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In this editorial we highlight the inclusion of fluorine within the building blocks for biomolecule assembly, namely,
within nucleoside analogs, as precursors to nucleotides and nucleic acids, and phosphorylated sugars as the building
blocks of glycans. We shape this context across a commonality in structure for these building blocks, specifically
that they contain fluorination within either a nucleoside core or sugar component of a nucleotide. We believe
this delivers a useful viewpoint regarding the opportunities afforded by including fluorine within these molecular
architectures, and that these motifs have a proven capability to traverse the traditional boundaries of chemical
biology and medicinal chemistry.

Fluorinated nucleoside analogs
Despite organofluorine compounds being extremely rare among natural products, approximately 20–25% of drugs
in current pharmaceutical pipelines contain at least one fluorine atom [1]. The inclusion of fluorine modulates
lipophilic, electronic and steric parameters, influencing pharmacodynamic and pharmacokinetic properties and
blocking oxidative metabolism [1,2]. Unsurprisingly therefore, the inclusion of fluorine in analogs of the canonical
nucleosides has a longstanding and proven capability within medicinal chemistry research for drug discovery [3],
with an arsenal of fluorinated analogs now available for the treatment of many cancers and viral infections.
This includes fludarabine (lymphocytic leukemia), an analog of adenosine consisting of an arabino-configured
pentose and a C2-fluorinated adenine; clofarabine (lymphoblastic leukemia), an analog of adenosine consisting of
a C2′-deoxy-2′-fluoro arabino system and a C2-chlorinated adenine; and sofosbuvir (Figure 1) (chronic hepatitis
C), a phosphoramidate prodrug analog of uridine, containing a C2′-deoxy-2′-fluoro-2′-methyl modification.
Furthermore, gemcitabine, an analog of cytidine bearing a C2′-deoxy-2′-gem-difluoro modification, is currently
the second most clinically used nucleoside analog toward metastatic pancreatic, bladder, epithelial ovarian and
breast cancers. For the majority of nucleoside analogs, their function as antiviral and anticancer agents requires
conversion to an active di- and/or triphosphate metabolite, through a series of consecutive phosphorylations by
cellular kinases. For many of these pharmaceutical agents, it is the first phosphorylation to the respective nucleotide
monophosphate that is efficacy limiting. To circumvent this, a ProTide approach was successfully developed [4],
where a masked, permeable monophosphoramidate is delivered into cells, where it is then metabolized to its
nucleotide monophosphate counterpart. This type of modification is showcased by the fluorinated nucleoside
analog drug sofosbuvir (Figure 1) [5]. Despite a longstanding clinical success of fluorinated nucleoside analogs
for therapeutic intervention, they are not without their limitations; frequently they exhibit low oral bioavailability
and cell permeability alongside growing resistance profiles. Thus, the development of new generations of nucleoside
analog scaffolds to combat these limitations is an ever-present requirement for medicinal chemistry.

A relatively underexplored structural modification is the replacement of the nucleoside furanose ring oxygen with
fluorinated carbon fragments, that is, CHF and CF2. This presents an intriguing opportunity for development,
as such scaffolds are perceived to benefit from a combination of metabolic stability (due to the absence of the
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Figure 1. Example fluorinated motifs within nucleoside/-tide components (left side) and sugar nucleotide glycan
building blocks (right side).

labile hemiaminal glycosidic linkage) and pharmacokinetic improvements that the inclusion of fluorine can offer.
Recent work by Jeong demonstrated the pharmaceutical potential for this modification, with C6′-mono- and
gem-difluorinated carbocyclic analogs of adenosine displaying potent biological activity as S-adenosylhomocysteine
hydrolase inhibitors in +RNA viral assays [6]. Relatedly, arabinose, ribose and deoxyribose pyrimidine analogs
containing CHF and CF2 fragments have been synthesized in our group, and solution-phase NMR conformational
analyses for these molecules indicate deviation from that of the parent nucleosides (Figure 1, bottom left) [7,8].
This conformational departure requires further investigation and also presents new opportunities for nucleic acid
research. Fluorinated monomer components are already established in oligonucleotide therapeutics (e.g., C2′-
deoxy-2′-fluoro) and with the syntheses of the abovementioned building blocks now available, exploring inclusion
of C6′-fluorinated monomers within nucleic acid components is realizable.

Fluorinated sugar nucleotides
Moving across from fluorinated nucleoside analogs to fluorinated carbohydrates or glycans, several exciting reviews
have recently highlighted the growing effect of fluorine inclusion upon their structure and the use of such motifs
as chemical probes for molecular recognition studies [9,10]. Accordingly, the enzymatic production of activated
fluorinated sugar nucleotide donor substrates and enzymatic glycosylation with these building blocks and with
fluorinated sugar acceptors is an area of intensifying importance. Scope for chemoenzymatic synthesis of (or using)
fluorinated sugar nucleotides is rapidly expanding, as aforementioned probes [11], but also as substrates for the
enzymatic preparation of fluorinated oligo- and poly-saccharides [12].

Sugar nucleotides are the archetypal activated sugar building block required for the biological synthesis of
glycans. Despite fluorination being shown to have a minimal effect on sugar conformation, the success of enzymatic
approaches to prepare fluorinated carbohydrates, as a result, relies upon the ability of the enzymes to recognize
and efficiently utilize fluorinated substrates [13]. The compatibility of sugar substitution with fluorine is now
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demonstrable across a wide range of carbohydrate-active enzymes, including multistep enzymatic reactions and the
generation of products containing multiple fluorinated sugar units. Selected recent examples are outlined below.

Mutases
The tolerance of UDP-galactose mutase (UGM) to accept fluorinated sugar nucleotides has been evaluated to
probe UGM substrate specificity and the equilibrium position of the enzyme-catalyzed reaction [14]. Substrate
fluorination led to only a modest impact on Km, while kcat was reduced tenfold, 386-fold and 53100-fold on
substitution of UDP-galactose with fluorine at the pyranose 6-, 3- or 2-positions, respectively. X-ray crystal analysis
of Mycobacterium tuberculosis UGM with UDP-F4-Galp and UDP-F4-Galf (Figure 1, bottom right) revealed the
CF2-CF2 motif is involved in multiple interactions with the enzyme, suggesting this dideoxy-tetrafluorination
modification results in both stabilizing enthalpic and entropic contributions to binding [15].

Sialidases
Substitution with fluorine adjacent to the anomeric center has been long used to trap intermediates in glycosidase
reactions. Subsequent studies have demonstrated the utility of this approach in the development of suicide substrates
for sialidases and trans-sialidases, with potent antiviral activity evident in this class of compounds. Recently, 7-
deoxy-7-fluorosialyl glycosides (Figure 1, right) have been shown to be resistant to hydrolysis, but are readily
assembled by sialyltransferases. 7′-fluorination of CMP-sialic acid resulted in a modest impact to Km and kcat of
several sialyltransferases, while the resulting 7-deoxy-7-fluorosialosides were three- to fivefold more resistant to
spontaneous hydrolysis and 40- to 250-fold more resistant toward cleavage by GH33 sialidases [16].

Transglycosidases
Using glycogen as a donor substrate, Escherichia coli MalQ and cassava DPE1 have been demonstrated to trans-
glycosylate 2F-Glc, 3F-Glc and 6F-Glc with varying levels of efficiency, forming α-(1→4)-linked glycosides with
12–28% conversion [17]. In contrast, trans-glycosylation with Arabidopsis DPE2 was shown to readily form discrete
α-(1→4)-linked disaccharide products with 2-FGlc, 3F-Glc and 6F-Glc in 15–28% conversions [17].

Taken together, these examples indicate an untapped potential for the enzymatic synthesis of fluorinated oligosac-
charides and glycoconjugates, which will no doubt be realized as the prevalence of enzymatic carbohydrate synthesis
increases.

Future perspective
The successful inclusion of fluorine within nucleoside and sugar nucleotide components presents significant
opportunity and ensures an exciting future for such capabilities. For example, beyond fluorination of the hexose
moiety within sugar nucleotides, fluorination of the ribose and nucleobase moieties has been investigated, but not
present substrates for glycoprocessing enzymes [18]. In addition, directed evolution and in silico design of ‘designer’
enzymes is rapidly becoming more popular as a method to avoid the challenges of poor substrate acceptance,
enzyme kinetics and negative feedback loops [19]; methods such as these will become key to rapidly screening large
libraries of fluorinated substrates and evolved enzyme panels [20].
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