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Abstract

Observations of low-mass stars have frequently shown unexpectedly large stellar radii

when compared to the predictions from theoretical stellar structure models. This “ra-

dius inflation” problem may have consequences not just for stellar science but also

for observations of exoplanets around low mass stars. In this thesis, I seek to explore

this problem by analysing the light curves of eclipsing binaries with low mass compan-

ions (EBLMs) observed by the CHEOPS satellite. Using transit photometry I obtain

precise radii for about 20 M-dwarf targets. To account for the effect of starspots on

derived radii, I simulate the uncertainty caused by observed stellar flux variation and

account for this in error calculations. I also derive their effective temperatures using

their eclipse depths and PHOENIX model atmospheres. Combining these with already

present spectroscopic measurements I also calculate stellar masses and therefore ob-

serve our target’s place on the mass-radius and mass-effective temperature diagrams.

Observing that some of our targets show inflated radii and some do not, I then hunt for

inflation-causing trends in our data. I find tentative suggestions of a trend with orbital

period and a linear trend between metallicity and inflation of gradient −0.082± 0.033.

This thesis contributes to solving this long-standing problem in astrophysics, and to-

wards aiding observation preparations for upcoming exoplanetary observations with

low mass stellar hosts.
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1 Introduction

1.1 Physics and observation of low mass stars

1.1.1 Stellar Composition

Since we started characterising stars other than our own Sun we have discovered that

they come in many forms. Energy transport in a star is performed either by radiation,

where energy is transported towards the exterior of the star by radiative diffusion

and thermal conduction, or convection where instead energy is transported through

the rising and falling of gaseous elements. The requirement for stellar convection is

described by the Schwarzschild criterion whereby convection will occur if the radiative

temperature gradient is greater than the adiabatic temperature gradient. Among the

known forms of stars there are very low mass stars (VLMSs), which we define as being

less than 0.35 solar masses. We define this due to it being the mass-limit where stars

transition from partly convective to fully convective interiors (Chabrier & Baraffe,

1997, 2000). This occurs as the lower temperatures and higher densities lead to higher

free-free opacities as described by Kramer’s opacity law. The higher opacity leads to a

higher radiative temperature gradient and results in more of the star being convective,

with stars of such a low mass never reaching the temperatures to become stable to

convection. Observations of low mass stars are difficult due to their intrinsic faintness,

but through population studies it has become clear that they are the most numerous

type of star in our Galaxy, due to a combination of long lifetimes (Adams et al.,

2005) and higher formation rates (Chabrier, 2003). Besides the obvious observational

differences of low mass stars to solar-type or larger, their significant interior differences

are vital in any potential theoretical modelling. Due to their lower temperatures,

molecules that are not present in solar-type stars can survive, causing opacities and thus

further complicating any structural models. This leads to updated molecular opacity

tables being crucial in modelling a star of low mass. As telescopes have improved and
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observations of low-mass objects increased, so has the theoretical knowledge of these

bodies developed. Indeed improvements in computing technology also allows for more

detailed and complex calculations. Thus have stellar evolutionary models improved in

how they treat the low-mass main sequence.

1.1.2 Stellar Modelling

Theoretical stellar models are based on detailed knowledge of convective and radiative

energy transfer, the sources of the star’s energy (such as nuclear fusion) and the equa-

tions of state. Observationally, we see the energy that travels through the stellar interior

to the atmosphere and into the interstellar medium, transmitting the star’s spectrum

as electromagnetic radiation. We then observe this radiation which allows us to char-

acterise the star and through which we can infer its properties, using quantities such as

the “effective temperature” of the star. The effective temperature is the temperature

of a “blackbody” star (one that absorbs all incident radiation regardless of frequency

or angle of incidence) that would emit the same amount of electromagnetic radiation

and allows us to describe the emitted radiation through Planck’s law and the power ra-

diated through the Stefan-Boltzmann relation. The passage of energy to be eventually

emitted from the stellar photosphere (corresponding to an optical depth around 2/3

where T = Teff) is based on complicated physics which is represented through different

equations of state, opacities and boundary conditions. When all these processes and

factors are combined we can model the interior processes and internal make-up of a

star for different input parameters, modelling how a star would look like for us. With

increasingly precise equations of state, nuclear reaction rates and opacities; there have

been numerous stellar evolution models published and improved upon over the last

few decades. These range from models suiting studies into older stellar populations of

low-mass stars (e.g. globular clusters) such as Lyon (Baraffe et al., 1998, 2003; Baraffe

et al., 2015) and DSEP (Dotter et al., 2008), to those designed for younger popula-

tions (e.g. star forming regions) such as Geneva (Ekström et al., 2012; Georgy et al.,

2013) and STERN (Brott et al., 2011; Köhler et al., 2015). Through using the models
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relationships between mass, radius, effective temperature and magnitude; we can thus

use observed colours and magnitudes to infer a star’s properties.

1.1.3 Observations of low mass stars

Two common ways to derive the properties of low mass stars involve observing them

as either the companion star or both stars in a binary system. The radial velocity

method, or Doppler spectroscopy, relies on the slight movement of one star caused by

the gravitational tug of the orbiting companion. By observing the resultant shifting of

the stellar spectrum, we can infer the presence of a companion and determine prop-

erties such as a minimum mass. The transit method uses the case where an orbiting

companion transits the other (usually larger) star in an eclipsing binary, passing across

its face as we observe it, causing us to see a dip in the detected light signal. Likewise

as a larger star eclipses its companion, we can also see a smaller dip in the signal as

the thermal signature of the smaller body is completely blocked. A simple but effective

technique, as well as detecting the companion the shape of the transit and eclipse can

let us infer it’s properties, such as radius and temperature.

In both of these two commonly used methods it is worth noting the importance

of accurate host star characterisation in inferring the properties of an orbiting body.

Both techniques involve the inference of the body’s properties based on an observed

effect on the host, e.g. the radius of the secondary star being derived from the observed

photometric radius ratio and primary star radius. Thus an understanding of the parent

star and an ensuring of the accuracy of this understanding is crucial. Any uncertainty

in primary star properties will limit the precision of measured companion quantities

e.g. an incorrect primary star radius leading to an incorrect secondary star radius

derived from the observed radius ratio.

The importance of the host star is not just limited to binary stars but to orbiting

planets as well. Due to the increased interest in and precision of exoplanet observations

a lot of work has gone into the effect of stellar activity on transit observations. Stellar

activity through dark spots and stellar rotation can produce jitter that can increase
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systematics in radial velocity measurements and can even be mistaken for compan-

ions. In transit observations, properties are inferred from the transit profile, directly

using how its apparent size compares to the host star. The effect of starspots on the

measurement of the companion radius by the transit method has been observed on

multiple occasions (Czesla et al., 2009; Carter et al., 2011b). Both papers purport an

effect on the planet radius measured due to this effect, looking at the CoRoT-2 and

GJ 1214 exoplanet systems respectively. Oshagh et al. (2013) goes further, undergoing

simulations of the effect of spot anomalies on high precision transit light curves. They

find an underestimation of planetary radius by 4% and an error in transit duration of

4%. Observations of planets eclipsing spots as they transit the star have been observed,

shown very clearly in the case of HAT-P-11 (Southworth, 2011), with small peaks dur-

ing the transit dip being clearly visible in the light curve. If present at crucial points of

the transit (e.g ingress and egress), they could result in a mischaracterisation of system

parameters.

An interesting piece of work to note is the PhD thesis, “Know Thy Star, Know

Thy Planet” (Giles, 2019). The thesis goes into an in-depth look at how stellar activity

affects exoplanet observation, particularly the effect of spots, and so will be a valuable

source of information for the efforts we make to account for it. In section 6.4, they

describe how the effect of unocculted starspots on the transit depths causes an overesti-

mation of planetary radius. They do this by taking a large sample of Kepler stars from

Giles et al. (2017) and, using the root-mean-square scatter of the stars as proxy for

spot-size, determined relationships between spot-size and effective temperature. They

could then estimate the overestimation on a planetary radius for a given star where the

effective temperature is known. This is of particular interest in comparison to Oshagh

et al. (2013) who reported the underestimation of planetary radius caused by planets

overlapping spots during transit. In Giles (2019), they concluded that the maximum

effect that can be expected to the radius is a 1% error, a lower value than Oshagh et al.

(2013). Whether underestimation or overestimation, any project that seeks to better

understand the effects of stellar hosts on their companions must make a close exami-

nation of the latest stellar activity research. Therefore, we must account for activity
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without our own methods for doing so causing any underestimation or overestimation.

1.2 Radius inflation

1.2.1 Observations of radius inflation

As we have observed more and more low mass stars through these methods, we began

to find a concerning issue. This is chiefly that there is a significant fraction of the stellar

population at low masses where the observed radius and those predicted by theoretical

models differ by a significant amount. The earliest papers I found with such an effect

were Hoxie (1970), Hoxie (1973) and Lacy (1977) who when presenting a relationship

for calculating accurate stellar radii found it to be accurate for all but M-dwarfs. For the

lower mass stars they observed radii that are up to 25-30% larger than radii generated

by theoretical models. This is a problem with stars lower than solar mass backed by

further measurements by Popper (1997) and Clausen et al. (1999). Torres & Ribas

(2002) observed the M-type eclipsing binary system YY Gem and found that stellar

evolution models at the time underpredicted the radius of stars of their mass by 20%

and overestimated the temperature by 150 K or more. Ribas (2006) compiled a selection

of mass and radius measurements of low mass stars in both single star systems (derived

through empirical relations and interferometry) and in short period eclipsing binaries,

(observed through radial velocity and transit measurements). They predicted radii

10% smaller than observed for these stars in the mass-range 0.4-0.8 M⊙. The tendency

for the observed radii to be larger than expected has become a widely mentioned and

studied phenomenon for low-mass stars over the last decade (Casagrande et al., 2008;

Torres et al., 2010; Kraus et al., 2011; Birkby et al., 2012; Feiden & Chaboyer, 2012;

Nefs et al., 2013; Spada et al., 2013; Torres, 2013; Chen et al., 2014; Dittmann et al.,

2017; Kesseli et al., 2018), commonly described as the “radius inflation” problem.

These persisting discrepancies between theory and observation need to be pursued,

to ensure the accuracy of stellar astrophysics. Along with claims of radius inflation
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are reports of effective temperatures that are too cool compared to stellar models, a

trend clearly visible in the Mass-effective temperature diagram displayed in Parsons

et al. (2018). Of note this underprediction of effective temperature when combined

with the overprediction of radius seems to imply that luminosities are being measured

accurately (Torres, 2007).

1.2.2 Proposed causes

A possible reason raised for radius inflation has been the ever-complicating factor of

stellar activity. The effects of stellar activity in low mass stars are less definitively

modelled compared to solar mass stars. As mentioned, the interior structure of the

mostly or completely convective low-mass stars are different from the partly-radiative

solar-mass stars. Whereas differing rotation between the radiative and convective por-

tions of a star creates a magnetic field for higher mass stars, in a fully convective star

this effect does not exist. Instead, turbulent convection itself could drive a stellar dy-

namo. It has been proposed that sizable magnetic activity could inhibit convection

(Feiden & Chaboyer, 2013b) transferring energy from convection into the magnetic

field. A suppressing of convection would then result in the radius inflating to conserve

flux. However, though this has been modeled to be possible for stars with radiative

cores, modelling of activity-causing inflation for fully convective stars has found that

too high a level of activity would be required for observed levels of inflation (Feiden &

Chaboyer, 2013a; Morales et al., 2010).

Additionally, in observing these levels of stellar activity there could be an observa-

tional bias. The majority of well-defined low-mass star systems come from short-period

binaries. With such systems thought to be tidally locked in synchronised, circular or-

bits (Zahn, 1977), tidal interactions could increase the speed of the internal stellar

dynamo and lead to higher magnetic activity, inhibited convection and thus inflation

(e.g. Ribas 2006). However the observation of radius inflation in the case of isolated

M-dwarfs (e.g. Berger et al. 2006; Boyajian et al. 2012; Spada et al. 2013) and rapidly

rotating low mass stars without inflation, (Blake et al., 2008) does suggest a more
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complicated picture. Finally, when generating theoretical models special attention in

particular must be made to stellar atmospheric boundary conditions, which at lower

masses have non-trivial consequences on relations such as the effect on the mass-radius

relationship reported in Chen et al. (2014). This report shows that using accurate

boundary conditions from the latest atmospheric models, (in Chen et al. (2014) from

the PHOENIX models (Husser et al., 2013)) can change the reported discrepancy by 8-

5 percent. Therefore, ensuring that theoretical models used in any comparison studies

are accurate and up-to-date is very important.

Stellar activity can also create further uncertainty in our observed results, compli-

cating efforts to define and understand inflation. As a star’s surface is not homogeneous,

any activity can cause asymmetries to the intensity pattern we view from the apparent

stellar disc, indicating more complex internal physics. For example starspots cause

brightness variations on a star that can be detected by studying a star’s brightness

over a long baseline. When spots move across the visible stellar disc as their star ro-

tates they will create periodic variations in its light which, provided the lifetime of the

spot is not short, can be detected. Since short period active regions decay too quickly

to leave a significant trace they are harder to discern but are also of less concern in

preparations and analysis of observations. For longer lifetime active regions there is a

possibility to create systematic errors in radius measurement of a size dependent on

the strength and number of the active regions. Their impact is dependent on whether

they are occulted by the companion star or not (Czesla et al., 2009; Pont et al., 2013;

Oshagh et al., 2013). Dark spots occulted during the transit will produce small peaks

in the light curve. This would cause the transit depth to be underestimated, leading

to an underestimate for the companion radius. The opposite is true for dark spots not

occulted by the companion. A slightly cooler seeming star due to the presence of cooler

spots on the stellar disc will result in a greater fraction of flux being blocked by the

companion and an overestimate of the derived radius. Accounting for these effects in

the transit model must also be done carefully, as this can lead to both underestimation

and overestimation if performed incorrectly.

Another proposed contributing factor towards the radius inflation problem, and
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one that this project is very interested in exploring, is the contribution of metallicity.

As an increased metallicity results in an increase in stellar opacity, the metallicity

is expected to have a small but noticeable effect on low-mass stellar radii. As the

outer layers of a star see a decrease in opacity with a lower metallicity, there is a

likewise decrease in radiation pressure and therefore in the size of the star. This

direct effect on a star’s structure are accounted for in stellar models, however some

studies have suggested a clear trend between inflation and metallicity (Berger et al.,

2006). This would imply that the structural models are not accounting for metallicity

correctly, perhaps indicating some missing physics or a source of opacity that causes

an underprediction of radius for a fixed mass. However, the extent of the effect of

metallicity on inflation is another debated subject with other studies finding no such

trend (Demory et al., 2009).

A final consideration in determining the accuracy of any objects suffering from ra-

dius inflation is the possibility of unforeseen systematics in ground-based observations.

As the source of a large amount of eclipsing binary data and exoplanetary observations,

doubts have been raised as to whether ground-based astronomy can accurately deter-

mine sensitive parameters. In particular, systematic errors inherent to ground-based

observation have been a problem when trying to infer temperature from precise eclipse

measurements, most noticeably observed with hot Jupiters (De Mooij et al., 2011; Croll

et al., 2015). For example, in Hooton et al. (2019) the eclipse depth measured by one

instrument is less than 50% the eclipses of WASP-12 b observed in the I-band. Going

further, Hansen et al. (2014) conducted an analysis of eclipse depth uncertainties in

regards to inferring atmospheric quantities and proposes an underestimation in error

across all eclipse depth observations. If this uncertainty is widespread rather than lim-

ited to particular observations or instruments it would suggest a hitherto unrecognised

systematic error. Another important factor to consider is the difference in observation

and analysis of EBLM systems between different research teams. These differences

can sometimes lead to cases where different parameters are obtained by these teams

from identical data. In an example of this, Jofré et al. (2017) tested the difference

in spectroscopic line abundances for 4 Gaia FGK benchmark stars using six different
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methods, finding variation of up to 1.2 dex. Thus as well as observational method,

the possible discrepancies that can arise from different analysis methods must also be

taken into account.

There has been nearly no examples of ground-based eclipse depth observations of

M-dwarfs with the only case we found baring an erroneously high effective temperature

in Gómez Maqueo Chew et al. (2014) that we refute in Chapter 4. The problems in

observing eclipse depths in the exoplanetary field would suggest that such efforts would

be tricky and time-consuming compared to obtaining space-based observations of low-

mass stars. The ability to gain new very high quality EBLM light curves from satellites

such as CHEOPS and TESS, thus provides an opportunity in exploring both the radius

inflation problem and cooler-than-expected temperatures. These new sources can allow

us to make far more reliable measurements of radius and effective temperature than

before, improving any attempts to find trends responsible for the radius inflation effect.

1.2.3 Effects on exoplanet observations around low mass stars

As well as being an important effect in stellar astrophysics, the radius inflation problem

is also a crucial issue for present-day exoplanet science. The field of exoplanet research

is one of the most dynamic and evolving topics in modern-day astrophysics. Since

the first observations of planets orbiting other stars in the 1990s, there have been

5338 confirmed exoplanet detections1. Through improvements in exoplanet detection

methods our understanding of these bodies has dramatically increased since those first

observations, with the capabilities of ground and space-based observation continually

improving. Planets have been discovered of differing types, including those not found

in our solar system such as super-Earths, sub-Neptunes and hot Jupiters. Thus have

been raised interesting questions of planetary formation and composition, with the

emerging field of exoplanetary atmospheres even raising the possibility of detecting

extraterrestrial life via biomarkers.

1NASA Exoplanet Archive, 17/04/22
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Exoplanetary and stellar astrophysics are by their natures closely linked. An

understanding of exoplanets, as is the case for any orbital system, can only be complete

if we fully understand its parent star. Recently with advances in instrumentation,

astronomers have been searching more and more for exoplanets orbiting low mass

stars. These systems have factors that have made them be seen as more attractive

prospects for exoplanet observations than initially thought.

The first factor is population, with most of the stars in the local solar neighbour-

hood and indeed the Galaxy being those of low-mass (Chabrier, 2003) due mostly to

their long age and being more numerous in the initial mass function. Previously exo-

planet research had an observation bias with most of the first exoplanets being close-in,

large exoplanets around bright stars. With instrumentation and techniques improving

we have gradually been able to observe many different types of planetary systems or-

biting a variety of different host stars. This includes reaching the sensitivities required

to detect bodies around stars of low-mass, opening up the most populous type of star

for further study and giving the exoplanet community new potential targets.

The other reason for looking at low-mass star systems is in their practicality to

the hunt for habitable exoplanets. The possibility of detecting a habitable atmosphere

or even signs of life via biomarkers is a subject of much interest in astronomy (Scalo

et al., 2007; Schulze-Makuch et al., 2011; Cockell et al., 2016; Madhusudhan et al.,

2016). For a planet to be capable of hosting life (as we know it), it must be inside

the habitable zone of it’s host star. This is most commonly described as the range of

stellar orbits that is at a distance from its star such that liquid water can be supported

upon the planet’s surface given sufficient atmospheric pressure, though there have been

efforts to further constrain this (e.g. Ramirez 2018). With exoplanets around stars like

our Sun, this presents a problem. As the habitable zone will be similar to our own

Earth, this means the exoplanet orbits its host at the same rate of around a year. With

such a long period it is both difficult to detect an exoplanet initially, and a lengthy

process to repeat observations. Obviously, for low-mass, cooler stars the star is fainter

and the lower flux results in the habitable zone occurring closer to the star. This

means that any planet in the habitable zone of a low-mass star will be easier to detect.
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Transits will appear deeper, will occur more often due to shorter orbital period and

due to smaller orbital separation will have a higher probability of occurring in the first

place than those around higher mass stars. These factors all lead to higher transit

probability and an easier detection. They are also easier to observe in radial velocity

surveys, with the smaller period of a habitable zone exoplanet resulting in larger radial

velocity signals than a respective body would have in the habitable zone of a solar-type

star (Charbonneau & Deming, 2007).

One common complicating factor in these proposals has been the tendency for

low-mass stars to have increased stellar activity compared to solar-type stars. This has

led to a large debate on the habitability of these systems. The increased stellar activity

and number of coronal mass ejections combined with the closeness of the habitable

zone to the star could lead to the stripping of any potentially life-sustaining planetary

atmosphere (Khodachenko et al., 2007; Kay et al., 2016). Additionally, tidal locking

(Zahn, 1977) could lead to a planetary magnetic moment too weak to provide any

protection to the planet (Grießmeier et al., 2009). These factors contribute to a strong

possibility that the active M-dwarfs could sterilise any potential planet before their

activity calms down in later life. There has been research conducted to find ways life

could survive despite these effects, with atmospheric survival potentially possible due

to circulation transporting heat from the tidally locked “dayside” to the “nightside” of

the planet (Joshi et al., 1997) and examples of “extremophilic” life on Earth leading

to a more optimistic look at the chances for life in M-dwarf systems (Shields et al.,

2016). Thus, with there being such controversial and intriguing prospects for exoplanet

observation, we must make sure our understanding of the stars themselves is not flawed

due to the radius inflation problem.

To explore this problem the Eclipsing Binaries with Low Mass stellar companions

(EBLM) project (Triaud et al., 2013) was launched. The EBLM project makes use of

the Wide Angle Search for Planets (WASP, Pollacco et al. (2006)) a survey that has

found over 150 transiting exoplanets. WASP also detected a large number of “false

positives” objects that were detected as “exoplanet-like” but were actually caused by

other sources (Schanche et al., 2019). One of the likeliest false positives were eclipsing
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binary stars, which create a similar transit signal as one star orbits the other. This was

especially the case for low-mass stars in eclipsing binaries as their radii, and therefore

transit depths, are very similar to those of hot Jupiters. The EBLM project seeks to

use this large source of identified eclipsing binaries to address a shortfall of accurate

mass, radius and effective temperature measurements for low mass stars, and to further

explore apparent problems at the low-mass end of the HR diagram, including radius

inflation. With a number of published papers by the start of this thesis the EBLM

series has explored eclipsing binaries at different stellar limits (Triaud et al., 2013;

von Boetticher et al., 2017), potential radius inflation (von Boetticher et al., 2019;

Gill et al., 2019) and in EBLM IV (Triaud et al., 2017) derived masses from the

spectroscopic orbits of over 100 M-dwarfs. These efforts served as both an inspiration

and resource for our own work.
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2 Methods

In order to explore the radius inflation problem we proposed a programme of observa-

tions with the ESA’s CHaracterising ExOPlanet Satellite (CHEOPS ; Benz et al. 2021).

CHEOPS is the first small (s-class) satellite of the European Space Agency. Its primary

goal is to characterise transiting planets around bright stars, providing high precision

measurements of their radii. Through combining radii with previous measurements

of mass, we can thus calculate their densities. This will in turn further knowledge of

exoplanet structure, their formation and evolution and their atmospheres. The large

sample of planets for which these parameters will be derived will provide an excellent

resource for choosing follow-up targets with future ground or space-based facilities.

There are also the CHEOPS programmes that will be undertaken in the so-

called “Ancillary Science” umbrella. These are projects that have been selected that

are planetary or stellar in nature but have research aims that are also beneficial enough

to exoplanetary science that they have been considered and accepted as programmes by

the CHEOPS science team. Pierre Maxted successfully proposed the project “ID-037

Eclipsing binaries with very low mass stars”. This project uses CHEOPS to obtain high

precision measurements of a number of EBLM targets to explore the radius inflation

problem, with potential implications for stellar and exoplanetary science. CHEOPS

was used despite the presence of observations by other missions such as the Transiting

Exoplanet Survey Satellite, TESS (Ricker et al., 2015). TESS performs an all-sky

survey and has as it’s primary goal to discover planets smaller than Neptune orbiting

stars bright enough to allow for spectroscopic characterisation with the James Webb

Space Telescope. It observes the sky in sectors measuring 24◦ x 96◦ using 4 24◦ x 24◦

cameras, with each sector observed for two orbits of the satellite around the Earth

(on average around 27 days). The field of view is oriented along a line of ecliptic

longitude with the observing plan to observe the ecliptic hemispheres through the

orientation of multiple sectors around the ecliptic pole. This survey also observed

numerous EBLMs providing, in some cases, alternative sources of light curves for our



14

targets. However, for planning our observations the flexible pointing of CHEOPS

allowed us to observe targets not yet observed or not planned to be observed by TESS.

The more flexible observing schedule also allowed us to obtain as many occultation

visits as we needed for each target. Finally, as the two satellites observe in different

wavelength regimes it allows us to verify our results through independent observations,

seeing if they are consistent between the two instruments and minimising the chance

of systematic errors affecting our results. The similarity of the observational bandpass

of CHEOPS and Gaia (Gaia Collaboration et al., 2016) is another advantage of using

CHEOPS photometry. Due to the similar wavelength regimes and bandpass shape, we

will be able to useGaia magnitudes and parallaxes with our observationally derived flux

ratios. The CHEOPS, TESS and Gaia bandpasses are all shown in Figure 2.1, along

with normalised example solar and M-dwarf spectra to demonstrate the M-dwarf’s

observability with both CHEOPS and TESS.
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Figure 2.1: The response functions of the CHEOPS (blue dash), TESS (orange dash)
and Gaia (green dash) satellites. Also shown are an example normalised solar-type
stellar spectra (red) and an example normalised M-dwarf spectra (black).
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2.1 Transit and Eclipse Theory

Our analysis of CHEOPS EBLM observations will use the method of transit photom-

etry. This “transit method”, as described briefly in Chapter 1, uses the reduction in

flux caused by an orbiting body transiting or being eclipsed by the disc of its host star

to determine properties of the occulting body, particularly the radius. In an eclipsing

binary we can describe the total flux signal we receive from the system as:

F = F1 + F2 (2.1)

where F1 and F2 are the brightnesses of the primary and secondary stars. When the

secondary star fully transits the disc of its host, assuming no limb darkening or stellar

spots, this brightness is reduced by an amount equal to the area of the primary that

is eclipsed by the secondary. Thus, during totality of transit and discounting limb

darkening which will affect the amount of light blocked dependent on the part of the

stellar disc being blocked, the flux from the star (Ftra) will be:

Ftra = F1 + F2 − F1(
R2

2

R2
1

) (2.2)

where R1 and R2 are the radii of the primary and secondary stars respectively. This

can be rearranged to:
F − Ftra

F1

=
R2

2

R2
1

(2.3)

F1 can be solely determined during the secondary eclipse of the target where only the

brightness from the primary star is visible. Thus, the reduction in brightness during

transit can be used to derive the ratio of companion to host radii squared, this quantity

being called our transit depth D. By calculating D from a light curve and assuming

we know the primary stellar radius, we can derive our secondary radius.

The transit method also allows us to measure the effective temperature via the

secondary eclipse. When the orbiting body goes behind the primary stellar disc it blocks

the brightness of the orbiting star, completely in the case of non-grazing EBLMs. This

complete blocking of any thermal emissions of the secondary star will result in a dip
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far smaller than the transit, with the ratio of transit to eclipse depth directly related

to the surface brightness ratio. But with precise enough instrumentation it can be

detected. This small dip, henceforth referred to as the eclipse depth L can be taken to

be the ratio of stellar brightness F2

F1
. With the knowledge of the effective temperature

of the primary star it is thus possible to eventually derive an effective temperature for

the orbiting secondary.

There are two other properties that we can derive from our light curves. We can

determine the total duration of the transit and the shape of the transit. Assuming

a circular orbit (Seager & Mallén-Ornelas, 2003) the total transit duration can be

expressed as:

tT =
PR1

πa

√
(1 + k)2 − b2 (2.4)

where k is R2

R1
and b is the impact parameter. The impact parameter is expressed as:

b =
a cos i

R1

(2.5)

where a is the semi-major axis and i is the inclination of the orbit. Although many

of our targets’ orbits are not circular we use these equations as their elliptical versions

are complex and the usage of these equations do not compromise the accuracy of our

fitting. The orbit itself can be derived from how we observe the transit and secondary

eclipse events. Presuming a circular orbit, the transit and eclipse events are evenly

spaced out, with the secondary eclipse occurring halfway into the orbital period P

of the companion. However, if the orbit is an ellipse then the phase of the secondary

eclipse will be approximately 0.5+e cosω. These factors are the eccentricity, e, and the

argument of periastron, ω. The eccentricity is a factor which describes orbital shape

where an eccentricity of zero is a circular orbit and an eccentricity of one is an escape

orbit. The argument of periastron is the angle between the orbiting body’s periastron

and its ascending node and can be determined from the times of occultation and orbital

dynamics. The brightness of the stellar disc varies towards the limb, so the reduction

in brightness caused by the orbiting body also varies depending on the amount of

“limb darkening”. The variation is caused by the combination of optical depth and
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effective temperature gradients. The decrease of optical depth with increasing radius

and that towards the limb we are viewing cooler regions of the photosphere due to

observing only in the line of sight direction, leads to the limbs of the star appearing

dimmer. This is a complicating factor in transit observations as the orbiting body is

also crossing over areas of varying brightness on the stellar disc, particularly at the

start and ends of transit. This can make it harder to determine the transit contact

points. For deep transits with high signal to noise (S/N) this is not a huge problem but

for shallow transits we need accurate limb darkening models to properly derive transit

properties. Limb-darkening is typically parameterized in terms of the parameter µ,

the cosine of the angle between the line of sight and the surface normal at some point

on the stellar disc, because the drop in intensity is approximately linear with µ. For

this work, we use the power-2 limb-darkening law: Iλ(µ) = 1 − c (1− µα). This gives

an accurate description of the limb-darkening for solar-type stars using only 2 free

parameters (Morello et al., 2017).

2.2 CHEOPS - The CHaracterising ExOPlanet Satel-

lite

Our targets were observed with the ESA’s CHEOPS satellite. CHEOPS (Benz et al.,

2021) is a low Earth orbit satellite launched in December 2019 to perform precise

photometry of exoplanetary systems. Our targets were observed as part of the ancillary

science program as part of the Guaranteed Time Observing programme. The satellite

itself has a number of features which need to be accounted for in data reduction and

data analysis.

The satellite is in a nadir-locked sun-synchronous orbit 700 kilometres above the

Earth’s surface. This ensures that it is always pointing towards the cold night-side

away from the Earth, as it orbits above the day-night terminator. This, combined

with the irregular, triangular Point Source Function (PSF) of the satellite caused by

the primary mirror mounting at 3 interface points shown in Figure 2.2; leaves it sen-
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Figure 2.2: The CHEOPS field of view for the EBLM J0057-19. The target system
J0057-19 is focused on in the centre of the aperture, showing the characteristic trian-
gular PSF produced by CHEOPS. The red circle indicates the size of the aperture used
in the final photometry extraction (the 25 pix. DEFAULT aperture).
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sitive to the rotation of the camera’s field of view (FoV). As it remains focused on

the target as it orbits the Earth, this rotation will lead background stars to rotate

around the target. Additionally, if the Earth gets in the line of sight or the satel-

lite passes through the South Atlantic Anomaly (SAA), the area where the Earth’s

inner Van Allen radiation belt comes closest to the surface, the satellite will need to

stop observing causing the presence of gaps in the data. The PSF is defocused such

that a 12 pixel radius encircles 90% of the incident flux (Hoyer et al., 2020). This

reduces the noise due to pixel-to-pixel sensitivity variations, though it does have the

negative of introducing more background signal. CHEOPS uses a frame-transfer CCD

without a shutter. This causes charge “smearing” during frame transfer, with vertical

trails appearing on the image. The CHEOPS data reduction pipeline (DRP, Hoyer

et al. (2020)) corrects for these environmental and instrumental effects before perform-

ing aperture photometry. The Gaia DR2 catalogue (Gaia Collaboration et al., 2018)

is used by the DRP to simulate the observed FoV, in order to estimate the level of

contamination present in the photometric aperture. The DRP also accounts for the

rotating FoV of CHEOPS, where other stars in the image can create “smear” trails

and contaminate the photometric aperture. The smear effect is corrected by the DRP

while the contamination produced by nearby stars is recorded in the DRP data prod-

ucts, allowing the user to include or ignore the contamination correction provided. The

non-constant background is accounted for using a histogram-based method, making it

insensitive to the rotation of the FoV. The final photometry is extracted by the DRP

using three different fixed aperture sizes labelled radius inferior “RINF”, “DEFAULT”

and radius superior “RSUP” (at radii of 22.5, 25.0 and 30.0 pixels, respectively) and a

further “OPTIMAL” aperture whose size is dependent upon the FoV contamination.

The observed and processed data are made available on the Data Analysis Center for

Exoplanets (DACE) web platform1.

1The DACE platform is available at http://dace.unige.ch
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2.3 PYCHEOPS - Our chosen data analysis tool

For our analysis of CHEOPS targets we used PYCHEOPS (Maxted et al., 2022), a PYTHON

3.7 package that uses a combination of data analysis routines and other PYTHON mod-

ules to process data primarily obtained from the CHEOPS satellite, though it can also

easily be used for data from other sources such as Kepler and TESS. The most exten-

sively used module packages include NUMPY (Harris et al., 2020) and SCIPY (Virtanen

et al., 2020) for data handling, MATPLOTLIB (Hunter, 2007) and CORNER (Foreman-

Mackey, 2016) for data visualisation, ASTROPY (Astropy Collaboration et al., 2022)

for use of coordinates and timescales and LMFIT (Newville et al., 2020) and EMCEE

(Foreman-Mackey et al., 2013) for data analysis. LMFIT, a package that performs fits

using least-squares minimization, was used in the initial fit of our light curves. EMCEE

includes a Markov chain Monte Carlo (MCMC) ensemble sampler which we use to

perform Bayesian data analysis, generating samples of our fitted parameter’s posterior

probability distributions.

Data analysis through Bayesian inference involves the testing of a particular

model’s probability given a set of data using Bayesian theory. This theory can be

expressed formulaically in Bayes’ Theorem:

P (X | Y ) =
P (Y | X)P (X)

P (Y )
(2.6)

with P representing probability of X or Y occurring and P (X | Y ) representing the

probability of X given Y and vice versa. In Bayesian inference this theory is applied

to a data model and the observed data itself:

P (model | data) = P (data | model)P (model)

P (data)
(2.7)

The P (data | model) is the “likelihood” of the data fitting the model often expressed

as a “badness of fit” statistic. P (model) is the “prior” probability, any information

we have prior to the data being observed. P (data) is the “marginal” probability, the

probability distribution of the data itself. Finally P (model | data) is the “posterior”
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probability, the probability of our model in light of the data. This posterior probability

thus allows for the continual updating of the probability of a model based on new data.

In an MCMC fit we test the probability of a given model being true for our

data before slightly changing the model parameters by a random “step” using their

respective variances and testing if this improves the probability. If it does we go to

the new step otherwise we keep the old. This repeats with the idea that gradually

you will converge into the posterior probability distribution of the parameters through

a “chain” of models. In order to sample the posterior probability this is commonly

done through MCMC algorithms, the simplest and most commonly used of which is

the Metropolis-Hastings (M-H) algorithm (Tegmark et al., 2004). To describe it simply

this algorithm is as follows:

• Step randomly in the parameter space

• Compute the new posterior probability at the new point in parameter space

• Draw a random number between 0 and 1.

• If the new posterior probability is higher than the old, accept the step and add

it to the chain.

• If the new posterior probability is lower than the old, but the ratio of new

posterior to old posterior probability is more than this random number, accept

the step and add it to the chain.

• Otherwise re-add the old parameter.

One of the most fundamental problems with MCMC sampling using the M-H algorithm

and others is in limiting the convergence time required to evaluate the fit especially in

cases with many parameters to sample for. In traditional MCMC fitting one large sink

of computation time, can be in setting of step-sizes. In highly anisotropic probabil-

ity distributions the choosing of each step can require detailed customisation for each

parameter, leading to an increased time until convergence which especially magnifies
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for fits with a large number of parameters. EMCEE gets around this problem by imple-

menting an affine-invariant ensemble sampler proposed by Goodman & Weare (2010).

EMCEE samples multiple “walkers” at different points in the parameter space. The new

points or “jumps” in the parameter space are then based on the combination of the

likelihood at the tested points. Through choosing the new points through the likeli-

hood combinations of the walkers, we assure that we will pick-out the same new points

regardless of any transformations of parameter space to fit a correlated posterior shape.

Therefore, it is an affine invariant method, making it an effective way to sample if there

are any correlations between the parameters of our fits. The transformed probability

density distribution will view all densities as equally difficult and thus not require de-

tailed customisation, unless the parameter space is multi-modal. We thus will choose

fit parameters directly related to observational data, making it unlikely we’re missing

large chunks of the posterior and allowing us to obtain non-complex posterior shapes.

This ensures that regardless of the posterior probability distributions we encounter in

our light curve fits, that sampling times will be kept to a reasonable efficiency.

The analysis itself is done by the fitting of PYCHEOPS’ transit and eclipse models

to the downloaded CHEOPS (or other source) data. These models use the QPOWER2

algorithm (Maxted & Gill, 2019), which approximates the amount of starlight of a star

of radius R1 blocked by a orbiting body of radius R2 thus modifying a normalised light

curve dependent on the parameters of the two bodies. The intensity profile of the host

star is defined by the power-2 limb darkening law:

Iλ(µ) = 1− c(1− µα) (2.8)

where µ is the cosine of the angle between the surface normal and the line of sight.

The parameters used in the model are: the time of mid-primary eclipse T0, the transit

depth D = k2 = R2
2/R

2
1 where R2 and R1 are the radii of the secondary and primary

stars, the impact parameter b = a cos i/R1 where i is the orbital inclination and a is

the semi-major axis, the transit width W =
√

(1 + k)2 − b2R1/(πa) which is Equation

2.4 in phase units, the eccentricity and argument of periastron dependent parameters

fs =
√
e sin (ω) and fc =

√
e cos (ω) and the eclipse depth L. These parameters
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implicitly provide a uniform Bayesian prior on e and ω (Anderson et al., 2011; Eastman

et al., 2013).

We can also fit for the limb-darkening parameters h1 and h2 as defined by Maxted

(2018). These transformed parameters are derived from the power-2 limb darkening

law (Hestroffer, 1997) and are defined as:

h1 = IX(
1

2
) = 1− c(1− 2−α) (2.9)

h2 = IX(
1

2
)− IX(0) = c2−α (2.10)

h1 measures the specific intensity relative to the stellar disc centre IX in the region on

the disc at r =
√
1− 1

2

2 ≈ 86.6% towards the limb, with h2 measuring the drop in IX

between this radius and the limb. They are used as an alternative to c and α which

Maxted (2018) found to correlate strongly together when fitting Kepler light curves

with emcee. This correlation would complicate comparison of computed to observed

limb darkening parameters. The transformed parameters show weaker correlation to

each other, making them more suited for light curve fits. Additionally, Maxted (2018)

shows us how accurate model values are for these parameters, allowing us to apply

priors on these values.

By using least square minimisation or MCMC fitting, PYCHEOPS finds the best-fit

model for the given light curve. Parameters can be allowed to vary through a linear

probability distribution or a Gaussian one through the application of Gaussian priors.

The transit and eclipse models allow the modelling of these features in one CHEOPS

visit. In order to look at multiple events across multiple CHEOPS visits there is also a

MultiVisit function in PYCHEOPS. This function can read in multiple saved visits using

the average of their model parameters to obtain the initial values for a fit of all the

visits combined.

The data obtained from CHEOPS will not consist of a single unaltered light

signal whose only features are the transit and eclipse events. There will be a number

of instrumental effects that alter the light signal that will need to be accounted for

to gain the true signal. This process of removing instrumental trends is called de-

trending or decorrelation. As the purpose-built programme for the CHEOPS mission,
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PYCHEOPS has a number of decorrelation parameters to deal with these effects. These

decorrelation parameters can be included in a fit, allowing us to quantify and thus “de-

trend” them, gaining our best approximation to the “true” light curve. These include

alterations to the photon count rate caused by effects related to the instrumental roll

angle of CHEOPS (represented by the three harmonics of df
d sinϕ

and df
d cosϕ

), the im-

age background levels ( df
dbg

), photo-electrons accumulated during CCD frame-transfer

( df
dsmear

) and extra counts due to aperture contamination by nearby “background” stars

( df
dcontam

). Also included are decorrelations against PSF centroid position ( df
dx

and df
dy
)

which can account for the pointing jitter of the spacecraft and against time ( df
dt

and
d2f
dt2

) for any observed trends over the visit timescale. Additionally, in a Multivisit fit all

decorrelation parameters are taken from the previous saved fits of each visit apart from

the roll angle which is decorrelated implicitly (Maxted et al., 2022). These instrumen-

tal parameters are shifted and scaled to a range [0,1] or [-1,1] so that the corresponding

coefficients in the detrending model are directly correlated to the amplitude of the

noise due to the effect.

Amongst the large numbers of potential decorrelation parameters available in

PYCHEOPS, not all of them will necessarily be suitable for each individual fit. To select

a suitable set of decorrelation parameters they can be fitted with Gaussian priors, which

enables the use of Bayes factors in PYCHEOPS to evaluate and select which parameters

to use. The Bayes factor is a ratio comparing the likelihood of two different statistical

models and was introduced to PYCHEOPS midway through the course of this thesis. As

described in Maxted et al. (2022), PYCHEOPS assumes that for the case of CHEOPS light

curves they can calculate the Bayes factor Bp for models with/without a parameter

with value p± σp as:

Bp = e−(p/σp)2/2
σ0

σp

(2.11)

where σ0 is the standard error of the Gaussian prior for the parameter. Parameters

with a Bayes factor greater than 1 have a significantly less likely likelihood and can

be removed from the model. Therefore, we can systematically work through each

decorrelation parameter one by one and through looking at their Bayes factor include
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or discount them in the final fit.

Finally, the last part of PYCHEOPS crucial to this work is its inbuilt function

MASSRADIUS which allows the easy calculation of much of the quantities we wish to

derive from the properties of our transit and eclipses. This function uses Keplerian

dynamics to calculate quantities such as companion mass M2 and radius R2 given the

primary stellar mass and radius, the companion surface gravity log g2 = logGM2/R
2
2

and the stellar density ρstar = 3πa3/(GP 2(1+q)R3
1). It calculates these using a Monte-

Carlo approach to derive the quantities and their uncertainties using the chains of the

MC run.

2.4 Derivation of primary stellar parameters

To accurately derive theoretical radii and effective temperature measurements to com-

pare our observation to, we also needed stellar models and any input parameters re-

quired for said models. Additionally, in order to obtain the masses, radii and effective

temperatures for our M-dwarf targets we also need to obtain the properties of the host

star. This is because the properties we obtain from radial velocity and transit obser-

vations are the effect of the M-dwarf on the host (mass function, radius ratio, surface

brightness ratio). Thus, we needed primary stellar mass, radius, effective temperature

and metallicity. We would also need the primary star’s surface gravity to calculate

the surface brightness of the primary star. Effective temperature, surface gravity and

metallicity together are also required to get stellar limb darkening parameters.

To measure inflation we compare our observed properties to those given by the

stellar structure models Baraffe 15 and MIST (Baraffe et al., 2015; Dotter, 2016; Choi

et al., 2016). We use these models at an age of 1 Gyr as none of our targets were young

enough for the stellar structure models to have not settled onto the main sequence and

the evolution of M-dwarfs due to core nuclear fusion being negligible within the lifetime

of the Galaxy. We obtained the primary stellar parameters from a variety of sources.

The surface gravity is obtained from the observed stellar density and primary stellar
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mass. The metallicity and primary effective temperatures were derived for us by the

CHEOPS TS3 team, analysing spectra for each target, which will be fully described

in Chapters 5 and 6.

To obtain the primary stellar mass and radius we use the following empirical

relations from Enoch et al. (2010).

logM = a1 + a2X + a3X
2 + a4 log ρ+ a5 log ρ

2 + a6 log ρ
3 + a7[Fe/H] (2.12)

logR = b1 + b2X + b3 log ρ+ b4[Fe/H] (2.13)

where X = logTeff − 4.1 and a1−6 and b1−4 are fit coefficients. With effective

temperature and metallicity derived by the TS3 team, the only further quantity we

needed to use the equations was the stellar density ρ. We first used estimates of

mass and radius from the TESS input catalogue v8 (Stassun et al., 2019) as initial

parameters; along with RV semi amplitude K1 and orbital parameters e and ω from

RV measurements and radius ratio k, semi-major axis divided by stellar radius aR and

the sine of the inclination sin (i) from our transit observations. With MASSRADIUS we

used the estimates of stellar mass and radius to get an estimate sample of stellar density

for our sample of fitted transit parameters. With this we derived a mass sample for

the primary star using Equation (2.12), using normal distribution samples of effective

temperature and metallicity based on the values and uncertainties derived by TS3.

After adding a normal distributed scatter of 0.023 in the mass to account for the

scatter in this relation reported by Enoch et al. (2010), we used the mass and density

samples to derive a radius sample using Equation (2.13). These would be the primary

stellar samples used in the final calculations of secondary stellar mass and radius.
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2.5 Derivation of Effective Temperature

The apparent inflation of stellar radius is expected to come hand-in-hand with an

observed cooling of the M-dwarf’s effective temperature, if the claim that inflation

does not affect observed luminosity holds. To derive effective temperature you can

measure the angular diameter of the star. There are generally far fewer measurements

of effective temperature for low mass stars than radius measurements. This is due

to the measurement of angular diameter being trickier for the smaller and fainter M-

dwarfs compared to solar-type stars. For model-independent effective temperatures

the apparent angular diameter and bolometric flux of the star is required. Tayar et al.

(2022) reports uncertainties of ≈ 2.4% in effective temperature from interferometric

observations for stars similar to the Sun. Due to their faintness and decreased angular

diameter, this uncertainty is likely to be even greater for M-dwarfs. This problem can be

overcome by our eclipsing binary observations, where we can infer an M-dwarf effective

temperature through its effect on the light curve of a brighter host star. In transit

measurements, the effective temperature of the transiting body can be calculated from

the observed secondary eclipse. The ratio of eclipse depth to transit depth directly

gives the surface brightness ratio of the two stars. As surface brightness ratio is directly

related to effective temperature we can measure Teff,2/Teff,1 accurately. If Teff,1 can be

obtained from spectra we can thus derive Teff,2 given precise measurements of eclipse

depth.

Due to the precision of CHEOPS we predicted we would be able to observe the

secondary eclipse to our required accuracy of a signal-to-noise ratio (SNR) of 4, which

we defined as the minimum requirement to get a definite detection. With the ability to

observe the secondary eclipse, it was now a matter of choosing how to derive values of

effective temperature. As stated the effective temperature of a star is directly related to

the flux given off by the star. Thus, by comparing the change in flux during eclipse to an

expected change using theoretical stellar spectra we can infer an effective temperature

for the secondary if we have the stellar parameters of the primary star. We therefore

need: the observed change in surface brightness, a way to generate theoretical surface
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brightness changes and precise parameters of the host star. We observe the change in

surface brightness by looking at the ratio of surface brightness:

J =
S2

S1

(2.14)

where S2 is the surface brightness of the secondary star and S1 is the surface brightness

of the primary star. This as stated can be equated to the ratio of the eclipse and transit

depth:

J =
F2R

2
1

F1R2
2

(2.15)

where F2

F1
is the observed eclipse depth2 L and

R2
2

R2
1
can be measured accurately from

the transit depth, given limb darkening has been accounted for. To derive the relation

between surface brightness ratio and Teff we used high resolution PHOENIX spectra

(Husser et al., 2013). We use PHOENIX as it has the capabilities to model low mass

stars and its large range over Teff , log g and [Fe/H] suits our sample of targets. Us-

ing high resolution spectra from PHOENIX we could obtain the theoretical surface

brightness by solving the integration:

S =

∫
τ(λ)Fν(λ,Teff , log g, [Fe/H])

λ

hc
dλ (2.16)

where τ(λ) is the response function of the instrument used and Fν(λ,Teff , log g, [Fe/H])

is the wavelength dependent theoretical stellar flux. The factor of λ
hc

is due to the

instrumental response functions we use for CHEOPS and TESS being set-up for photon

counting CCDs as explained in Bessell & Murphy (2012). This introduced factor

converts the photon count to stellar flux. As we will use these surface brightness values

in ratios we ignore the constants h and c in our calculations. This also results in unit

conversions for the theoretical flux being inconsequential as any applied conversion will

be applied to both numerator and denominator of the ratio.

2What PYCHEOPS actually measures as the eclipse depth L is F2

F1+F2
where F is the stellar flux. As

we want our brightness ratio to derive surface brightness ratios, we must therefore apply a correction
of 1

1−L to obtain the true flux ratio F2

F1
, and our “true” eclipse depth. It is this corrected value that

is referred to as L in our results.
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We wanted to take a Monte Carlo approach that could account for correlations

between parameters and non-linear relations between input and output values. We

decided to create a grid of theoretical surface brightness values over ranges of Teff ,

log g and [Fe/H]. We could then use our derived values for primary and secondary star,

their uncertainties and the posterior probability distribution of our observed surface

brightness ratios J to find the root of the function:

f(Teff,2) = S2(Teff,2, log g2, [Fe/H])− S2 (2.17)

where S2 is the surface brightness of the M-dwarf secondary. First of all we needed to

create the grid itself. We choose the boundaries and step sizes of our grid based on the

stellar parameters of our EBLMs and the step-size of the PHOENIX spectra, before

integrating to obtain the surface brightness as in Equation (2.16). This resulted in two

grids, one for the hotter primary stars and one for the cooler secondary stars. The

“hot” grid samples over a range of Teff = 4700-7000 K in steps of 100 K. The “cool”

grid samples over a range of Teff = 2300-4000 K in steps of 100 K. Both grids sample

over of a range of log g = 3.0-5.0 [cgs] in steps of 0.5 and [Fe/H] = -1.0-1.0 in steps of

0.5. Therefore we can calculate S from Equation (2.16) for every combination of our

grid.

With this grid created we can go about solving Equation (2.17). We can inter-

polate within the grid for distributions of Teff,1, log g1 and [Fe/H] deriving a sample

of S1 values. This we can then combine with the observed surface brightness ratio J

to derive S2. The function S2(Teff,2, log g2, [Fe/H]) uses the observed log g2 and [Fe/H]

samples (assuming secondary metallicity is equal to that of the host star), to make

Teff,2 the sole unknown quantity. By then using bisection over our whole “cool” star

grid to find the root of Equation (2.17), we derive the most likely value of Teff,2 for

each combination of primary and secondary stellar parameters in our sample. We treat

the mean and standard derivation of this generated sample of Teff,2 values as our cal-

culated value of Teff,2. This does mean our effective temperature values rely on the

accuracy of the stellar models, but we can test this accuracy by comparing results from

CHEOPS to those derived from TESS light curves which are observed in a different
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wavelength. This use of independent measurements from different wavelength regimes

and satellites will minimise the chance of systematic errors affecting our result. This

was the method used for all our CHEOPS (and TESS ) results, though in Chapter 4

we use an alternative method for calculating effective temperature for a TESS light

curve.
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3 Observing Preparation

EBLMs were chosen as our preferred way of observing our M-dwarf targets. Though

they are far fainter than the star they are orbiting (≪ 1% of the total flux at optical

wavelengths), thus not allowing us to measure their spectra or easily measure its semi-

amplitude K2, there are far more advantages than disadvantages. There are many

more EBLM systems than M+M (M-dwarf and M-dwarf) binaries known, with the

M+M systems often short-period (which adds further complications in the analysis

and interpretation of results). The atmosphere models for the G-type primary stars

are good as these stars are similar to the Sun, allowing us to measure abundances and

effective temperatures from the spectrum of the primary more effectively than for a

far busier M-dwarf spectrum. With metallicity, if we assume common origin of the

two stars in the binary this also allows us to obtain metallicity for the secondary star

as well. With these factors in mind we proceeded onto the selection of the targets we

would observe with CHEOPS.

3.1 Selection of our targets

As we wished to obtain very precise mass, radius and effective temperature measure-

ments of low mass stars in eclipsing binaries, we needed to select targets that would

be capable of this precision. Our criteria included:

- A secondary eclipse deep enough to be measured in a few visits.

- A well-behaved primary star, not overly spotty or with too short (or too long)

an orbital period.

- The secondary eclipse must be well defined with no partial eclipses.

- The primary star is bright enough to be observed reliably.

- The system has been observed with spectroscopy giving us reliable mass mea-

surements.

- The system is in an area of sky observable by CHEOPS.
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The initial target list was selected from EBLM IV (Triaud et al., 2017). Addi-

tional targets were selected by searching through WASP-North targets. This list was

then narrowed down due to observability by CHEOPS using the Scheduling Feasibility

Checker to check if CHEOPS would view it and the Exposure Time Calculator to see

if the targets were “feasible” i.e. if good science results of required efficiency could be

obtained without an unreasonable amount of visits1.

For a mission like CHEOPS which involves dozens of observation programmes

needing to be scheduled, there is a requirement for precise detailed information on the

targets you plan to observe. In order to fit in the targets of as many programmes

as possible you are realistically restricted to shorter visits centred around a feature

of interest. For us this was the transit and eclipse events of our targets. To max-

imise science potential, the CHEOPS team expects that the observation details each

programme coordinator provides is accurate so as to avoid wasted observation time.

Therefore, before any observations could be made we had to collect accurate and pre-

cise details of all our target systems. The parameters required by CHEOPS to schedule

observations are:

- The coordinates of the system.

- The primary star’s spectral type and magnitude.

- The time of mid-eclipse T0

- Orbital period P

- The number of visits required

- The length of the visit

- The range of orbital phase at which the observation can start

- The range of orbital phase at which the eclipse event is expected to occur

In order to know the time of mid-eclipse of the secondary eclipse we must also

have accurate eccentricities e and arguments of periastron ω. For visit length we need

to know the length of the eclipse which is combined with a required 5 hours of out-

1Both available in the “Proposal Preparation Tools” of the CHEOPS Guest Observers Programme
webpage: https://www.cosmos.esa.int/web/cheops-guest-observers-programme/1
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of-eclipse time. This out-of-eclipse time is to account for any uncertainty in T0, P ,

e and ω; allowing us to accurately measure the baseline flux level and characterise

instrumental noise. For the number of visits we decided to observe one transit visit

(as with the precision of CHEOPS we would easily reach a very high SNR) and would

schedule however many secondary eclipse visits to reach a SNR of 4. Thus we needed

to predict the SNR of the individual secondary eclipse for each target. For the orbital

phase of the eclipse we again need the eclipse duration.

As our target list was composed of already observed targets we had plenty of

sources with which to obtain these required parameters. The coordinates were ob-

tained from the WASP designations of each object. The spectral type and size of the

primary stars were calculated using PARAMFIT, a routine developed by Barry Smalley

for use by the WASP project that derives estimates for stellar spectral type, radius,

etc. using the Spectral Energy Distribution (SED) fitting to catalogue photometry.

Accurate values of T0 and P could be derived from the fitting of TESS (Ricker et al.,

2015) and WASP (Pollacco et al., 2006) light curves. These fits also had the additional

benefit of giving us initial values for orbital parameters such as transit depth, width

and impact parameter, thus allowing our later least squares minimization and MCMC

fitting of CHEOPS data to start their runs at reasonable values, shortening and im-

proving these processes. Accurate T0 and P could also be obtained from spectroscopic

orbits for systems observed with the CORALIE spectrograph. We additionally used

a few individual fits of certain objects. We used Gómez Maqueo Chew et al. (2014)

and their analysis of EBLM J0113+31. We used von Boetticher et al. (2019) and their

analysis of EBLM J1013+01. We used Chaturvedi et al. (2016) and their analysis of

EBLM J2343+29. Finally, we made use of radial velocity analyses by James McCor-

mac of the targets EBLM J0719+25, EBLM J1741+31, EBLM J2134+19 and EBLM

J2343+29. To obtain accurate eccentricities and arguments of periastron we used two

literature sources and one observational source. Many of our targets had measured ec-

centricity and argument of periastron in the papers EBLM IV (Triaud et al., 2017), a

large scale radial velocity survey aiming to greatly enlarge the amount of precise data

for EBLMs, and BEBOP I (Martin et al., 2019), a survey looking for circumbinary
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planets. For those of our targets not covered by these papers, we obtained radial veloc-

ity data from Amaury Triaud, taken from the SOPHIE instrument at the Observatoire

de Haute Provence. We then performed radial velocity fitting using ELLC, (Maxted,

2016) a PYTHON module which can model light curves and radial velocity curves. All

three of these sources also provided values of radial velocity semi-amplitude for the

primary star K1 which we would require later for obtaining values of stellar mass. To

avoid systems with a third body, we avoided systems where a drift in the mean radial

velocity indicated their presence. To calculate the required number of eclipse visits we

used the transit SNR predictor of Monika Lendl2 to calculate the SNR for our transit

events. We then scaled this to the likely secondary eclipse SNR using surface brightness

ratios, assuming an effective temperature of 3000K for the M-dwarfs. With this SNR

calculated we finally calculated the amount of visits required.

3.2 Predicting how CHEOPS will observe our tar-

gets

With accurate orbital parameters we could go about calculating the durations and

widths we needed to schedule our CHEOPS observations. For the secondary eclipses,

the often faintly detected events were the most uncertain of our planned observations.

Therefore, we wanted to represent this uncertainty as a “duration error” for each target,

giving us an indication of the likelihood of missing the secondary eclipse of our target.

At the time our programme started a sizable chunk of our targets had not been observed

by TESS and the eclipses were too shallow to be seen with WASP, preventing us from

obtaining the specifications of the secondary eclipse event. The phase of secondary

eclipse is ∼ e cosω + 0.5 and the ratio of transit to eclipse width is ∼ e sinω. We

can get approximations of these phases and ratios. These approximations work well

for small eccentricity values but, in general, to derive the exact phases and widths we

2https://www.cosmos.esa.int/web/cheops-guest-observers-programme/ao-1
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Figure 3.1: The simulated light curve of EBLM J2046+06. The normalised flux of the
ELLC generated model light curve is shown in red at the orbital phase predicted for the
secondary eclipse event. The mean contact points from the 100 generated secondary
eclipses are shown as dotted green lines. In this case the contact points agree very well
with the predicted light curve, showing that uncertainties are low enough for us to be
confident with our obtained orbital parameters. The midpoint, occultation duration,
totality duration (in orbital phase units) and calculated 3-sigma “duration” error (in
hours) are displayed in the bottom right.

need to solve Kepler’s equation. Therefore to calculate the secondary phase and transit

widths exactly by simulating light curves, we used the e and ω values we had obtained

previously from papers and radial velocity fitting. With these we simulated the light

curves using ELLC and generated a model light curve, as shown in Figure 3.1.

We could then find the contact points of the eclipse event by obtaining the second

derivative of the light curve, as where this peaked would be the contact points of the

eclipse. By taking the midpoint of the first and last contact points we could also derive
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the eclipse midpoint. To check the precision of our widths and positions we defined our

“duration error”. This would be defined as a 3σ uncertainty using the combined error

on the eclipse midpoint and the width of the eclipse, a.k.a. the time taken between

the first and fourth contact points. To approximate these uncertainties we would use a

Monte Carlo approach and simulate multiple light curves. We generated 100 Gaussian

distributions of random orbital period, eccentricity and arguments of periastron (or

period and time of mid-eclipse for those of our targets with zero eccentricity); based on

the values and errors obtained via radial velocity. With these we could then simulate

100 light curves, with these quantities varied as the likeliest sources of error in the

eclipse position. The other orbital quantities were kept constant. By taking and

combining the standard deviation of both the observed eclipse midpoints and durations,

we thus approximated errors for these values and generated our “duration error”. With

this generated error we could then see any uncertainties that could cause problems in

our observation scheduling, leading us to miss the transit or eclipse event partially

or fully. This identified a few cases where we needed more accurate eccentricities and

arguments of periastron. In these cases we sought further radial velocity measurements

or even compared our orbital parameters to values fit photometrically using TESS or

WASP when present. With these accurate measurements we therefore had all the

positional and orbital parameters to determine the times when our transit and eclipse

events would occur and how many visits of them we needed.
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4 The TESS light curve of the eccentric
eclipsing binary 1SWASP J011351.29–
+314909.7 – no evidence for a very hot
M-dwarf companion

This chapter is closely based on the publication Swayne et al. (2020). One study in

the EBLM project, (Gómez Maqueo Chew et al. 2014, GMC+2014 hereafter), had

reported derivations of the mass, radius and effective temperature of the M-dwarf in

the eclipsing binary system EBLM J0113+31. They inferred a much higher M-dwarf

effective temperature than predicted by theoretical models. A similar issue was noted

by Ofir et al. (2012) in their analysis of KIC 1571511B. J0113+31 was observed in

Cycle 1 by the TESS mission (Ricker et al., 2015) in the winter of 2019. This allowed

us to see if we could reproduce this anomalous secondary temperature measurement

and gave me a useful introduction in how to use PYCHEOPS to analyse light curves. In

a Letters publication in MNRAS (Swayne et al., 2020) we presented our analysis of

the TESS light curve of J0113+31. After fitting the observed light curve using Monte

Carlo Markov Chain (MCMC) techniques, we then compared the observed secondary

eclipse depth to those predicted by theoretical stellar spectra. We observed a secondary

effective temperature that does not agree with the unexpectedly high temperatures seen

in GMC+2014, implying instead a value expected for a low-mass M-dwarf.

All the work presented in this chapter is my own with one exception. The ELLC

analysis of the TESS light curve was performed by the two co-authors, Amaury Tri-

aud and Vedad Kunovac Hodžić. The methods we used were near identical to those

described in Chapter 2 using PYCHEOPS on a TESS light curve fit using EMCEE. How-

ever, due to decorrelation data we had for CHEOPS light curves not being present, we

normalized the light curve by fitting a polynomial to remove any stellar flux variation.

Additionally, the derivation of Teff,2 was performed differently, using the values of Teff,1,

log g1, log g2 and [Fe/H] used in GMC+2014.
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4.1 Introduction

One of the most important factors in correctly characterising an exoplanet is to under-

stand its host star. The parameters of an orbiting exoplanet are, in most cases, inferred

from its effect upon the signal of its stellar host, most commonly through the transit or

radial velocity methods. The host star properties are most often obtained by matching

observable star properties to stellar evolution models (e.g. Baraffe et al. 1998; Dotter

et al. 2008). Thus, if these models are erroneous, and with them our understanding of

the primary star, so too will any exoplanet observations that are inferred from them.

This raises a possible issue regarding low-mass stars. Low-mass stars suffer from a

lack of data compared to other brighter sources. Direct measurements of stellar mass

and radius are uncommon and of temperature rarer still. As low mass stars are being

looked upon more and more as favourable targets for exoplanet detection and charac-

terisation (Charbonneau & Deming, 2007; Quirrenbach et al., 2014; Delrez et al., 2018)

this could be a great problem for both current and future observations. Recently, the

EBLM Project (Triaud et al., 2013) has been launched to start to address this prob-

lem. Its aim is to characterise around 200 low-mass eclipsing binary (EBLM) systems

discovered in the SuperWASP survey to better understand M-dwarf stars.

One study in the EBLM project, (Gómez Maqueo Chew et al. 2014, GMC+2014

hereafter), has reported derivations of the mass, radius and temperature of the eclipsing

M-dwarf system 1SWASPJ011351.29+314909.7 (J0113+31 hereafter). They inferred

a much higher M-dwarf temperature than predicted by theoretical models. A similar

issue was noted by Ofir et al. (2012) in their analysis of KIC 1571511B. If this inconsis-

tency is a wider trend it could result in the incorrect characterisation of exoplanets in

low-mass star systems. J0113+31 was recently observed by the TESS mission (Ricker

et al., 2015). This allows us to see if we can reproduce this anomalous secondary

temperature measurement. In this Letter we present the analysis of the TESS light

curve of J0113+31. After fitting the observed light curve using Monte Carlo Markov

Chain (MCMC) techniques, we then compared the observed secondary eclipse depth

to those predicted by theoretical stellar spectra. We find that our observed secondary
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Figure 4.1: Left : TESS pixels for its observation of J0113+31 overlaid onto an image
of the area around the object from the PanSTARSS image server, (Flewelling et al.,
2016). J0113+31 is the bright, central star, the TESS photometric aperture is in blue
and the pixels used to calculate the background flux are in green. Right : The TESS
light curve of J0113+31. The light curve is shown in blue with the eclipse and transit
events masked in detrending shown in red. The polynomial used to detrend the light
curve is overlaid in green.

effective temperature does not agree with the unexpectedly high temperatures seen in

GMC+2014, implying a value expected for a low-mass M-dwarf.

4.2 Observation

The TESS survey is split into 26 overlapping 90◦ × 24◦ degree sky sectors over both

northern and southern hemispheres, with each observed for approximately one month.

The eclipsing binary J0113+31 (TIC 400048097) was observed in Sector 17 of the

survey as part of the Guest Investigator programs G022039 and G022062, with 2-

minute cadence data made available. J0113+31 is a bright (V = 10.1) eclipsing binary
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star composed of a G0-2 V, metal-poor ([Fe/H] = −0.4) primary star and a much fainter

M-dwarf companion with a mass of about 0.2 M⊙. The orbital period is approximately

14.3 days and the orbit is eccentric (e ≈ 0.3). We downloaded the light curve from

the Mikulski Archive for Space Telescopes (MAST)1 web service. We used the Pre-

search Data Conditioned Simple Aperture Photometry (PDCSAP) flux data for our

analysis. Any cadences in the light curve with severe quality issues were ignored using

the “default” bitmask 175 (Tenenbaum & Jenkins, 2018). We downloaded the target

pixel file for the target and overlaid the TESS aperture used onto a map of the local

sky area in order to confirm that the Science Processing Operations Center (SPOC)

pipeline accounted for the presence of any contaminating stars. From Figure 4.1 it

can be seen that there are 3 faint stars within the photometric aperture. The flux

from J0113+31 relative to the total flux of all stars in the photometric calculated from

the TESS magnitudes from the TESS input catalogue (Stassun et al., 2019) is 0.9722.

This is similar to the reported crowding metric used for J0113+31 of 0.9695 so we are

satisfied that the PDCSAP flux had been corrected for this contaminating flux. In

addition, we observed a slight stellar variation in the light curve that we assume is

intrinsic to the star itself. We removed the resultant low-frequency noise by masking

the transits events, fitting a polynomial of order 25 and dividing the unmasked light

curve by the resulting function, shown in Figure 4.1.

4.3 Analysis/Results

To create the models needed for light curve fitting we used pycheops2, a python

module developed for analysis of data from the CHEOPS mission (Benz et al., 2021).

The transit model uses the QPOWER2 algorithm (Maxted & Gill, 2019) to calculate

the transit light curve assuming a power-2 limb darkening law. The parameters used in

the model are: the time of mid-primary eclipse T0, the transit depth D = k2 = R2
2/R

2
1

1https://mast.stsci.edu
2https://pypi.org/project/pycheops/
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Table 4.1: The reported orbital parameters from Maxted (2016), GMC+2014 and the
parameters calculated by our PYCHEOPS and ELLC fits.

GMC+2014 Maxted (2016) PYCHEOPS fit ELLC fit

R1/a 0.0534± 0.0021 0.0533± 0.0004 0.0540± 0.0010 0.0536± 0.0006
R2/a 0.0081± 0.0004 0.00783± 0.00008 0.0083± 0.0002 0.0082± 0.0001
i (◦) 89.084± 0.037 89.09± 0.05 88.980± 0.103 89.062± 0.064
LJ 0.00737± 0.00024 0.00749± 0.00018 −− −−
LTESS −− −− 0.00160± 0.00009 0.00164± 0.00006
e 0.3098± 0.0005 0.3096± 0.0007 0.3138± 0.0151 0.3090± 0.0090
ω (◦) 278.85± 1.29 278.9± 0.03 278.88± 0.47 279.01± 0.30

where R2 and R1 are the radii of the secondary and primary stars, the impact parameter

b = a cos i/R1 where i is the orbital inclination and a is the semi-major axis, the

transit widthW =
√

(1 + k)2 − b2R1/(πa), the eccentricity and argument of periastron

dependent parameters fs =
√
e sin (ω) and fc =

√
e cos (ω), the eclipse depth L and

the limb-darkening parameters h1 and h2 as defined by Maxted (2018). The light curve

only includes one primary and two secondary eclipses so we fixed the orbital period at

the value P = 14.2769001 d from GMC+2014. As h2 did not converge to a value during

the MCMC fit, we fixed it at a value obtained by an interpolator in-built in PYCHEOPS.

This interpolates a value of h2 from a data table presented in Maxted (2018) based on

the limb-darkening profiles from the STAGGER-grid (Magic et al., 2015).

We used the python module EMCEE (Foreman-Mackey et al., 2013) to sample the

posterior probability distribution of our model parameters. We sampled a chain of 480

walkers each going through 6000 steps, starting at values determined by a least-squares

fit and with step-sizes set to suitable values for each parameter. To allow the walkers to

settle into the probability distributions we performed a burn-in of 500 steps before the

sampling. To ensure adequate sampling was performed the number of steps chosen was

∼65-75 times longer than the autocorrelation length of each fitted parameter chain. To

ensure independent random samples from their posterior probability distributions, each
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Figure 4.2: Fitted normalised light curve of J0113+31 in phase intervals around the
transit and eclipse events. In both plots the observed light curve is displayed in cyan,
the best fit model is shown in black and the residual of the fit is presented in blue.
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Figure 4.3: Left : The secondary eclipse depths predicted using the PHOENIX (Husser
et al. (2013), triangles) and BT-Settl-CIFIST (Baraffe et al. (2015), crosses) theoretical
stellar spectra. All models assume Teff,1 = 6000 K, log g1 = 4.00 dex, log g2 = 5.00
dex, and no alpha element enhancement. We varied the metallicity between these
sets with [Fe/H] = −0.5, 0.0 and 0.5 dex for red, blue and green markers respectively
for PHOENIX models. The grey area represents a 100 K uncertainty in Teff,1. The
magenta line shows the fitted eclipse depth from the TESS light curve, L = 0.00160
± 0.00009. Right : A cutout of the stellar mass versus effective temperature diagram
from Parsons et al. (2018), with our result and the result from GMC+2014 highlighted
(green crosses). The type of system is displayed by different colours and symbols. The
theoretical relation from Baraffe et al. (2015) for an age of 1 Gyr is plotted in gray.



45

parameter chain was thinned by half the minimum parameter autocorrelation length.

The parameter values given in Table 4.1 are the mean and standard deviation of each

of the thinned model parameter chains. The light curve fit and residuals for these

parameter values are shown in Figure 4.2. We verified our analysis by performing an

independent fit using the eclipsing binary light curve model, ELLC (Maxted, 2016), as

implemented in a package called amelie (e.g. Hodžić et al. 2018; Triaud et al. 2020).

We find fully consistent results between using the two light curve models as shown in

Table 4.1.

4.4 Discussion

To convert the parameters from our light curve model to an estimate of Teff for the

M-dwarf star we used a similar method to GMC+2014. This involved comparing the

observed secondary eclipse depth with the expected depth determined using PHOENIX

model atmospheres (Husser et al., 2013). In brief, we integrate the flux of the primary

star over the TESS bandpass and proceed to calculate fluxes for the secondary over a

range of different temperatures using the same technique. We assume [Fe/H] = −0.5

dex, Teff,1 = 6000 K, log g1 = 4.00 dex, log g2 = 5.00 dex, (as in GMC+2014), and

no alpha element enhancement. The predicted eclipse depth is then L = DS2

S1
, where

S1 and S2 are the integrated surface brightnesses for the primary and secondary stars.

Using this method, eclipse depths were determined for Teff,2 values from 2500 to 4000

K. For further comparison showing the effect of different metallicities, predicted eclipse

depths were also calculated using [Fe/H] = 0.0 dex and 0.5 dex. As shown in Figure 4.3,

the eclipse depth predicted by the theoretical stellar models would indicate an effective

temperature far lower than that found by GMC+2014 for all three cases we calculated,

with no difference in metallicity enough to reconcile our results with their derived

temperature of 3922 K. To provide a further comparison we also calculated eclipse

depths using BT-Settl-CIFIST model spectra, comparing it with those obtained by

PHOENIX using a consistent [Fe/H] = 0. Again, the observed difference is not enough
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to account for the anomalous temperatures seen in GMC+2014.

For our best estimate of the M-dwarf effective temperature we decided to use the

value of [Fe/H] = −0.4 ± 0.04 provided in GMC+2014, obtaining it through linear

interpolation of eclipse depths at different metallicities using the PHOENIX derived

values. Due to the uncertainty in abundances when varying stellar parameters (Jofré

et al., 2019), we increased the [Fe/H] error to ±0.1 dex. We calculated the uncertainty

in Teff,2 by combining uncertainties in depth, Teff,1 and metallicity. Adding these

uncertainties in quadrature we obtained a final effective temperature, Teff,2 = 3208 ±
43K. As shown in Figure 4.3, this is the effective temperature expected for this star

given its mass.

As the result in GMC+2014 had been so unexpected they had discussed and

discounted several sources of potential theoretical error, either being not feasible or

not having enough of an effect to cause a temperature ∼600K warmer than expected.

Therefore, to examine the possible causes for this inconsistency with our results, we

first verified them using an independent code (ELLC). We then looked for any prob-

lems in our own integration of the theoretical models. We did this by reproducing

our eclipse depth predictions but integrating in the same bandpass as that used by

GMC+2014, specifically that of the FLAMINGOS instrument used to observe their

secondary eclipse data. This correctly reproduces their theoretical expected depths,

ruling out problems in this element of our analysis. We also tested our method for

dividing out variation in the light curve by observing whether the method is sensitive

to the order of the polynomial used in removing slow flux variations in the light curve.

If we use a polynomial of order 10 instead of 25 we find that the value of Teff,2 changes

by only 3K, i.e., not enough to put our overall conclusion in doubt.

We then searched for inconsistencies in the observational measurements of the

two studies. One contributing factor could be the issue of metallicity and how it effects

observations at different wavelength regimes. At a fixed mass, a metal-rich star is

predicted to see a decrease in luminosity caused by the increased opacity. However

this increase in opacity does not necessarily lead to a reduction in flux in all bands.

Mann et al. (2019) finds that in the K band this trend could be weakened or reversed
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due to the increased opacities occurring in the visible rather than the near-infrared,

causing a larger amount of the flux to escape. They display the flux ratio of metal-poor

and metal-rich stars in different wavelength regimes, finding a change from 1.2 to 1.0

between r′ and K bands. As the TESS satellite operates from the r to z bands and

the FLAMINGOS J band was used by GMC+2014 in their fit, an underestimation

in opacity in optical wavelengths could result in the model-predicted eclipse depths

implying a lower temperature than they should for high metallicity objects. However,

as shown in Figure 4.3, the differences produced by changes in metallicity would likely

not be large enough to reconcile our results. In addition, any differences in the J band

are likely to be even smaller (Mann et al., 2019). No matter the changes we can make to

theoretical stellar spectra, there is no single temperature that will match the reported

depths in the TESS and J bands.

Our preferred interpretation is that the result in GMC+2014 is a result of sys-

tematic errors. Systematic errors inherent to ground-based observation have been a

problem when trying to infer temperature from precise eclipse measurements, most

noticeably with hot Jupiters (De Mooij et al., 2011; Croll et al., 2015). Hooton et al.

(2019) found that the eclipse depth measured by one instrument was less than 50%

of another for the eclipses of WASP-12 b observed in the I-band. They discussed the

following potential causes for systematic errors between observations or instruments:

- variations in pixel sensitivities between different detectors;

- changes in weather/atmospheric conditions;

- uncorrected fringing patterns caused by telluric absorption lines;

- contamination from the Moon, satellites and cosmic rays;

- differences in methods of data reduction.

With all of these sources, different treatment of the data could result in significant

systematic errors. For our value of Teff,2, the predicted eclipse depth in the J band is

0.0044, cf. a depth of 0.00737 reported by GMC+2014. This is a discrepancy of about

50%, similar to the systematic error reported by Hooton et al. (2019). This suggests

that systematic errors can produce the size of anomaly that we are finding. Going

further, Hansen et al. (2014) conducted an analysis of eclipse depth uncertainties in
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regards to inferring atmospheric quantities and proposes an underestimation in error

across all eclipse depth observations. Considering the need for precise measurements

to properly constrain theoretical models, further observations by other ground-based

and space-based instruments are needed to ensure accuracy.

4.5 Summary

In this paper we have presented our analysis of the TESS light curve of J0113+31

and derived orbital parameters by MCMC fitting. We do not confirm the hotter-

than expected temperature reported by GMC+2014 for the M-dwarf companion. Our

analysis found an effective temperature of Teff,2 = 3208 ± 43K, a value that agrees

well with those predicted by theoretical stellar models. Our preferred explanation

for the discrepancy is that GMC+2014 under-estimated the systematic error in their

ground-based measurement of the eclipse depth.

Additional observations of J0113+31 among other EBLMs are planned using the

recently-launched CHEOPS satellite. The analysis of the high precision light curves

observed by CHEOPS of these objects will contribute towards the better understanding

of low-mass stars using more accurate radii and temperatures. With its observational

bandpass based in the visual part of the spectrum it would also be worthwhile to

undertake further observation in the near-infrared to see if eclipse depths obtained in

these different regimes still disagree, or if there are further possible causes for reported

anomalous effective temperatures of low-mass stars.
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5 The EBLM project - VIII. First results
for M-dwarf mass, radius and effective
temperature measurements using CHEOPS
light curves

The following chapter is closely based on the publication Swayne et al. (2021). It

presents the first completed results of our CHEOPS programme for the targets J1741+31,

J1934-42 and J2046+06. For J1741+31 and J1934-42 we also compared our CHEOPS

results with those from TESS light curves. This represented the proof of concept for

our plans and techniques for the programme. All sections and work is my own with a

few exceptions. The derivation of spectroscopic parameters, stellar radii, stellar masses

and ages and the paragraphs describing them in the paper were done by the members

of the CHEOPS TS3 working group responsible for these analyses. The sentences on

measuring the radial velocities of J1741+31 were written by the co-author Amaury

Triaud.

Finally, all methods were performed as in Chapter 2 with one exception. The

primary star’s log g1, mass and radii were obtained from analyses by the TS3 team, not

from the methods described previously. Additionally, the normalisation of the TESS

light curves was performed as in Chapter 4 with the exception of J1934-42 whose

varying light curve required the use of the Gaussian process fit described in the paper.

5.1 Introduction

Understanding the host star is one of the most crucial parts of exoplanet characterisa-

tion. Exoplanets are mostly observed and analysed through how they effect the stellar

signal, such as with the transit and radial velocity methods (Santos et al., 2020). A

more accurate measurement of host size and mass thus leads to more accurate values

of planetary size and mass. The host star’s properties are most commonly obtained by
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finding the closest fit between observable star properties and stellar evolution models

(e.g. Baraffe et al. 1998; Dotter et al. 2008). Therefore, any uncertainties in these

models leads to systematic errors in the inferred stellar and exoplanetary properties.

This has become a potential issue regarding low-mass star systems’ recent popularity

as targets for exoplanet observation (Charbonneau & Deming, 2007; Quirrenbach et al.,

2014; Gillon et al., 2017; Delrez et al., 2018). Low-mass star systems suffer from a lack

of data compared to more massive stars because they are intrinsically much fainter

and, hence, harder to study. There is a shortfall in direct and precise mass and radius

measurements of these systems, with effective temperature measurements being rarer

still. The EBLM project (Triaud et al., 2013) was launched to address this lack of

fundamental data for M-dwarfs. Hundreds of eclipsing binaries with low-mass com-

panions have been identified using data from the WASP project (Pollacco et al., 2006),

and we have measured the spectroscopic orbits for the primary stars in more than 100

of these EBLM systems (Triaud et al., 2017). These data are used to select targets for

further study to address lack of precise mass, radius and temperature measurements

for low-mass stars, especially below 0.3 solar masses.

A number of studies have reported inconsistencies between the observed radii and

M-dwarfs and theoretically predicted radii from models of low-mass stars, an effect

commonly called radius inflation (e.g. Casagrande et al. 2008; Torres et al. 2010;

Spada et al. 2013; Kesseli et al. 2018). Typically, the measured radii are larger than

the predicted values for stars of a given mass by a few percent (e.g. Morales et al.

2009). There is also a tendency for M-dwarfs to be cooler than predicted by models,

such that the luminosity of the star is approximately correct. It is currently unclear

to what extent radius inflation is due to problems with stellar models, or is the result

of bias in the observed radius estimates. Possible sources of error from the models

involve uncertainties in the input physics of the model, its initial chemical composition

and in convection efficiency (Tognelli et al., 2018; Fernandes et al., 2019). These

would in turn provide an uncertainty to predicted radius. It is also possible that some

models are missing some physical process that affects the stellar radius. The presence

of a strong magnetic field or magnetic activity could inhibit the convective energy
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transport present in lower-mass stars (Chabrier et al., 2007). This could result in the

inflation effect as the star attempts to maintain a constant energy flux through the

surface. Rotation in eclipsing binaries has also been proposed as a potential cause.

Tidal interactions between the two bodies in the system could increase the speed of

the internal stellar dynamo leading to increased activity (Ribas, 2006). Radius inflation

therefore could be an observational bias caused by using eclipsing binaries to obtain

radii from M-dwarfs. However cases of long-period eclipsing binaries (Irwin et al., 2011)

and isolated M-dwarfs (Spada et al., 2013; Van Grootel et al., 2018) showing similar

inflation to short-period eclipsing binaries casts doubt on tidal interactions being the

sole cause . The effect of metallicity on very low mass stars is also debated as a possible

cause for inflation with its effect on the opacity in the outer layers of the star. In their

revision of the age of CM Dra, Feiden & Chaboyer (2014) find a reduction of observed

mass-radius discrepancies from 6% to 2% upon obtaining more accurate metallicity and

age measurements for this binary star. Metallicity measurements for EBLM systems

are more reliable than M+M binaries like CM Dra because the spectrum of a solar-type

star is much less complex and crowded than the spectrum of a rapidly-rotating M-dwarf

star. Radius measurements for several EBLM systems by von Boetticher et al. (2019)

suggest that the metallicity may have a measurable effect on stellar radius. Therefore

the accuracy of metallicity values is important when considering the radius inflation

problem. Large uncertainties in metallicity, such as those in the order of 0.2 dex as seen

in Olander et al. (2021), could lead to differences in radius residuals of ∼0.024 according

to the metallicity dependent relation described in von Boetticher et al. (2019). Finally,

there has been recent disagreement on the reality of the effect. Parsons et al. (2018)

reports that 75% of their objects are up to 12% inflated. However, two papers in the

EBLM project (von Boetticher et al., 2019; Gill et al., 2019) find little evidence of

inflation in their samples of 10 and 5 objects respectively. A much larger sample of

precise and accurate mass, radius and effective measurements for M-dwarfs of known

metallicity is needed so that we can reliably estimate the properties of low-mass host

stars in planetary systems.

The CHEOPS mission (Benz et al., 2021) is the first small (S-class) European
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Space Agency mission. Launched on the 18th of December 2019, it has been designed

primarily to perform ultrahigh-precision photometry of bright stars that are known to

host exoplanet systems. The CHEOPS guaranteed-time observing programme includes

a small number of “Ancillary Science” programmes where the stars observed do not

host exoplanets, but where the observations made are relevant to exoplanet science.

This includes our programme to use the capabilities of CHEOPS to explore the radius

inflation problem. Additionally, in measurements of M-dwarf effective temperature

in EBLM systems, there is the possibility of some unrealised systematic error, with

different studies reporting widely different results for the same object (e.g. Gómez

Maqueo Chew et al. 2014; Swayne et al. 2020). Through obtaining high precision

observations of secondary eclipses we can compare to previous observations and explore

any potential systematic effect.

In this paper we present our analysis of the first three targets in our CHEOPS ob-

serving programme with a complete set of observations – EBLM J1741+31, EBLM J1934−42

and EBLM J2046+06. EBLM J1741+31 and EBLM J1934−42 have also been observed

by the TESS satellite (Ricker et al., 2015). This gives us an opportunity to test the

reliability of our methods to measure mass, radius and effective temperature by com-

paring the results from the two instruments. Our observations, data reduction and

methods to characterise the host star are outlined in Section 5.2. The analysis of the

light curves and results are described in Section 5.3. We discuss our results in the

context of previous mass, radius and effective temperature measurements for M-dwarfs

in Section 5.4, and give our conclusions as to the future prospects for our observing

programme in Section 5.5.
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Table 5.1: A log of observation dates and details for each target visit. Sp. Type is
the estimated spectral type of the primary star. Effic. is the fraction of the observing
interval covered by valid observations of the target. Rap is the aperture radius used to
compute the light curve analysed in this paper.

Event Target V Start Date Duration Texp Effic. File key Rap

Sp. Type (mag) (UTC) [s] [s] (%) [pixels]

Transit J1741+31 11.7 2020-06-13T08:20:00 27794 60 67.8 CH PR100037 TG014601 V0102 30.0
Eclipse† G0V 2020-06-10T08:12:58 29098 60 63.0 CH PR100037 TG014501 V0102 30.0
Transit J1934-42 12.62 2020-06-27T13:43:57 28387 60 60.7 CH PR100037 TG015001 V0100 25.0
Eclipse G8V 2020-07-13T09:47:00 28387 60 61.1 CH PR100037 TG014901 V0100 25.0
Transit J2046+06 9.86 2020-08-28T22:08:00 35676 60 81.1 CH PR100037 TG015601 V0100 25.0
Eclipse F8V 2020-07-03T11:34:00 42313 60 66.7 CH PR100037 TG015501 V0100 25.0

† Does not cover the phase of superior conjunction.

5.2 Observations and methods

Our three targets are all detached eclipsing binary stars in which a solar-type star

is eclipsed by an M-dwarf. The log of our observations is given in Table 5.1. The

observations were made as part of the CHEOPS Guaranteed Time Observation (GTO)

programme ID-037: Eclipsing binaries with very low mass stars. This programme seeks

to observe primary and secondary eclipses of 25 EBLM systems. CHEOPS observes

stars from low-Earth orbit, so observations are interrupted by occultation of the target

by the Earth and passages through the South Atlantic Anomaly. These gaps in the

light curve can be up to 44 and 19 minutes, respectively.

The raw data were processed using version 13 of the CHEOPS data reduction

pipeline (DRP, Hoyer et al. 2020). The DRP performs image correction for environ-

mental and instrumental effects before performing aperture photometry of the target.

As explained in Hoyer et al. (2020), the Gaia DR2 catalogue (Gaia Collaboration et al.,

2018) is used by the DRP to simulate an observations’ field of view (FoV) in order to

estimate the level of contamination present in the photometric aperture. The DRP

also accounts for the rotating FoV of CHEOPS, where other stars in the image can

create “smear” trails and contaminate the photometric aperture. The smear effect is
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corrected by the DRP while the contamination produced by nearby stars is recorded in

the DRP data products allowing the user to include or ignore the contamination correc-

tion provided. The final photometry is extracted by the DRP using three different fixed

aperture sizes labelled “RINF”, “DEFAULT” and “RSUP” (at radii of 22.5, 25.0 and

30.0 pixels, respectively) and a further “OPTIMAL” aperture whose size is dependent

upon the FoV contamination. The observed and processed data are made available on

the Data Analysis Center for Exoplanets (DACE) web platform1. We downloaded our

data from DACE using PYCHEOPS2, a python module developed for the analysis of

data from the CHEOPS mission (Maxted et al., 2022). We fitted the light curves from

all four apertures and found that different choice of aperture radius has a negligible

impact on the results. Therefore, for EBLM J1741+31 and EBLM J1934−42, we se-

lected the aperture radius that gave the minimum median absolute deviation (MAD)

of the point-to-point differences in the light curve of the eclipse visit. We then used

the chosen aperture type for the respective transit visits. For EBLM J2046+06 this

criterion resulted in slightly different aperture radii for the two visits from the preferred

OPTIMAL aperture (25.5 and 26.0 pixels), so we used the DEFAULT aperture instead.

The TESS survey is split into overlapping 90◦× 24◦ degree sky sectors over both

northern and southern hemispheres with each sector being observed for approximately

one month. EBLM J1741+31 (TIC 18319090) was observed in Sectors 25 and 26 of

the survey as part of the Guest Investigator programs G022156 and G022253, with 2-

minute cadence data made available. EBLM J1934−42 (TIC 143291764) was observed

in Sectors 13 and 27 of the survey as part of the Guest Investigator programs G011278

and G03216, with 2-minute cadence data made available. Data was reduced by the

Science Processing Operations Center Pipeline (SPOC; Jenkins et al. 2016) and made

available from the Mikulski Archive for Space Telescopes (MAST)3 web service. We

used the Pre-search Data Conditioned Simple Aperture Photometry (PDCSAP) flux

data for our analysis. Any cadences in the light curve with severe quality issues were

1The DACE platform is available at http://dace.unige.ch
2https://pypi.org/project/pycheops/
3https://mast.stsci.edu



55

ignored using the “default” bitmask 175 (Tenenbaum & Jenkins, 2018). The TESS

light curve of EBLM J1741+31 shows a smooth variation with an amplitude ∼ 0.2%

in the flux between the transits. To remove this variability we divided the light curve

by a low-order polynomial fitted by least-squares to the data between the transits.

EBLM J1934−42 shows variability in the TESS light curve with an amplitude of about

1% on timescales of a few days. This may be due to moderate stellar activity modulated

by stellar rotation. To remove this low-frequency noise we fit the data between the

transits with a Gaussian process (GP) calculated using the celerite (Foreman-Mackey

et al., 2017) software package. The kernel of the GP is the stochastically-driven damped

simple harmonic oscillator function defined by Foreman-Mackey et al. 2017. We then

divide the entire light curve by the GP predicted by the best-fit hyper-parameters.

The spectroscopic stellar parameters (Teff , log g, microturbulence (ξt), [Fe/H])

and respective uncertainties were estimated by using ARES+MOOG, following the

same methodology as described in Sousa (2014); Santos et al. (2013). For this we

used the combined spectra from the individual observations done with SOPHIE for

EBLM J1741+31 and with HARPS observations from ESO programme 1101.C-0721

for EBLM J1934−42 and EBLM J2046+06. For EBLM J1741+31 there were 13 in-

dividual observations with SOPHIE, with a signal-to-noise ratio (SNR) of 20-50. The

combined spectrum has a total SNR ∼140. For EBLM J1934−42 there were 24 in-

dividual observations, with SNR varying between 15-20. The combined spectra has

a total SNR ∼100. For EBLM J2046+06 there were 22 individual observations, with

SNR varying between 50-80. The combined spectra has a total SNR ∼300. We used

the ARES code4 (Sousa et al., 2007, 2015) to measure equivalent widths (EW) of iron

lines measured using the list of lines presented in Sousa et al. (2008). A minimization

process assuming ionization and excitation equilibrium is used to find convergence for

the best set of spectroscopic parameters. In this process we use a grid of Kurucz model

atmospheres (Kurucz, 1993) and the radiative transfer code MOOG (Sneden, 1973).

4The last version of ARES code (ARES v2) can be downloaded at
https://github.com/sousasag/ARES
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The radii of the three targets were determined using an adapted infrared flux

method (IRFM; Blackwell & Shallis 1977) via relationships between the bolometric

flux, the stellar angular diameter, the effective temperature, and the parallax, recently

detailed in Schanche et al. (2020). For each target, and using a MCMC approach, we

built spectral energy distributions (SEDs) from the atlas Catalogues (Castelli & Ku-

rucz, 2003) using the stellar spectral parameters derived above as priors. Subsequently,

we conducted synthetic photometry by convolving the SEDs with the throughput of the

selected photometric bandpasses and compared the resulting fluxes with the observed

fluxes in these bandpasses; Gaia G, GBP, and GRP, 2MASS J, H, and K, and WISE W1

and W2 (Skrutskie et al., 2006; Wright et al., 2010; Gaia Collaboration et al., 2020) to

obtain the stellar bolometric fluxes and hence the angular diameters. These diameters

were combined with offset-corrected Gaia EDR3 parallax (Lindegren et al., 2020) to

produce the stellar radii given in Table 5.2.

The stellar mass M⋆ and age t⋆ were inferred from two different stellar evolution-

ary models, namely the PARSEC5 v1.2S code (Marigo et al., 2017) and the CLES code

(Code Liègeois d’Évolution Stellaire; Scuflaire et al. 2008). We adopted the stellar ef-

fective temperature Teff , metallicity [Fe/H], and radius RIRFM,⋆ as input parameters and

carried out two independent analyses. The first analysis used the Isochrone placement

algorithm (Bonfanti et al., 2015, 2016) which retrieves the best estimates for both mass

and age by interpolating within pre-computed PARSEC grids of isochrones and tracks.

The second analysis, instead, returned the mass and age values by directly fitting the

input parameters to the CLES models following a Levenberg-Marquadt minimisation

(Salmon et al., 2021). Finally, we combined the two different mass and age values to

obtain the definitive M⋆ and t⋆ parameters; further details can be found in Bonfanti

et al. (2021). The masses obtained are given in Table 5.2.

The semi-amplitude of the primary star’s spectroscopic orbit, K, is required for

the calculations of secondary star’s mass. For EBLM J1934−42 and EBLM J2046+06

5Padova and Trieste Stellar Evolutionary Code
http://stev.oapd.inaf.it/cgi-bin/cmd.
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we used values of K from the Binaries Escorted By Orbiting Planets survey (BEBOP,

Martin et al. 2019). For J1741-31 we calculated K from a fit to radial velocity data

from the SOPHIE high-resolution échelle spectrograph (Perruchot et al., 2008) mounted

on the 193cm telescope at the Observatoire de Haute-Provence (France). Twenty

measurements were collected between the dates of 2019-02-24 and 2020-09-03 with a

typical exposure time of 1800s leading to a mean uncertainty of 13.7m s−1. These

were obtained as part of a Large Programme aiming to detect circumbinary planets

(e.g. Martin et al. 2019). The 20 spectra were obtained in High-Efficiency mode,

where the resolution is reduced to 40,000 for a 2.5× gain in throughput over the High-

Resolution mode of 75,000. All observations were performed with a fibre on the science

target and a fibre on the sky. The latter is used to remove background contamination

originating from the Moon. All science and sky spectra were reduced using the SOPHIE

Data Reduction Software (DRS) and cross-correlated with a G2 mask to obtain radial-

velocities. These methods are described in Baranne et al. (1996), and Courcol et al.

(2015), and have been shown to produce precisions and accuracies of a few meters

per seconds (e.g. Bouchy et al. 2013; Hara et al. 2020), well below what we typically

obtained on this system. We used the python module ELLC (Maxted, 2016) to model

radial velocity. In our fit of the Keplerian orbit we accounted for jitter by applying a

weight in our log-likelihood function. We used the python module emcee (Foreman-

Mackey et al., 2013) to sample the posterior probability distribution of our model

parameters. The stellar properties and obtained value of K are all displayed in Table

5.2.
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Table 5.2: The observed stellar properties of the primary star of our binary targets.
Right ascension (RA) and declination (Dec) are coordinates with equinox J2000.0.

EBLM J1741+31 EBLM J1934−42 EBLM J2046+06

Name TYC 2606−1838−1 TIC 143291764 TYC 524−2528−1
RA 17 41 21.27 19 34 25.69 20 46 43.88
Dec +31 24 55.3 -42 23 11.6 +06 18 09.7
G (mag) 11.40 11.42 9.83
Teff,1 (K) 6376± 72 5648± 68 6302± 70
log g1 (cgs) 4.63± 0.11 4.33± 0.12 3.98± 0.11
ξt (km/s) 1.25± 0.05 1.10± 0.04 1.61± 0.05
[Fe/H] 0.09± 0.05 0.29± 0.05 0.00± 0.05
R1(R⊙) 1.336± 0.015 0.996± 0.008 1.722± 0.015
M1(M⊙) 1.270± 0.043 1.046± 0.049 1.339± 0.056
Age (Gyr.) 1.2± 0.7 1.8± 2.0 2.8± 0.6
K (km/s) 37.14± 0.04 18.62± 0.01 15.55± 0.01

5.3 Analysis

We analyse the CHEOPS light curves for each star in two steps. In the first step,

we analyse each CHEOPS visit in order to determine initial values for our model

Table 5.3: The priors set for each target during the MultiVisit analysis.

J1741+31 J1934-42 J2046+06

fc 0.3003± 0.0016 – −0.1901± 0.0008
fs 0.4591± 0.0012 – 0.5545± 0.0004
h1 0.771± 0.012 0.729± 0.011 –
h2 0.420± 0.050 0.398± 0.050 –
L 0.007± 0.004 – –
log ρ/ρ⊙ −0.274± 0.021 – –
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parameters, and to determine which nuisance parameters must be included in the

model to deal with instrumental noise. In the second step, we analyse all the data for

each star in a single Markov chain Monte Carlo (MCMC) analysis to obtain our final

results. These results are then compared to a MCMC analysis of TESS data when

available. The output from the light curve analysis is then combined with an estimate

of for the mass of the primary star and K to determine the mass and radius of the

M-dwarf. The depth of the secondary eclipse is used together with model spectral

energy distributions to estimate the effective temperature of the M-dwarf.

5.3.1 CHEOPS visit-by-visit analysis

To create the models needed for light curve fitting we used PYCHEOPS. The transit model

uses the qpower2 algorithm (Maxted & Gill, 2019) to calculate the transit light curve

assuming a power-2 limb darkening law. The parameters used in the model are: the

time of mid-primary eclipse T0; the transit depth D = k2 = R2
2/R

2
1, where R2 and R1

are the radii of the secondary and primary stars; b = a cos i/R1, where i is the orbital

inclination and a is the semimajor axis; W =
√

(1 + k)2 − b2R1/(πa); the eccentricity

and argument of periastron dependent parameters fs =
√
e sin (ω) and fc =

√
e cos (ω);

the eclipse depth L and the limb-darkening parameters h1 and h2 as defined by Maxted

(2018). For an eclipsing binary with a circular orbit, D, W and b are the depth, width

(in phase units) and impact parameter of the eclipse, respectively. For each target we

obtained one primary and one secondary eclipse so the orbital period, P , has to be fixed

at a known value. For EBLM J1741+31 and EBLM J1934−42 we fixed P to the value

obtained from our analysis of the TESS light curve. For EBLM J2046+06 we fixed

the orbital period at the value reported by Martin et al. (2019). To better constrain

our fit, Gaussian priors were put on fc and fs using e and ω measurements from the

spectroscopic orbit. The orbital eccentricity of EBLM J1934−42 is very small so we

assumed a circular orbit for our analysis. For EBLM J1741+31 and EBLM J1934−42,

which have partial eclipses, the eclipses do not constrain the limb darkening properties

of the star so we place Gaussian priors on h1 and h2. These priors are listed in Table
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5.3. The values of h1 and h2 appropriate for the values of [Fe/H], Teff,1 and log g given

in Section 5.2 are found using interpolation in the data tables presented in Maxted

(2018) based on the limb-darkening profiles from the STAGGER-grid (Magic et al.,

2015). An offset (0.01 for h1, −0.045 for h2) was then applied based on the offset

between empirical and tabulated values of these limb darkening parameters observed

in the Kepler bandpass by Maxted (2018).

CHEOPS light curves can be affected by trends correlated with satellite roll

angle, the varying contamination of the photometric aperture, the background level

in the images, and the estimated correction for smear trails from nearby stars. These

trends are modelled using linear decorrelation against these parameters or, for roll

angle ϕ, sin(ϕ), cos(ϕ), sin(2ϕ), etc. The coefficients for each trend are optimised

simultaneously with the parameters of the transit or eclipse model in a least squares fit

to all the data in each visit. In the case of the eclipse events, fits to individual visits were

performed with all orbital parameters apart from eclipse depth fixed at the parameters

derived from the fit to the transit. To select decorrelation parameters for each visit

we did an initial fit to each light curve with no decorrelation and used the RMS of

the residuals from this fit, σp, to set a normal prior on the decorrelation parameters,

N (0, σp) or, for df/dt, N (0, σp/∆t) where ∆t is the duration of the visit. We then

added decorrelation parameters to the fit one-by-one, selecting the parameter with

the lowest Bayes factor Bp = e−(p/σp)2/2 σ0/σp at each step, where σ0 is the standard

error on the decorrelation parameter from the least-squares fit (Maxted et al., 2022).

We stop adding decorrelation parameters when Bp > 1 for all remaining parameters.

This process sometimes leads to a set of parameters including some that are strongly

correlated with one another and so are therefore not well determined, i.e. they have

large Bayes factors. We therefore go through a process of repeatedly removing the

parameter with the largest Bayes factor if any of the parameters have a Bayes factors

Bp > 1. The second step of this process typically removes no more than 1 or 2

parameters.
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5.3.2 CHEOPS MultiVisit analysis

We used the MultiVisit function in PYCHEOPS to do a combined analysis of both

visits for each target. Decorrelation against trends with roll angle were done implicitly

using the method described in (Maxted et al., 2022), i.e. by modifying the calculation

of the likelihood to account for the decorrelation against roll angle without explicitly

calculating the decorrelation parameters df/d sin(ϕ), df/d cos(ϕ), etc. The same Gaus-

sian priors for fc and fs, h1 and h2 were used as for the analysis of individual visits.

For EBLM J1741+31 we also set a priors on the eclipse depth L and on the log of the

stellar density log ρ, which is directly related to the transit parameters via Kepler’s

law (Maxted et al., 2022). This target has no detectable secondary eclipse and the

primary eclipse is very shallow so the model parameters are poorly constrained by the

light curve alone. The prior on eclipse depth was set using the predicted flux ratio.

This ratio was calculated using the predicted absolute G-band magnitude, MG, for

each star based on their masses using the calibration by Pecaut & Mamajek (2013).

The scatter around the MG-mass relation for M-dwarfs was assumed to be similar to

the observed scatter in MV magnitude values reported by Hartman et al. (2015). The

prior for log ρ was calculated using the derived values of mass and radius described in

Section 5.2. The values used for these priors are shown in Table 5.3.

The joint posterior probability distribution (PPD) for the model and nuisance

parameters are sampled using the sampler emcee (Foreman-Mackey et al., 2013). The

initial parameters of the run were the values previously obtained by the fits to the in-

dividual visit. We sampled a chain of 128 walkers each going through 35 000 steps after

a “burn-in” of 1024 steps to ensure that the sampler has converged to a steady state.

To ensure adequate sampling we ensured that the number of steps chosen was more

than 50 times longer than the auto-correlation length of each fitted parameter chain.

For EBLM J1934−42 this required a second run of emcee with 180 000 steps, and for

EBLM J1741+31 a second run with 240 000 steps. To ensure independent random sam-

ples from their posterior probability distributions, each parameter chain was thinned

by approximately half the minimum parameter auto-correlation length. The parame-
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ter values given in Table 5.4 are the median value of the parameters from the sampled

PPD and the standard errors are estimated from the 15.9% and 89.1% percentile-points

in the distribution for each parameter. The fitted decorrelation parameters from our

analyses are shown in Appendix .1.1 in Table .12. Correlations between selected pa-

rameters are displayed in Appendix .1.2. In EBLM J1741+31 there are very strong

correlations between D, W and b as can be seen in Figure .12. In EBLM J1934−42

the correlation between these parameters is not as strong though there are a significant

number of walkers that tend to larger values of D and b as can be seen in Figure .13.

In EBLM J2046+06 as shown in Figure .14 there is again a correlation between D, W

and b, but not as strongly as for EBLM J1741+31. The light curve fit and residuals

for these parameter values are shown in Fig. 5.1.

5.3.3 TESS light curve analysis

We have compared our results using CHEOPS data to a similar analysis of the TESS

light curves for EBLM J1741+31 and EBLM J1934−42. For EBLM J1741+31 we used

data from TESS sectors 25 and 26 covering 5 transits. For EBLM J1934−42 we used

data from sectors 13 and 27 covering 6 transits. Sampling of the posterior probability

distribution of our model parameters was again performed using emcee. Gaussian

priors were set on fc and fs using the same spectroscopically derived values as in the

CHEOPS fit. Gaussian priors were also set on h1 and h2 using the stellar parameters

given in Section 5.2 and assuming the same offset, but using the TESS passband to

interpolate our values. For EBLM J1741+31 a prior on eclipse depth L was again set

using the predicted flux ratio of the target, adjusting to MIc magnitudes from Pecaut

& Mamajek (2013) due to the different passband of TESS. EBLM J1741+31 required

more steps than EBLM J1934−42 to ensure the number of steps in the simulation was

more than 50 times longer than the autocorrelation length in each parameter chain. We

sampled a chain of 128 walkers each going through 20480 steps for EBLM J1934−42

and 81920 steps for EBLM J1741+31, with initial orbital parameters determined by a

least-squares fit of the light curves. To allow the walkers to settle into the probabil-
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ity distributions we performed a burn-in of 2560 and 5120 steps before the sampling

for EBLM J1934−42 and EBLM J1741+31, respectively. The parameter values given

in Table 4.1 are the median value of the parameters from the sampled PPD and the

standard errors are estimated from the 15.9% and 89.1% percentile-points in the distri-

bution for each parameter. In EBLM J1741+31, similarly to the CHEOPS light curve,

there are very strong correlations between D, W and b as can be seen in Figure .15. In

EBLM J1934−42 the correlation between these parameters is not as strong. Though

there are a small amount of walkers that tend to larger values of D and b as can be

seen in Figure .16, this is a smaller trend than in the CHEOPS light curve. The light

curve fit and residuals are shown in Fig. 5.2.

5.3.4 Mass, radius and effective temperature

To obtain values of companion mass and radius we made use of the function massra-

dius in PYCHEOPS. The M-dwarf mass is determined from the assumed primary mass

M1, orbital period P , orbital eccentricity e, the sine of orbital inclination sin(i) and the

semi-amplitude of the star’s spectroscopic orbit K. The M-dwarf radius is determined

from the primary star radius R1 from Table 5.2 and the planet-star radius ratio from

the light curve analysis, k. The value of log g2 in Table 5.4 is determined directly from

K and the parameters of the transit light curve using equations (4) from Southworth

et al. (2007).

The ratio of the eclipse depths is directly related to the surface brightness ratio,

i.e. F2/F1 = L/D, where F2 is the flux per unit area integrated over the observing

bandpass for star 2, and similarly for F1. The surface brightness is directly related

to a star’s effective temperature, so we can use this information together with the

values of Teff,1, log g1 and [Fe/H] from Table 5.2, and spectral energy distributions

from model stellar atmospheres to determine Teff,2, the effective temperature of the M-

dwarf. We calculated integrated surface brightness values for a large range of effective

temperature, surface gravity and metallicity using PHOENIX model atmospheres with

no alpha-element enhancement (Husser et al., 2013) for both the CHEOPS or TESS
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bandpasses. We then sample the PPD for Teff,2 using emcee and interpolation within

this grid using the value of log g2 from Table 5.4. The results are given in Table 5.4.

5.3.4.1 J1741+31 Eclipse Visit

Unfortunately, there is no secondary eclipse visible in the CHEOPS light curve for

EBLM J1741+31. We found that the predicted time of superior conjunction for our

fitted model parameters is outside the duration of our scheduled CHEOPS visit. This

visit was scheduled based on a preparatory analysis using less data than is now available

for this target. We can use the analysis of the transit in the CHEOPS light curve to

calculate the minimum separation of the stars around superior conjunction. We find

that the probability that there is a secondary eclipse is < 0.002%. This explains why

there is also no secondary eclipse visible in the TESS light curve (Fig. 5.2).
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Figure 5.1: Fitted light curve of EBLM J1741+31 (Top), EBLM J1934−42 (Middle)
and EBLM J2046+06 (Bottom) in phase intervals around the transit and eclipse events.
The observed data corrected for instrumental trends according to the decorrelation
coefficients given in Table .12 are shown in cyan. The transit and eclipse models are
shown in green. Binned data points with error bars are shown in blue and the fit
between binned data points in brown. The residual of the fit is displayed below the
fitted curves.
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Figure 5.2: Fitted TESS light curve of EBLM J1741+31 (Top) and EBLM J1934−42
(Bottom) in phase intervals around the transit and eclipse events. The observed data
points are shown in cyan. The fitted light curve is shown in red. The residual of the
fit is displayed below the fitted curves in blue.
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Table 5.4: The derived orbital parameters for each CHEOPS target calculated by our
PYCHEOPS fit. The eclipse depths displayed are in the relevant instrumental bandpass.

J1741+31 J1934-42 J2046+06
CHEOPS TESS CHEOPS TESS CHEOPS

Model parameters

T0 (BJD) 2014.0490± 0.0001 1990.9112± 0.0001 2028.2295± 0.0002 1659.7836± 0.0002 2090.6246± 0.0001
P (days) = 7.71263 7.71263± 0.00004 = 6.35251 6.35251± 0.00001 = 10.10779
D 0.152± 0.024 0.109± 0.011 0.0514± 0.0049 0.0485± 0.0011 0.0161± 0.0002
W 0.0090± 0.0016 0.0118± 0.0008 0.0190± 0.0002 0.0189± 0.0001 0.0263± 0.0002
b 1.313± 0.061 1.184± 0.041 0.797± 0.028 0.785± 0.009 0.168± 0.096
fc 0.3006± 0.0016† 0.3003± 0.0015† = 0.0 = 0.0 −0.1902± 0.0006†

fs 0.4595± 0.0012† 0.4590± 0.0012† = 0.0 = 0.0 0.5545± 0.0004†

L −− −− 0.00126± 0.00032 0.00250± 0.00019 0.00039± 0.00005
h1 0.769± 0.012† 0.818± 0.011† 0.729± 0.011† 0.784± 0.011† 0.757± 0.011
h2 0.434± 0.050† 0.397± 0.050† 0.398± 0.050† 0.394± 0.050† 0.395± 0.179

Derived parameters

R2/R1 0.390± 0.031 0.330± 0.017 0.2266± 0.0106 0.2202± 0.0025 0.1268± 0.0007
R1/a 0.0621± 0.0003 0.0610± 0.0004 0.0639± 0.0014 0.0634± 0.0007 0.0743± 0.0005
R2/a 0.0224± 0.0019 0.0191± 0.0011 0.0139± 0.0010 0.0137± 0.0003 0.0094± 0.0001
i (◦) 85.32± 0.22 85.86± 0.17 87.08± 0.17 87.15± 0.06 89.29± 0.41
e 0.3015± 0.0015 0.3009± 0.0015 0.0 0.0 0.3436± 0.0005
ω (◦) 56.81± 0.16 56.81± 0.16 −− −− 108.93± 0.06

Absolute parameters

M2 (M⊙) 0.4787± 0.0095 0.4783± 0.0095 0.1864± 0.0055 0.1864± 0.0055 0.1974± 0.0053
R2 (R⊙) 0.521± 0.042 0.441± 0.023 0.226± 0.011 0.2193± 0.0031 0.2184± 0.0023
log g2 (cgs) 4.757± 0.069 4.917± 0.046 5.008± 0.045 5.039± 0.014 5.073± 0.008
Teff,2 (K) −− −− 3025± 96 3030± 41 3199± 58
†: Derived parameters based on Gaussian priors shown in Table 5.3.
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5.4 Discussion

Observations of EBLM systems with CHEOPS are complementary to the data provided

by the TESS mission. The CHEOPS instrument response extends much further to the

blue than TESS. Looking for consistency of the transit parameters measured by the

two instruments makes it possible to check for colour-dependent systematic errors, e.g.

contamination of the photometry by other stars in the line of sight. Our results for

EBLM J1741+31 and EBLM J1934−42 show good agreement between the results from

the analysis of the CHEOPS and TESS light curves. CHEOPS is also able to observe

regions of the sky not covered by the TESS survey, e.g. close to the ecliptic. The

precision of the parameters derived per transit from each instrument are similar so the

final radius measurement from the TESS data will be more precise in cases where it has

observed many transits. CHEOPS observations can be scheduled to cover individual

transit or eclipse events, which can be advantageous if we want to observe long-period

systems.

Our results for EBLM J2046+06 show that CHEOPS light curves can be used

to measure radii accurate to about 1% and Teff accurate to about 2% for the M-

dwarf in EBLM systems with well-defined transits. This is sufficient for our main goal

of establishing an empirical mass-radius-metallicity relation for very low mass stars.

Observations of 24 additional EBLM binaries with well-defined transits with CHEOPS

are on-going. The results presented here have already been used by Maxted et al.

(2022) to constrain the properties of the host star in their study of the super-Earth GJ

1132 b using CHEOPS observations of the transit.

The transit model in pycheops does not account for surface features on the

primary star due to magnetic activity, e.g. dark spots, faculae or plages. As discussed

in Chapter 1, the impact of these features on the parameters derived is dependent on

whether they are occulted by the secondary star or not (Czesla et al., 2009; Pont et al.,

2013; Oshagh et al., 2013). Dark spots occulted during the transit will produce small

peaks in the light curve. If these are not accounted for in the model then the transit

depth will be underestimated, leading to an underestimate for the companion radius.
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The opposite is true for dark spots not occulted by the companion. We checked the

TESS and WASP light curves of our targets for variability on time scales of a few days

or more due to the combination of rotation and magnetic activity. For all three targets

we find that any such variability has an amplitude⪅ 1% (⪅ 0.1% for EBLM J2046+06).

Spots near the poles of these slowly-rotating solar-type stars are not expected so we

conclude that magnetic activity has a negligible impact on the parameters we have

derived for the M-dwarfs in these systems.

Our results are shown in the context of other mass, radius and effective temper-

ature measurements for M-dwarfs in Fig. 5.3. EBLM J1741+31 and EBLM J1934−42

follow the trend for stars with masses ⪅ 0.5M⊙ to be larger on average by a few per-

cent than predicted by models that do not account for magnetic activity. The radius

of EBLM J2046+06, which is our most precise radius measurement, agrees well with

the models of Baraffe et al. (2015). EBLM J1934−42 is a metal-rich star, which may

be consistent with the idea that metallicity has an influence on radius inflation (e.g.

Berger et al. 2006; Spada et al. 2013; von Boetticher et al. 2019). Not shown in Fig. 5.3

are the masses and radii for M-dwarfs in EBLM binaries by von Boetticher et al. (2019)

and Gill et al. (2019). We do not yet have effective temperature measurements for these

M-dwarfs, but the methods we have developed here can be applied to the CHEOPS

and TESS light curves for those stars, as well as other EBLM binaries observed by

these instruments, to provide a more complete picture for these systems.
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Figure 5.3: Left : A cutout of the stellar mass versus stellar radius diagram using
results from Nefs et al. (2013); Gillen et al. (2017); Parsons et al. (2018) with our
results highlighted in red. The type of system is displayed by different colours. The
theoretical relation from Baraffe et al. (2015) for an age of 1 Gyr is plotted in gray.
Right : A cutout of the stellar mass versus effective temperature diagram using results
from Nefs et al. (2013); Gillen et al. (2017); Parsons et al. (2018), with our results
highlighted in red. The type of system is displayed by different colours. The theoretical
relation from Baraffe et al. (2015) for an age of 1 Gyr is plotted in gray.

5.5 Conclusions

In this paper we have reported the first results of our CHEOPS observing programme

on low-mass eclipsing binaries. We find that the very high precision of the photometry

from this instrument and the possibility to schedule observations of individual transit

and eclipse events are well-matched to our science goal of measuring an empirical mass-

radius-metallicity relation for very low mass stars. We report three M-dwarf radii and

two effective temperatures between our three targets contributing to the rather sparse

amount of data at the low-mass end of the H-R diagram. Additional observations

from our on-going observations with CHEOPS complemented by further analysis of

data from the TESS mission will provide precise and accurate mass, radius and Teff

measurements for many very low-mass stars of known metallicity and age. Fundamental
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data of this quality will be essential if we are to find an answer to the long-standing

radius inflation problem.
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6 The EBLM project–IX. Five fully con-
vective M-dwarfs, precisely measured with
CHEOPS and TESS light curves

This chapter is closely based on the published paper Sebastian et al. (2022). It pre-

sented the next series of completed observations in our programme using the updated

methods and techniques that we would use for our final thesis results. This paper was

written by the collaborator Daniel Sebastian based on data analysis and figure gen-

eration performed by myself, an arrangement in the CHEOPS consortium to publish

analysed data while I worked on the starspot analysis that will be presented in Chapter

7. The data analysis performed by others included once again the derivation of spec-

troscopic parameters by the CHEOPS TS3 team and radial velocity measurements by

Amaury Triaud.

6.1 Introduction

Low-mass main-sequence stars of M-type (M-dwarfs) have been in the spotlight of

recent exoplanet surveys (Nutzman & Charbonneau, 2008; Delrez et al., 2018; Barclay

et al., 2018; Quirrenbach et al., 2019; Donati et al., 2020). This development has two

main reasons. First their low masses, and radii, compared to F, G, and K stars make it

easier to detect small planets and planetary systems composed of mini Neptunes down

to Earth sized planets by means of radial velocity and transit methods (e.g. Gillon

et al. 2016; Zechmeister et al. 2019; Günther et al. 2019). Thus, more Earth sized

planets have been found in the habitable zone of M-dwarfs than for solar-type stars

(e.g. Dressing & Charbonneau 2013). Second, M-dwarfs have low luminosities and,

thus offer the first possible window to study transiting rocky planets in their habitable

zone and directly analyse their atmospheres with high-precision instruments like the

James Webb Space telescope (Kaltenegger & Traub, 2009; Morley et al., 2017).
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Such studies depend crucially on the knowledge of the parameters of M-dwarf

planets which in turn are derived from the mass and radius of the host M-dwarf. Up

to now our understanding on the mass and radius distribution of low-mass stars which

are fully convective (M⋆ < 0.35M⊙, Chabrier & Baraffe 1997) is rather poorly explored

compared to more massive stars. This is mainly due to the relative faintness of these

stars1. Especially the lack of a large sample of M-dwarfs with directly measured mass

and radius make it difficult to calibrate stellar evolution models which are typically

used to estimate the properties of planet host stars like for example the Exeter/Lyon

models (Baraffe et al., 2015) or the Dartmouth models (Dotter et al., 2008).

Studies of M-stars with available radii and masses have revealed that their stellar

radii for a given mass are apparently inflated by a few percent, compared to estimates

from models (e.g. Casagrande et al. 2008; Torres et al. 2010; Spada et al. 2013; Kesseli

et al. 2018).

Several possible explanations have been discussed, like stellar magnetic activity

(Mullan & MacDonald, 2001; Chabrier et al., 2007), or a bias due to binarity (Ribas,

2006; Morales et al., 2009). Also metallicity effects seem to play a role (Berger et al.,

2006; von Boetticher et al., 2019). Thus, a representative sample of low-mass M-dwarfs

with accurately measured mass, radius, but also metallicity is crucial to understand

how the different effects enter into this radius inflation problem.

The eclipsing binaries with low mass (EBLM) project (Triaud et al., 2013) is

focusing on a large sample with hundreds of eclipsing binaries of F,G, & K-type stars,

orbited by late type M-dwarf companions. These binaries have been detected from the

WASP survey (Pollacco et al., 2006). Using a large radial velocity follow-up campaign

of these stars, Triaud et al. (2017) derived accurate orbits of many of these systems thus

being able to measure fundamental parameters like precise mass and radius of the low-

mass M-dwarfs. The binary configuration with a solar-type star allows us to measure

accurately the metallicity of the solar-type star. Assuming an equal metallicity of both

1E.g. the planet host star TRAPPIST-1, a M7.5 ultra-cool dwarf in 12 pc distance has a visual
magnitude of only 18.8mag .
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components, we can constrain the metallicity of the M-dwarf. Thus, EBLM targets are

ideal candidates to populate the mass regime of fully convective M-dwarfs with masses

below 0.35M⊙ and to establish an empirical mass-radius-metallicity relationship for

these stars. Early results from sub samples indicate that models can be matched quite

well, when taking accurate measurements of the metallicity of the M-dwarf into account

(von Boetticher et al., 2019; Gill et al., 2019). Every low-mass M-dwarf with accurately

measured mass, radius and metallicity will help to tighten the constraints on the source

of the radius inflation problem and in return will allow us in future to constrain precise

parameters of planet host stars.

CHEOPS (Benz et al., 2021) is a S-class mission of the European Space Agency,

which has been launched on the 18th of December 2019. Its primary mission is to per-

form ultra high-precision photometry of bright exoplanet host-stars. We have started

an ‘Ancillary Science’ programme on a selection of 23 EBLM targets, to obtain pre-

cise measurements of primary and secondary eclipses, which allow us to (i) derive the

size of both components and (ii) to measure the M-dwarf effective temperature from

the surface brightness ratios. Additionally, we use light curves, obtained by the TESS

survey (Ricker et al., 2015), which covers the northern and southern hemispheres with

observing periods of about one month per pointing (sector). TESS cameras have a

three times smaller aperture compared to CHEOPS, leading to a lower accuracy for

eclipse events in TESS data. Nevertheless, the long coverage of photometric data al-

lows us to gather multiple eclipses of our targets and thus improve and compare orbital

parameters, as well as to optimise our analysis of CHEOPS observations.

The three EBLM binaries, analysed in our CHEOPS programme EBLMJ1741+31,

EBLMJ1934-42 and EBLMJ2046+06 have shown that M-dwarfs with precisely mea-

sured radii and metallicities open up the possibility to disentangle the effect of metallic-

ity from different effects on the radius inflation problem for low-mass M-dwarfs (Swayne

et al., 2021).

In this paper we present the analysis of five EBLM binaries with fully convective

M-dwarfs companions, observed in our CHEOPS programme and compare them to the

analysis of TESS observations.
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Table 6.1: CHEOPS observations and data extraction for our targets. Effic. is the
fraction of the observation that resulted in valid (usable) data and Rap the aperture
radius used to extract the light curves.

Eclipse Target Start date Duration Texp Effic. File key Rap

Event (UTC) (h) (s) (%) (pixels)
Primary EBLM J0239-20 2020-11-01T15:43 8.80 60 86.2 CH PR100037 TG012001 V0200 25
Secondary 2020-11-05T20:30 7.99 60 93.2 CH PR100037 TG011901 V0200 25
Secondary 2020-11-19T17:24 9.02 60 70.4 CH PR100037 TG011902 V0200 25
Primary EBLM J0540-17 2020-12-07T08:39 10.04 60 68.4 CH PR100037 TG012601 V0200 17.5
Secondary 2021-01-21T09:39 10.75 60 54.1 CH PR100037 TG012502 V0200 17.5
Secondary 2020-12-04T08:13 10.62 60 66.5 CH PR100037 TG012501 V0200 17.5
Secondary 2021-01-27T09:20 10.49 60 50.0 CH PR100037 TG012503 V0200 17.5
Primary EBLM J0546-18 2020-11-30T22:27 8.67 60 67.5 CH PR100037 TG012801 V0200 25
Secondary 2020-12-31T05:35 8.77 60 66.3 CH PR100037 TG012701 V0200 25
Secondary 2021-01-09T19:50 8.05 60 64.0 CH PR100037 TG012702 V0200 25
Primary EBLM J0719+25 2020-12-10T07:03 8.80 60 52.8 CH PR100037 TG013001 V0200 22.5
Secondary 2021-02-03T20:54 8.69 60 57.7 CH PR100037 TG017301 V0200 22.5
Secondary1 2020-12-21T12:03 8.50 60 60.2 CH PR100037 TG012901 V0200 22.5
Secondary EBLM J2359+44 2020-11-11T08:59 8.89 60 58.3 CH PR100037 TG016301 V0200 26.5
Primary 2020-11-28T13:07 15.67 60 51.4 CH PR100037 TG016401 V0200 26.5
1 For this observation the secondary eclipse of EBLM J0719+25 has been missed,

thus we cannot use this data set for parameter determination of the binary.

6.2 Observations and Methods

Primary and secondary eclipses for all our five eclipsing binaries were observed with

CHEOPS between November 2020 and January 2021 as part of CHEOPS Guaranteed

Time Observation programme ID-037. We obtained one primary eclipse and, depending

on the depth of the secondary eclipse, one to three secondary eclipse observations in

order to obtain sufficient signal to noise to measure both eclipses. Table 6.1 gives an

overview of the CHEOPS observations and data extraction. All data were reduced by

the CHEOPS data reduction pipeline v13.1 (Hoyer et al., 2020), which performs an

aperture photometry of the target star, taking contamination in the field as well as

instrumental effects like the rotation of the satellite into account. The pipeline offers

light curves for different aperture sizes. For our analysis, we selected the aperture size

with minimal median absolute deviation of the point-to-point difference in the light

curve. The resulting aperture radii are listed as Rap in Table 6.1. The observations
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were interrupted due to the low-Earth-orbit of CHEOPS by Earth occultations, as well

as crossings of the South Atlantic Anomaly. We derive the time spent on target as the

fraction of valid observations compared to the total observation interval.

The TESS survey covered all of our targets with 2-min cadence data made avail-

able by TESS Guest Investigator (GI) programmes. EBLM J0239-20 (TIC64108432)

has been observed in sectors 4 and 31 under GI programmes G011278 and G03216.

EBLM J0540-17 (TIC46627823) has been observed in sectors 6 and 32 under GI pro-

grammes G011278, G03216, & G03251. EBLM J0546-18 (TIC93334206) has been ob-

served in sectors 32 and 33 under GI programme G03216. EBLM J0719+25 (TIC458377744)

has recently been observed in sectors 44, 45, & 46 under GI programme G04157 and

EBLM J2359+44 (TIC177644756) has been observed in sector 17 under GI programmes

G022253 & G022156. Data reduction and light curve extraction were done by the TESS

Science Processing Operations Center Pipeline (SPOC; Jenkins et al. 2016) and were

downloaded via the Mikulski Archive for Space Telescopes2 (MAST). For our analysis,

we used Pre-search Data Conditioned Simple Aperture Photometry (PDCSAP) flux

data and bitmask 175 to exclude data flagged with severe quality issues (Tenenbaum

& Jenkins, 2018).

For EBLM J2359+44 two radial velocity measurements have been published by

Poleski et al. (2010) that confirmed it to be a binary star. Full time series radial

velocity observations of EBLM J0719+25 and EBLM J2359+44 have been taken with

the SOPHIE high-resolution echelle spectrograph (Perruchot et al., 2008), mounted on

the 1.93m telescope at the Observatoire de Haute-Provence in France as part of the

Binaries Escorted By Orbiting Planets (BEBOP) survey to search for circumbinary

planets (Martin et al., 2019). For EBLM J0719+25, 8 SOPHIE spectra have been

obtained between November 2018 and October 2019 in High-Resolution mode (R = 75

000). For EBLM J2359+44, 15 SOPHIE spectra have been obtained between November

2018 and September 2020 in High-Resolution mode (R = 75 000) as well as in High-

Efficiency (HE) mode (R = 40 000). The HE mode allows an about 2.5 times higher

2https://archive.stsci.edu/
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throughput compared to the High-Resolution mode. The spectra have an average signal

to noise of about 30 with a typical exposure time of 1800 s. To allow the removal of

the background contamination from the Moon, all observations were taken with one

fibre on target and one on the sky. The spectra were reduced using the SOPHIE Data

Reduction Software (Baranne et al., 1996) and radial velocities were measured by cross

correlation with a G2 mask (Courcol et al., 2015) for which we achieved a typical

precision of 10m s−1 for our spectra. All radial velocity measurements are listed in

the Appendix Tables .14 & .15. We submitted a target list of 40 EBLM systems

from Triaud et al. (2017) as a priority 4 proposal to be observed with high resolution

spectrograph (Crause et al., 2014) of the Southern African Large Telescope (SALT) in

medium resolution (R ≈ 37, 000). In total, 30 of them were observed between the 19th

of May and 7th August 2017, including EBLM J0239-20. These observations were made

in long slit mode with an exposure time scaling as a function of magnitude to ensure

a SNR ≥ 100. Data was reduced and processed using standard pipelines (Crawford,

2015; Craig et al., 2015) to produce two spectra for each observation (370–550 nm &

550–890 nm) as a result of the dual-beam nature of the spectrograph.
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Table 6.2: Stellar and orbital parameters of the primary stars. Coordinates are in
J2000.

EBLM J0239-20 EBLM J0540-17 EBLM J0546-18 EBLM J0719+25 EBLM J2359+44
Name TYC 5862-1683-1 TYC 5921-745-1 TIC 93334206 TYC1913-0843-1 TYC3245-0077-1
RA 02 39 29.29 05 40 43.58 05 46 04.81 07 19 14.26 23 59 29.74
Dec. −20 02 24.0 −17 32 44.8 −18 17 54.6 +25 25 30.8 +44 40 31.2
G (mag) 10.57 11.42 12.01 11.15 10.46
Sp. Type G0 G0 G0 G0 F8
Teff,1(K)a 5758 ± 100 6290 ± 77 6180 ± 80 6026 ± 67 6799 ± 83
log g1(cgs)

c 4.053 ± 0.016 4.058 ± 0.017 4.100 ± 0.034 4.239 ± 0.022 4.068 ± 0.010
[Fe/H]a 0.27 ± 0.12 −0.04 ± 0.05 −0.45 ± 0.08 0.04 ± 0.05 0.12 ± 0.05
R1(R⊙)

c 1.587 ± 0.039 1.636 ± 0.040 1.509 ± 0.064 1.305 ± 0.038 1.711 ± 0.033
M1(M⊙)

c 1.037 ± 0.060 1.120 ± 0.062 1.051 ± 0.059 1.078 ± 0.059 1.253 ± 0.070

Orbital parameters:
K(km s−1) 21.316±0.036d 16.199±0.010d 26.15±0.10d 15.02±0.04b 23.62±0.08b

e < 0.0032d 0.00029± 0.00057d < 0.015d 0.0730±0.0045b 0.4773±0.0010b

ω(deg) – −164± 10d – −155.8±5.4b −94.290±0.060b

f(m) (10−3M⊙) 2.788±0.014d 2.6444±0.0096d 2.1332±0.0023d 2.597±0.021b 10.53±0.11b

References: a From spectral analysis,b from radial velocity analysis, c from light curve
modelling, d from Triaud et al. (2017)

Table 6.3: Priors on fc =
√
e cosω and fs =

√
e sinω used in the analysis of the

CHEOPS and TESS light curves based on the spectroscopic orbits for each binary
system.

Target fc fs
EBLM J0239-20 0.0 0.0
EBLM J0540-17 0.0 0.0
EBLM J0546-18 0.0 0.0
EBLM J0719+25 −0.247±0.013 −0.111±0.023
EBLM J2359+44 −0.0517±0.0007 −0.6889±0.0007
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6.3 Analysis

For data analysis, we followed the methods, described in Swayne et al. (2021), hereafter

SW21. Both TESS and CHEOPS light curves were modelled using the qpower2 transit

model, which applies a power-2 limb darkening law (Maxted & Gill, 2019). We use it

as binary star model including primary and secondary eclipses which is implemented

in the python software PYCHEOPS3 (Maxted et al., 2022). The parameters of the binary

star model are the orbital period P, the mid-time of the primary eclipse T0; the primary

and secondary eclipse depths D and L, the impact parameter b, the parameters fc =
√
e cos(ω) and fs =

√
e sin(ω), which parameterise the eccentricity e and the longitude

of periastron ω, the limb darkening parameters h1 and h2 (Maxted, 2018), andW, which

becomes the width of the eclipse for e = 0 and is defined by the stellar radii, impact

parameter, and the semi mayor axis a (see Maxted et al. (2022) for details). We used

gaussian priors for fc, fs. These priors were derived from radial velocity measurements of

the systems. Orbital parameters from radial velocity measurements for EBLM J0239-

20, EBLM J0540-17, and EBLM J0546-18 have been published in Triaud et al. (2017).

Their eccentricities are reported to be consistent to zero, thus we set those priors

to zero for all three systems. For EBLM J0719+25 and EBLM J2359+44, we used

the binary star python code ellc (Maxted, 2016), to model the radial velocity from

SOPHIE measurements as well as the two measurements from Poleski et al. (2010)

for EBLM J2359+44. We sampled the posterior probability distribution (PPD) of our

model parameters fc, fs, and the semi amplitude K, using the Markov chain Monte

Carlo (MCMC) code EMCEE (Foreman-Mackey et al., 2013) to take the RV-jitter of

the data into account by weighting the fit by the log-likelihood function. For this we

used the period from our TESS fit (see Sec. 6.3.1) as fixed prior and did not need to

fit any additional trend to the data. The resulting orbital parameters, as well as the

mass function f(m) (see equation 6 in Triaud et al. 2017) are listed in Table 6.2. The

resulting priors for fc, fs are listed in Table 6.3. The errors represent the one sigma error

3https://github.com/pmaxted/pycheops



80

of the resulting PPD.

6.3.1 TESS light curve analysis

Only segments of the TESS light curve within one eclipse duration of the time of

mid-eclipse were used in this analysis. To remove trends in the light curve, we divided

these segments by a linear polynomial model fitted to the data either side of the eclipse.

Unlike SW21, we preferred this method over the use of a Gaussian process in order to

securely preserve the transit shape of the faint secondary eclipses.

To model the light curve, we first determined the initial orbital parameters using

a least-squares fit and then sampled the PPD of our transit model using EMCEE. We

placed normal priors on the orbital parameters fc, fs, as listed in Table 6.3 as well as on

the white noise, using the residual rms of the least-squares fit. The resulting parameters

from the TESS light curves are detailed in Tables 6.4, 6.5, & 6.6. These represent the

median of the PPD as well as the standard errors from the 15.9% and 84.1% percentile-

points of the PPD. We show the resulting fits of all targets in the Appendix, Fig. .17,

Fig. .18, and Fig. .19.

6.3.2 CHEOPS light curve analysis

CHEOPS light curves were analysed in two steps. First we analysed every visit sepa-

rately to derive initial model parameters (see Table 6.1 for an overview of all visits).

As described in detail in SW21, instrumental effects like roll angle, contamination, and

background level can be represented using linear correlation parameters or for roll angle

ϕ, sin(ϕ), cos(ϕ), sin(2ϕ), etc., which were iteratively selected4. The PPD of all model

and decorellation parameters were sampled simultaneously using EMCEE. We used the

same Gaussian priors for fc, and fs as for the TESS data and since we obtained single

eclipse events, we fixed our transit model to accurately measured orbital period P, from

4See Table .13 for the decorrelation parameters selected for each visit
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the TESS light curve fit. For secondary eclipses, we used priors on the parameters D,

W and b, as derived from the primary eclipse of each target.

In a second step, we were using a single MCMC to perform a ‘multivisit’ analysis

including all visits for a specific target. We used the same priors as for the individual

analysis as well as the results as input parameters and used the function multivisit

of PYCHEOPS to sample the joint PPD with EMCEE. Hereby we used the implicit decor-

relation method for instrumental trends as described in Maxted et al. (2022), keeping

the number of harmonic terms to its default (Nroll = 3). The resulting parameters from

the CHEOPS light curves are detailed in Tables 6.4, 6.5, & 6.6. These represent the

median of the PPD as well as the standard errors from the 15.9% and 84.1% percentile-

points of the PPD. We show the resulting fits of all targets in the Appendix, Fig. .20,

Fig. .21, and Fig. .22 and in Table .13 the resulting decorrelation parameters from the

multivisit analysis.

6.3.3 Stellar parameters

We used co-added high-resolution spectra to derive the stellar parameters of the pri-

mary components (Teff and [Fe/H]). For EBLM J0540-17, we used co-added CORALIE

spectra, obtained by Triaud et al. (2017) and available from the ESO science archive

facility5 and co-added SOPHIE spectra for EBLM J0719+25 and EBLM J2359+44.

The stellar parameters for these three targets were derived using the equivalent width

method following the same methodology, model atmospheres, and line list as described

in Sousa (2014) and Santos et al. (2013). In here we applied the ARES code (Sousa

et al., 2015), as well as the MOOG radiative transfer code (Sneden et al., 2012), assum-

ing ionisation and excitation equilibrium of iron lines. For EBLM J0546-18 we used

co-added CORALIE spectra and applied a wavelet decomposition method where we

compare the coefficients from a wavelet decomposition to those from a grid of model

spectra. Those model spectra were synthesised using the code SPECTRUM (Gray & Cor-

5http://archive.eso.org/
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bally, 1994), MARCS model atmospheres (Gustafsson et al., 2008) as well as the atomic

line list version 5 of the Gaia ESO survey (Heiter et al., 2015). The method is detailed

in Gill et al. (2018) and has been found to deliver robust measurements for effective

temperature and metallicity for spectra with relatively low SNR (SNR ⪆ 40). For

EBLM J0239-20 we used the SALT spectra and modeled the stellar fundamental pa-

rameters using the software SME6 (Spectroscopy Made Easy; Valenti & Piskunov 1996;

Piskunov & Valenti 2017) that computes synthetic spectra with atomic and molecular

line data from VALD7 (Ryabchikova et al., 2015) which is compared to the observations.

We chose the stellar atmosphere grid Atlas12 (Kurucz, 2013) and modelled Teff , log g1,

abundances and v sin i one parameter at a time. Due to the high rotational velocity

(v sin i = 31 ± 4 km s−1), the uncertainties in log g1 derived from the line wings of

the CaI triplet around 6200Å is with 0.2 dex relatively high. We thus rely on the light

curve modelling to derive the surface gravity of our targets.

Similarly to SW21, we derived the system parameters using the function

massradius in PYCHEOPS. As explained in Maxted et al. (2022), this function applies

a Monte Carlo approach to derive basic system parameters like the primaries mean

stellar density, the mass and radius of the M-dwarf, using the PPD of our CHEOPS

light curve fit. It additionally uses the primaries mass and radius, as well as the orbital

parameters which were not sampled in the PPD like period, and eccentricity as input

and derives the surface gravity log g2 of the M-dwarf using the radial-velocity semi-

amplitudes.We used this function to optimise the global system parameters in a two

stage iterative process.

In the first step, we used the primaries mass and radius estimates available from

the TESS input catalogue v8 (Stassun et al., 2019) as initial parameters. The derivation

of these estimates is based on an empirical relation including photometric effective

temperature estimates for stars with well measured Gaia distances. We used the same

priors for period and eccentricity that we used for our CHEOPS fit, as well as the semi-

6http://www.stsci.edu/ valenti/sme.html
7http://vald.astro.uu.se
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amplitudes from radial velocity measurements. For EBLM J0239-20, EBLM J0540-17,

and EBLM J0546-18 we have used the published semi-amplitudes (Triaud et al., 2017),

For EBLM J0719+25 and EBLM J2359+44, we use the results from our orbital fit (see

Table 6.2).

In a second iteration, we made use of the massradius function again in order to

find the best fitting parameters of the primary mass and radius from our light curve

fit. We used the relation of Enoch et al. (2010) (equation 4), to derive a mass sample

for the primary star. This sample is based on the stellar density samples obtained from

the first iteration and created similar sized samples for Teff and [Fe/H] based on our

spectroscopic stellar parameters. We then added a normal distributed scatter of 0.023

to account for the resulting scatter for this relation found by Enoch et al. (2010). We

derived a radius sample using this mass sample as well as the density sample. We used

the mass and radius samples to re-run the massradius function to derive the final

stellar parameters of the primary and M-dwarf components. We finally derived the

surface gravity log g1 from the stellar density, directly measured from the light curve

fit of our CHEOPS data, as well as the primaries mass derived from the previous step.

We derived the effective temperature Teff,2 of the M-dwarf companion using the

surface brightness ratio L/D, derived from the light curve fit of primary and secondary

eclipses. Similar to SW21, we derived the integrated surface brightness in the CHEOPS

and TESS passbands of the primary star, using the spectral parameters Teff,2, log g1,

and [Fe/H] using PHOENIX model atmospheres with no alpha-element enhancement

(Husser et al., 2013) and sampled a large set of surface temperatures over the known

parameters, L/D, log g, and [Fe/H] (assuming similar metallicity for both companions)

to derive the effective temperature.

The light contribution from the primary star reflected from the M-dwarf can be

expressed by Ag(R2/a)
2, where Ag is the geometric albedo and R2/a is the radius of the

M-dwarfs in units of the semi mayor axis, which we directly measure from our model.

With a typical albedo of Ag ∼ 0.1 (Marley et al., 1999), the light contribution for

our targets is very small and thus negligible. Nevertheless, for the two shortest period

binaries in our sample, EBLM J0239-20 and EBLM J0546-18 the light contribution
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Table 6.4: The derived parameters for EBLM J0239-20 and EBLM J0540-17 using
CHEOPS and TESS light curve fits with eclipse depths being in the relevant instru-
mental bandpass.

EBLM J0239-20 EBLM J0540-17
CHEOPS TESS CHEOPS TESS

Model parameters
T0(BJD) 2163.70805 ± 0.00015 1413.46145 ± 0.00012 2209.12086 ±0.00021 1470.51285 ± 0.00030
P (days) 2.778691(fixed) 2.778691 ± 0.000001 6.004940 (fixed) 6.004940± 0.000003
D 0.01679 ± 0.00019 0.016716 ± 0.000092 0.01404 ± 0.00021 0.01381 ± 0.00018
W 0.05268 ± 0.00037 0.05286 ± 0.00015 0.03818 ± 0.00019 0.03827 ± 0.00018
b 0.654 ± 0.014 0.6428 ± 0.0092 0.167 ± 0.105 0.253 ± 0.089
fc 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
fs 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
L (3.68± 0.45)× 10−4 (7.30± 0.42)× 10−4 (3.66± 0.53)× 10−4 (6.61± 0.78)× 10−4

h1 0.766 ± 0.020 0.836 ± 0.011 0.767 ± 0.015 0.811 ± 0.013
h2 0.47 ± 0.22 0.59 ± 0.20 0.54 ± 0.18 0.47 ± 0.21
Derived parameters
R2/R1 0.12957 ± 0.00073 0.12929 ± 0.00035 0.11850 ± 0.00087 0.11752 ± 0.00075
R1/a 0.1797 ± 0.0027 0.1788 ± 0.0015 0.1084 ± 0.0018 0.1105 ± 0.0023
R2/a 0.02288 ± 0.00042 0.02289 ± 0.00024 0.01265 ± 0.00028 0.01264 ± 0.00034
i(◦) 83.25 ± 0.24 83.40 ± 0.15 88.96 ± 0.67 88.40 ± 0.59
e 0.0 0.0 0.0 0.0
ω(◦) – – – –
Absolute parameters
a(AU) 0.04106 ± 0.00076 0.04107± 0.00076 0.0703 ± 0.0012 0.0703 ± 0.0012
R2(R⊙) 0.2056 ± 0.0052 0.2041 ± 0.0044 0.1939 ± 0.0050 0.1959 ± 0.0056
M2(M⊙) 0.1597 ± 0.0059 0.1597 ± 0.0059 0.1633 ± 0.0058 0.1634 ± 0.0058
log g2(cgs) 5.015 ± 0.014 5.0214 ± 0.0076 5.075 ± 0.015 5.066 ± 0.019
Teff,2(K) 3027 ± 88 2982 ± 71 3220 ± 70 3143 ± 66

might cause an underestimation of the secondary eclipse depth on the one sigma level

and thus an underestimation of Teff,2 in the order of 1% for both CHEOPS and TESS

passbands. Thus, we increased the relative uncertainties for Teff,2 for EBLM J0239-20

and EBLM J0546-18 by 1% in order to account for the unknown uncertainty of Ag.

All parameters of the primary stars are listed in Table 6.2, all parameters for the

M-dwarf companions are listed in Tables 6.4, 6.5, & 6.6.
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Table 6.5: The derived parameters for EBLM J0546-18 and EBLM J0719+25 using
CHEOPS and TESS light curve fits with eclipse depths being in the relevant instru-
mental bandpass.

EBLM J0546-18 EBLM J0719+25
CHEOPS TESS CHEOPS TESS

Model parameters
T0(BJD) 2203.71457 ± 0.00027 2174.98660 ± 0.00032 2216.39007 ± 0.00024 2559.38262 ± 0.00019
P (days) 3.191919 (fixed) 3.191919± 0.000034 7.456295 (fixed) 7.456295 ± 0.000045
D 0.0239 ± 0.0018 0.02328 ± 0.00081 0.02145 ± 0.00051 0.02092 ± 0.00017
W 0.0415 ± 0.0016 0.04020 ± 0.00047 0.02491 ± 0.00029 0.02456 ± 0.00018
b 0.777 ± 0.040 0.824 ± 0.013 0.498 ± 0.033 0.520 ± 0.016
fc 0.0 (fixed) 0.0 (fixed) −0.2589 ± 0.0069 −0.2588 ± 0.0053
fs 0.0 (fixed) 0.0(fixed) −0.116 ± 0.023 −0.139 ± 0.022
L (11.0± 1.3)× 10−4 (17.6± 1.2)× 10−4 (6.4± 1.2)× 10−4 (9.32± 0.65)× 10−4

h1 0.44 ± 0.14∗ 0.719 ± 0.100 0.731 ± 0.020 0.813 ± 0.013
h2 0.31 ± 0.14 0.37 ± 0.24 0.24 ± 0.24 0.56 ± 0.19
Derived parameters
R2/R1 0.1546 ± 0.0059 0.1526 ± 0.0027 0.1465 ± 0.0018 0.144625 ±0.000593
R1/a 0.1533 ± 0.0057 0.1569 ±0.0026 0.0757 ± 0.0017 0.076857 ± 0.001019
R2/a 0.0223 ± 0.0014 0.02361 ±0.00034 0.01076 ± 0.00033 0.010941 ± 0.000176
i(◦) 83.17 ± 0.54 82.58 ± 0.22 87.84 ± 0.19 87.711 ± 0.100
e 0.0 0.0 0.0807 ± 0.0041 0.086242 ± 0.003542
ω(◦) – – −155.9 ± 4.6 −151.8 ± 4.3
Absolute parameters
a(AU) 0.04587 ±0.00080 0.04586 ± 0.00080 0.0802 ± 0.0014 0.0801 ± 0.0014
R2(R⊙) 0.233 ± 0.013 0.2356 ± 0.0072 0.1912 ± 0.0060 0.1915 ± 0.0044
M2(M⊙) 0.2129 ± 0.0075 0.2131 ± 0.0075 0.1584 ± 0.0056 0.1583 ± 0.0056
log g2(cgs) 5.029 ± 0.047 5.020 ± 0.021 5.075 ± 0.023 5.073 ± 0.012
Teff,2(K) 3409 ± 111 3332 ± 90 3208 ± 89 3063 ± 40
∗ The limb darkening parameters are not well constrained from CHEOPS data for

EBLM J0546-18 (see discussion in Sec. 6.4.2.1.)
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Table 6.6: The derived parameters for EBLM J2359+44 using CHEOPS and TESS
light curve fits with eclipse depths being in the relevant instrumental bandpass.

EBLM J2359+44
CHEOPS TESS

Model parameters
T0(BJD) 1977.85239 ± 0.00015 1773.4230 ± 0.0027
P (days) 11.3627 (fixed) 11.3627± 0.0027
D 0.02997 ± 0.00016 0.03015 ± 0.00023
W 0.025946 ± 0.000091 0.02611 ± 0.00017
b 0.096 ± 0.024 0.141 ± 0.033
fc −0.05175 ± 0.00032 −0.05242 ± 0.00053
fs −0.68888 ± 0.00071 −0.68906 ± 0.00072
L (8.91± 0.63)× 10−4 (20.21± 0.98)× 10−4

h1 0.7754 ± 0.0043 0.8393 ± 0.0093
h2 0.61 ± 0.13 0.60± 0.19
Derived parameters
R2/R1 0.17311 ± 0.00045 0.17363 ± 0.00067
R1/a 0.06971 ± 0.00033 0.07040 ± 0.00066
R2/a 0.011990 ± 0.000077 0.01207 ± 0.00015
i(◦) 89.619 ± 0.098 89.43 ± 0.14
e 0.47724 ± 0.00098 0.47755 ± 0.00099
ω(◦) −94.30 ± 0.027 −94.350 ± 0.044
Absolute parameters
a(AU) 0.1144 ± 0.0020 0.1144 ± 0.0020
R2(R⊙) 0.2963 ± 0.0058 0.3001 ± 0.0064
M2(M⊙) 0.293 ± 0.010 0.293 ± 0.010
log g2(cgs) 4.9602 ± 0.0049 4.9490 ± 0.0089
Teff,2(K) 3465 ± 46 3513 ± 41
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6.4 Discussion

We have derived the stellar parameters for both companions for all of our targets thanks

to high precision CHEOPS light curves. For the M-dwarfs we derive accurate radii with

an average uncertainty of 3.2±1.3% and the surface gravity with an average uncertainty

of 0.4±0.3%. This precision for the surface gravity of M-dwarfs is better then, or hardly

reached with state of the art high-resolution spectroscopic measurements of field M-

dwarfs (e.g. Olander et al. 2021; Marfil et al. 2021).

6.4.1 Radial velocity priors

We used priors obtained from the radial velocity (RV) orbital parameters eccentricity

(e) and longitude of periastron (ω) to fit our CHEOPS and TESS light curves. Only

EBLM J0719+25 and EBLM J2359+44 have eccentricities significantly larger than

zero, the others we have fixed to zero eccentricity. We analysed the effect of impos-

ing RV priors on the CHEOPS parameter fit by repeating it with fc and fs kept as

free parameters. Two of our binaries with previously fixed eccentricities, resulted in

eccentricities consistent to zero with EBLM J0239-20 (e = 0.028 ± 0.058) and EBLM

J0546-18 (e = 0.0005 ± 0.0007). For EBLM J0540-17 and EBLM J0719+25 this fit re-

sulted in a longer MCMC chain, which finally ended with a less uniformly defined PPD

for W, which was strongly correlated to fc and fs. This led to up to 5% overestimated

radii for the M-dwarfs. Except for these two stars, the derived model parameters did

not deviate more than 1σ from the parameters listed in Tables 6.4, 6.5, and 6.6. Never-

theless, we found that for the orbital parameters all resulting uncertainties were about

one order of magnitude larger then obtained from the RV fitting alone. We conclude

that even for high precision CHEOPS light curves, (i) radial velocity measurements

are essential to derive precise radii for low mass eclipsing binaries and (ii) our analysis

method does not allow to constrain the orbital eccentricity from the light curves better

than from radial velocity measurements.
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6.4.2 Comparison to TESS

For all targets, we compared our results from TESS light curve fitting with the

CHEOPS results. Both instruments comprise different passbands with the TESS hav-

ing a redder effective wavelength of 745.6 nm compared to CHEOPS with 581.1 nm8.

In this, we do not compare the limb darkening parameters and absolute eclipse depths,

since these depend on the instrumental passband. The secondary eclipses are thus 1.5

to 2.5 times deeper in TESS, compared to CHEOPS. We find a good agreement on

the derived radius ratio, inclination and relative primary radii R1/a (<1%). As dis-

cussed in the previous section, using radial velocity priors is essential to derive precise

radii for the M-dwarfs. We find that keeping fc and fs as free parameters results in

3-6% smaller radii for TESS light curves (for EBLM J0540-17 and EBLM J0719+25),

compared to CHEOPS. Using similar radial velocity priors (see chapter 6.3.1), we find

that the derived radii and surface gravity for the M-dwarfs agree well for all targets

(on average within 0.9% and 0.15% respectively) between TESS and CHEOPS. We

find that the uncertainties of the derived parameters from TESS light curves are of a

similar order, compared to CHEOPS results. TESS is in favour, for relatively bright

secondary companions with deep secondary eclipse and for targets with short orbital

periods and thus, many eclipses covered during the monitoring. We find that the effec-

tive temperature of the M-dwarfs, derived from TESS light curves is in agreement with

our CHEOPS value for EBLM J2359+44, but about 2-4% cooler for our other targets.

We included the result from SW21 for EBLM J1934-42 to analyse for any systematic

difference between the effective temperature of the M-dwarf, derived with TESS rel-

ative to CHEOPS. We modelled a constant difference between two instruments using

EMCEE to take the RV-jitter of the effective temperatures of both TESS and CHEOPS

into account by weighting the fit by the log-likelihood function. The offset from our

sample of six stars results in a slightly lower (1.11±0.99%) temperature for TESS light

curves with a remaining jitter of 0.0076%.

8Filter profiles and effective wavelengths can be accessed using the SVO Filter Profile Service:
http://svo2.cab.inta-csic.es/theory/fps/.
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The small discrepancy in Teff,2 might be caused by an underestimation of the

secondary eclipse depth (L). In Sec 6.3.3 we have discussed that reflected light might

lead to an underestimated depth of the secondary eclipse. Nevertheless, this effect

affects both passbands of CHEOPS and TESS in a comparable level and only for the

shortest period binaries in our sample. Thus, reflection can not explain this discrepancy.

Possible explanations might be uncertainties introduced by the stellar model we used

to derive the temperature from the surface brightness, or stellar activity of the primary

star, linked to stellar spots which are not accounted for in the eclipse model, we have

used.

6.4.2.1 Limb darkening parameters

For our CHEOPS and TESS fits, we kept the limb darkening parameters h1 and h2

free. To compare our results, we derived expected limb darkening parameters for EBLM

J0239-20, EBLM J0540-17, EBLM J0546-18, and EBLM J0719+25 by interpolating

the tables for the TESS bandpass and Kepler passband (for CHEOPS data respec-

tively) published in Maxted (2018) using the stellar parameters Teff,1, log g1, and[Fe/H]

as listed in Table 6.2, and applying an offset (h1+0.01 and h2−0.045; (Maxted, 2018)).

This method did not converge for the hottest star in our sample EBLM J2359+44 since

its effective temperature exceeds the tabulated temperature range. Thus, we used the

other four targets for this comparison. The expected limb darkening parameters are

listed in Table .16. We find that h1 agrees on average well with differences of a few

percent, while we find larger discrepancies for h2 in the order of several 10 percent

similarly in the CHEOPS and TESS data sets. This finding, as well as the derived

uncertainties follow the trend from Maxted (2018), (Fig 4) for h2 to be about one order

of magnitude less constrained than h1. We find some cases of larger uncertainties in

CHEOPS light curve fits. EBLM J0546-18 we derive about 31% uncertainty for h1

and the derived parameter, differs more than 70% from the expectations. This is not

surprising, given the large impact parameter which does not allow to constrain the limb

darkening parameters for this star. We have repeated the CHEOPS and TESS fits for
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these four targets, using the expected limb darkening parameters as priors, but found

that introducing these priors will neither improve the fit, nor has it any significant

impact on the derived M-dwarf parameters. We, thus, present in Table 6.5 the derived

parameters without priors for h1 and h2, noting that the corresponding values are less

well constrained with CHEOPS compared to TESS.

6.4.3 Mass–radius diagram

The main goal of the CHEOPS programme is to build a well defined mass-radius dia-

gram for stars below the fully convective boundary. In Fig. 6.1 we show our five targets

together with the theoretical mass relation from MIST (MESA Isochrones & Stellar

Tracks) stellar models for 1Gyr stars of solar metallicity ([Fe/H]=0.0) as well as for

slightly more metal rich stars ([Fe/H]=0.25) (Dotter, 2016; Choi et al., 2016; Paxton

et al., 2011). Similarly to SW21, we compiled a comparison sample of precisely mea-

sured low mass stars from literature, classified in single stars, double lined binaries,

and single lined binaries. (Carter et al., 2011a; Nefs et al., 2013; Gillen et al., 2017;

Parsons et al., 2018; Smith et al., 2021; Swayne et al., 2021). We compared the radii

with both the MIST and the Exeter/Lyon (Baraffe et al., 2015) models for solar metal-

licity. The M-dwarf radius for EBLM J0239-20 is 11.0± 2.6% (12.5± 2.6%) larger for

the MIST (and Exeter/Lyon) model, the others are on average 2.6± 1.3% (3.5± 1.3%)

larger compared to both models. Despite most of our targets being within the uncer-

tainties in agreement with the theoretical radii, we observe that they follow the trend

of very low mass stars to be slightly larger than predicted by models. In Fig. 6.1 we

also show the effective temperature of our five M-dwarfs, the result from SW21, as well

as the same literature sample. Our targets effective temperatures follow the overall

trend of low mass stars. We note that EBLM J0239-20, similarly to EBLM J1934-42

(blue triangle from SW21) have a slightly higher metallicity ([M/H] > 0.2). Both stars

are slightly larger and cooler, compared to models for stars with solar metallicity. As

shown in Fig. 6.1 this trend is predicted by the MIST models for more metal rich stars.

But also in this case, both stars are slightly larger than predicted by models for higher
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Figure 6.1: Left: Mass-radius diagram for low mass stars. Triangles: Single lined
eclipsing binaries, with CHEOPS programme targets highlighted in red and blue. Gray,
and Cyan squares: single stars and double lined binaries from literature with measured
mass, radius, and effective temperature. The zoom in section highlights the MIST
model tracks for [Fe/H]=0, grey line, and [Fe/H]=0.25, grey dotted line. Right: Mass-
effective temperature diagram of the same data set compared to same MIST models.
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metallicity stars. Fig. 6.1 shows three single lined stars from literature with measured

M-dwarf effective temperatures being outliers of more than 500K compared to model

predictions. These are KIC 1571511B (Ofir et al., 2012) as well as SAO 106989 and

HD 24465 (Chaturvedi et al., 2018). Populating the low-mass main-sequence with

M-dwarfs having precise effective temperature measurements will help us to constrain

possible trends for low-mass dwarfs. This is one of the main goals of our CHEOPS

programme.

Magnetic activity of the primary star, like spot crossing is not accounted for in

our eclipse model, thus, can affect the size determinations of the M-dwarfs. We used the

TESS light curves to search for variability linked to magnetic activity, like rotational

pattern and flares. No flares have been found in the TESS data set. EBLM J0239-20

shows a variable modulation of 2-3% close to the orbital period, most probably linked to

stellar activity aligned with the rotational period of the G-dwarf. All our other targets

show no or small variability of less than 1%. Since we found a good agreement between

the M-dwarf radii in the different passbands of TESS and CHEOPS, we conclude that

stellar activity can only have a minor (< 1%) effect on the derived M-dwarf radius

for the five stars, analysed in this work. Depending on the actual contrast between

the primary star and the M-dwarf the contribution of the M-dwarf is between 300 and

1200 ppm in CHEOPS data. From this we can exclude large flares exceeding relative

intensities of 25 to 100% compared to the M-dwarfs average brightness. M-dwarfs

with such flaring activity exist but account only for about 10% of the flaring M-dwarfs

found in TESS (Günther et al., 2020). We can assume that the M-dwarf rotation period

is synchronised with the orbital period, since the tidal synchronisation timescale for

EBLM systems is about 1Gyr or less (Barker, 2020). Thus the M-dwarfs are expected

to be fast rotators (P ≲ 10 d), which are expected to show enhanced activity levels

(e.g. Morales et al. 2010; Wright et al. 2018). Activity induced photometric variations,

observed for field M-dwarfs is typically in the order of 1% of the M-dwarfs average

brightness (Medina et al., 2020). This results in an expected photometric variability

in the order of 10 ppm for active M-dwarfs which is below the detection efficiency in

our data.
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Reflected light from the primary star (See discussion in Sec 6.3.3) can cause an

underestimated radius of the M-dwarfs. We note that this effect is negligible for the

five binaries analysed in this work, as it would result in a relative underestimation of

about 100 ppm of the M-dwarfs radius for the shortest period binaries in our sample.

6.5 Summary

Within the framework of our EBLM project, we initiated a CHEOPS observing pro-

gramme of 23 low-mass stars to measure precise stellar parameters as well as effective

temperatures. In this paper, we have analysed high precision CHEOPS light curves

of primary and secondary eclipses for five eclipsing binaries with low mass compan-

ions. Using the qpower2 transit model, of PYCHEOPS, we find an average uncertainty

of 3.2 ± 1.3% for the M-dwarfs radius and 0.4 ± 0.3% for the M-dwarfs surface grav-

ity. Thus, using precision light curves allowed us to overcame the larger uncertainties

to derive stellar parameters typically involved with high-resolution spectroscopy. We

have derived the M-dwarfs effective temperature from the contrast between primary

and secondary eclipses and the metallicity from spectroscopic analysis of the primary

star, assuming equal metallicities of both components.

This allows us to compare the M-dwarfs parameters to theoretical structural

models, like the MIST models. We find that all our M-dwarfs are on average larger,

but agree within the uncertainty with the model predictions. This is also true for low-

mass M-dwarfs with enhanced metallicity, which follow the predicted trend of having

a larger radius as well as a cooler effective temperature. Up to now, the stellar models,

as well as our transit model do not include stellar activity. We have analysed TESS

light curves for all our five targets and find a good (better than 1%) agreement on the

M-dwarf radius in the different passband of both instruments. Given the absence of

strong activity indicated variability and flare activity as well as this good agreement, we

conclude that stellar activity does not play a strong role in the derived uncertainties

for our five stars. This result is of particular importance for more active stars on
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our CHEOPS programme, where activity induced changes in parameters between the

TESS and CHEOPS passbands might need to be accounted for. We have analysed

the dependence of derived M-dwarf parameters with priors used in the fit. We find

that limb darkening parameters as well as orbital parameters like the eccentricity and

the argument of periastron are not well constrained from our model fit. Nevertheless,

we find that, other than the limb darkening coefficients, precise orbital parameters,

obtained from radial velocity observations are crucial to derive M-dwarf radii better

than 5%.

Together with SW21, we increased the sample to eight low-mass stars, with pre-

cise measured radii from CHEOPS data. Due to the fact that the F,G,K-type primary

companions are single lined binaries, that allow high-precision orbital characterisation

as well as the determination of precise stellar parameters like metallicity, this survey,

once completed, will allow us to empirically shed light on the radius inflation problem

for very low mass stars.
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7 Refining our methods - Simulating
Starspot Activity

As we continued to work on incoming CHEOPS light curves, we also explored potential

problems that could introduce systematic errors into our measurements. Of these,

stellar activity is the most easily recognised in our photometry. For around six of our

targets, the TESS light curve shows clear pseudo-periodic variation over the time of

observation. This same effect can be seen as gradients with time in the CHEOPS data.

This variation is thought to be due to the effect of starspots. In the simplest scenario

this involves the dipping of the level of flux as a starspot travels from one side of the

stellar disc to the other, a curved dip of light due to the change in the area projected on

the disc by the spot and the effect of stellar limb darkening. The presence of multiple

evenly spaced spots on a rotating star could thus create what appears to be a periodic

sinusoidal signal. In reality of course a combination of starspots of differing sizes and

positions and even varying period makes the signal more complicated than an actual

sinusoid.

The effect of starspots on transit observations can result in both overpredicted

or underpredicted stellar radii as discussed in Chapter 2. As this entire thesis is based

around the radius inflation problem we therefore were interested in coming up with

a simple way to quantify the effect of activity on our measurements. Therefore, we

decided to build a series of functions in PYTHON designed to quantify the effect of stellar

activity for each of our objects as an uncertainty to be added to our final radius results.

7.1 Fitting the Starspot Signal

The first task we needed our routine to perform was to actually measure the observed

stellar activity for each of our targets. With the TESS light curves used in our ob-

servation preparation and comparisons we had sources of long continuous light curves
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for nearly all targets. We only needed to build a method to fit them and find their

rotation periods and signal amplitudes.

In order to obtain the stellar rotation periods we used the STARSPOT package1.

STARSPOT is a PYTHON module designed to obtain the stellar rotation period using auto-

correlation functions, Lomb-Scargle periodograms and phase dispersion minimisations.

With this prebuilt software we could thus easily input the downloaded light curve’s

values of time, flux and flux uncertainty to obtain a stellar rotation period. To further

the accuracy of this process we masked out the transit and secondary eclipses of the

light curve so it was purely fitting the activity signal. An example of the flux signal

and its analysis by STARSPOT is shown in Figure 7.1 for the EBLM J0239-20. Here

we see the attempted fitting of the variation in its light curve by all three methods.

In multiple cases only the Lomb-Scargle periodogram obtained a definitive and clear

period for the variation signal. Therefore, it was used as the method to obtain our

variation periods.

In order to characterise the stellar signals we decided to fit them with a sinusoidal

function of two harmonics:

F (t) = D + a1 sin (2πt/Prot + c1) +B sin (4πt/Prot + c2) (7.1)

where a1 and B = a2/a1 are the amplitudes of the stellar activity signal, c1 and c2 are

phase constants, D is a constant, t is time and Prot is the period of the stellar activity

signal. With the period of the stellar activity signal fixed at the value obtained from the

STARSPOT analysis, we fit the function using the curve fit function of SCIPY. However,

as the amplitude of the present stellar activity often varies over the entire light curve,

the obtained fit would not be very accurate. We decided the best way to quantify this

variation would be to split the light curve into slices 5000 data points wide, covering

around a sixth of a typical TESS sector observation. We then created a new 5000 point

wide slice for every 2500 points giving us around ∼ 11-13 overlapping slices for each

TESS sector observation. We would then find the amplitude of the variation for each

1https://github.com/RuthAngus/starspot
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Figure 7.1: A set of output plots generated by the module STARSPOT when analysing
the masked flux signal of the EBLM J0239-20. The top plot displays the inputted
flux signal. The second shows the flux signal phase folded by the fitted variation
period for each method (Lomb-Scargle, autocorrelation functions and phase dispersion
minimisation). The third, fourth and fifth plots are the plotted results of each method
showing the likelihood of a detection of a varying signal at a certain period. In this
example Lomb-Scargle periodograms finds a variation signal with a period of 2.85 days,
the autocorrelation function finds a variation signal with a period of 2.84 days and the
phase dispersion minimisation fits a period of 2.88 days.
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slice. Finally we would obtain the mean amplitude and use the standard deviation as

the range of stellar activity variation shown by the target star.

7.2 Simulating spot patterns

With our method of fitting the stellar activity caused by starspots decided upon, we

now needed to decide upon how to apply this to quantify their effect on fitted orbital

parameters. As the effects we are looking for are upon the eclipse events themselves

we cannot rely on our measurements as some sort of baseline, as they could already be

affected. We thus had to build a transit model, vary it with a stellar activity signal and

then perform the same fit we would upon our observed light curves. Any changes in

the observed orbital parameters would thus be caused by the introduced stellar activity

signal.

To do this we once again used the PYTHON module ELLC. ELLC has the ability to

include starspots in its light curve model. ELLC uses integrals from Eker (1994a,b),

expressing how circular spots affect the light curve of a spherical star with quadratic

limb darkening to calculate flux variation due to spots for its model light curve. How

the effect is applied can be found in Section 2.10 of Maxted (2016). With this capability

we could thus introduce a starspot-induced stellar activity signal. However, as ELLC

introduces spots via user-selected longitude, latitude, size and brightness factor (the

brightness of the spot relative to the local photosphere) there is no direct way to gain

an activity signal of the desired amplitude. Therefore, we decided to build coding

routines to generate spot patterns capable of causing the observed amplitude of a

target’s activity. We decided to do so using the Sun as a basis in constructing realistic

spot patterns as the Sun is easily the most observed and documented example of spot

activity upon stars.

To build this realistic spot pattern generator we had a number of factors to

research–

• The number of spots crossing the solar disc at any one time and how this varies;
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• The average sizes of these spots and how these vary;

• The positions of these spots and their variation.

The first of these is the number of spots. As spots themselves can be very

small there are unsurprisingly many, many spots upon the Sun during its most active

moments. As the time to generate a model with thousands of spots in ELLC would

be prohibitive to our simulations we immediately wished to simplify this greatly. We

noted the observation of Giles et al. (2017) that the modulation of solar photometric

variability is dominated by the largest individual active regions. We therefore looked at

the number of spot groups instead, making the simplification that the activity caused

by a large number of spots in a single group was equal to that caused by a single spot

of greater size and that these large “spots” dominated our observed stellar activity

signals. This approximation would vastly cut down computation time. We thus looked

at the group number statistics provided by the SILSO (Sunspot Index and Long-term

Solar Observations) world data centre2. Using their archives of daily sunspot group

numbers (Hoyt & Schatten, 1998a,b; Vaquero et al., 2016), we looked for the number

of spot groups present at times of maximum activity. Finding the highest numbers

present to be from 10-16 spot groups, we used this as our distribution of spot group

numbers. Therefore when creating a spot pattern our routine would randomly generate

between 10-16 spots for our light curve model.

We then needed to work out an appropriate area for our group-representing spot.

To do this we turned to the work of Baumann & Solanki (2005) who investigated the

size distribution of sunspot groups. Of the methods they used to do this we focused

on the ‘maximum development method’ where the group area is taken at the time

of its greatest size. They find the group area is well described by a variety of fitted

log-normal distributions with ⟨A⟩ being the mean area and σA being the width of the

log normal distribution. When testing the function we took as values for mean area

and distribution width values of 62.2 and 2.45 micro solar hemispheres, respectively,

2https://www.sidc.be/silso/
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from the “Total Area” dataset in Table 1. Thus we generated spot group areas from

this log-normal distribution for however many “spots” we needed.

We have many targets with a greater activity level than the Sun, so we introduced

a factor Afac to increase the chosen spot areas depending on the observed amplitude

of the spot signal. This factor is generated before the spot pattern itself based on the

inputted activity amplitude. Initially this was done by generating a spot pattern for

1000 different combinations of Afac from 0.1 to 100, with the factor that generated

an activity signal with amplitude closest to our observed values being selected. This

method however was found to take exceedingly long on some of the computers we

used with patterns with larger sizes taking hours to generate. We therefore introduced

two fixes to solve this. First of all we had been running the process with randomly

generated spot numbers and sizes which introduced an unneeded variation in what was

essentially a factor designed to move the pattern generating routine to roughly the

right distribution. Therefore, for the sake of generating Afac, we fixed the spot number

at 13 and the area of the spot generated to Afac ∗ 62.2. Secondly we sought to reduce

the number of patterns generated from 1000 to as low an amount as possible. To do

this we decided on using the bisection method to roughly narrow-in on an appropriate

Afac. Bisection was used on Afac, with the decision on which bisected segment to take

depending on the activity amplitude generated. Although the changes in Afac and

amplitude were not exactly proportional, a greater spot area does lead to a greater

generated activity amplitude and thus this “rough” bisection was acceptable for our

purposes. These changes vastly reduced computation time and generated our mean

spot area based on the activity of each individual target.

The final quantity that we needed to generate was the spot position, which in

ELLC is the latitude and longitude of the spot upon the stellar sphere. To generate

astrophysically sensible spot positions we used the work of Hathaway (2015). Hathaway

(2015) defines two equations describing spot position firstly the active spot latitude:

λ(t) = 28◦ exp [−(t− t0)/90] (7.2)

where λ is the active latitude, t0 is the starting time of the solar cycle and t is the
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current time in the cycle with both times in months. The second equation described

the latitudinal width of the sunspot zones, finding a relation for the RMS of the width

of their sunspot zones as:

σλ(A) = 1.5◦ + 3.8◦(1− exp [−A/400]) (7.3)

where σλ(A) is the RMS width of the sunspot zone and A is the total sunspot area

in micro hemispheres. This represented their observation of an asymptotic relation

between the sunspot band width and the total sunspot area. As we are taking our

standard quantities in area to be the times of maximum activity we also applied this

to the spot latitude. We used Figure 43 of Hathaway (2015) to approximate the time

of maximum activity in the solar cycle to be 50 months. Thus in deciding the active

latitude in Equation (7.2) we set t to be 50 months.

With the behaviour of our spot positions defined we now needed to build a routine

to generate spot positions. In particular we wished to avoid generating overlapping

spots as ELLC combines these to create zones of negative flux. To do this we randomly

generate a spot latitude from a uniform distribution inside the width of our sunspot

zone based on the total spot area. We randomly assign this spot to the northern or

southern hemisphere and randomly assign it a longitude between 0 and 360 degrees.

Then using the skycoords function of ASTROPY we work out the separation between

each spot. Testing the separation of each spot against their combined radii we then

work out if the spot overlaps with any other, discounting them and generating another

if it does. In this way we generate spot positions for each of our spots using their

generated areas.

We now had our routines to build spot patterns based on the observed behaviour

of sunspots. Through Afac they would be generated around the right range but with

our random distributions we made sure that our sample would avoid bias. Due to this

we still generate patterns which resulted in stellar variability completely different to

our observed signal. Thus we needed a selection function to compare these variabilities

and only record the spot patterns that generate an appropriate stellar variability. This

was simply done by running the spot generating function, fitting the generated light
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curve for Equation (7.1) and recording the pattern of those with amplitudes within

the standard deviation range of our observed amplitudes. We set this routine up to

run until an inputted number N acceptable patterns are generated. We found that

this gave an almost completely even distribution of amplitude a1 and an amplitude B

tending slightly towards lower values. Therefore we concluded that we were sufficiently

unbiased for our simplified method.

We could now move onto determining the effect brought about by the activity-

caused variation in the stellar light curve. With our routine we generate 500 light curves

without the transit and secondary eclipse masked, which gives a good balance between

computation time and sample size. We then fit these light curves with PYCHEOPS using

the least squares fit that we use to initially fit TESS light curves. By then examining

how the mean fitted parameters differ from the initially inputted orbital parameters, we

can quantify the impact the stellar activity and removal of it has had on our retrieval of

the system’s characteristics. With our code fully built we could thus apply it to all our

targets with TESS light curves. For those of our targets without TESS light curves an

analysis of WASP light curves were performed by Pierre Maxted using the method in

Maxted et al. (2011) to obtain any present variation’s amplitude and period. Variations

were derived in mmag units but can be directly approximated as the fractional change

in flux (Southworth, 2011). Upper limits of 2mmag were found for two of our systems

(J1559-05 and J2343+20), an upper limit of 1mmag for J2046+06 with a rotation

signal of amplitude 4-5mmag found for EBLM J2315+23. However, as the period of

the rotation signal is close to the orbital period it is not clear if the signal truly is

for rotation. As no consistent rotation period was found for J1559-05, J2046+06 and

J2343+20, we fit for a variation of period 10.5 days but will not apply the derived

corrections to our final results. For targets J0239-20, J1928-38 and J2040-41; we fixed

orbital period P and orbital parameters fc and fs in the least squares fits. This was

due to the least square fitting having difficulty detecting the very small inputted eclipse

depths, leading to very large uncertainties in Teff,2 The effect on radius predicted by

our starspot-induced variation is shown in Table 7.1.

As shown in Table 7.1, for systems with high flux variation there is a small



103

Table 7.1: The period of observed variation in normalised flux, the observed amplitude
of the stellar variation in normalised flux for each of our targets and the resultant
change in radius and effective temperature induced by the spot patterns.

Target Var. Period (days) Var. Amplitude R2,input (R⊙) R2,output (R⊙) ∆R (%) Teff,2,input (K) Teff,2,output (K) ∆Teff,2 (K)

J0057-19 4.94 0.0057± 0.0022 0.1668 0.1651± 0.0053 1.04 2958 2990± 57 32
J0113+31 18.11 0.0014± 0.0004 0.2152 0.2163± 0.0041 0.51 3258 3262± 24 4
J0123+38 5.74 0.0036± 0.0008 0.3424 0.3410± 0.0100 0.42 3404 3414± 87 10
J0239-20 2.85 0.0049± 0.0017 0.2022 0.2048± 0.0055 1.27 3027 3054± 266 27
J0540-17 6.50 0.0005± 0.0002 0.1917 0.1928± 0.0047 0.59 3220 3236± 26 16
J0546-18 3.32 0.0021± 0.0004 0.2194 0.2209± 0.0094 0.70 3412 3429± 40 17
J0719+25 5.24 0.0018± 0.0009 0.1847 0.1859± 0.0055 0.64 3212 3200± 73 −12
J0941-31 5.28 0.0013± 0.0006 0.2286 0.2286± 0.0060 0.02 3448 3434± 39 −14
J0955-39 27.79 Not fittable −−− −−− −−− −−− −−− −−−
J1013+01 3.3 0.029± 0.009 0.2100 0.2112± 0.0041 0.56 3043 3036± 33 −7
J1305-31 4.89 0.0010± 0.0003 0.2986 0.2993± 0.0068 0.23 3135 3131± 20 −4
J1559-05 −− 0.001 0.1977 0.1984± 0.0043 0.36 3139 3161± 33 22
J1741+31 7.64 Not fittable −−− −−− −−− −−− −−− −−−
J1928-38 13.25 0.0009± 0.0006 0.2672 0.2670± 0.0054 0.06 3153 3155± 21 2
J1934-42 4.21 0.0032± 0.0011 0.2244 0.2256± 0.0063 0.54 3014 3317± 770 303
J2040-41 14.20 0.0010± 0.0008 0.1766 0.1755± 0.0061 0.64 2910 2924± 19 14
J2046+06 −− 0.002 0.2034 0.2038± 0.0041 0.22 3124 3049± 26 −75
J2315+23 10.5 0.0045 0.2465 0.2462± 0.007 0.12 3298 3307± 27 9
J2343+20 −− 0.002 0.1447 0.1437± 0.0030 0.73 2572 2583± 64 11
J2359+44 4.37 0.0009± 0.0002 0.2942 0.2948± 0.0067 0.22 3462 3496± 93 34

change to the derived radius. When there is less variation there is generally less of a

change in radius. There are also small variations in effective temperature that seem to

roughly increase with increased variation. This is the expected result and shows that

our method can provide a reasonable estimate for the variation in radius and effective

temperature caused by the effect of starspots. One exception is J1013+01 which has by

far the greatest variation amplitude but whose radius is not mischaracterised by a larger

amount than the rest of our sample. One future area of interest would be to characterise

EBLMs with similar flux variation to observe if this error “cut-off” is repeated. Targets

J0955-39 and J1741+31 found no rotation signal and will also receive no starspot-

derived corrections to radii and effective temperature. There are two targets with

large uncertainties in effective temperature in the fit. J1934-42 is a slightly grazing

system leading us to discount the accuracy of any effective temperature measurement.

For J0239-20, the uncertainty in fit we propose to be due to the combination of large
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variation amplitude and period, leading to further difficulty detecting the very small

eclipse depth. We will use our results to account for starspot-caused flux variation in our

final fits, taking the difference between input and derived radii/effective temperature to

be the uncertainty caused by stellar activity. These can then be combined in quadrature

with the uncertainty of the MCMC fit. Therefore, apart from the exceptions mentioned

above, all further stated secondary stellar radii/effective temperature in this thesis have

had these corrections applied to their uncertainties.
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8 Exploring the radius inflation problem -
Analysis of our full sample

8.1 The results of our programme

8.1.1 CHEOPS vs TESS

Using the methods described in Chapter 2, we fitted CHEOPS light curves using

PYCHEOPS. The log of our observations including the aperture radii chosen to analyse

each light curve are shown in Table 8.1.

Similarly to our published studies, we chose the aperture based on which gave

the minimum Mean Absolute Deviation (MAD) of the point-to-point differences in the

light curve of the eclipse visit.

All of the primary stars’ stellar and orbital parameters are listed in Table 8.2.

Values of primary stellar effective temperature and metallicity for all our EBLM targets

were derived by the CHEOPS TS3 team using the methods described in Chapters 5 &

6. Primary stellar masses and radii were obtained using the calibration equations de-

scribed in Chapter 2 and used in Chapter 6. We took values of eccentricity, arguments

of periastron and radial velocity semi-amplitudes from a variety of sources derived from

fits of radial velocity measurements. These include Triaud et al. (2017), Martin et al.

(2019), our own fits of radial velocity measurements or those of other collaborators.

Our own fits were performed as in Chapters 5 and 6, fitting ELLC radial velocity models

to obtained radial velocity measurements. The targets we fit ourselves were EBLMs

J0123+38, J0719+25, J2315+23 and J2359+44 using SOPHIE radial velocity measure-

ments. For EBLM J0113+31 we used values published by Maxted et al. (2021). For

EBLM J2343+29 we used values derived from an analysis of radial velocity measure-

ments performed by James McCormac. For those of our targets in zero eccentricity

systems we set fc and fs to be at a constant value of zero. For our eccentric systems

we set priors on fc and fs based on the obtained or derived values of eccentricity and
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Table 8.1: A log of observation dates and details for each target visit. Sp. Type is
the estimated spectral type of the primary star. Effic. is the fraction of the observing
interval covered by valid observations of the target. Rap is the aperture radius used to
compute the light curve analysed in this paper.

Event Target V Start Date Duration Texp Effic. File key Rap

Sp. Type (mag) (UTC) [s] [s] (%) [pixels]

Transit J0057-19 11.65 2020-10-27T10:08:00 31586 60 78.9 CH PR100037 TG011401 V0200 25.0
Eclipse G6V 2020-10-25T06:22:00 31824 60 82.1 CH PR100037 TG011301 V0200 25.0
Transit J0113+31 10.11 2020-11-24T15:37:00 49425 60 52.8 CH PR100037 TG011601 V0200 40.0
Transit F9V 2021-10-19T00:16:00 49425 60 63.5 CH PR100037 TG017101 V0200 40.0
Eclipse 2021-09-28T03:07:00 35379 60 57.9 CH PR100037 TG017201 V0200 40.0
Transit J0123+38 12.10 2020-10-17T16:16:00 45098 60 55.1 CH PR100037 TG011801 V0200 22.5
Eclipse F8V 2020-11-14T13:10:00 45098 60 51.8 CH PR100037 TG011701 V0200 22.5
Eclipse 2020-12-16T07:53:00 45098 60 54.7 CH PR100037 TG011702 V0200 22.5
Transit J0239-20 10.63 2020-11-01T15:40:00 30876 60 88.6 CH PR100037 TG012001 V0200 25.0
Eclipse G2V 2020-11-05T20:08:00 30224 60 95.0 CH PR100037 TG011901 V0200 25.0
Eclipse 2020-11-19T17:20:00 30224 60 74.0 CH PR100037 TG011902 V0200 25.0
Transit J0540-17 11.31 2020-12-07T08:36:00 37987 60 71.1 CH PR100037 TG012601 V0200 18.0
Eclipse F7V 2020-12-04T08:10:00 38580 60 67.7 CH PR100037 TG012501 V0200 18.0
Eclipse 2021-01-21T09:38:41 38580 60 55.7 CH PR100037 TG012502 V0200 18.0
Eclipse 2021-01-27T09:19:41 38580 60 54.3 CH PR100037 TG012503 V0200 18.0
Transit J0546-18 12.15 2020-11-30T22:24:00 29927 60 69.4 CH PR100037 TG012801 V0200 25.0
Eclipse F8V 2020-12-31T05:23:11 29987 60 66.8 CH PR100037 TG012701 V0200 25.0
Eclipse 2021-01-09T19:36:00 29987 60 67.1 CH PR100037 TG012702 V0200 25.0
Transit J0719+25 10.96 2020-12-10T07:00:00 33483 60 55.0 CH PR100037 TG013001 V0200 22.5
Eclipse† F9V 2020-12-21T12:00:00 32713 60 62.2 CH PR100037 TG012901 V0200 22.5
Eclipse 2021-02-03T20:51:00 33127 60 58.8 CH PR100037 TG017301 V0200 22.5
Transit J0941-31 11.08 2021-03-05T05:01:00 37217 60 74.0 CH PR100037 TG013401 V0200 22.5
Eclipse F5V 2021-02-14T12:55:00 37512 60 91.3 CH PR100037 TG013301 V0200 22.5
Transit J0955-39 12.90 2021-04-12T14:56:00 30283 60 56.0 CH PR100037 TG013601 V0200 22.5
Eclipse F6V 2021-02-21T02:42:00 30224 60 69.0 CH PR100037 TG013501 V0200 22.5
Transit J1013+01 11.87 2021-01-29T15:13:00 28920 60 63.3 CH PR100037 TG013801 V0200 30.0
Eclipse K1V 2021-03-18T09:41:00 28801 60 92.6 CH PR100037 TG013701 V0200 30.0
Transit J1305-31 12.10 2021-04-06T13:59:00 37098 60 90.5 CH PR100037 TG014001 V0200 30.0
Eclipse G0V 2021-04-11T15:59:00 36387 60 90.7 CH PR100037 TG013901 V0200 30.0
Transit J1559-05 9.69 2021-06-07T19:08:00 31705 60 92.7 CH PR100037 TG014401 V0200 22.5
Eclipse F8V 2020-04-18T08:17:00 31705 60 70.5 CH PR100037 TG014301 V0200 22.5
Eclipse 2020-06-09T23:16:00 31705 60 95.5 CH PR100037 TG014302 V0200 22.5
Eclipse 2022-06-01T21:13:00 31705 60 94.4 CH PR100037 TG014303 V0200 22.5
Eclipse 2022-06-13T05:05:00 31705 60 76.9 CH PR100037 TG014304 V0200 22.5
Transit J1741+31 11.70 2020-06-13T08:20:00 27794 60 67.8 CH PR100037 TG014601 V0200 30.0
Eclipse† F6V 2020-06-10T08:12:58 29098 60 63.0 CH PR100037 TG014501 V0200 30.0
Transit J1928-38 11.20 2021-06-09T16:14:00 45810 60 54.4 CH PR100037 TG014801 V0200 22.5
Eclipse G4V 2021-06-20T12:20:00 47113 60 57.1 CH PR100037 TG014701 V0200 22.5
Transit J1934-42 12.62 2020-06-27T13:43:57 28387 60 60.7 CH PR100037 TG015001 V0200 25.0
Eclipse G5V 2020-07-13T09:47:00 28387 60 61.1 CH PR100037 TG014901 V0200 25.0
Transit J2040-41 11.49 2021-06-24T18:49:00 45395 60 52.8 CH PR100037 TG015201 V0200 22.5
Eclipse G2V 2021-06-19T06:13:12 42609 60 53.0 CH PR100037 TG015101 V0200 22.5
Eclipse 2021-09-13T22:40:00 42609 60 63.5 CH PR100037 TG015102 V0200 22.5
Transit J2046+06 9.86 2020-08-28T22:08:00 35676 60 81.1 CH PR100037 TG015601 V0200 25.0
Eclipse F7V 2020-07-03T11:34:00 42313 60 66.7 CH PR100037 TG015501 V0200 25.0
Eclipse 2021-07-22T13:59:00 42313 60 91.4 CH PR100037 TG015502 V0200 25.0
Eclipse 2021-08-11T20:30:55 42313 60 94.0 CH PR100037 TG015503 V0200 25.0
Transit J2315+23 11.56 2021-09-27T12:04:00 41424 60 61.1 CH PR100037 TG016001 V0200 22.5
Eclipse F9V 2021-09-13T01:29:00 39172 60 71.3 CH PR100037 TG016801 V0200 22.5
Transit J2343+29 10.59 2021-09-17T21:03:59 33483 60 71.5 CH PR100037 TG016201 V0200 25.0
Eclipse K2V 2021-09-09T17:47:00 36979 60 67.1 CH PR100037 TG016101 V0200 25.0
Transit J2359+44 10.59 2020-11-28T12:20:00 60507 60 53.3 CH PR100037 TG016401 V0200 26.0
Eclipse F2V 2020-11-11T08:37:00 33483 60 60.1 CH PR100037 TG016301 V0200 26.0

† Does not cover the phase of superior conjunction.
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arguments of periastron.

Additionally, priors in h1 and h2 were included for the EBLMs J0719+25,

J1741+31 and J1934-42. The values used for the priors were derived using inter-

polation in the data tables presented in Maxted (2018) based on the limb-darkening

profiles from the STAGGER-grid (Magic et al., 2015). The interpolation is performed

based on the effective temperature, surface gravity and metallicity from Table 8.2. For

J0719+25 this was due to h2 trending to unphysically low values if left without a prior.

For J1741+31 and J1934-42 this was due to the same reason as in Chapter 5, as the

partial primary eclipses did not put enough constraint on the limb darkening parame-

ters. A table of all priors used for each target along with the details of the MCMC fits

themselves are in Table 8.3.

The results and derived properties of our targets are shown below in Tables

8.4-8.10. The fitted CHEOPS light curves for each target is shown in Figures .23 to

.32. We also used our starspot pattern simulations from Chapter 7 to account for

any uncertainty caused by the variation in stellar flux. Therefore, the uncertainty of

the stellar radii and effective temperature is derived from the uncertainty from our

MCMC fit combined in quadrature with the stellar activity uncertainty predicted by

our starspot simulations for those targets with a detectable rotation signal.

We also have once again analysed TESS light curves for our targets where pos-

sible. The downloading and detrending of the TESS light curves was performed with

the same methods as described in Chapter 6. The same priors as applied to the

CHEOPS light curves were applied with the exception of the limb darkening parame-

ters for J0719+25. The derived radii and effective temperatures from our EMCEE fitting

of TESS light curves is shown in Table 8.11, along with how our results differ from

CHEOPS results. The fitted TESS light curves for each target is shown in Figures .33

to .40.

As can be seen for the majority of our targets the TESS results agree with the

CHEOPS results within the bounds of their uncertainty. We illustrate this by showing

the difference in radius ratio between the CHEOPS and TESS results in Figure 8.1

and the difference in fractional primary radius (R1/a) in Figure 8.2. The observed
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Table 8.2: The primary stellar parameters used in deriving our final results. The pri-
mary effective temperature and metallicity were derived by the CHEOPS TS3 team us-
ing fitted spectra. The primary stellar mass and radii were derived using the equations
in Enoch et al. (2010) as described in Chapter 2. The radial velocity semi-amplitude
(K), eccentricity (e) and argument of periastron (ω) values were obtained from the
papers Triaud et al. (2017), Martin et al. (2019), RV fits of individual targets or from
our own ELLC fits of radial velocity data.

Target Teff,1 [Fe/H] M1 R1 K e ω
[K] [dex.] [M⊙] [R⊙] [km/s] [deg]

J0057-19 5580± 150 0.23± 0.09 1.004± 0.063 1.234± 0.037 15.523± 0.025 0.0 −−
J0113+31 6025± 76 −0.31± 0.05 1.033± 0.057 1.432± 0.027 15.861± 0.010 0.3088± 0.0005 279.000± 0.031
J0123+38 6182± 91 0.452± 0.070 1.156± 0.065 2.018± 0.055 27.59± 0.17 0.0 −−
J0239-20 5758± 100 0.27± 0.12 1.037± 0.061 1.587± 0.040 21.316± 0.036 0.0 −−
J0540-17 6290± 77 −0.04± 0.05 1.120± 0.062 1.636± 0.040 16.199± 0.010 0.0 −−
J0546-18 6180± 80 −0.45± 0.08 1.051± 0.059 1.509± 0.064 26.15± 0.10 0.0 −−
J0719+25 6026± 67 0.04± 0.05 1.078± 0.059 1.305± 0.038 15.02± 0.04 0.0730± 0.0045 −155.8± 5.4
J0941-31 6504± 101 0.078± 0.069 1.181± 0.067 1.745± 0.046 21.312± 0.036 0.2006± 0.0017 5.02± 0.52
J0955-39 6340± 80 −0.24± 0.08 1.189± 0.068 1.096± 0.027 21.446± 0.034 0.0 −−
J1013+01 5200± 80 0.09± 0.08 0.982± 0.056 1.007± 0.020 23.193± 0.080 0.0 −−
J1305-31 5913± 64 0.201± 0.044 1.063± 0.059 1.493± 0.034 22.402± 0.011 0.03736± 0.00046 −153.52± 0.79
J1559-05 6204± 100 0.19± 0.09 1.127± 0.065 1.709± 0.037 18.063± 0.042 0.0 −−
J1741+31 6376± 72 0.09± 0.05 1.190± 0.066 1.187± 0.023 37.140± 0.040 0.3009± 0.0009 56.8105± 0.1918
J1928-38 5687± 62 −0.009± 0.042 0.994± 0.055 1.384± 0.028 17.2688± 0.0045 0.07351± 0.00023 −137.24± 0.19
J1934-42 5648± 68 0.288± 0.046 1.132± 0.070 1.028± 0.028 18.6212± 0.0089 0.0 −−
J2040-41 5790± 63 −0.206± 0.043 0.997± 0.055 1.352± 0.047 12.462± 0.004 0.22645± 0.00032 −36.818± 0.095
J2046+06 6302± 70 0.000± 0.048 1.126± 0.062 1.608± 0.032 15.548± 0.006 0.34361± 0.00034 108.922± 0.081
J2315+23 6027± 66 0.02± 0.05 1.069± 0.059 1.534± 0.041 19.98± 0.46 0.149± 0.001 147.2253± 0.3377
J2343+29 4984± 87 0.11± 0.05 1.192± 0.071 0.914± 0.017 8.4177± 0.0027 0.1604± 0.0003 78.409± 0.087
J2359+44 6799± 83 0.12± 0.05 1.253± 0.070 1.711± 0.033 23.62± 0.08 0.4773± 0.0010 −94.29± 0.06
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Table 8.3: The priors used in constraining our CHEOPS Multivisit fits for each of our
targets and the number of steps in the MCMC fits.

Target fc fs h1 h2 MCSteps

J0057-19 = 0.0 = 0.0 −− −− 40000
J0113+31 0.0869± 0.0003 −0.5488± 0.0004 −− −− 100000
J0123+38 = 0.0 = 0.0 −− −− 40000
J0239-20 = 0.0 = 0.0 −− −− 40000
J0540-17 = 0.0 = 0.0 −− −− 100000
J0546-18 = 0.0 = 0.0 −− −− 200000
J0719+25 −0.2465± 0.0129 −0.1105± 0.0235 0.754± 0.011 0.412± 0.050 90000
J0941-31 0.4462± 0.0019 0.0392± 0.0041 −− −− 100000
J0955-39 = 0.0 = 0.0 −− −− 100000
J1013+01 = 0.0 = 0.0 −− −− 100000
J1305-31 −0.1730± 0.0016 −0.0862± 0.0024 −− −− 100000
J1559-05 = 0.0 = 0.0 −− −− 227500
J1741+31 0.3003± 0.0016 0.4591± 0.0012 0.765± 0.011 0.428± 0.050 1200000
J1928-38 −0.1991± 0.0007 −0.1841± 0.0007 −− −− 180000
J1934-42 = 0.0 = 0.0 0.730± 0.011 0.397± 0.050 800000
J2040-41 0.3810± 0.0005 −0.2851± 0.0007 −− −− 180000
J2046+06 −0.1901± 0.0008 0.5545± 0.0004 −− −− 40000
J2315+23 −0.3246± 0.0016 −0.2090± 0.0020 −− −− 80000
J2343+29 0.0805± 0.0006 0.3924± 0.0004 −− −− 80000
J2359+44 −0.0517± 0.0007 −0.6889± 0.0007 −− −− 60000
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Table 8.4: The derived orbital parameters for the CHEOPS targets EBLM J0057-19,
EBLM J0113+31 and EBLM J0123+38; calculated by our pycheops fit.

J0057-19 J0113+31 J0123+38

Model parameters

T0 (BJD) 1767.3843± 0.0002 2335.4973± 0.0001 2164.3360± 0.0002
P (days) = 4.30055 = 14.27684 = 7.95294
D 0.0195± 0.0004 0.0228± 0.0001 0.0300± 0.0002
W 0.0365± 0.0002 0.0190± 0.0001 0.0387± 0.0003
b 0.368± 0.063 0.320± 0.009 0.186± 0.095
fc = 0.0 0.0871± 0.0002† = 0.0
fs = 0.0 −0.5489± 0.0004† = 0.0
L 0.00042± 0.00012 0.00083± 0.00005 0.00102± 0.00008
h1 0.800± 0.020 0.769± 0.004 0.818± 0.009
h2 0.502± 0.230 0.667± 0.093 0.622± 0.169

Derived parameters

R2/R1 0.1395± 0.0014 0.1509± 0.0003 0.1733± 0.0007
R1/a 0.1064± 0.0024 0.0539± 0.0003 0.1049± 0.0020
R2/a 0.0143± 0.0004 0.0081± 0.0001 0.0178± 0.0004
i (◦) 87.75± 0.43 89.01± 0.03 88.88± 0.59
e 0.0 0.3089± 0.0004 0.0
ω (◦) −− −80.98± 0.03 −−
Absolute parameters

M2 (M⊙) 0.1290± 0.0052 0.1974± 0.0068 0.338± 0.012
R2 (R⊙) 0.1722± 0.0057 0.2161± 0.0042 0.3498± 0.0098
log g1 (cgs) 4.257± 0.022 4.141± 0.010 3.894± 0.019
log g2 (cgs) 5.076± 0.021 5.064± 0.005 4.883± 0.017
Teff,2 (K) 2958± 128 3258± 37 3404± 72

†: Derived parameters based on Gaussian priors shown in Table 8.3.
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Table 8.5: The derived orbital parameters for the CHEOPS targets EBLM J0239-20,
EBLM J0540-17 and EBLM J0546-18; calculated by our pycheops fit.

J0239-20 J0540-17 J0546-18

Model parameters

T0 (BJD) 2163.7080± 0.0001 2209.1209± 0.0002 2203.7145± 0.0003
P (days) = 2.77869 = 6.00494 = 3.19190
D 0.0168± 0.0002 0.0140± 0.0002 0.0239± 0.0019
W 0.0527± 0.0004 0.0382± 0.0002 0.0415± 0.0016
b 0.654± 0.014 0.167± 0.105 0.777± 0.041
fc = 0.0 = 0.0 = 0.0
fs = 0.0 = 0.0 = 0.0
L 0.00037± 0.00005 0.00037± 0.00005 0.00111± 0.00013
h1 0.767± 0.020 0.767± 0.015 0.440± 0.144
h2 0.469± 0.219 0.54± 0.18 0.308± 0.137

Derived parameters

R2/R1 0.1296± 0.0007 0.1185± 0.0009 0.1547± 0.0062
R1/a 0.1797± 0.0003 0.1084± 0.0018 0.1534± 0.0060
R2/a 0.0229± 0.0004 0.0127± 0.0003 0.0223± 0.0015
i (◦) 83.25± 0.24 88.96± 0.67 83.16± 0.56
e 0.0 0.0 0.0
ω (◦) −− −− −−
Absolute parameters

M2 (M⊙) 0.1598± 0.0059 0.1633± 0.0058 0.2129± 0.0075
R2 (R⊙) 0.2056± 0.0059 0.1939± 0.0051 0.2330± 0.0131
log g1 (cgs) 4.053± 0.016 4.058± 0.017 4.099± 0.035
log g2 (cgs) 5.015± 0.014 5.075± 0.015 5.028± 0.048
Teff,2 (K) 3027± 64 3220± 72 3412± 82

†: Derived parameters based on Gaussian priors shown in Table 8.3.
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Table 8.6: The derived orbital parameters for the CHEOPS targets EBLM J0719+26,
EBLM J0941-31 and EBLM J0955-39; calculated by our pycheops fit.

J0719+25 J0941-31 J0955-39

Model parameters

T0 (BJD) 2216.3900± 0.0002 2278.9545± 0.0002 2290.7348± 0.0006
P (days) = 7.45629 = 5.54563 = 5.31360
D 0.0213± 0.0003 0.0180± 0.0003 0.0450± 0.0008
W 0.0250± 0.0003 0.0407± 0.0001 0.0270± 0.0003
b 0.502± 0.031 0.343± 0.062 0.489± 0.034
fc −0.2589± 0.0068† 0.4436± 0.0012† = 0.0
fs −0.1163± 0.0228† 0.0390± 0.0040† = 0.0
L 0.00064± 0.00012 0.00063± 0.00007 0.00153± 0.00026
h1 0.749± 0.009† 0.829± 0.017 0.808± 0.034
h2 0.408± 0.051† 0.598± 0.193 0.397± 0.273

Derived parameters

R2/R1 0.1460± 0.0010 0.1341± 0.0010 0.2121± 0.0019
R1/a 0.0763± 0.0018 0.1183± 0.0021 0.0764± 0.0015
R2/a 0.0108± 0.0003 0.0155± 0.0004 0.0158± 0.0004
i (◦) 87.81± 0.19 87.67± 0.46 87.86± 0.18
e 0.0808± 0.0041 0.1984± 0.0010 0.0
ω (◦) −155.80± 4.57 5.03± 0.52 −−
Absolute parameters

M2 (M⊙) 0.1584± 0.0055 0.2173± 0.0078 0.2211± 0.0080
R2 (R⊙) 0.1919± 0.0058 0.2340± 0.0064 0.2325± 0.0060
log g1 (cgs) 4.233± 0.022 4.027± 0.018 4.432± 0.019
log g2 (cgs) 5.071± 0.021 5.037± 0.017 5.048± 0.019
Teff,2 (K) 3212± 90 3448± 73 3332± 90

†: Derived parameters based on Gaussian priors shown in Table 8.3.
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Table 8.7: The derived orbital parameters for the CHEOPS targets EBLM J1013+01,
EBLM J1305-31 and EBLM J1559-05; calculated by our pycheops fit.

J1013+01 J1305-31 J1559-05

Model parameters

T0 (BJD) 2244.3407± 0.0002 2311.3193± 0.0002 2347.2225± 0.0001
P (days) = 2.89227 = 10.61913 = 3.76008
D 0.0432± 0.0007 0.0405± 0.0006 0.0139± 0.0005
W 0.0431± 0.0002 0.0206± 0.0001 0.0429± 0.0002
b 0.082± 0.065 0.704± 0.012 0.701± 0.007
fc = 0.0 −0.1725± 0.0014† = 0.0
fs = 0.0 −0.0859± 0.0024† = 0.0
L 0.00162± 0.00016 0.00104± 0.00014 0.00029± 0.00002
h1 0.710± 0.017 0.785± 0.056 0.660± 0.075
h2 0.384± 0.192 0.344± 0.281 0.080± 0.085

Derived parameters

R2/R1 0.2079± 0.0017 0.2013± 0.0016 0.1177± 0.0022
R1/a 0.1124± 0.0009 0.0665± 0.0008 0.1547± 0.0015
R2/a 0.0232± 0.0002 0.0133± 0.0001 0.0179± 0.0004
i (◦) 89.47± 0.42 87.32± 0.07 83.78± 0.12
e 0.0 0.0371± 0.0006 0.0
ω (◦) −− −153.53± 0.69 −−
Absolute parameters

M2 (M⊙) 0.1706± 0.0062 0.2820± 0.0095 0.1568± 0.0058
R2 (R⊙) 0.2093± 0.0047 0.3007± 0.0072 0.2011± 0.0058
log g1 (cgs) 4.424± 0.011 4.116± 0.014 4.024± 0.012
log g2 (cgs) 5.029± 0.010 4.932± 0.013 5.025± 0.019
Teff,2 (K) 3043± 49 3135± 64 3139± 50

†: Derived parameters based on Gaussian priors shown in Table 8.3.
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Table 8.8: The derived orbital parameters for the CHEOPS targets EBLM J1741+31,
EBLM J1928-38 and EBLM J1934-42; calculated by our pycheops fit.

J1741+31 J1928-38 J1934-42

Model parameters

T0 (BJD) 2014.0489± 0.0001 2375.4273± 0.0002 2028.2295± 0.0002
P (days) = 7.71262 = 23.32286 = 6.35251
D 0.1446± 0.0445 0.0378± 0.0004 0.0540± 0.0122
W 0.0104± 0.0027 0.0134± 0.0001 0.0191± 0.0003
b 1.274± 0.116 0.395± 0.019 0.812± 0.053
fc 0.3003± 0.0016† −0.1989± 0.0006† = 0.0
fs 0.4592± 0.0012† −0.1840± 0.0007† = 0.0
L −− 0.00126± 0.00008 0.00133± 0.00043
h1 0.765± 0.011† 0.732± 0.009 0.730± 0.011†

h2 0.429± 0.050† 0.553± 0.149 0.396± 0.050†

Derived parameters

R2/R1 0.380± 0.057 0.1945± 0.0010 0.2323± 0.0247
R1/a 0.0610± 0.0006 0.0373± 0.0003 0.0646± 0.0018
R2/a 0.0203± 0.0035 0.0072± 0.0001 0.0141± 0.0021
i (◦) 85.53± 0.42 89.16± 0.05 86.99± 0.29
e 0.3009± 0.0015 0.0734± 0.0004 0.0
ω (◦) 56.81± 0.16 −137.24± 0.15 −−
Absolute parameters

M2 (M⊙) 0.461± 0.015 0.2703± 0.0091 0.1960± 0.0076
R2 (R⊙) 0.450± 0.068 0.2692± 0.0057 0.239± 0.026
log g1 (cgs) 4.3672± 0.0130 4.1532± 0.0120 4.4706± 0.0265
log g2 (cgs) 4.790± 0.130 5.0096± 0.0089 4.997± 0.096
Teff,2 (K) −− 3153± 36 3014± 98

†: Derived parameters based on Gaussian priors shown in Table 8.3.
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Table 8.9: The derived orbital parameters for the CHEOPS targets EBLM J2040-41,
EBLM J2046+06 and EBLM J2315+23; calculated by our pycheops fit.

J2040-41 J2046+06 J2315+23

Model parameters

T0 (BJD) 2433.8913± 0.0005 2090.6246± 0.0001 2476.1268± 0.0002
P (days) = 14.45626 = 10.10779 = 9.13105
D 0.0177± 0.0003 0.0162± 0.0002 0.0269± 0.0003
W 0.0184± 0.0003 0.0261± 0.0002 0.0279± 0.0002
b 0.176± 0.118 0.254± 0.050 0.190± 0.092
fc 0.3810± 0.0005† −0.1904± 0.0006† −0.3241± 0.0009†

fs −0.2852± 0.0007† 0.5545± 0.0004† −0.2088± 0.0020†

L 0.00032± 0.00007 0.00033± 0.00002 0.00097± 0.00011
h1 0.733± 0.015 0.761± 0.011 0.816± 0.0103
h2 0.305± 0.197 0.319± 0.161 0.640± 0.157

Derived parameters

R2/R1 0.1329± 0.0013 0.1274± 0.0007 0.1641± 0.0009
R1/a 0.0517± 0.0016 0.0747± 0.0005 0.0765± 0.0015
R2/a 0.0067± 0.0002 0.0094± 0.0001 0.0123± 0.0003
i (◦) 89.48± 0.37 88.91± 0.22 89.17± 0.42
e 0.2265± 0.0005 0.3438± 0.0005 0.1486± 0.0007
ω (◦) −36.82± 0.07 108.95± 0.05 −147.21± 0.29

Absolute parameters

M2 (M⊙) 0.1524± 0.0053 0.1896± 0.0066 0.2309± 0.0099
R2 (R⊙) 0.1797± 0.0066 0.2048± 0.0042 0.2517± 0.0068
log g1 (cgs) 4.1743± 0.0276 4.0762± 0.104 4.0951± 0.0189
log g2 (cgs) 5.111± 0.028 5.093± 0.008 5.000± 0.020
Teff,2 (K) 2910± 90 3124± 34 3298± 63

†: Derived parameters based on Gaussian priors shown in Table 8.3.
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Table 8.10: The derived orbital parameters for the CHEOPS targets EBLM J2343+29
and EBLM J2359+44; calculated by our pycheops fit.

J2343+29 J2359+44

Model parameters

T0 (BJD) 2458.6659± 0.0001 1977.9726± 0.0001
P (days) = 16.95353 = 11.35602
D 0.0256± 0.0003 0.0300± 0.0002
W 0.01070± 0.00005 0.0260± 0.0001
b 0.290± 0.038 0.0970± 0.0239
fc 0.0806± 0.0006† −0.0532± 0.0003†

fs 0.3924± 0.0004† −0.6890± 0.0007†

L 0.00031± 0.00005 0.00089± 0.00006
h1 0.697± 0.009 0.776± 0.004
h2 0.377± 0.140 0.612± 0.131

Derived parameters

R2/R1 0.1601± 0.0010 0.1731± 0.0005
R1/a 0.0299± 0.0002 0.0698± 0.0003
R2/a 0.0047± 0.0001 0.0120± 0.0001
i (◦) 89.50± 0.07 89.61± 0.10
e 0.1604± 0.0003 0.4776± 0.0010
ω (◦) 78.39± 0.08 −94.41± 0.03

Absolute parameters

M2 (M⊙) 0.1202± 0.0046 0.293± 0.010
R2 (R⊙) 0.1464± 0.0031 0.2965± 0.0064
log g1 (cgs) 4.5963± 0.0110 4.0674± 0.0101
log g2 (cgs) 5.1910± 0.0083 4.9596± 0.0050
Teff,2 (K) 2572± 83 3462± 56

†: Derived parameters based on Gaussian priors shown in Table 8.3.
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Table 8.11: The derived stellar radius and effective temperature for each TESS target
calculated by our pycheops fit, compared to our CHEOPS derived values.

Target R2,CHEOPS (R⊙) R2,TESS (R⊙) Teff,2,CHEOPS (K) Teff,2,TESS (K)

J0057-19 0.1722± 0.0057 0.1689± 0.0045 2958± 128 2750± 77
J0113+31 0.2161± 0.0042 0.2243± 0.0049 3258± 37 3227± 38
J0123+38 0.3498± 0.0098 0.3566± 0.0094 3404± 72 3544± 63
J0239-20 0.2056± 0.0059 0.2032± 0.0043 3027± 64 3014± 41
J0540-17 0.1939± 0.0051 0.1959± 0.0056 3220± 70 3142± 66
J0546-18 0.2330± 0.0131 0.2356± 0.0074 3412± 80 3331± 56
J0719+25 0.1919± 0.0058 0.1917± 0.0044 3212± 89 3063± 40
J0941-31 0.2340± 0.0064 0.2377± 0.0051 3448± 73 3375± 51
J0955-39 0.2325± 0.0060 0.2303± 0.0050 3332± 90 3356± 47
J1013+01 0.2093± 0.0047 0.2042± 0.039 3043± 49 3017± 30
J1305-31 0.3007± 0.0072 0.2963± 0.0063 3135± 64 3174± 44
J1741+31 0.450± 0.068 0.3729± 0.0083 −− −−
J1934-42 0.239± 0.026 0.2229± 0.0051 3014± 98 2959± 64
J2040-41 0.1797± 0.0066 0.1804± 0.0044 2910± 90 3014± 90
J2359+44 0.2965± 0.0064 0.2989± 0.0064 3462± 56 3508± 42
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Figure 8.1: Impact parameter versus the difference in observed radius ratio between
our CHEOPS and TESS analyses.

Figure 8.2: Impact parameter versus the difference in observed fractional primary
radius between our CHEOPS and TESS analyses.
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differences remains negligible with increased uncertainty for our more grazing systems

at higher impact parameters. There are one or two outliers, especially in Figure 8.1,

that are more than one or two standard deviations away. However, this is acceptable

given 2-sigma confidence levels for a sample of our size (i.e. in a sample of 20, around

1 should fall outside 95% confidence). We expect these differences to be some form of

“analysis noise”, where differences in data reduction such as contamination corrections

or background subtraction cause systematic errors. This consistency between wave-

length regimes is a good check of the accuracy of our results and shows that in the case

of bad SNR for any TESS light curves, that CHEOPS light curves can provide data

of required precision.

8.1.2 Generating empirical mass, radius and effective temper-
ature relations versus MG

One aim of this thesis was the generation of empirical mass, radius and effective tem-

perature relations against G-band magnitude. With our sample of precise mass, radii

and effective temperatures we hoped to provide relations that could then be used in

preparing observations for exoplanets around M-dwarf systems, giving accurate pri-

mary stellar properties.

To do this we first calculated the absolute G-band magnitudes for all our binary

M-dwarf stars. We assumed the flux ratio in the CHEOPS band was the same as in the

Gaia band, allowing us to use the Gaia catalogue. This assumption was used based

on the similarities of the two bandpasses with the CHEOPS and Gaia wavelength

coverage overlapping and their shapes being very similar, as shown in Chapter 2’s

Figure 2.1. Thus, we calculated the absolute magnitudes by first using parallaxes

obtained from Gaia DR3 (Gaia Collaboration et al. 2016, Gaia Collaboration et al.

2022) to calculate the distance modulus for the system. We also obtained the G-band

magnitude from Gaia DR3 and used this to calculate the emitted flux of the system.

Using our observed eclipse depth (the ratio of the secondary stellar flux to primary

stellar flux) we could thus derive the flux of our M-dwarf companion. Converting this



120

into apparent magnitude we could use our calculated distance modulus to derive the

absolute G-band magnitude of our M-dwarfs.

With these absolute G-band magnitudes we sought to create linear relations for

mass, radius and effective temperature. For mass this would take the form of a linear

equation:

log(M) = a1 + a2 ∗X (8.1)

where a1 and a2 are fit coefficients based on our observed mass and the parameter

X = MG − 12, based on obtained G-band absolute magnitude. However, the ability

to do so was constrained by our dataset, where there were a number of M-dwarfs with

similar magnitudes but significantly different masses, as can be seen in Figure 8.3.

This spread leads to us being unable to well-constrain our fit coefficients a1 and a2 and

is repeated when attempting empirical relations for stellar radius and stellar effective

temperature.

Upon examination this effect seemed mainly to occur for those of our targets

with high metallicity and orbital separation. We fit a new equation, introducing terms

relying on metallicity [Fe/H] and the orbital separation a/R2, as well as introducing

a second order term of X to account for the faint object J2343+29 at a magnitude of

over 14, which was an extreme outlier to a purely linear fit. This equation is shown

below:

log(M) = a1 + a2 ∗X + a3 ∗X2 + a4 ∗ [Fe/H] + a5 ∗
a

R2

(8.2)

where a3−5 are the new fit coefficients and the other parameters are as described above

in Equation (8.1).

As is shown in Figure 8.4, this provided a far better fit to our observed masses.

The reliance on an orbital separation term could suggest unaccounted uncertainties in

the Gaia parallaxes for our longer period binaries. A future area of interest would be

redoing our empirical relation fits with the parallaxes obtained by Gaia DR4, which

will include this effect in the model used to obtain the parallax.
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Figure 8.3: Masses obtained from our fitted empirical relation for Equation (8.1) for
absolute G-band magnitude versus stellar mass (black) with our observed masses over-
plotted (red).
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Figure 8.4: Masses obtained from our fitted empirical relation for Equation (8.2) for
absolute G-band magnitude versus stellar mass (black) with our observed masses over-
plotted (red). With metallicity and separation included in the fitted relation, the
empirical masses more closely resemble the observed masses.
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8.1.3 Comparison to previous studies

As well as comparing to our TESS analyses, we can compare our results to previous

studies. Comparing to the results in EBLM VIII that we presented in Chapter 5 we

can observe a small difference in final results and uncertainty. Given the similarity in

radius ratio we believe the differences in final radius and effective temperature to be

due to the different primary stellar parameters chosen. This emphasises the importance

in choosing accurate primary stellar parameters and in accounting for differences in

method when performing comparison studies. Even small changes in these quantities

can result in derived results differing by a few percents, a similar effect as seen from

stellar activity. For the particular target of J0113+31 we can compare to the results of

recent studies. Our analysis of the TESS light curve shown in Chapter 4 show results

very similar in values of R2/a with a difference of ∼ 50 K in effective temperature, with

the two derived results showing overlapping uncertainty ranges. Another analysis of

the target by Maxted et al. (2021) derives almost identical M-dwarf stellar radius to our

analysis but a hotter effective temperature with a difference of ∼ 120 K. Our proposed

cause for this difference in effective temperature that is not seen in stellar radius, is

the different primary effective temperatures used by the different analyses. With the

primary effective temperature used by Maxted et al. (2021) being ∼ 100 K hotter

than ours, this would result in a greater surface brightness derived for the primary

star and thus a greater surface brightness for the secondary star being derived from

the surface brightness ratio. This would again emphasise the importance of accurate

primary stellar parameters in photometric analyses. Improvements in precision of these

parameters will likewise see improvements in the precision of the secondary.

Our final derived mass, radius and effective temperature values are shown in

Figures 8.5 and 8.6. They greatly increase the number of M-dwarfs in the low-mass

end of the HR diagram with both precise radii and effective temperature measurements

and with known metallicity. As can be clearly seen we have a good sample of targets

both seemingly in-line with the theoretical M-R and M-Teff relations and those that

seem inflated and cooler than we would expect. This allows us to do a thorough
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Figure 8.5: A cutout of the stellar mass versus stellar radius diagram using results from
Nefs et al. (2013); Gillen et al. (2017); Parsons et al. (2018) with our results highlighted
in red. The type of system is displayed by different colours. The theoretical relation
from Baraffe et al. (2015) for an age of 1 Gyr is plotted in gray.
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Figure 8.6: A cutout of the stellar mass versus effective temperature diagram using
results from Nefs et al. (2013); Gillen et al. (2017); Parsons et al. (2018), with our
results highlighted in red. The type of system is displayed by different colours. The
theoretical relation from Baraffe et al. (2015) for an age of 1 Gyr is plotted in gray.
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examination for the known proposed causes of radius inflation and to search for more.

We are also pleased to note that the precision of our derived values is in-line with or

improves upon the precision of previous observations in our chosen mass range.

8.2 The search for trends with inflation

8.2.1 Taking out metallicity

Metallicity was a major property of interest going into this project. We sought to test

the hypothesis that it is a potential cause of radius inflation. Through our observations

we had precise radius measurements with similarly precise measurements of metallicity

calculated for us by the CHEOPS TS3 team. By comparing our derived radii to those

predicted by theoretical structural models for each of our sample’s stellar mass we

could derive the percentage by which each target was inflated. We could then plot this

percentage against metallicity to observe if there are any apparent trends.

If we calculated this inflation percentage using the same theoretical model for all

targets there does appear to be a linear positive trend in metallicity as seen in Figure

8.7. However, this would result in us comparing an observed radii to a theoretical radii

not tuned to each target’s metallicity, a problem observed in early papers on inflation

such as Berger et al. (2006) where there were not stellar models with a metallicity

above solar. We thus used the MIST stellar structure models (Dotter et al., 2008)

which can generate isochrones for metallicities up to 0.5 dex. We download isochrones

for metallicities of -0.75 to 0.5 dex (in steps of 0.25 dex) to cover the metallicity range

of our targets. From these we could draw theoretical mass-radius and mass-effective

temperature relations for these six metallicities. To derive the inflation for each exact

target metallicity we would interpolate between these 6 mass-radius relations to obtain

the mass-radius relation for their particular metallicity. We could then use this to

obtain the theoretical radius for a given mass as before and gain a true value for

the percentage the radius is inflated by. We then plotted these metallicity corrected
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Figure 8.7: The percentage radius inflation between theoretical stellar radii at solar
metallicity and our observationally derived radii, versus the target’s metallicity.

inflation percentages against metallicity.

As can be seen in Figure 8.8, there is less of an apparent positive trend. Our

results would therefore support the theory that any apparent trend between the metal-

licity and radius inflation could be due to systematic errors in accounting for the

metallicity in stellar models. This could be a result of a number of different problems.

Studies could be not accounting for metallicity properly, using theoretical models at

solar metallicity to compare with their observed radii without accounting for the ac-

tual metallicity of their targets. They could also be incorrectly choosing their models

due to incorrect metallicity measurements. Measuring the metallicity of M-dwarfs is a

difficult proposition due to the crowded nature of M-dwarf spectra. Our measurements

got around this problem by the nature of our EBLM systems, with our M-dwarfs or-

biting F,G,K dwarf stars whose metallicity is far easier to measure. Assuming common
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Figure 8.8: The percentage radius inflation between theoretical stellar radii and our
observationally derived radii, versus the target’s metallicity. The theoretical stellar
radii has been calculated for the particular metallicity of the target, ensuring our
inflation values are accounting for metallicity.
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origin of both stars in the binary system we can therefore take this easier to measure

metallicity for the M-dwarf as well. Any observations of binary systems where both

objects are M-dwarfs or of single object M-dwarf systems would therefore suffer this

potential problem that we do not have. The sample of single target low mass star

systems in Parsons et al. (2018) show an increase in radius inflation with decreasing

metallicity which could be due to this hypothesis. If incorrectly measured metallicities

are making these systems seem more metal poor, then they would be being compared

to theoretical radii that are too small, thus causing the apparent inflation effect. For

exoplanet observations around M-dwarfs this would be evidence that particular care

needs to be taken with observations around metal poor stars as there is a greater risk

of mischaracterising the star and thus the exoplanet.

We display the metallicity versus inflation relation for single target M-dwarf sys-

tems from Parsons et al. (2018) alongside our own targets in Figure 8.9. We adjusted

the theoretical radii for each single target for metallicity using the same methods as

for our own targets. As with our own targets, the clearer trend between inflation and

metallicity is lessened, with a mix of inflation values for the same metallicity. To ex-

plore any potential trend in the collected data, we performed a weighted linear fit. A

straight line polynomial was fit using the uncertainty in inflation and the scatter of the

points around the straight line fit as weights. We then adjusted the value for the point

scatter until our fit produced a reduced chi-squared value of 1. This resulted in the

linear fit shown in Figure 8.9. This fit line has a gradient of −0.082± 0.033, indicating

a potentially significant trend between metallicity and inflation. However we note that

the majority of results are clustered around solar metallicity. To fully explore whether

a linear trend such as we fit exists, there needs to be further observations of M-dwarfs

in the low and high metallicity regimes, where there are currently very little targets.

The importance of such an exploration is emphasised by the results of each sample

taken in isolation. The fitted gradient of the combined dataset is the opposite to the

trend we observed from our results alone.
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Figure 8.9: The percentage radius inflation between theoretical stellar radii and ob-
servationally derived radii, versus the target’s metallicity for all our targets and the
single object systems in Parsons et al. (2018). The theoretical stellar radii has been
calculated for the particular metallicity of the target, ensuring our inflation values are
accounting for metallicity. A weighted linear fit of the data is plotted over the data in
green.
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8.2.2 Possible trend with orbital period

Another potential source of radius inflation proposed and countered in much of the

literature is tidal effects caused by the presence of the M-dwarf in a binary (or multiple)

star system. The closer the orbiting M-dwarf is to its companion star, the stronger

tidal forces acting upon it could cause the star to spin-up. The resultant increased

magnetic activity could then inhibit its convection. This could then cause the M-dwarf

to expand, appearing to be at a greater size than what our models suggest. This theory

has seen papers support it and criticise it, with the proposals and problems discussed

in Chapter 1. As such we were keen to observe what our sample of 20 stars appeared to

show, with the precision of CHEOPS ensuring that we would accurately characterise

the inflation.

In Figure 8.10 we plot the orbital period of our targets versus the orbital separa-

tion divided by secondary stellar radius, since this is the main factor that determines

the strength of the tidal interaction between the M-dwarf and its companion. Our

targets seem to suggest a trend between separation, with the most inflated stars oc-

curring at close-in orbital configurations. This would indicate some role for tidal forces

in causing radius inflation, suggesting theoretical models need to account for these

forces in the case of low mass stars in eclipsing binaries. However, this is by no means

a conclusive trend. Our sample, although over a good range of orbital periods and

separations, is relatively sparse at periods over 20 days. Thus, we cannot conclude

that our results alone definitively show a reduction in inflation with increasing orbital

separation.

When comparing our results to those already published we notice a large sample

of targets in close-in stellar binaries without inflation as well as the sample of targets

showing inflation in single star systems shown in the previous section. We sought to

provide a comparison by calculating radius inflation values for the binary targets from

Parsons et al. (2018). This sample has multiple targets at smaller orbital periods and a

few at periods longer than our sample, as can be seen in Figure 8.11. At shorter orbital

periods there are objects with increased radius inflation but also a small population
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Figure 8.10: The target’s orbital separation divided by secondary stellar radius versus
the radius inflation between theoretical stellar radii (with metallicity accounted for)
and our observationally derived radii.
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Figure 8.11: The orbital period of a target versus the radius inflation between the-
oretical stellar radii and observationally derived radii. Our targets have metallicity
accounted for, while those from Parsons et al. (2018) do not.
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with less inflation than we would expect. At long orbital periods there are a few targets

showing inflation higher than we would expect. However, nearly all of the binary targets

in Parsons et al. (2018) do not have metallicities, meaning we cannot account for the

slight systematic effect observed in the previous section in our theoretical stellar radii.

Therefore, we cannot be certain on these inflation values.

We need further EBLM observations of systems with longer periods and separa-

tions to confirm the reduction of the inflation effect as we get further from the host

star. Furthermore, when calculating potential inflation it is imperative that we have

accurate metallicity measurements for the system. Though it is possible the previous

results in the literature are due previously mentioned systematics in metallicity, we

must be sure not to rule-out an actual physical effect that we have not accounted for

causing the unexpected inflation effects we see in other results.

8.3 Concluding remarks and future direction

This thesis set out to better populate the low-mass end of the stellar H-R diagram and

provide a resource to explore the effect of radius inflation for low mass stars. In this

respect the basic goal of the thesis has been achieved, generating a sample of precise

mass, radius and effective temperature measurements. This well-characterised sam-

ple will act as a useful resource for further research on radius inflation, EBLMs and

low mass stars in-general. Our programme has also demonstrated the benefits of our

methods of observation. High quality photometric light curves, combined with precise

radial velocity data, means we can accurately characterise M-dwarf stars allowing for

the exploration of their properties from the focus of this thesis in radius and effective

temperature to stellar limb darkening. With the benefits inherent to observing EBLMs,

including the ability to use the more reliable metallicity of the primary star, we can

generate accurate and consistent orbital parameters. Going forward, further observa-

tions of EBLMs with CHEOPS or TESS light curves analysed using our methods can

be used confidently to further increase the population of well characterised low mass



135

stars.

This is in itself a crucial effort to undertake. In this thesis we have reported

potential trends with radius inflation. With a proper consideration of stellar metallicity

in calculating theoretical stellar radii, any trend between metallicity and inflation seems

to lessen. However, when taken along with previously observed single target stars, we

can fit a linear trend between the two quantities of gradient −0.082 ± 0.033. With

orbital separation we believe we have strong evidence of some link between radius

inflation and tidal forces between stars. Only with further observations, at less observed

regimes of both these relations, can we properly confirm these conclusions. Low and

high metallicity targets must be observed to fill-out the wings of the metallicity-inflation

relation. Longer orbital period systems must be targeted to ensure the fall-off observed

in inflation towards higher separations. Furthermore, a re-examination of previous

literature’s repudiations of this trend must be performed to determine the culpability

of metallicity or identify some other reason for their disagreement with our results.

Finally, in our generation of empirical mass, radius and effective temperature

relations we have identified problems that must be addressed before any definitive re-

lations can be produced. A potential relation between absolute G-band magnitude and

orbital separation in creating our empirical relations, indicates possible unaccounted for

uncertainties in Gaia parallaxes for long-period binaries. Thus, the creation of defini-

tive empirical relations for M-dwarfs may have to wait for the advent of Gaia DR4.

With these relations, M-dwarf properties could be derived for potential observers of

low mass stars and those wishing to find exoplanets around them, thus solving these

apparent problems is a potential research route of much value. In this way our work

can provide not only further direction to the radius inflation problem but help guide

future scientists in observing and working with these tricky objects. With upcoming

projects such as the ESA’s PLATO satellite (Magrin et al., 2018), the techniques used

in this thesis can be used as newer and more precise instruments are focused upon

EBLMs. Low mass stars will continue to be of great interest in the coming decade and

in this work we go some way towards making them a more reliable target in the future,

as well as clearly indicating the next steps in continuing this effort.
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Appendix

.1 EBLM VIII Appendices

.1.1 Decorrelation Parameters

Table .12: The decorrelation parameters fitted from the CHEOPS MultiVisit MCMC
analysis. The effects these parameters represent are as follows: image background
level (dfdbg), PSF centroid position (dfdx, dfdy) time (dfdt), aperture contamination
(dfdcontam) and smear correction (dfdsmear).

Target Visit dfdbg dfdx dfdy dfdt dfdcontam dfdsmear
[10−3] 10−4 10−3 [10−2d−1] 10−3 10−4

EBLM J1741+31 Transit – – – – – –
Eclipse – – – – – –

EBLM J1934-42 Transit −0.007± 1.495 – −1.66± 0.37 – – –
Eclipse – – −0.37± 0.33 −1.04± 0.13 −3.26± 0.78 –

EBLM 2046+06 Transit – – – – −0.55± 0.15 –
Eclipse – −2.25± 0.56 0.40± 0.05 – – 9.45± 1.73
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.1.2 Correlation Diagrams for Selected Parameters

Figure .12: Corner plot for CHEOPS dataset of EBLM J1741+31.
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Figure .13: Corner plot for CHEOPS dataset of EBLM J1934−42.
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Figure .14: Corner plot for CHEOPS dataset of EBLM J2046+06.
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Figure .15: Corner plot for TESS dataset of EBLM J1741+31.
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Figure .16: Corner plot for TESS dataset of EBLM J1934−42.
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.2 EBLM IX Appendices

.2.1 Decorrelation parameters fitted from CHEOPS fits

Table .13: Decorrelation parameters fitted from CHEOPS multivisit analysis for each
visit (in the same order as in Table 6.1). The parameters are: image background level
(dfdbg), PSF centroid position (dfdx and dfdy), time (dfdt), and aperture contamina-
tion (dfdcontam).

Target Eclipse dfdbg dfdx dfdy dfdt dfdcontam
(10−3) (10−4) (10−3) (10−2d−1) (10−3)

EBLM J0239-20 primary – – – – –
secondary 1.57± 0.90 – 0.311± 0.085 2.924± 0.029 –
secondary 1.21± 0.23 – – 1.680± 0.029 –

EBLM J0540-17 primary 1.20± 0.82 7.33± 1.79 – −0.31± 0.43 –
secondary 0.71± 0.77 – – – –
secondary – – −0.51± 0.14 0.163± 0.036 –
secondary – 5.95± 1.71 −0.87± 0.17 – –

EBLM J0546-18 primary 4.80± 0.87 – 0.78± 0.23 – −1.73± 0.56
secondary – – – – -1.59 +/- 0.83
secondary 2.85± 0.66 11.32± 2.51 – 1.367± 0.079 –

EBLM J0719+25 primary – – – −0.496± 0.060 –
secondary 1.22± 0.93 – – 0.291± 0.061 –
secondary – – – – –

EBLM J2359+44 secondary 0.83± 0.40 – 0.208± 0.088 – −0.48± 0.27
primary 0.83± 0.26 – – – –

.2.2 Radial velocity measurements
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Table .14: Radial velocity measurements for EBLM J0719+25

BJD - 2400000 RV [km s−1] RV error [km s−1] Source
58436.57258 −5.9492 0.0079 SOPHIE
58438.59676 12.5703 0.0057 SOPHIE
58536.40291 11.1258 0.0058 SOPHIE
58538.42658 −9.091 0.012 SOPHIE
58542.39085 10.1391 0.0047 SOPHIE
58562.39379 −15.9404 0.0073 SOPHIE
58566.37826 10.2797 0.0053 SOPHIE
58761.63689 −3.306 0.011 SOPHIE

Table .15: Radial velocity measurements for EBLM J2359+44

BJD - 2400000 RV [km s−1] RV error [km s−1] Source
53310.6391 −19.07 0.42 Poleski et al.
53311.7990 −26.36 0.50 Poleski et al.
58436.31776 −33.537 0.011 SOPHIE
58438.40839 2.8147 0.0086 SOPHIE
58685.56693 −29.4759 0.012 SOPHIE
58704.54724 −8.063 0.014 SOPHIE
58729.61888 −20.846 0.013 SOPHIE
58734.5406 11.81 0.015 SOPHIE
58754.47118 −33.987 0.015 SOPHIE
58765.46162 −31.893 0.011 SOPHIE
59030.57795 10.110 0.011 SOPHIE
59043.50347 1.726 0.014 SOPHIE
59045.53151 −9.040 0.012 SOPHIE
59071.56389 −27.920 0.012 SOPHIE
59077.5554 1.898 0.012 SOPHIE
59094.51791 −29.440 0.011 SOPHIE
59100.57485 0.226 0.012 SOPHIE

.2.3 Expected limb darkening coefficients
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Table .16: Expected limb darkening coefficients derived for TESS and CHEOPS pass-
bands.

Target CHEOPS TESS
h1 h2 h1 h2

EBLM J0239-20 0.743±0.012 0.40±0.05 0.798±0.012 0.39±0.05
EBLM J0540-17 0.773±0.011 0.41±0.05 0.826±0.011 0.38±0.05
EBLM J0546-18 0.771±0.011 0.41±0.05 0.822±0.011 0.37±0.05
EBLM J0719+25 0.754±0.011 0.41±0.05 0.808±0.011 0.39±0.05

.2.4 TESS fits
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Figure .17: Fitted TESS light curves of targets J0239-20 and J0540-17 in phase in-
tervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves.
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Figure .18: Fitted TESS light curves of targets J0546-18 and J0719+25 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed the below fitted curves.



148

Figure .19: Fitted TESS light curves of the target J2359+44 in phase intervals around
the primary and secondary eclipse events. The observed data points are shown in cyan.
The fitted light curve is shown in red. The residual of the fit is displayed below the
fitted curves.
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.2.5 CHEOPS fits
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Figure .20: Fitted CHEOPS light curves of the targets J0239-20 and J0540-17 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .21: Fitted CHEOPS light curves of targets J0546-18 and J0719+25 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .22: Fitted CHEOPS light curves of the target J2359+44 in phase intervals
around the primary and secondary eclipse events. The observed data points are shown
in cyan. The transit and eclipse models are shown in green. Binned data points with
error bars are shown in blue and the fit between binned data points in brown. The
residual of the fit is displayed below the fitted curves.
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.3 Chapter 8 Appendices

.3.1 CHEOPS light curve fits
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Figure .23: Fitted CHEOPS light curves of targets J0057-19 and J0113+31 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .24: Fitted CHEOPS light curves of targets J0123+38 and J0239-20 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .25: Fitted CHEOPS light curves of targets J0540-17 and J0546-18 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .26: Fitted CHEOPS light curves of targets J0719+25 and J0941-31 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .27: Fitted CHEOPS light curves of targets J0955-39 and J1013+01 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .28: Fitted CHEOPS light curves of targets J1305-31 and J1559-05 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .29: Fitted CHEOPS light curves of targets J1741+31 and J1923-38 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .30: Fitted CHEOPS light curves of targets J1934-42 and J2040-41 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .31: Fitted CHEOPS light curves of targets J2046+06 and J2315+23 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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Figure .32: Fitted CHEOPS light curves of targets J2343+29 and J2359+44 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The transit and eclipse models are shown in green. Binned data
points with error bars are shown in blue and the fit between binned data points in
brown. The residual of the fit is displayed below the fitted curves.
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.3.2 TESS light curve fits
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Figure .33: Fitted TESS light curves of targets J0057-19 and J0113+31 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves. Binned data points with error bars are shown in
blue.
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Figure .34: Fitted TESS light curves of targets J0123+38 and J0239-20 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves. Binned data points with error bars are shown in
blue.
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Figure .35: Fitted TESS light curves of targets J0540-17 and J0546-18 in phase in-
tervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves. Binned data points with error bars are shown in
blue.
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Figure .36: Fitted TESS light curves of targets J0719+25 and J0941-31 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves. Binned data points with error bars are shown in
blue.
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Figure .37: Fitted TESS light curves of targets J0955-39 and J1013+01 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves. Binned data points with error bars are shown in
blue.
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Figure .38: Fitted TESS light curves of targets J1305-31 and J1741+31 in phase
intervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves. Binned data points with error bars are shown in
blue.
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Figure .39: Fitted TESS light curves of targets J1934-42 and J2040-41 in phase in-
tervals around the primary and secondary eclipse events. The observed data points
are shown in cyan. The fitted light curve is shown in red. The residual of the fit is
displayed below the fitted curves. Binned data points with error bars are shown in
blue.
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Figure .40: Fitted TESS light curves of the target J2359+44 in phase intervals around
the primary and secondary eclipse events. The observed data points are shown in cyan.
The fitted light curve is shown in red. The residual of the fit is displayed below the
fitted curves. Binned data points with error bars are shown in blue.
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