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Abstract

Stress-induced pattern formations in soft elastic materials are bifurcation phenomena
which can be localized or periodic. Certain localized pattern formations such
as necking or bulging are associated with zero wavenumber, whereas periodic
pattern formations such as wrinkling or buckling are associated with a strictly
positive wavenumber. Whilst the near-critical behaviour of the periodic case is well
understood, studies of the localized case have only recently gathered momentum,
and are conceptually more challenging to undertake. Despite this, a remarkable
amount of analytical progress can be made. We will highlight this generally under-
appreciated fact by studying theoretically the complete bifurcation behaviour of
localized patterns, as well as the competition from periodic patterns, in elastic
materials under various effects.

Firstly, the bifurcation behaviour of soft incompressible hollow tubes under
elasto-capillary effects is studied. Analytical bifurcation conditions for localized
pattern formation are initially derived using established results from a prototypical
problem. A linear bifurcation analysis then shows that an axi-symmetric zero
wavenumber bifurcation mode is favoured over periodic modes for a range of
boundary conditions and loading scenarios. A weakly non-linear analysis provides
an explicit connection between this zero wavenumber mode and localized necking
or bulging, and a phase-separation-like evolution of these localized patterns into a
final Maxwell state is described analytically. The effect of material compressibility
on localized pattern formation in soft cylinders is also studied analytically, and
comparisons with recently published numerical simulation results are made.

We then consider the formation of a self-contacting crease on the free surface
of a compressed elastic half-space. This is a highly unique localized pattern since
its inception is an inherently non-linear bifurcation phenomenon. Therefore, unlike
localized bulging or necking, it is undetectable through a linear analysis. We derive
a new analytical bifurcation condition for creasing by reformulating the analysis

of a recent ground-breaking study.
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1.1 Context

The theory of non-linear elasticity provides a mathematical description of soft

elastic material bodies which can undergo large deformations. The development of

the theory in notable works such as Mooney (1940)) and (1948) was largely
motivated by the popularity of rubber in World War II for applications such as

vehicle and aircraft tyres, medical equipment, gas and oxygen masks and clothing.
In more recent times, interest in soft materials such as hydrogels and biological
tissue has intensified, and a knowledge of the response to stress and the bifurcation
behaviour of such materials has become highly desirable. In particular, localized or

periodic pattern formation is a bifurcation phenomena in soft materials which has



2 1.2. Localized pattern formation with zero wavenumber

many useful applications, from the optimization of surface wettability and adhesion
properties to the determination of material properties through buckling-based
metrology. It can also play a prominent role in many biological and physiological
processes; for instance, localized pattern formation has been observed in tunnelling
nanotubes connecting migrating cells (Veranic et al. 2008), and in nerve fibres as
part of the overall neurodegeneration associated with traumatic brain injuries (Kilinc
et al., 2009)) and disorders such as Alzheimer’s and Parkinson’s diseases (Datar et al.|
2019). The attainment of a fundamental understanding of pattern formation and
other bifurcation phenomena in a wide range of soft materials will therefore facilitate
many advancements in the scientific, technological and medical communities. To this
end, there have been many extensions of the classical theory which couple elasticity
with additional effects due to electric fields (Dorfmann and Ogden, [2005), biological
growth (Goriely} 2017)) and surface tension (Liu and Feng) 2012)), among others.

A unifying theme of this thesis is the theoretical analysis of localized pattern
formation in soft materials using non-linear elasticity theory and advanced mathe-
matical techniques. We will study the competition between localized and periodic
pattern formation, as well as the near-critical and fully non-linear post-bifurcation

behaviour of localized patterns, in different contexts.

1.2 Localized pattern formation with zero wavenum-
ber

1.2.1 A prototypical problem

The treatment of localized pattern formation in soft materials as a bifurcation mode
with zero wavenumber has become increasingly prevalent over the last 15 years.
This particular mode is not sinusoidal or constant; the correct spatial variation
of the associated eigenfunction can only be determined through a weakly non-
linear, near-critical analysis (Fu, 2001)). A problem which serves as the foundation

for this area of research is the localized bulging of a hollow tube subject to the
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combined effects of axial loading and internal inflation. Despite many experimental
observations in the past (Mallock|, 1891 Kyriakides and Yu-Chung, 1990)), this
was only recognized as a bifurcation phenomenon with zero wavenumber under the
membrane assumption relatively recently (Fu et al., 2008).

The phenomenon is now well understood to consist of three stages: bulge
initiation, radial growth and axial propagation (i.e. lengthening); see Fig. .

There has been significant attention towards the so-called limiting-point instability

Figure 1.1: Experimental observations of the bulge initiation, radial growth and axial
propagation (lengthening) states in an internally inflated tube of fixed length (Wang et al.,
2019).

which occurs at the maximum of the pressure — volume loading curve. Historically,
the explicit nature of this instability had not been associated with bulging, and
some thought that it corresponded to snap-through (i.e. instantaneous) buckling
(Alexander, 1971)). Interpretations of the bulge propagation stage as a phase-
separation-like phenomenon have also been constructed (Yin, [1977)). To elaborate,
the far right configuration in Fig. can be viewed as two coexisting solid states
with distinct but uniform amplitude connected by a smooth transition region. Thus,
the process emulates more commonly known phase separation phenomena such as
the formation of gas bubbles in a liquid body, say. [Fu et al.| (2016|) demonstrated that,
for a tube of arbitrary thickness under any type of end conditions, the bifurcation
condition for localized bulging is that the Jacobian determinant of the inflation
pressure P and the resultant axial force N as functions of the axial stretch and
the circumferential stretch on the inner surface must vanish. This condition has

exceptional agreement with experimental results (Wang et al.l 2019), and was
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shown by [Yu and Fu| (2022) to be analytically equivalent to the condition for an
axi-symmetric bifurcation mode with zero wavenumber to exist. A connection
between the zero wavenumber bifurcation mode and localized static solitary wave
bifurcation solutions has been established previously through the general theory
of dynamical systems (Kirchgassner, [1982; Haragus and looss, 2010), and more
recently for the inflation problem through a weakly non-linear analysis (Ye et al.,
2020). Earlier linear bifurcation analyses (Haughton and Ogden| [1979a.b)) focussed,
however, on periodic axi-symmetric modes, and the zero wavenumber mode was
thought to correspond to an alternate uniformly inflated state (as is incorrectly
predicted by a linear analysis). Since the revelation of [Fu et al. (2016), many
additional effects such as rotation (Wang et al 2017), double fibre-reinforcement
(Wang and Fu, 2018), bi-layering (Liu et al., |2019) and torsion (Althobaiti, 2022)
have been incorporated into the analysis.

The inflation problem has become prototypical in the sense that it often has a
very similar mathematical structure to other more complicated elastic localization
problems. For instance, through a reformulation of the Jacobian determinant
bifurcation condition for the inflation problem, Fu et al. (2018)) demonstrated that
the bifurcation condition for localized necking in a dielectric membrane under
in-plane mechanical stretching and an electric field is that the Hessian of the total
free-energy function vanishes. The problem of localized pattern formation in soft
cylinders and tubes under axial loading and surface tension can also be very well
understood as a result of the inflation problem, and this will be illustrated over

a substantial part of this thesis.

1.2.2 Elasto-capillarity and localized pattern formation

In fluid mechanics, surface tension is the architect of many fascinating phenomena
from spherical droplet formation to water striding insects (De Gennes et al., 2004;
Bush and Hul 2006). It is also heavily implicated in the famous Rayleigh-Plateau
instability (Plateau, |1873; Rayleighl [1892) where a cylindrical column of fluid breaks

up into a sequence of droplets in order to reduce its surface area, and hence its
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overall surface energy; see Fig. [[.2] It is therefore no surprise that surface tension

is one of the most studied areas of fluid mechanics (Levich and Krylov, [1969).

Figure 1.2: Examples of surface-tension-induced phenomena in fluids. Surface tension
(a) prevents the submergence of certain insects in water (image by Water Science School)
and (b) triggers spherical droplet formation to minimize the overall surface-to-volume
ratio and surface energy of the fluid (image from phys.org). (c) An illustration of the
Rayleigh-Plateau instability in which a cylindrical stream of water from a tap destabilizes
into a chain of spherical droplets (image by N. Sharp).

Whilst the surface tension effect upon fluids is widely appreciated, in solid
mechanics it is often overlooked. In fluids, there exists a tensile surface stress, o,
which opposes surface stretching, and minimizes the surface-to-volume ratio of the
liquid. In simple liquids, o, is a spherical, second-order, two-dimensional tensor,
and can be represented by o, = 71, where the scalar 7 is the surface tension (with
constant magnitude) and [ is the identity tensor. A key difference with solids is the
ability of their surfaces to sustain finite normal and shear stresses. This means that,

in general, the surface stress tensor oy for a solid is non-spherical (anisotropic), and

the surface tension 7 is dependent on the deformation |Gurtin and Murdoch| (1975).

In elastic materials, surface tension operates at the elasto-capillary length scale

7/, where 7 is the surface tension and u the ground state shear modulus (Style

et al. 2017; Bico et al. 2018). For many materials, the shear modulus is large

enough to ensure that this length scale is subatomic, and that surface tension can be
safely ignored in the continuum setting. However, for extremely soft and compliant
materials such as gels, creams and biological tissue, the elasto-capillary length has
an order of magnitude ranging from tens of nanometres to millimetres; at such

scales, surface tension effects on these materials are non-negligible in comparison to
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bulk elastic forces. Given the recent surge of interest in the behaviour, functionality
and development of micro-to nano-scale soft materials for various technological
applications, an understanding of surface tension effects upon elastic materials
has never been more important. Examples of such applications are soft robotics
(Wang et al., 2018)) and the construction of artificial muscles (Qiu et al., 2019)
and other biomedical devices (Cooke et al., 2018]).

Great headway has been made in developing the field of elasto-capillarity, which
concerns itself with the large deformations of elastic materials with bulk and surface
energy. The seminal work in this area can be attributed to |Gurtin and Murdoch
(1975), who derived a general surface elasticity theory based on the principles of
continuum mechanics which accounted explicitly for large deformations; tensorial
quantities of surface stress and strain can be non-linearly related to each other using
this theory. |Steigmann and Ogden| (1997) later generalized this framework to include
the effects of surface bending stiffness. Two-dimensional and three-dimensional finite
element method (FEM) frameworks for non-linear elastic materials under surface
tension have been constructed by [Javili and Steinmann! (2009, [2010), respectively.
These frameworks were implemented in the commercial FEM software |Abaqus (2013))
by [Henann and Bertoldi| (2014]) to investigate various elasto-capillary phenomena.
Further studies have considered the effects of surface stresses on plate bending
(Liu et al., 2017) and elastic materials (e.g. biological tissue) under volumetric
growth (Papastavrou et al., 2013).
1.2.2.1 Soft solid cylinders and hollow tubes

Soft cylinders and tubes are widespread in physiological systems in the form of brain
organoids, nerve fibres, arteries, airways and intestines, for instance. The villification
of the gastrointestinal tract (Shyer et al.; [2013), the closure of pulmonary airways
(Seow et al., [2000) and the gyrification of the brain (Balbi et al., 2020]) are examples
of physiological pattern formations and bifurcation phenomena which, despite the
compliance of the materials they occur in, have predominantly not been treated as the
result of coupled elastic and capillary effects. However, consideration is given to the

surface-tension-induced buckling of liquid-lined tubes as a model for airway closure in
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Hazel and Heil (2005), and insights into the elasto-capillary circumferential buckling
of tubes under biological growth (Riccobelli and Bevilacquay, 2020)) and uniform
pressure and geometric everting (Wang et al., [2021) have very recently transpired.

Soft slender cylinders and tubes have been widely observed in experiments to
adopt a localized axi-symmetric pattern which bears a striking resemblance to beads
on a string; see Fig. Consequently, the pattern is often referred to as beading in
the literature. This phenomenon can occur in nerve fibres (Bar-Ziv and Moses, (1994)
and axons under tension from traumatic brain injuries (Kilinc et al., 2009; Lang
et al., [2017)), and it has also been implicated in neurodegenerative disorders such as
Alzheimer’s and Parkinson’s diseases (Datar et al., [2019). Furthermore, tunnelling
nano-tubes under tension have been observed between migrating cells; these nano-
tubes allow for inter-cellular communications and migration support (Veranic et al.
2008). As shown in Fig. (g — i), the formation of localized axi-symmetric
patterns has also been observed in these nano-tubes. Bead formation has likewise
been observed in hollow tubes which are filled with magnetic fluids (Ménager et al.,
2002), submerged in hydrophilic polymer solutions (Tsafrir et al., 2001)) and under
growth (Hannezo et al., 2012)), and has been implicated in the synthesis of soft
matter nano-tubes (Ma et al.; 2017) which have a variety of physical, biological and
chemical applications (Shimizu et al., [2020)). It is known from Wilkes| (1955)) that a
cylinder or tube under a purely mechanical axial load cannot form a localized pattern.
Instead, it may admit a periodic pattern in the axial direction provided that the
load is sufficiently compressive. Given the small scale and softness of the cylinders
and tubes in the previously discussed experiments, it is plausible that the additional
effect of surface tension is what triggers localized pattern formation in this context.

The beading of an incompressible solid cylinder under axial loading and surface
tension was initially analyzed using non-linear elasticity theory by Taffetani and
Ciarletta, (2015alb) and Xuan and Biggins (2016]). These studies concluded unani-
mously that the preferred bifurcation mode is characterized by infinite wavelength,
or zero wavenumber, in the axial direction. Despite the previously discussed

connections between the zero wavenumber mode and localized inhomogeneous
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bifurcation solutions from the general dynamical systems theory and the inflation
problem, the weakly non-linear analysis conducted in [Taffetani and Ciarletta
(2015b) was centred around seeking periodic solutions, and they did not yield
the quadratic amplitude equation which is typically expected to arise in elastic
localization problems. Furthermore, FEM simulations conducted in |Abaqus| (2013))
by Henann and Bertoldi (2014) suggested that beading is a supercritical bifurcation
phenomenon, but this conclusion would later be challenged.

Xuan and Biggins (2017) and |Giudici and Biggins (2020) highlighted that
beading is a phase-transition-like phenomenon which culminates in a two-phase
state characterized by two sections with distinct but uniform axial stretch connected
by a smooth transition zone. The weakly non-linear analysis of Fu et al.| (2021)
demonstrated that a subcritical localized bulging or necking solution is indeed the
initial bifurcation behaviour, depending on the loading scenario. The connection
between the initial localized pattern and the final “two-phase” deformation observed
by Xuan and Biggins| (2017)) and |Giudici and Biggins| (2020) was also explained both
theoretically and numerically via FEM simulations in |Abaqus| (2013). The post-
bifurcation process was seen to display a similar pattern of initiation, growth and
propagation as is observed in the inflation problem, and the bifurcation condition
for localized necking or bulging (and equivalently for a zero wavenumber mode to
exist) was shown to take an analytical form analogous to the Jacobian determinant
condition in the inflation problem. The beading instability in incompressible solid
cylinders has since been studied dynamically (Pandey et all [2021) and through
the active strain approach (Riccobelli, 2021)).

Theoretical studies of incompressible hollow tubes under the effect of axial loading
and surface tension are far less prevalent. FEM simulations were conducted by
Henann and Bertoldi| (2014) for two separate cases of boundary conditions where the
inner or outer lateral surface is fixed to prevent displacement in the radial direction.
Xuan and Bigging| (2016) studied the bifurcation behaviour of a cylindrical cavity in
an infinite solid, and showed that the preferred mode is again associated with zero

wavenumber. A first attempt at a theoretical investigation of the hollow tube case
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Figure 1.3: Examples of elasto-capillary beading in soft slender cylinders/tubes. (a)
Beading of a shrinking acrylamide cylindrical gel immersed in an acetone-water mixture
Matsuo and Tanaka), [1992)). (b) Beading of soft cylindrical gels immersed in toluene
Mora et al., 2010). (c) Axonal beading due to mechanical trauma (Hemphill et al., [2015).
(d) Beading of nanofibers formed during electrospinning (Fong et al., 1999)). (e) Beading
due to thinning of polymer nanofibers (Sattler et al., 2008). (f) Beading of a single
myelinated fiber teased from a rat sciatic nerve stretched with a weight of 4.5 g (Markin
@, . (g — i) Beading of tunnelling nanotubes connecting migrating cells @
et al}, [2008). (j) Beading of phospholipid tubes filled with a magnetic fluid (Ménager,

et a1.|, .
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was made by Wang| (2020). Surprisingly, an analytical solution to the governing
equation was obtained. This was contrary to expectations since, in the investigations
of Haughton and Ogden| (1979b) into tubes under axial loading and internal pressure,
the boundary value problem could only be solved numerically. There is clearly a need
to resolve this discrepancy and to determine absolutely whether localized or periodic
pattern formation is preferred in the hollow tube case, and how such patterns evolve
in the post-bifurcation regime; this will be the first focus of this thesis.
Localized pattern formation in compressible solid cylinders has also received very
little attention in the literature. This is surprising since, whilst the incompressibility
assumption typically makes the bifurcation analysis far easier, soft hydrogels can
often possess a large degree of compressibility; see (Geissler et al. (1988) and
Chippada et al.| (2010)), for instance. Furthermore, in the case of soft biological
tissue, whilst incompressibility is often assumed due to the high water content of the
material, there is very little supporting experimental evidence for this assumption.
Only (Carew et al. (1968]) has provided evidence that incompressibility is a suitable
assumption when modelling arterial tissue. Very recently, Dortdivanlioglu and Javili
(2022) analyzed the effect of material compressibility on solid cylinders under axial
loading and surface tension via numerical simulations, extending what is already
known for the incompressible case. Numerical simulation predictions for the initial
bifurcation points are presented, and an extensive post-bifurcation analysis tracking
the axial propagation of the localized pattern is performed. The work offers a
different numerical perspective on the existing literature for the incompressible
case, but does not present any analytical results to compare with the numerical
predictions for the compressible case. The second focus of this thesis is therefore
to make use of the similar mathematical structures of the inflation and elasto-
capillary problems and extend the established analytical bifurcation conditions and
post-bifurcation results of |[Fu et al.| (2021) to the compressible case. A comparison
between our theory and the numerical simulation results of Dortdivanlioglu and

Javili (2022) can then be made.
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1.3 Creasing: a unique localized pattern

When an elastic half-space is subjected to a horizontal compression, the formation
of a crease, which we define as an isolated region of self-contact at the material’s free
surface, will occur at some critical load. Whilst creasing is indeed a localized pattern
formation, it is mathematically dissimilar to the localized bulging and necking
phenomena discussed previously since it is a non-linear bifurcation phenomenon
which is disassociated from the zero wavenumber bifurcation mode. Crease formation
is considered one of the most complex and challenging localized pattern formation
problems to tackle theoretically, and it has attracted a wide range of interest in
the non-linear elasticity community as a result.

In physiology and nature, creasing is widespread. For instance, it may be
observed in the form of sulci patterns across the cerebral cortex of the brain,
on the surface of a contorted elephants trunk and in many soft foods and gels

under stress; see Fig. [1.4] However, there are many motivations for studying

(b)

Figure 1.4: Evidence of creasing on the surface of (a) the human brain, (b) a twisted
elephants trunk and (c¢) Liangfen, a northern Chinese delicacy, under compression (Hong

et al} 205).

the fundamental mechanics of creasing aside from the general curiosity stemming

from natural observations. For instance, creases are widely observed in growing

tubular biological tissue (Ciarletta et al., 2014; Razavi et all 2016), and have also

been shown to influence the in vitro behaviour of cells (Chen et al., 2015) and to

mitigate biofouling (Shivapooja et al 2013)). Even as far back as 100 years ago,
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crease formation greatly influenced the quality of photographs produced through
Collotype (Sheppard and Elliott, [1918]).

In the seminal theoretical work of Biot| (1963), a linear bifurcation analysis
showed that the surface of a compressed elastic half-space may develop a periodic
wrinkling pattern with undefined wavelength at the critical stretch A ~ 0.54. A
discrepancy followed some time later when |Gent and Chol (1999) experimentally
observed the formation of creases in bent rubber blocks at the critical stretch
A~ 0.65. A theme ensued where creases were widely observed in experimental
studies of homogeneous elastic bodies under mechanical loading (Ghatak and Das,
2007; Mora et al., 2011)), spatially constrained growth or swelling (Tanaka et al.|
1987; Trujillo et all 2008; Yoon et al., 2010; Dervaux and Ben Amar, 2012) and
electric fields (Xu and Hayward| 2013; [Park et al.| 2013). In contrast, the periodic
pattern formation predicted by Biot| (1963) remained elusive in reality.

Post-bifurcation analyses of Biot’s wrinkling pattern were also formulated (Fu,
1999; |Cao and Hutchinson, [2011). In particular, |Fu/ (1999) considered the uni-axial
compression of an elastic half space with a sinusoidal surface profile imperfection,
and showed that static shocks evolved in the elevated surface profiles at smaller
compressions than Biot’s threshold. This suggested that a solution characterized by
locally large displacement gradients was preferred. Hohlfeld and Mahadevan| (2012)
showed numerically that creasing is indeed a distinct bifurcation phenomenon to
wrinkling, and determined a prediction of A = 0.6474 for the onset of the former; see
Fig. [1.5] To elaborate, wrinkling is a solution where the displacement field relative
to a primary uni-axially compressed state is small. In contrast, the displacement
field of the region affected by a crease relative to the uni-axially compressed state
is large. Moreover, whilst wrinkling is a periodic surface displacement which is
non-local in physical space, creasing is a localized phenomenon which produces
a self-contacting region of the free-surface which ends in a sharp singular tip.
Hence, crease formation is inherently non-linear and thus undetectable through a

conventional linear bifurcation analysis such as the one conducted in Biot| (1963]).
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Figure 1.5: A plot of the crease depth h against the compressive strain e = 1 — A (right)
from |Hohlfeld and Mahadevan (2012). At € = 0.3526 (A = 0.6474), we have the emergence
of a non-zero h, which corresponds to the initiation of a crease. The deformation fields
labelled 1,2 and 3 on the left coincide with the identically labelled points on the solid
blue numerically simulated bifurcation curve on the right.

Further numerical studies (Trujillo et al., [2008; [Hong et al., [2009; [Yoon et al.,
2010; (Chen et al} 2012; Tallinen et al.| 2013) provided bifurcation points for crease
formation which were agreeable with the one found in [Hohlfeld and Mahadevan
(2012)). (Chen et al. (2012) showed that surface tension effects can delay the onset
of creases. Hohlfeld (2013)) then attributed crease formation to the coexistence of
two scale-invariant deformation fields. Jin and Suo| (2015) conducted numerical
simulations of strain-stiffening materials in Abaqus (2013)) by applying the Gent
material model (Gent, 1996), and found that creasing in this class of materials
occurs supercritically. Most recently, |[Yang et al.| (2021) proposed, and also verified
numerically, a perturbation force-based criterion whereby creasing will occur when
the application of a concentrated force to the primary deformed configuration
would produce infinite displacement (when fully non-linear governing equations are
employed). In conjunction, |[Pandurangi et al.| (2022)) conducted a solution branch
following numerical simulation procedure guided by group-theoretic considerations
to study creasing in a functionally graded layer and a thin-film on a substrate layer.

By extending the work in Ciarlettal (2018), |Ciarletta and Truskinovsky (2019))
produced the first analytical prediction of the critical stretch for crease formation.

The central idea is to assume that the effect of crease formation on the material
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sufficiently far away from the crease tip is equivalent to the action of a concentrated
force, and then to use a conservation law associated with the energy-momentum
tensor to determine the critical stretch. This idea is undoubtedly ground-breaking,
but the paper is notably brief with very limited detail surrounding crucial steps in the
analysis. As a consequence, a reproduction of the presented results is particularly
difficult to achieve, and this arguably restricts the level of attention that this
seminal study should receive. The final focus of this thesis is therefore to present a
rephrasing of the original paper with clearer and more precise derivations produced
independently using, in part, slightly different albeit well-justified approaches. It
will be shown that this in turn leads to slightly different results. It is hoped
that this will generate a greater appreciation of the original idea of (Ciarletta
and Truskinovsky| (2019) which may well prove to be the final solution to this

fundamentally challenging bifurcation problem.

1.4 Overview of the thesis

The thesis will be organized in the following manner. As a starting point, we will
present in chapter 2 the underlying theory of continuum mechanics and several
other advanced mathematical techniques which play a pivotal role in our research.
Chapters 3 through 5 contain a series of systematic studies into the bifurcation
behaviour of soft incompressible hollow tubes under various elasto-capillary-based
loading types and boundary conditions. These chapters are based, respectively,
on analysis which has been published in Emery and Fu (2021a,bjc). Chapter
3 formulates conjectured analytical bifurcation conditions for localized pattern
formation in these tubes based on known results for the prototypical inflation
problem previously discussed. A linear bifurcation analysis is also performed
to determine if an axi-symmetric pattern formation associated zero wavenumber
or strictly positive wavenumber is favoured. An initial connection between the
zero wavenumber bifurcation mode and localized pattern formation is made. In

chapter 4, we investigate circumferential buckling modes and the competition
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with the axi-symmetric bifurcation modes studied in chapter 3 to determine the
overall preferred bifurcation behaviour. Chapter 5 finally focusses on the scenarios
where the axi-symmetric zero wavenumber mode is favoured. A weakly non-linear
analysis is conducted to verify explicitly that this bifurcation mode corresponds
to a localized pattern formation, and to determine whether the localized pattern
arises subcritically or supercritically. Although the corresponding fully non-linear
post-bifurcation behaviour is investigated initially through FEM simulations, it will
be shown, remarkably, that the entire bifurcation process which the tube undergoes
can be understood analytically. In chapter 6, we use the analytical tools established
in chapters 3 through 5 to study elasto-capillary-based localized pattern formation
in compressible solid cylinders. Comparisons between our theory and newly emerged
numerical simulation results are made. The paper associated with this chapter
(Emery} 2023)) is currently under peer review. Chapter 7 presents a theoretical
study of crease formation in a compressed elastic material based on the seminal
idea of |Ciarletta and Truskinovsky (2019). Conclusions and perspectives on the

entire body of research are finally offered in chapter 8.



16



Mathematical Preliminaries

Contents
2.1 Introductionl. . . . . . . . . ... Lo 18
[2.2  Theory of continuum mechanics|. . . . . . .. ... ... .... 18
221 Kinematics . . .. ... ... L oL 18
[2.2.2  Balance laws and field equations] . . . . .. ... .. .. 22
[2.2.3  Constitutive equations| . . . . . . . ... ... ... ... 25
[2.2.4  Hyperelastic materials| . . . . ... ... ... ... ... 28
[2.2.5  Strain-energy functions| . . . . . . ... .. ... 29
(2.3 The incremental equations|. . . . . . . ... ... ... ... .. 31
2.4 Mixed coordinate stream functions for isochoric transformationsl 34
2.4.1 Three-dimensional Cartesian coordinates/. . . . . . . . . 35
[2.4.2  Cylindrical polar coordinates] . . . . . . ... ... ... 36
[2.5  Variational principles and conservation laws| . . . . . . ... .. 38
[2.5.1 The principle of stationary potential energy| . . . . . . . 38
[2.5.2  Conservation laws in non-linear elasticity] . . . . . . .. 40
[2.6  Variable-coefiicient linear eigenvalue problems|. . . . . . . . .. 43
2.6.1 Determinant method| . . . . . . . . ... ... ... .. 43
[2.6.2  Compound matrix method| . . . . ... .. ... ... .. 45
[2.7  Weakly non-linear analysig|. . . . . .. ... ... ... ... 48

17



18 2.1. Introduction

2.1 Introduction

In this chapter, we begin by presenting the classical theory of continuum mechanics
which underpins our research. Specifically, we discuss kinematics, balance laws
and field equations, constitutive equations, hyperelastic materials and strain-energy
functions. For a complete accounting of the fundamental concepts of continuum
mechanics, we refer the reader to Ogden (1997) and Chadwick (1999). We then
move on to summarizing further advanced mathematical techniques employed over
the course of the thesis. To elaborate, we cover: the incremental equations governing
infinitesimal perturbations of a finitely deformed elastic body; a mixed coordinate
stream function approach to satisfying material incompressibility; variational
principles and conservation laws; numerical techniques for solving variable-coefficient
linear eigenvalue problems; and a perturbation approach to weakly non-linear

analysis in the context of non-linear elasticity.

2.2 Theory of continuum mechanics

2.2.1 Kinematics

Consider an elastic material body with an undeformed reference configuration By
and a deformed current configuration B.. A representative material particle in
By and B, has the position vector X and «, respectively, and we may define the
injective mapping function x : By — B, to describe the deformation of the material

1

body. The vector function x and its inverse x " are defined through

x=x(X,t) and X =x'(=,1), (2.1)

where ¢ denotes time; see Fig. 2.1} For any coordinate system, the differentials
of X and x, dX and dx, may be defined as follows:

X
X = gSAdSA =GadSy and dx = gzdsi = gidsi, (2.2)
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where S4 and s; are the coordinates pertaining to X and «, respectively, G4 and
g; are the associated covariant vectors and Einstein’s summation convention over
repeated indices is employed. We may also introduce the contravariant vectors

G* and g’ through

GA . GB = 5AB and qg; - gj = 6ij7 (23)
where (5@' = ’ 1 Z ] s (24)
0, if i#£7

is the Kroenecker delta function.

F=Gradx

7

~

F~1 = X
B, grad B.

Figure 2.1: A schematic of the reference configuration By and the current configuration
B..

The deformation gradient tensor F' underpinning the analysis of local defor-
mation and motion is expressible through

Jz

de = FdX, where F =Gradax = 95,

® G4, (2.5)

with Grad denoting the gradient operator with respect to the coordinates in By
and ® the tensor product between two vectors. Note that F' is an invertible

tensor, and we have that

0X
F7!' =gradX =
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where grad is the gradient operator with respect to the coordinates in B.. When
a three-dimensional Cartesian coordinate system is adopted, the position vectors

X and x are expressed generally as follows:
X=X,E, and x=uze,, (2.7)

where (E4) and (e;) are the associated orthonormal bases with i, A =1,2,3. The

corresponding deformation gradient is given by

F: =
0Xa 0Xa

e, ® FE,. (2.8)
In cylindrical polar coordinates, the position vectors X and @ are expressed as
X =REp+ZE; and x=re,+ ze,. (2.9)

In terms of the orthonormal bases (Eg, Fo, Ez) and (e,, ey, e.), the corresponding

deformation gradient can be shown to take the following form:

or 1 or or 06 r 06
F=_"—e®Ep+ — E E —
8Re® R—l—Ra@er@ @—l—aZeT@ Z+raReg®ER+Ra@eg®E@
00 0z 1 0z 0z
+T8789®EZ+3R62®ER+§(9@€Z®E®+aZeZ@EZ (2.10)

Let dV and dv denote infinitesimal volume elements in By and B,, respectively.

It can be shown directly from (2.5)); that the following relation holds:
dv=JdV, where J=detF # 0; (2.11)

see (Chadwick (1999, pp. 60-62). Thus, the quantity J characterizes the change
in volume of an infinitesimal element due to the effected deformation, and it is
strictly non-zero under the assumption that material cannot be destroyed. If a
material is incompressible, its volume remains unchanged under the deformation

By — B., and hence the following constraint of i¢sochorism holds:
det F = 1. (2.12)

Suppose also that dX; and dX, are two arbitrary line elements at an arbitrary

point on a material surface in By. Furthermore, let N be the outward unit normal
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to the surface at this point and let dA be the area of the parallelogram spanned
by dX; and dXs. Then, we have

nda = J(F )T NdA, (2.13)

where n and da are the images of N and dA (respectively) in B,, and a superscript
T denotes transposition. Equation is more commonly known as Nanson’s
formula (Chadwick, 1999, pp. 60-61), and measures the change in area of a material
surface element in a body under deformation.

Since the deformation gradient F' is invertible, it has the following unique right

and left polar decompositions (Chadwick, 1999, pp. 33-35):
F=QU =VQ, (2.14)

where U and V' are positive-definite symmetric right and left stretch tensors (respec-

tively) and @ is a proper orthogonal or rotation tensor which possesses the properties

RTQ=QQ" =1 and detQ=1. (2.15)

It is known from matrix theory that any symmetric tensor possesses three real
eigenvalues and an associated orthonormal set of eigenvectors; these tensors are
uniquely determined by their eigenvalues and eigenvectors. For instance, U and

V' may have the spectral representations

U= 23: Xilp;®p;) and V= 23: i@ @ q;), (2.16)
i=1 =1

where \; are the eigenvalues (or principal stretches) of U and V| and p; and q; = Qp;
are associated the eigenvectors. From the polar decomposition ([2.14]); we deduce
that the local deformation of a material body about a representative particle is
induced by first applying stretches ); in the principal directions of U, followed
by a rigid rotation given by ). The same is true for the polar decomposition
2, except we apply the rigid rotation of the body first followed by stretches

in the principal directions of V. The right and left Cauchy-Green strain tensors

are then given respectively by

C=F'F=U*> and B=FF'=V? (2.17)
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and it is noted that both C' and B are symmetric tensors. It follows immediately

from (2.16) that
3 3
C=> XNp;®p) and B=3 N(q®q) (2.18)
i=1 i—1

We may also define the following three principal invariants of B (or C):

I =tr B =X+ X} + A3,
1
I = 5(112 —tr B?) = A\A3 4+ A3A3 + AIAS, (2.19)

I3 =det B = J? = A\]A\3);.

The velocity gradient L of a material point x is given by
L =gradv, where wv=a, (2.20)

and a superimposed dot denotes the material time derivative. Using ([2.20]) and
the identity Gradv = (grad v) F, it is straightforward to show that

F= gtF = gt(}rada: = Gradv and LF = (gradv)F = Gradv, (2.21)
and hence

F =LF. (2.22)

Alternatively, we can consider the decomposition L = D+W , where D is a symmetric
rate of strain tensor and W is a skew-symmetric spin tensor. As their names suggest,
D and W measure the rate of change of stretch and rotation (respectively) as the

material body passes through its current configuration.

2.2.2 Balance laws and field equations
2.2.2.1 Conservation of mass

Let po(X) and p(x,t) denote the mass densities of the material body in the reference

configuration By and the current configuration B,., respectively. Conservation of
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mass requires that mass in a material body must not be created or destroyed under

deformation. Mathematically, we have that
podV = pdv. (2.23)

On making use of ([2.11)), the relation (2.23) becomes
po = Jp. (2.24)

Then, on differentiating (2.24) with respect to ¢ and using the identity J =
Jdivv (with div being the divergence operator in B.), we obtain the spatial

equation of continuity
p+ pdive = 0. (2.25)

For incompressible materials, J = 1 and hence the density p = py is constant.

In this case, (2.25) reduces to

dive = 0. (2.26)

2.2.2.2 Principle of linear momentum

The principle of linear momentum states that the rate of change of the total linear
momentum is equal to the resultant force acting on the body. Thus, if the body is
under no external forces, the total linear momentum of the body should remain
constant. Let Ry and R be arbitrary material regions in the reference and current
configurations, respectively. Also, let b denote the body force acting on R and let
t = t(x,n) be the vector field representing the force per unit area acting on an
arbitrary material surface OR with outward unit normal n in the region R. Indeed,
t is commonly referred to as the traction vector, and is assumed to be a continuous

vector function of & and m. Then, the principle of linear momentum states that

d
@ d :/ bd / tda. 9.97
dt/va YT R v or (2.27)

With use of (2.11) and (2.24]), the integral on the left-hand side of (2.27) can

be reformulated as such:

d d d
@ d zf/ Jav = [ £ dV:/ sdv. 9.98
dt/va R Ry G = PP (2.28)
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Then, on substituting the identity (2.28) back into ([2.27]), we obtain

/pi)dv:/ pbdv+/ tda. (2.29)
R R OR

2.2.2.3 Equations of motion and stress boundary conditions

Cauchy’s Theorem (Ogden, [1997)) states that the tractions t acting on a material sur-
face OR with outward unit normal n in the current configuration can be related to the

aforementioned normal through the second-order tensor field o = o(«, t) as follows:
t=o0'n. (2.30)

The tensor o is known as the Cauchy stress tensor, and it is independent of n.

Upon substitution of (2.30), (2.29) becomes

/ p?')dv:/ pbdv+/ o’'nda. (2.31)
R R R

With use of the Divergence Theorem, the surface integral on the right-hand side
of (2.31) can be converted to a volume integral as such:

Jdo
(952- ’

/ o'nda = / divodv, where dive=g'- (2.32)
aR R

Since the region R is arbitrarily chosen, we obtain the following equations of

motion on substituting (2.32)) into (2.31)):
diveo + pb = pov. (2.33)

Moreover, we may deduce from the principle of angular momentum (Chadwick,

1999, pp. 90-101) that o is a symmetric tensor. That is, the following relation holds:
oc=o". (2.34)

If the material body is in mechanical equilibrium, then b = 0 and ¥ = 0, and the

equations of motion ([2.33)) reduce to the equilibrium equations

dive = 0. (2.35)
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With use of , we can write
o'nda = o" J(F )" NdA = STNdA, (2.36)
where S, defined by
S=JF o, (2.37)

is the nominal stress tensor. The nominal stress gives the contact force in the
current configuration per unit area in the reference configuration. On transposing S,

we obtain a further measure of stress in the first Piola-Kirchhoff stress tensor 7, i.e.:
m=25" (2.38)

The equations of motion (2.33) and the equilibrium equations ([2.35) can be

respectively defined in By in terms of S as follows:
DivS + pob = pp and DivS =0. (2.39)

Let 0By be the portion of the boundary in the reference configuration where the

traction is prescribed to be ¢y, say. Then the following boundary condition holds:
ST N|as, = to. (2.40)

We assume that the material body is subject to dead-loading, by which we mean that
the resultant of the traction %, is held fixed throughout the deformation By — B,; see

Fu and Ogden| (2001). With use of (2.36)), the associated boundary condition in B, is

dA

T
o nlop, = toida’

(2.41)
where 0B, is the image of 0By in B,.

2.2.3 Constitutive equations

The governing equations (2.33)) — (2.34]) and boundary conditions ([2.41)) are valid for

any continuum. The constitutive equations allow us to distinguish between the many

types of continua, such as inviscid fluids, Newtonian viscous fluids, non-Newtonian
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fluids, elastic materials and plastic materials. In order to facilitate our later work,
we need to specify these equations to an elastic material in mechanical equilibrium.
Currently, we have six dependent variables which are specifically the six distinct
components of o. However, there are only three equilibrium equations in ([2.35)).
Thus, in order to close the system, we require three further constitutive equations
which relate o to the deformation. In elasticity, we assume that the Cauchy stress

depends solely on the deformation gradient F' through the relation
o =g(F), (2.42)

where ¢ is a symmetric tensor-valued function. However, when the aim is to find
unique solutions to well-posed problems in elasticity, (2.42) is too general to make
headway. To overcome this, we may impose various principles onto the constitutive

relation (2.42)) which restrict the multitude of mathematical forms it may take.
2.2.3.1 Principle of objectivity

The principle of objectivity (or material frame-indifference) states that the response
of a material (and hence the constitutive equation (2.42))) is invariant with respect
to any equivalent pair of observers. In the case of an elastic material, the principle

of objectivity requires that the symmetric tensor-valued function ¢g defined in

(2.42) satisfies the condition

9(QF) = Qg(F)Q", (2.43)

V proper orthogonal rotation tensors Q.

2.2.3.2 Isotropic materials

An elastic material is said to possess a symmetry if its constitutive response is
invariant to changes in the reference configuration By (e.g. through a rotation or an
in-plane reflection). A transformation of the reference configuration from By to 5y,
say, is equivalent to multiplying F' from the right by P, where P is the deformation
gradient corresponding to By — Bj. Thus, if the constitutive response of a material

is invariant with respect to the transformation By — B, then

g(FP)=g(F) V arbitrarily invertible F. (2.44)
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The set of all P satisfying ([2.44)) forms a group called the symmetry group of the mate-
rial.
A material is said to be isotropic if its symmetry group is the set of all orthogonal

tensors (). Therefore, isotropy requires that
g(FQ) =g(F) V orthogonal Q. (2.45)

Physically, isotropy means that the material’s properties and constitutive behaviour
are independent of direction. On replacing F' in the left-hand side of (2.45) with

the left polar decomposition V R and setting Q = R?, we obtain
g(V) = g(F). (2.46)
Given (2.17), we deduce from that
9(F) = g(B"?) = h(B), (2.47)

where h is a symmetric tensor-valued function. With further use of the objectivity

condition and the isotropy condition , we determine that
g(RFQ) = g(RF) = Rg(F)R" = Rh(B)R". (2.48)
Then, on setting Q = RT and making use of the identity , becomes
h(RBR") = Rh(B)R”, (2.49)

and (2.49)) demonstrates that h is an isotropic tensor function of B. It then follows

that the function A, and hence the Cauchy stress o, admits the representation
o =h(B) = nol + B + B, (2.50)

where 19, 71 and 7, are scalar functions of the principal invariants (2.19)) of B, and

I is the identity tensor; see Truesdell and Noll (2004)).
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2.2.4 Hyperelastic materials

A material is said to be hyperelastic if there exists a strain-energy function W (F')
measured per unit volume in the reference configuration which satisfies the con-

stitutive relation
W = Jtr{oL}. (2.51)

With use of the identity (2.22)), we may deduce

o OW OF. [OW .| fOW B ow
W_@EA o —tr{aFF}—tr{aFLF}—tr{FaFL}. (2.52)

Then, on comparing (2.51)) and (2.52), and using the fact that L is arbitrary
for any given F', we obtain the following relationship between the Cauchy stress

and the strain-energy function:

o= JlF(?;/, where 0y = JlFZ-AaaFM;. (2.53)
j

Also, by applying (2.37), we may determine the following relationship between

the nominal stress S and W:

S:a—W where SAi:g]I?/Z'

o (2.54)

When specifying to an incompressible material, the relations (2.53)) and (2.54)

must be modified as such:

oW ow

where p is the Lagrangian multiplier enforcing the incompressibility constraint
which may be interpreted as kinematic pressure. To elaborate, we may define the
scalar field tr(o D) as the stress power per unit volume in the current configuration,
and this constitutes the rate of work done by the stress due to the stretching of
material volume elements. Loosely speaking, the term involving p in the above
expression for o is a workless constraint stress in the sense that tr(—pID) = 0, and

this result emerges directly from (2.12)); see Chadwick| (1999, pp. 145-147).
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Isotropy requires that W depends on F' through B. Given the spectral represen-
tations (2.18) and the expressions (2.19)), it follows that W may be expressed as a
function of the three principal invariants of B in this case. It then follows from (2.53])

that the Cauchy stress for a general isotropic hyperelastic material takes the form
o = 2L Wil + 21, ' {W, + LW,} B — 21, VW, B2, (2.56)

where W; = 0W/0I; for i = 1,2,3. When the material is incompressible also,
the third invariant I3 = 1 and W depends only on /; and I,. In this instance,
the constitutive equation ([2.55); becomes

o=2WB —2W,B™' —pl. (2.57)

2.2.5 Strain-energy functions

In the previous section, we stated that the constitutive behaviour of isotropic,
hyperelastic materials may be underpinned by a strain-energy function of the
form W = W(Iy,1,13). When the material is also incompressible, the most
general strain-energy function is of the form W = W(I;, ;). In the following,
we present some examples of strain-energy functions of these forms which are
widely used in the literature.

2.2.5.1 Neo-Hookean material model

The incompressible neo-Hookean strain-energy function depends only on the first

invariant I; and is defined through
1
W) = 5#(11 -3), (2.58)

where u is the ground state shear modulus of the material. Although the model
gives reasonable agreement with experimental results at small strains, it provides
less accuracy when deformations are large (Ogdenl [1972)). In spite of this, it is
highly popular in the non-linear elasticity community due to its simplicity.

For a compressible neo-Hookean material, two widely used models in the literature

are the so-called quadratic and logarithmic strain-energy functions. These are
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defined, respectively, through

1 1. (1
W, Iy) = Su(h = 3= 2log J) + 55 {2(J2 — 1) —log J} , (2.59)
1 1.
and W(l,I3) = §,u(]1 —3—2logJ) + 5A(log J)?, (2.60)
2 2v
h A= 2.61
where 15, (2.61)

is the first Lamé constant and v € [0,1/2] is Poisson’s ratio. Both models
and have been shown to give good agreement with experimental data; see
Horgan and Saccomandi (2004) and the references therein. It is noted that the
material becomes incompressible in the limit ¥ — 1/2 and fully compressible
in the limit v — 0.

2.2.5.2 Mooney-Rivlin material model

The Mooney-Rivlin material model generalizes the neo-Hookean model (2.58)) by

incorporating the second invariant I,. It takes the form
1 1
W([la [2) == 5/11([1 -3 -+ 5#2([2 - 3), (262)

where p; and gy are constants. The model was first proposed by Mooney] (1940)) and
developed further by [Rivlin| (1948). Unlike the neo-Hookean model, the Mooney-
Rivlin model is fairly accurate at moderate strains and provides physically adequate
results provided that p; > 0 and ps < 0.

2.2.5.3 Gent material model

Gent| (1996) proposed the following strain-energy function for incompressible

hyperelastic materials which depends only on the first invariant I;:

1 I
W(I) = —Spdyln (1— y 3), (2.63)

m

where J,, is a positive constant representing the maximum extensibility of the
material. To elaborate, in the limit J,, — I; — 3 the material becomes completely
rigid, and in the limit J;,, — oo the Gent model reduces to the neo-Hookean model

(2.58). The theoretical predictions provided by the Gent model have been shown
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to be accurate at larger strains, and the additional benefit of its simplistic form
means it is a highly popular model in the literature. A compressible version of

the Gent model may be written as

L -3

Wi(n, 1) = -4 {Jmln (1 - ) + 21nJ} + ;X {;(ﬁ —1) —log J} . (2.64)

m

2.2.5.4 Gent-Gent material model

One downside to the Gent model was highlighted by Pucci and Saccomandi (2002)
who, on comparing with the classical experimental stress-strain data in Treloar
(1944) for rubber under extension, showed that it loses accuracy in the small-to-
moderate strain regime. To overcome this, they modified by adding an extra
term which involves the second principal invariant I, and a new material constant

A. The resulting Gent-Gent material model takes the following form:

1 L -3 I
W (L, Io) = = 5 plln (1 - 1] ) + Aln (;) : (2.65)

m

and its fitting with experimental data in the small stretch regime has been shown
to have a much smaller relative error than the Gent model counterpart (Zhou et al.,

2018).

2.3 The incremental equations

The method of superposing incremental deformation fields onto large deformation
fields (otherwise know as the small-on-large theory) is widely used to analyze the
linear bifurcation behaviour and stability of elastic solids under finite strain. The
approach was originally developed by (Green et al.| (1952)) and Pipkin and Rivlin
(1961). For a complete overview of the method of incremental deformations, we
refer the reader to [Fu and Ogden| (2001) and |Ogden| (2007)). In the following, we
give a summary of the stress-based linearized incremental equations governing

infinitesimal perturbations of a finitely deformed elastic material.
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To begin, consider an incompressible, isotropic, hyperelastic body and assume it
possesses an unstressed reference configuration By and a finitely deformed configu-
ration B.. It is the stability and bifurcation behaviour of the latter configuration
which we are interested in studying. To this end, suppose that we further subject
B. to a small-amplitude perturbation which produces a resulting configuration B;
see Fig. 2.2 The question we then ask is: what are the equations governing

such incremental perturbations?

F =Gradzx OF =TF
~~ A ~~ A

By B, B;

Figure 2.2: A schematic of the reference configuration By, the finitely deformed
configuration B, and the resulting configuration 5;.

The position vector of a representative material particle in By, B, and B; is

denoted by X, (X)) and &(X,1t), respectively. We may then write
T =x(X)+u(z,t), (2.66)

where u is the incremental displacement vector field associated with the deformation
B. — B,. Denote by F and F' the deformation gradients corresponding to By — B,
and By — By, respectively. For the remainder of this section, a bar and a tilde
signifies association with the deformations By — B, and By — B, respectively. On

making use of (2.66) and the identity Grad w = (gradu)F, we have that

F=CGrade and F=Grad&=(+1)F, (2.67)
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where I' = grad w is the displacement gradient tensor. Given (2.67)), the incompress-

ibility constraints associated with By — B, and B, — B; take the respective forms
J=detF=1 and trI'=0, (2.68)

with the latter presented in its linearized form. Then, with use of (2.38) and ([2.55)),
the nominal stress tensors S and S associated with the deformations By — B, and

By — B, (respectively) are found to take the form

. oW . oW )
S=22|  —pF' and §=22 | —jF! 2.69

where p and p = p + dp are the Lagrangian multipliers in B, and B;, respectively,
and Jp is the incremental pressure. Under the assumption that the superposed incre-

mental displacement is static, the equilibrium equations in By and B, then become
DivS=0 and DivS =0, (2.70)

respectively. Through simple subtraction of (2.70]); from (2.70))2, the incremental

equilibrium equations in B, can be written in the following form
Div{S - S} =div{J'F(5-95)} =0 (2.71)

Through inspection of ([2.71)), it is convenient to introduce an incremental stress

tensor x through

=7 (5-8) F", (2.72)
so that (2.71) becomes
divx? = 0. (2.73)

On expanding (2.69), to leading order around F = F, the expansions for the

components y;; of x are found to take the form

Xij = AjirLr +pLji = 0p Oi, (2.74)
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where the first-order instantaneous elastic moduli Ay, are defined through

- - O*W

e = FiaFlp——— 2.75
A] lk JA lBaFiAaFkB ( )

F=F
For the special case where the strain-energy function W depends only on the first

invariant I, the above moduli are given by

Ajitr, = 2{2W" (1) By By + W'(L) 6 By1 } , (2.76)

where B = FFT and I; = trB.

2.4 Mixed coordinate stream functions for iso-
choric transformations

Previously, we introduced the concept of incorporating a Lagrangian multiplier p,
interpreted as pressure, into the expression for the Cauchy stress o in order to enforce
the constraint of incompressibility . An alternate approach was proposed
initially by Rooney and Carroll (1984)) who, in the context of two-dimensional
deformations in Cartesian coordinate space, realized that incompressibility can
be satisfied exactly by re-expressing the displacement components in terms of a
stream function. The use of the term stream function in this context originates from
an analogous formulation applied to the two-dimensional Stokes flow (Batchelor,
1967, pp. 75-79). The distinction is that the stream function we seek is defined
in terms of mized coordinates. That is, it depends on coordinates both in the
reference and current configurations.

The work of Rooney and Carroll (1984) was later extended by (Carroll (2004) to
the three-dimensional case, and the solutions of the incompressibility constraint were
expressed implicitly in terms of two stream functions restricted by two admissible
conditions. However, Ciarlettal (2011)) was able to define a generic transformation of
n-dimensional coordinates using a single mixed coordinate stream function. Many
recent studies of important problems in non-linear elasticity have adopted this

stream function formulation. Notable examples are the analysis of periodic surface
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pattern formation in soft materials (Ciarletta and Ben Amar, 2012a)b; (Ciarlettal,
2013; |Ciarletta and Fu, 2015; |Ben Amar and Bordner, [2017) and the elasto-capillary
localized beading of soft solid cylinders and tubes (Taffetani and Ciarlettal, 2015a;
Wang), 2020; |Fu et al., 2021; [Emery and Fu, 2021a,c). In the following, we summarize
the main ideas of the stream function approach given in (Ciarletta (2011) for both

Cartesian and cylindrical polar coordinate systems.

2.4.1 Three-dimensional Cartesian coordinates

We begin by considering a transformation of three functions z; = x;( Xy, Xs, X3)
of three variables X, Xy and X3, where ¢ = 1,2 and 3. Assuming that this
transformation describes a large deformation from a reference configuration By to a
current configuration B,, the constraint of incompressibility takes the form

_ Ox;
J = det {8XA} 1. (2.77)

The main idea is to simplify (2.77) by introducing an intermediate configuration
B, defined through the basis vectors (E;, E, e3), say. To this end, we define

the following transformations:
1= fi(Xy, Xo,x3), @2 = fo( Xy, Xo,3), Xz = f3(X1, Xo, 23), (2.78)

and a multiplicative decomposition of the deformation gradient F' = F} F, can then
be imposed; see Fig. [2.3] Tt can be shown that the deformation gradients F; and
F5 mapping B,, — B. and By — B,,, respectively, take the following forms:

oy oy 0, 0o 0o
N =— E E E E
1= 8X161® 1+3Xel® 2+8361®e3+8Xe2® 1+8Xe2® 5
0xs
+7a e ®e3+e3R es, (279)
T3

0z 013 03
Fr=F FE FE FE FE FE FE 2.80
o= Qb+ Ey® 2+8X€3® 1+8X263® 2+(‘9X363® 5. ( )

We then assume that there exists a stream function ¢ = ¢(X7, Xs, 3) such that

D
8X28x3 ’

oAt

X (2.81)

fi=

fo=
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F - F1F2

By /\ B,

B,

Figure 2.3: A schematic of the reference configuration By, the mixed coordinate
configuration B,, and the current configuration B..

Given ([2.78)) — (2.81), the incompressibility constraint det F' = det F det F, = 1 re-

duces to

3 2 3 3

Ors  \0X10X2015)  0X20130X2013
Finally, on integrating (2.82]) with respect to x3, we obtain

8390 2 83()0 63@ .
b= / { <3X1<9X26‘x3> T OX2014 0X 20 drs + f3(X1, X5).  (2.83)

2.4.2 Cylindrical polar coordinates

We now consider a reference configuration By and a current configuration B, defined
by the cylindrical polar coordinates (R,©, Z) and (7,0, z), respectively.

2.4.2.1 A general axi-symmetric transformation
Suppose that the mapping By — B, is enforced through the variable transformations

r=r(R, %), 0=0, z=zR,2). (2.84)
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We then let
= .gl(Rv Z)a Z = 92(R7 Z)a (285)

and suppose also that there exists an intermediate configuration B, defined through
the basis vectors (Er, FEg,e.). Then, we can decompose the deformation gradient
corresponding to (2.84)) multiplicatively through F' = F} F, such that F : B,, — B.
and Fy : By — B,,. Specifically, we have

0 0 9
Fy = —a;er ® Er + a—Zer Re,+ %ee ® Eeo + %ez ®Erp+e. ®e., (2.80)
Fy= En® Ep+Eo® Eo+ e, En+ e, 0 E (2.87)
2 = LR R e T 5p¢: RT 576 z- ‘

It follows from (2.86)) — (2.87) that the incompressibility constraint det F' = 1

takes the simplified form:

rdz [ or Or 0z
—— 2.88
ROZ {8R 0z GR} (2:88)
Now, with use of (2.84)) and (2.85]), we deduce that (2.88)) is equivalently
-1
g1 (9g21)  Og dga 0 (1 2)
JL (Y92 = - =1. 2.89
R(é)z) OR R<az) oR \ 271 (2.89)
We may then introduce a mized coordinate stream function ¢ = ¢(R, z) through
(‘9925 1o 1
2 = _— =
G =25"=20: 02=pop=p0R (2.90)

such that the condition (2.89)) is automatically satisfied. Here and hereafter,
a comma in the subscript is used to denote partial differentiation with respect

to the implied coordinate.

2.4.2.2 A class of non-axi-symmetric transformations

Alternatively, suppose that the mapping By — B, is enforced through the variable

transformations
=r(R,0), 60=0(R,0), z=cZ (2.91)
where ¢ is a positive constant. Then, let

— (R,0), ©=hy(R,0), (2.92)
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and suppose that there exists an intermediate configuration B,, defined by the
basic vectors (Eg, ey, Ez). Then, we can decompose the deformation gradient
corresponding to multiplicatively through F' = F} F, such that F : B,, — B.
and Fy : By — B,,. Specifically, we have

or 1 or r 00
F = @er ® Ep + E%e’ ® ey + Eeg ® ey + Tﬁeg R Er+ce,® Ez, (2.93)
00 00
FQ :ER®ER—|—R7€9®ER+769®E@—|—E2®Ez. (294)

OR 00

It follows from (2.93) — (2.94) that the incompressibility constraint det ' = 1
takes the simplified form:

7“89{87“ 67“80}_1. (2.95)

“R06 |0R ~ 000R
With use of (2.91) and (2.92), the condition (2.95) reduces to

h18h1 . C 8 (1h2) _0h2

“Ror ~ RoR\2") = 90 (2.96)

Then, we may introduce an alternate mixed coordinate stream function i =

Y(R,0) through

oY coY ¢

= Zin, (2.97)

hi=2—" =2 hy = ———
1=25 =W e=pop =4

so that (2.96)) is is automatically satisfied.

2.5 Variational principles and conservation laws

2.5.1 The principle of stationary potential energy

In the pioneering work of |Noether, (1918), it was proven that for a system of
equations arising from a wvariational principle, any symmetry of this variational
principle gives rise to a conservation law. An elastic material in a state of mechanical
equilibrium conforms to the principle of stationary potential energy.

To illustrate, consider a general three-dimensional hyperelastic material with

reference and finitely deformed configurations By and B,, respectively. Let X and x
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be the position vectors of a representative material particle in these respective config-
urations. Then, the bulk energy £ of the system is given generally by the functional

8 = 5 W(XA,LUZ',Ii’A)dV', (298)
0

where dV is an infinitesimal volume element in By and X4, x; and z; 4 = 0z;/0X 4
(i, A =1,2,3) are the Cartesian components of X,  and F = Grad x, respectively.
For cylindrical or spherical polar coordinates, say, the partial derivatives x; 4 are
replaced by the covariant derivatives x;. 4. The principle of stationary potential
energy states that a deformation x : By — B, is a solution to the equilibrium
equations of the system if and only if the first variation 6€ of £ vanishes for all
variations 0x of &, where & = x(X). Thus, by Noether’s Theorem, the equilibrium
equations 2 must arise naturally from the condition that the functional

is invariant with respect to infinitesimal variations in . On taking the first

variation of (2.98]), we obtain

[ oW ow
0 = 5 | Oz ox; + D a

_ oW ¢ 0 <8W 5%) 0 <8W > 54 iV

5.(5@/{| dV

Bo _6:1:1- Tt 8XA 8.%'1'7,4 - 8XA 6:62-,A
= | [E(W)ox; + DivE|av, (2.99)
where
ow 9 (oW < /s oW
() = - = | =61, . 1
EW) = 5 ~ X, ( 893@/4) and = () < amaxz> (2.100)

Thus, for & to vanish for arbitrary variations in dz;, we must satisfy the Euler-

Lagrange equations
E(W)=0. (2.101)

The equivalence of (2.101)) to the equilibrium equations ([2.39)s will be verified

explicitly in the following sections.
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2.5.2 Conservation laws in non-linear elasticity

A variational integral of the form ([2.98) is invariant with respect to the general

transformations
X = Xa+ela(Xp,x;) + O(?),
vt =z + 2 ¢i(Xp, ;) + O(e?), (2.102)
if VB C By we have
/ WXy, a7 ,)dV = /B W (XA, 5, F)dV, (2.103)

where B’ is the image of B under the transformations (2.102), ¢ is a small parameter
and zj 4, = Ox;/0X). From ({2.102)), we can deduce that

ox' 0X
an = 0pa+ £Dalp + O(£?), 8X§ = 0pa — €DaCp + O(&?),
I Or; c Oz; DaCp + O(e?), (2.104)

X', 0X4  0Xp
where the total derivative operator D, is given by

_ 0, On 0
_6XA 8XA6xl

We also have from ([2.104]) that

0x’
dV' = det ALd
v e{aXB}V’

Dy (2.105)

= det {d4p + eDpCs + O(e7) } aV,
= {1+ tr(eDp¢a) + O(?) } dV,

= {1+ eDuCa+ O} aV. (2.106)

On substituting (2.102)), (2.104) and (2.106) into (2.103) and neglecting terms

of O(?) and above, we obtain

ow . oW
XA " Owia

5/ W (X a, 21, 204)dV + e/ {W@AgA + xi,B@AgB} 4V = 0.
B B

(2.107)
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With use of the relation (2.102),, the first term in (2.107]) is expressible as follows:

8:16,-7,4
On examination of the second integrand in (2.107)), we find

ow ow

WDsCa + aXACA — axi7A$z‘,B@ACB

ow ow ow ow
= WDuCa + X, Ca — @A<m$i,BCB) + @A(m)xi,BCB + mxi,ABCB

ow ow ow ow
= WDyCa + aX Ca — @A(mxi,BCB) + 2, 5CB| oz, E(W)] + mxi,ABCB

ow
= WDaCa + CaDAW — @A(mxi,BCB) — 2, CE; (W)
ow

=Dy (CAW - m%,BCB) — x; sCE(W), (2.109)

where z; ap = 0%2;/0X10Xp, say. Finally, on substituting (2.108) - (2.109)) into
(2.107]), we obtain the conservation law

DivP :@APA == —((ﬁz — IZ,ACA)E(W> = O, (2110)
where Py =W — (¢p; — 2 5CB) ow ) (2.111)
896@,4

2.5.2.1 Translational invariance in x

Consider the transformation
X'y =Xa, 2=z + by, (2.112)
which constitutes a translation in ;. Through comparison with , we have that
Ca=0 and ¢; =d. (2.113)

Then, equation (2.111]) reduces to

ow ow
Py = —§;; =— . 2.114
A 6” 8xi7A 8xj7,4 ( )
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Thus, the conservation law arising from the translational invariance of £ with

respect to x; is

ow
3@-7,4

@APA = _@A ( > = —DivS§ = 0, (2115)

and this is simply the equilibrium equation in the reference configuration which

we defined in (2.39)s.

2.5.2.2 Translational invariance in X

Alternatively, consider the transformation

XA = X4+ 6045, x, = x;, (2.116)

(2

which constitutes a translation in X 4. Then, we have that
CA = (5AB and ¢l = 0, (2.117)
and equation (2.111) reduces to

ow
PA:(SABW—{—(SBCEFZ'C:5ABW+(SF)AB. (2118)

Thus, the associated conservation law takes the form
DsPy=DivE =0, where XY =WI-SF, (2.119)

is the elastic energy-momentum tensor. This tensor plays an important role in
phase transformation problems and in the theory of materials with defects; it has
the physical interpretation of force (or energy release rate) due to the translation
of a defect. For instance, by integrating > around the tip of a crack, we may
obtain the energy released due to an infinitesimal propagation of said crack. For
more information on the elastic energy-momentum tensor, we refer the reader to

Chadwick| (1975) and Eshelby| (1975), and the references therein.
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2.6 Variable-coefficient linear eigenvalue prob-
lems

In a sizeable part of the work presented in this thesis, we study the bifurcation
behaviour of hollow cylindrical tubes. It is well established in the non-linear elasticity
literature that the incremental equilibrium equations associated with hollow tubes
often possess variable coefficients (Haughton and Ogden, [1979b; Haughton and
Orr, 1995), and such equations rarely admit analytical solutions. To this end, we
outline in this section two numerical approaches, the determinant method and the
compound matriz method, which enable us to solve for the eigenvalues of a certain
class of boundary value problems with variable coefficients.

To begin, consider the following two-point boundary value problem:

W _ 4

5, = A8y, asz<h (2.120)
Bl($7£)y = 07 T =a, (2121)
By(z,§)y=0, x =0, (2.122)

where A is a 2n x 2n matrix, and By and By are n x 2n matrices. All three of these
matrices are known functions of the independent variable x and the parameter &.
Furthermore, y is an unknown 2n-dimensional vector function of x. The aim is to

determine values of the parameter £ (i.e. the eigenvalues) for which there exists

non-trivial solutions to the system (2.120) — (2.122]).

2.6.1 Determinant method

Assuming that the matrix By has rank n, we can always find n linearly independent

vectors yM, y@ ... y™ such that
Bi(a,6)y?) =0, where i=1,2,...,n. (2.123)
By using each of these vectors as initial data for y at * = a, we may inte-

grate (2.120) forward from x = a to obtain n linearly independent solutions,
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say yV(z), y?P(x), ..., y™(z), for y. Thus, a general solution of (2.120)) which
also satisfies the boundary condition (2.121)) is given by

y=> ¢y (), (2.124)
i=1
where ¢y, o, ..., ¢, are arbitrary constants. Then, define M (x,&) to be a 2n x n
matrix which takes the form
M(x7€) = |:y(1)7 y(2)7 ct y(n)] * (2'125)

Given ([2.125)), equation (2.124)) can be rewritten as
y=M(,Ee, where c=lci, e ..., 0] (2.126)

It remains to ensure that the general solution ([2.126)) satisfies the boundary condition

(2.122]) at x = b. To this end, we substitute (2.126] into (2.122]) and obtain
By (b, )M (b,€) c = 0. (2.127)

Then, since c is arbitrarily defined, we deduce from (2.127]) the determinantal equa-

tion
det { By (b, )M (b,€)} = 0. (2.128)

We finally iterate on £ until is satisfied; the values of ¢ satisfying ([2.128))
are the eigenvalues of the original system.

An alternate approach is to obtain two sets of n linearly independent solutions,
say yM(2), y?@(2),..., y™(2) and y" (), y"t2(2),..., y*®)(2), by integrat-
ing forward from z = a and backwards from x = b, respectively. We may
then define the following two general solutions to (2.120]) which satisfy the boundary

condition (2.121)) on x = a and (2.122)) on x = b respectively:
n 2n

y=> cy? (@) and y= > cy?(2) (2.129)
i=1 i=n+1

The idea then is to match the solutions (2.129)) at an intermediate point x = d,

where a < d < b. That is, we set

n 2n
SayW@) = Y cy? (@), where z=4d (2.130)
i=1 i=nt1
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Equivalently, we have

N(d,&)e =0, (2.131)
Where N('/L‘7 5) = [y(1)7 y(2)7 ctt y(n)7 y(n+1)7 y(n+2)7 et y(2n)]7 (2'132)
and ¢ = [c1,C2, .-+, Cny —Cpi1, —Cnias - -y —Con]T, With ¢py1, Cpya, .. ., Cop being ad-

ditional arbitrary constants. It then remains to iterate on & until the determi-

nantal equation
det N(d,€&) =0, (2.133)

is satisfied. Clearly, the matching condition (2.133) is dependent on the matching

point d as well as £&. However, the following condition:
d
D(€) = e Ja TAEDE qot N (d, €) = 0, (2.134)

is independent of the matching point + = d, and this can be shown with the

aid of Jacobi’s formula

(Z (det A) = (det A) tr (Cfl‘;lA*) : (2.135)

which holds for any invertible tensor A dependant on z; see |Chadwick (1999, pp.
16-20). The function D(§) is called the Evan’s function and is an invariant of (2.120)).

2.6.2 Compound matrix method

Whilst conceptually simple, the previously outlined determinant method is ill-

equipped to solve systems of the form (2.120) — (2.122]) when the parameter £ takes

particularly large values. In such a case, the eigenvalue problem becomes numerically
stiff in the sense that, as z is increased from a, the solutions yM, y®, ... y®
quickly become linearly dependent due to the dominance of exponentially growing
solutions; see Conte| (1966)) and Davey (1983). To address these issues, the compound
matriz method was introduced by Ng and Reid| (1979alb, |1985)); see also [Lindsay
and Rooney (1992) and Bridges (1999). In the following, we give an outline
of this approach.



46 2.6. Variable-coefficient linear eigenvalue problems

Let y, y@, ™ and y" Yy +2) 4y be the two sets of linearly in-
dependent solutions to (2.120)) as defined in the previous section. Then, the key idea

is to compute the minors of the associated solution matrices M~ and M™ given by
M~ = [y(l), y?, y(”)} and M7T = |yt oM+ y(2")] . (2.136)

The matrices MT each have ?"C,, minors denoted by ¢T, ¢F, etc. To illustrate,
if n = 2, we have

or =y — P, ey =t — P,

2 2) (1 2 2) (1
903—y§)y§:) y§)y4(1)7 804:y§)y:(3) y()yi(’))v

o5 = syl — P, e =8 — P, (2.137)
where y](-i) is the j*" component of y®. Then, with the aid of the property
dy® .
=A © 2.138
I (=, &)y, (2.138)

we may compute the associated expressions for the first derivatives of ¢7, ¢,

etc. For instance, for n = 2, we may deduce

_ 1 2 2 1
der  dyi” (3 e dys” B dy? 1) oydy!

de  dz %2 Y1 dx dx Y2 Y1 dr ’

4
= Z Al]y(l)yQ + yl Z A2jyj Z Ay Jy] (1) - y§2) Z Azjyj(l)’
=1

7j=1

= Anpy — Azpy — Aups + Aoy + Aszpy + Angps . (2.139)

On repeating this process for the other five minors, we arrive at the following

compound matrix equation:

d:; = Az, &)™, a<z<b, (2.140)
where ¢~ = [p1, v, ..., v5]|T and
(A1 + Ag Agz Agy — Az —Ay 0 |
Asy A+ Asg Az Ar 0 — A
A Ay Ayz Ay + Ay 0 A Ays
— Az A 0 Agy + Aszs Azy —Agy
—An 0 Ag Ay3 Ago + Ay A3
| 0 —An Asy — Ay Asy Aszz + Aya
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The boundary conditions for ¢~ at 2 = a can then be obtained from the y{¥,

it =1, 2, ..., n, which satisfy (2.123). For example, we have

o1 (a) = yiud — yuly, (2.141)

where yl(fj) is the j™ component of y{". We may then integrate forward (2.140) from

x = a in order to obtain a general solution for ¢p~. The corresponding general

solution for ¢* can be obtained in a similar manner.

The matching condition (2.133]) may be expressed solely in terms of 7, @3 etc.

through a Laplacian expansion. For example, when n = 2, we may write

gy W

ys oyl

TR S

S R

det N (z,€) = det {[y(l), y® y®) y(4>]} —

n (2 3) @ 1 @ (3) . 4)
Y1

(
Y1 Y3 Ys Y1 Y1 Ys Yo
— . (_1)1+2+1+2 + X (_1)1+2+1+3
gy yd oy g gy
1 2 3 4 1 2 3 4
B IO B IO
1 ) "\ 3 4 9\ 3 4
gy gy sy yd oyl
1 2 3 4 1 2 3 4
B I B IO
( \ (_ _
gy gy )y gyt
Thus, we have that
det N(z,&) = o108 — 0308 +@390F + 0105 — 05 03 + 0507 - (2.142)

It then remains to iterate on & until the condition det N(d, &) = 0 is satisfied, and a
re-expression of this condition in terms of the Fvan’s function as shown previously

in the determinantal approach is still valid.



48 2.7. Weakly non-linear analysis

2.7 Weakly non-linear analysis

In the past, apart from in a select few cases (Sawyers and Rivlin) [1982; [Fu, 1993} |Fu
and Rogerson, 1994} Fu and Ogden, 1999), problems of algebraic complexity confined
researchers to the linear regime when studying the bifurcation behaviour of elastic
materials under large deformations. However, the emergence of powerful symbolic
manipulation software packages such as Mathematica (Wolfram Research Inc., 2021)
has allowed us to overcome such obstacles. This is fortunate since it has long
been understood that linearization techniques are insufficient in capturing the post-
bifurcation behaviour of a material. Many past experimental studies of compressed
plates and thin shell structures found that the experimentally determined critical
load may often be far higher or lower than the theoretical prediction obtained
from a linear analysis, and the critical load may also be drastically altered due to
material or loading imperfections; see Von Karman and Tsien (1939), Cox (1940
and the references therein. In essence, a linear analysis gives only a necessary
condition for which bifurcation can occur, and it fails to yield the amplitude of the
first-order solution. To determine whether the bifurcation solution exists in reality,
what the explicit nature of the solution is and whether it arises supercritically or
subcritically, we must perform a weakly non-linear analysis. This fact was first
realized by Koiter| (1945), and a framework for a perturbation approach to non-linear
bifurcation analysis in the context of non-linear elasticity was later given by [Fu
(2001). Given the focus of this thesis, we illustrate this perturbation approach by
applying it to a simple model problem for which the preferred bifurcation mode
is associated with zero wavenumber.

Consider the model problem

O*u  Ou
@+87]J2+PU_UQZO’ ]y\<1/2, ’$‘<OO,

u(z, +£1/2) =0, (2.143)
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where v is a function of x and y, and P is the bifurcation or control parameter. We
can clearly see that u = 0 is a trivial solution to for any value of P. Our
aim is to determine for which values of P there exists non-trivial solutions for w.

The starting point is to consider the linearized form of and to assume

a solution for u of the form
u= H(y)e* + c.c., (2.144)

where k is the wavenumber in the x direction, H(y) is a function to be determined

and c.c. denotes the complex conjugate of the preceding term. On substitution
of (2.144)) into the linearized form of (2.143)), we find that the function H must

satisfy the following linear eigenvalue problem:

H'(y) +(P—-k)H(y) =0, H(£1/2)=0. (2.145)
There exists two sets of solutions to ([2.145|) which take the form

H(y) =cos(2n — Dwy, P =k + (2n—1)*r%,
and H(y) =sin 2nwy, P = k* +4n’n?, (2.146)

where n € Z". Then, the critical value of P, denoted P.,, is determined from the

lowest branch of (2.146[); (i.e. that corresponding to n = 1):
P =k +7, (2.147)

and is obtained at k = k, = 0, i.e. P, = m°.
In a weakly non-linear analysis, we are interested in the behaviour of non-trivial
solutions to the system ([2.143)) near the critical point P = P... To this end, we

consider the following expansion of P:
P=n?+¢eP, (2.148)

where ¢ is a small parameter and P is a constant of O(1). On comparing ([2.147)) and
(2.148), we observe that k = O('/2). Then, given the presence of the product kx in
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the exponent of the ansatz , it makes sense to introduce a far distance
variable X through
X =&, (2.149)
We also consider an asymptotic expansion for u of the form
u(z,y) = cur (X, y) + 2ua (X, y) + Sus(X, y) + O(4). (2.150)

The idea then is to substitute the expansion (2.150)) into (2.143]). By equating
coefficients of like powers of ¢, we obtain a hierarchy of boundary value problems

to solve. Specifically, by equating coefficients of € and €2, we obtain, respectively:

Llu] =0, wu(X,£1/2) =0, (2.151)
82U1 9
and Llug] = ~ax2 Pruy +uy, us(X,£1/2) =0, (2.152)

where L[u] = 0*u/0y* + mu.
The leading order problem (2.151]) has the particular solution

u (X, y) = C1(X) cos (my) , (2.153)

where C;(X) is the amplitude of the first-order solution to be determined. Then, on
substituting (2.153)) into (2.152));, a general solution to the resulting inhomogeneous

equation is found to take the form
us(X, y) = Dy(X) sin (my) + Da(X) cos (my) + Z(X, p), (2.154)

where the coefficients D; and D, are arbitrary functions of X and Z is a particular

integral given by

cos (2my)}. (2.155)

1 . 1 1
I(X,y) = —%{Ci’ + P1C }ysin (my) + Tﬂ_gcf{l —3

Then, on substituting (2.154) — (2.155)) into the boundary conditions ([2.152)),
we find that Z(X,1/2) = —Z(X,—1/2). From this condition, we obtain the

amplitude equation

Cl+ PCy — ;cf =0. (2.156)
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This equation admits the following standing solitary wave solution:

9 1
Ci(X) = <5, secky? <2 —P1X> . (2.157)

We observe that the solution is valid only for P, < 0, i.e. for values of P less
than the critical value P... Bifurcation solutions with this property are called sub-
critical, and are generally understood to be sensitive to imperfections. We then note
that |C;| = —C;, and hence the solution is a dark solitary wave. If the solution instead
satisfied the condition |C;| = Cy, then we would refer to it as a bright solitary wave.

We note that the solution is a essentially a solitary wave with zero
wave speed. Solitary waves were first observed in the context of water waves by
Russell (1845)), and the associated model equation was first derived by |[Korteweg and
De Vries| (1895) and is nowadays known as the KdV equation. The other simplest
model equation that admits a solitary wave solution is the non-linear Schrodinger
equation (NLSE) which was first derived in |Chiao et al.| (1965)) for propagation of
light in non-linear optical fibers (mathematically the amplitude evolution of wave
trains). The static counterpart of NLSE has been derived to describe the amplitude
variation of periodic buckling modes (Lange and Newell, |1971; Potier-Ferry, [1987)).
In recent decades, buckling of an Euler beam on a non-linear foundation has been
much studied in relation to localized solutions (Hunt et al., 2000)). Such localized
solutions again correspond to amplitude localization of periodic buckling modes.
A huge variety of other model equations have also been derived for a range of
physical processes to incorporate additional effects and/or to describe degenerate
cases. Some of these equations involve higher order spatial derivatives and multi
spatial dimensions, e.g. the Swift-Hohenberg equation for thermal convection (Swift
and Hohenberg), 1977)). We refer to the monograph by |Peletier and Troy| (2001)
for a discussion of some of these equations. Physically speaking, solitary waves
arise from a balance of non-linearity and dispersion, and this balance underpins

all the amplitude equations that admit solitary wave solutions.
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3.1 Introduction

In this chapter, we initiate our investigations into the axi-symmetric bifurcation

behaviour of an incompressible hyperelastic tube under the combined action of

58



54 3.2. Problem formulation

surface tension 4 and a resultant axial force /. We begin by formulating the
problem and deriving the equilibrium equations and three distinct sets of boundary
conditions pertaining to a general axi-symmetric deformation. We then present the
primary axial tension deformation and derive corresponding analytical expressions
for both the dimensionless form of ¥ and A. By drawing upon the well studied
problem of localized bulging in a tube under axial loading and internal inflation,
conjectured bifurcation conditions for localized pattern formation are presented
in terms of these analytical expressions.

After elaborating on the need for further analysis of the problem beyond the
study of [Wang| (2020), we conduct a comprehensive linear bifurcation analysis for
the three sets of boundary conditions alluded to previously, as well as for several
types of loading. From this analysis, we produce a numerical relationship between
the bifurcation parameter and the axial wavenumber, and determine whether the
preferred bifurcation mode is associated with zero wavenumber or a strictly positive
wavenumber. Recall that the former case has been previously been associated with
the emergence of a localized inhomogeneous bifurcation solution. Given this, we
compare our numerical bifurcation condition in the limit of vanishing wave number
with our conjectured bifurcation condition for localized pattern formation in order to
see if they are in agreement. We conclude by presenting a spectral interpretation of

the linear bifurcation analysis and by summarizing the main results of the chapter.

3.2 Problem formulation

Consider an incompressible, isotropic, hyperelastic cylindrical tube with a referential
inner radius R;, outer radius R, and axial half-length L > R,. The reference
configuration By and finitely deformed configuration B, are defined in terms of the
cylindrical polar coordinates (R, ©, Z) and (r, 6, z), respectively. Under a general

deformation By — B,, the referential values R;, R, and L become r; = r;(0, z), ro =



3. Azi-symmetric pattern formation in soft tubes 55

To(0, z) and £ > r,, respectively. The position vectors X and @ of a representative

material particle in By and B, (respectively) are given by
X =RERr+7ZE;, x=re,+ze,, (3.1)

where (Eg, Eg, E7) and (e,, ey, e,) are the orthonormal bases corresponding to
the two previously defined sets of coordinates. More specifically, we assume that

the tube undergoes a general azi-symmetric deformation of the form
=r(R, %), 06=0, z=2z2(R, 7). (3.2)

The deformation gradient F' is then defined through de = FdX and is expressed as

or or 0z 0z
F = FrQF FrQF FE L,QF
—e€. QLEp+ —e, Ly + €9® ®+8Re® R+6’Z

R 5 - e.® E;. (3.3)

The constitutive behaviour of the tube is assumed to be governed by a general

strain-energy function W of the form
W=W (I), (3-4)

where [, is the first principal invariant of the left Cauchy-Green strain tensor
B = FFT ie. I, = tr B. This class of strain-energy functions has been shown to
be suitable for many different materials under tension (Wineman, 2005), and in
the illustration of our results we will adopt both the neo-Hookean material model
and the Gent material model .

For this general static axi-symmetric solution, the bulk elastic energy &, and
the surface energies ! and £° on the inner and outer lateral surfaces (respectively)

take the following forms:
& = 2r / / W(I)RdRAZ, E° =2n7 / ro(2) 1+ 15(2)%dz,  (3.5)

where 5 =i or o. Then, when both lateral surfaces of the tube are under the effect

of surface tension, the total energy £ is defined through

E=&+E+E. (3.6)
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Hereafter, unless stated otherwise, we scale all lengths by R, and all stresses by
the ground state shear modulus p. Thus, we may set R, = 1 and p = 1 without
loss of generality, and we use the same symbols to denote these scaled quantities.

We also introduce the non-dimensionalized surface tension v = 7/(uR,).

3.2.1 Stream function formulation

As was explained in the previous chapter, the problem can be elegantly re-formulated
in terms of a single mixed coordinate stream function ¢ = ¢ (R, z) so that the
incompressibility constraint (2.12)) is satisfied exactly (Ciarletta, 2011). This stream

function is defined through the relations
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and, accordingly, F' can be re-written in the form
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The invariant I; may then be computed from (3.8)), and is expressed as follows:
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The total energy £ as defined in (3.5) and (3.6) can be reformulated in terms

of the stream function as such:
! rRo £ .
£ =2 / / L,dRdz + 21 / (L1 +£2) d=, (3.10)
—¢JR; —¢

where the bulk Lagrangian £, and the inner and outer surface Lagrangians L1

and L are defined through

£b = ¢,Rz W(]l), ‘Cf =7 2 ¢,z + gb?zz

o (3.11)
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with # =i or o as before. Thus, £ as presented in is a functional in its
arguments ¢ r, ¢, ¢ rr, ¢,r. and ¢ ... On taking the first variation of with
respect to these arguments and then integrating by parts repeatedly, the resulting
expression for € can be shown to contain a single volume integral. Equilibrium
of bulk elastic forces requires we set the corresponding integrand to zero, and we

arrive at the Fuler-Lagrange equation given by

oLy oLy ) < oLy ) ( oLy ) (3&,)
+ + — — =0. 3.12
<a¢,RR>,RR (amz o oen) \bos) o) 70 B

Experimentally, it has been shown that localization phenomena such as bulging or

necking in inflated tubes are fairly insensitive to the boundary conditions at z = £/
provided that the length to diameter ratio exceeds a certain value (Wang et al.,
2019). As in the approach of center-manifold reduction, it has been commonplace to
treat these localization phenomena as a bifurcation problem with zero wavenumber
(infinite wavelength), and to conduct the analysis without considering end effects,
which are lumped together and treated as imperfections (Ye et al. 2020; Fu
et al., [2021; |Emery and Fu, 2021c). The alternate approach has been to treat
localization phenomena as a bifurcation from the primary deformation with non-
zero wavenumber, but this is only valid for certain types of end conditions (Wang
and Ful 2021). The validity of the zero wavenumber approach has been examined
in [Wang and Fu (2021)), and it was found that it was valid for cylinders with a
length to diameter ratio as low as two in the reference configuration. We adopt this
approach of ignoring end effects here, and consider three separate cases of boundary
conditions on the lateral surfaces of the tube which are summarized as follows:

Case 1:

In case 1, both lateral surfaces of the tube in B, are under surface tension, but are
free of any other types of external forces. The simplest approach is to assume that
the effect of surface tension on the lateral surfaces is equivalent to a normal traction
of magnitude |yKC|, where K is the trace of the curvature tensor. Mathematically,

this boundary condition may be defined through the Cauchy stress tensor o as such:

on-n=~vK, r=rr,, (3.13)
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where m is the outward unit normal to the lateral surface in question. However,
more sophisticated models which take into account area stretch (Gurtin and Murdoch,
1975; |Huang and Wang, |2006) or even surface stiffness (Steigmann and Ogden,
1997) may be considered. It can be shown that, on the inner and outer lateral
surfaces r = r; and r,, the value of K is 1/r; and —1/r,, respectively, and the
boundary conditions (3.13) arise naturally from the variational principle of energy
stationarity; see Appendiz 3.A. Here, there is a net difference in the force per unit
deformed area between the inner and outer lateral surface. This is in contrast to
when the tube is subjected to an internal and external pressure P, in which case
there is no net difference in the force per unit deformed area between the inner
and outer lateral surface. Also, we have zero shear stress on these lateral surfaces.

Mathematically, this boundary condition takes the form

on-e, =0, r=r,T7,. (3.14)

Case 2:

In case 2, the outer lateral surface is under surface tension, whilst the inner lateral
surface is assumed to be constrained so that radial displacement is prohibited (i.e.
the inner radius is fized at its referential value R;), but displacement in the axial
direction is not restricted. As a result, there is still zero shear traction on both
lateral surfaces. This boundary condition can be realized if the inner lateral surface
s in smooth contact with a rigid cylinder or roller-supported. It is noted that, in

the limit R; — 0, we recover the case of a solid cylinder which has been analyzed in

Fu et al| (2021).

Case 3:

In case 3, the inner lateral surface is under surface tension, whilst the outer lateral
surface is fived in the radial direction but unconstrained in the axial direction. In
reality, the outer lateral surface could be in smooth contact with a rigid exterior

annulus or under roller-support. On both lateral surfaces, there is still zero shear
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traction.

Cases 2 and 3 have previously been investigated through FEM simulations
(Henann and Bertoldi, 2014)), with motivation stemming from the fact that the
two types of boundary conditions seem to appear in many biological systems.
Indeed, consideration of these different boundary conditions allows us to analyze
how different constraints influence the emergence of potential localized or periodic
patterns. Each of the three sets of boundary conditions listed previously can
be visualized in Fig. (3.1}

The aforementioned expression for d€ also contains integrals over each lateral
surface, and the boundary conditions for each case listed previously can be obtained
from the condition that the associated integrands must vanish. These integrands
contain terms proportional to d¢ and d¢ r evaluated at both R = R; and R,. In

case 1, there are no initial constraints imposed upon d¢ since

¢
d¢p = /4 rordz, (3.15)

by (3.7), and both r and dr at R = R; and R, are unrestricted. Therefore, we must
instead set the coefficients of ¢ evaluated at R = R; and R, to zero. In doing

so, we obtain the surface tension boundary conditions

Ly 0Ly ) ( oL, ) ( oL ) <8£is>
_ — — — 5 R - Ri, 316
09 R (3925,33 r \90r:) 0::) ., \09:) (3.16)
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It is noted that (3.16) and (3.17) are the variational equivalents of (3.13) with

K = 1/r; and —1/r,, respectively. In contrast, when a lateral surface is fixed in

the radial direction (case 2 or %), we have that 0r = 0 on R = R; or R,, and so
it is 0¢ on R = R; or R, which must vanish by (3.15)) as opposed to its coefficient.

Lastly, we have zero shear traction on both lateral surfaces in all three cases under
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Figure 3.1: A schematic of the three different types of boundary conditions under
consideration.
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consideration. This boundary condition can be obtained by setting the coefficient

of ¢ r evaluated at R = R; and R, to zero. We obtain

oLy
0. R=R. R, 3.18
06 rr (3.18)

and note that (3.18]) is the variational equivalent of (3.14]).

To summarize, in case 1 we would impose (3.16)), (3.17) and (3.18). In case 2
we must satisfy (3.17), dr = 0 on R = R; and (3.18]), whilst in case 3 we require

that (3.16), or = 0 on R = R, and (3.18)) hold.

3.3 Primary deformation and conditions for lo-
calized pattern formation

We now narrow our focus towards the following primary axial tension deformation,

a sub-class of (3.2)), which is theoretically possible for all strain-energy functions:
r=r(R), 0=0, z=M\. (3.19)

The parameter \ is defined as the principal azial stretch, and the deformation

gradient corresponding to (3.19) is

0
F:£6T®ER+%€9®E@+)\6Z®E2. (320)

Upon substitution of (3.20)) into (2.12)), the primary radial displacement 7y which

satisfies incompressibility exactly is found to take the form

ro(R) = \JA~1 (R? — R?) + 12, (3.21)

and the outer deformed radius is hence r, = ro(R,). In case 1, there are no radial
displacement constraints on the inner and outer surfaces. Thus, r; (and hence r,)
is unknown and the primary deformation given by and is governed
entirely by the two deformation parameters A and r;. The situation is different

in cases 2 and 3. In the former, the radial fixing of the inner surface means we
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must set r; = R;, whilst in the latter the radial fixing of the outer surface requires

ro(Ro) = R,, from which we deduce that

ri = A"L(R? — R2) + R2. (3.22)

Thus, in case 2 and 3, the primary deformation is determined entirely via the
single deformation parameter .

In case 3, we see from that r; — 0 as A — (1 — R?/R?). Therefore,
incompressibility prohibits axial stretches less than 1— R?/R? since a self-contacting
of the inner surface will occur when this lower bound is attained. Also, when
taking the limit R;/R, — 0 in case 3, we recover the case of a cylindrical cavity
in an infinite solid. From , we see that this limit can only be taken when
A = 1, otherwise r; will be undefined. In this scenario, the primary deformation

governed by (3.19)), (3.21]) and (3.22)) becomes homogeneous since drg/OR and ry/R

are constant. This special case was first analyzed in [ Xuan and Biggins| (2016)).
By substituting (3.21)) into (3.7)) and integrating the resulting equations, the

primary solution for ¢, denoted by ¢y, can be shown to take the form

R*2z 1 R?
¢0 = ﬁ + 5 (7”12 - )\) Z. (323)

Then, on substituting (3.23)) into (3.9), the associated expression for I;, de-
noted by Iy, is

(r2A— B2 24N

IO:Il|¢:¢0: g R2 \2 + \

(3.24)

Now, in its current configuration B., the tube is considered to be under the combined
action of a surface tension v on r = r;, 7 = r, or both (depending on which of the
three boundary condition cases we are focussing on), and a resultant axial force
N. That is, in the reference configuration By, there is no surface tension effect or
resultant axial force, and the tube is completely unstressed. In case 1, for instance,
the total energy & corresponding to the primary deformation is

AL Ro AL,
80:27r[/ £bdez—|—/ (ﬁ;—i—ﬁ‘;) dz] —(A=1)N, (3.25)
~AL JR; —AL 6= do
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where the third term on the right hand side is the potential energy due to the
resultant force N acting perpendicular to any cross section of the tube. In cases
2 and 3, we must remove L. and £2 (respectively) from since the radial
displacement constraint on the relevant lateral surface negates the associated
surface energy.

Recall in case 1 that we have two deformation parameters in A and r;. Given
this, equilibrium of the primary deformation configuration requires that we satisfy
0&y/ON = 0 and 0&,/0r; = 0, and from these equations the following expressions
for N = N(A, ;) and v = (), ;) are respectively obtained:

R,

N=mr [:(Ti —1—7“0)2 +2/ W, Io,\RdR] , (3.26)
o R;

To Wy IR dR 3.7

Y= —m R dLoi ) ( . )

where Wy = W(1y), Waq = W"(Iy) etc., Ioy = 01y/ON and Iy; = 01y/0r;. We note
that the v in is eliminated through substitution of . Alternatively,
can be derived with the aid of the Cauchy stress tensor o, defined through
the constitutive equation o = 2W,; B — pl, together with the boundary conditions
(3.13). Recall that p is the Lagrangian multiplier associated with the constraint of
incompressibility and I is the identity tensor. The axial force N is then equal to
the resultant of o, plus 27y (r; +r,). Thus, in case 1, v and N represent two force
parameters which are solely dependant on the deformation parameters A\ and r;.

In the absence of any other loads, surface tension will have a compressive effect
on the tube by inducing an axial stretch A < 1. As an illustrative example, consider
a tube composed of neo-Hookean material with initial inner and outer (scaled)
radii R; = 0.4 and R, = 1, and say that we apply no mechanical loading such
that N’ = 0, and a surface tension 7 = 8. Setting the left hand side of (3.26) to
0, we can express r; implicitly as a function of A\. Then, on setting the left hand
side of (3.27) to 8, we can solve the resulting equation for A, and we find that
the surface tension induces a compressive axial stretch A = 0.26. From (3.26),
we find that the inner radius reduces from R; = 0.4 to r; = 0.15. The outer

radius increases from R, = 1 to r, = 1.8.
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The situation in cases 2 and & is somewhat different since we have only one
deformation parameter in \. We need only satisfy the single equilibrium equation
0&y/OX = 0, and this can be solved for N = N (\) with v fixed or v = v()\) with
N fixed. For instance, in case 2 equilibrium requires that

Ro
N=r l7(33+r§) +2/R' WdIOARdR] . with 7 fixed, (3.28)

[e]

To

N ()

R,

[N . / W, JOARde, with N fixed,  (3.29)
Ry

where r; — R;. Also, in case 8 we have

Ro
N=mr P(Riw?)m/]% Wd[deR], with v fixed, (3.30)

1
T

T T T A

Ro

[N . / WdIOARde, with N fixed,  (3.31)
R;

where r; is given by the expression in (3.22)).

3.3.1 Localized bulging in inflated rubber tubes

Recall our earlier statement that the problem of localized bulging in a tube under
internal pressure and axial loading has become prototypical in the sense that it
often has a very similar mathematical structure to other more complicated localized
pattern formation problems in elasticity. To elaborate, recall that in case 1 of the
elasto-capillary problem at hand, there are two force parameters in the resultant axial
force A and the surface tension 7, and both of these are functions of the deformation
parameters A and 7;. The situation in the inflation problem is mathematically quite
similar, except the force parameters are N and the internal pressure P, and they
depend on the deformation parameters A\ and circumferential stretch A\; = ri/R;
on the inner surface. Note that the choice of r; as a deformation parameter in the
our case (rather than J;) is due to mathematical convenience.

Now, in [Fu et al| (2016)), it was demonstrated numerically that, for a tube
of arbitrary thickness under any form of loading, the vanishing of the Jacobian
determinant of the vector function (P, N) coincides with the emergence of an axi-

symmetric bifurcation solution with zero wavenumber. Recall that the general
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theory of dynamical systems suggests that the latter criterion also signals a
bifurcation into a localized inhomogeneous solution (Kirchgassner, |1982; Haragus
and Jooss, 2010). Thus, the bifurcation condition for localized bulging in tubes

under inflation is given by

OPON 0N OP 0
O\ ON ONON

(3.32)

and can be derived in the following manner. We note first that the condition ([3.32])
has the interpretation that the force parameters cannot be inverted to express the
deformation parameters A and ); in terms of N and P. Now, the internal volume
ratio is defined by v = A?\, and we consider for the meantime the loading scenario
where the axial force NV is held fixed and the inflation pressure is gradually increased
from zero. From the equation N (), \;) = Ny, where Nj is a constant, we may
express A implicitly in terms of \;. As a consequence, v is merely a function of

Ai. Then, the existence of a pressure maximum requires that

-1
dP_dP(dv) 0 dP_ 0P 9P _ (333)

v oy \dx, = O on Tonan

Elimination of the ordinary derivative in (3.33]) can be achieved by differentiating

the equation N = Nj with respect to \;, i.e.:

-1
ON | ONdA _ - (aN) <8N> | (3.34)

on T onan 0 an . \an)\an

where ON/OX # 0. On substitution of into (3.33), it is straightforward to
show that the condition follows. In the loading scenario where the tube length
(i.e. A) is held fixed and the pressure is gradually increased from zero, the same
condition can be reached through a similar argument to the one just presented.
In the next section, we will draw upon the results presented here for the inflation
problem in order to formulate conjectured bifurcation conditions for elasto-capillary

localized pattern formation.
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3.3.2 Bifurcation conditions for localized pattern formation
3.3.2.1 Case 1

In case 1, the force parameters N' = N(\,r;) and v = (A, r;) cannot be inverted

to express the deformation parameters A and 7; uniquely in terms of A and v when

_ oW o 30

T N) =53 o, Oxor

where J(v,N) is the Jacobian of the vector function (v, ). Based on the analysis
of [Fu et al| (2016) summarized in the previous section, we may conjecture that
is the bifurcation condition for elasto-capillary localized pattern formation
in hollow tubes. It will later be shown that this is equivalently the condition for a
bifurcation mode characterized by zero wavenumber to exist and for zero to become
a triple eigenvalue of the spectral problem governing incremental perturbations of
the primary solution . When 7 or r, are fixed at their referential values (i.e.
cases 2 or 3 to be discussed shortly), the condition reduces to dN'/d\ = 0
when the surface tension is fixed or dy/d\ = 0 when the axial force is fixed.
Now, there are several different loading scenarios we can consider, though in
any case the simplest way to analyze the bifurcation condition would seem
to be plotting its contours in the (A, 7;) plane. Say we initially fix the surface
tension and then vary the axial force monotonically from some starting value, then
we may plot J (v, N) = 0 and v(\, r;) = 7o together in the (A, 7;) plane, where
v(A, 1) is given by and vy > 0 is a constant. If the two contours have
intersection points, then the bifurcation condition is satisfied at these points
under the outlined loading conditions. As a simple illustrative example, we adopt
the neo-Hookean material model with R; = 0.4. We plot in Fig. [3.2| (a) the
contour J(v,/N) = 0 in the (A, 7;) plane, along with vy(\,r;) = 3 and 8. We see
that J(v,N) = 0 and v()\,r;) = 3 have no intersections, yet J(v,N) = 0 and
(A, ;) = 8 have intersections at A ~ 0.85 and 2.25. We also find that intersection
points cease to exist for any fixed 7 < 6.35. At v & 6.35, a single intersection point

emerges, and for larger fixed « above this value the two intersection points move
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Figure 3.2: Analysis of the bifurcation condition (3.35)) with fixed ~ for the neo-Hookean
model with B; = 0.4 (a) Plots of J(v,N) = 0 and (A, 7)) = 3, 8 in the (A, )
plane. (b) A plot of N against A with y(\,r;) = 8 fixed. On fixing N' = 22 initially, an
axial stretch A = 4.18 is produced and we unload until reaching the bifurcation point
AR~ 2.25.

progressively further apart. Also, from v(\, ;) = o we can relate r; implicitly to
A, and we may then plot N' = N (A, 7i(\)) in the (A, ) plane; see Fig. [3.2] (b).
We observe that the left and right intersection points in (a) correspond to a local
maximum and minimum of N, respectively. The question then is when, if at all,
are the left and right bifurcation points A\2# of interest in case 1?7 Intuitively, one
loading path could be to fix v with A/ = 0 initially, inducing an initial axial stretch
A < 1; see Fig. 3.2 (b). We could then in theory increase N (i.e. apply a “loading”)
from this initial value until we reach A = AL. However, it is known that compressed
unconstrained slender structures are instead highly sensitive to the Euler buckling
instability (Goriely et al.l 2008). Given that we are interested in localized pattern
formation here, we neglect this “loading” path in case 1. We may instead choose
to apply a sufficiently large dead load N' > 0 to an end of the tube initially along
with the fixed surface tension in order to