroyed. If a

material is incompressible, its volume remains unchanged under the deformation

B0 → Be, and hence the following constraint of isochorism holds:

detF = 1. (2.12)

Suppose also that dX1 and dX2 are two arbitrary line elements at an arbitrary

point on a material surface in B0. Furthermore, let N be the outward unit normal
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to the surface at this point and let dA be the area of the parallelogram spanned

by dX1 and dX2. Then, we have

nda = J(F−1)T NdA, (2.13)

where n and da are the images of N and dA (respectively) in Be, and a superscript

T denotes transposition. Equation (2.13) is more commonly known as Nanson’s

formula (Chadwick, 1999, pp. 60-61), and measures the change in area of a material

surface element in a body under deformation.

Since the deformation gradient F is invertible, it has the following unique right

and left polar decompositions (Chadwick, 1999, pp. 33-35):

F = QU = V Q, (2.14)

where U and V are positive-definite symmetric right and left stretch tensors (respec-

tively) and Q is a proper orthogonal or rotation tensor which possesses the properties

QTQ = QQT = I and detQ = 1. (2.15)

It is known from matrix theory that any symmetric tensor possesses three real

eigenvalues and an associated orthonormal set of eigenvectors; these tensors are

uniquely determined by their eigenvalues and eigenvectors. For instance, U and

V may have the spectral representations

U =
3∑

i=1
λi(pi ⊗ pi) and V =

3∑
i=1

λi(qi ⊗ qi), (2.16)

where λi are the eigenvalues (or principal stretches) of U and V , and pi and qi = Qpi

are associated the eigenvectors. From the polar decomposition (2.14)1 we deduce

that the local deformation of a material body about a representative particle is

induced by first applying stretches λi in the principal directions of U , followed

by a rigid rotation given by Q. The same is true for the polar decomposition

(2.14)2, except we apply the rigid rotation of the body first followed by stretches

in the principal directions of V . The right and left Cauchy-Green strain tensors

are then given respectively by

C = F TF = U2 and B = FF T = V 2, (2.17)
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and it is noted that both C and B are symmetric tensors. It follows immediately

from (2.16) that

C =
3∑

i=1
λ2

i (pi ⊗ pi) and B =
3∑

i=1
λ2

i (qi ⊗ qi). (2.18)

We may also define the following three principal invariants of B (or C):

I1 = trB = λ2
1 + λ2

2 + λ2
3,

I2 = 1
2(I2

1 − trB2) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3,

I3 = detB = J2 = λ2
1λ

2
2λ

2
3.

(2.19)

The velocity gradient L of a material point x is given by

L = grad v, where v = ẋ, (2.20)

and a superimposed dot denotes the material time derivative. Using (2.20) and

the identity Grad v = (grad v)F , it is straightforward to show that

Ḟ = ∂

∂t
F = ∂

∂t
Grad x = Grad v and LF = (gradv)F = Grad v, (2.21)

and hence

Ḟ = LF. (2.22)

Alternatively, we can consider the decomposition L = D+W , whereD is a symmetric

rate of strain tensor and W is a skew-symmetric spin tensor. As their names suggest,

D and W measure the rate of change of stretch and rotation (respectively) as the

material body passes through its current configuration.

2.2.2 Balance laws and field equations

2.2.2.1 Conservation of mass

Let ρ0(X) and ρ(x, t) denote the mass densities of the material body in the reference

configuration B0 and the current configuration Be, respectively. Conservation of
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mass requires that mass in a material body must not be created or destroyed under

deformation. Mathematically, we have that

ρ0 dV = ρ dv. (2.23)

On making use of (2.11), the relation (2.23) becomes

ρ0 = Jρ. (2.24)

Then, on differentiating (2.24) with respect to t and using the identity J̇ =

Jdivv (with div being the divergence operator in Be), we obtain the spatial

equation of continuity

ρ̇+ ρ divv = 0. (2.25)

For incompressible materials, J = 1 and hence the density ρ = ρ0 is constant.

In this case, (2.25) reduces to

div v = 0. (2.26)

2.2.2.2 Principle of linear momentum

The principle of linear momentum states that the rate of change of the total linear

momentum is equal to the resultant force acting on the body. Thus, if the body is

under no external forces, the total linear momentum of the body should remain

constant. Let R0 and R be arbitrary material regions in the reference and current

configurations, respectively. Also, let b denote the body force acting on R and let

t = t(x,n) be the vector field representing the force per unit area acting on an

arbitrary material surface ∂R with outward unit normal n in the region R. Indeed,

t is commonly referred to as the traction vector, and is assumed to be a continuous

vector function of x and n. Then, the principle of linear momentum states that

d

dt

∫
R
ρv dv =

∫
R
ρb dv +

∫
∂R

tda. (2.27)

With use of (2.11) and (2.24), the integral on the left-hand side of (2.27) can

be reformulated as such:

d

dt

∫
R
ρv dv = d

dt

∫
R0
ρvJdV =

∫
R0

d

dt
(ρ0v)dV =

∫
R
ρv̇dv. (2.28)
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Then, on substituting the identity (2.28) back into (2.27), we obtain

∫
R
ρv̇ dv =

∫
R
ρb dv +

∫
∂R

tda. (2.29)

2.2.2.3 Equations of motion and stress boundary conditions

Cauchy’s Theorem (Ogden, 1997) states that the tractions t acting on a material sur-

face ∂R with outward unit normal n in the current configuration can be related to the

aforementioned normal through the second-order tensor field σ = σ(x, t) as follows:

t = σT n. (2.30)

The tensor σ is known as the Cauchy stress tensor, and it is independent of n.

Upon substitution of (2.30), (2.29) becomes

∫
R
ρv̇ dv =

∫
R
ρb dv +

∫
∂R
σT nda. (2.31)

With use of the Divergence Theorem, the surface integral on the right-hand side

of (2.31) can be converted to a volume integral as such:

∫
∂R
σT nda =

∫
R

divσdv, where divσ = gi · ∂σ
∂si

. (2.32)

Since the region R is arbitrarily chosen, we obtain the following equations of

motion on substituting (2.32) into (2.31):

divσ + ρb = ρv̇. (2.33)

Moreover, we may deduce from the principle of angular momentum (Chadwick,

1999, pp. 90-101) that σ is a symmetric tensor. That is, the following relation holds:

σ = σT . (2.34)

If the material body is in mechanical equilibrium, then b = 0 and v̇ = 0, and the

equations of motion (2.33) reduce to the equilibrium equations

divσ = 0. (2.35)
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With use of (2.13), we can write

σT nda = σTJ(F−1)T NdA = ST NdA, (2.36)

where S, defined by

S = JF−1σ, (2.37)

is the nominal stress tensor. The nominal stress gives the contact force in the

current configuration per unit area in the reference configuration. On transposing S,

we obtain a further measure of stress in the first Piola-Kirchhoff stress tensor π, i.e.:

π = ST . (2.38)

The equations of motion (2.33) and the equilibrium equations (2.35) can be

respectively defined in B0 in terms of S as follows:

DivS + ρ0b = ρ0v̇ and DivS = 0. (2.39)

Let ∂B0 be the portion of the boundary in the reference configuration where the

traction is prescribed to be t0, say. Then the following boundary condition holds:

ST N |∂B0 = t0. (2.40)

We assume that the material body is subject to dead-loading, by which we mean that

the resultant of the traction t0 is held fixed throughout the deformation B0 → Be; see

Fu and Ogden (2001). With use of (2.36), the associated boundary condition in Be is

σT n|∂Be = t0
dA

da
, (2.41)

where ∂Be is the image of ∂B0 in Be.

2.2.3 Constitutive equations

The governing equations (2.33)− (2.34) and boundary conditions (2.41) are valid for

any continuum. The constitutive equations allow us to distinguish between the many

types of continua, such as inviscid fluids, Newtonian viscous fluids, non-Newtonian
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fluids, elastic materials and plastic materials. In order to facilitate our later work,

we need to specify these equations to an elastic material in mechanical equilibrium.

Currently, we have six dependent variables which are specifically the six distinct

components of σ. However, there are only three equilibrium equations in (2.35).

Thus, in order to close the system, we require three further constitutive equations

which relate σ to the deformation. In elasticity, we assume that the Cauchy stress

depends solely on the deformation gradient F through the relation

σ = g(F ), (2.42)

where g is a symmetric tensor-valued function. However, when the aim is to find

unique solutions to well-posed problems in elasticity, (2.42) is too general to make

headway. To overcome this, we may impose various principles onto the constitutive

relation (2.42) which restrict the multitude of mathematical forms it may take.
2.2.3.1 Principle of objectivity

The principle of objectivity (or material frame-indifference) states that the response

of a material (and hence the constitutive equation (2.42)) is invariant with respect

to any equivalent pair of observers. In the case of an elastic material, the principle

of objectivity requires that the symmetric tensor-valued function g defined in

(2.42) satisfies the condition

g(QF ) = Qg(F )QT , (2.43)

∀ proper orthogonal rotation tensors Q.
2.2.3.2 Isotropic materials

An elastic material is said to possess a symmetry if its constitutive response is

invariant to changes in the reference configuration B0 (e.g. through a rotation or an

in-plane reflection). A transformation of the reference configuration from B0 to B⋆
0,

say, is equivalent to multiplying F from the right by P , where P is the deformation

gradient corresponding to B0 → B⋆
0. Thus, if the constitutive response of a material

is invariant with respect to the transformation B0 → B⋆
0, then

g(FP ) = g(F ) ∀ arbitrarily invertible F. (2.44)
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The set of all P satisfying (2.44) forms a group called the symmetry group of the mate-

rial.

A material is said to be isotropic if its symmetry group is the set of all orthogonal

tensors Q. Therefore, isotropy requires that

g(FQ) = g(F ) ∀ orthogonal Q. (2.45)

Physically, isotropy means that the material’s properties and constitutive behaviour

are independent of direction. On replacing F in the left-hand side of (2.45) with

the left polar decomposition V R and setting Q = RT , we obtain

g(V ) = g(F ). (2.46)

Given (2.17), we deduce from (2.46) that

g(F ) = g(B1/2) = h(B), (2.47)

where h is a symmetric tensor-valued function. With further use of the objectivity

condition (2.43) and the isotropy condition (2.45), we determine that

g(RFQ) = g(RF ) = Rg(F )RT = Rh(B)RT . (2.48)

Then, on setting Q = RT and making use of the identity (2.47), (2.48) becomes

h(RBRT ) = Rh(B)RT , (2.49)

and (2.49) demonstrates that h is an isotropic tensor function of B. It then follows

that the function h, and hence the Cauchy stress σ, admits the representation

σ = h(B) = η0I + η1B + η2B
2, (2.50)

where η0, η1 and η2 are scalar functions of the principal invariants (2.19) of B, and

I is the identity tensor; see Truesdell and Noll (2004).
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2.2.4 Hyperelastic materials

A material is said to be hyperelastic if there exists a strain-energy function W (F )

measured per unit volume in the reference configuration which satisfies the con-

stitutive relation

Ẇ = J tr {σL}. (2.51)

With use of the identity (2.22), we may deduce

Ẇ = ∂W

∂FiA

∂FiA

∂t
= tr

{
∂W

∂F
Ḟ

}
= tr

{
∂W

∂F
LF

}
= tr

{
F
∂W

∂F
L

}
. (2.52)

Then, on comparing (2.51) and (2.52), and using the fact that L is arbitrary

for any given F , we obtain the following relationship between the Cauchy stress

and the strain-energy function:

σ = J−1F
∂W

∂F
, where σij = J−1FiA

∂W

∂FjA

. (2.53)

Also, by applying (2.37), we may determine the following relationship between

the nominal stress S and W :

S = ∂W

∂F
, where SAi = ∂W

∂FiA

. (2.54)

When specifying to an incompressible material, the relations (2.53) and (2.54)

must be modified as such:

σ = F
∂W

∂F
− pI and S = ∂W

∂F
− pF−1, (2.55)

where p is the Lagrangian multiplier enforcing the incompressibility constraint (2.12)

which may be interpreted as kinematic pressure. To elaborate, we may define the

scalar field tr(σD) as the stress power per unit volume in the current configuration,

and this constitutes the rate of work done by the stress due to the stretching of

material volume elements. Loosely speaking, the term involving p in the above

expression for σ is a workless constraint stress in the sense that tr(−pID) = 0, and

this result emerges directly from (2.12); see Chadwick (1999, pp. 145-147).
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Isotropy requires that W depends on F through B. Given the spectral represen-

tations (2.18) and the expressions (2.19), it follows that W may be expressed as a

function of the three principal invariants of B in this case. It then follows from (2.53)

that the Cauchy stress for a general isotropic hyperelastic material takes the form

σ = 2I1/2
3 W3I + 2I−1/2

3 {W1 + I1W2}B − 2I−1/2
3 W2B

2, (2.56)

where Wi = ∂W/∂Ii for i = 1, 2, 3. When the material is incompressible also,

the third invariant I3 = 1 and W depends only on I1 and I2. In this instance,

the constitutive equation (2.55)1 becomes

σ = 2W1B − 2W2B
−1 − pI. (2.57)

2.2.5 Strain-energy functions

In the previous section, we stated that the constitutive behaviour of isotropic,

hyperelastic materials may be underpinned by a strain-energy function of the

form W = W (I1, I2, I3). When the material is also incompressible, the most

general strain-energy function is of the form W = W (I1, I2). In the following,

we present some examples of strain-energy functions of these forms which are

widely used in the literature.

2.2.5.1 Neo-Hookean material model

The incompressible neo-Hookean strain-energy function depends only on the first

invariant I1 and is defined through

W (I1) = 1
2µ(I1 − 3), (2.58)

where µ is the ground state shear modulus of the material. Although the model

gives reasonable agreement with experimental results at small strains, it provides

less accuracy when deformations are large (Ogden, 1972). In spite of this, it is

highly popular in the non-linear elasticity community due to its simplicity.

For a compressible neo-Hookean material, two widely used models in the literature

are the so-called quadratic and logarithmic strain-energy functions. These are



30 2.2. Theory of continuum mechanics

defined, respectively, through

W (I1, I3) = 1
2µ(I1 − 3 − 2 log J) + 1

2 λ̂
{1

2(J2 − 1) − log J
}
, (2.59)

and W (I1, I3) = 1
2µ(I1 − 3 − 2 log J) + 1

2 λ̂(log J)2, (2.60)

where λ̂ = 2ν
1 − 2ν , (2.61)

is the first Lamé constant and ν ∈ [0, 1/2] is Poisson’s ratio. Both models (2.59)

and (2.60) have been shown to give good agreement with experimental data; see

Horgan and Saccomandi (2004) and the references therein. It is noted that the

material becomes incompressible in the limit ν → 1/2 and fully compressible

in the limit ν → 0.
2.2.5.2 Mooney-Rivlin material model

The Mooney-Rivlin material model generalizes the neo-Hookean model (2.58) by

incorporating the second invariant I2. It takes the form

W (I1, I2) = 1
2µ1(I1 − 3 + 1

2µ2(I2 − 3), (2.62)

where µ1 and µ2 are constants. The model was first proposed by Mooney (1940) and

developed further by Rivlin (1948). Unlike the neo-Hookean model, the Mooney-

Rivlin model is fairly accurate at moderate strains and provides physically adequate

results provided that µ1 > 0 and µ2 < 0.
2.2.5.3 Gent material model

Gent (1996) proposed the following strain-energy function for incompressible

hyperelastic materials which depends only on the first invariant I1:

W (I1) = −1
2µJmln

(
1 − I1 − 3

Jm

)
, (2.63)

where Jm is a positive constant representing the maximum extensibility of the

material. To elaborate, in the limit Jm → I1 − 3 the material becomes completely

rigid, and in the limit Jm → ∞ the Gent model reduces to the neo-Hookean model

(2.58). The theoretical predictions provided by the Gent model have been shown
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to be accurate at larger strains, and the additional benefit of its simplistic form

means it is a highly popular model in the literature. A compressible version of

the Gent model may be written as

W (I1, I3) = −µ

2

{
Jmln

(
1 − I1 − 3

Jm

)
+ 2lnJ

}
+ 1

2 λ̂
{1

2(J2 − 1) − log J
}
. (2.64)

2.2.5.4 Gent-Gent material model

One downside to the Gent model was highlighted by Pucci and Saccomandi (2002)

who, on comparing with the classical experimental stress-strain data in Treloar

(1944) for rubber under extension, showed that it loses accuracy in the small-to-

moderate strain regime. To overcome this, they modified (2.63) by adding an extra

term which involves the second principal invariant I2 and a new material constant

Λ. The resulting Gent-Gent material model takes the following form:

W (I1, I2) = −1
2µJmln

(
1 − I1 − 3

Jm

)
+ Λln

(
I2

3

)
, (2.65)

and its fitting with experimental data in the small stretch regime has been shown

to have a much smaller relative error than the Gent model counterpart (Zhou et al.,

2018).

2.3 The incremental equations

The method of superposing incremental deformation fields onto large deformation

fields (otherwise know as the small-on-large theory) is widely used to analyze the

linear bifurcation behaviour and stability of elastic solids under finite strain. The

approach was originally developed by Green et al. (1952) and Pipkin and Rivlin

(1961). For a complete overview of the method of incremental deformations, we

refer the reader to Fu and Ogden (2001) and Ogden (2007). In the following, we

give a summary of the stress-based linearized incremental equations governing

infinitesimal perturbations of a finitely deformed elastic material.
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To begin, consider an incompressible, isotropic, hyperelastic body and assume it

possesses an unstressed reference configuration B0 and a finitely deformed configu-

ration Be. It is the stability and bifurcation behaviour of the latter configuration

which we are interested in studying. To this end, suppose that we further subject

Be to a small-amplitude perturbation which produces a resulting configuration Bt;

see Fig. 2.2. The question we then ask is: what are the equations governing

such incremental perturbations?

B0 Be Bt

F̄ = Grad x δF̃ = ΓF̄

X x x̃

Figure 2.2: A schematic of the reference configuration B0, the finitely deformed
configuration Be and the resulting configuration Bt.

The position vector of a representative material particle in B0, Be and Bt is

denoted by X, x(X) and x̃(X, t), respectively. We may then write

x̃ = x(X) + u(x, t), (2.66)

where u is the incremental displacement vector field associated with the deformation

Be → Bt. Denote by F̄ and F̃ the deformation gradients corresponding to B0 → Be

and B0 → Bt, respectively. For the remainder of this section, a bar and a tilde

signifies association with the deformations B0 → Be and B0 → Bt, respectively. On

making use of (2.66) and the identity Grad u = (gradu)F , we have that

F̄ = Grad x and F̃ = Grad x̃ = (I + Γ)F̄ , (2.67)
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where Γ = grad u is the displacement gradient tensor. Given (2.67), the incompress-

ibility constraints associated with B0 → Be and Be → Bt take the respective forms

J̄ ≡ det F̄ = 1 and tr Γ = 0, (2.68)

with the latter presented in its linearized form. Then, with use of (2.38) and (2.55)2,

the nominal stress tensors S̄ and S̃ associated with the deformations B0 → Be and

B0 → Bt (respectively) are found to take the form

S̄ = ∂W

∂F

∣∣∣∣∣
F =F̄

− p̄F̄−1 and S̃ = ∂W

∂F

∣∣∣∣∣
F =F̃

− p̃F̃−1, (2.69)

where p̄ and p̃ = p̄+ δp are the Lagrangian multipliers in Be and Bt, respectively,

and δp is the incremental pressure. Under the assumption that the superposed incre-

mental displacement is static, the equilibrium equations in B0 and Be then become

Div S̄ = 0 and Div S̃ = 0, (2.70)

respectively. Through simple subtraction of (2.70)1 from (2.70)2, the incremental

equilibrium equations in Be can be written in the following form

Div
{
S̃ − S̄

}
= div

{
J̄−1F̄

(
S̃ − S̄

)}
= 0. (2.71)

Through inspection of (2.71), it is convenient to introduce an incremental stress

tensor χ through

χ = J̄−1
(
S̃ − S̄

)T
F̄ T , (2.72)

so that (2.71) becomes

divχT = 0. (2.73)

On expanding (2.69)2 to leading order around F = F̄ , the expansions for the

components χij of χ are found to take the form

χij = AjilkΓkl + p̄Γji − δp δji, (2.74)
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where the first-order instantaneous elastic moduli Ajilk are defined through

Ajilk = F̄jAF̄lB
∂2W

∂FiA∂FkB

∣∣∣∣∣
F =F̄

. (2.75)

For the special case where the strain-energy function W depends only on the first

invariant I1, the above moduli are given by

Ajilk = 2
{
2W ′′(Ī1)B̄ijB̄kl +W ′(Ī1) δikB̄jl

}
, (2.76)

where B̄ = F̄ F̄ T and Ī1 = trB̄.

2.4 Mixed coordinate stream functions for iso-
choric transformations

Previously, we introduced the concept of incorporating a Lagrangian multiplier p,

interpreted as pressure, into the expression for the Cauchy stress σ in order to enforce

the constraint of incompressibility (2.12). An alternate approach was proposed

initially by Rooney and Carroll (1984) who, in the context of two-dimensional

deformations in Cartesian coordinate space, realized that incompressibility can

be satisfied exactly by re-expressing the displacement components in terms of a

stream function. The use of the term stream function in this context originates from

an analogous formulation applied to the two-dimensional Stokes flow (Batchelor,

1967, pp. 75-79). The distinction is that the stream function we seek is defined

in terms of mixed coordinates. That is, it depends on coordinates both in the

reference and current configurations.

The work of Rooney and Carroll (1984) was later extended by Carroll (2004) to

the three-dimensional case, and the solutions of the incompressibility constraint were

expressed implicitly in terms of two stream functions restricted by two admissible

conditions. However, Ciarletta (2011) was able to define a generic transformation of

n-dimensional coordinates using a single mixed coordinate stream function. Many

recent studies of important problems in non-linear elasticity have adopted this

stream function formulation. Notable examples are the analysis of periodic surface
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pattern formation in soft materials (Ciarletta and Ben Amar, 2012a,b; Ciarletta,

2013; Ciarletta and Fu, 2015; Ben Amar and Bordner, 2017) and the elasto-capillary

localized beading of soft solid cylinders and tubes (Taffetani and Ciarletta, 2015a;

Wang, 2020; Fu et al., 2021; Emery and Fu, 2021a,c). In the following, we summarize

the main ideas of the stream function approach given in Ciarletta (2011) for both

Cartesian and cylindrical polar coordinate systems.

2.4.1 Three-dimensional Cartesian coordinates

We begin by considering a transformation of three functions xi = xi(X1, X2, X3)

of three variables X1, X2 and X3, where i = 1, 2 and 3. Assuming that this

transformation describes a large deformation from a reference configuration B0 to a

current configuration Be, the constraint of incompressibility takes the form

J ≡ det
{
∂xi

∂XA

}
= 1. (2.77)

The main idea is to simplify (2.77) by introducing an intermediate configuration

Bm defined through the basis vectors (E1,E2, e3), say. To this end, we define

the following transformations:

x1 = f1(X1, X2, x3), x2 = f2(X1, X2, x3), X3 = f3(X1, X2, x3), (2.78)

and a multiplicative decomposition of the deformation gradient F = F1F2 can then

be imposed; see Fig. 2.3. It can be shown that the deformation gradients F1 and

F2 mapping Bm → Be and B0 → Bm, respectively, take the following forms:

F1 = ∂x1

∂X1
e1 ⊗ E1 + ∂x1

∂X2
e1 ⊗ E2 + ∂x1

∂x3
e1 ⊗ e3 + ∂x2

∂X1
e2 ⊗ E1 + ∂x2

∂X2
e2 ⊗ E2

+ ∂x2

∂x3
e2 ⊗ e3 + e3 ⊗ e3, (2.79)

F2 = E1 ⊗ E1 + E2 ⊗ E2 + ∂x3

∂X1
e3 ⊗ E1 + ∂x3

∂X2
e3 ⊗ E2 + ∂x3

∂X3
e3 ⊗ E3. (2.80)

We then assume that there exists a stream function φ = φ(X1, X2, x3) such that

f1 = ∂2φ

∂X2∂x3
, f2 = ∂2φ

∂X1∂x3
. (2.81)
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B0 Be

Bm

F = F1F2

F2 F1

(X1, X2, X3) (x1, x2, x3)

(X1, X2, x3)

Figure 2.3: A schematic of the reference configuration B0, the mixed coordinate
configuration Bm and the current configuration Be.

Given (2.78) – (2.81), the incompressibility constraint detF = detF1 detF2 = 1 re-

duces to
∂f3

∂x3
=
(

∂3φ

∂X1∂X2∂x3

)2

− ∂3φ

∂X2
2∂x3

∂3φ

∂X2
1∂x3

. (2.82)

Finally, on integrating (2.82) with respect to x3, we obtain

f3 =

∫ 
(

∂3φ

∂X1∂X2∂x3

)2

− ∂3φ

∂X2
2∂x3

∂3φ

∂X2
1∂x3

 dx3 + f̂3(X1, X2). (2.83)

2.4.2 Cylindrical polar coordinates

We now consider a reference configuration B0 and a current configuration Be defined

by the cylindrical polar coordinates (R,Θ, Z) and (r, θ, z), respectively.
2.4.2.1 A general axi-symmetric transformation

Suppose that the mapping B0 → Be is enforced through the variable transformations

r = r(R,Z), θ = Θ, z = z(R,Z). (2.84)
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We then let

r = g1(R, z), Z = g2(R, z), (2.85)

and suppose also that there exists an intermediate configuration Bm defined through

the basis vectors (ER,EΘ, ez). Then, we can decompose the deformation gradient

corresponding to (2.84) multiplicatively through F = F1F2 such that F1 : Bm → Be

and F2 : B0 → Bm. Specifically, we have

F1 = ∂r

∂R
er ⊗ ER + ∂r

∂z
er ⊗ ez + r

R
eθ ⊗ EΘ + ∂z

∂R
ez ⊗ ER + ez ⊗ ez, (2.86)

F2 = ER ⊗ ER + EΘ ⊗ EΘ + ∂z

∂R
ez ⊗ ER + ∂z

∂Z
ez ⊗ EZ . (2.87)

It follows from (2.86) – (2.87) that the incompressibility constraint detF = 1

takes the simplified form:

r

R

∂z

∂Z

{
∂r

∂R
− ∂r

∂Z

∂z

∂R

}
= 1. (2.88)

Now, with use of (2.84) and (2.85), we deduce that (2.88) is equivalently

g1

R

(
∂g2

∂z

)−1
∂g1

∂R
= 1
R

(
∂g2

∂z

)−1
∂

∂R

(1
2g

2
1

)
= 1. (2.89)

We may then introduce a mixed coordinate stream function ϕ = ϕ(R, z) through

g2
1 = 2∂ϕ

∂z
= 2ϕ,z, g2 = 1

R

∂ϕ

∂R
= 1
R
ϕ,R, (2.90)

such that the condition (2.89) is automatically satisfied. Here and hereafter,

a comma in the subscript is used to denote partial differentiation with respect

to the implied coordinate.
2.4.2.2 A class of non-axi-symmetric transformations

Alternatively, suppose that the mapping B0 → Be is enforced through the variable

transformations

r = r(R,Θ), θ = θ(R,Θ), z = cZ, (2.91)

where c is a positive constant. Then, let

r = h1(R, θ), Θ = h2(R, θ), (2.92)



38 2.5. Variational principles and conservation laws

and suppose that there exists an intermediate configuration Bm defined by the

basic vectors (ER, eθ,EZ). Then, we can decompose the deformation gradient

corresponding to (2.84) multiplicatively through F = F1F2 such that F1 : Bm → Be

and F2 : B0 → Bm. Specifically, we have

F1 = ∂r

∂R
er ⊗ ER + 1

R

∂r

∂θ
er ⊗ eθ + r

R
eθ ⊗ eθ + r

∂θ

∂R
eθ ⊗ ER + c ez ⊗ EZ , (2.93)

F2 = ER ⊗ ER +R
∂θ

∂R
eθ ⊗ ER + ∂θ

∂Θeθ ⊗ EΘ + EZ ⊗ EZ . (2.94)

It follows from (2.93) – (2.94) that the incompressibility constraint detF = 1

takes the simplified form:

c
r

R

∂θ

∂Θ

{
∂r

∂R
− ∂r

∂θ

∂θ

∂R

}
= 1. (2.95)

With use of (2.91) and (2.92), the condition (2.95) reduces to

c
h1

R

∂h1

∂R
= c

R

∂

∂R

(1
2h

2
1

)
= ∂h2

∂θ
. (2.96)

Then, we may introduce an alternate mixed coordinate stream function ψ =

ψ(R, θ) through

h2
1 = 2∂ψ

∂θ
= 2ψ,θ, h2 = c

R

∂ψ

∂R
= c

R
ψ,R, (2.97)

so that (2.96) is is automatically satisfied.

2.5 Variational principles and conservation laws

2.5.1 The principle of stationary potential energy

In the pioneering work of Noether (1918), it was proven that for a system of

equations arising from a variational principle, any symmetry of this variational

principle gives rise to a conservation law. An elastic material in a state of mechanical

equilibrium conforms to the principle of stationary potential energy.

To illustrate, consider a general three-dimensional hyperelastic material with

reference and finitely deformed configurations B0 and Be, respectively. Let X and x
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be the position vectors of a representative material particle in these respective config-

urations. Then, the bulk energy E of the system is given generally by the functional

E =
∫

B0
W (XA, xi, xi,A)dV, (2.98)

where dV is an infinitesimal volume element in B0 and XA, xi and xi,A = ∂xi/∂XA

(i, A = 1, 2, 3) are the Cartesian components of X, x and F = Grad x, respectively.

For cylindrical or spherical polar coordinates, say, the partial derivatives xi,A are

replaced by the covariant derivatives xi;A. The principle of stationary potential

energy states that a deformation χ : B0 → Be is a solution to the equilibrium

equations of the system if and only if the first variation δE of E vanishes for all

variations δx of x, where x = χ(X). Thus, by Noether’s Theorem, the equilibrium

equations (2.39)2 must arise naturally from the condition that the functional (2.98)

is invariant with respect to infinitesimal variations in x. On taking the first

variation of (2.98), we obtain

δE =
∫

B0

[
∂W

∂xi

δxi + ∂W

∂xi,A

δxi,A

]
dV

=
∫

B0

[
∂W

∂xi

δxi + ∂

∂XA

(
∂W

∂xi,A

δxi

)
− ∂

∂XA

(
∂W

∂xi,A

)
δxi

]
dV

=
∫

B0

[
Ei(W )δxi + Div t̂

]
dV, (2.99)

where

Ei(W ) = ∂W

∂xi

− ∂

∂XA

(
∂W

∂xi,A

)
and t̂ =

(
t̂A
)

=
(
∂W

∂FiA

δxi

)
. (2.100)

Thus, for δE to vanish for arbitrary variations in δxi, we must satisfy the Euler-

Lagrange equations

Ei(W ) = 0. (2.101)

The equivalence of (2.101) to the equilibrium equations (2.39)2 will be verified

explicitly in the following sections.
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2.5.2 Conservation laws in non-linear elasticity

A variational integral of the form (2.98) is invariant with respect to the general

transformations

X ′
A = XA + ε ζA(XB, xj) + O(ε2),

x′
i = xi + ε ϕi(XB, xj) + O(ε2), (2.102)

if ∀ B ⊂ B0 we have
∫

B′
W (X ′

A, x
′
i, x

′
i,A)dV ′ =

∫
B
W (XA, xi, FiA)dV, (2.103)

where B′ is the image of B under the transformations (2.102), ε is a small parameter

and x′
i,A = ∂x′

i/∂X
′
A. From (2.102), we can deduce that

∂X ′
B

∂XA

= δBA + εDAζB + O(ε2), ∂XB

∂X ′
A

= δBA − εDAζB + O(ε2),

∂x′
i

∂X ′
A

= ∂x′
i

∂XA

− ε
∂xi

∂XB

DAζB + O(ε2), (2.104)

where the total derivative operator DA is given by

DA = ∂

∂XA

+ ∂xi

∂XA

∂

∂xi

. (2.105)

We also have from (2.104) that

dV ′ = det
{
∂X ′

A

∂XB

}
dV,

= det
{
δAB + εDBζA + O(ε2)

}
dV,

=
{
1 + tr(εDBζA) + O(ε2)

}
dV,

=
{
1 + εDAζA + O(ε2)

}
dV. (2.106)

On substituting (2.102), (2.104) and (2.106) into (2.103) and neglecting terms

of O(ε2) and above, we obtain

δ
∫

B
W (XA, xi, xi,A)dV + ε

∫
B

{
WDAζA + ∂W

∂XA

ζA − ∂W

∂xi,A

xi,BDAζB

}
dV = 0.

(2.107)
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With use of the relation (2.102)2, the first term in (2.107) is expressible as follows:

δ
∫

B
W (XA, xi, xi,A)dV = ε

∫
B

[
Ei(W )ϕi + Div

(
ϕi
∂W

∂xi,A

)]
dV + O(ε2), (2.108)

On examination of the second integrand in (2.107), we find

WDAζA + ∂W

∂XA

ζA − ∂W

∂xi,A

xi,BDAζB

= WDAζA + ∂W

∂XA

ζA − DA( ∂W
∂xi,A

xi,BζB) + DA( ∂W
∂xi,A

)xi,BζB + ∂W

∂xi,A

xi,ABζB

= WDAζA + ∂W

∂XA

ζA − DA( ∂W
∂xi,A

xi,BζB) + xi,BζB[∂W
∂xi

− Ei(W )] + ∂W

∂xi,A

xi,ABζB

= WDAζA + ζADAW − DA( ∂W
∂xi,A

xi,BζB) − xi,BζBEi(W )

= DA

(
ζAW − ∂W

∂xi,A

xi,BζB

)
− xi,BζBEi(W ), (2.109)

where xi,AB = ∂2xi/∂XA∂XB, say. Finally, on substituting (2.108) - (2.109) into

(2.107), we obtain the conservation law

DivP =DAPA = −(ϕi − xi,AζA)Ei(W ) = 0, (2.110)

where PA = ζAW − (ϕi − xi,BζB) ∂W

∂xi,A

. (2.111)

2.5.2.1 Translational invariance in x

Consider the transformation

X ′
A = XA, x′

i = xi + εδij, (2.112)

which constitutes a translation in xi. Through comparison with (2.102), we have that

ζA = 0 and ϕi = δij. (2.113)

Then, equation (2.111) reduces to

PA = −δij
∂W

∂xi,A

= − ∂W

∂xj,A

. (2.114)
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Thus, the conservation law arising from the translational invariance of E with

respect to xi is

DAPA = −DA

(
∂W

∂xj,A

)
= −DivS = 0, (2.115)

and this is simply the equilibrium equation in the reference configuration which

we defined in (2.39)2.

2.5.2.2 Translational invariance in X

Alternatively, consider the transformation

X ′
A = XA + εδAB, x′

i = xi, (2.116)

which constitutes a translation in XA. Then, we have that

ζA = δAB and ϕi = 0, (2.117)

and equation (2.111) reduces to

PA = δABW + δBC
∂W

∂FiA

FiC = δABW + (SF )AB. (2.118)

Thus, the associated conservation law takes the form

DAPA = Div Σ = 0, where Σ = W I − SF, (2.119)

is the elastic energy-momentum tensor. This tensor plays an important role in

phase transformation problems and in the theory of materials with defects; it has

the physical interpretation of force (or energy release rate) due to the translation

of a defect. For instance, by integrating Σ around the tip of a crack, we may

obtain the energy released due to an infinitesimal propagation of said crack. For

more information on the elastic energy-momentum tensor, we refer the reader to

Chadwick (1975) and Eshelby (1975), and the references therein.
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2.6 Variable-coefficient linear eigenvalue prob-
lems

In a sizeable part of the work presented in this thesis, we study the bifurcation

behaviour of hollow cylindrical tubes. It is well established in the non-linear elasticity

literature that the incremental equilibrium equations associated with hollow tubes

often possess variable coefficients (Haughton and Ogden, 1979b; Haughton and

Orr, 1995), and such equations rarely admit analytical solutions. To this end, we

outline in this section two numerical approaches, the determinant method and the

compound matrix method, which enable us to solve for the eigenvalues of a certain

class of boundary value problems with variable coefficients.

To begin, consider the following two-point boundary value problem:

dy

dx
= A(x, ξ)y, a ≤ x ≤ b, (2.120)

B1(x, ξ)y = 0, x = a, (2.121)

B2(x, ξ)y = 0, x = b, (2.122)

where A is a 2n× 2n matrix, and B1 and B2 are n× 2n matrices. All three of these

matrices are known functions of the independent variable x and the parameter ξ.

Furthermore, y is an unknown 2n-dimensional vector function of x. The aim is to

determine values of the parameter ξ (i.e. the eigenvalues) for which there exists

non-trivial solutions to the system (2.120) − (2.122).

2.6.1 Determinant method

Assuming that the matrix B1 has rank n, we can always find n linearly independent

vectors y(1)
a , y(2)

a , . . . , y(n)
a such that

B1(a, ξ)y(i)
a = 0, where i = 1, 2, . . . , n. (2.123)

By using each of these vectors as initial data for y at x = a, we may inte-

grate (2.120) forward from x = a to obtain n linearly independent solutions,
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say y(1)(x), y(2)(x), . . . , y(n)(x), for y. Thus, a general solution of (2.120) which

also satisfies the boundary condition (2.121) is given by

y =
n∑

i=1
ci y(i)(x), (2.124)

where c1, c2, . . . , cn are arbitrary constants. Then, define M(x, ξ) to be a 2n× n

matrix which takes the form

M(x, ξ) =
[
y(1), y(2), . . . , y(n)

]
. (2.125)

Given (2.125), equation (2.124) can be rewritten as

y = M(x, ξ) c, where c = [c1, c2, . . . , cn]T . (2.126)

It remains to ensure that the general solution (2.126) satisfies the boundary condition

(2.122) at x = b. To this end, we substitute (2.126) into (2.122) and obtain

B2(b, ξ)M(b, ξ) c = 0. (2.127)

Then, since c is arbitrarily defined, we deduce from (2.127) the determinantal equa-

tion

det {B2(b, ξ)M(b, ξ)} = 0. (2.128)

We finally iterate on ξ until (2.128) is satisfied; the values of ξ satisfying (2.128)

are the eigenvalues of the original system.

An alternate approach is to obtain two sets of n linearly independent solutions,

say y(1)(x), y(2)(x), . . . , y(n)(x) and y(n+1)(x), y(n+2)(x), . . . , y(2n)(x), by integrat-

ing (2.120) forward from x = a and backwards from x = b, respectively. We may

then define the following two general solutions to (2.120) which satisfy the boundary

condition (2.121) on x = a and (2.122) on x = b respectively:

y =
n∑

i=1
ci y(i)(x) and y =

2n∑
i=n+1

ci y(i)(x). (2.129)

The idea then is to match the solutions (2.129) at an intermediate point x = d,

where a < d < b. That is, we set
n∑

i=1
ci y(i)(x) =

2n∑
i=n+1

ci y(i)(x), where x = d. (2.130)
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Equivalently, we have

N(d, ξ)c = 0, (2.131)

where N(x, ξ) = [y(1), y(2), . . . , y(n), y(n+1), y(n+2), . . . , y(2n)], (2.132)

and c = [c1, c2, . . . , cn,−cn+1,−cn+2, . . . ,−c2n]T , with cn+1, cn+2, . . . , c2n being ad-

ditional arbitrary constants. It then remains to iterate on ξ until the determi-

nantal equation

detN(d, ξ) = 0, (2.133)

is satisfied. Clearly, the matching condition (2.133) is dependent on the matching

point d as well as ξ. However, the following condition:

D(ξ) = e−
∫ d

a
trA(t,ξ)dt detN(d, ξ) = 0, (2.134)

is independent of the matching point x = d, and this can be shown with the

aid of Jacobi’s formula

d

dx
(detA) = (detA) tr

(
dA

dx
A−1

)
, (2.135)

which holds for any invertible tensor A dependant on x; see Chadwick (1999, pp.

16-20). The function D(ξ) is called the Evan’s function and is an invariant of (2.120).

2.6.2 Compound matrix method

Whilst conceptually simple, the previously outlined determinant method is ill-

equipped to solve systems of the form (2.120) − (2.122) when the parameter ξ takes

particularly large values. In such a case, the eigenvalue problem becomes numerically

stiff in the sense that, as x is increased from a, the solutions y(1), y(2), . . . , y(n)

quickly become linearly dependent due to the dominance of exponentially growing

solutions; see Conte (1966) and Davey (1983). To address these issues, the compound

matrix method was introduced by Ng and Reid (1979a,b, 1985); see also Lindsay

and Rooney (1992) and Bridges (1999). In the following, we give an outline

of this approach.
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Let y(1), y(2), . . . , y(n) and y(n+1), y(n+2), . . . , y(2n) be the two sets of linearly in-

dependent solutions to (2.120) as defined in the previous section. Then, the key idea

is to compute the minors of the associated solution matrices M− and M+ given by

M− =
[
y(1), y(2), . . . , y(n)

]
and M+ =

[
y(n+1), y(n+2), . . . , y(2n)

]
. (2.136)

The matrices M∓ each have 2nCn minors denoted by φ∓
1 , φ

∓
2 , etc. To illustrate,

if n = 2, we have

φ−
1 = y

(1)
1 y

(2)
2 − y

(2)
1 y

(1)
2 , φ−

2 = y
(1)
1 y

(2)
3 − y

(2)
1 y

(1)
3 ,

φ−
3 = y

(1)
1 y

(2)
4 − y

(2)
1 y

(1)
4 , φ−

4 = y
(1)
2 y

(2)
3 − y

(2)
2 y

(1)
3 ,

φ−
5 = y

(1)
2 y

(2)
4 − y

(2)
2 y

(1)
4 , φ−

6 = y
(1)
3 y

(2)
4 − y

(2)
3 y

(1)
4 , (2.137)

where y(i)
j is the jth component of y(i). Then, with the aid of the property

dy(i)

dx
= A(x, ξ)y(i), (2.138)

we may compute the associated expressions for the first derivatives of φ∓
1 , φ

∓
2 ,

etc. For instance, for n = 2, we may deduce

dφ−
1

dx
= dy

(1)
1
dx

y
(2)
2 + y

(1)
1
dy

(2)
2
dx

− dy
(2)
1
dx

y
(1)
2 − y

(2)
1
dy

(1)
2
dx

,

=
4∑

j=1
A1jy

(1)
j y

(2)
2 + y

(1)
1

4∑
j=1

A2jy
(2)
j −

4∑
j=1

A1jy
(2)
j y

(1)
2 − y
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= A11φ
−
1 − A13φ

−
4 − A14φ

−
5 + A22φ

−
1 + A23φ

−
2 + A24φ

−
3 . (2.139)

On repeating this process for the other five minors, we arrive at the following

compound matrix equation:
dφ−

dx
= Â(x, ξ)φ−, a ≤ x ≤ b, (2.140)

where φ− = [φ−
1 , φ

−
2 , . . . , φ

−
6 ]T and

Â =



A11 + A22 A23 A24 −A13 −A14 0
A32 A11 + A33 A34 A12 0 −A14

A42 A43 A11 + A44 0 A12 A13

−A31 A21 0 A22 + A33 A34 −A24

−A41 0 A21 A43 A22 + A44 A23

0 −A41 A31 −A42 A32 A33 + A44


.
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The boundary conditions for φ− at x = a can then be obtained from the y(i)
a ,

i = 1, 2, . . . , n, which satisfy (2.123). For example, we have

φ−
1 (a) = y

(1)
a1 y

(2)
a2 − y

(2)
a1 y

(1)
a2 , (2.141)

where y(i)
aj is the jth component of y(i)

a . We may then integrate forward (2.140) from

x = a in order to obtain a general solution for φ−. The corresponding general

solution for φ+ can be obtained in a similar manner.

The matching condition (2.133) may be expressed solely in terms of φ∓
1 , φ

∓
2 etc.

through a Laplacian expansion. For example, when n = 2, we may write

detN(x, ξ) = det
{
[y(1), y(2), y(3), y(4)]

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
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Thus, we have that

detN(x, ξ) = φ−
1 φ

+
6 − φ−

2 φ
+
5 + φ−

3 φ
+
4 + φ−

4 φ
+
3 − φ−

5 φ
+
2 + φ−

6 φ
+
1 . (2.142)

It then remains to iterate on ξ until the condition detN(d, ξ) = 0 is satisfied, and a

re-expression of this condition in terms of the Evan’s function as shown previously

in the determinantal approach is still valid.
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2.7 Weakly non-linear analysis

In the past, apart from in a select few cases (Sawyers and Rivlin, 1982; Fu, 1993; Fu

and Rogerson, 1994; Fu and Ogden, 1999), problems of algebraic complexity confined

researchers to the linear regime when studying the bifurcation behaviour of elastic

materials under large deformations. However, the emergence of powerful symbolic

manipulation software packages such as Mathematica (Wolfram Research Inc., 2021)

has allowed us to overcome such obstacles. This is fortunate since it has long

been understood that linearization techniques are insufficient in capturing the post-

bifurcation behaviour of a material. Many past experimental studies of compressed

plates and thin shell structures found that the experimentally determined critical

load may often be far higher or lower than the theoretical prediction obtained

from a linear analysis, and the critical load may also be drastically altered due to

material or loading imperfections; see Von Karman and Tsien (1939), Cox (1940)

and the references therein. In essence, a linear analysis gives only a necessary

condition for which bifurcation can occur, and it fails to yield the amplitude of the

first-order solution. To determine whether the bifurcation solution exists in reality,

what the explicit nature of the solution is and whether it arises supercritically or

subcritically, we must perform a weakly non-linear analysis. This fact was first

realized by Koiter (1945), and a framework for a perturbation approach to non-linear

bifurcation analysis in the context of non-linear elasticity was later given by Fu

(2001). Given the focus of this thesis, we illustrate this perturbation approach by

applying it to a simple model problem for which the preferred bifurcation mode

is associated with zero wavenumber.

Consider the model problem

∂2u

∂x2 + ∂2u

∂y2 + P u− u2 = 0, |y| < 1/2, |x| < ∞,

u(x,±1/2) = 0, (2.143)
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where u is a function of x and y, and P is the bifurcation or control parameter. We

can clearly see that u = 0 is a trivial solution to (2.143) for any value of P . Our

aim is to determine for which values of P there exists non-trivial solutions for u.

The starting point is to consider the linearized form of (2.143) and to assume

a solution for u of the form

u = H(y)eikx + c.c., (2.144)

where k is the wavenumber in the x direction, H(y) is a function to be determined

and c.c. denotes the complex conjugate of the preceding term. On substitution

of (2.144) into the linearized form of (2.143), we find that the function H must

satisfy the following linear eigenvalue problem:

H ′′(y) + (P − k2)H(y) = 0, H(±1/2) = 0. (2.145)

There exists two sets of solutions to (2.145) which take the form

H(y) = cos (2n− 1)πy, P = k2 + (2n− 1)2π2,

and H(y) = sin 2nπy, P = k2 + 4n2π2, (2.146)

where n ∈ Z+. Then, the critical value of P , denoted Pcr, is determined from the

lowest branch of (2.146)1 (i.e. that corresponding to n = 1):

P = k2 + π2, (2.147)

and is obtained at k = kcr = 0, i.e. Pcr = π2.

In a weakly non-linear analysis, we are interested in the behaviour of non-trivial

solutions to the system (2.143) near the critical point P = Pcr. To this end, we

consider the following expansion of P :

P = π2 + εP1, (2.148)

where ε is a small parameter and P1 is a constant of O(1). On comparing (2.147) and

(2.148), we observe that k = O(ε1/2). Then, given the presence of the product kx in
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the exponent of the ansatz (2.144), it makes sense to introduce a far distance

variable X through

X = ε1/2x. (2.149)

We also consider an asymptotic expansion for u of the form

u(x, y) = εu1(X, y) + ε2u2(X, y) + ε3u3(X, y) + O(ε4). (2.150)

The idea then is to substitute the expansion (2.150) into (2.143). By equating

coefficients of like powers of ε, we obtain a hierarchy of boundary value problems

to solve. Specifically, by equating coefficients of ε and ε2, we obtain, respectively:

L[u1] = 0, u1(X,±1/2) = 0, (2.151)

and L[u2] = −∂2u1

∂X2 − P1u1 + u2
1, u2(X,±1/2) = 0, (2.152)

where L[u] = ∂2u/∂y2 + π2u.

The leading order problem (2.151) has the particular solution

u1(X, y) = C1(X) cos (πy) , (2.153)

where C1(X) is the amplitude of the first-order solution to be determined. Then, on

substituting (2.153) into (2.152)1, a general solution to the resulting inhomogeneous

equation is found to take the form

u2(X, y) = D1(X) sin (πy) + D2(X) cos (πy) + I(X, y), (2.154)

where the coefficients D1 and D2 are arbitrary functions of X and I is a particular

integral given by

I(X, y) = − 1
2π{C ′′

1 + P1C1}y sin (πy) + 1
2π2 C2

1{1 − 1
3 cos (2πy)}. (2.155)

Then, on substituting (2.154) − (2.155) into the boundary conditions (2.152)2,

we find that I(X, 1/2) = −I(X,−1/2). From this condition, we obtain the

amplitude equation

C ′′
1 + P1C1 − 8

3πC2
1 = 0. (2.156)
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This equation admits the following standing solitary wave solution:

C1(X) = 9π
16P1 sech2

(1
2
√

−P1X
)
. (2.157)

We observe that the solution (2.157) is valid only for P1 < 0, i.e. for values of P less

than the critical value Pcr. Bifurcation solutions with this property are called sub-

critical, and are generally understood to be sensitive to imperfections. We then note

that |C1| = −C1, and hence the solution is a dark solitary wave. If the solution instead

satisfied the condition |C1| = C1, then we would refer to it as a bright solitary wave.

We note that the solution (2.157) is a essentially a solitary wave with zero

wave speed. Solitary waves were first observed in the context of water waves by

Russell (1845), and the associated model equation was first derived by Korteweg and

De Vries (1895) and is nowadays known as the KdV equation. The other simplest

model equation that admits a solitary wave solution is the non-linear Schrödinger

equation (NLSE) which was first derived in Chiao et al. (1965) for propagation of

light in non-linear optical fibers (mathematically the amplitude evolution of wave

trains). The static counterpart of NLSE has been derived to describe the amplitude

variation of periodic buckling modes (Lange and Newell, 1971; Potier-Ferry, 1987).

In recent decades, buckling of an Euler beam on a non-linear foundation has been

much studied in relation to localized solutions (Hunt et al., 2000). Such localized

solutions again correspond to amplitude localization of periodic buckling modes.

A huge variety of other model equations have also been derived for a range of

physical processes to incorporate additional effects and/or to describe degenerate

cases. Some of these equations involve higher order spatial derivatives and multi

spatial dimensions, e.g. the Swift-Hohenberg equation for thermal convection (Swift

and Hohenberg, 1977). We refer to the monograph by Peletier and Troy (2001)

for a discussion of some of these equations. Physically speaking, solitary waves

arise from a balance of non-linearity and dispersion, and this balance underpins

all the amplitude equations that admit solitary wave solutions.
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3.1 Introduction

In this chapter, we initiate our investigations into the axi-symmetric bifurcation

behaviour of an incompressible hyperelastic tube under the combined action of

53
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surface tension γ̄ and a resultant axial force N . We begin by formulating the

problem and deriving the equilibrium equations and three distinct sets of boundary

conditions pertaining to a general axi-symmetric deformation. We then present the

primary axial tension deformation and derive corresponding analytical expressions

for both the dimensionless form of γ̄ and N . By drawing upon the well studied

problem of localized bulging in a tube under axial loading and internal inflation,

conjectured bifurcation conditions for localized pattern formation are presented

in terms of these analytical expressions.

After elaborating on the need for further analysis of the problem beyond the

study of Wang (2020), we conduct a comprehensive linear bifurcation analysis for

the three sets of boundary conditions alluded to previously, as well as for several

types of loading. From this analysis, we produce a numerical relationship between

the bifurcation parameter and the axial wavenumber, and determine whether the

preferred bifurcation mode is associated with zero wavenumber or a strictly positive

wavenumber. Recall that the former case has been previously been associated with

the emergence of a localized inhomogeneous bifurcation solution. Given this, we

compare our numerical bifurcation condition in the limit of vanishing wave number

with our conjectured bifurcation condition for localized pattern formation in order to

see if they are in agreement. We conclude by presenting a spectral interpretation of

the linear bifurcation analysis and by summarizing the main results of the chapter.

3.2 Problem formulation

Consider an incompressible, isotropic, hyperelastic cylindrical tube with a referential

inner radius Ri, outer radius Ro and axial half-length L ≫ Ro. The reference

configuration B0 and finitely deformed configuration Be are defined in terms of the

cylindrical polar coordinates (R,Θ, Z) and (r, θ, z), respectively. Under a general

deformation B0 → Be, the referential values Ri, Ro and L become ri = ri(θ, z), ro =
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ro(θ, z) and ℓ ≫ ro, respectively. The position vectors X and x of a representative

material particle in B0 and Be (respectively) are given by

X = RER + ZEZ , x = rer + zez, (3.1)

where (ER,EΘ,EZ) and (er, eθ, ez) are the orthonormal bases corresponding to

the two previously defined sets of coordinates. More specifically, we assume that

the tube undergoes a general axi-symmetric deformation of the form

r = r (R,Z) , θ = Θ, z = z (R,Z) . (3.2)

The deformation gradient F is then defined through dx = FdX and is expressed as

F = ∂r

∂R
er ⊗ ER + ∂r

∂Z
er ⊗ EZ + r

R
eθ ⊗ EΘ + ∂z

∂R
ez ⊗ ER + ∂z

∂Z
ez ⊗ EZ . (3.3)

The constitutive behaviour of the tube is assumed to be governed by a general

strain-energy function W of the form

W = W (I1) , (3.4)

where I1 is the first principal invariant of the left Cauchy-Green strain tensor

B = FF T , i.e. I1 = trB. This class of strain-energy functions has been shown to

be suitable for many different materials under tension (Wineman, 2005), and in

the illustration of our results we will adopt both the neo-Hookean material model

(2.58) and the Gent material model (2.63).

For this general static axi-symmetric solution, the bulk elastic energy Eb and

the surface energies E i
s and Eo

s on the inner and outer lateral surfaces (respectively)

take the following forms:

Eb = 2π
∫ L

−L

∫ Ro

Ri
W (I1)RdRdZ, Eβ

s = 2πγ̄
∫ ℓ

−ℓ
rβ(z)

√
1 + r′

β(z)2dz, (3.5)

where β = i or o. Then, when both lateral surfaces of the tube are under the effect

of surface tension, the total energy E is defined through

E = Eb + E i
s + Eo

s . (3.6)
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Hereafter, unless stated otherwise, we scale all lengths by Ro and all stresses by

the ground state shear modulus µ. Thus, we may set Ro = 1 and µ = 1 without

loss of generality, and we use the same symbols to denote these scaled quantities.

We also introduce the non-dimensionalized surface tension γ = γ̄/(µRo).

3.2.1 Stream function formulation

As was explained in the previous chapter, the problem can be elegantly re-formulated

in terms of a single mixed coordinate stream function ϕ = ϕ (R, z) so that the

incompressibility constraint (2.12) is satisfied exactly (Ciarletta, 2011). This stream

function is defined through the relations

r2 = 2∂ϕ
∂z

= 2ϕ,z, Z = 1
R

∂ϕ

∂R
= 1
R
ϕ,R, (3.7)

and, accordingly, F can be re-written in the form

F = 1√
2ϕ,z

[
ϕ,Rz −R

ϕ,zz

ϕ,Rz

∂

∂R

(
ϕ,R

R

)]
er ⊗ ER + Rϕ,zz√

2ϕ,z ϕ,Rz

er ⊗ EZ

+

√
2ϕ,z

R
eθ ⊗ EΘ − R

ϕ,Rz

∂

∂R

(
ϕ,R

R

)
ez ⊗ ER + R

ϕ,Rz

ez ⊗ EZ . (3.8)

The invariant I1 may then be computed from (3.8), and is expressed as follows:

I1 = 1
2

[
ϕ,Rz

ϕ,z

− Rϕ,zz

ϕ,zϕ,Rz

∂

∂R

(
ϕ,R

R

)]2

+ 1
2
R2 ϕ2

,zz

ϕ,z ϕ2
Rz

+2ϕ,z

R2 + R2

ϕ2
,Rz

− R2

ϕ2
,Rz

[
∂

∂R

(
ϕ,R

R

)]2

. (3.9)

The total energy E as defined in (3.5) and (3.6) can be reformulated in terms

of the stream function as such:

E = 2π
∫ ℓ

−ℓ

∫ Ro

Ri
Lb dR dz + 2π

∫ ℓ

−ℓ

(
Li

s + Lo
s

)
dz, (3.10)

where the bulk Lagrangian Lb and the inner and outer surface Lagrangians Li
s

and Lo
s are defined through

Lb = ϕ,Rz W (I1), Lβ
s = γ

√
2ϕ,z + ϕ2

,zz

∣∣∣
R=Rβ

, (3.11)
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with β = i or o as before. Thus, E as presented in (3.10) is a functional in its

arguments ϕ,R, ϕ,z, ϕ,RR, ϕ,Rz and ϕ,zz. On taking the first variation of (3.10) with

respect to these arguments and then integrating by parts repeatedly, the resulting

expression for δE can be shown to contain a single volume integral. Equilibrium

of bulk elastic forces requires we set the corresponding integrand to zero, and we

arrive at the Euler-Lagrange equation given by(
∂Lb

∂ϕ,RR

)
,RR

+
(
∂Lb

∂ϕ,Rz

)
,Rz

+
(
∂Lb

∂ϕ,zz

)
,zz

−
(
∂Lb

∂ϕ,R

)
,R

−
(
∂Lb

∂ϕ,z

)
,z

= 0. (3.12)

Experimentally, it has been shown that localization phenomena such as bulging or

necking in inflated tubes are fairly insensitive to the boundary conditions at z = ±ℓ

provided that the length to diameter ratio exceeds a certain value (Wang et al.,

2019). As in the approach of center-manifold reduction, it has been commonplace to

treat these localization phenomena as a bifurcation problem with zero wavenumber

(infinite wavelength), and to conduct the analysis without considering end effects,

which are lumped together and treated as imperfections (Ye et al., 2020; Fu

et al., 2021; Emery and Fu, 2021c). The alternate approach has been to treat

localization phenomena as a bifurcation from the primary deformation with non-

zero wavenumber, but this is only valid for certain types of end conditions (Wang

and Fu, 2021). The validity of the zero wavenumber approach has been examined

in Wang and Fu (2021), and it was found that it was valid for cylinders with a

length to diameter ratio as low as two in the reference configuration. We adopt this

approach of ignoring end effects here, and consider three separate cases of boundary

conditions on the lateral surfaces of the tube which are summarized as follows:

Case 1:

In case 1, both lateral surfaces of the tube in Be are under surface tension, but are

free of any other types of external forces. The simplest approach is to assume that

the effect of surface tension on the lateral surfaces is equivalent to a normal traction

of magnitude |γK|, where K is the trace of the curvature tensor. Mathematically,

this boundary condition may be defined through the Cauchy stress tensor σ as such:

σn · n = γK, r = ri, ro, (3.13)



58 3.2. Problem formulation

where n is the outward unit normal to the lateral surface in question. However,

more sophisticated models which take into account area stretch (Gurtin and Murdoch,

1975; Huang and Wang, 2006) or even surface stiffness (Steigmann and Ogden,

1997) may be considered. It can be shown that, on the inner and outer lateral

surfaces r = ri and ro, the value of K is 1/ri and −1/ro, respectively, and the

boundary conditions (3.13) arise naturally from the variational principle of energy

stationarity; see Appendix 3.A. Here, there is a net difference in the force per unit

deformed area between the inner and outer lateral surface. This is in contrast to

when the tube is subjected to an internal and external pressure P , in which case

there is no net difference in the force per unit deformed area between the inner

and outer lateral surface. Also, we have zero shear stress on these lateral surfaces.

Mathematically, this boundary condition takes the form

σn · ez = 0, r = ri, ro. (3.14)

Case 2:

In case 2, the outer lateral surface is under surface tension, whilst the inner lateral

surface is assumed to be constrained so that radial displacement is prohibited (i.e.

the inner radius is fixed at its referential value Ri), but displacement in the axial

direction is not restricted. As a result, there is still zero shear traction on both

lateral surfaces. This boundary condition can be realized if the inner lateral surface

is in smooth contact with a rigid cylinder or roller-supported. It is noted that, in

the limit Ri → 0, we recover the case of a solid cylinder which has been analyzed in

Fu et al. (2021).

Case 3 :

In case 3, the inner lateral surface is under surface tension, whilst the outer lateral

surface is fixed in the radial direction but unconstrained in the axial direction. In

reality, the outer lateral surface could be in smooth contact with a rigid exterior

annulus or under roller-support. On both lateral surfaces, there is still zero shear
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traction.

Cases 2 and 3 have previously been investigated through FEM simulations

(Henann and Bertoldi, 2014), with motivation stemming from the fact that the

two types of boundary conditions seem to appear in many biological systems.

Indeed, consideration of these different boundary conditions allows us to analyze

how different constraints influence the emergence of potential localized or periodic

patterns. Each of the three sets of boundary conditions listed previously can

be visualized in Fig. 3.1.

The aforementioned expression for δE also contains integrals over each lateral

surface, and the boundary conditions for each case listed previously can be obtained

from the condition that the associated integrands must vanish. These integrands

contain terms proportional to δϕ and δϕ,R evaluated at both R = Ri and Ro. In

case 1, there are no initial constraints imposed upon δϕ since

δϕ =
∫ ℓ

−ℓ
rδrdz, (3.15)

by (3.7), and both r and δr at R = Ri and Ro are unrestricted. Therefore, we must

instead set the coefficients of δϕ evaluated at R = Ri and Ro to zero. In doing

so, we obtain the surface tension boundary conditions

∂Lb

∂ϕ,R

−
(
∂Lb

∂ϕ,RR

)
,R

−
(
∂Lb

∂ϕ,Rz

)
,z

=
(
∂Li

s

∂ϕ,zz

)
,zz

−
(
∂Li

s

∂ϕ,z

)
,z

, R = Ri, (3.16)

∂Lb

∂ϕ,R

−
(
∂Lb

∂ϕ,RR

)
,R

−
(
∂Lb

∂ϕ,Rz

)
,z

=
(
∂Lo

s

∂ϕ,z

)
,z

−
(
∂Lo

s

∂ϕ,zz

)
,zz

, R = Ro. (3.17)

It is noted that (3.16) and (3.17) are the variational equivalents of (3.13) with

K = 1/ri and −1/ro, respectively. In contrast, when a lateral surface is fixed in

the radial direction (case 2 or 3 ), we have that δr = 0 on R = Ri or Ro, and so

it is δϕ on R = Ri or Ro which must vanish by (3.15) as opposed to its coefficient.

Lastly, we have zero shear traction on both lateral surfaces in all three cases under
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ro − ri

σn = −(γ/ro)n

σn = (γ/ri)n

Case 1:

• • • • • • • • • • • • •

• • • • • • • • • • • • •

ro − Ri

σn = −(γ/ro)nCase 2:

Roller support

Ro − ri

σn = (γ/ri)n

Case 3:
Roller support

• • • • • • • • • • • • •

• • • • • • • • • • • • •

Figure 3.1: A schematic of the three different types of boundary conditions under
consideration.
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consideration. This boundary condition can be obtained by setting the coefficient

of δϕ,R evaluated at R = Ri and Ro to zero. We obtain

∂Lb

∂ϕ,RR

= 0, R = Ri, Ro, (3.18)

and note that (3.18) is the variational equivalent of (3.14).

To summarize, in case 1 we would impose (3.16), (3.17) and (3.18). In case 2

we must satisfy (3.17), δr = 0 on R = Ri and (3.18), whilst in case 3 we require

that (3.16), δr = 0 on R = Ro and (3.18) hold.

3.3 Primary deformation and conditions for lo-
calized pattern formation

We now narrow our focus towards the following primary axial tension deformation,

a sub-class of (3.2), which is theoretically possible for all strain-energy functions:

r = r(R), θ = Θ, z = λZ. (3.19)

The parameter λ is defined as the principal axial stretch, and the deformation

gradient corresponding to (3.19) is

F = ∂r

∂R
er ⊗ ER + r

R
eθ ⊗ EΘ + λ ez ⊗ EZ . (3.20)

Upon substitution of (3.20) into (2.12), the primary radial displacement r0 which

satisfies incompressibility exactly is found to take the form

r0(R) =
√
λ−1 (R2 −R2

i ) + r2
i , (3.21)

and the outer deformed radius is hence ro = r0(Ro). In case 1, there are no radial

displacement constraints on the inner and outer surfaces. Thus, ri (and hence ro)

is unknown and the primary deformation given by (3.19) and (3.21) is governed

entirely by the two deformation parameters λ and ri. The situation is different

in cases 2 and 3. In the former, the radial fixing of the inner surface means we
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must set ri = Ri, whilst in the latter the radial fixing of the outer surface requires

r0(Ro) = Ro, from which we deduce that

ri =
√
λ−1(R2

i −R2
o) +R2

o. (3.22)

Thus, in case 2 and 3, the primary deformation is determined entirely via the

single deformation parameter λ.

In case 3, we see from (3.22) that ri → 0 as λ → (1 − R2
i /R

2
o). Therefore,

incompressibility prohibits axial stretches less than 1−R2
i /R

2
o since a self-contacting

of the inner surface will occur when this lower bound is attained. Also, when

taking the limit Ri/Ro → 0 in case 3, we recover the case of a cylindrical cavity

in an infinite solid. From (3.22), we see that this limit can only be taken when

λ = 1, otherwise ri will be undefined. In this scenario, the primary deformation

governed by (3.19), (3.21) and (3.22) becomes homogeneous since ∂r0/∂R and r0/R

are constant. This special case was first analyzed in Xuan and Biggins (2016).

By substituting (3.21) into (3.7) and integrating the resulting equations, the

primary solution for ϕ, denoted by ϕ0, can be shown to take the form

ϕ0 = R2z

2λ + 1
2

(
r2

i − R2
i
λ

)
z. (3.23)

Then, on substituting (3.23) into (3.9), the associated expression for I1, de-

noted by I0, is

I0 = I1|ϕ = ϕ0
= (r2

i λ−R2
i )2

r2
0 R

2 λ2 + 2 + λ3

λ
. (3.24)

Now, in its current configuration Be, the tube is considered to be under the combined

action of a surface tension γ on r = ri, r = ro or both (depending on which of the

three boundary condition cases we are focussing on), and a resultant axial force

N . That is, in the reference configuration B0, there is no surface tension effect or

resultant axial force, and the tube is completely unstressed. In case 1, for instance,

the total energy E0 corresponding to the primary deformation is

E0 = 2π
[ ∫ λL

−λL

∫ Ro

Ri
Lb dR dz +

∫ λL

−λL

(
Li

s + Lo
s

)
dz

]
ϕ = ϕ0

− (λ− 1) N , (3.25)
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where the third term on the right hand side is the potential energy due to the

resultant force N acting perpendicular to any cross section of the tube. In cases

2 and 3, we must remove Li
s and Lo

s (respectively) from (3.25) since the radial

displacement constraint on the relevant lateral surface negates the associated

surface energy.

Recall in case 1 that we have two deformation parameters in λ and ri. Given

this, equilibrium of the primary deformation configuration requires that we satisfy

∂E0/∂λ = 0 and ∂E0/∂ri = 0, and from these equations the following expressions

for N = N (λ, ri) and γ = γ(λ, ri) are respectively obtained:

N = π

[
γ

ro
(ri + ro)2 + 2

∫ Ro

Ri
Wd I0λRdR

]
, (3.26)

γ = − ro

λ(ri + ro)

∫ Ro

Ri
Wd I0iRdR, (3.27)

where Wd = W ′(I0), Wdd = W ′′(I0) etc., I0λ = ∂I0/∂λ and I0i = ∂I0/∂ri. We note

that the γ in (3.26) is eliminated through substitution of (3.27). Alternatively,

(3.27) can be derived with the aid of the Cauchy stress tensor σ, defined through

the constitutive equation σ = 2Wd B − pI, together with the boundary conditions

(3.13). Recall that p is the Lagrangian multiplier associated with the constraint of

incompressibility and I is the identity tensor. The axial force N is then equal to

the resultant of σzz plus 2πγ (ri + ro). Thus, in case 1, γ and N represent two force

parameters which are solely dependant on the deformation parameters λ and ri.

In the absence of any other loads, surface tension will have a compressive effect

on the tube by inducing an axial stretch λ < 1. As an illustrative example, consider

a tube composed of neo-Hookean material with initial inner and outer (scaled)

radii Ri = 0.4 and Ro = 1, and say that we apply no mechanical loading such

that N = 0, and a surface tension γ = 8. Setting the left hand side of (3.26) to

0, we can express ri implicitly as a function of λ. Then, on setting the left hand

side of (3.27) to 8, we can solve the resulting equation for λ, and we find that

the surface tension induces a compressive axial stretch λ = 0.26. From (3.26),

we find that the inner radius reduces from Ri = 0.4 to ri = 0.15. The outer

radius increases from Ro = 1 to ro = 1.8.
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The situation in cases 2 and 3 is somewhat different since we have only one

deformation parameter in λ. We need only satisfy the single equilibrium equation

∂E0/∂λ = 0, and this can be solved for N = N (λ) with γ fixed or γ = γ(λ) with

N fixed. For instance, in case 2 equilibrium requires that

N = π

[
γ

ro
(R2

i + r2
o) + 2

∫ Ro

Ri
Wd I0λRdR

]
, with γ fixed, (3.28)

or γ = ro

π(R2
i + r2

o)

[
N − 2π

∫ Ro

Ri
Wd I0λRdR

]
, with N fixed, (3.29)

where ri → Ri. Also, in case 3 we have

N = π

[
γ

ri
(R2

o + r2
i ) + 2

∫ Ro

Ri
Wd I0λRdR

]
, with γ fixed, (3.30)

or γ = ri

π(R2
o + r2

i )

[
N − 2π

∫ Ro

Ri
Wd I0λRdR

]
, with N fixed, (3.31)

where ri is given by the expression in (3.22).

3.3.1 Localized bulging in inflated rubber tubes

Recall our earlier statement that the problem of localized bulging in a tube under

internal pressure and axial loading has become prototypical in the sense that it

often has a very similar mathematical structure to other more complicated localized

pattern formation problems in elasticity. To elaborate, recall that in case 1 of the

elasto-capillary problem at hand, there are two force parameters in the resultant axial

force N and the surface tension γ, and both of these are functions of the deformation

parameters λ and ri. The situation in the inflation problem is mathematically quite

similar, except the force parameters are N and the internal pressure P , and they

depend on the deformation parameters λ and circumferential stretch λi = ri/Ri

on the inner surface. Note that the choice of ri as a deformation parameter in the

our case (rather than λi) is due to mathematical convenience.

Now, in Fu et al. (2016), it was demonstrated numerically that, for a tube

of arbitrary thickness under any form of loading, the vanishing of the Jacobian

determinant of the vector function (P,N ) coincides with the emergence of an axi-

symmetric bifurcation solution with zero wavenumber. Recall that the general
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theory of dynamical systems suggests that the latter criterion also signals a

bifurcation into a localized inhomogeneous solution (Kirchgässner, 1982; Haragus

and Iooss, 2010). Thus, the bifurcation condition for localized bulging in tubes

under inflation is given by

∂P

∂λ

∂N
∂λi

− ∂N
∂λ

∂P

∂λi
= 0, (3.32)

and can be derived in the following manner. We note first that the condition (3.32)

has the interpretation that the force parameters cannot be inverted to express the

deformation parameters λ and λi in terms of N and P . Now, the internal volume

ratio is defined by v = λ2
i λ, and we consider for the meantime the loading scenario

where the axial force N is held fixed and the inflation pressure is gradually increased

from zero. From the equation N (λ, λi) = N0, where N0 is a constant, we may

express λ implicitly in terms of λi. As a consequence, v is merely a function of

λi. Then, the existence of a pressure maximum requires that

dP

dv
= dP

dλi

(
dv

dλi

)−1

= 0 =⇒ dP

dλi
= ∂P

∂λi
+ ∂P

∂λ

dλ

dλi
= 0. (3.33)

Elimination of the ordinary derivative in (3.33) can be achieved by differentiating

the equation N = N0 with respect to λi, i.e.:

∂N
∂λi

+ ∂N
∂λ

dλ

dλi
= 0 =⇒ dλ

dλi
= −

(
∂N
∂λi

)(
∂N
∂λ

)−1

, (3.34)

where ∂N /∂λ ̸= 0. On substitution of (3.34) into (3.33), it is straightforward to

show that the condition (3.32) follows. In the loading scenario where the tube length

(i.e. λ) is held fixed and the pressure is gradually increased from zero, the same

condition (3.32) can be reached through a similar argument to the one just presented.

In the next section, we will draw upon the results presented here for the inflation

problem in order to formulate conjectured bifurcation conditions for elasto-capillary

localized pattern formation.
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3.3.2 Bifurcation conditions for localized pattern formation

3.3.2.1 Case 1

In case 1, the force parameters N = N (λ, ri) and γ = γ(λ, ri) cannot be inverted

to express the deformation parameters λ and ri uniquely in terms of N and γ when

J (γ,N ) ≡ ∂γ

∂λ

∂N
∂ri

− ∂N
∂λ

∂γ

∂ri
= 0, (3.35)

where J (γ,N ) is the Jacobian of the vector function (γ,N ). Based on the analysis

of Fu et al. (2016) summarized in the previous section, we may conjecture that

(3.35) is the bifurcation condition for elasto-capillary localized pattern formation

in hollow tubes. It will later be shown that this is equivalently the condition for a

bifurcation mode characterized by zero wavenumber to exist and for zero to become

a triple eigenvalue of the spectral problem governing incremental perturbations of

the primary solution (3.23). When ri or ro are fixed at their referential values (i.e.

cases 2 or 3 to be discussed shortly), the condition (3.35) reduces to dN /dλ = 0

when the surface tension is fixed or dγ/dλ = 0 when the axial force is fixed.

Now, there are several different loading scenarios we can consider, though in

any case the simplest way to analyze the bifurcation condition (3.35) would seem

to be plotting its contours in the (λ, ri) plane. Say we initially fix the surface

tension and then vary the axial force monotonically from some starting value, then

we may plot J (γ,N ) = 0 and γ(λ, ri) = γ0 together in the (λ, ri) plane, where

γ(λ, ri) is given by (3.27) and γ0 ≥ 0 is a constant. If the two contours have

intersection points, then the bifurcation condition (3.35) is satisfied at these points

under the outlined loading conditions. As a simple illustrative example, we adopt

the neo-Hookean material model (2.58) with Ri = 0.4. We plot in Fig. 3.2 (a) the

contour J (γ,N ) = 0 in the (λ, ri) plane, along with γ(λ, ri) = 3 and 8. We see

that J (γ,N ) = 0 and γ(λ, ri) = 3 have no intersections, yet J (γ,N ) = 0 and

γ(λ, ri) = 8 have intersections at λ ≈ 0.85 and 2.25. We also find that intersection

points cease to exist for any fixed γ < 6.35. At γ ≈ 6.35, a single intersection point

emerges, and for larger fixed γ above this value the two intersection points move
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Figure 3.2: Analysis of the bifurcation condition (3.35) with fixed γ for the neo-Hookean
model (2.58) with Ri = 0.4 (a) Plots of J (γ, N ) = 0 and γ(λ, ri) = 3, 8 in the (λ, ri)
plane. (b) A plot of N against λ with γ(λ, ri) = 8 fixed. On fixing N = 22 initially, an
axial stretch λ ≈ 4.18 is produced and we unload until reaching the bifurcation point
λR

cr ≈ 2.25.

progressively further apart. Also, from γ(λ, ri) = γ0 we can relate ri implicitly to

λ, and we may then plot N = N (λ, ri(λ)) in the (λ,N ) plane; see Fig. 3.2 (b).

We observe that the left and right intersection points in (a) correspond to a local

maximum and minimum of N , respectively. The question then is when, if at all,

are the left and right bifurcation points λL,R
cr of interest in case 1? Intuitively, one

loading path could be to fix γ with N = 0 initially, inducing an initial axial stretch

λ < 1; see Fig. 3.2 (b). We could then in theory increase N (i.e. apply a “loading”)

from this initial value until we reach λ = λL
cr. However, it is known that compressed

unconstrained slender structures are instead highly sensitive to the Euler buckling

instability (Goriely et al., 2008). Given that we are interested in localized pattern

formation here, we neglect this “loading” path in case 1. We may instead choose

to apply a sufficiently large dead load N > 0 to an end of the tube initially along

with the fixed surface tension in order to produce an initial axial stretch λ > 1.

We could then gradually decrease N (i.e. apply an “unloading”) from this point

until we hit λ = λR
cr. As an illustrative example, for a tube with initial inner radius

Ri = 0.4, say we fix γ = 8 and N = 22 initially. Then, an axial stretch λ ≈ 4.18

is produced; see Fig. 3.2 (b). From this point, we “unload” by decreasing N , and

the first bifurcation point encountered is hence λR
cr ≈ 2.25.
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(a)
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Figure 3.3: Analysis of the bifurcation condition (3.35) with fixed N for the neo-Hookean
model (2.58) with Ri = 0.4. (a) Plots of J (γ, N ) = 0 and N (λ, ri) = 10, 22 in the (λ, ri)
plane. (b) A plot of γ against λ with N (λ, ri) = 22 fixed.

A second loading scenario could be to fix N ≥ 0 initially, and then to increase

the surface tension gradually from zero. We note that varying the surface tension is

not easy to achieve experimentally. It can be done, to a certain extent, by varying

the temperature of the chemical composition of the material, and this would mean

navigating a complex path in the (γ,N ). In this work, when taking γ as the

control parameter, we are primarily interested in the mathematical structure of

the problem, as we expect it will be similar to more realistic loading scenarios in

the current, and alternate, elastic localization problems.

Similarly to before, we may plot J (γ,N ) = 0 and N (λ, ri) = N0 ≥ 0 in the

(λ, ri) plane, where N0 is a constant, and investigate for which values of N0 the

two contours have intersection points. To illustrate, we again take Ri = 0.4 and

plot J (γ,N ) = 0 and N (λ, ri) = 10 and 22 in the (λ, ri) plane; see Fig. 3.3 (a).

We observe that J (γ,N ) = 0 and N (λ, ri) = 22 have two intersection points at

λL
cr ≈ 0.83 and λR

cr ≈ 2.51, whilst J (γ,N ) = 0 and N (λ, ri) = 10 do not intersect.

We find that intersections do not occur for N < 16.9. Using N (λ, ri) = N0, we can

relate ri implicitly to λ, and plot γ(λ, ri(λ)) against λ. We indeed do this in Fig.

3.3 (b) for N0 = 22, and find that the left and right intersection points λL,R
cr in (a)

correspond to the local minimum and maximum of γ = γ(λ, ri(λ)), respectively.

However, as in the previous scenario, it is only the right point λR
cr which is of

practical interest, and this can be explained as follows. When fixing N > 0 with
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γ = 0 initially, an axial stretch λ > 1 is produced. Then, as we increase γ gradually

from zero, we must in turn decrease λ from this starting value to maintain the

constant value of N . In other words, we must traverse in the direction of the arrow

along the curve in (b), and we therefore reach λR
cr first. Thus, we observe graphically

in Fig. 3.2 and 3.3 that, for fixed γ and fixed N , the bifurcation condition (3.35)

reduces to dN /dλ = 0 and dγ/dλ = 0, respectively.

Thirdly, we could apply a fixed axial stretch λ ≥ 1 and increase the surface

tension from zero. Clearly, from the bifurcation condition (3.35), we can relate

the bifurcation value of the inner deformed radius, say ricr, implicitly to the fixed

λ. We can then plot γcr ≡ γ(λ, ricr(λ)) against λ; see Fig. 3.4.
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λ = 2.25
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Figure 3.4: Analysis of the bifurcation condition (3.35) with fixed λ > 1 for the neo-
Hookean model (2.58) with Ri = 0.4. For fixed λ = 2.25, we observe that the bifurcation
value of γ is approximately 8.

3.3.2.2 Case 2

We note firstly that, in case 2, the internal support the inner surface will prevent

the occurrence of Euler buckling. Hence, we can be less restrictive in our choice

of loading paths here. In case 2 and case 3 to follow, we will adopt the Gent

material model (2.63) unless stated otherwise.

Recall that, when γ is fixed in case 2, we are able to determine from the

equilibrium equation an explicit expression for N = N (λ) as given in (3.28).

Guided by the results for case 1 in Fig. 3.2, we may conjecture that the bifurcation

condition for localized pattern formation in this case is simply dN /dλ = 0. This
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condition may be expressed as the following implicit relationship between the fixed

surface tension γ and the critical axial stretch λcr:

γ = 4r3
oλ

3

(R2
o −R2

i )2

∫ Ro

Ri

∂

∂λ
(WdI0λ)RdR

∣∣∣∣∣
λ = λcr

. (3.36)

An important feature of (3.36) (and indeed (3.35) in case 1) is that the associated

bifurcation curves in the (λcr, γ) plane have a minimum at (λmin, γmin), say. For

each fixed γ > γmin, there exists a single bifurcation value for λ either side of

λ = λmin, say λL
cr < λmin and λR

cr > λmin, which corresponds to the local maximum

and minimum of N = N (λ), respectively; see Fig. 3.5. In the limit γ → γmin,

these two extrema of N coalesce to form an inflection point, and for any γ < γmin,

N is a monotonic increasing function of λ and the bifurcation condition (3.36)

cannot be satisfied. Unlike in case 1, we may consider in case 2 both the “loading”

and “unloading” scenarios described previously. As illustrated in Fig. 3.5 (b) for a

representative case, for any fixed γ > γmin, the axial force N is a monotonic function

of λ up to the first bifurcation point encountered. Therefore, when either “loading”

or “unloading”, we may equivalently take λ or N as the control parameter. We

refer to taking λ as the control parameter in this scenario as displacement controlled

loading, and to taking N as the control parameter as force controlled loading.
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Figure 3.5: (a) The bifurcation condition (3.36) plotted in the (λcr, γ) plane for the Gent
material model (2.63) with Jm = 100 and Ri = 0.4. The bifurcation curve has a minimum
at (λmin, γmin) ≈ (1.16, 7.3). Then, for each fixed γ > γmin, there exists a bifurcation
point either side of λ = λmin. For example, where γ = 10, the tube can bifurcate into a
localised solution at λL

cr ≈ 0.69 < λmin and λR
cr ≈ 1.84 > λmin as shown by the black dots.

(b) The variation of N with respect to λ for γ = 10, γmin and 4.5.
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Alternatively, we may fix N ≥ 0 and increase γ gradually from zero. In this

scenario, we have previously shown that the equilibrium equation ∂E/∂λ = 0 yields

a relation γ = γ(λ) as given in (3.29). We then conjecture that the associated

bifurcation condition for localized pattern formation is dγ/dλ = 0, and the following

implicit relation between the fixed N and λcr is obtained:

N
2π =

[∫ Ro

Ri
WdI0λRdR + 2 (roλ)2(ro +Ri)

(Ri − ro)(R2
i − 1)

∫ Ro

Ri

∂

∂λ
(WdI0λ)RdR

] ∣∣∣∣∣
λ=λcr

. (3.37)

Similar to the fixed γ and varying N scenario, the bifurcation curves in the (λcr,N )

plane from (3.37) have a minimum value at (λmin,Nmin), say; see Fig. 3.6 (a).

However, as explained previously, for each N > Nmin it is only the right bifurcation

point λR
cr which is of practical interest here. In Fig. 3.6 (b) we plot (3.29) in the

(λ, γ) plane for three distinct fixed values of N .
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Figure 3.6: (a) The bifurcation condition (3.37) plotted in the (λcr, N ) plane for the
Gent material model (2.63) with Jm = 100 and Ri = 0.2. The bifurcation curve has a
minimum at (λmin, Nmin) ≈ (1.21, 19.78) as marked by the black cross. Then, for each
fixed N > Nmin, the bifurcation point of interest is λR

cr > λmin since we increase γ from
zero. (b) The variation of γ with respect to λ for N = 23, Nmin, 16. We see that each
bifurcation point λR

cr occurs at the local maximum of γ = γ(λ).

We could also choose to apply a fixed axial stretch to the tube and then

gradually increase the surface tension from zero. In this case, the bifurcation

condition would remain as (3.36), except the λcr on the right-hand side is replaced

by the fixed λ and the γ becomes γcr. As a consistency check, we may take the limit

Ri → 0 in the resulting bifurcation condition and compare with the corresponding
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condition for a solid cylinder given in Fu et al. (2021). In this limiting case, our

bifurcation condition reduces to

γcr = 4
λ5/2

{
2(λ3 − 1)2Wdd + λ(2 + λ3)Wd

}
, (3.38)

and this is indeed the bifurcation condition for a solid cylinder given in equation

(3.11) of Fu et al. (2021). Henann and Bertoldi (2014) also investigated localized

pattern formation in this loading scenario when λ = 1 through FEM simulations, and

this facilitates a further verification of our analytical results. It is noted that, for fixed

λ = 1, our conjectured bifurcation condition is independent of Jm and reduces to

γcr = 2 (3 +R2
i )

1 −R2
i
. (3.39)

In Fig. 3.7, we plot in the (Ri, γcr) plane our conjectured bifurcation condition

(3.39) (solid blue curve) and the corresponding FEM simulation results in Fig.

4 (b) of Henann and Bertoldi (2014) (black squares). We observe that there is

excellent agreement between the two sets of results.
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Figure 3.7: A comparison of our conjectured bifurcation condition (3.39) (blue curve)
and the FEM simulations of Henann and Bertoldi (2014) (black squares) in the (Ri, γcr)
plane when λ = 1 is fixed.

3.3.2.3 Case 3

In case 3, our conjectured bifurcation condition for localized pattern formation

dN /dλ = 0 when γ is fixed may be expressed as the following implicit relationship

between λcr and γ:

γ = 4r3
i λ

3

(R2
o −R2

i )2

∫ Ro

Ri

∂

∂λ
(WdI0λ)RdR

∣∣∣∣∣
λ = λcr

, (3.40)
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where ri is given by (3.22). For a wide range of parameter values, the bifurcation

curve in the (λcr, γ) plane has a single minimum point as in case 2; see Fig. 3.8.

However, when reducing to the neo-Hookean model (i.e. when taking the limit
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Figure 3.8: (a) The bifurcation condition (3.40) plotted in the (λcr, γ) plane for the
Gent material model (2.63) with Jm = 100 and Ri = 0.4. The bifurcation curve has a
minimum at (λmin, γmin) ≈ (0.96, 1.38) as marked by the black cross. Then, for each fixed
γ > γmin, there exists a bifurcation point either side of λ = λmin. (b) The variation of N
with respect to λ for γ = 1.5, γmin, 1.25.

Jm → ∞), there exists a threshold value Ri ≈ 0.08567 below which two additional

local extrema (i.e. a maximum and a minimum) of γ with respect to λcr emerge.

In the limit Ri → 0.08567, these two additional extrema of γ coalesce to form

an inflection point; see Fig. 3.9.
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Figure 3.9: Plots of γ against λcr when the neo-Hookean model (2.58) is employed with
Ri = 0.065, 0.08567, 0.11. On the curve corresponding to Ri = 0.065, the black dots mark
the two additional local extrema of γ with respect to λ which emerge in the large thickness
regime. In the limit Ri → 0.08567−, these two extrema coalesce to form an inflection
point (as shown by the arrow), and above this threshold, γ has a single minimum value.
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When N ≥ 0 is fixed and γ is increased gradually from zero, the conjectured

bifurcation condition for localized pattern formation dγ/dλ = 0 takes the form:
N
2π =

[∫ Ro

Ri
WdI0λRdR + 2 (roλ)2(ro +Ri)

(Ri − ro)(R2
i − 1)

∫ Ro

Ri

∂

∂λ
(WdI0λ)RdR

] ∣∣∣∣∣
λ=λcr

. (3.41)

As in case 2, the bifurcation condition for fixed λ and increasing γ can be obtained

from (3.40) by replacing γ with γcr and λcr with the fixed λ. This boundary

condition case has also been investigated through FEM simulations by Henann and

Bertoldi (2014) for λ = 1. In this special case, our conjectured bifurcation condition

is independent of Jm when specifying to the Gent material model and takes the form
γcr

Ri
= 2(1 −R2

i )(3R2
i +R4

o)
(Ri −Ro)2(Ri +Ro)2 . (3.42)

In order to validate this analytical result, we plot (3.42) in Fig. 3.10 along with the

FEM simulation results presented in Fig. 4 (c) of Henann and Bertoldi (2014). We

observe that there is exceptional agreement between the two sets of results. We note

also that, in the limit Ri → 0, we recover the bifurcation condition γcr/Ri = 2 for a

cylindrical cavity in an infinite solid first reported by Xuan and Biggins (2016).
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Figure 3.10: A comparison of our conjectured bifurcation condition for localized pattern
formation (3.42) (blue curve) and the FEM simulations of Henann and Bertoldi (2014)
(black squares) in the (Ri, γcr/Ri) plane when λ = 1 is fixed.

3.4 Linear bifurcation analysis

A common starting point in the bifurcation analysis of elastic materials undergoing

large deformations is to consider a solution to the linearized equilibrium equations



3. Axi-symmetric pattern formation in soft tubes 75

and boundary conditions of the normal mode type. In the present context, the term

normal mode solution refers to a perturbation of the primary deformation solution

which is proportional to eikz, where k is the axial wavenumber. The resulting

linear eigenvalue problem can then be solved to obtain the bifurcation condition.

This condition may be analytical or numerical depending on the complexity of the

linearized system, and it relates the control parameter to the axial wavenumber.

The way in which we interpret this relationship will be discussed shortly after

we formulate the linear analysis.

To begin, consider a pertubation ϕ1 = ϕ1(R, z) of the primary solution given

by (3.23). On substituting the perturbed solution ϕ = ϕ0 + ϕ1 into the equilibrium

equation (3.12) and linearizing in terms of ϕ1, we obtain

∂4ϕ1

∂R4 + a1(R)∂
3ϕ1

∂R3 + a2(R)∂
2ϕ1

∂R2 + a3(R)∂ϕ1

∂R
+ a4(R)∂

4ϕ1

∂z4 + a5(R)∂
2ϕ1

∂z2

+ a6(R) ∂3ϕ1

∂R∂z2 + a7(R) ∂4ϕ1

∂R2∂z2 = 0, (3.43)

with the variable coefficients ai = ai(R) (i = 1, 2, . . . , 7) given in Appendix 3.B.

When specifying to the neo-Hookean model (2.58), the expressions for the coefficients

in (3.43) differ from those in equation (26) of Wang (2020). Agreement can only be

achieved if we make the generally invalid substitution ri → Ri/
√
λ. The only scenario

where this substitution is valid is when the primary deformation is homogeneous.

This may only be achieved when the outer radius tends to infinity or when λ = 1 in

cases 2 and 3, and as a consequence incompressibility forces r0 = R/
√
λ.

To further validate our governing equation (3.43), we make the substitution ϕ1 =

rf(r)eikz and obtain a fourth-order differential equation for f(r). We have verified

that this equation is identical to equation (53) of Haughton and Ogden (1979b).

We look for a normal mode solution of the form

ϕ1 = εg(R)eikz, (3.44)

where k ≥ 0 is the axial wavenumber, ε is a small parameter and i is the

imaginary unit. On substituting (3.44) into (3.43), we obtain a fourth-order
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ordinary differential equation (ODE) for g, which may be re-written as the following

system of first order ODEs;

dg

dR
= A(R, λ, k) g, A =


0 1 0 0
0 0 1 0
0 0 0 1
A41 A42 A43 A44

 , (3.45)

where g = [ g, g′, g′′, g′′′ ]T and the variable components of A are given as follows:

A41 = k2(a5 − k2a4), A42 = k2a6 − a3,

A43 = k2a7 − a2, A44 = −a1. (3.46)

On substituting ϕ = ϕ0 + ϕ1 and (3.44) into (3.16), (3.17) and (3.18) and then

linearizing in terms of g, we find that the surface tension and zero shear traction

boundary conditions on R = Ri and R = Ro in case 1 may be expressed as

the following matrix equations:

Bi(Ri, λ, γ, k) g = 0,

Bo(Ro, λ, γ, k) g = 0,
where



Bi =
b11 −1/R 1 0
b+

21 b22 b23 1

 ,

Bo =
b11 −1/R 1 0
b−

21 b22 b23 1

 ,
(3.47)

and the expressions for the components of Bi and Bo are likewise given in Appendix

3.B. For cases 2 and 3, both (3.7) and (4.16) imply that we must impose the

respective zero radial displacement constraints g(Ri) = 0 and g(Ro) = 0 in place of

the corresponding surface tension boundary condition. In these cases, the boundary

conditions may still be expressed in the form (3.47)1, but the matrices Bi or Bo

must be modified accordingly. For instance, in case 2, Bo remains unchanged

from (3.47) but Bi must take the form

Bi =
[
b11 −1/R 1 0
1 0 0 0

]
. (3.48)

In case 3, Bi remains unchanged from (3.47), but Bo must take the form

Bo =
[
b11 −1/R 1 0
1 0 0 0

]
. (3.49)
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To analyze the two-point boundary value problem (3.45) – (3.47), we employ

the determinant method described in section 2.6.1. For the sake of brevity, we

outline the solution procedure for case 1, but note that the approach is identical

in cases 2 and 3 when the previously mentioned modifications are enforced. We

begin by noting that the linear system Bi(Ri, λ, γ, k)g = 0 has two independent

solutions, say g
(1)
i and g

(2)
i . For instance, in case 1 we have

g
(1)
i =

[
1, 0, −b11, b11b23 − b+

21

]T

R = Ri
,

and g
(2)
i =

[
0, 1, 1/R, −b23/R − b22

]T

R = Ri
. (3.50)

We may then integrate (3.45) from R = Ri towards R = Ro, using (3.50) or

equivalent as initial data for g at R = Ri. Two linearly independent solutions

for g, say g(1) and g(2), are consequently obtained, and a general solution for

g therefore takes the form

g = c1 g(1) + c2 g(2) = M(R, λ, γ, k) c, (3.51)

where c = [ c1, c2 ]T is an arbitrary constant vector and M = [g(1), g(2)]. By its

construction, (3.51) satisfies the boundary conditions on R = Ri, and it remains

only to satisfy the corresponding conditions on R = Ro. On substituting (3.51)

into Bo(Ro, λ, γ, k)g = 0, we obtain Bo M(Ro, λ, γ, k) c = 0. Then, since c is

arbitrary, the existence of a non-trivial solution to the eigenvalue problem is

conditional on satisfying

det Bo M(Ro, λ, γ, k) = 0. (3.52)

Equation (3.52) represents a numerical bifurcation condition which must be satisfied

by the control parameter (which we may take as either the resultant axial force N

or the surface tension γ) and k. For any fixed k ≥ 0, the bifurcation points can be

obtained by iterating on the control parameter until (3.52) is satisfied.

As previously stated, the primary aim is to determine the relationship between

the control parameter and k numerically through (3.52). Then, as we vary the

control parameter in the desired manner, we seek the values of both the control
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parameter and k first encountered on the corresponding bifurcation curve. For

instance, say we apply a fixed axial stretch λ and monotonically increase γ from

zero. Then, on plotting the bifurcation condition (3.52) in the (k, γ) plane, we

would encounter the minimum of the associated bifurcation curve first, and so this

is the bifurcation point of interest. The values of γ and k at this minimum are

defined as the critical surface tension γcr and axial wave number kcr. Say that kcr

is strictly positive. Then, we expect that beyond the critical load the tube may

in theory develop a periodic axi-symmetric pattern with wavelength 1/kcr in the

axial direction. This result is, however, invalid if kcr = 0 since the wavelength of the

emerging pattern would be infinite. The question then is what non-trivial solution,

if any, emerges when kcr = 0? Whilst there is strong evidence to suggest that it is a

localized inhomogeneous bifurcation solution that emerges in this scenario, we shall

refer to the solution associated with kcr = 0 as the zero wavenumber bifurcation

solution until this has been explicitly established.

3.4.1 Case 1 results

For the sake of simplicity, we adopt the neo-Hookean material model (2.58) for case

1. From the bifurcation condition (3.52), we analyse in Fig. 3.11 the variation of

the control parameter with respect to k for three separate loading scenarios, with

Ri = 0.4 taken as a representative example. In (a), we apply a fixed axial stretch

λ = 2.25 and gradually increase γ from zero. In (b), we fix γ = 8 and N = 20.5

initially, and then gradually decrease the axial force from this point. In (c), we

fix N = 22 and then gradually increase γ from zero. In all three scenarios, we

observe that the critical axial wave number is kcr = 0, and we have verified that

this is true generally outside of the representative examples considered. Therefore,

a zero wavenumber bifurcation solution is determined to be widely favoured over

periodic axi-symmetric modes in case 1.

Given the results in Fig. 3.11, we then analyze the bifurcation condition (3.52) in

the limit k → 0 for the same three loading scenarios. In doing so, we can determine

the dependence of the critical value of the control parameter on various parameters.
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Figure 3.11: Analysis of the bifurcation condition (3.52) with the neo-Hookean model
(2.58) employed and Ri = 0.4. The plots show the condition (3.52) in (a) the (k, γ) plane
with λ = 2.25 fixed, (b) the (k, λ) plane with γ = 8 fixed and (c) the (k, λ) plane with
N = 22 fixed.

We begin with the fixed λ and increasing γ approach. In Fig. 3.12 (a) and (b), we

plot γcr against λ for several values of Ri, and γcr against Ri for several fixed λ ≥ 1,

respectively. We observe in (a) that, below the threshold value λ ≈ 2.25, a larger

inner radius Ri will delay the zero wavenumber bifurcation solution. Above this

threshold value for λ, the relationship between γcr and Ri is seen in (b) to become

non-monotonic. To provide further insights, consider the case where λ = 2.4 is

fixed. We see in (b) that the associated bifurcation curve has a minimum value at

(Ri, γcr) ≈ (0.863, 8.03). Thus, the tube with inner radius Ri ≈ 0.863 will be the

most susceptible to the zero wavenumber bifurcation solution in this scenario. In (a),

we also plot our conjectured bifurcation condition for localized pattern formation in

the (λ, γcr) plane for Ri = 0.2 (black squares), and we observe that there is perfect

agreement with the numerical results from the linear analysis.

We next apply a fixed surface tension γ with N > 0 initially, and then perform

a force controlled unloading by decreasing N monotonically from the resulting

starting point. In Fig. 3.13, we plot the critical axial force Ncr against Ri for

several fixed values of γ. We observe that a smaller fixed γ delays the onset of

the zero wavenumber bifurcation solution. Also, Ncr is a decreasing function of

Ri for all fixed γ considered. Thus, a larger initial inner radius will delay the

zero wavenumber solution.
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Figure 3.12: Plots of the bifurcation condition (3.52) in the limit k → 0 for the neo-
Hookean material model (2.58) when λ ≥ 1 is fixed and γ is increased gradually from zero.
(a) The variation of γcr with respect to λ with Ri increasing from 0.2 to 0.6 in increments
of 0.1. The black squares are from our conjectured condition (3.35) corresponding to
Ri = 0.2. (b) The variation of γcr with respect to Ri with λ increasing from 1.6 to 2.4 in
increments of 0.2. The arrows indicate the direction of parameter growth.
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Figure 3.13: A plot of the bifurcation condition (3.52) in the limit k → 0 for the
neo-Hookean material model (2.58) when γ is fixed with N > 0 initially, and a force
controlled unloading is applied. We show the variation of Ncr with respect to Ri with γ
increasing from 7 to 8 in increments of 0.25. The arrow indicate the direction of parameter
growth. In (a), the black squares represent our conjectured condition for localized pattern
formation when Ri = 0.2.

Thirdly, we choose to apply a fixed axial force N > 0 initially after which we

increase the surface tension monotonically from zero. In Fig. 3.14 (a) and (b), we

plot the critical surface tension γcr against Ri and N , respectively. We observe

generally that tubes subjected to a smaller fixed axial force, or tubes with a smaller

initial inner radius, will be more susceptible to the zero wavenumber solution.
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Figure 3.14: Plots of the bifurcation condition (3.52) in the limit k → 0 for the neo-
Hookean material model (2.58) when N ≥ 0 is fixed and γ is increased gradually from
zero. (a) The variation of γcr with respect to Ri with N increasing from 18 to 20 in
increments of 0.5 and (b) the variation of γcr with respect to N with Ri increasing from
0.25 to 0.45 in increments of 0.05. The arrows indicate the direction of parameter growth.

3.4.2 Case 2 results

In case 2 we adopt the Gent material model (2.63). As in the case 1, we begin

by plotting in Fig. 3.15 the relationship between the control parameter and the

axial wavenumber k obtained from the bifurcation condition (3.52). We do this

for the three loading scenarios that we have already established, but note that

when γ is fixed we may also now consider the case where N = 0 initially and a

“loading” is applied. For the representative example of Ri = 0.4 and Jm = 100

in Fig. 3.15, we see that kcr = 0 in all three loading scenarios, and we have

verified that this is generally the case.

(a)

0.2 0.4 0.6 0.8
6

8

10

12

14

k

γ

Unstable

Increasing γ

Stable

γcr ≈ 8

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

1.0

1.5

2.0

k

λ Unstable

Unloading

Loading

Stable

Stable
λcr
L ≈ 0.69

λcr
R ≈ 1.84

(c)

0.1 0.2 0.3 0.4
0.8

1.0

1.2

1.4

1.6

k

λ

Unstable

Increasing γ

Stable

Stable

λcr
R ≈ 1.56

Figure 3.15: Analysis of the bifurcation condition (3.52) with the Gent material model
(2.63) employed, and Ri = 0.4 and Jm = 100. The plots show the condition (3.52) in (a)
the (k, γ) plane with λ = 1.5 fixed, (b) the (k, λ) plane with γ = 10 fixed and (c) the
(k, λ) plane with N = 30 fixed.
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Given this, we then analyze the variation of the critical control parameter values

corresponding to kcr = 0 with respect to several different parameters. Where λ is

fixed and γ is increased from zero, we observe in Fig. 3.16 that a larger extensibility

limit Jm or a smaller inner radius Ri will see the zero wavenumber bifurcation

solution emerge earlier in the loading process. Also, curves in the (λ, γcr) plane

have a minimum value; see (a). Thus, a larger fixed stretch above the minimum

value of λ (or a smaller fixed stretch below the minimum value of λ) will result

in the onset of the zero wavenumber solution being delayed. In each plot we also

present a set of points from our conjectured bifurcation condition for localized

pattern formation in the form of black squares. We observe that our conjectured

condition for localized pattern formation clearly coincides with the condition that

a bifurcation solution with zero wavenumber emerges.

In Fig. 3.18 we fix γ and vary N , and plot the bifurcation points corresponding

to kcr = 0 and Jm = 50 on the curve N = N (λ) given by (3.28) for different values

of Ri and γ. We observe that the bifurcation points are always situated at the local

maxima and minima of N , demonstrating that our conjectured condition dN /dλ = 0

for localized pattern formation in this loading scenario corresponds to the condition

that a zero wavenumber bifurcation solution initiates. In (b), we see that for larger

values of Ri, the pairs of bifurcation points are closer together. At Ri = 0.463,

the two points meet at an inflection point on the loading curve, and above this

value bifurcation points cease to exist. Thus, for a given fixed value of γ, the zero

wavenumber solution becomes impossible in tubes below a certain level of thickness.

When applying a force controlled “loading” from N = 0, larger values of Ri and

γ will delay the onset of the zero wavenumber solution since they produce larger

bifurcation values of N . In contrast, when applying a force controlled “unloading”,

smaller values of Ri and γ will delay the onset of the zero wavenumber solution.

Finally, for the fixed N and increasing γ scenario, we plot in Fig. 3.18 bifurcation

points corresponding to kcr = 0 on the curve γ = γ(λ) given by (3.29) for different

values of Ri and N . Again, we observe that the bifurcation points are always

situated at the local maxima of γ = γ(λ), demonstrating a correspondence between
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Figure 3.16: Plots of the bifurcation condition (3.52) in the limit k → 0 for the Gent
material model (2.63) where λ is fixed and γ is gradually increased from zero. We have
γcr against (a) λ with Ri = 0.4 and Jm = 1.5, 3, 6, 15, 100, (b) Jm with Ri = 0.4 and
λ = 1.3, 1.4, 1.5, 1.6, 1.7, (c) Ri with Jm and λ = 1.3, 1.4, 1.5, 1.6, 1.7, and (d) Ri with
λ = 1.4 and Jm = 3, 4, 6, 15, 100. Arrows indicate the direction of parameter growth, and
the black squares give the associated bifurcation points from our conjectured condition.

the bifurcation condition corresponding to kcr = 0 and our conjectured condition

dγ/dλ = 0 for localized pattern formation. We observe also that for smaller values

of Ri or larger values of fixed N , a greater amount of surface tension is required

to trigger the zero wavenumber bifurcation solution.

3.4.3 Case 3 results

In case 3, the critical wave number is predominantly kcr = 0; see Fig. 3.19.

However, there are certain circumstances where the value of kcr is strictly positive.

To elaborate, it was shown in Liu (2018) that a tube under a sufficient axial

compression in case 3 can admit periodic wrinkling modes in the axial direction.

This can also be the case when surface tension effects are taken into account.
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Figure 3.17: Plots of bifurcation points (λcr, Ncr) corresponding to kcr = 0 (black
curves), and the load curves N = N (λ) given by (3.28) (blue curves). We set Jm = 50
with (a) γ = 8 and various values of Ri, and (b) Ri = 0.2 and various fixed values of
γ. The blue load curves in (a) and (b) correspond to Ri = 0.2, 0.25, 0.3, 0.35, 0.4 and
γ = 7, 7.25, 7.5, 7.75, 8, respectively, and the black dots mark their intersections with the
black bifurcation curve. Arrows indicate the direction of parameter growth.
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Figure 3.18: Plots of bifurcation points (λcr, γcr) corresponding to kcr = 0 (black
curves), and the load curves γ = γ(λ) given by (3.28) (blue curves). We set Jm = 50
with (a) N = 30 and various values of Ri, and (b) Ri = 0.2 and various fixed values of
N . The blue load curves in (a) and (b) correspond to Ri = 0.2, 0.25, 0.3, 0.35, 0.4 and
N = 21, 22, 23, 24, 25, respectively, and the black dots mark their intersections with the
black bifurcation curve. Arrows indicate the direction of parameter growth.

For instance, if the axial stretch λ is fixed sufficiently below 1, then it will be a

periodic wrinkling solution which is preferred over a zero wavenumber solution when

increasing γ gradually. As an illustrative example, say we apply a fixed stretch

λ = 0.865 to a tube with Ri = 0.4 and Jm = 50. Then, the linear analysis predicts

that a bifurcation into a periodic wrinkling solution with kcr = 2.45 will occur once

the surface tension is increased to γcr = 1.52; see Fig. 3.20 (a). In contrast, a
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zero wavenumber solution only becomes possible beyond γ = 1.7. Alternatively,

we have established that when fixing γ with N = 0 initially, and axial stretch

λ < 1 will be produced. We find that, provided the fixed value of γ is large enough,

the critical wave number kcr will be strictly positive when increasing N from zero

(i.e. when “loading”). For instance say we apply a fixed surface tension γ = 1.49

to a tube with Ri = 0.4 and Jm = 50, and that N is initially zero. Then, an

axial stretch λ ≈ 0.85 is induced, and the linear analysis predicts that a periodic

wrinkling solution with kcr = 0.97 emerges once λ is increased to approximately

0.8856; see Fig. 3.20 (b). A zero wavenumber solution, however, does not become

possible until λ reaches approximately 0.8865.
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Figure 3.19: Analysis of the bifurcation condition (3.52) with the Gent material model
(2.63) employed, and Ri = 0.4 and Jm = 50. The plots show the condition (3.52) in (a)
the (k, γ) plane with λ = 1.1 fixed, (b) the (k, λ) plane with γ = 1.425 fixed and (c) the
(k, λ) plane with N = 12.5 fixed.

In Fig. 3.21, we plot the bifurcation condition (3.52) in the limit k → 0 for

the fixed λ and increasing γ loading scenario. We observe that, as in case 2, a

larger extensibility limit Jm will reduce the amount of surface tension required

to trigger the zero wavenumber bifurcation solution. However, unlike in case

2, γcr is a non monotonic function of Ri. For each value of λ and Jm, γcr as a

function of Ri has a minimum value, and for a tube of very high thickness, the

zero wavenumber becomes unattainable.

In Fig. 3.22, for the fixed γ and varying N scenario, we plot the bifurcation

points predicted by the linear analysis on the curve N = N (λ) given by (3.30) for

several fixed values of Ri and γ. We see that the bifurcation points predicted by
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Figure 3.20: The bifurcation condition (3.52) for Ri = 0.4 and Jm = 100 in (a) the
(k, γ) plane with the fixed λ ranging from 0.865 to 0.89 in intervals of 0.005, and (b) the
(k, λ) plane with the fixed γ ranging from 1.47 to 1.49 in increments of 0.005. Arrows
indicate the direction of parameter growth.
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Figure 3.21: Plots of the bifurcation condition (3.52) in the limit k → 0 for the Gent
material model (2.63) where λ > 1 − R2

i is fixed and γ is gradually increased from zero.
We have γcr against (a) λ with Ri = 0.4 and Jm = 1.5, 3, 6, 15, 100, (b) Jm with Ri = 0.4
and λ = 1.3, 1.4, 1.5, 1.6, 1.7, (c) Ri with Jm and λ = 1.3, 1.4, 1.5, 1.6, 1.7, and (d) Ri with
λ = 1.4 and Jm = 3, 4, 6, 15, 100. Arrows indicate the direction of parameter growth, and
the black squares give the associated bifurcation points from our conjectured condition.
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the linear analysis (black dots) are generally situated at the local extrema of the

N = N (λ) curves. When “loading” (“unloading”), we show in (a) that a smaller

Ri will delay (encourage) the onset of the zero wavenumber bifurcation solution.

This is in contrast to the corresponding results in case 2, and so the effect of the

tube’s radial thickness on the bifurcation point in this loading scenario is greatly

influenced by the choice of boundary conditions.
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Figure 3.22: Plots of bifurcation points (λcr, Ncr) corresponding to kcr = 0 (black
curves) and the loading curves N = N (λ) (blue) given by (3.30). We set Jm = 50
with (a) γ = 1.5 and (b) Ri = 0.4. The loading curves in (a) and (b) correspond to
Ri = 0.39, 0.395, 0.4, 0.405, 0.41 and γ = 1.45, 1.5, 1.55, 1.6, 1.65, respectively. Arrows
indicate the direction of parameter growth.

In Fig. 3.23 we fix N and increase gradually from zero. We plot the bifurcation

points corresponding to kcr = 0 on the curves γ = γ(λ) given by (3.31) for

several fixed Ri and N . In (a) we see that smaller values of Ri will reduce the

amount of surface tension required to trigger the zero wavenumber solution. This

is also in contrast to the corresponding results presented in Fig. 3.18 (a) for

case 2. Like in case 2, we see in (b) that a larger fixed value of N will delay

the zero wavenumber solution.

3.4.4 A spectral interpretation

The results presented so far in this chapter can be further interpreted through

a spectral approach. For the sake of brevity, we will restrict the presentation of

this interpretation here to case 2, but note that similar interpretations can also

be formulated for cases 1 and 3.
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Figure 3.23: Plots of bifurcation points corresponding to kcr = 0 (black curves) on
loading curves γ = γ(λ) (blue) given by (3.31). We set Jm = 50 with (a) N = 15 and (b)
Ri = 0.4. The blue loading curves in (a) and (b) correspond to Ri = 0.2, 0.25, 0.3, 0.35, 0.4
and N = 13, 13.25, 13.5, 13.75, 14, respectively. Arrows indicate the direction of parameter
growth.

To begin, we consider a solution for ϕ of the form

ϕ(R, z) = ϕ0 + εg(R)eαz, (3.53)

where α is the spectral parameter to be determined. On substituting (3.53) into

the Euler-Lagrange equations (2.101) and the boundary conditions associated with

case 2, and then linearizing in terms of g, we obtain a system of the form (3.45) –

(3.47)1. The sole difference is that, in the expressions for the components of the

matrices A, Bi and Bo, the axial wavenumber k is replaced by −iα. The aim then

is to determine the values of α such that the system has a non-trivial solution, and

we achieve this by implementing the previously established determinant method.

Since α appears through α2 in all of the components of the matrices A, Bi and Bo,

and since these components are also all real, we expect that the distribution of the

eigenvalues of α is symmetric with respect to both axes in the complex α-plane.

As an illustrative example, we set Ri = 0.4 and Jm = 100, and we fix λ = 1.5.

We then assess the movement of the eigenvalues in the complex α-plane as we

increase γ gradually. In Fig. 3.24 we present the distribution of the eigenvalues of λ

for (a) γ < γcr, (b) γ = γcr and (c) γ > γcr. In all three instances, we see that zero

is an eigenvalue of α. Where γ < γcr, there exists infinitely many real eigenvalues

α = 0, ±α1, ±α2, ±α3, . . . , where |α1| < |α2| < |α3| < · · · ; see (a). In the limit
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γ → γ−
cr, we see in (b) that the eigenvalues ±α1 translate along the Re(α) axis and

coalesce at the origin. Thus, our conjectured bifurcation condition for localized

pattern formation is equivalently the condition for which zero becomes a triple

eigenvalue of the spectral eigenvalue problem governing incremental perturbations

of the primary solution ϕ0. As γ is increased beyond its critical value γcr, the

eigenvalues ±α1 move onto the Im(α) axis and the solution (3.53) therefore becomes

periodic; see (c). This movement of the eigenvalues further reinforces the main result
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Figure 3.24: The distribution of the eigenvalues 0, ±α1, ±α2, ±α3, . . . of α in the complex
α plane for Ri = 0.4, Jm = 100, λ = 1.5 and (a) γ < γcr, (b) γ = γcr and (c) γ > γcr.

of the linear bifurcation analysis that a zero wavenumber bifurcation solution will

necessarily emerge before any periodic bifurcation solution. This is also illustrated

in Fig. 3.25 where we plot γ against α2
1 with λ fixed, and λ against α2

1 with γ

fixed. In the former case, for instance, we observe that α2
1 → 0 as γ is increased

towards γcr = 8. Above this critical value, α2
1 becomes negative, and hence ±α1

become purely imaginary as expected.

3.5 Discussion

The objective of the work presented in this chapter was twofold. Firstly, we

aimed to conjecture analytical bifurcation conditions for axi-symmetric localized

pattern formation in a hollow hyperelastic tube under various elasto-capillary-based

boundary conditions and loading scenarios. Secondly, we endeavoured to perform
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Figure 3.25: Plots of (a) γ against α2
1 with λ = 1.5 fixed and (b) λ against α2
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γ = 10 fixed. In both cases we have taken Ri = 0.4 and Jm = 100. In the loading process,
once we reach the black dot, zero becomes a triple eigenvalue and an infinite wavelength
bifurcation solution may necessarily emerge. It is only in the blue region beyond this
dot that ±α1 become purely imaginary and that periodic bifurcation solutions become
possible.

a comprehensive linear bifurcation analysis in order to ascertain the preferred

axi-symmetric bifurcation behaviour of the tube.

Three distinct sets of boundary conditions were considered. In case 1, both

lateral surfaces are under zero shear traction and a normal traction with magnitude

equal to the absolute value of the surface tension γ multiplied by the mean curvature

K of the surface. In case 2 (case 3 ), the inner (outer) lateral surface is fixed in

the radial direction, whilst the outer (inner) lateral surface is under the surface

tension boundary condition. Both lateral surfaces remain under zero shear traction.

We firstly considered a primary deformation where the tube is under the combined

effect of surface tension γ and a resultant axial force N , and analytical expressions

for both γ and N were derived from the corresponding equilibrium equations.

In case 1, we then conjectured that the tube may in general admit a localized

bifurcation solution when the Jacobian of the vector function (γ,N ) vanishes. In

cases 2 and 3, this bifurcation condition reduces to dN /dλ = 0 when γ is fixed

or dγ/dλ = 0 when N is fixed.

A detailed linear bifurcation analysis was then conducted for the three cases

previously mentioned. We also considered three separates types of loading: fixed

axial stretch with increasing surface tension, fixed surface tension with monotonically
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varying axial force, and fixed axial force with increasing surface tension. By

considering the numerical relationship between the control parameter and the axial

wave number k, we determined the preferred axi-symmetric bifurcation mode in

each scenario. The key results of the linear analysis are summarized in Table 3.1.

Given the established links between the zero wavenumber bifurcation mode and

localized inhomogeneous bifurcation solutions from the dynamical systems theory

and the inflation problem, we compared our conjectured conditions for localized

pattern formation with the numerical bifurcation conditions obtained from the

linear analysis in the limit k → 0. It was shown that the two sets of conditions were

in complete agreement. Despite this, we still need to explicitly show the equivalence

of the zero wavenumber bifurcation solution and localized pattern formation, and

whether this bifurcation is subcritical or supercritical. Since a linear analysis can

offer no new information in any of these respects, it is required that we conduct

a weakly non-linear near-critical analysis. Before we do this, however, we must

recognise that circumferential buckling modes may also be possible. In the next

chapter, we analyze both the existence of such modes as well as their competition

with the axi-symmetric modes studied in the current chapter in order to determine

the overall preferred bifurcation behaviour of the tube.
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3.A Appendix – Hollow tube surface tension bound-
ary conditions

Consider the following energy functional

E =
∫

B0
W (F )dV +

∫
∂Be

γda =
∫

Be

J−1W (F )dv +
∫

∂Be

γda, (3.54)

where B0 and Be are the reference and current configurations, repspectively. Our

aim is to derive the equilibrium equations and boundary conditions by setting the

first variation of E to zero. For the first term, we have

δ
∫

B0
W (F )dV =

∫
B0

∂W

∂FiA

δFiAdV =
∫

B0
πiAδxi,AdV

=
∫

B0
{(πiAδxi),A − πiA,Aδxi} dV =

∫
∂B0

πiANAδxidA−
∫

B0
πiA,AδxidV

=
∫

∂B0
πN · δxdA−

∫
B0

DivS · δxdV

=
∫

∂Be

σn · δxda−
∫

Be

divσ · δxdv. (3.55)

For the second term, we begin by considering a smooth part P of ∂B0 which is

locally parametrized by the coordinates θα, where α ∈ {1, 2}. Then, the position

function Y on the surface is identified with the restriction of X to P , i.e.

Y (θ1, θ2) = X|P . (3.56)

The surface is then assumed to be convected by a deformation x = χ(X) such that

its image in the current configuration admits the local parametrization

y(θ1, θ2) = χ(Y (θ1, θ2)). (3.57)

We may then introduce the covariant vectors

Gα = Y,α, gα = y,α, (3.58)

and the corresponding contravariant vectors Gα and gα are defined as in (2.3).

In general, we should represent the covariant vector derivatives gα,β as a linear
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combination of the basis vectors g1, g2 and n, where n denotes the outward unit

normal to the surface. That is, we may write

gα,β = Γγ
αβgγ + bαβn, (3.59)

where

Γγ
αβ = gγ · gα,β and bαβ = n · gα,β, (3.60)

are the Christoffel symbols and the normal curvatures (respectively) on the deformed

surface; see Steigmann and Ogden (1999). It is also necessary to define the

following quantities:

gαβ = gα · gβ, gαβ = gα · gβ, Gαβ = Gα · Gβ, Gαβ = Gα · Gβ,

g = det(gαβ), G = det(Gαβ), g−1 = det(gαβ), G−1 = det(Gαβ), (3.61)

where (gαβ) denotes the matrix with components gαβ, say. Then, on combining

the expressions

g1 ∧ g2dθ1dθ2 = nda and G1 ∧ G2dθ1dθ2 = NdA, (3.62)

it can be shown that

da

dA
=

√
g√
G

≡ J2. (3.63)

Moreover, by Jacobi’s Formula (2.77), we have the identity

∂g

∂gαβ

= ggαβ. (3.64)

We may then calculate the first variation of da, or equivalently, J2. We have

δJ2 = 1
2

1√
gG

δg = 1
2

1√
gG

∂g

∂gαβ

δgαβ = 1
2

√
g√
G
gαβδgαβ

= 1
2

√
g√
G
gαβ {gβδgα + gαδgβ} = 1

2

√
g√
G

{
gα · δgα + gβ · δgβ

}
= J2g

α · δy,α

= J2g
−1/2

{
(g1/2gα · δy),α − (g1/2gα),α · δy

}
. (3.65)
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Thus, we have that

δ
∫

∂Be

γda = δ
∫

∂Be

γJ2dA = γ
∫

∂Be

g−1/2
{
(g1/2gα · δy),α − (g1/2gα),α · δx

}
da.

(3.66)

On applying Green-Stokes’ theorem, the first term in (3.66) becomes

γ
∫

∂Be

g−1/2(g1/2gα · δy),αda = γ
∮

∂P
(gα · δy)ναds, (3.67)

where ∂P is the contour along the boundary of the surface ∂Be, (να) is the unit

vector along this contour and ds is an infinitesimal line element on ∂P . The contour

integral in (3.67) does not contribute to our boundary conditions, however, and it

remains to manipulate the second term in (3.66). Firstly, with the use of (3.60),

(3.61) and (3.64), it can be shown that

g,α = ∂g

∂gγβ

gγβ,α = 2g
(
gβ · gβ,α

)
= 2gΓβ

βα. (3.68)

Then, from (3.68), we determine that

(
g1/2gα

)
,α

= g1/2Γβ
βαgα + g1/2gα

,α. (3.69)

Now, we can evaluate gα
,α in two separate ways:

gα
,α =

(
gγ · gα

,α

)
gγ +

(
n · gα

,α

)
n, (3.70)

or

gα
,α =

(
gαβgβ

)
,α

= gαβ
,α gβ + gαβgβ,α = gαβ

,α gβ + gαβ
(
Γγ

αβgγ + bαβn
)
. (3.71)

On comparing the coefficients of n in (3.70) and (3.71), we find that

n · gα
,α = gαβbαβ = K, (3.72)

where K is the trace of the curvature tensor. Also, on differentiating the equation

gγ · gα = δγα with respect to α, we deduce

gγ · gα
,α = −gγ,α · gα = −Γα

γα. (3.73)
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It then follows that the expression (3.70) may be rewritten as

gα
,α = −Γα

αγgγ + Kn. (3.74)

Finally, on substituting (3.74) into (3.69), we obtain
(
g

1
2 gα

)
,α

= g
1
2 Kn, (3.75)

and hence (3.66) reduces to

δ
∫

∂Be

γda = γ
∮

∂P
(gα · δy) ναds− γ

∫
∂Be

Kn · δxda. (3.76)

Thus, given (3.55), (3.67) and (3.76), we have that

δE =
∫

∂Be

(σn − γKn) · δx da−
∫

Be

divσ · δx dv + γ
∮

∂P
(gα · δy)ναds. (3.77)

If this variation is zero for arbitrary variations δx of x in the interior and on the

boundaries where surface tension exists, then we must have the usual equilibrium

equation divσ = 0 and the boundary conditions

σn = γKn. (3.78)

Specialization to a hollow cylindrical tube: A representative material particle

on the outer lateral surface of the tube has the position vector

x = roer + zez. (3.79)

The outward unit normal to this surface is n = er, and we may take θ1 = θ

and θ2 = z. We therefore have

g1 = ∂x

∂θ
= roeθ, g2 = ∂x

∂z
= ez,

g1,1 = −roer, g1,2 = 0, g2,1 = 0, g2,2 = 0. (3.80)

It then follows that

b11 = −ro, b12 = 0, b21 = 0, b22 = 0,

g11 = r2
o, g12 = 0, g21 = 0, g22 = 1,

g11 = r−2
o , g12 = 0, g21 = 0, g22 = 0, (3.81)



3. Axi-symmetric pattern formation in soft tubes 97

and hence

K = gαβbαβ = − 1
ro
. (3.82)

For the inner lateral surface, the calculation is identical except that n = −er.

As a result, b11 = ri and hence

K = gαβbαβ = 1
ri
. (3.83)

Thus, the surface tension boundary conditions for a hollow cylindrical tube must be

σn = − γ

ro
n on r = ro, and σn = γ

ri
n on r = ri. (3.84)
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3.B Appendix – Coefficients in the linear eigen-
value problem

The expressions for the variable coefficients ai = ai(R) (i = 1, 2, . . . , 7) in (3.43)

may be given as follows:

a1 = − 2
R

+ 2ω1 I0R, a2 = 3
R2 + ω2I

2
0R + 2ω1I0RR − 8ω1

η3
1λ
η2

2,

a3 = − 3
R3 − ω2

R
I2

0R − 2ω1

R
I0RR + 8ω1

η3
1Rλ

η2
2, a4 = R2λ

η1
,

a5 = R2ω2

η2λ
(1 − λ3) − R

η2
I0R + 2ω1η2

λ2η3
1

{
2(1 − λ3)(3η1 +R2) − η3

2
R4 − 2η2

2
R2 (λ3 − 2)

}
,

a6 = R(η1 − 2R2)
λη2

1
− λ2

R
+ 2ω2η

2
3I0R − 2Rω1η

2
2

λ2η3
1

(2 + 4λ3 + 3λ6) − 6R3ω1η2

λ2η2
1

(1 − λ6)

+ 2ω1η
3
2

η3
1λ

2 (1 + 3λ3 + λ6) − 2ω1

R3λ2η3
1

{
λ3η2

2 +R8(λ3 − 1)2
}
,

a7 = λ2 + R2

λη1
+ 2ω1η

2
3, (3.85)

where

ω1 = Wdd

Wd

, ω2 = Wddd

Wd

, η1 = r2
0λ, η2 = R2 − η1, η3 = λ2 − R2

η1λ
. (3.86)

From (3.47), we have that b11 = (k2R2)/(λη1) and

b±
21 = k2

{
R

λη2
1
(1 − 2η1) − 1

Rλ
+ R2ω1(λ3 − 1)

λη2
I0,R ± γ r0R

2wdη2
1
(k2η1 − λ)

}
,

b22 = 1
R2 − k2

(
λ2 + 2R2

η1λ

)
− ω1

R
I0R − 2ω1k

2η2
3, b23 = − 1

R
+ ω1I0R. (3.87)



4
Circumferential buckling vs.

axi-symmetric pattern formation in soft
tubes under elasto-capillary effects

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Stream function formulation . . . . . . . . . . . . . . . . 101
4.2.2 The primary deformation . . . . . . . . . . . . . . . . . 102

4.3 Linear bifurcation analysis . . . . . . . . . . . . . . . . . . . . . 103
4.3.1 Case 1 results . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Case 2 results . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.3 Case 3 results . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.A Appendix – Coefficients in the linear eigenvalue problem . . . . 119

4.1 Introduction

In this chapter, we move on to studying the circumferential buckling of an incompress-

ible hyperelastic tube under the combined action of surface tension γ̄ and a resultant

axial force N . After formulating the problem and reintroducing the primary axial

99
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tension deformation, we perform an extensive linear bifurcation analysis for the

same three sets of boundary conditions considered in the previous chapter. We also

consider the three types of loading which were analyzed in the previous chapter.

In all of the aforementioned scenarios, we produce a numerical relationship

between the control parameter and the circumferential mode number m. From this

relationship, we determine the preferred (or critical) values of the control parameter

and m. We then compare these critical values with the corresponding values for the

axi-symmetric zero wavenumber mode from the previous chapter. In doing so, we

can rigorously assess the competition between axi-symmetric and circumferential

modes in order to determine the preferred overall bifurcation behaviour. The

chapter is concluded with a summary of our main findings.

4.2 Problem formulation

Contrary to in the previous chapter, we now assume that the tube undergoes

a deformation of the form

r = r(R,Θ), θ = θ(R,Θ), z = λZ, (4.1)

where λ is still defined as the principal axial stretch. The notation for the radial

and axial coordinates at the extremities of the tube is unchanged from the previous

chapter. Then, given that the positions vectors X and x of a representative material

particle in B0 and Be (respectively) are of the form given in (3.1), the deformation

gradient F is defined through dx = FdX and is expressible as

F = ∂r

∂R
er ⊗ ER + 1

R

∂r

∂Θer ⊗ EΘ + r

R

∂θ

∂Θeθ ⊗ EΘ + r
∂θ

∂R
eθ ⊗ ER + λez ⊗ EZ .

(4.2)

We continue to operate under the assumption given in (3.4) that the strain-energy

function W is solely dependant on the first invariant, I1, of B = FF T . In

the calculation of our results further into the chapter, we will adopt the Gent

material model (2.63).
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For the static solution (4.1), the bulk elastic energy Eb and the surface energies E i
s

and Eo
s on the inner and outer lateral surfaces (respectively) take the following forms:

Eb = 2L
∫ 2π

0

∫ Ro

Ri
W (I1)RdRdΘ, Eβ

s = 2Lγ̄
∫ 2π

0
rβ(θ)

√
1 + r′

β(θ)2dΘ, (4.3)

where β = i or o.

Again, unless stated otherwise, we scale all lengths by Ro and all stresses by the

ground state shear modulus µ. Thus, we may set Ro = 1 and µ = 1 without loss of

generality. As before, we use the same symbols to denote scaled quantities, and

we also introduce the non-dimensionalized surface tension γ = γ̄/(µRo).

4.2.1 Stream function formulation

We may introduce a mixed co-ordinate stream function ψ = ψ (R, θ) so that the

incompressibility constraint (2.12) is satisfied exactly (Ciarletta, 2011). This stream

function is defined through the relations

r2 = 2∂ψ
∂θ

= 2ψ,θ, Θ = λ

R

∂ψ

∂R
= λ

R
ψ,R. (4.4)

Then, F can be re-written in the form

F = 1√
2ψ,θ

[
ψ,Rθ −R

ψ,θθ

ψ,Rθ

∂

∂R

(
ψ,R

R

)]
er ⊗ ER + ψ,θθ

λ
√

2ψ,θ ψ,Rθ

er ⊗ EΘ

+

√
2ψ,θ

λψ,Rθ

eθ ⊗ EΘ −
R
√

2ψ,θ

ψ,Rθ

∂

∂R

(
ψ,R

R

)
eθ ⊗ ER + λ ez ⊗ EZ , (4.5)

and it follows that the invariant I1 is expressible as

I1 = 1
2ψ,θ

[
ψ,Rθ − Rψ,θθ

ψ,Rθ

∂

∂R

(
ψ,R

R

)]2

+ 1
2

ϕ2
,θθ

λ2ϕ,θ ϕ2
Rθ

+ 2ϕ,θ

λ2ψ2
,Rθ

− 2R2ψ,θ

ϕ2
,Rθ

[
∂

∂R

(
ψ,R

R

)]2

+ λ2. (4.6)

The total energy E may also be rewritten in terms of the stream function as such:

E = 2λL
∫ 2π

0

∫ Ro

Ri
Lb dR dθ + 2λL

∫ 2π

0

(
Li

s + Lo
s

)
dθ, (4.7)
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where the bulk Lagrangian Lb and the inner and outer surface Lagrangians Li
s

and Lo
s take the form

Lb = ψ,Rθ W (I1), Lβ
s = γ

√
2ψ,θ + ψ2

,θθ

∣∣∣
R=Rβ

, (4.8)

with β = i or o. Thus, E as presented in (4.7) is a functional in its arguments

ψ,R, ψ,θ, ψ,RR, ψ,Rθ and ψ,θθ. On taking the first variation of (4.7) with respect

to these arguments and then integrating by parts repeatedly, we arrive at the

Euler-Lagrange equation given by(
∂Lb

∂ψ,RR

)
,RR

+
(
∂Lb

∂ψ,Rθ

)
,Rθ

+
(
∂Lb

∂ψ,θθ

)
,θθ

−
(
∂Lb

∂ψ,R

)
,R

−
(
∂Lb

∂ψ,θ

)
,θ

= 0. (4.9)

We consider the same three cases of boundary conditions which were analyzed

in the previous chapter; see Fig. 3.1. The surface tension boundary conditions

on R = Ri and Ro are expressible as

∂Lb

∂ψ,R

−
(
∂Lb

∂ψ,RR

)
,R

−
(
∂Lb

∂ψ,Rθ

)
,θ

=
(
∂Li

s

∂ψ,θθ

)
,θθ

−
(
∂Li

s

∂ψ,θ

)
,θ

, R = Ri, (4.10)

∂Lb

∂ψ,R

−
(
∂Lb

∂ψ,RR

)
,R

−
(
∂Lb

∂ψ,Rθ

)
,θ

=
(
∂Lo

s

∂ψ,θ

)
,θ

−
(
∂Lo

s

∂ψ,θθ

)
,θθ

, R = Ro. (4.11)

In the event that a lateral surface is in smooth contact with a rigid boundary (i.e.

cases 2 and 3 defined previously), we require that δr = 0 on R = Ri or Ro, and

this replaces the surface tension boundary condition (4.10) or (4.11), respectively.

Lastly, the zero shear traction condition on the lateral surfaces which applies in

all three cases takes the form

∂Lb

∂ψ,RR

= 0, R = Ri, Ro. (4.12)

4.2.2 The primary deformation

As in the previous chapter, we consider the primary axial tension deformation given

by

r = r0 =
√
λ−1 (R2 −R2

i ) + r2
i , θ = Θ, z = λZ, (4.13)
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noting that it is also a subclass of (4.1). On substituting (4.13) into (4.4) and

integrating the resulting equations, we determine that the corresponding primary

solution for ψ, denoted by ψ0, takes the form

ψ0 = R2θ

2λ + 1
2

(
r2

i − R2
i
λ

)
θ. (4.14)

On solving the associated equilibrium equations, it can be shown that the expressions

derived for γ and N in the previous chapter remain true here.

4.3 Linear bifurcation analysis

We consider a perturbation ψ1 = ψ1(R, θ) of the primary solution governed by

(4.14). On substituting the perturbed solution ψ = ψ0 + ψ1 into the equilibrium

equation (4.9) and linearizing in terms of ψ1, we obtain

∂4ψ1

∂R4 + â1(R)∂
3ψ1

∂R3 + â2(R)∂
2ψ1

∂R2 + â3(R)∂ψ1

∂R
+ â4(R)∂

4ψ1

∂θ4 + â5(R)∂
2ψ1

∂θ2

+ â6(R) ∂3ψ1

∂R∂θ2 + â7(R) ∂4ψ1

∂R2∂θ2 = 0, (4.15)

with the variable coefficients âi = âi(R) (i = 1, 2, . . . , 7) given in Appendix 4.A.

More specifically, we look for a solution of the form

ψ1 = εĝ(R)eimθ, (4.16)

where m ∈ Z+\{1} is the circumferential mode number, ε is a small parameter and

i is the imaginary unit. On substituting (4.16) into (4.15), the resulting fourth-order

ODE for ĝ can be reformulated into the following system of first-order linear ODEs;

dĝ

dR
= Â(R, λ,m) ĝ, Â =


0 1 0 0
0 0 1 0
0 0 0 1
Â41 Â42 Â43 Â44

 , (4.17)

where ĝ = [ ĝ, ĝ′, ĝ′′, ĝ′′′ ]T and the variable components of Â are given as follows:

Â41 = m2(â5 −m2â4), Â42 = m2â6 − â3

Â43 = m2â7 − â2, Â44 = −â1. (4.18)
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On substituting ψ = ψ0 + ψ1 and (4.16) into (4.10), (4.11) and (4.12) and then

linearizing in terms of ĝ, we find that the surface tension and zero shear traction

boundary conditions on R = Ri and R = Ro in case 1 may be expressed as

the following matrix equations:

B̂i(Ri, λ, γ,m) ĝ = 0,

B̂o(Ro, λ, γ,m) ĝ = 0,
where



B̂i =
b̂11 −1/R 1 0
b̂+

21 b̂22 b̂23 1

 ,

B̂o =
b̂11 −1/R 1 0
b̂−

21 b̂22 b̂23 1

 ,
(4.19)

and the expressions for the components of B̂i and B̂o are likewise given in Appendix

4.A. For cases 2 and 3, appropriate modifications to the matrices B̂i and B̂o should

be made as demonstrated in the previous chapter.

In order to account large values of m and prevent numerical stiffness, we analyze

the two-point boundary value problem (4.17) – (4.19) through the compound

matrix method described in section 2.6.2 of chapter 2. For the sake of brevity,

we again outline the solution procedure for case 1, but note that the approach

is identical in cases 2 and 3 when the previously mentioned modifications are

enforced. To begin, note that the linear systems B̂i ĝ = 0 and B̂o ĝ = 0 each

have two independent solutions which we denote, respectively, by ĝ
(j)
i and ĝ(j)

o ,

with j = 1, 2. In case 1, for instance, we have

ĝ
(1)
β =

[
1, 0, −b̂11, b̂23 b̂11 − b̂+

21

]T

ĝ
(2)
β =

[
0, 1, −1/R, b̂23/R − b̂22

]T

 , where R = Rβ, (4.20)

and β = i or o. We can then integrate (4.17) forwards from R = Ri (using (4.20) as

initial data for ĝ at R = Ri) and backwards from R = Ro (using (4.20) as initial

data for ĝ at R = Ro) towards some interior point R = Rm ∈ (Ri, Ro). In doing so,

we obtain two sets of two linearly independent solutions {ĝ(1), ĝ(2)} and {ĝ(3), ĝ(4)}

which can be presented through the following respective solution matrices:

M− = [ĝ(1), ĝ(2)] and M+ = [ĝ(3), ĝ(4)]. (4.21)
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The matrices M∓ each have six minors denoted by φ∓
1 , φ

∓
2 , . . . , φ

∓
6 . For instance,

the six minors of M− are

φ−
1 = ĝ1ĝ

′
2 − ĝ2ĝ

′
1, φ−

2 = ĝ1ĝ
′′
2 − ĝ2ĝ

′′
1 , φ−

3 = ĝ1ĝ
′′′
2 − ĝ2ĝ

′′′
1 ,

φ−
4 = ĝ′

1ĝ
′′
2 − ĝ′

2ĝ
′′
1 , φ−

5 = ĝ′
1ĝ

′′′
2 − ĝ′

2ĝ
′′′
1 , φ−

6 = ĝ′′
1 ĝ

′′′
2 − ĝ′′

2 ĝ
′′′
1 . (4.22)

Then, as was shown from equation (2.138) to (2.140), these minors satisfy the

following compound matrix equation

dφ−

dR
= Ã(R, λ,m)φ−, Ri ≤ R ≤ Rm, (4.23)

where φ− = [φ−
1 , φ

−
2 , . . . , φ

−
6 ]T and

Ã =



0 1 0 0 0 0
0 0 1 1 0 0
Â42 Â43 Â44 0 1 0
0 0 0 0 1 0

−Â41 0 0 Â43 Â44 1
0 −Â41 0 −Â42 0 Â44


. (4.24)

The boundary conditions for φ− at R = Ri can be constructed from the independent

solutions ĝ
(1)
i and ĝ

(2)
i of Bi ĝ = 0. For instance, we have

φ−
1 (Ri, λ, γ,m) = ĝ

(1)
i1 ĝ

(2)
i2 − ĝ

(2)
i1 ĝ

(1)
i2 , (4.25)

where ĝ
(i)
ij is the jth component of ĝ

(i)
i . We can then integrate forward (4.23)

from R = Ri towards R = Rm in order to obtain a general solution for φ−. The

corresponding solution for φ+ can be obtained in a similar manner. It then remains

to match the solutions φ− and φ+ at R = Rm. As was shown in equation (2.142),

the matching condition takes the form det N̂(Rm, λ, γ,m) = 0, where

det N̂(R, λ, γ,m) = φ−
1 φ

+
6 − φ−

2 φ
+
5 + φ−

3 φ
+
4 + φ−

4 φ
+
3 − φ−

5 φ
+
2 + φ−

6 φ
+
1 . (4.26)

However, this condition is dependent on the matching point R = Rm. As was shown

in equation (2.134), we can circumvent this by instead deploying the condition

D(λ, γ,m) = e
−
∫ Rm

Ri
trÂ(t,λ,m)dt det N̂(Rm, λ, γ,m) = 0, (4.27)
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which is independent of the matching point.

Equation (4.27) represents a numerical bifurcation condition which must be

satisfied by the control parameter (which may again be chosen as N or γ) and

the circumferential mode number m. Similarly to in the previous chapter, for

any fixed m ∈ Z+\{1}, we may iterate on the control parameter until (4.27) is

satisfied. We again seek the point on the bifurcation curve relating the control

parameter and m which is encountered first during the loading process. The value

of m at this point is referred to as the critical circumferential buckling mode, and

is denoted by mcr. Beyond the critical value of the control parameter, the tube’s

cross section may bifurcate into a circumferential buckling pattern with periodicity

corresponding to the value of mcr. In Fig. 4.1, we illustrate the circumferential

buckling patterns corresponding to mcr = 2, 3, 4, 5, 6 and 7.

4.3.1 Case 1 results

We first consider the case 1 boundary conditions illustrated in Fig. 3.1. We begin by

fixing λ ≥ 1 and increasing γ monotonically from zero. In Fig. 4.2 (a) and (b) we

plot the bifurcation condition (4.27) in the (λ, γ) and (Ri, γ) planes (respectively)

for several circumferential mode numbers m ∈ Z+\{1} and Jm = 100. We observe

that, for any fixed value of λ ≥ 1 or Ri, the curve corresponding to m = 2 is

the lowest branch of the bifurcation condition. Thus, the critical mode number

is invariably mcr = 2. Physically, this mode number is manifested through the

tube’s cross section bifurcating from a circular shape into an elliptic shape; see Fig.

4.1. Hereafter, we shall refer to this as the elliptic mode. We observe also that the

critical surface tension values γcr for the elliptic mode are generally smaller than

the corresponding values for the preferred axi-symmetric mode kcr = 0 (i.e. the

zero wavenumber solution) from the previous chapter. As an illustrative example,

in Fig. 4.2 (a) we notice that, for fixed λ = 1.5 with Ri = 0.4 and Jm = 100,

bifurcation into the elliptic mode must necessarily occur at γcr ≈ 0.073. In contrast,

the zero wavenumber solution cannot necessarily emerge until γcr ≈ 6.4. Thus,
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mcr = 2 mcr = 3

mcr = 4 mcr = 5

mcr = 6 mcr = 7

Figure 4.1: A schematic of the bifurcated cross-sectional shapes of the tube (solid curves)
corresponding to the critical circumferential buckling modes mcr = 2, 3, 4, 5, 6 and 7.



108 4.3. Linear bifurcation analysis

the elliptic mode is preferred over the zero wavenumber solution, and hence any

type of axi-symmetric pattern formation, in theory.

(a)

1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

0.20

0.25

0.30

λ

γ

m
cr =

2

γcr ≈ 0.073

m
=
3

m
=
10

m
=
3
0

m
=
6
0

Increasing γ

(b)

0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

Ri

γ

mcr = 2

m = 3

m = 5

m = 10

m = 20

Figure 4.2: Plots of the bifurcation condition (4.27) with Jm = 100 in (a) the (λ, γ)
plane with Ri = 0.4 and m = 2, 3, 10, 30, 60, and (b) the (Ri, γ) plane with λ = 1.25 fixed
and m = 2, 3, 5, 10, 20.

We then plot in Fig. 4.3 the critical surface tension values γcr corresponding

to mcr = 2 against (a) Ri for several fixed λ ≥ 1 and (b) λ for several fixed

Jm. The relationship between γcr and Ri is seen in (a) to be non-monotonic for

all fixed λ considered and Jm = 100. Each curve has a maximum at moderate

values of Ri. Thus, tubes with a moderate radial thickness are less prone to the

elliptic mode, whereas very thick or thin tubes are highly susceptible to it. For

the range of fixed stretches considered, we see in (b) that, for a small enough Jm,

γcr varies non-monotonically with λ. In contrast, for a large enough Jm, γcr is a

decreasing function of λ in the range of fixed stretches considered. Thus, provided

the extensibility limit is high enough, a greater axial stretch λ ∈ [1, 3] will encourage

elliptic circumferential buckling of the tube. Moreover, a larger extensibility limit

will itself cause the elliptic mode the become possible earlier into the loading process.

If we instead fix γ > 0, we know that an axial stretch λ < 1 will be produced

initially. It is also known that slender structures in axial compression are highly

susceptible to the Euler buckling instability (Goriely et al., 2008). Since we are

focussed here on circumferential buckling solutions, we choose to also apply an axial

force N > 0 so that λ = 1 initially, and then increase λ monotonically from this

point. The required initial axial force N can be determined by substituting: λ = 1,
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Figure 4.3: Plots of the bifurcation condition (4.27) with m = mcr = 2 in (a) the
(Ri, γcr) plane with Jm = 100 and λ = 1, 1.1, 1.2, 1.3, 1.4 fixed, and (b) the (λ, γcr) plane
with Ri = 0.4 fixed and Jm = 2, 3, 5, 10, 100. Arrows indicate the direction of parameter
growth.

the relevant values for γ,Ri and Jm, and the value of ro determined implicitly from

(3.27), into (3.26). We then plot in Fig. 4.4 (a) and (b) the bifurcation condition

(4.27) in the (γ, λ) and (Ri, λ) plane (respectively) for several circumferential mode

numbers. As in the previous loading scenario, we see that m = 2 is always the first

mode encountered when increasing λ from unity. We also observe that, above a

certain fixed surface tension value, the elliptic mode may be triggered without any

increase in λ. For any value of Ri, this threshold value of γ is less than the minimum

fixed surface tension γmin required to trigger the zero wavenumber solution. As an

illustrative example, we see in Fig. 4.4 (a) that for fixed γ ≈ 0.15 with Ri = 0.4 and

Jm = 100, bifurcation into the elliptic mode must necessarily occur at λcr = 1. In

contrast, for these same values of Ri and Jm, the zero wavenumber solution cannot

occur unless γ ≥ 6.36. Thus, the tube is already highly unstable towards the elliptic

mode in the regime of fixed γ where the zero wavenumber solution must necessarily

exist, and so it is the former which is preferred. In Fig. 4.5 (a) and (b) we plot the

critical stretch λcr corresponding to the preferred mode mcr = 2 against Ri and Jm

(respectively) for several fixed γ. We observe that, for larger fixed γ, the value of λcr

decreases and thus the tube is more susceptible to the elliptic mode. Also, λcr is seen

to vary non-monotonically with Ri, and λcr decreases with increasing Jm generally.

Finally, we apply a fixed N ≥ 0 and increase γ monotonically from zero. We

observe once more in Fig. 4.6 that m = 2 is always the preferred mode of bifurcation.
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Figure 4.4: Plots of the bifurcation condition (4.27) with Jm = 100 in (a) the (γ, λ)
plane with Ri = 0.4 and m = 2, 3, 10, 30, 60, and (b) the (Ri, λ) plane with γ = 0.1 fixed
and m = 2, 3, 5, 10, 20.
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Figure 4.5: Plots of the bifurcation condition (4.27) with m = mcr = 2 in (a) the
(Ri, λcr) plane with Jm = 100 and the fixed γ increased from 0.03 to 0.05 in increments
of 0.005, and (b) the (Jm, λcr) plane with Ri = 0.4 and γ increased from 0.1 to 0.3 in
increments of 0.05. Arrows indicate the direction of increase in γ.

In Fig. 4.7 (a), we see again that the corresponding γcr varies non-monotonically

with Ri. In Fig. 4.7 (b) we observe that, as Jm increases above a certain value,

γcr goes from being a non-monotonic function of N to a decreasing function of N .

In other words, for a large enough extensibility limit, a greater initial axial load

destabilises the tube towards the elliptic mode. The values of γcr are found to be

generally less than the corresponding values for the zero wavenumber solution, and

so elliptic circumferential buckling is again the preferred bifurcation behaviour.
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Figure 4.6: Plots of the bifurcation condition (4.27) with Jm = 100 in (a) the (N , γ)
plane with Ri = 0.4 and m = 2, 3, 10, 30, 60, and (b) the (Ri, γ) plane with N = 4 fixed
and m = 2, 3, 5, 10, 20.
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Figure 4.7: Plots of the bifurcation condition (4.27) with m = mcr = 2 in (a) the
(Ri, γcr) plane with Jm = 100 and N increased from 1 to 5 in increments of 1, and (b)
the (N , γcr) plane with Ri = 0.4 and Jm = 2, 3, 5, 10, 100.

4.3.2 Case 2 results

The situation in case 2 is quite different to that in case 1. For example, when

fixing λ and increasing γ from zero, we see in Fig. 4.8 that no circumferential

buckling bifurcation solutions can exist. The only solutions which exist correspond

to negative values of surface tension, which is physically implausible. This is

also found to be the case when fixing γ and varying N , and when fixing N and

increasing γ. Thus, circumferential buckling is not possible in case 2, and so the

zero solution is generally preferred.
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Figure 4.8: Plots of the bifurcation condition (4.27) with m = mcr = 2 in (a) the
(Ri, λcr) plane with Jm = 100 and the fixed γ increased from 0.03 to 0.05 in increments
of 0.005, and (b) the (Jm, λcr) plane with Ri = 0.4 and γ increased from 0.1 to 0.3 in
increments of 0.05. Arrows indicate the direction of increase in γ.

4.3.3 Case 3 results

We begin by fixing γ ≥ 0 and varying the axial force N monotonically from some

initial value. In Fig. 4.9 (a) we plot the critical axial force Ncr for circumferential

buckling against γ for several extensibility limits Jm. When taking N = 0 initially,

circumferential buckling can occur before any axial load is applied provided that

the surface tension meets a certain fixed value. For instance, for Ri = 0.4 and

Jm = 100, we have that Ncr = 0 for fixed γ ≈ 0.45. For fixed surface tension values

below this threshold, circumferential buckling can only be triggered by reducing N

below zero (i.e. by applying an axial compression to the tube). For fixed surface

tension values above this threshold, the tube is highly unstable to circumferential

buckling if N = 0 initially. However, we may instead choose to apply a dead load

N > 0 to the tube initially in conjunction with the fixed surface tension, and

then unload the tube from the resulting starting point. For instance, for Ri = 0.4

and Jm = 100 with γ = 0.5 fixed, we may also apply a dead load N = 4 initially.

We can then unload (i.e. decrease N from 4) until we reach the corresponding

bifurcation value Ncr ≈ 0.58; see Fig. 4.9 (a).

We observe generally in (a) that larger values of γ and Jm destabilize the

tube towards circumferential buckling. In Fig. 4.9 (b) we plot the values of mcr

corresponding to the values of Ncr in (a) for Jm = 1.1, 5 and 100. We see that,
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for larger fixed γ, mcr tends to 2. In Fig. 4.9 (c) and (d), we plot Ncr and mcr

(respectively) against Ri for several fixed γ. In (c), we observe that for a wide range

of values of Ri, larger values of fixed surface tension destabilize the tube towards

circumferential buckling. However, above some large value of Ri (i.e. Ri ≳ 0.73 in

(c)), larger fixed surface tension values stabilise the tube against circumferential

buckling. We see also that, for all fixed γ considered, Ncr is a decreasing function

of Ri. In other words, a greater radial thickness destabilizes the tube towards

circumferential buckling. It is noted from (d) that the associated values of mcr will

increase with the value of Ri (i.e. as the tube’s thickness decreases).
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Figure 4.9: A plot of (a) Ncr against γ with Ri = 0.4 and Jm = 1.1, 2, 5, 15, 100, (b)
mcr against γ with Ri = 0.4 and Jm = 1.1, 5, 100, (c) Ncr against Ri with Jm = 50 and
γ = 0.1, 0.2, 0.3, 0.4, 0.5, and (d) mcr against Ri with Jm = 50 and γ = 0.1, 0.3, 0.5.

We now want to assess the competition between circumferential buckling and

the axi-symmetric zero wavenumber bifurcation solution in this loading scenario.

In Fig. 4.10 (a) we plot the critical stretches λcr for the zero wavenumber solution

(blue) and circumferential buckling (purple) against γ > γmin for several Jm, where
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γmin is the minimum surface tension for which the axi-symmetric solution can occur.

We observe that, when fixing N > 0 initially and unloading, the zero wavenumber

solution will precede circumferential buckling for all values of Jm considered. As an

illustrative example, say we fix γ = 1.6 and N ≈ 14.6 initially with Ri = 0.4 and

Jm = 100. This produces an initial stretch λ = 1.3 to unload from; see (a). When

unloading, the zero wavenumber solution must necessarily occur once λ reduces to

approximately 1.12. In contrast, circumferential buckling cannot occur until λ has

reduced to approximately 0.922. In Fig. 4.11 we compare the critical stretches for
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Figure 4.10: (a) A comparison of the critical stretches λcr for the zero wavenumber
solution (blue) and circumferential buckling (purple) against γ with Ri = 0.4 and Jm =
3, 6, 10, 20, 100. (b) A blow up of the region in (a) enclosed by the dashed box.

the zero wavenumber solution and circumferential buckling for two separate values

of Ri, and we see again that it is the former that is preferred.
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Figure 4.11: A comparison of the critical stretches λcr for the zero wavenumber solution
(blue) and circumferential buckling (purple) against γ with Jm = 100 and with (a) Ri = 0.3
and (b) Ri = 0.6.
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Next, we choose to apply a fixed axial force N > 0 initially, and then increase γ

monotonically from zero. We see in Fig. 4.12 (a) and (c) that the critical surface

tension γcr for circumferential buckling increases with increasing N and Ri and

decreasing Jm. Thus, a larger initial dead load or a smaller radial tube thickness

or extensibility limit will stabilize the tube against circumferential buckling. In

(b), we see that, for smaller (larger) values of Ri, mcr increases (decreases) with

N . From (d) we note that mcr is minimally affected by the value of Jm. In

Fig. 4.13 and 4.14 we show that, as in the previous loading scenario, the zero

wavenumber solution is preferred over circumferential buckling for all fixed Ri, Jm

and N > Nmin considered (where Nmin is the minimum axial force for which the

zero wavenumber solution can necessarily occur).
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Figure 4.12: A plot of (a) γcr against N with Jm = 50 and Ri = 0.2, 0.3, 0.4, 0.5, 0.6,
(b) mcr against N with Jm = 50 and Ri = 0.2, 0.6, (c) γcr against Ri with N = 5 and
Jm = 2, 3, 5, 10, 30, and (d) mcr against A with N = 5 and Jm = 2, 5, 30.

Finally, say we fix the axial stretch λ initially and then increase γ monotonically

from zero. In Fig. 4.15 (a) we present a blow up of the region inside the dashed box
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Figure 4.13: (a) A comparison of the critical stretches λcr for the zero wavenumber
solution (blue) and circumferential buckling (purple) against N with Ri = 0.4 and
Jm = 3, 6, 10, 20, 100. (b) A blow up of the region in (a) enclosed by the dashed box.
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Figure 4.14: A comparison of the critical stretches λcr for the zero wavenumber solution
(blue) and circumferential buckling (purple) against N with Jm = 100 and with (a)
Ri = 0.3 and (b) Ri = 0.6.

in Fig. 4.11 (a). We observe that there is a threshold value for the fixed λ, λth ≈

0.961, above which the zero wavenumber solution is preferred over circumferential

buckling, and below which circumferential buckling is preferred over the zero

wavenumber solution. In Fig. 4.15 (b), we plot the dependence of λth on Ri

for Jm = 100. We observe that, for tubes with a lower radial thickness, there

exists a wider range of fixed stretches for which the zero wavenumber solution

is preferred when increasing γ from zero.
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Figure 4.15: (a) A blow up of the region inside the dashed box in Fig. 4.11 (a).
For Ri = 0.3, there exists a fixed stretch threshold λth ≈ 0.961 above which the zero
wavenumber solution is preferred over circumferential buckling. (b) The variation of the
stretch threshold λth against Ri for Jm = 100.

4.4 Discussion

The aim of the analysis in this chapter was again twofold. Firstly, we proceeded

to investigate the circumferential buckling of hollow hyperelastic tubes under

the effects of surface tension and a resultant axial force. Secondly, we aimed to

compare the critical control parameter values associated with the axi-symmetric and

circumferential buckling modes studied in order to determine the overall preferred

bifurcation behaviour of the tube. We studied the same three cases of boundary

conditions and types of loading as in the previous chapter. The key results in

each of these scenarios are summarized in Table 4.1.

Our analysis has allowed us to determine comprehensively the conditions

under which the axi-symmetric zero wavenumber solution is the preferred mode of

bifurcation. Thus, we may now conduct further investigations within the confines

of these conditions to determine explicitly whether this solution is associated

with a localized pattern formation, and how the solution evolves through the

near-critical and fully non-linear post-bifurcation regimes. This will be the focus

of the next chapter.
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4.A Appendix – Coefficients in the linear eigen-
value problem

The variable coefficients âi = âi(R) in (4.15) take the following form:

â1 = − 2
R

+ 4R
η1

+ 2ω1I0R, â2 = 3
R2 − 4

η1
+ ω2I

2
0R + 4ω1η

2
2(R3 + 3η)
R4λ η2

1
= −Râ3,

â4 = 1
η2

1
, â5 = 2

(
R2

η3
1

+ 1
R2η3

1

)
+ ω2

η1
I2

0R + 2ω1η
2
2

R4η4
1λ

(
5η2

2 + 16R2η1
)
,

â6 = −ω2

(
R

η1
+ 1
R

)
I2

0R − 2ω1η
2
2(R2 + η1)
R5η4

1λ

{
6η2

2 +R2(13η1 −R2)
}

− 3
R3 + 2

Rη1
+ R

η2
1

− 2R3

η3
1
, a7 = 1

R2 + R2

η2
1

− ω1

(
R

η1
+ 1
R

)
I0R, (4.28)

where ω1, ω2, η1, η2 and η3 are as defined in (3.86).

The expressions for b̂11, b̂
±
21, b̂22 and b̂23 in (4.19) are

b̂11 = m2R2

η2
1

, b̂±
21 = m2(η1 +R2)2

Rη3
1

− m2ω1

η1
I0R ± m2γ R (m2η1 − λ)

2wd r η2
1

,

b̂22 = 1
R2 − 2

η1
− m2

R2 − 2m2R2

η2
1

− ω1

R
I0,R − m2ω1

Rη1

(
R

η1
+ 1
R

)
I0R,

b̂23 = 2R
η1

− 1
R

+ ω1I0R. (4.29)
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Localized pattern formation in soft tubes:

near-critical and post-bifurcation
behaviour
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5.1 Introduction

In the previous two chapters, we have demonstrated that, for an incompressible

hollow tube under certain types of boundary conditions and elasto-capillary-based

loading, it is a non-trivial axi-symmetric solution characterized by zero wavenumber

which may bifurcate from the primary state of axial tension at a critical value of

121



122 5.2. Weakly non-linear near-critical analysis

the load. Specifically, this bifurcation behaviour may occur for any type of loading

when the inner surface of the tube is fixed in the radial direction (case 2), and for

certain types of loading when the outer surface is fixed in the radial direction (case

3). However, when both lateral surfaces are free of displacement constraints (case

1), circumferential buckling modes are preferred over this zero wavenumber solution.

The aims of this chapter are: to determine whether this zero wavenumber mode

is in-fact associated with a localized pattern formation (as is suggested by the

dynamical systems theory and the inflation problem); to determine whether the

initial bifurcation solution arises supercritically or subcritically; and to investigate

the complete evolution of the solution in the post-bifurcation regime. We naturally

focus these investigations on the scenarios where the zero wavenumber solution is

the preferred bifurcation behaviour. Since the analysis for case 2 and 3 is found to

be near-identical, we fix our attention here solely on case 2 for the sake of brevity.

We first perform a weakly non-linear near-critical analysis. In such an analysis,

we are interested in determining the relationship between the small increment

of the control parameter from its bifurcation value and the amplitude of the

associated first-order bifurcation solution. Fully non-linear numerical simulations

conducted in Abaqus (2013) are then shown to support our linear and weakly

non-linear theory. However, it will be demonstrated that our analytical expressions

for the primary axial tension deformation can in-fact be applied to predict the

entire bifurcation process. This offers a further source of comparison between

our theory and numerical simulations.

5.2 Weakly non-linear near-critical analysis

In this section, we construct an exhaustive weakly non-linear analysis in terms of a

general strain-energy function and consider the three established loading scenarios

separately. To recap, we fix γ and take λ as the control parameter, we fix λ and

take γ as the control parameter, or we fix N and take γ as the control parameter.
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5.2.1 Fixed γ and monotonically varying λ

We first consider a small deviation of the axial stretch from its critical value λcr ≡ λL
cr

or λR
cr corresponding to the preferred axi-symmetric mode kcr = 0. That is, we set

λ = λcr + ελ1, (5.1)

where ε is a small parameter and λ1 is a constant of O(1). In this near-critical

regime, the bifurcation curve in the (k, λ) plane extracted from (3.52) is parabolic,

and we therefore have that λ − λcr = O(k2). On comparing this order relation

with (5.1), we deduce that k = O(ε1/2). Then, the presence of the product kz

in the exponent of the normal mode solution (3.44) motivates the introduction

of a far distance variable s which is defined through

s = ε1/2z. (5.2)

Guided by Fu (2001), we now look for an asymptotic solution for the stream

function ϕ, defined through (3.7), of the form

ϕ = ϕ0 + ε1/2
{
ϕ

(1)
1 (R, s) + εϕ

(2)
1 (R, s) + ε2ϕ

(3)
1 (R, s) + O(ε3)

}
. (5.3)

On substituting (5.3) into (3.44)1, the corresponding expansions for the mixed

coordinates r and Z are

r = r0cr + ε

r0cr

{
ϕ

(1)
1,s − λ1

2λ2
cr

(R2 −R2
i )
}

+ O(ε2),

Z = z

λcr
+ ε1/2

R
ϕ

(1)
1,R + O(ε), (5.4)

where r0cr is r0 as defined in (3.21) with λ = λcr. The objective is to substitute

(5.3) into (3.12) and the boundary conditions associated with case 2, and equate

the coefficients of like powers of ε. In doing so, we obtain a hierarchy of boundary

value problems to solve, and we aim to determine an explicit solution for the

first-order correction ϕ
(1)
1 .

At first order, we obtain the governing equation

L
[
ϕ

(1)
1

]
= 0, Ri ≤ R ≤ Ro, (5.5)
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and the boundary conditions

B1
[
ϕ

(1)
1

]
= 0, R = Ro, (5.6)

B2
[
ϕ

(1)
1

]
= 0, R = Ri, Ro, (5.7)

ϕ
(1)
1,s(R, s) = 0, R = Ri, (5.8)

where the three differential operators L, B1 and B2 are given by

L = ∂

∂R
B1, B1 = 1

R

∂

∂R
R W̃d B2 and B2 = ∂

∂R

1
R

∂

∂R
. (5.9)

We also define W̃d as Wd = W ′(I0(R)) with λ replaced by λcr. It is noted that (5.6)

and (5.7) are obtained from (3.17) and (3.18), respectively, whilst (5.8) ensures

that the first-order increment of r vanishes on R = Ri; see (5.4). Through repeated

integration of (5.5), the following general solution for ϕ(1)
1 is determined:

ϕ
(1)
1 = C1(s)R2 + C2(s) ξ2(R) + C3(s) ξ3(R) + C4(s), (5.10)

where ξ2(R) =
∫ R

Ri
u
∫ u

Ri
tW̃−1

d dtdu and ξ3(R) =
∫ R

Ri
u
∫ u

Ri
(tW̃d)−1dtdu. (5.11)

In (5.11), the variable R in W̃d should be replaced by t, i.e. W̃d = W ′(I0(t)). On

substituting (5.10) and (5.11) into (5.7), we find that C2 and C3 must necessarily

be zero. Additionally, (5.6) is automatically satisfied, whilst (5.8) requires that

C ′
4(s) = −R2

i C
′
1(s). We may integrate the latter equation with respect to s and

set the additive constant to zero since the coordinates (5.4) depend only on the

partial derivatives of ϕ(1)
1 . Thus, the particular first-order solution is

ϕ
(1)
1 = C1(s)(R2 −R2

i ), (5.12)

where C1(s) is to be determined.

At second order, the governing equation is

L
[
ϕ

(2)
1

]
= C ′′

1 (s) p1(R), Ri ≤ R ≤ Ro, (5.13)
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and the boundary conditions take the form

B1
[
ϕ

(2)
1

]
= C ′′

1 (s) k1(R), R = Ro, (5.14)

B2
[
ϕ

(2)
1

]
= C ′′

1 (s) s1(R), R = Ri, Ro, (5.15)

ϕ
(2)
1,s(R, s) = 0, R = Ri, (5.16)

with the functions p1(R), k1(R) and s1(R) given in Appendix 5.A. The general

solution to (5.13) is

ϕ
(2)
1 = D1(s)R2 +D2(s) ξ2(R) +D3(s) ξ3(R) +D4(s) + C ′′

1 (s)P(R), (5.17)

where P(R) is a particular integral given by

P(R) =
∫ R

Ri
x
∫ x

Ri
(vW̃d)−1

∫ v

Ri
u
∫ u

Ri
p1(t) dt du dv dx. (5.18)

We note that P(R) cannot in general be solved analytically; instead, we evaluate

it numerically using the procedure detailed in Appendix 5.B. On substituting

(5.17) and (5.18) into (5.15) and (5.16), we find that D2, D3 and D4 are linear

in terms of D1 and C ′′
1 . Then, on substituting (5.17) and (5.18) into (5.14), we

obtain an equation for λcr of the form

R2
o −R2

i
2 {2k1(R) − F1(R)} + F2(t)|Rt=Ri

= 2W̃d(R2
o −R2

i )
(r0crλcr)2 , R = Ro, (5.19)

where the functions F1(R) and F2(R) are given by

F1(R) =
∫ R

Ri
p1(t) dt and F2(R) =

∫ R

Ri
u
∫ u

Ri
p1(t) dt du. (5.20)

We find that (5.19) is numerically equivalent to our conjectured condition (3.36) for

localized pattern formation when the Gent material model (2.63) is employed; see

Fig. 5.1. In contrast, when the neo-Hookean model (2.58) is used, the condition

(3.36) can in-fact be recovered in closed form.

The third order governing equation is expressible as

L
[
ϕ

(3)
1

]
= D′′

1(s)p1(R) + C ′′′′
1 (s)p2(R) + C̄1(s)p3(R), Ri ≤ R ≤ Ro, (5.21)
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Figure 5.1: A comparison of the conjectured condition (3.36) for localized pattern
formation (blue curve) and the explicit bifurcation condition (5.19) corresponding to
kcr = 0 (black squares) for the Gent material model (2.63) with Ri = 0.4 and Jm = 100.

where C̄1(s) = C ′′
1 (s)(λ1 − 2λ2

crC
′
1(s)). The associated boundary conditions are

B1
[
ϕ

(3)
1

]
= D′′

1(s)k1(R) + C ′′′′
1 (s)k2(R) + C̄1(s)k3(R), R = Ro, (5.22)

B2
[
ϕ

(3)
1

]
= D′′

1(s)s1(R) + C ′′′′
1 (s)s2(R) + C̄1(s)s3(R), R = Ri, Ro, (5.23)

ϕ
(3)
1,s(R, s) = 0, R = Ri. (5.24)

The expressions for pm̄(R), km̄(R) and sm̄(R) (m̄ = 2, 3) are extremely lengthy, and

so obtaining the desired amplitude equation by directly solving the system (5.21)

- (5.24) is an arduous task. A simpler approach is to use the fact that, since the

homogeneous form of (5.21) - (5.24) has a non-trivial solution, the inhomogeneous

terms on the right-hand side of (5.21) - (5.23) must satisfy a solvability condition.

In-fact, for sufficiently smooth functions f(R) and g(R), there exists an identity∫ Ro

Ri
{gL[f ] − fL[g]} dR =

[
gB1[f ] − fB1[g] + f ′W̃dB2[g] − g′W̃dB2[f ]

]Ro

Ri
, (5.25)

which is subject to the additional constraints f(Ri) = 0 and g(Ri) = 0 to prevent

terms involving the surface tension boundary condition operator B1 being evaluated

at R = Ri. The identity (5.25) implies that the operator L is self-adjoint, and

we prove its existence in Appendix 5.C.

More specifically, we may set g equal to the first-order solution (5.12) and

f = ϕ
(m̄)
1 , with m̄ = 2, 3, in (5.25). Then, (5.25) reduces to∫ Ro

Ri
(R2 −R2

i )L
[
ϕ

(m̄)
1

]
dR =

[
(R2 −R2

i )B1
[
ϕ

(m̄)
1

]
− 2RW̃dB2

[
ϕ

(m̄)
1

]]Ro

Ri
, (5.26)
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and we note that L[ϕ(m̄)
1 ], B1[ϕ(m̄)

1 ] and B2[ϕ(m̄)
1 ] are each equal to expressions which

involve only lower order solutions.

On setting m̄ = 2 in (5.26) and equating coefficients of C ′′
1 , we obtain an equation

which is found to also be numerically equivalent to our conjectured condition (3.36)

for localized pattern formation when the Gent material model is deployed. Thus, the

case m̄ = 2 offers a further consistency check on our derivations. On substituting

m̄ = 3 in (5.26), we yield the desired amplitude equation. By integrating once and

setting the arbitrary constant to zero for decay solutions, we obtain

A′′ = λ1κ1A + κ2A
2, where A ≡ A(s) = C ′

1(s), (5.27)

and the coefficients κ1 and κ2 are discussed below.
5.2.1.1 Analysis of the amplitude equation

The special relationship κ2 = −λ2
crκ1 is found to exist between the coefficients

κ1 and κ2 in (5.27), and this can be explained as follows. On substituting (5.3)

into FEZ · ez, where F is given by (3.8), the following expansion for the principal

axial stretch is determined to O(ε):

λ = λcr + ε
{
λ1 − 2λ2

crA(s)
}
. (5.28)

As is now established, the bifurcation points λcr = λL
cr and λcr = λR

cr occur

respectively at the local maximum and minimum of the resultant axial force N

when γ > γmin is fixed. Thus, the N = N (λ) curve must be parabolic in a small

neighbourhood of λ = λcr and, provided the amplitude A is constant and non-zero,

(5.1) and (5.28) are two near-critical solutions which must be equidistant from λcr

and yield the same value of N . That is, we must have

λcr −
(
λcr + ε

{
λ1 − 2λ2

crA
})

= (λcr + ελ1) − λcr, (5.29)

and from this we obtain A = λ1/λ
2
cr. Then, on substituting this expression back

into (5.27), the relation κ2 = −λ2
crκ1 follows.

Whilst the determined expression for κ1 is analytical, it contains several integrals

which cannot be evaluated explicitly. Thus, for the chosen material model, these



128 5.2. Weakly non-linear near-critical analysis

integrals must be evaluated numerically using the same approach as detailed in

Appendix 5.B. Nevertheless, by the following interpretation, we expect that κ1 is

negative (positive) for any λcr = λL
cr < λmin (λcr = λR

cr > λmin) such that γ > γmin

is fixed. That is, we expect that κ1 is negative when “loading” and positive when

“unloading”. Consider the linearized form of the amplitude equation (5.27). On

assuming a solution of the form A = eα1s, the spectral parameter α1 is found to take

the non-trivial values α1 = ±
√
λ1κ1. We note that these are the same α1 from the

spectral analysis in section 3.4.4 of chapter 3 defined analytically in the near-critical

regime. From the spectral analysis, we expect that periodic solutions (i.e. purely

imaginary α1) are possible only beyond the bifurcation point when progressing along

the chosen loading path. In contrast, we expect that the values α1 are real before

we reach the bifurcation point; see Fig. 3.25 (b). Also, on referring back to Fig. 3.5

(a), we note that, when “loading”, the region beyond (before) the bifurcation point

λcr = λL
cr is defined by λ1 > 0 (λ1 < 0). However, when “unloading”, the region

beyond (before) the bifurcation point λcr = λR
cr corresponds to λ1 < 0 (λ1 > 0).

Thus, for α1 to take its expected form, we must have κ1 < 0 when “loading” and

κ1 > 0 when “unloading”. This is fully supported by our numerical calculations

of κ1 which are presented in Fig. 5.2 for a representative case.

7 8 9 10 11 12 13

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

γ

κ1

γmin ≈ 7.3
λcr
L

λcr
R

Figure 5.2: A plot of the coefficient κ1 in (5.27) against γ for the Gent material model
(2.63) with Ri = 0.4 and Jm = 100. The branch beneath the γ axis gives the values of
κ1 corresponding to λcr = λL

cr (i.e. the bifurcation points encountered when “loading”).
The branch above the γ axis gives the values of κ1 associated with the bifurcation points
λ = λR

cr encountered when “unloading”. In the limit (λcr, γ) → (λmin, γmin), we observe
that κ1 → 0.
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The amplitude equation (5.27) does indeed admit a localized standing solitary

wave solution of the form

A(s) = −3λ1κ1

2κ2
sech2

(1
2

√
λ1κ1s

)
. (5.30)

Given the behaviour of κ1 illustrated in Fig. 5.2, we deduce by inspection that

(5.30) exists only for λ1 < 0 when “loading” and λ1 > 0 when “unloading”. That

is, the localized bifurcation solution (5.30) emerges subcritically in both scenarios.

Explicitly, (5.30) is a dark solitary wave (localized necking) when “loading” and a

bright solitary wave (localized bulging) when “unloading”. On substituting (5.12)

with (5.30) into (5.4), we obtain the corresponding displacement profiles which

are plotted in each case in Fig. 5.3.
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Figure 5.3: Displacement profiles associated with the (a) localized necking and (b)
localized bulging solutions which initiate at the critical values λL

cr when “loading” and λR
cr

when “unloading”, respectively. We fix Ri = 0.4 and Jm = 100.

As demonstrated numerically in Fig. 5.2, the coefficient κ1 → 0 as (λcr, γ) →

(λmin, γmin). The form of (5.30) suggests that a rescaling of the far distance variable

s is required in this limit, since A is a constant under the current scaling. We will

analyze this limiting case separately in the next section.
5.2.1.2 The limit (λcr, γ) → (λmin, γmin)

In a small neighbourhood of λcr = λmin, the bifurcation curve in the (λcr, γ) plane is

parabolic, and so we have that λ− λmin = O(√γ − γmin). Using this order relation,

we may deduce the following expansions for λ and γ in this limiting case:

λ = λmin + ελ̂1 and γ = γmin + ε2γ̂1, (5.31)
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where λ̂1 and γ̂1 are constants of O(1). Now, on Taylor expanding the coefficient

κ1 in (5.27) about Q : (λmin, γmin), we find that

κ1 = κ1|Q + ελ̂1
dκ1

dλ

∣∣∣∣∣
Q

+ O(ε2). (5.32)

Since the first term on the right-hand side of (5.32) is known to be zero, κ1 is of

O(ε) in this limit. Then, given the form of (5.30), it is logical to introduce the

following re-scaling of the far distance variable s:

ŝ = ε1/2s = εz. (5.33)

Also, on substituting (5.30) with (5.32) into (5.12), we find that ϕ(1)
1 is of O(ε−1/2)

in this limiting case, and so we implement the following re-scaled asymptotic

expansion of ϕ:

ϕ = ϕ0 + Ĉ1(ŝ)(R2 −R2
i ) + εϕ̂

(1)
1 + ε2ϕ̂

(2)
1 + ε3ϕ̂

(3)
1 + ε4ϕ̂

(4)
1 + O(ε5). (5.34)

We note that, although the expansion is non-uniform in the sense that the first and

second terms are both of O(1), the corresponding expansion for the deformation

gradient is uniform, making (5.34) valid.

We follow the same procedure as presented previously for the non-limiting case.

At O(ε), we find that ϕ̂(1)
1 must necessarily be zero. At O(ε2), an equation is obtained

which is found to be equivalent to the bifurcation condition for localized pattern

formation (3.36) evaluated at Q (numerically for the Gent material model, but in

closed form for the neo-Hookean model). At O(ε3), we derive an equation which is

deduced to be similarly equivalent to dγ/dλ = 0 evaluated at λ = λmin, and which

is automatically satisfied. At O(ε4), by setting f = ϕ̂
(4)
1 and g = Ĉ1(ŝ)(R2 −R2

i ) in

(5.25), we arrive at the following amplitude equation for Â ≡ Â(ŝ):

Â′′ = (γ̂1κ̂1 + λ̂2
1κ̂2)Â − 2λ̂1λ

2
minκ̂2Â

2 + 4
3λ

4
minκ̂2Â

3, (5.35)

where Â(ŝ) = Ĉ ′
1(ŝ), and κ̂1 and κ̂2 are new constant coefficients.

Whilst we have determined explicit expressions for κ̂1 and κ̂2 which are in terms

of integrals that must be evaluated numerically, simpler connections between these
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two coefficients can be established as follows. Firstly, on substituting Â = eα̂1ŝ

into the linearized form of (5.35), we obtain the expression

α̂2
1 = γ̂1κ̂1 + λ̂2

1κ̂2, (5.36)

for the spectral parameter α̂1 which will be used repeatedly hereafter. For fixed

γ̂1 > 0, the local maximum and minimum of N are near the point of coalescence

at an inflection point. On Taylor expanding N around Q, we obtain

N = N |Q + ε2γ̂1
∂N
∂γ

∣∣∣∣∣
Q

+ ε3
{
λ̂1γ̂1

∂2N
∂λ∂γ

∣∣∣∣∣
Q

+ 1
6 λ̂

3
1
∂3N
∂λ3

∣∣∣∣∣
Q

}
+ O(ε4). (5.37)

Then, with use of (5.31) and (5.37), we may solve dN /dλ = 0 to obtain the

following expressions for the bifurcation points λ = λL
cr and λR

cr which are valid

in the vicinity of Q:

λL,R
cr = λmin + ελ̂L,R

1 , where λ̂L,R
1√
2γ̂1

= ∓

√√√√− ∂2N
∂λ∂γ

(
∂3N
∂λ3

)−1
∣∣∣∣∣∣
Q

. (5.38)

Note that the L and R correspond to the minus and plus sign, respectively, and

when “loading” or “unloading”, the bifurcation point of interest is λcr = λmin + ελ̂L
1

or λcr = λmin + ελ̂R
1 , respectively.

By the spectral analysis in section 3.4.4 of chapter 3, α̂1 must vanish in the

limit λ → λcr. Thus, with use of (5.36), we have that

lim
λ→λcr

α̂1 = 0 =⇒ κ̂2 = − γ̂1κ̂1

(λ̂L
1 )2

or κ̂2 = − γ̂1κ̂1

(λ̂R
1 )2

. (5.39)

Alternatively, we may consider the following two term expansion of the bifurcation

condition (3.36) around λ = λmin:

γ = γmin + 1
2(λcr − λmin)2 d

2γ

dλ2

∣∣∣∣∣
λ=λmin

. (5.40)

On substituting (5.31) and (5.38) into (5.40), the equivalent expressions

γ̂1 = 1
2(λ̂L

1 )2d
2γ

dλ2

∣∣∣∣∣
λ=λmin

or γ̂1 = 1
2(λ̂R

1 )2d
2γ

dλ2

∣∣∣∣∣
λ=λmin

, (5.41)
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are obtained, and since they are derived directly from the bifurcation condition, α̂1

must also vanish in the limit λ → λcr when they are satisfied. From this condition,

a second connection between κ̂1 and κ̂2 is derived which takes the form

κ̂2 = −1
2 κ̂1

d2γ

dλ2

∣∣∣∣∣
λ=λmin

. (5.42)

The equivalence of (5.39) and (5.42) requires that

∂3N
∂λ3 + ∂2N

∂γ∂λ

d2γ

dλ2 = 0 at Q : (λmin, γmin), (5.43)

and we have verified numerically that this result holds.

The two expressions (5.39) and (5.42) can further be used to show that κ̂1 must

be negative whereas κ̂2 must be positive. To illustrate, we focus on the “loading”

scenario, and substitute the relevant expression from (5.39) into (5.36) to obtain

α̂2
1 = γ̂1κ̂1

{
1 − λ̂2

1/(λ̂L
1 )2
}
. (5.44)

The regime in the “loading” path prior to the bifurcation point is defined by

γ̂1 > 0 and λ̂1 < λ̂L
1 < 0. In this regime, we have established that α̂2

1 must

be positive. Through inspection of (5.44), we see that this is only possible if

κ̂1 < 0. In contrast, the regime in the “loading” path beyond the bifurcation

point is defined by γ̂1 > 0 and λ̂L
1 < λ̂1 < 0. In this regime, we require that α̂2

1 is

negative, and so κ̂1 must remain negative. An analogous interpretation exists when

“unloading”, and the requirement that κ̂1 be negative remains true. The general

negativity of κ̂1 implied by these interpretations is fully supported by our numerical

computations of its explicit expression; see Fig. 5.4. The second connection (5.42)

then implies that κ̂2 must be positive.

Alternatively, (5.35) can be expressed as the following one-degree-of-freedom

Hamiltonian system:

Â′′ = − dV̂

dÂ
, where V̂ = −1

3λ
4
minκ̂2Â

2(Â − Â+
0 )(Â − Â−

0 ), (5.45)

is the potential energy function whose non-trivial ground states Â±
0 are given by

Â±
0 = 1

λ2
min

{
λ̂1 ±

√
− 1

2κ̂2

(
3γ̂1κ̂1 + λ̂2

1κ̂2
)}

. (5.46)
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Figure 5.4: A plot of the coefficient κ̂1 in (5.35) against Ri with the neo-Hookean
material model employed.

The non-trivial fixed points Â± of the system (5.45) are obtained from the equation

dV̂/dÂ = 0, and may be expressed through

λ2
minÂ

± = 3
4

λ̂1 ±

√√√√λ̂2
1 − 4

3

(
λ̂2

1 + κ̂1

κ̂2
γ̂1

) . (5.47)

Equation (5.45) admits a localized solution if and only if the following two

conditions are satisfied:

κ̂1γ̂1 + κ̂2λ̂
2
1 > 0, 3κ̂1γ̂1 + κ̂2λ̂

2
1 ≤ 0. (5.48)

Firstly, given the form of the linear term on the right-hand side of (5.35), the

condition (5.48)1 ensures that the solution to (5.45) is exponentially decaying in

the limit ŝ → ±∞, and hence localized. Secondly, (5.48)1 makes certain that

the fixed points Â± given in (5.47) are real and non-zero. The inequality (5.48)2

must also be satisfied so that the ground states Â±
0 are real. On combining the

inequalities in (5.48), we obtain the following range of values of λ̂1 for which a

localized solution to (5.45) can exist:

√
3λ̂L

1 < λ̂1 < λ̂L
1 and λ̂R

1 < λ̂1 <
√

3λ̂R
1 . (5.49)

A localized solution to (5.45) is given explicitly by

Â(ŝ) = Â+
0 Â

−
0 (1 − ζ2)

Â+
0 − Â−

0 ζ
2
, where ζ(ŝ) = tanh

−

√√√√ κ̂2Â
+
0 Â

−
0

6 λ2
minŝ

 . (5.50)
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We first look to analyze how this solution varies across the domain of existence

(5.49). In Fig. 5.5 (a) and (b), we plot the magnitude of (5.50) against ŝ in the

limits λ̂1 →
√

3λ̂L
1 or λ̂1 →

√
3λ̂R

1 , and λ̂1 → λ̂L
1 or λ̂1 → λ̂R

1 , respectively. We

see in (a) that, as λ̂1 approaches
√

3λ̂L
1 or

√
3λ̂R

1 , the localized solution develops

a plateau at its peak which grows in the axial direction. In contrast, in the limit

λ̂1 → λ̂L
1 or λ̂R

1 , the localized solution’s amplitude decays to zero, whilst spreading

out in the axial direction in tandem.

O

|Â|

O

|Â|

ŝ ŝ

(a) (b)

Figure 5.5: Plots of the absolute value of the solution (5.50) against ŝ in the limits (a)
λ̂1 →

√
3λ̂L,R

1 and (b) λ̂1 → λ̂L,R
1 . In (a), curves with darker shades of blue correspond to

values of λ̂1 closer to
√

3λ̂L
1 or

√
3λ̂R

1 . In (b), curves with lighter shades of blue correspond
to values of λ̂1 closer to λ̂L

1 or λ̂R
1 .

To provide further insights, we investigate in Fig. 5.6 the variation of the

potential V̂ with respect to Â, as well as the associated phase plane, both near

and away from λ̂1 =
√

3λ̂L
1 or λ̂1 =

√
3λ̂R

1 . We first note that there exists a local

minimum of V̂ at Â = Â− which corresponds to a center in phase space; see

Fig. 5.6 (a) and (b). Away from λ̂1 =
√

3λ̂L
1 or

√
3λ̂R

1 , this center is enclosed by

a homoclinic orbit which connects the ground state Â−
0 to the origin. However,

as we move beyond the bifurcation point on the desired loading path (i.e. for

λ̂1 > λ̂L
1 when “loading” or for λ̂1 < λ̂R

1 when “unloading”), Â−
0 coalesces with

the origin and the center Â− ceases to exist. In the limit λ̂1 →
√

3λ̂L
1 or

√
3λ̂R

1 ,

the local maximum of V̂ at Â+, which corresponds to a saddle, moves onto the

V̂ = 0 axis, and coalesces with the ground states Â±
0 in tandem; see (c). In phase

space, the homoclinic orbit discussed previously degenerates into a heteroclinic
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orbit connecting Â+ = Â±
0 to the origin; see (d). It is noted that such a heteroclinic

orbit can never exist in reality since it may only be defined on an infinite domain.

However, the homoclinic solutions close to this heteroclinic orbit can exist in reality,

and we refer to these as kink-wave solutions. Physically, the kink-wave solutions

to our problem manifest themselves through the separation of the tube into two

regions, or “states”, with distinct yet uniform axial stretch

λL,R = λmin +
√

3ελ̂L,R
1 , (5.51)

connected by a smooth yet sharp transition zone. Thus, the emergence of a kink-wave

configuration is often referred to as a phase-separation-like phenomenon.
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Â− Â+ = Â
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Figure 5.6: Plots of the potential V̂ against Â for (a) λ̂1 away from
√

3λ̂L
1 or

√
3λ̂R

1 , and
(c) at λ̂1 =

√
3λ̂L

1 or
√

3λ̂R
1 . The plots of Â′ against Â in (b) and (d) give the respective

phase planes. In each plot, the fixed points Â± are marked with black crosses, whereas
the ground states Â±

0 are marked with black dots.

The question then is: how do we physically interpret the aforementioned variation

in bifurcation behaviour across the domain of existence? Since we first encounter

λ̂1 =
√

3λ̂L
1 when “loading” or λ̂1 =

√
3λ̂R

1 when “unloading”, we could say intuitively
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that the initial bifurcation is from the primary state of axial tension to a fully

developed kink-wave solution. However, bifurcations of this nature can only be

expected to occur if the perturbations applied to the tube are large in amplitude

(Ericksen, 1975). Since our axial loading is assumed to be extremely controlled, such

a transition is physically infeasible. We may instead conjecture that the bifurcation

behaviour follows the same pattern of initiation, growth and propagation that is

observed in the mathematically similar inflation problem.

λ

γ
ABL BR

λcr
L

ϵ2γ

1

(λmin, γmin)
×

λ 
1
=
λ 
1 L λ 1

=
λ 1R

λ

1=

3 λ

1
Rλ


1 =

3 λ

1
L

★ ★ Â

ŝ

O

A
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λ = λR

λ = λL λ = λL

(a) (b)

Figure 5.7: (a) A schematic of the interval of existence (5.49) of the localized solution
(5.50) (light blue region). Say we fix γ̂1 > 0 with N = 0 initially (i.e. we enforce the
“loading” scenario). Then, as λ is increased, we move along the horizontal dotted black
line from left to right. The initial bifurcation occurs sub-critically as we approach the
black dot labelled “A” at λ = λL

cr, and takes the form of a localized neck (as shown by the
corresponding curve in (b)). On increasing the overall stretch beyond λL

cr, a transition to
a kink-wave solution as shown by the lower curves in (b) is expected, and the stretches λL

and λR associated with the kink-wave configuration are marked by the black stars in (a).

As an illustrative example, say we fix γ̂1 > 0 with N = 0 initially, and then

apply a “loading” to the tube. We conjecture that the initial bifurcation will occur

in the limit λ̂1 → λ̂L
1 (i.e. at the point labelled “A” in Fig. 5.7 (a)), and this will

arise subcritically since we must have λ̂1 < λ̂L
1 by (5.49). Specifically, the solution

will be localized necking, and the corresponding amplitude can be seen through the

curve labelled “A” in Fig. 5.7 (b). Then, we expect that any further small positive

increment in axial stretch will cause a “snap-back” to the point labelled “BL” in

(a). During this “snap-back”, the amplitude of the localized neck will first grow to

a near maximum state; see the middle blue curve in (b). This will then be followed
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by an axial propagation of the necking solution into a “two-phase” state consisting

of a “thin” section centred at z = 0 with stretch λR, in between two “thick” sections

with stretch λL. Recall that the distinct stretches λL and λR are given in (5.51),

and they are situated respectively at the black stars labelled “BL” and “BR” in (a).

These thick and thin sections are connected by a sharp, smooth transition region

whose length is assumed to be negligible, and the overall averaged axial stretch of

the tube is λL
cr plus the small positive increment alluded to previously.

Whether the transition from localized necking to kink-wave solution is sudden or

gradual depends largely on the stability of the solution (5.50) which we do not study

in this thesis. If we were “unloading”, the initial bifurcation would of course be into

a localized bulge as λ̂1 → λ̂R
1 , and the thicker section of the ensuing “two-phase”

solution would be centred at z = 0, with the thinner sections situated either side.

5.2.2 Fixed λ and increasing γ

As we have already established, an alternative approach is to apply a fixed axial

stretch λ to the tube and then increase the surface tension γ gradually from

zero. In this case, we set

γ = γcr + εγ̃1, (5.52)

where γ̃1 is a constant of O(1) and the bifurcation values γcr satisfy (3.36) with

λcr replaced with the fixed λ on the right-hand side. Since the linear analysis

predicts that γ − γcr = O(k2) in the near-critical regime, we continue to operate

with the far distance variable s defined in (5.2) by a similar argument to the one

explained for the fixed γ and varying λ case. Then, by applying the same solution

procedure as before, we obtain the amplitude equation

A′′ = γ̃1κ̃1A + κ̃2A
2, (5.53)

where κ̃1 and κ̃2 are new coefficients which will be discussed shortly.

Equation (5.53) admits the following localized standing solitary wave solution:

A(s) = −3γ̃1κ̃1

2κ̃2
sech2

(1
2

√
γ̃1κ̃1s

)
. (5.54)
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Unlike its counterpart κ1 in (5.27), we expect that the coefficient κ̃1 in (5.53) is

generally negative by the following argument. On substituting a solution of the

form A = eα̃1s into the linearized version of (5.53), the spectral parameter α̃1 is

found to take the values α̃1 = ±
√
γ̃1κ̃1. We note that, for any fixed λ, the constant

γ̃1 is negative (positive) in the regime before (beyond) the bifurcation point γcr.

Moreover, recall from the spectral analysis presented in chapter 3 that we expect

α̃1 to be real (purely imaginary) before (beyond) this bifurcation point. Hence,

to satisfy these expectations we must have that κ̃1 < 0 generally, and the form

of (5.54) then tells us that the bifurcation solution must arise subcritically. Also,

based on the findings from the solid cylinder case (Fu et al., 2021), we conjecture

that the following relationship between the two coefficients holds:

κ̃2 = λ2κ̃1
dγcr

dλ
. (5.55)

These arguments are fully validated for the Gent material model by numerically

evaluating the explicit expressions obtained for κ̃1 and κ̃2 from the asymptotic

analysis; see Fig. 5.8 for an illustrative example. From (5.55), we see that κ̃2 will be

positive for fixed λ < λmin and negative for fixed λ > λmin. Given this, we deduce

that the solution (5.53) is a dark standing solitary wave (localized necking) for fixed

λ < λmin and a bright standing solitary wave (localized bulging) for fixed λ > λmin.
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Figure 5.8: Plots of (a) κ̃1 and (b) κ̃2 against λ for Ri = 0.4 and Jm = 100. The solid
blue curves correspond to the explicit expressions for the coefficients obtained directly
from the amplitude equation, whereas the black squares in (b) are computed from (5.55).
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In the limit λ → λmin, the coefficient κ̃2 vanishes and the solution (5.54)

diverges. For this special case, we enforce the expansions

γ = γmin + εγ̂1 and λ = λmin + ε1/2λ̂1. (5.56)

Now, the form of (5.54) suggests that a rescaling of the far distance variable s as

in the previous loading scenario is not necessary. However, on Taylor expanding

κ̃2 in the amplitude equation (5.53) around Q : (λmin, γmin), we obtain

A′′ = A

{
γ̃1κ̃1 + ε1/2λ̂1A

dκ̃2

dλ

∣∣∣∣∣
Q

}
. (5.57)

For (5.57) to be valid, A must be of O(ε−1/2) in this limiting case. On enforcing

this rescaling of A, we find that the amplitude equation (5.35) and the associated

solution (5.50) are valid also in this loading scenario, with s substituted in place

of ŝ, and provided that

− κ̂2λ̂
2
1

3κ̂1
< γ̂1 < − κ̂2λ̂

2
1

κ̂1
, (5.58)

where κ̂1 and κ̂2 are unchanged from section 5.2.1.2. Note that the upper bound

of (5.58) is the bifurcation value of γ̂1, and so the bifurcation solution in this

limiting case is again subcritical.

As an illustrative example, say we fix λ̂1 > 0 and then gradually increase γ

from zero. We expect that an initial bifurcation into a localized bulging solution

(since λ > λmin) will take place in the limit γ̂1 → −κ̂2λ̂
2
1/κ̂1. If we attempt to

increase the surface tension beyond this bifurcation value, we conjecture that a

snap-through to the two axial stretches λL,R = λmin ∓ (3ε)1/2λ̂1 will take place

as demonstrated in Fig. 5.9. In other words, we conjecture that a snap-through

from a localized bulging solution to a kink-wave solution will take place. For the

latter, the tube configuration comprises of a thicker section with stretch λL centred

at s = 0 in between two thinner sections with stretch λR. The overall average

stretch remains fixed at λ = λmin + ε1/2λ̂1.
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Figure 5.9: A schematic of the domain of existence (5.58) for the localized solution
analogous to (5.50) in the fixed λ and increasing γ case. For fixed λ̂1 > 0, we move in the
direction of the vertical arrow when increasing γ. The initial bifurcation into a localized
bulge is expected to occur once we reach γ = γcr. Beyond this point, we conjecture that
a snap-through to the outer two black stars at λ = λL and λR will occur, and these
stretches characterize the resulting kink-wave configuration.

When λ = λmin is fixed, the solution (5.50) is in fact invalid since the existence

condition (5.58) cannot be satisfied. On taking the limit λ → λmin (i.e. λ̂1 → 0) in

the rescaled amplitude equation analogous to (5.35) and making the substitution

Â(s) =
√

−3γ̂1κ̂1

2
√
κ̂2λ2

min
H(s̃), with s̃ =

√
−γ̂1κ̂1s, (5.59)

we obtain the following reduced equation which has previously been derived by

Xuan and Biggins (2016):

H′′ = H(H2 − 1). (5.60)

Equation (5.60) admits the kink-wave solution

H(s̃) = tanh
(
s̃√
2

)
, (5.61)

which tends to ±1 as s̃ → ±∞. Given the general negativity of κ̂1 and the form of

the independent variable s̃, we note that the solution (5.61) is valid only for γ̂1 > 0.

In other words, the bifurcation solution is supercritical when λ = λmin is fixed, and

as we increase γ beyond the associated bifurcation value γmin, we expect that a

continuous transition to the kink-wave solution (5.61) will occur.
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5.2.3 Fixed N and increasing γ

The analysis when N is fixed and γ is gradually increased is near identical to the

analysis presented in section 5.2.1 for the fixed γ and varying λ case. The sole

difference here is that γ is eliminated in favour of N in the successive boundary

value problems with the aid of the expression (3.29). We obtain the same amplitude

equation (5.27) with the same coefficients κ1 and κ2. However, we recall from

section 3.3.2 of chapter 3 that λ = λR
cr is the only bifurcation point of interest in

this loading scenario. Thus, we deduce that the initial bifurcation solution here

is localized bulging, and this arises subcritically.

5.3 Fully non-linear post-bifurcation analysis

The theoretical predictions we have made regarding the near-critical bifurcation

behaviour of the tube can be fully supported and extended through FEM simulations

conducted in Abaqus (2013). These fully non-linear simulations are conducted for

the case of fixed λ (and increasing γ), since this is arguably the least well understood

scenario. The simulations are performed by adapting the user subroutines of Henann

and Bertoldi (2014), and they confirm that the previously discussed snap-through

behaviour is prevalent for fixed axial stretches away from λmin.

We take µ = 20 Pa, L = 10 mm, Ri = 0.10 mm and Ro = 0.25 mm, so that the

scaled value of Ri is 0.4. The simulations are conducted using the Gent material

model with Jm = 100, and the total length of the tube is assumed to be fixed

throughout the entire loading process (that is, for values of γ less than and greater

than the bifurcation value γcr). Consequently, the averaged axial stretch, defined as

the deformed length of the tube divided by the undeformed length, is fixed. All

simulation results have been obtained by adopting the geometrical imperfection

recommended by Henann and Bertoldi (2014), namely that the wall thickness is

reduced linearly from both ends of the tube towards the middle section (Z = 0).

The maximum reduction imposed is 0.004%.
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In Fig. 5.10 (a) and (b), we present results of the numerical simulations for

fixed λ = λmin ≈ 1.16 and λ = 1.5, respectively. In both plots, the dashed curve

represents the theoretical bifurcation condition, whereas the solid curve is the

simulation result. We observe that there is exceptional agreement between theory

and numerics regarding the bifurcation value γcr; see the black dots. The results

presented in (a) demonstrate that the bifurcation is in-fact supercritical when

λ = λmin is fixed, as our theoretical results predicted. As γ is increased beyond

its bifurcation value γmin, a continuous transition to a static “two-phase” state

consisting of a bulged section with stretch λL and a depressed section with stretch

λR is observed. Recall that these stretches have been defined analytically in a small

neighbourhood of Q : (λmin, γmin) through (5.51), but they are completely defined in

the fully non-linear post-bifurcation regime via the numerical simulations.

In Fig. 5.10 (b), we show firstly that, if λ is fixed at a value away from λmin (we

have used λ = 1.5 as an illustrative example), then a localized solution will initiate

at the value of γ determined by our theoretical bifurcation condition. As soon

as γ is increased above its critical value, the tube will snap-through to the same

“two-phase” configuration that was encountered in the λ = λmin case. However,

the proportion λL/λ of the bulged section will be different since we now have a

different fixed value for the averaged axial stretch. In Fig. 5.10 (c), we display

“two-phase” configurations of the tube when the averaged axial stretch is fixed

to be λmin and 1.5, and γ is increased to 9.

Numerical simulations, however, are not necessary to predict the fully non-

linear bifurcation behaviour of the localized pattern. In-fact, such predictions

can be completely obtained from our theoretical expressions for the primary axial

tension deformation presented in section 3.3 of chapter 3. To elaborate, as was

first elucidated by Clerk-Maxwell (1875) in the context of a liquid-gas two phase

state (with pressure and volume being the dependent and independent variables,

respectively), for any γ > γmin the stretches for each “phase” must satisfy the
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Figure 5.10: FEM simulation results (solid blue curve) for the Gent material model
with Jm = 100, fixed inner radius Ri = 0.4, (a) fixed λ = λmin and (b) fixed λ = 1.5. The
dashed blue curves represent the theoretical bifurcation condition, and the black squares
give the relationship between the surface tension γ and stretches λL and λR determined
from the equal area rule. The black dots mark the bifurcation point in each case given by
the simulations. In (c), we present the “two-phase” configuration of the tube for fixed
λ = 1.5 and λmin when the surface tension has been increased beyond its bifurcation
value to γ = 9. Both configurations consist of a bulged section with uniform axial stretch
λL ≈ 0.59, in-between two depressed sections with stretch λR ≈ 2.25. The proportion of
the bulged “phases” differ in each case due to the different averaged axial stretches.

following equal area rule:

NMW ≡ N (λL) = N (λR) and
∫ λR

λL

Ndλ = (λR − λL)N (λL); (5.62)

see Fig. 5.11 for a geometrical interpretation of (5.62). From (5.62), we can

determine λL and λR as implicit functions of γ > γmin. We observe in Fig. 5.10

(a) that these functions, plotted in the (λ, γ) plane (black squares), are in perfect

agreement with the corresponding simulation results. The value NMW is the so-called

Maxwell state, which is invariant across the bulged and depressed “phases”. However,

the value of NMW will increase as we increase γ beyond its bifurcation value.
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λ
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Figure 5.11: According to Maxwell’s equal area rule, the stretch values λL and λR should
be such that the magnitude of the areas between the horizontal line passing through P1
and P2 (dashed blue) and the N = N (λ) curve (example shown in solid blue) above and
below the line should be equal. That is, we must have AL = AR.

With λL and λR deduced, we can determine the evolution of the uniform

radii of the bulged and depressed regions as γ is increased beyond its bifurcation

value. This can be achieved by substituting λL(γ) and λR(γ) into the expression

ro =
√
λ−1(R2

o −R2
i ) +R2

i for the outer deformed radius. In Fig. 5.12 (a), we

consider the case λ = λmin ≈ 1.16 with Ri = 0.4 and Jm = 100. In this case, a

primary axial tension configuration is produced for γ < γmin with outer radius

ro ≈ 0.94. As γ is increased above its bifurcation value γmin, the radius of the bulged

“phase” will increase continuously from 0.94, whilst the radius of the depressed “phase”

will decrease continuously from 0.94. In other words, increasing surface tension

will cause the bulged “phase” to get progressively thicker, whilst the depressed

“phase” will get progressively thinner. This is also true for any λ ̸= λmin, except

the deviation of the bulged and depressed “phase” radii from the primary value

of ro at γ = γcr will not be continuous due to the aforementioned snap-through

behaviour. In (b), we see that for λ = λmin, the proportion (half-length) of the

bulged “phase” will decrease continuously from unity (λminL) as γ is increased above

γmin (the proportion of the depressed “phase” will therefore increase in tandem).

When λ = 1.5, say, the initial localized bulge will in contrast snap-through to a

“two-phase” state with a bulged proportion of approximately 0.49 at γ ≳ γcr; see

(b). As γ is increased further beyond this threshold, the proportion of the bulged
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“phase” will decrease monotonically from this initial value.
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Figure 5.12: (a) A bifurcation diagram showing the uniform outer radii of the bulged
and depressed “phases” against the control parameter γ for fixed λ = λmin, Ri = 0.4 and
Jm = 100. (b) The corresponding variation of the proportion λL/λ of the bulged section
in the “two-phase” state against γ for λ = λmin and 1.5.

The post-bifurcation behaviour in the case of fixed γ and varying λ, or fixed

N and increasing γ, is straight-forward to interpret. To illustrate, suppose again

that Ri = 0.4 and Jm = 100, and that γ = 7.5 is fixed with N = 27.5 initially.

This produces an initial axial stretch λ ≈ 1.81 from which to “unload”. Once λ

is decreased to the bifurcation value λR
cr ≈ 1.33, a localized bulge will initiate at

the center of the tube. When decreasing λ slightly further from λR
cr, the bulge

will grow to a near maximum amplitude and then propagate in the axial direction

to form a “two-phase” configuration. The latter consists of a bulged “phase”

with uniform stretch λL(7.5) ≈ 0.912 in between two depressed “phases” with

stretch λR(7.5) ≈ 1.472. The overall stretch of the “two-phase” configuration

is λR
cr minus some small increment at this point. As the overall stretch λ is

reduced further, the values of λL and λR (and hence NMW ) will remain fixed since

their argument γ is fixed. In tandem, the proportion λL/λ of the bulged “phase”

will increase; once λ is reduced to λL ≈ 0.912, a tube of uniform outer radius

ro =
√
λ−1

L (R2
o −R2

i ) +R2
i ≈ 1.04 is returned. A similar interpretation can be

made for the fixed N and increasing γ scenario.
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5.4 Discussion

Through a weakly non-linear near-critical analysis, we have shown explicitly that

the axi-symmetric zero wavenumber bifurcation mode encountered in the linear

bifurcation analysis is associated with a localized pattern formation. For fixed γ

and varying λ, the initial bifurcation solution was shown to be localized necking

when “loading” from N = 0 and localized bulging when “unloading” from some

large value of N . For fixed λ and increasing γ, we determined that localized necking

will occur for λ < λmin, whilst localized bugling will arise when λ > λmin, where

λmin is the value of λ at the minimum of the bifurcation curve in the (λ, γcr) plane.

For fixed N ≥ 0 and increasing γ, localized bulging was found to occur. In all

of these scenarios, we showed explicitly that the initial localized solution arises

subcritically. When λ = λmin and γ is increased, however, the bifurcation was

shown to be supercritical instead. An appropriate rescaling of the analysis revealed

the existence of a thin layer in a small neighbourhood either side of λ = λmin

wherein a transition from the initial localized solution to a “two-phase” state takes

place. At λ = λmin, a two-phase deformation was shown to be the initial bifurcation

behaviour as opposed to localization.

Our post-bifurcation analysis was focussed on the most challenging scenario

of fixed λ and increasing γ. FEM simulations verified that, for fixed λ = λmin

and increasing γ, a continuous transition to a “two-phase” state consisting of a

bulged region with stretch λL and a depressed region with stretch λR takes place at

γ = γmin. For λ ̸= λmin, a localized bulging or necking solution was found to occur

initially at γ = γcr. Beyond this point, a snap-through to the same “two-phase”

state observed in the λ = λmin case was found to occur, however the proportion of

the bulged section is different here due to the different overall axial stretch. We

demonstrated how the stretches λL and λR of the two “phases” can be determined

implicitly as functions of γ through Maxwell’s Equal Area rule with the aid of the

analytical expressions related to the primary axial tension deformation. Bifurcation

diagrams constructed using these implicit functions demonstrated that, for larger
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values of γ above γcr, the bulged and depressed regions of the “two-phase” state will

get thicker and shorter, and thinner and longer, respectively. Our results illustrate

the remarkable potential for describing the entire post-bifurcation behaviour of

elastic localized pattern formations through analytical means.

5.A Appendix – Expressions for p1(R), k1(R) and
s1(R)

The function p1(R) in (5.13) is expressible as

p1(R) = p
(1)
1 W̃d + p

(2)
1 W̃dd + p

(3)
1 W̃ddd, (5.63)

where

p
(1)
1 = −2R4

i (λcr − 1)
r4

0crR
3λ3

cr

{
R2(2 − λcr) + r2

0crλcr
}
,

p
(2)
1 = −2R4

i (λcr − 1)2

r6
0crR

5λ5
cr

{
R6

i (λcr − 1)2 − 2R6(3λ3
cr + 4λ2

cr + 4λcr + 9)

− 2R4R2
i (2λ4

cr + λ3
cr + 3λcr − 6) −R2R4

i (2λ5
cr − 2λ4

cr + λ2
cr − 6λcr + 5)

}
,

p
(3)
1 = 4R4

i (λcr − 1)4

r8
0crR

5λ7
cr

{
R8

i (λcr − 1)2(λ2
cr + λcr + 1) + 4R8(λ2

cr + λcr + 1)2

+ 2R6R2
i (5λ5

cr + 5λ4
cr + 5λ3

cr − 3λ2
cr − 3λcr − 3) + 4R4R4

i (2λ6
cr − 2λ3

cr+

λ2
cr + λcr + 2) +R2R6

i (2λ7
cr − 2λ6

cr − λ4
cr + 5λ3

cr + λcr − 5)
}
. (5.64)

The function k1(R) in (5.14) takes the form

k1(R) = k
(1)
1 γ + k

(2)
1 W̃d + k

(3)
1 W̃dd, (5.65)

where k
(1)
1 = (R2 − R2

i )/(4r2
0crλcr) and

k
(2)
1 = − 1

2R2r4
0crλ

3
cr

{
R4

i (λcr − 1)2(R2(1 + 2λ3
cr) −R2

i ) + 2R6(λ3
cr + 1)

+ 2R4(2λ4
cr − 2λ3

cr + 2λcr − 1)
}
,

k
(3)
1 = −(λcr − 1)2

R2r2
0crλ

4
cr

{
2R6(λ2

cr + λcr + 1)2 +R6
i (λ3

cr − 1) + 2R4R2
i (2λ5

cr + 2λ4
cr+

2λ3
cr − λ2

cr − λcr − 1) +R2R4
i (2λ6

cr − λ3
cr + 2λ2

cr + 2λcr + 3)
}
, (5.66)
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Finally, the function s1(R) in (5.15) is defined as

s1(R) = R(R2 −R2
i )

r2
0crλ

2
cr

. (5.67)

5.B Appendix – Determining P(R) numerically

We discretize the radial domain Ri ≤ R ≤ Ro with n evenly spaced node points

Rj (j = 1, 2, . . . , n) such that Ri < R1 < R2 < · · · < Rn = Ro. The n

integrals
∫ Rj

Ri p1(t)dt are evaluated numerically using the NIntegrate command

in Mathematica, and the function P1(u) =
∫ u

Ri p1(t)dt is then numerically defined

through Mathematica’s Interpolation command. The aim is to then repeat these

steps until we obtain a numerically defined version of P(R). For instance, the

next step would be to numerically compute the n integrals
∫ Rj

Ri uP1(u)du, and then

construct the interpolation function P2(v) =
∫ v

Ri uP1(u)du. The study of Ye et al.

(2020) for the analogous problem of localized bulging in internally inflated tubes

showed that sufficient accuracy can be obtained by setting n = 200, and so we

adopt this value in our computations.

5.C Appendix – Proof of the identity (5.25)

Using (5.9)1, the left-hand side of (5.25) may be written as
∫ Ro

Ri
{gL[f ] − fL[g]} dR =

∫ Ro

Ri

{
g
∂

∂R
B1[f ] − f

∂

∂R
B1[g]

}
dR. (5.68)

By integrating by parts and then substituting (5.9)2, the right-hand side of (5.68)

can be shown to be equal to

[gB1[f ] − fB1[g]]Ro
Ri

+
∫ Ro

Ri

f ′

R

∂

∂R
RW̃dB2[g]dR −

∫ Ro

Ri

g′

R

∂

∂R
RW̃dB2[f ]dR. (5.69)

Finally, on evaluating the two integrals in (5.69) by parts and substituting (5.9)3,

the result (5.25) follows.
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6.1 Introduction

Localized pattern formation in incompressible solid cylinders and hollow tubes is

very well understood, but an incorporation of the effects of material compressibility

into the analysis has yet to be undertaken analytically. In this chapter, we draw

upon the analytical framework constructed by Fu et al. (2021) for the incompress-

149
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ible solid cylinder case, and by Emery and Fu (2021a,c) for the incompressible

hollow tube case, to describe the entire bifurcation process in a compressible solid

cylinder under elasto-capillary effects. After defining the primary axial tension

deformation through an alternate stress-based formulation, we present a family of

analytical bifurcation conditions for localized bulging or necking in terms of a general

compressible strain-energy function. The effect of material compressibility and

extensibility limits on the bifurcation points are examined, and comparisons with

the corresponding numerically simulated bifurcation conditions of Dortdivanlioglu

and Javili (2022) are made.

We then describe the entire post-bifurcation process using the equal area rule

as in the previous chapter, and the effect of compressibility on the post-bifurcation

behaviour is analyzed. Comparisons between our theoretical post-bifurcation results

and the corresponding numerically simulated results of Dortdivanlioglu and Javili

(2022) are presented, and the importance of our theoretical approach in guiding

numerical studies of phase-separation-like phenomena is highlighted.

6.2 Primary deformation

Consider a compressible, isotropic, hyperelastic solid cylinder with a reference

configuration B0 defined in terms of the cylindrical polar coordinates (R,Θ, Z), where

0 ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, |Z| < L. (6.1)

The finitely deformed configuration Be is in terms of the cylindrical polar coordinates

(r, θ, z), and we assume that the solid cylinder undergoes a primary homogeneous

deformation of the form

r = λθR, θ = λθΘ, z = λZ, (6.2)

where λθ and λ are the circumferential and axial stretches, respectively. There-

fore, we have that

0 ≤ r ≤ λθR, 0 ≤ θ ≤ 2π, |z| < λL. (6.3)
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The primary deformation gradient F can then be written as

F = λθ (er ⊗ ER + eθ ⊗ EΘ) + λez ⊗ EZ , (6.4)

and the corresponding left Cauchy-Green strain tensor B = FF T takes the form

B = λ2
θ (er ⊗ er + eθ ⊗ eθ) + λ2ez ⊗ ez. (6.5)

The three principal invariants of B are expressed through

I1 = 2λ2
θ + λ2, I2 = λ2

θ

(
2λ2 + λ2

θ

)
, I3 = J2 = λ4

θλ
2, (6.6)

and we assume that the constitutive behaviour of the material is governed by a

strain-energy function of the form

W = W (I1, I3). (6.7)

In the computation of our results, we will predominantly specify W to the com-

pressible Gent material model given by (2.64). However, to facilitate a comparison

between our theory and the numerical results of Dortdivanlioglu and Javili (2022)

(hereafter abbreviated as “DJ”), we will also consider the quadratic and logarithmic

compressible neo-Hookean material models given respectively by (2.59) and (2.60).

6.2.1 Stress-based formulation

In order to provide an alternate perspective on the previous analysis of soft tubes,

we present here a stress-based formulation for the compressible solid cylinder case.

However, we note that the variational formulation in previous chapters can also

easily be applied here. On substituting (6.7) into the expression (2.56) for the

Cauchy stress tensor σ, and noting the relation (6.6)3, we obtain

σ = 2JW3I + 2J−1W1B. (6.8)

From (6.8) and (6.5), we determine that the Cauchy stresses in the radial, cir-

cumferential and axial directions are given by

σrr = σθθ = 2λ2
θλW3 + 2λ−2W1, σzz = 2λ2

θλW3 + 2λ−2
θ W1. (6.9)
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Since these stress components are constant, the equilibrium equations divσ =

0 are automatically satisfied.

As in the hollow tube case previously, we assume that the solid cylinder is

under the combined effect of a surface tension γ̄ and a resultant axial force N . We

also continue to scale all lengths by Ro and all stresses by the ground state shear

modulus µ such that Ro and µ are set equal to unity without loss of generality.

We also introduce the non-dimensionalized surface tension γ = γ̄/(µRo), which

enters the analysis through the boundary condition

σrr = − γ

λθRo
, r = λθRo; (6.10)

see Fig. 6.1. On substituting (6.9) into (6.10), we obtain the following expression

σn = −(γ/λθRo)n

σn = −(γ/λθRo)n

r = λθRo

Figure 6.1: A schematic of the current configuration Be of the solid cylinder and the
associated boundary conditions on the lateral surface r = Roλθ.

for γ in terms of λθ and λ:

γ = −2λθRo
{
λ2

θλW3 + 2λ−2W1
}
. (6.11)

The resultant axial force N is defined through

N =
∫ 2π

θ=0

∫ λθRo

r=0
σzzrdrdθ + γ

∫ 2π

θ=0
λθRodθ

= 2πλθRo
{
Roλ

3
θλW3 +Roλ

−1
θ W1 + γ

}
. (6.12)
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6.3 Bifurcation conditions for localized pattern
formation

6.3.1 Fixed γ and varying N

For any fixed γ ≥ 0, we can define the circumferential stretch λθ as an implicit

function of the axial stretch λ through (6.11). The bifurcation condition for localized

pattern formation is then dN /dλ = 0, where N is given in (6.12) and γ is fixed

in the differentiation. This bifurcation condition takes the form

γ = − 2λ
λθd

W11 − λ4
θ

λθd

{
W3 + 2λ(λ+ 1)W13 + 2λ4

θλ
2W33

}
− 4λθ

{
W11 + λ2

θλW3 + λ2
θλ(λ+ λ2

θ)W13 + λ6
θλ

3W33
}
, (6.13)

where λθd = dλθ/dλ, Wij = ∂2W/∂Ii∂Ij for i, j = 1, 3, and the right-hand side

of (6.13) is evaluated at λ = λcr. By differentiating equation (6.11) implicitly

with respect to λ, the following explicit expression for λθd in terms of λ and

λθ can be obtained:

λθd = λθ
4W1 − λ2 {4W11 + λ2

θλW3 + 2λ6
θλ

3W33 + 2λ2
θ(λ3 + 2λ2

θ)W13}
2λW1 + 8λ2

θλW11 + λ2
θλ

3 {3λW3 + λ4
θλ

3W33 + 4λ2
θ(λ+ 2)W13}

. (6.14)

For a given fixed γ, the critical axial stretches λcr can be determined numerically

from (6.13). Then, with use of (6.12), the associated bifurcation values of the

resultant axial force, Ncr = N (λcr), may be computed.

In Fig. 6.2, for the compressible Gent model (2.64) with Jm = 100, we plot the

resultant axial force N against λ for several fixed γ ≥ 0 with (a) ν = 0.05 and (b)

ν = 0.25. We observe that, as in the incompressible case, there exists a minimum

value of γ, γmin, below which the N = N (λ) curve is monotonic increasing and

localized pattern formation cannot occur. The value of γmin is dependent here on

the value of ν. We see also that, in both the high and moderate compressibility cases

considered, a larger fixed γ will both delay the expected onset of localized necking

when “loading” from N = 0, and make localized bulging occur more prematurely

when “unloading” from a large value of N .
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Figure 6.2: Plots of N against λ (blue curves) for the Gent material model (2.64) with
Jm = 100, γ = γmin, 4.5, 5, 5.5, 6 and (a) ν = 0.05 and (b) ν = 0.25. The black curves
show the the bifurcation criterion Ncr = N (λcr), and the right-most arrows indicate the
direction of parameter growth.

In Fig. 6.3 (a), we examine the variation of γmin with respect to ν for the Gent

material model (2.64) with several fixed values of Jm. We observe that γmin increases

with both ν and Jm. Thus, for materials with a greater level of compressibility (i.e.

for values of ν closer to zero), or a lower level of extensibility, there is a greater range

of values of γ for which localized pattern formation can occur. In (b), we plot this

same relationship for the quadratic (solid dark blue curve) and logarithmic (solid

light blue curve) neo-Hookean material models, and compare with the numerical

simulation results presented in Fig. 6 (a) of DJ (squares). We note the exceptional

agreement between both sets of results, and in the incompressible limit ν → 1/2,

we recover the value γmin = 4
√

2 which was reported in Fu et al. (2021).

6.3.2 Fixed λ and increasing γ

When λ is fixed and γ is increased gradually from zero, the bifurcation condition

for localized pattern formation is equivalent to (6.13), except the left-hand side is

replaced with γ = γcr, and the right-hand side is evaluated at the fixed axial

stretch rather than λcr.

In Fig. 6.4, we plot γcr against (a) ν for Jm = 100 and several fixed values of

λ ≥ 1 and (b) λ for ν = 0.4 and several fixed values of Jm. In (a), we observe

that highly compressible cylinders are the least susceptible to localized pattern
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Figure 6.3: Plots of γmin against ν for (a) the compressible Gent material model (2.64)
with Jm = 3, 5, 7.5, 15, 100 and (b) the quadratic (dark blue) and logarithmic (light blue)
neo-Hookean models. In (b), the solid lines represent our theoretical results, and the
squares give numerical results from DJ.

formation. We also observe that there exists a threshold value of ν (ν ≈ 0.43 in the

case presented) below which a greater fixed axial stretch delays localized pattern

formation, and above which a greater fixed axial stretch encourages localized pattern

formation. In (b), we show that there exists a threshold value of λ (λ ≈ 1.225 in the

case presented) below which a greater extensibility limit delays localized pattern

formation, and above which a greater extensibility limit encourages localized pattern

formation. We observe that γcr as a function of λ also possesses a minimum. Recall

that this behaviour was similarly observed in the incompressible hollow tube case,

and we showed that the initial bifurcation solution was localized necking (localized

bulging) for λ < λmin (λ > λmin). Here, the value of λmin will vary with ν, and we

plot this relationship in Fig. 6.5. We see generally that the value of λmin increases

with ν. Thus, for cylinders with a greater degree of compressibility, there is a larger

range of values of fixed λ for which an initial localized bulging solution will emerge

at γ = γcr. In Fig. 6.5 (b), we demonstrate the exceptional agreement between our

theoretical results and the numerical simulation results in Fig. 6 (b) of DJ.

In Fig. 6.6, we plot the variation of γcr with respect to ν for the quadratic and

logarithmic neo-Hookean models with λ = 1, and we note that there is exceptional

agreement between our theoretical results (solid curves) and the numerical simulation

results given in Fig. 5 of Dortdivanlioglu and Javili (2022) (squares).
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Figure 6.5: Plots of λmin against ν corresponding to (a) the Gent material model (2.64)
and (b) the quadratic (dark blue) and logarithmic (light blue) neo-Hookean material
models. In (a), we fix Jm = 3, 5, 7.5, 15, 100, and the arrow indicates the direction of
parameter growth. In (b), the solid curves give our theoretical results, and the squares
give the numerical results of DJ. In the incompressible limit ν → 1/2, we recover the
result λmin → 21/3 which was reported in Fu et al. (2021).

6.3.3 Fixed N and increasing γ

By making appropriate rearrangements in (6.12), the surface tension γ can be

expressed explicitly in terms of λθ and λ for any fixed N ≥ 0 as follows:

γ = 1
2

{ N
πλθRo

− 2Roλ
3
θλW3 − 2Roλ

−1
θ W1

}
. (6.15)

Then, we may subtract (6.15) from (6.11) and define λθ as an implicit function

of λ from the resulting equation. The bifurcation condition for localized pattern
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Figure 6.6: A plot of γcr against ν for the quadratic (dark blue) and logarithmic (light
blue) compressible neo-Hookean models with λ = 1. The solid curves give our theoretical
results, whilst the squares give numerical results from DJ.

formation is then dγ/dλ = 0, where γ is given in (6.15) and N is fixed in the

differentiation. Explicitly, this condition is expressible as

λθdN
2πR2

o
=
{
W1 − λ2

θ

(
4W11 + 3λ2

θλW3 + 4λ2
θλ
(
(λ+ λ2

θ)W13 + λ4
θλ

2W33
))}

λθd

− 2λθλW11 − λ5
θ

{
W3 + 2λ

(
(λ+ 1)W13 + λ4

θλW33
)}
, (6.16)

and this equation is also evaluated at λ = λcr. The expression for λθd can again be

obtained by differentiating (6.11) implicitly with respect to λ. The left-hand side of

the resulting equation will vanish since dγ/dλ = 0 is the bifurcation condition in

this loading scenario, and we thus recover the relation presented in (6.14). Once the

critical stretch λcr has been obtained from (6.16), we can substitute this value into

the equation (6.11) to obtain the corresponding critical surface tension γcr = γ(λcr).

In Fig. 6.7, we plot the function γ = γ(λ) given in (6.15) for (a) ν = 0.25,

Jm = 100 and several fixed N ≥ 0, and (b) N = 8, Jm = 100 and several fixed

ν. As in the purely incompressible case, there is seen in (a) to be a minimum

value of N , Nmin, below which the curve γ = γ(λ) is monotonic decreasing and

localized pattern formation is prohibited. This minimum value of N will depend

on the value of ν. Larger fixed N above this minimum value correspond to larger

values of γcr (marked by the black dots), and so a greater fixed axial force will

discourage localized bulging when the material is compressible. In (b), we find
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that there exists a maximum value of ν, νmax, above which the γ = γ(λ) curve

becomes monotonic decreasing and localized bulging becomes impossible. The

value of νmax will vary with the value of the fixed N . We also observe that, for

smaller values of ν (i.e. for materials with a greater level of compressibility), the

associated value of γcr is larger. Hence, increased compressibility discourages the

initiation of a localized bulge in this loading scenario.
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Figure 6.7: Plots of γ against λ (blue curves) corresponding to the Gent material model
(2.64) with Jm = 100. In (a) we fix ν = 0.25 and N = Nmin, 7.2, 7.3, 7.4, 7.5, and in (b)
we fix N = 8 and ν = 0.29, 0.295, 0.305, 0.315, νmax, where Nmin ≈ 7.03 and νmax ≈ 0.328.
The black curves give the associates bifurcation criterion γcr = γ(λcr), and the right-most
arrows indicate the direction of parameter growth.

In Fig. 6.8, we plot the variation of (a) Nmin against ν and (b) νmax against

N for several values of Jm. In (a), for any given Poisson ratio ν, localized bulging

is only possible if the fixed axial force N is greater than the value Nmin given by

the relevant blue curve. The value of Nmin is seen to increase with both ν and Jm.

Thus, for materials with a greater degree of compressibility or a lower degree of

extensibility, there is a greater range of values of fixed N for which localized bulging

can occur. We note also that, in the incompressible limit ν → 1/2, we recover the

result Nmin = 9π/22/3 in the limit Jm → ∞ which was originally given in Fig. 5

(b) of Fu et al. (2021). In (b), for any given fixed value of N , localized bulging is

only possible provided the value of the Poisson’s ratio is less than the value νmax

on the blue curve of interest. We observe that, for each value of Jm, there exists a

threshold value of N below which localized bulging is impossible in cylinders with
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any level of compressibility. For instance, in the limit Jm → ∞, localized bulging

is impossible in any compressible cylinder if N < 5.825.
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Figure 6.8: The variation of (a) Nmin against ν and (b) νmax against N for the Gent
material model (2.64) with Jm = 3, 5, 7.5, 15 and Jm → ∞. Arrows indicate the direction
of parameter growth.

6.4 Post-bifurcation analysis

The numerically simulated post-bifurcation results presented in DJ can be examined

and extended through the same analytical approach as presented in section 5.3 of

chapter 5. For each γ > γmin, recall that we can define λθ implicitly as a function

of λ from (6.11), and hence N as a function of λ through (6.12). Then, we may

determine the values of the Maxwell stretches λL and λR associated with the final

“two-phase” state from the equal area rule (5.62) as before.

We present in Fig. 6.9 (a) and (c) theoretical results for the bifurcation condition

(dashed curve) and the Maxwell stretches (solid curve) in the (γ, λ) plane for the

quadratic and logarithmic neo-Hookean models, respectively, with ν = 0.4. The

black stars are numerically simulated bifurcation points taken from Fig. 11 (d) of

DJ, and we observe perfect agreement with our theory. However, the black dots,

which are the numerically simulated Maxwell stretches for different values of γ

from DJ, are at odds with our theoretical predictions. We have established that

the “two-phase” state may only exist provided that the equal area rule is satisfied,
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and we show in Fig. 6.9 (b) and (d) that this requirement is not satisfied by the

Maxwell stretches predicted in DJ. This highlights that the equal area rule should

be applied to guide numerical simulation studies of elastic phase-separation-like

phenomena, and to validate the results of such studies. As a further consistency

check on our results, in Fig. 6.10 we take the limit ν → 1/2 and compare our values

for the Maxwell stretches (solid blue curve) with corresponding FEM simulation

results (black squares) in Fig. 13 (a) of Fu et al. (2021) for the incompressible case.

We observe that there is perfect agreement between both sets of results.

★

★
★

★

★
★

★

●

●
●

●

●

●

4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.5

1.0

1.5

2.0

2.5

γ

λ

×
λL ≈ 0.423

λR ≈ 2.024
×

Bifurcation condit
ion

Maxw
ell str

etche
s

0.5 1.0 1.5 2.0 2.5
10.0

10.5

11.0

11.5

λ



λcr
L ≈ 0.598

λL ≈ 0.423 λR ≈ 2.024λcr
R ≈ 1.472

MW ≈ 10.747Area ≈

0.2502

Area ≈ 0.2502

× ×

★

★

★
★

★
★

★

★

★
★ ★

●

●

●

●

●

●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

0.5

1.0

1.5

2.0

2.5

γ

λ

×
λL ≈ 0.499

λR ≈ 2.131
×

Bifurcatio
n conditio

n

Max
wel

l str
etch

es

0.5 1.0 1.5 2.0 2.5
13.4

13.6

13.8

14.0

14.2

14.4

14.6

14.8

λ



λcr
L ≈ 0.684

λL ≈ 0.499 λR ≈ 2.131λcr
R ≈ 1.582

MW ≈ 14.0144Area ≈

0.2019

Area ≈ 0.2019

×

★

★

×

(a) (b)

(c) (d)

Figure 6.9: In (a) and (c), the critical stretches λcr from our theoretical bifurcation
condition (dashed blue curve) and the Maxwell stretches λL and λR computed using
the equal area rule (solid blue curve) are presented in the (λ, γ) plane for ν = 0.4, and
the quadratic and logarithmic neo-Hookean material models, respectively. The black
stars and dots give the numerical simulation results from DJ for the bifurcation points
and the Maxwell stretches, respectively. In (b) and (d), we superpose our theoretical
bifurcation points and Maxwell stretches as well as the numerically determined values
from DJ on the N = N (λ) curve for γ = 5.5 and 6, respectively. This demonstrates that
the theoretically determined Maxwell stretches satisfy the equal area rule, whereas the
numerically simulated stretches don’t.
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We then apply our determined values for the Maxwell stretches to investigate the

evolution of the bulged and depressed “phases” beyond the bifurcation point. As an

illustrative example, in Fig. 6.11 we fix λ = λmin (solid curve) and λ = 1.5 > λmin

(dashed curve) with ν = 0.4 and Jm = 100, and we plot the circumferential

stretch λθ against γ. Before the bifurcation point γcr in each case (marked by

the black dots), we observe that λθ is monotonic decreasing function. This is

a consequence of the compressibility effect. For λ = λmin and λ = 1.5, the

respective supercritical and snap-through transitions to the “two-phase” state

beyond the associated bifurcation point are illustrated. The “bulged” and “depressed”

bifurcation branches are determined by substituting λ = λL and λ = λR, respectively,

into our implicit function λθ = λθ(λ).
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Figure 6.11: A bifurcation diagram showing the circumferential stretch λθ against the
control parameter γ for fixed λ = λmin (solid curve) and λ = 1.5 (dashed curve), with
ν = 0.4 and Jm = 100.
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In Fig. 6.12, we examine the effect of compressibility on the evolution of the

thickness and length of the bulged and depressed “phases” when the averaged

axial stretch is fixed at unity. In (a), we plot the proportion λL/λ of the bulged

“phase” with respect to the overall length of the cylinder for ν = 0.2, 0.25 and

0.3. The proportion of the bulged “phase” decreases with increasing γ for each

value of ν considered, and it also decreases with decreasing ν. In other words,

for any γ > γcr, a larger degree of compressibility will correspond to a smaller

length of the bulged region in the “two-phase” state. In (b), we plot the difference

in the scaled radii rmax = λθ(λL)/Ro and rmin = λθ(λR)/Ro of the bulged and

depressed regions, respectively, against γ for λ = 1 and the same three values of

ν. We observe that a greater degree of compressibility results in a lower value of

rmax − rmin. Thus, cylinders with greater compressibility have a thinner (thicker)

bulged (depressed) region for γ > γcr.
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Figure 6.12: The variation of (a) the proportion λL/λ of the bulged “phase” and (b)
the difference rmax − rmin = (λθ(λL) − λθ(λR))/Ro in radii of the bulged and depressed
“phases” against γ for Jm = 100, λ = 1 and ν = 0.2, 0.25 and 0.3. The black dots mark
the bifurcation points, and the arrows indicate the direction of parameter growth.

6.5 Discussion

The complete bifurcation behaviour of an incompressible solid cylinder or hollow

tube under axial loading and surface tension is fully understood. However, with
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the exception of the numerical study of DJ, analogous studies when the cylinder

is compressible are scarce. In this chapter, we have provided greater theoretical

insights into localized pattern formation in compressible solid cylinders, as well

as a source of comparison for existing and future numerical studies. By drawing

upon results for the incompressible hollow tube case studied in the preceding

chapters, we derived analytical bifurcation conditions for localized bulging or

necking in compressible solid cylinders for three distinct loading scenarios in terms

of a general compressible strain-energy function. For the quadratic and logarithmic

neo-Hookean material models, we found perfect agreement between our theoretical

bifurcation conditions and the numerical simulation conditions presented in DJ.

The influence of material compressibility on the bifurcation points in each loading

scenario considered is summarized in Table 6.1.

The Maxwell stretches λL and λR associated with the anticipated final “two-

phase” state were again determined as functions of γ through the equal area rule.

On comparing the results of the equal area rule approach with the corresponding

numerical simulation results in Fu et al. (2021) and DJ, we found perfect agreement

in the former case but disagreement in the latter. This highlighted that numerical

studies of phase-separation-like phenomena don’t always use the equal area rule as

a consistency check on their results, and it is hoped that the work presented in this

chapter will invoke change in this regard in future studies. We also demonstrated

that, when λ = 1 is fixed, a greater level of material compressibility will result in a

smaller bulged proportion in the “two-phase” state, as well as a smaller difference

between the bulged and depressed radii, for each γ > γcr.
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Table 6.1: A summary of the results of the linear bifurcation analysis in section 4.3.

Fixed γ and varying N Fixed λ and increasing γ Fixed N ≥ 0 and in-
creasing γ

• A larger fixed γ delays
(advances) localized neck-
ing (bulging) when load-
ing (unloading) cylinders
with both a high and
moderate degree of com-
pressibility

• For cylinders with any
degree of compressibility,
there exists a minimum
value of γ, γmin, below
which localization cannot
occur

• γmin increases with Pois-
son’s ratio ν, so cylinders
with greater compressibil-
ity can admit a localized
pattern formation when
subject to a wider range
of fixed γ

• There exists a threshold
value of ν below (above)
which a greater (smaller)
axial stretch λ will delay
bifurcation

• The regime of stretches
in which a localized
necking (bulging) solu-
tion is expected is larger
(smaller) for cylinders
with a greater degree of
compressibility

• A larger degree of com-
pressibility will delay the
onset of localized necking

• For each fixed N ≥
0, there exists a maxi-
mum Poisson ratio, νmax,
above which localization
is impossible

• Below a certain fixed
value of N , localization
is impossible in cylinders
with any degree of com-
pressibility
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7.1 Introduction

At a critical level of compression, the free surface of an incompressible, hyperelastic

half-space will form a localized region of self-contact, and this phenomenon is

typically termed “creasing”. An analytical bifurcation condition for crease formation

has recently been presented for the first time in a ground-breaking work by Ciarletta

and Truskinovsky (2019) (hereafter referred to as CT). However, the analysis is

165
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presented with such limited detail that a full comprehension and reproduction of

the derivations is very challenging to achieve. The aim of this chapter is therefore

to rephrase the analysis of CT in a self-contained and more rigorous manner in

order to shed greater light on key steps in the analysis. Firstly, we present the

primary uni-axial compression solution for a half-space in a state of plane strain.

Then, we assume that the deformation field local to the crease corresponds to the

mapping of a semi-circular half-space into a self-contacting whole-space, and this

solution is derived explicitly. The effect of the creasing solution on the surrounding

uni-axially compressed material sufficiently far away from the crease is then assumed

to be equivalent to the action of a vertical concentrated force acting on the free

surface. We provide a well-justified model for the evaluation of this concentrated

force which is separate from the less well-justified approach taken by CT, and which

in turn yields a different result. We also highlight explicitly that the calculation

of this force is only a leading order approximation, and determine explicitly the

incremental displacement field which it imposes onto the uni-axially compressed

material surrounding the crease. The bifurcation condition is finally obtained

through a conservation law given in terms of the energy-momentum tensor which

matches the local creasing solution with the incremental field in a state of equilibrium.

This bifurcation condition is found to be at odds with CT’s counterpart, and the

reason for this discrepancy is elucidated. Our analysis follows essentially the same

idea as in CT, but it is hoped that our rephrasing will make the seminal work

of CT more accessible and appreciated. It is also hoped that this will provide a

springboard for future studies on this fundamentally important bifurcation problem.

7.2 The primary uni-axial compression

Consider an incompressible, isotropic, hyperelastic half-space whose reference

configuration B0 is defined in terms of the Cartesian coordinates (X1, X2), where

−∞ < X1 < ∞, 0 ≤ X2 < ∞. (7.1)
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We subject the half-space to a uni-axial compression at X1 = ±∞, which maps

B0 to a current configuration Be. Let X and x denote the position vectors of a

representative material particle in B0 and Be, respectively, such that

X = XAEA, x = xiei, (7.2)

where i, A = 1, 2 and Einstein’s summation convention over repeated indices is

employed. Also, (E1,E2) and (e1, e2) are the standard orthonormal bases in B0 and

Be, respectively. As is implied by our notation, the problem is taken to be one of

plane strain, with zero displacement of the material body in the x3 direction assumed.

The uni-axial compression can be described by the following transformations:

x1 = λX1, x2 = λ−1X2, (7.3)

where λ ∈ (0, 1] is the principal stretch in the horizontal direction; see Fig. 7.1.

The deformation gradient F̄ is then defined through dx = F̄ dX and takes the form

F̄ = λ e1 ⊗ E1 + λ−1e2 ⊗ E2; (7.4)

we note that the incompressibility constraint det F̄ = 1 is automatically satisfied.

Throughout this chapter, we follow the convention that an overbar signifies asso-

ciation with primary deformation (7.3) and unbarred quantities correspond to a

general deformation. From (7.4), we may compute the first principal invariant Ī1

of the left Cauchy-Green strain tensor B̄ = F̄ F̄ T as follows:

Ī1 = tr B̄ = λ2 + λ−2. (7.5)

We assume that the constitutive behaviour of the material is governed by a strain-

energy function W of the form

W = W (I1), (7.6)

which is the most general form possible for an incompressible, isotropic, hyperelastic

material in a state of plane strain. Given (7.6), the Cauchy stress tensor σ̄ is

defined through

σ̄ = 2W̄1B̄ − p̄I, (7.7)
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Figure 7.1: A schematic of the reference configuration B0 (top) and the primary uni-
axially compressed configuration Be (bottom).

where I denotes the identity tensor, p̄ is the Lagrangian multiplier enforcing

incompressibility in Be and W̄ = W (Ī1), W̄1 = W ′(Ī1), etc. The non-zero in-

plane components of (7.7) are given by

σ̄11 = 2λ2W̄1 − p̄ and σ̄22 = 2λ−2W̄1 − p̄. (7.8)

Thus, the equilibrium equations div σ̄ = 0 in Be are automatically satisfied provided

that p̄ is a constant. We further assume that the free surface x2 = 0 in Be is

traction-free, invoking the boundary condition

−σ̄e2 = 0, x2 = 0. (7.9)

On substituting (7.8) into (7.9), the following constant expression for p̄ is obtained:

p̄ = 2λ−2W̄1. (7.10)



7. Crease formation in a compressed soft elastic material 169

Then, on substitution of this expression back into (7.8), we find that the controlled

uni-axial compression is achieved solely through the horizontal stress given by

σ̄11 = 2(λ2 − λ−2)W̄1. (7.11)

7.3 The folding solution

At a critical level of compression, a crease of arbitrarily small depth rc forms on the

free surface x2 = 0 of the half-space. In this section, we assume that the formation

of this crease is locally equivalent to the folding of a half-space into a whole-space.

Consider first a semi-circular reference configuration B⋆
0 defined in terms of

the cylindrical polar coordinates (R,Θ), where

0 ≤ R ≤ Rc, −π

2 ≤ Θ ≤ π

2 . (7.12)

Suppose then that this semi-circular region is folded into a circular region B⋆
e

such that the surfaces OA and OB shown in Fig. 7.2 come into self-contact.

This self-contacting circular region is defined in terms of the cylindrical polar

•

•

X x

R
r

Θ
θ

A B

A′, B′

O

O

x1

x2
X2

X1

σ⋆
rr(rc)

Figure 7.2: A schematic of the semi-circular reference configuration B⋆
0 (left) and the

folded circular configuration B⋆
e (right).

coordinates (r, θ), with

0 ≤ r ≤ rc, −π ≤ θ ≤ π. (7.13)
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That is, the self-contact occurs at θ = ±π and 0 ≤ r ≤ rc. The position vectors of

a representative material particle in B⋆
0 and B⋆

e are given respectively by

X = RER, x = rer, (7.14)

and the corresponding orthonormal bases (ER,EΘ) and (er, eθ) are non-standard

and expressible through

ER = − sin ΘE1 + cos ΘE2, EΘ = − cos ΘE1 − sin ΘE2,

er = − sin θe1 + cos θe2, eθ = − cos θe1 − sin θe2. (7.15)

This is because the polar coordinates θ and Θ here are non-standard by definition;

they are their classical counterparts minus π/2. The basic vectors E1, E2, e1 and

e2 presented in (7.15) have the same meaning as in section 7.2.

As shown by Silling (1991), the mapping B⋆
0 → B⋆

e is enforced by the variable

transformation

r = 1√
2
R, θ = 2Θ, (7.16)

and hence we have the connection rc = Rc/
√

2. The associated deformation gradient

F ⋆ is defined through dx = F ⋆dX and takes the form

F ⋆ = 1√
2

er ⊗ ER +
√

2eθ ⊗ EΘ. (7.17)

Here and hereafter, a superscript ⋆ signifies association with the creasing defor-

mation (7.16). We note that, as with the primary uni-axial compression, the

incompressibility constraint detF ⋆ = 1 is automatically satisfied. The first principal

invariant of the associated left Cauchy-Green strain tensor B⋆ = F ⋆F ⋆ T takes

the following constant value:

I⋆
1 = 5

2 . (7.18)

The non-zero in-plane components of the corresponding Cauchy stress tensor σ⋆ are

σ⋆
rr = W ⋆

1 − p⋆(r) and σ⋆
θθ = 4W ⋆

1 − p⋆(r), (7.19)
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where p⋆(r) is the Lagrangian multiplier enforcing incompressibility in B⋆
e and

W ⋆ = W (I⋆
1 ), W ⋆

1 = W ′(I⋆
1 ), etc. Given (7.19), only the equilibrium equation in

the r direction remains unsatisfied, and this equation is expressed as

∂σ⋆
rr

∂r
= 1
r

{σ⋆
θθ − σ⋆

rr} =⇒ ∂

∂r
(rσ⋆

rr) = σ⋆
θθ. (7.20)

By substituting (7.19) into (7.20) and then integrating the resulting equation

backwards from r = rc, we obtain

p⋆(r) = −3W ⋆
1 ln (r/rc) + p⋆(rc). (7.21)

Then, on setting r = rc in (7.19)1, we may determine that

p⋆(rc) = W ⋆
1 − σ⋆

rr(rc), (7.22)

and hence

p⋆(r) = W ⋆
1 − 3W ⋆

1 ln (r/rc) − σ⋆
rr(rc). (7.23)

Thus, the folding solution is defined up to an additive constant σ⋆
rr(rc), which will

be related to σ̄11 in section 7.5. For later use, we also record here the deformation

gradient F ⋆ and the nominal stress tensor S⋆ (= F ⋆ −1σ⋆) at Θ = −π/2 relative

to the orthonormal bases (EA) and (ei):

F ⋆ =
√

2 e1 ⊗ E2 − 1√
2

e2 ⊗ E1, (7.24)

S⋆ = −
√

2 {W ⋆
1 − p⋆(r)} E1 ⊗ e2 + 1√

2
{4W ⋆

1 − p⋆(r)} E2 ⊗ e1. (7.25)

7.4 The incremental field

Thus far, we have considered the uni-axial compression of a half-space which we

term the “primary solution”. Then, we assumed that the formation of a crease on

the free surface of the half-space is locally equivalent to the folding of an infinitesimal

semi-circular region into a self-contacting circular region, and we term this the
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Figure 7.3: A simplified model to describe the effect of crease formation on the
surrounding material. The upper and lower sketches show the creased domain in the
reference configuration and the current configuration, respectively.

“folding solution”. The question we now must ask ourselves is: what effect does

the folding solution have on the primary solution, and vice versa?

Consider the simple model of creasing shown in Fig. 7.3 in which the semi-

circular region B⋆
0 described in the previous section would undergo a deformation

given by (7.16) in the absence of constrictions of the surrounding material. Its

image in the current configuration would be a circular domain with radius rc as

discussed earlier. We observe that, with constriction, the deformation in the creased

region is very complicated. For instance, whereas the region near the crease tip O

is undergoing a π-to-2π folding, the region near the end of the self-contact at points

A′ and B′ is subjected to a π-to-π/2 bending deformation such that the surface

outside the creased zone is horizontal again. It would seem impossible to give the

deformation an exact description, and so the best we can do is propose a model
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which captures the leading order behaviour of the exact solution in the limit rc → 0.

To elaborate, we may think of the current creased configuration as the result

of two consecutive deformations: firstly a π-to-2π folding around O as described

above, and secondly a π-to-π/2 bending deformation around the points A′ and

B′. We assume that the crease formation has an O(rc) effect on the deformation

of the surrounding material, and conversely, the constriction of the surrounding

material will induce an O(rc) correction on the actual position of the curved surface

D′C ′E ′ and the stress field on it. Thus, the leading order resultant force on D′C ′E ′

will be calculated with the aid of σ⋆
rr. However, the bending deformation around

A′ or B′ has a more drastic effect on the stress field within the area bounded by

OE ′G′B′A′F ′D′ (and even the locations of these points except O, A′ and B′ may

deviate significantly from those shown in Fig. 7.3). In particular, equilibrium of

the infinitesimal area OB′G′E ′ implies that the resultant force on G′E ′ must be

horizontal under the assumption that OA′ and OB′ are in smooth, non-frictional

contact. This in turn implies that the resultant force on OE ′ must be zero to leading

order since B′G′ is traction-free. Finally, overall equilibrium of the rectangular

domain defined by x1 < 0, x2 < 0 implies that the resultant on OB′ is −rcσ̄11e1.

Under the above assumptions, the tractions on the curved surface D′C ′E ′ are

given by σ⋆
rr(rc)er, and have the following non-zero resultant:

∫ π/2

−π/2
σ⋆

rr(rc)errcdθ = rcσ
⋆
rr(rc)

∫ π/2

−π/2
(− sin θe1 + cos θe2)dθ = 2rcσ

⋆
rr(rc)e2. (7.26)

Since the resultant force on D′F ′ is balanced by the force on E ′G′ due to symmetry,

the net force on the surface F ′G′E ′C ′D′F ′ is given by (7.26). It then follows that

the effect of the creased region on the material sufficiently far away from the origin

is given by the following equal yet opposite force δf :

δf = −2rcσ
⋆
rr(rc). (7.27)

The above force δf is of O(rc) and hence infinitesimal. Thus, the resulting

perturbation of the surrounding uni-axially compressed material should be infinites-

imal, and it should also decay as we move far away from the crease tip. We
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now determine the small-amplitude perturbation imposed by the folding solution

onto the surrounding material by applying the classical incremental equations

of non-linear elasticity.

We assume that, in the limit rc → 0, the crease formation imposes a small-

amplitude displacement onto the uni-axially compressed configuration Be, producing

a resultant configuration Bt. Let XA, xi(XA) and x̃i(XA) be the components

of the position vectors of a representative material particle in B0, Be and Bt,

respectively. Then, the relation

x̃i = xi(XA) + ui(xj), (7.28)

is established, with ui(xj) denoting the components of the small amplitude dis-

placement associated with the deformation Be → Bt. With use of (7.28), the

components of the deformation gradients F̄ and F̃ mapping B0 → Be and Be → Bt

are given respectively as follows:

F̄iA = ∂xi

∂XA

, F̃iA = ∂x̃i

∂XA

= (δij + ui,j)F̄jA, (7.29)

where δij is the Kronecker delta function defined in (2.3), and a tilde signifies

association with the deformation B0 → Bt. Given (7.29)2, the incompressibility

constraint det F̃ = 1 for the deformation B0 → Bt takes the form

ui,i = 0. (7.30)

We may also show, with the use of (7.29)2 and (7.30), that the linearized first

principal invariant of F̃ F̃ T is

Ĩ1 = tr F̃ F̃ T = λ2 + λ−2 + 2(λ2 − λ−2)u1,1. (7.31)

We introduce the incremental stress tensor χ whose linearized components χij are

χij = Ajilkuk,l + p̄uj,i − δp δji; (7.32)

recall that Ajilk are the first-order instantaneous moduli, p̄ is the pressure in Be

and δp is the incremental pressure associated with the deformation Be → Bt.
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The incremental equilibrium equations take the simple form

χij,j = 0. (7.33)

Given our assumption (7.6), we are able to express the instantaneous elastic moduli

Ajilk in the reduced form given in (2.76). Through substitution of (7.32) into (7.33)

and making use of (7.30), the incremental equilibrium equations reduce to

Aj1lkuk,lj − δp,1 = 0, Aj2lkuk,lj − δp,2 = 0. (7.34)

A stream function ϕ = ϕ(x1, x2) can then be introduced to satisfy the incompress-

ibility constraint (7.30) exactly through the relations

u1 = −ϕ,2, u2 = ϕ,1. (7.35)

We substitute the expressions (7.35) into (7.34). We then cross-differentiate (7.35)1

and (7.35)2, and subtract the latter resulting equation from the former in order to

eliminate the term involving the incremental pressure. The following fourth-order

partial differential equation is subsequently obtained:

αϕ,1111 + 2β ϕ,1122 + γ ϕ,2222 = 0, (7.36)

where the coefficients α, β and γ in this instance have the same meaning as

in equation (4.7) of Dowaikh and Ogden (1990), and should not be confused

with alternate definitions given in previous chapters. These coefficients take the

following explicit form:

α = 2λ2W̄1, β = 1
λ4

{
λ2(λ4 + 1)W̄1 + 2(λ4 − 1)2W̄11

}
, γ = λ−4α. (7.37)

We also assume that the surface x2 = 0, x1 ≠ 0 is traction-free in the limit rc → 0,

and this boundary condition takes the form

χ12 = χ22 = 0, x2 = 0, x1 ̸= 0. (7.38)

Finally, we assume that the perturbed field decays at a sufficiently large distance

away from the crease tip such that

lim
|x|→∞

(u1, u2) = 0. (7.39)
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To find a general solution to (7.36), we first rewrite it in the form

∆1∆2ϕ = ∆2∆1ϕ = 0,

∆1 = ω2 ∂
2

∂x2
1

+ ω−2 ∂
2

∂x2
2
, ∆2 = ω2λ2 ∂

2

∂x2
1

+ ω−2λ−2 ∂
2

∂x2
2
. (7.40)

The scaling factor ω in the above expressions can be obtained by comparing

the expansion of (7.40) with (7.36), and it may be defined through either of

the following two relations:

21/4ω =
{
κ+ λ4 + 1 ±

√
κ2 + 2κ(λ4 + 1) + (λ4 − 1)2

}1/4
, (7.41)

where κ = 2(λ3 − λ−1)2W̄11/W̄1. We require a solution to (7.40) which admits the

necessary singular behaviour at the origin resulting from the crease formation. Such

a solution is a linear combination of the solutions to ∆1ϕ = 0 and ∆2ϕ = 0,

and is given by

ϕ = A1G(ω−1x1, ωx2) + A2G(ωλ−1x1, ω
−1λx2), (7.42)

where G(x, y) = x ln(x2 + y2) + 2y arctan
(
x

y

)
, (7.43)

and the constants A1 and A2 are to be determined. Note that the harmonic

function G(x, y) above is the real part of the analytical function (z/2) ln z, z =

x + iy (Barnett and Lothe, 1975).

With use of (7.32) and (7.35), the boundary conditions (7.38) are given respec-

tively by

ϕ,11 − ϕ,22,
4
λ4

{
λ2W̄1 − (λ4 − 1)W̄11

}
ϕ,12 − δp = 0, x2 = 0, x1 ̸= 0. (7.44)

By solving (7.34)1 for δp,1 and substituting the resulting expression into the x1

derivative of (7.44)2, we obtain{
2(λ4 − 1)2W̄11 + λ2(λ4 + 2)W̄1

}
ϕ,112 + λ2W̄1ϕ,222 = 0, x2 = 0, x1 ̸= 0, (7.45)

which is automatically satisfied by (7.42). Then, upon substitution of (7.42), we

find that (7.44)1 is satisfied provided the following relation holds:

A1 = −A2(ω4 + λ4)
ω2(1 + ω4)λ. (7.46)
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Finally, we seek to determine the constant A2. This is achieved by formulating

a condition which ensures the balance of the resultant of incremental tractions in

the negative x2 direction sufficiently far away from the emerging crease tip with

the opposing concentrated resultant force δf due to the crease formation. We

consider a rectangular contour with sides at x1 = ±l and x2 = h, and calculate

the resultant along it. Equilibrium then requires that

2
∫ h

0
χ21(l, x2)dx2 + 2

∫ l

0
χ22(x1, h)dx1 + δf · e2 = 0. (7.47)

With use of (7.27) and the preceding derivations for the incremental field, we

determine from (7.47) that A2 takes the form

A2 = rcλ
3ω5(1 + ω4)σ⋆

rr(rc)
2πW̄1 {ω12λ2 − λ8 + (ω8 − ω4λ2)(2λ2 − 1)}

. (7.48)

We observe that A2, and hence A1 by (7.46), is proportional to rc. Thus, given

(7.35) and (7.42) – (7.43), the incremental displacement of the primary solution due

to crease formation is indeed of O(rc). The incremental stress components χij and

the incremental displacement components ui are presented in Appendix. 7.A.

7.5 Bifurcation condition

We have now considered a primary uni-axial compression solution, a creased solution

encapsulated by the folding of a half-space into a whole-space and an incremental

displacement field superposed by the latter onto the former. To obtain a bifurcation

threshold for creasing, we must now determine the conditions under which all three

of these solutions can coexist in a state of equilibrium. We identify that at this point

in the analysis there are two remaining unknowns: the additive constant σ⋆
rr(rc)

from the folding solution and the critical value of the stretch λ for crease initiation

which we denote by λcr. To determine these unknowns, we make use of the two

conservation laws corresponding to the stationarity of the total energy functional

with respect to variations in x and X, respectively. The first conservation law is

simply the equilibrium condition in the current creased configuration, whereas the

second is given in terms of the energy-momentum tensor through (2.119).



178 7.5. Bifurcation condition

7.5.1 Determining σ⋆
rr(rc)

We again refer to the simplified model shown in Fig. 7.3, and recall our assumption

that the field within the lower half of the circular domain with radius rc is the

folding solution plus a perturbation of O(rc), whereas the field below the horizonal

line x2 = rc is the primary uni-axial compression plus a perturbation of O(rc). Also,

the resultant on OB′ has been determined to be −rcσ̄11e1.

Consider the rectangular domain bounded by x1 = 0, l and x2 = −rc, h, where

both l and h are sufficiently large positive constants. The balance of tractions on

the boundary of this rectangular domain to leading order requires that

∫ h

−rc

σ̄11|x1=ldx2 +
∫ rc

h
σ̄11|x1=0dx2 +

∫ 0

rc

σ⋆
θθ|θ=0dr +

∫ −rc

0
σ̄11|x1=0dx2 = 0. (7.49)

Through integrating (7.20)2 between r = 0 and rc, we can determine from (7.49) that

σ⋆
rr(rc) = σ̄11. (7.50)

7.5.2 Determining λcr

Consider first the reference domain B′
0 = B0 ∪ B⋆

0 in Fig. 7.4 bounded by X1 = ±L

and X2 = 0, L. We denote its boundary by ∂B′
0 and travel along it in the anti-

clockwise direction; see the blue contour in Fig. 7.4. Furthermore, we initially

assume that L is a sufficiently large positive constant, but then we will take

the limit L → ∞.

As shown in section 2.5.2.2 of chapter 2, the stationarity of the total energy

functional with respect to perturbations in X gives rise to the following conservation

law (Chadwick, 1975) which must be satisfied by our solution:

J ≡
∫

∂B′
0

ΣNds = 0, (7.51)

where Σ = WI −SF is the energy-momentum tensor, S is the nominal stress tensor

corresponding to a general deformation, N is the unit normal to ∂B′
0 and ds is an



7. Crease formation in a compressed soft elastic material 179
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Figure 7.4: A schematic of the reference domain B′
0 = B0 ∪ B⋆

0 bounded by X1 = ±L
and X2 = 0, L. We travel along the boundary ∂B′

0 (shown in blue) in the anti-clockwise
direction.

infinitesimal line element along ∂B′
0. Having verified that J · E1 is identically zero,

our considered bifurcation condition is J · E2 = 0. This condition is expressible as

∫
∂B′

0

{WN2 − S2iFiANA} ds, (7.52)

where NA are the components of N .

We next consider the Taylor expansion of the left-hand side of the above equation

around rc = 0. The O(1) term is zero since it corresponds to the primary uni-

axial compression before crease formation which already satisfies the equilibrium

equations. The next term is of O(rc), and it is by forcing the coefficient of rc in

this term to be equal to zero that the bifurcation condition for creasing is obtained.

On taking the limit L → ∞, the O(rc) contribution is restricted to the free surface

X2 = 0 since the decay condition (7.39) will cause the incremental displacement

field to vanish at X1 = ±L and X2 = L. The bifurcation condition can then be

expressed as a sum of contributions from the folding solution (between points B

and A in Fig. 7.4) and the incremental field (between points G and B, and A

and F in Fig. 7.4). Specifically, we have

2
∫ Rc

0
{W ⋆ − S⋆

2iF
⋆
i2} dX1 + 2

∫ L

Rc

{
δW̃ − (δS̃)2iF̄i2 − S̄2i(δF̃ )i2

}
dX1 = 0, (7.53)
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where the integrands are evaluated at X2 = 0, and δW̃ , δS̃ and δF̃ are the

O(rc) terms in the expansions of W̃ = W (Ĩ1), S̃ and F̃ (respectively) which

will be computed shortly.

For the first integral on the left-hand side of (7.53), which is the contribution

due to the folding solution, we may use (7.23), (7.24) and (7.25) to deduce that

S⋆
2iF

⋆
i2 = S⋆

21F
⋆
12 = 4W ⋆

1 − p⋆

(
X1√

2

)
= 3W ⋆

1 + 3W ⋆
1 log

(
X1√

2

)
+ σ⋆

rr(rc). (7.54)

It then follows that

2
∫ Rc

0
{W ⋆ − S⋆

2iF
⋆
i2} dX1 = 2

√
2 rc {W ⋆ − σ⋆

rr(rc)} , (7.55)

where use has been made of the established relation rc = Rc/
√

2.

We then move on to the second integral in (7.53), which pertains to the

incremental field superposed onto the surrounding compressed material sufficiently

far away from the crease tip. We note first that traction-free boundary conditions

can be written as

S̄2i = F̄−1
22 σ̄2i = 0, δS̃2i = F̄−1

22 χi2 = 0, X2 = 0; (7.56)

see (2.40). With the aid of (7.31), we may also deduce to O(Ĩ1) that

W̃ = W̄ + (Ĩ1 − Ī1)W̄1 =⇒ δW̃ = W̃ − W̄ = 2(λ2 − λ−2)u1,1W̄1. (7.57)

In the limit L → ∞, the second integral in (7.53) therefore becomes

2 lim
L→∞

∫ L

Rc

δW̃ |X2=0dX1 = 4 (λ− λ−3)W̄1 lim
L→∞

∫ L

Rc

∂u1

∂X1

∣∣∣∣∣
X2=0

dX1,

= 2ω4λ2(λ2 − 1)(λ− λ−3)σ⋆
rr(rc)rc

{
ω8λ2 + λ6 + ω4(λ4 + 2λ2 − 1)

}−1
, (7.58)

where use has been made of the decay condition (7.39). On setting the sum of the

two integrals (7.55) and (7.58) to zero, and making use of the relations (7.41) and

(7.50), the bifurcation condition for crease formation is found to take the form

√
2
{
λ3(λ6 + λ4 + 3λ2 − 1)W ⋆ − 4λ(λ4 − 1)3W̄11

}
W̄1 + 2

√
2λ3(λ4 − 1)2W ⋆W̄11

− 2(λ4 − 1)(
√

2λ7 − λ6 +
√

2λ5 + λ4 + 3
√

2λ3 + λ2 −
√

2λ− 1)W̄ 2
1 = 0. (7.59)
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To illustrate (7.59), we adopt the Gent material model, which takes the following

modified form in the case of plane strain deformations:

W (I1) = −1
2µJm ln

(
1 − I1 − 2

Jm

)
. (7.60)

On substituting (7.60) into (7.59), the bifurcation condition for creasing correspond-

ing to the Gent material model is found to take the explicit form
√

2λ11
cr + λ10

cr +
√

2(Jm + 1)λ9
cr +

√
2(Jm − 6)λ7

cr + (Jm + 2)(λ2
cr + 3

√
2λcr + 1)λ4

cr

− (Jm + 3)(λ6
cr +

√
2λcr + 1)λ2

cr +
√

2λcr + 1 − λcr√
2(λ4

cr − 1)
ln
(

1 − 1
2Jm

)
×

{
λ14

cr − λ12
cr − (J2

m + 2Jm + 7)λ10
cr − (J2

m − 8Jm − 19)λ8
cr − 3(J2

m + 4Jm + 7)λ6
cr

+ (J2
m + 8Jm + 13)λ4

cr − (2Jm + 5)λ2
cr + 1

}
= 0. (7.61)

We plot in Fig. 7.5 the bifurcation condition (7.61), the bifurcation condi-

tion for wrinkling:

λ10
cr + (Jm + 1)λ8

cr + (Jm − 6)λ6
cr + 3(Jm + 2)λ4

cr − (Jm + 3)λ2
cr + 1 = 0, (7.62)

as given in equation (4.14) of Destrade and Scott (2004), and the inextensible

threshold Ī1 − 2 = Jm in the (Jm, λcr) plane. We see firstly that, according to our

theory, creasing is only possible if Jm ≥ 3.711. Furthermore, as has been widely

observed in experiments, creasing will occur earlier into the uni-axial compression

than wrinkling for any value of Jm ≥ 3.711. For smaller values of Jm ≥ 3.711, the

value of λcr on the upper branch is smaller. Thus, a lower level of extensibility of

the material can delay the onset of crease formation. The black squares represent

the corresponding FEM simulation results from Jin and Suo (2015), and we see

that there is good agreement with our theory.

On taking the limit Jm → ∞ in (7.60), we obtain the plane strain counterpart

of the neo-Hookean material model (2.58). The bifurcation condition for creasing

pertaining to this model is the following polynomial equation:

4λ11
cr −

√
8λ10

cr + 3λ9
cr +

√
8λ8

cr + 7λ7
cr +

√
32λ6

cr − 11λ5
cr −

√
32λ4

cr − 11λ3
cr

−
√

8λ2
cr + 4λcr +

√
8 = 0. (7.63)
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From (7.63) we determine that the critical stretch for crease formation in a neo-

Hookean material is λnH
cr = 0.64221; this is in excellent agreement with the numerical

predictions λnH
cr = 0.6474 and λnH

cr = 0.646 of Hohlfeld and Mahadevan (2012) and

Jin and Suo (2015), respectively. However, our analytical prediction is at odds

with CT, who reported a critical stretch λnH
cr = 0.6362. In the next section, we

will note the differences between our analysis and that of CT, and locate the

source of this discrepancy.
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Figure 7.5: Plots of the bifurcation condition for creasing (7.61), the bifurcation condition
for wrinkling (7.62) and the inextensible limit λ2 + λ−2 − 2 = Jm. The black squares are
the FEM simulation results of Jin and Suo (2015) for the creasing bifurcation condition.
The blue shaded region cannot be entered since the material becomes completely rigid at
the inextensible limit curve.

7.6 Distinctions with Ciarletta and Truskinovsky
(2019)

We first highlight that, on substituting the neo-Hookean material model into

equation (3) of CT (which is their reported bifurcation condition for creasing), the

critical stretch λcr = 0.7098 is obtained. However, this is at odds with the value

λcr = 0.6362 presented on page 4 of the same paper. Through correspondence with

CT, it was determined that the aforementioned equation (3) contains a typo. The
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correct version of CT’s bifurcation condition is as follows:

2
√

2
{
W ⋆ − 2W̄1(λ2 − λ−2)

}
+ 4

√
2ω4(λ2 − 1)3(λ2 + 1)2W̄1

ω8λ4 + λ8 + ω4λ2(λ4 + 2λ2 − 1) = 0, (7.64)

where ω is as given in (7.41).

Of course, equation (7.64) is still at odds with our reported bifurcation condition

(7.59); see Fig. 7.6. It can be shown that if the second term on the left-hand
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Figure 7.6: A comparison of the bifurcation conditions (7.61) (solid blue curve) and
(7.64) specified to the Gent material model (7.60) (dashed blue curve). The black squares
are the corresponding FEM simulation results of Jin and Suo (2015).

side of CT’s condition (7.64) is divided by
√

2λ, our reported bifurcation condition

(7.59) is obtained. This discrepancy appears to materialize through the alternate

approaches taken in calculating the concentrated force δf . On page 2 of CT, the

following expression for δf is given in terms of our notation:

δf = −4W̄1(λ2 − λ−2)Rc. (7.65)

However, equation (S7) in the supplementary material of CT, which is their

equivalent of our equation (7.48), can only be true if the right-hand side of (7.65)

is multiplied by λ. Thus, we suspect that the reported expression (7.65) is a typo.

If we divide the “corrected” form of (7.65) by the discrepancy factor
√

2λ, our

concentrated force (7.27) is recovered under the relation rc = Rc/
√

2. We have also

determined through correspondence with CT that equations (S4) – (S6), (S8)1,4
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and (S9) in CT’s supplementary material contain typos, although these typos do

not seem to have been carried through to the actual analysis.

The approach of CT in calculating δf is justified using the argument: “The

opposite sides of the self-contact must be pulled together by forces distributed on

the reference surface with the normal −E2”. From this argument, and through

brief correspondence with CT, we gather that their approach is centred around

“pulling back” the tractions along the self-contact lines OA′ and OB′ to the reference

configuration by imposing a prescribed distribution of normal tractions along OA

and OB. These tractions are then “pushed forward” to the uni-axially compressed

configuration. Whilst the validity of CT’s argument is uncertain to us, we believe

that our approach to calculating δf is well-justified and self-consistent. Furthermore,

we observe in Fig. 7.65 that our bifurcation condition is in better agreement with

the FEM simulations of Jin and Suo (2015) than the condition of CT, lending

further credence to our approach.

7.7 Discussion

An analytical study of crease formation in a compressed hyperelastic half-space

based on the seminal work of Ciarletta and Truskinovsky (2019) (referred to as

CT) has been presented in this chapter. Our main intent was to provide a more

rigorous rephrasing of CT’s paper (which was notably lacking in terms of detailed

derivations) in order to make the exceptional idea more accessible to the wider

community and to encourage further analytical work to be undertaken on this

extremely challenging yet enticing problem. Although our general approach was

well aligned with CT, we presented a different yet well-justified model which

approximates the action of the emerging crease on the surrounding compressed

material through a concentrated force argument. The corresponding approach

of CT is less well-justified, provokes a certain level of scepticism and leads to

a slightly different expression for the aforementioned concentrated force (and in

turn the bifurcation condition). We demonstrated that our reported bifurcation
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condition for creasing is in better agreement with the FEM simulations of Jin and

Suo (2015) than the bifurcation condition of CT, lending support for our approach.

Nevertheless, it is remarkable how well CT’s analysis was able to describe the

numerical simulation results of Jin and Suo (2015). For instance, not only can it

predict the bifurcation value of λcr for crease initiation for all values of Jm to a

high degree of accuracy, it can also describe the second bifurcation value at which

a fully developed crease disappears. This excellent agreement seems to indicate

that our reported bifurcation condition (7.59) might be exact, despite its derivation

involving leading order approximations as previously explained.

7.A Appendix – Incremental displacements and
stresses

The incremental displacement components u1 and u2 can be expressed through

the following relations:

ω̃u1 = ω2(ω4 + λ4) arctan
(
x1

ω2x2

)
− ω2(ω4 + 1)λ2 arctan

(
ω2x1

λ2x2

)

w̃u2 = 2(ω8 − λ4) + (ω8 + ω4) log
(
ω2x2

1
λ2 + λ2x2

2
ω2

)
− (ω4 + λ4) log

(
x2

1
ω2 + ω2x2

2

)
,

ω̃ = 2πW̄1

ω2λ2rcσ⋆
rr(rc)

{
ω12λ2 − λ8 + ω4(ω4 − λ2)(2λ2 − 1)

}
. (7.66)

An expression for the incremental pressure δp can be determined in the following

manner. Firstly, we integrate the incremental equation (7.34)2, say, with respect

to x2 to obtain the expressions

W̄1f̃ δp = −2ω2(ω4λ−2 + 1)rcσ
⋆
rr(rc)x2

{
2ω4(λ4 − 1)(λ4x2

2 − x2
1)W̄11

+ λ2(ω4(1 + λ4)x2
1 + ω8λ4x2

2 + λ8x2
2)
}

+ W̄1f̃ C̃(x2),

f̃(x1, x2) = π(x2
1 + ω4x2

2)(ω4x2
1 + λ4x2

2)(ω8λ2 + λ6 + ω4(λ4 + 2λ2 − 1)), (7.67)

where C̃ is an arbitrary function of x2. On substituting the expressions (7.67) into

the boundary condition (7.44)2, we find that the function C̃(x2) must necessarily
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be zero. Then, an expression for δp can be explicitly obtained from (7.67), and the

incremental stress components χ11, χ12, χ21 and χ22 can then be defined through

f̃χ11 = 2λ−2W̄−1
1 ω2(ω4 + λ2)rcσ

⋆
rr(rc)x2

{
λ2(ω8λ4x2

2 + λ8x2
2

+ ω4(λ4 + 1)(2x2
1 − λ4x2

2))W̄1 + 2ω4(λ4 − 1)2(x2
1 − λ4x2

2)W̄11
}
,

f̃χ12 = 2ω2(ω4 + 1)(ω4 + λ2)(ω4 + λ4)rcσ
⋆
rr(rc)x1x

2
2,

f̃χ21 = 2ω2(ω4 + λ2)rcσ
⋆
rr(rc)x1

{
ω4(λ4 − 1)x2

1 + λ4(2ω4 + ω8 + λ4)x2
2

}
,

f̃χ22 = 2ω2(ω4 + λ2)rcσ
⋆
rr(rc)x2

{
ω4(λ4 − 1)x2

1 + λ4(2ω4 + ω8 + λ4)x2
2

}
, (7.68)
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8.1 Conclusions and perspectives

We have previously stated that, whilst the study of stress-induced periodic pattern

formation in elastic materials is highly popular and well understood, research

surrounding localized pattern formation as a bifurcation problem has only recently

begun to prosper. In this thesis, we endeavoured to show that, although localized

pattern formation problems are largely more challenging to tackle, much analytical

progress can be made in describing the partial or complete bifurcation process. We

have specifically focussed on understanding theoretically the bifurcation behaviour

of localized bulging, necking and creasing in elastic materials under effects such

as surface tension, material compressibility and mechanical loading.

The first part of this thesis was centred around axi-symmetric localized pattern

formations in soft incompressible hollow tubes under several elasto-capillary-based

187
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boundary conditions and loading scenarios. A study of this problem was noted

in chapter 1 to have several physiological motivations; our contributions to this

topic can be summarized as follows:

• Analytical bifurcation conditions for localized pattern formation were derived

based on known results for the prototypical problem of localized bulging in a

hollow tube under internal inflation. These conditions were given in terms of

expressions for the surface tension γ and the resultant axial force N pertaining

to the primary axial tension deformation. They have been shown in chapter 3

to be equivalent to the condition for an axi-symmetric bifurcation mode with

zero wavenumber to exist, or the condition for zero to become a triple eigenvalue

of the associated spectral problem. Thus, we have provided evidence that there

exists a strong unification between a range of elastic localized pattern formation

problems; we hope that our work will further pave the way for the development of

simple analytical bifurcation conditions for unexplored localized pattern formation

problems.

• A linear analysis investigated the competition between localized patterns associ-

ated with zero wavenumber and periodic patterns in the axial or circumferential

direction. We found that the choice of boundary conditions had a significant

influence on the type of pattern formation which is preferred. For an internally

supported tube (case 2), localized pattern formation is preferred and circumferen-

tial buckling modes are physically implausible. In contrast, if the internal support

is removed (case 1), then the tube becomes highly sensitive to circumferential

buckling modes, and localized pattern formation is unfavourable. When the tube

is externally supported (case 3), the type of loading employed has a marked

effect. For example, we demonstrated for the fixed λ and increasing γ scenario

that there exists a threshold value of λ below which circumferential buckling is

preferred and above which localized pattern formation is preferred. Thus, our

results not only demonstrate where localized pattern formation is favoured, but
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highlight that pattern selection in tubes under surface tension can be achieved

by an appropriate choice of boundary conditions and loading approaches.

• A weakly non-linear analysis first confirmed our expectations that the zero

wavenumber mode is associated with a subcritical localized solitary wave bifur-

cation solution. The choice of loading scenario was shown to greatly influence

whether this localized solution was necking or bulging. In this sense, the treatment

of localization as a bifurcation solution with zero wavenumber was beneficial,

since the non-zero wavenumber approach would be unable to describe the effect

of these various loading conditions. The initiation, growth and propagation of

the localized pattern into a final “two-phase” Maxwell state was also described

analytically in a small neighbourhood of λ = λmin. For any fixed λ ≠ λmin,

FEM simulations confirmed that the transition beyond γ = γcr from localized

pattern to Maxwell state will be a snap-through. For λ = λmin, localized pattern

formation is instead non-existent, and a supercritical transition to a “two-phase”

state occurs instead. This supercritical bifurcation solution was again determined

analytically through our weakly non-linear analysis.

• It was then evidenced that the evolution of final Maxwell state in the fully

non-linear regime can be fully understood analytically, and hence that a sole

reliance on numerical simulations in predicting post-bifurcation behaviour is

unnecessary in this context. For instance, the Maxwell stretches of each “phase”

were determined implicitly as functions of γ through the equal area rule. From

this, we determined completely the evolution of the amplitude and proportion

of the bulged “phase” for multiple loading scenarios. Exceptional agreement

between our theory and simulations was witnessed.

It is noteworthy that the higher order role of axial curvature has been shown to

influence the dynamic selection and evolution of patterns. For instance, Pandey

et al. (2021) demonstrated that dynamically evolved configuration of coexisting

cylindrical and spherical beads can exist in sufficiently soft elastic cylinders.
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Extensions to our work on the incompressible hollow tube case in chapters 3

through 5 were made in chapter 6 to study the effect of material compressibility on

localized pattern formation in soft solid cylinders. We again set out to illustrate that

much analytical progress can be made in constructing bifurcation conditions and

describing post-bifurcation behaviour. The verification of newly emerged numerical

simulation results (Dortdivanlioglu and Javili, 2022) through theoretical means was

also a key motivation. The contribution in this area was twofold:

• Analytical bifurcation conditions for localized pattern formation were formulated

in a similar manner to in the hollow tube case, and the effect of the Poisson

ratio ν on the bifurcation threshold was assessed. For fixed λ and increasing

γ, we demonstrated that cylinders with higher levels of compressibility are less

susceptible to localized pattern formation. In contrast, for fixed γ (fixed N ) and

monotonically varying N (increasing γ), there is a larger range of values of fixed

γ (fixed N ) for which localized pattern formation is possible in cylinders with a

greater level of compressibility. We demonstrated perfect agreement between our

theoretical bifurcation conditions and the corresponding numerical simulation

results of Dortdivanlioglu and Javili (2022).

• We highlighted that the numerically simulated Maxwell stretches of Dortdivan-

lioglu and Javili (2022) do not conform to the equal area rule, and presented

corrected theoretical counterparts. This served to illustrate that the equal area

rule should be used as a consistency check in numerical post-bifurcation studies

of phase-separation-like phenomena. A greater degree of compressibility was

seen to lower the proportion and amplitude of the bulged section in the final

“two-phase” state.

Lastly, we confronted the problem of crease formation in a compressed elastic

half-space analytically. Despite there existing many agreeable numerical studies

on this problem, theoretical works are few and far between since creasing, being

a characteristically non-linear phenomenon, cannot be captured by the standard

approach of a linear bifurcation analysis. We presented a re-phrasing of the notably
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ground-breaking theoretical study of Ciarletta and Truskinovsky (2019), complete

with derivations possessing greater detail and rigour. A new approach to calculating

the effect of the crease formation on the surrounding compressed material (which we

believe is better justified than the associated approach of CT) was proposed. This

lead to an analytical bifurcation condition for crease formation which is in slightly

better agreement with FEM simulation results compared with the bifurcation

condition derived by CT. It is hoped that our rephrasing of CT’s analysis will

provide both a greater appreciation of the seminal idea and a platform from which

a completely convincing argument for the analytical derivation of the bifurcation

condition can be formulated.

8.2 Future work

The research presented in this thesis presents several natural avenues for future work.

We believe that further inspiration can be taken from the analytical framework

for the inflation problem to determine analytical bifurcation conditions for more

complicated localized pattern formations. For instance, the consideration of torsion

and surface tension effects on soft cylinders could shed greater light on the beading

of axons which have been twisted due to rotational head injuries, say. In this

case, there would exist an additional force parameter in the resultant moment M,

and we anticipate that bifurcation conditions for moment-control-induced localized

pattern formation can be easily formulated by setting the derivative of this function

with respect to the axial stretch to zero. A transition from localized bulging to

a “two-phase” Maxwell state has also been observed in dielectric tubes under

internal pressure and an electric field; see Fig. 8.1. Analytical bifurcation conditions

for localized bulging in this context have been determined under the membrane

assumption (Lu et al., 2015), and the axi-symmetric bifurcation behaviour of a

arbitrarily thick tube has been studied in Dorfmann and Ogden (2019), with

attention focussed on periodic modes. A complete theoretical understanding of the

associated localized pattern formation behaviour in arbitrarily thick tubes does not
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Figure 8.1: Experimental observations of the initiation, growth and propagation of a
localized bulge in a membrane tube under axial loading, internal pressure and an electric
field (Lu et al., 2015).

yet seem to have been established. We believe that the analytical tools employed in

this thesis can be transferred to understanding this problem completely.

Many extensions to the work presented in chapter 7 can be considered. For

instance, the formation of creases on the surface and at the interface of soft elastic

bilayers has been observed experimentally; see Fig. 8.2. It would be of great

interest to investigate whether the seminal idea of Ciarletta and Truskinovsky

(2019) can be extended to study this problem. Whether the crease appears on

the free surface or the interface is thought to be heavily influence by the thickness

and shear modulus ratios of the two layers; the question of whether the threshold

values of these ratios at which surface creases become impossible can be determined

analytically is highly intriguing.

Figure 8.2: Evidence of creasing on the surface and interface of a compressed hydrogel
bilayer (Zhou et al., 2017).
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