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Abstract

Previous research has highlighted the importance of attention in the allocation of visual

short-term memory (vSTM) resources. However, much of this research examined

performance across a single feature dimension (e.g., colour), disregarding the potential

impact of attending to multivalent items which are more typically found in everyday life.

Across a series of experiments, vSTM performance in situations wherein the relevant feature

dimension either repeated or switched was investigated to assess the role of attentional

control in vSTM resource allocation. In Chapter 2, change detection tasks were used, with

dimension switches causing an increase in errors and response time relative to dimension

repetitions, as well as impacting measures of sensitivity and response bias. This was

supplemented by further change detection experiments within Chapter 3 which showed that

the extent of the dimension switch cost is not influenced by independent manipulation of

cue-stimulus or response-cue intervals. Furthermore, cue switch costs do not contribute to

the overall dimension switch cost, suggesting an origin of error distinct to that associated

with task switching. Chapter 4 provided a more nuanced insight into the cause of dimension

switch costs using a continuous report task alongside mixture modelling. Overall, there was

little evidence for dimension switch costs in both behavioural measures and model

parameters. In Chapter 5, change localisation tasks were used and six models were generated

to provide further insight into the cause of dimension switch costs. Results from these

experiments revealed no evidence in support of a dimension switch cost, with formal model

comparison revealing that a model wherein all parameters were fixed across sequencing

condition was favoured. Taken together, the results of the present research are somewhat

inconclusive. While there does appear to be some role of attentional control in vSTM

resource allocation, it appears that this is only captured using specific methodologies.
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1 Chapter 1: Introduction and literature review

This chapter outlines the main research question, making reference to visual short-term

memory, attentional control, and task switching, before providing a brief background on some

of the key research in each of these areas.

1.1 Overview

Throughout daily life, we are bombarded with an abundance of visual sensory input

which we must use not only to form an internal representation of our environment, but to

also perform various behaviours and functions (see e.g., Berman & Colby, 2009; Mathôt,

2018; Roussy et al., 2021). Central to our ability to perform these behaviours and functions

is visual short-term memory (vSTM), the cognitive system responsible for the retention of

visual information over brief (on the order of seconds) periods of time. Unlike iconic

memory—a large capacity pre-attentive store which holds visual traces of previously seen

information for less than one second (see e.g., Coltheart, 1980; Rensink, 2014; Sperling, 1960;

however, see also Persuh et al., 2012)—vSTM can store only a small amount of information

at a given time and can survive saccadic eye movements and spatial shifts of attention (see

e.g., Hollingworth et al., 2008). As such, vSTM acts as a bridge between perception and

action, allowing for information that would otherwise be lost to be retained in service of an

upcoming task or behaviour.

Despite a great deal of research throughout the years, the capacity-limited nature of

vSTM still remains debated, with two views coming to the fore. On on hand, there is

research which suggests the capacity limit of vSTM is due to the total number of items that

can be represented in memory at a given time (see e.g., Luck & Vogel, 1997; Pashler, 1988;
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Vogel et al., 2001; Zhang & Luck, 2008). Alternatively, other research suggests that the

limitation is due to the allocation of a continuous, finite memory resource (see e.g., Bays et

al., 2009; Bays & Husain, 2008; Frick, 1988; van den Berg et al., 2012; Wilken & Ma, 2004).

This resource is responsible for the resolution at which items are represented at in memory,

with an increase in the total number of items to be retained in memory reducing the fidelity

of each representation due to less resource being available for allocation to each item. In

relation to the allocation of this finite memory resource, while there are a substantial number

of studies which have investigated such allocation (see e.g., Bays et al., 2009; Dube et al.,

2017; Emrich et al., 2017; Henderson et al., 2020; Machizawa et al., 2012; Wilken & Ma,

2004), much of this research has examined performance on simple stimuli, defined only by a

single feature dimension (typically colour). This is atypical of everyday life, wherein stimuli

we encounter are often multivalent, containing a substantial number of different feature

dimensions (e.g., road traffic signs) or indeed, multiple feature values of the same feature

dimension (e.g., multicoloured stimuli). Often, only a subset of these features are relevant to

current goals or behaviours; thus, if vSTM is limited in capacity, how does the cognitive

system ensure that the resources available are allocated to the most relevant visual

information?

Attention, or more specifically attentional control is likely to play a key role in such

allocation. Specifically what attention is still remains ambiguous and clarification of this is

outside the remit of this thesis; however Scholl (2001) provides a brief discussion on this

matter, concluding with “. . . there are (possibly several different) types of selective

processing—which will collectively be called ‘attention’—that play a ubiquitous and
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important role in visual processing.” (p.5, see also Chun et al., 2011; Oberauer, 2019). As

such, attentional control could be defined as a combination of both attentional and

inhibitory processes, wherein attention is focused on a specific aspect of a visual scene and

interference from irrelevant information is prevented (see e.g., Friedman & Miyake, 2004;

Miyake et al., 2000; Yantis, 1998). The way in which the role of attentional control in

resource allocation is investigated throughout this thesis is via a combination of tasks which

probe vSTM (change detection, Chapters 2 & 3; continuous report, Chapter 4; change

localisation, Chapter 5) and task switching paradigms. In typical task switching procedures,

participants either repeat performance of the same task or switch between performance of

two (or more) tasks. A consistent finding from the literature shows that both error rates and

response times (RTs) are increased when the task switches relative to when the task repeats,

with this detriment to performance referred to as the task switch cost (for comprehensive

reviews on task switching, see Grange & Houghton, 2014; Kiesel et al., 2010; Monsell, 2003;

Vandierendonck et al., 2010). Crucially however, switching requires some degree of

attentional control (see e.g., Logan, 1980; D. W. Schneider, 2015).

While different tasks are used in traditional task switching, in the experiments

detailed throughout this thesis, participants perform only a single task (e.g., change

detection), with the switching element relating to which feature dimension (i.e., colour or

orientation) is relevant on a given trial. On some trials, the relevant feature dimension could

repeat (e.g., colour–colour), while on others it could switch (e.g., colour–orientation). As

such, the cognitive system is required to update the processes and representations from that

used on the previous trial when a dimension switch occurs, whereas no such updating would
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be required when the feature dimension repeats. This increased attentional control demand

during dimension switch trials could lead to a reduction in performance relative to dimension

repetition trials. The presence of such a cost could be used to further investigate the

allocation of vSTM resources which could in turn help inform possible extensions to extant

models of vSTM.

1.2 Visual short-term memory capacity

1.2.1 The change detection task

Most of the early research investigating vSTM capacity and the nature of

representations in memory made use of the change detection paradigm (see e.g., Alvarez &

Cavanagh, 2004; Luck & Vogel, 1997; Pashler, 1988; Phillips, 1974; Purdy et al., 1980; Vogel

et al., 2001; Wheeler & Treisman, 2002; Wilken & Ma, 2004) wherein two stimulus displays

are presented (e.g., coloured squares), separated by a brief retention interval; the goal of this

task is to determine whether a change in some aspect of the stimulus display (e.g., the colour

of a square) occurred between the initial memory display and subsequent test display (see

Figure 1). For example, in perhaps one of the most influential papers on vSTM capacity,

Luck and Vogel (1997) used change detection tasks in a series of experiments. In one such

experiment, coloured squares were used as stimuli with varying set size; participants simply

determined whether a change occurred in the colour of one of the squares between the

memory and test displays.
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Figure 1
Figure showing an example trial procedure within a change detection task using coloured
squares as stimuli.

Luck and Vogel used Pashler’s (1988) K measure to estimate memory capacity, given

as:

K = S
(

HR − FAR

1 − FAR

)
, (1)

where K represents capacity, S set size, HR hit rate, and FAR false alarm rate (see also

Cowan et al., 2005; Rouder et al., 2011). Hit and false alarm rates can be obtained from

change detection data (among other forms of data, e.g., recognition memory data); a hit

refers to a change response when a change occurred (i.e., signal present), while a miss refers

to a no change response when a change occurred. A correct rejection refers to a no change
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response when no change occurred, while a false alarm refers to a change response when no

change occurred (i.e., signal absent). To obtain the hit rate simply divide the total number

of hits by the total number of hit and miss trials. For the false alarm rate simply divide the

total number of false alarms by the total number of correct rejections and false alarms.

Using this measure, Luck and Vogel (1997) found that participants were able to hold

approximately four colours in memory. At set sizes of one to four, performance was not

substantially different however, from set sizes of four and onward, systematic reductions to

performance were observed. This led Luck and Vogel to conclude that vSTM capacity is

limited in terms of the total number of items that can be represented in memory

simultaneously, with this capacity being around four or five items. In subsequent

experiments, Luck and Vogel compared performance on a change detection task using

coloured, oriented bars; in one experiment, both the colour and orientation of the bars was

variable (i.e., different colours and orientations were used) with three conditions, colour only

wherein only colour could change, orientation only wherein only orientation could change,

and either colour or orientation wherein either colour or orientation could change.

Participants were informed of this at the beginning of each condition. Results showed that

performance did not differ between conditions to any great extent, despite an increase in the

number of features to be retained in memory in the either colour or orientation condition

relative to the single feature conditions. A further experiment was conducted to determine

whether feature values for both dimensions were encoded automatically when only a single

feature dimension was relevant. In this experiment, the irrelevant feature dimension was held

constant (i.e., all black bars if orientation was relevant, all vertical bars if colour was
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relevant) with results showing that performance between these two experiments did not

differ to any great extent.

Furthering these findings, Luck and Vogel (1997) carried out two additional

experiments, showing that performance on a change detection task wherein stimuli are

defined by four feature dimensions (colour, orientation, size, and presence of a gap) was akin

to performance in experiments with individual feature dimensions. This, the authors

suggested, was indicative of the ability for vSTM to retain up to 16 features distributed

across four objects with the same degree of accuracy as four features distributed across four

objects. Finally, Luck and Vogel also ruled out the possibility of independent stores for

different feature dimensions. This was achieved by comparing performance on a condition

wherein stimuli were made up of different coloured squares (a smaller square overlaid on a

larger square) and a condition wherein only one of these squares was presented; performance

was found to be at a similar level across these conditions, suggesting eight colours distributed

across four objects could be retained as well as four colours distributed across four objects.

Luck and Vogel (1997) conclude that vSTM stores integrated objects rather than individual

features (see also work by Irwin and colleagues, Irwin, 1991; Irwin, 1992; Irwin & Andrews,

1996), which inherently suggests that each object percept stored in memory is done so at a

fixed resolution. Indeed, further support for this conclusion is provided by Vogel et al.

(2001).

1.2.2 Objects vs. features

However, a number of studies have provided evidence which conflicts with the

findings by Luck and Vogel (1997; see e.g., Horowitz and Wolfe, 1998; Olson and Jiang, 2002;
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Rensink, 2000, 2001; Wheeler and Treisman, 2002; Wolfe, 1999; Xu, 2002). For instance,

Wheeler and Treisman (2002) attempted to replicate a number of findings from Luck and

Vogel (1997), with the aim of further investigating the notion that vSTM stores integrated

objects rather than individual features. Change detection tasks similar to those used by Luck

and Vogel (1997) were employed by Wheeler and Treisman (2002). In Experiment 1, seven

sets of three bicoloured squares were used as stimuli, with a further two control sets made up

of three and six squares, each with a single colour. Participants simply determined whether

the test display was the same or different than the memory display. Comparison of accuracy

data revealed no significant differences between any of the seven bicoloured stimulus sets and

the control set consisting of six single-coloured stimuli, while performance on the control

condition wherein three single-coloured stimuli were presented was significantly better. In

contrast to the conclusions by Luck and Vogel (1997), Wheeler and Treisman (2002) state

that memory in this task was limited by the total number of features presented; if stimuli

were stored as integrated objects—wherein capacity increases due to chunking of feature

values—performance in the bicoloured conditions should have been at a similar level to that

in the three single-coloured condition.

Subsequent experiments by Wheeler and Treisman (2002; Experiments 3a and 4a)

investigated binding memory for features from different dimensions. In Experiment 3a,

participants were presented with either three or six coloured squares in different locations on

the display; on trials wherein a change occurred between memory and test displays, in the

colour only condition, two of the stimuli changed colour, in the location only condition, the

location of two squares would change, in the either location or colour condition, on half the
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trials a colour change occurred, with location changing on the other half, and in the binding

location and colour condition, the conjunction between colour and location would change on

two squares (i.e., the colours of two squares would change to a different location). While

some results follow along with that observed by Luck and Vogel (1997; e.g., set size mediated

performance in the first three conditions), some results challenged the view of integrated

object storage. While Luck and Vogel argued that the similarity between performance on

conditions wherein a single feature could change and performance in a condition wherein

either feature could change was indicative of integrated object storage, Wheeler and

Treisman (2002) highlighted that no binding of feature dimensions was required in the either

condition; participants could simply retain lists of the feature values presented in the

memory display and compare the relevant list with the feature values presented at test. In

the binding condition of Experiment 3a in Wheeler and Treisman (2002), results show that

performance was significantly reduced compared to each of the other conditions, indicating

that participants struggled to detect changes in the binding of feature dimensions. The

authors go on to state that such a result follows with the notion of independent memory

stores for different feature dimensions.

Indeed, there is a body of evidence which has highlighted that information load or

stimulus complexity also has some influence over the amount of information that can be

retained in vSTM (see e.g., Alvarez & Cavanagh, 2004; Awh et al., 2007; Eng et al., 2005;

Fougnie & Alvarez, 2011). For example, using a change detection task, Alvarez and Cavanagh

(2004) found that estimated capacity varied across the five sets of stimuli used (Snodgrass

line drawings, shaded cubes, random polygons, Chinese characters, letters, and coloured
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squares). At the top-end of performance, participants were able to retain approximately four

coloured squares in memory while only being able to retain approximately two shaded cubes

in memory. Given that Luck and Vogel (1997) found that features did not appear to

influence capacity, Alvarez and Cavanagh (2004) provided two possible reasons as to why

results differed between the two studies. First, they highlighted the potential for independent

stores for different feature dimensions, making reference to the finding from Wheeler and

Treisman (2002) that multiple feature values from the same dimension on a single object

cannot be retained in memory as well as a single feature value. Additionally, while not

explicitly stated by Alvarez and Cavanagh (2004), it is possible that some of the stimuli

required binding, which Wheeler and Treisman (2002) had previously shown to impair

performance. In the case of the shaded cubes for example, these included a white side, a grey

side, and a black side, with some viewed from the top and some from the bottom. In order

to accurately determine whether a change occurred between the memory and test displays, it

is plausible to assume that participants would have to bind the colour with the side of the

cube it appeared on (i.e., white on top, grey on the left, black on the right); misremebering

where a colour was located on the cube would invariably lead to a change response. The

second explanation provided by Alvarez and Cavanagh (2004) is that specific features could

be encoded automatically and independent of the demands of the task to form a minimal

representation of the object in memory. Encoding of any additional features—such as when

stimuli are more complex—then results in a reduction in the total number of objects that

can be retained in memory (i.e., a trade-off between stimulus complexity and capacity).

While extensive discussion of object vs. feature storage is outside the remit of this
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thesis, it is important to highlight as the study by Luck and Vogel (1997) paved the way for

the suggestion that vSTM is a discrete system, having a set number of slots in which to store

information (see e.g., Zhang & Luck, 2008). However, an alternative view suggests that a

continuous, finite memory resource is responsible for encoding items into memory, with the

amount of resource allocated to each item indicative of how precisely this item is represented

in memory (see e.g., Bays et al., 2009). The following section briefly outlines the development

of these theories, including discussion of various measurement models which have been used

to estimate the fidelity of representations in memory, as well as indicate sources of error.

1.2.3 The issue with high-threshold models

Despite supporting the conclusions of Luck and Vogel (1997) that vSTM capacity is

limited to around four objects with each object stored in memory at a fixed resolution, Vogel

et al. (2001) highlighted the possibility that low fidelity representations which exceed this

upper limit could be generated. Such a possibility had been considered previously by Frick

(1988), who stated that vSTM capacity, or more specifically, the capacity of the visuospatial

sketchpad (see Baddeley & Hitch, 1974), was associated with a finite amount of

representational medium. This medium is distributed to items in the immediate visual

environment and is responsible for the fidelity of internal representations of these items. As

such, when set size is low, high resolution representations can be generated as more of this

medium is available to be distributed to each item. Alternatively, when set size is low, less

medium is available to be distributed to each item, thus reducing the resolution at which

each item is represented at in memory. This notion of vSTM capacity being limited by a

resource rather than discrete units has led to several more recent instantiations of similar
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models (Bays, 2014; Bays, 2016; see e.g., Bays et al., 2009; Shin & Ma, 2017; van den Berg et

al., 2012), development of which stem from seminal work by Wilken and Ma (2004). Initially,

Wilken and Ma highlighted criticisms of the use of high-threshold (HT) models which some

studies had used to estimate memory capacity (see e.g., Luck & Vogel, 1997 and their use of

Pashler’s, 1988 K measure), before investigating how well signal detection theory (or simply

detection theory; SDT) accounts fit data obtained from change detection tasks, as well as

examining the noise associated with encoding using continuous report tasks.

Pashler’s (1988) K measure (see Eq. 1) is one example of an HT model owing to the

fact it assumes that discrimination may occasionally fail to detect a target (i.e., a signal

within noise), but that a non-target can never be mistaken for a target (i.e., noise can never

be mistaken as a signal); in other words, the decision threshold is high and cannot be

reached by noise alone. Thus, on this and other HT models, the false alarm rate in a task

such as change detection simply reflects guessing (see e.g., Burmester & Wallis, 2012).

Clearly such a model does not fit well within the context of the human brain which is

inherently noisy and as such, Wilken and Ma (2004) set out to investigate how well SDT

accounts fit the observed data. Across a series of experiments (1-6), the authors used a

change detection task with manipulations of set size (Experiments 1-3) and target number

(i.e., the total number of stimuli wherein a change can occur on a given trial; Experiments

4-6) across the feature spaces of colour, orientation, and spatial frequency. The models fit to

the data include the SDT models maximum absolute differences (MAD) and sum of absolute

differences (SAD), as well as an HT model (see Wilken & Ma, 2004 for full technical details

of each model and the fitting procedures). Primarily, the difference between the MAD and



MULTIDIMENSIONAL RESOURCE ALLOCATION 25

SAD models and HT models is the way in which items are represented internally; while HT

models hold that items are represented in the absence of any internal noise, both the MAD

and SAD models hold that each item is (independently) represented in a noisy internal state.

Given that representations are held with noise, it is possible for this noise to exceed the

threshold required for target (e.g., change) detection even when no target is present (e.g., a

change does not occur), thus resulting in a false alarm. Results from the model fitting in

relation to set size manipulations showed that both the MAD and SAD models better fit the

data than the HT model, with the MAD model providing the best fit overall, with Wilken

and Ma highlighting that as set size increased, so to did the noise. Similarly, both MAD and

SAD models better fit the data in the target number manipulation relative to the HT model;

however, Wilken and Ma state that this is not without some issue, highlighting that

assumptions on both SDT accounts may be incorrect.

1.3 Modelling visual short-term memory

1.3.1 The continuous report task

More critically to the present thesis however, are the findings from Experiments 7–9

of Wilken and Ma (2004) which made use of a continuous report task (see Figure 2, see also

Prinzmetal et al., 1998). In these experiments, stimuli consisted of coloured squares, Gabor

patches, and vertical Gabor patches with added spatial frequencies; set size was varied

depending on the stimulus type (colour and spatial frequency N = 2, 4, 6, or 8; orientation N

= 2, 3, 4, or 5). After extinguishing of the memory display, a brief blank period was followed

by presentation of a probe display indicating the location of one of the stimuli presented on

the memory display. In the colour task, participants reported the colour of the square which
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appeared in the probed location by clicking on a 360◦ colour wheel presented in the centre of

the display. In the orientation and spatial frequency experiments, participants manipulated a

probe Gabor using the right (clockwise) and left (counter-clockwise) keys on the keyboard to

match the orientation or spatial frequency of the stimulus which appeared in the probed

location in the memory display, confirming their response by pressing spacebar. By

calculating the deviation between response and the true value of the target, the authors were

able to gain an estimate of how precisely the probed stimulus was represented in memory.

The distribution of errors within these experiments revealed that response precision declined

as a function of set size, that is to say, as set size increased responses became further from

the true value of the target. Wilken and Ma take this as evidence against a fixed capacity

vSTM, arguing that if capacity was limited in such a way, performance on this task should

be essentially perfect until the upper limit was reached with little (or indeed no) increases in

noise. Once maximum memory capacity was reached, noise would then abruptly increase as

participants would be forced to guess on some trials. That no such pronounced increase in

noise was observed by Wilken and Ma, they suggest that the supposed capacity limit of

vSTM suggested by some research (see e.g., Luck & Vogel, 1997; Vogel et al., 2001) is simply

artefactual, reflecting an increase in internal noise as set size increases. However, work by

Zhang and Luck (2008)—which also employed use of the continuous report task—suggests

that vSTM is best explained in terms of a discrete set of representations which retain items

in memory at a fixed, yet high resolution. Therefore, if set size exceeds this capacity limit,

only a subset of these items will be retained in memory, resulting in guessing if an item not

held in memory is probed at test. The task used by Zhang and Luck was similar to the

colour version of the continuous report task used by Wilken and Ma (2004), however set size
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differed (Experiment 1 N = 3 or 6; Experiment 2 N = 1, 2, 3, or 6; Experiment 3 N = 4;

Experiment 4 N = 3). Using standard estimation, Zhang and Luck (2008) recovered two

parameters from the data, Pm which represented the probability an item was held in memory

and s.d. which represented how precisely the probed item was represented in memory.

Figure 2
Figure showing an example trial procedure within the continuous (colour) report task.

Results from Experiment 1 revealed that while s.d. did not vary to any significant

extent, Pm was approximately twice as large when at set sizes of three relative to set sizes of

six. Zhang and Luck state that this is evidence to support the notion that a small number of

high-resolution representations are stored in memory (i.e., the slot model). In Experiment 2,

the authors set out to examine predictions made by two differing versions of the slot model,
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namely the slots-plus-resource and slots-plus-averaging models. The slots-plus-resource

model was developed on the basis of a suggestion that performance could be mediated by

both slots and resources, positing that resources are allocated to a single item to generate a

high-resolution representation before any remaining resource is allocated to another item. As

such, at a certain point there will not be a sufficient amount of resource remaining to

generate high-resolution representations of any further items, meaning these items are not

held in memory at all. Alternatively, the slots-plus-averaging model was developed based on

the suggestion that the process of generating memory representations of items is binary,

either succeeding or failing. On this model, while the total number of slots is still low, items

can be stored across multiple slots when set size does not exceed capacity. On both the

slots-plus-resources and slots-plus-averaging models, precision will be increased when set size

does not exceed capacity, with results from Experiment 2 supporting this view. As set size

increased from one to three, precision as indicated by the s.d. parameter was reduced1 yet

held steady when set size increased to six. Conversely, Pm was found to decline as set size

increased from one to three, with a more pronounced reduction as set size increased to six.

In Experiment 3, Zhang and Luck introduced the use of a cue presented

simultaneously with the memory display to indicate which of the four coloured squares

would be probed. On 70% of trials the cue was valid, on 10% of trials the cue was invalid

with one of the uncued squares being probed, and the remaining portion of trials were made

up of neutral cues wherein all four squares were probed. The authors stated that on the

slots-plus-resources model, most of the available resource would be allocated to the cued

1 Note that a reduction in precision is reflected by an increase in s.d. parameter values.
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item, resulting in substantial differences in s.d. between all cue types whereas little change

would occur in Pm. Alternatively, on the slots-plus-averaging model, they state that most of

the slots would be allocated to the cued item, resulting in substantial differences in Pm

between valid and invalid trials, with s.d. also reduced on valid trials relative to neutral

trials given the averaging of values in each slot. Results from Experiment 3 revealed that Pm

was larger on valid trials relative to invalid trials, with s.d. significantly reduced on valid

trials relative to neutral trials. Zhang and Luck (2008) take this as evidence against the

slots-plus-resources model, stating that these results suggest low-resolution representations

cannot be generated through the allocation of a small portion of memory resource. In

extension of these results, Experiment 4 investigated the notion that an all-or-none encoding

process is required to generate robust, high-resolution representations in memory. By placing

visual masks in the positions that the stimuli previously appeared (either 110 or 340ms after

stimulus onset), Zhang and Luck mimicked the masking caused by eye movements. They

state that if representations increase in resolution as a function of time, early masking should

result in low-fidelity representations (i.e., a reduction in s.d.). If however, an all-or-none

process of encoding is required, masking would only influence Pm. Results from this

experiment track with the latter of these hypotheses, with masking at 110ms causing a major

decrease in Pm while having no impact on s.d. (however, see van Moorselaar et al., 2015),

providing further evidence contrary to the slots-plus-resource model—and indeed pure

resource models—as well as providing further evidence in support of the slots-plus-averaging

model.
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1.3.2 The two- and three-component mixture models

Building on these findings, Zhang and Luck (2008) developed a measurement model,

referred to as the two-component model, wherein responses in a continuous report task are a

probabilistic mixture of two processes (hence, two-component), 1) responding to the true

value of the target based on a noisy memory representation and 2) random guessing. The

two-component model is given formally as:

p
(
θ̂

)
= (1 − pu) ϕκ

(
θ̂ − θ

)
+ pu

1
2π

, (2)

where θ represents the value of the target (in radians), θ̂ represents participant response, and

pu the probability of a random guess. ϕ represents the probability density of the von Mises

distribution—the circular analogue of the Gaussian (normal) distribution—with mean zero

and concentration parameter κ (see Figure 3, see also Grange & Moore, 2022). However,

work by Bays and Husain (2008) highlighted methodological issues within the research by

Zhang and Luck (2008) which led to the development of this model. Across two experiments,

Bays and Husain (2008) investigated the precision of representations in memory as a

function of set size, while also controlling for the effects of eye movements, something

overlooked by Zhang and Luck (2008). Stimuli consisted of coloured squares (location task)

and coloured, randomly oriented arrows (orientation task). After the memory display and

retention interval, the test display was presented wherein a single stimulus that appeared on

the memory display reappeared. On the location task, this meant reappearance of a coloured

square, displaced along the horizontal axis, while in the orientation task, an arrow
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reappeared rotated either clockwise or counterclockwise. In Experiment 1 set size was varied

(N = 1, 2, 4, or 6) while in Experiment 2 set size was held constant (N = 5). Four

conditions were also implemented in Experiment 1; in the fixation condition, participants

fixated on a cross which was displaced from the centre of the screen (alternating between left

and right on each trial), while in the saccade condition, participants made a saccade from

the fixation cross to a target stimulus upon sounding of an auditory signal presented 1,000ms

after the memory display. Participants were assigned a colour before beginning the task

which corresponded to the colour of one of the stimuli displayed. In the fixation-with-cue and

saccade-to-cue conditions, one of the stimuli flashed on and off; in the fixation-with-cue

condition, participants were required to remain fixated on the cross, while in the

saccade-to-cue condition, the flashing indicated that participants should saccade to the

flashing stimulus. The targets in the saccade, fixation-with-cue, and saccade-to-cue

conditions was not indicative of which stimulus would be probed on a given trial.
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Figure 3
Probability density functions for different values of κ, the concentration parameter of the von
Mises distribution. A higher value of κ indicates more precise memory representations.

Results from Experiment 1 revealed that accuracy in both the location and

orientation tasks was quite high for single object displays when no eye movement was

involved, with performance declining as a function of set size. However, in contrast to the

pronounced decline in performance observed by Zhang and Luck (2008) when set size

exceeded four, no such reduction was found here. However, performance on single-object

displays did result in a degree of bias on the location task when a saccade was introduced;

participants tended to report that the direction of change was congruent with the direction

of the saccade when in fact, the stimulus had been displaced in the opposite direction.

Despite this, the precision of responses when saccades were required was not significantly

different from precision when fixation was required, while also observing a similar pattern of
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poorer performance as set size increased. Indeed, results from both the fixation and saccade

conditions revealed that precision declined even at smaller set sizes, with the most

substantial reduction in precision between set sizes of one and two, well below the putative

capacity limit suggested by previous research. As such, Bays and Husain argued that a

model wherein vSTM resources are distributed among items, with precision a declining

function of set size, is a more appropriate alternative than a model which invokes a discrete

capacity limit. Furthermore, in the saccade condition, it was found that the saccade target

was recalled with greater precision than non-targets in both the location and orientation

tasks; the authors highlighted this as evidence to suggest some form of preferential treatment

for saccade targets, allowing more resource to be allocated to this item, thus increasing the

precision of memory representations. Indeed, this is supported by results from the

fixation-with-cue and saccade-to-cue conditions, wherein the flashing stimulus was recalled

with greater precision when probed relative to when a non-flashing stimulus was probed,

suggesting that even covert shifts of attention allow for an increase in precision.

In Experiment 2, Bays and Husain (2008) set out to investigate the dynamic

allocation of resources across several saccades; participants made saccades to each item in

turn (squares in the location task, arrows in the orientation task), with fixations on each

item indicated by a clicking noise. When a saccade to the final target was detected, the

screen went blank and was followed by a probe display. Results from this experiment

revealed that precision was greatest for the final item in the display in both the location and

orientation tasks; interestingly, the final item in each display was not fixated as the screen

was blanked upon initiation of the final saccade. The authors also found no significant
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differences in precision between the last fixated stimulus (item four) and any of the

previously fixated stimuli, no significant differences in precision between any of the

previously fixated stimuli, and that fixation duration did not have any influence over

precision. Based on these results, Bays and Husain (2008) state that the high degree of

precision observed for the target of a saccade can only survive a single eye movement.

Extending this work, Bays et al. (2009) employed an almost identical continuous

report task to that used by Zhang and Luck (2008), with the exception of different set sizes

(N = 1, 2, 4, or 6). Additionally, Bays et al. (2009) also examined performance across a

range of stimulus display durations (100, 500, or 2000ms) and also monitored fixations.

Results from this experiment revealed that as set size increased—even from one to

two—response precision declined, akin to findings from Bays and Husain (2008), but

conflicting with findings from Zhang and Luck (2008). More crucially however, given that

the probe indicates the position of one of the stimuli in the memory display, Bays et al.

(2009) highlighted that performance on this version of the continuous report task is also

dependent on memory for location as well as simply memory for colour. Participants

therefore need to compare the location of the probe with the location of items held in

memory, with errors in memory for location causing participants to respond to a non-target

item. Indeed, the finding that responses were centred on non-target feature values at a rate

higher than what would be expected from chance alone—with such responses increasing as

set size increased—provided support for the view of Bays et al. that on some trials, memory

for location failed, resulting in a swap between two of the colours presented in the memory

display, leading to an erroneous response. As such, Bays et al. (2009) extended the
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two-component model (see Zhang & Luck, 2008) to the three-component model (also referred

to as the swap model). This extension enabled the model to account for memory for location,

wherein responses are based on a probabilistic mixture of three processes, 1) responding to

the true value of the target based on a noisy memory representation, 2) responding to a

non-target value, and 3) random guessing. This model is given formally as:

p
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where pu, ϕ, and κ are the same as in the two-component model, with pn representing the

probability of making a non-target response and θ∗
i (θ∗

1, θ∗
2. . . ) representing the non-target

feature values. Note that both target and non-target items are stored with the same

precision (i.e., κ is identical for both target and non-target items) as the probed item is not

yet known (see Grange & Moore, 2022).

1.3.3 The role of attention in visual short-term memory resource allocation

As alluded to in the introduction of this chapter, the purpose of the present research

is to investigate the way in which vSTM resources are allocated to relevant information when

other, irrelevant information is also present. Attentional control is likely to play a role in

such allocation and indeed, some studies have investigated this potential (see e.g., Dube et

al., 2017; Emrich et al., 2017; Henderson et al., 2020). For example, Emrich et al. (2017)

highlighted that much previous research did not account for the possibility of flexible

resource allocation across items. Thus, across two experiments, Emrich et al. used

continuous report tasks wherein stimuli consisted of coloured squares and set size was varied
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(Experiment 1a N = 6; Experiment 1b N = 1 or 4). Predictive spatial cues were presented

alongside the memory display, varying in both number and their validity (Experiment 1a N

= 1 [100%, 50%, or 33%], 2 [100% or 66%], 3 [100%], or 6 [100%]; Experiment 1b N = 1

[100%] with set size N = 1; Experiment 1b N = 1 [100% or 33%], 2, [100% or 66%], 3

[100%], or 4 [100%] with set size N = 4), with validity indicated at the beginning of each

block. By manipulating cue validity, the distribution of attention would be variable within

each condition, with cases where non-cued items had a low probability of being probed,

enabling the estimation of encoding precision for (potentially) less attended items.

While results revealed that as the total number of items to be retained in memory

increased response error also increased, Emrich et al. found that probe likelihood had a

greater influence over response error, showing larger effects of doubling probe likelihood

relative to doubling set size. Further results from parameter analysis after fitting of the

three-component mixture model (see Bays et al., 2009), revealed decreases in precision as set

size increased, with decreases observed between the three cue and six cue (100% valid)

conditions. This is notable as it directly conflicts with the view adopted by Zhang and Luck

(2008); as previously discussed, vSTM can hold approximately four or five item

representations (see e.g., Luck & Vogel, 1997; Pashler, 1988; Zhang & Luck, 2008). Based on

their results, Zhang and Luck (2008) state that when capacity is exceeded, the precision of

representations held in memory should not decrease as all item representations are held at a

high and fixed resolution. That Emrich et al. (2017) found decreases in precision as set size

increased from three to six items provides evidence against the notion that vSTM capacity

should be defined in terms of discrete slots, each being able to store a single item.
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Additionally, Emrich et al. tested assumptions of the slots-plus-averaging model (Zhang &

Luck, 2008), specifically the notion that items represented in memory could not be

represented at a resolution lower than that afforded by the resources available in a single slot.

Emrich et al. found that precision decreased on trials wherein uncued items could be probed

when compared to trials wherein three (100% valid) cues were presented, suggesting that

such a reduction was due to the validity of the cue—and thus, the allocation of

attention—mediating the amount of resource allocated to each item.

While this and other research has provided some insight into the role of attention in

resource allocation, much research surrounding vSTM in general makes use of simple stimuli,

defined by a single feature dimension (typically colour). This is atypical of everyday life

wherein stimuli are often multivalent, containing any number of different feature dimensions,

or indeed, the same feature dimension with multiple feature values. Furthermore, there are

often times when only a subset of the information on a given stimulus in our environment is

relevant to a task or behaviour (e.g., road traffic signs containing multiple directions). Thus,

if vSTM is limited in capacity in terms of a finite memory resource, how does the cognitive

system ensure that the resources we have available are allocated to the most relevant

information? The way in which this question will be addressed throughout the present

research is through a combination of tasks probing vSTM performance and modified task

switching paradigms, enabling investigation of the role of attention in resource allocation

when multiple feature dimensions are present.
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1.4 Task switching

1.4.1 Overview and initial research

The term task switching refers to the unconscious ability to shift attention between

different tasks and is one of the executive functions, a set of cognitive processes which

facilitate the control of behaviour (see e.g., Diamond, 2013). In typical task switching

paradigms, participants either repeat performance of the same task or switch between

performance of two (or more) tasks; a consistent finding from the task switching literature

shows that when there is a requirement to switch between tasks, performance in terms of

accuracy and RT is reduced, relative to when the task repeats. This detriment to

performance is known as the task switch cost (for comprehensive reviews on task switching,

see Grange & Houghton, 2014; Kiesel et al., 2010; Monsell, 2003; Vandierendonck et al.,

2010). Various theories have been postulated in an attempt to explain the origin of the task

switch cost, with most theories implicating the task set as having some responsibility for

these costs. Put simply, the term task set refers to the organisation of processes and

functions required to perform an upcoming task; however, the composition of a task set

varies among researchers (see e.g, Grange & Houghton, 2014; Logan & Gordon, 2001; D. W.

Schneider & Logan, 2007). While this rather simplified definition of task set is similar to

descriptions given by some researchers (see e.g., Kiesel et al., 2010; Rogers & Monsell, 1995),

others have suggested that a task set contains a set of parameters which are programmed by

the cognitive system depending on what task is being performed (see e.g., Logan & Gordon,

2001; Logan & Schneider, 2010). Irrespective of definition and constitution, a commonly held
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view on task sets is that when the task changes, the task set must be updated in some way2.

Additionally, a task set can be thought of as being made up of two distinct components, an

attentional set, which facilitates the identification and selection of relevant information, and

an intentional set, which facilitates assignment of appropriate stimulus-response (S-R)

mappings (see e.g., Kopp et al., 2006; Liefooghe & Verbruggen, 2019; Meiran et al., 2000;

Rushworth et al., 2005, 2002; Yeung & Monsell, 2003b).

The most widely-cited early research on task switching was that conducted by Jersild

(1927; however, see also Ach, 1910–2006), wherein participants were presented with lists of

stimuli upon which to perform tasks. For example, lists could be made up of a series of

two-digit numbers wherein participants would simply subtract three from each number (i.e.,

a pure list). Alternatively, lists could be made up of alternating two-digit numbers and

words, wherein participants would subtract three from each of the numbers and provide an

opposite for each of the words (i.e., a mixed list). Somewhat counterintuitively, Jersild found

that mean RT across two pure lists was slower than RT on a mixed list. While this finding

was later replicated by Spector and Biederman (1976; Experiment 1), the authors

highlighted that the difference between RTs for pure and mixed lists was minimal (140ms).

Additionally, Spector and Biederman also noted some methodological issues3 that may have

facilitated faster performance on mixed lists in Jersild’s (1927) study; the lists used by

Jersild were presented on a sheet allowing preview of the upcoming item. As such, Spector

2 There are alternative theories which suggest that task sets are not updated at any stage. On such theories,
a benefit to performance is conferred on repetition trials due to repetition priming of the task set (see e.g.,
Altmann & Gray, 2008).
3 A further methodological issue is that concerning the measurement of RT, which was recorded using a
stopwatch given either to an assigned partner or to the participant. As such, it is unlikely the RTs obtained
by Jersild (1927) provided an accurate measure of performance.
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and Biederman (1976) also included a condition wherein each item of the lists used were

presented on separate cards, finding a reversal in performance; with card presentation, RTs

were slower on mixed lists relative to pure lists. However, Spector and Biederman also noted

that while cards prevented preview to a greater extent than sheet presentation, it may not

have fully eliminated the ability to preview an upcoming item, with predictability also

potentially influencing performance. In Experiment 2, list items were projected individually,

preventing preview and items on mixed lists were presented at random, reducing the

predictability of an upcoming item. Results from this experiment revealed that RT on pure

lists was slightly, though non-significantly, faster than RT on mixed lists.

Perhaps the most crucial of the experiments conducted by Jersild (1927) and then

later by Spector and Biederman (1976) was that which used bivalent stimuli, wherein

multiple tasks could be performed on the same stimulus. Up to this point, each of the items

within the mixed lists used by Jersild (1927) indicated to participants which task to perform

(i.e., numbers indicated the subtraction task should be performed, while words indicated the

opposite word task should be performed). Thus, Jersild investigated performance on mixed

lists wherein the items did not indicate which task to perform; these lists contained either

two-digit numbers wherein the participant alternated between adding and multiplying or

adding and subtracting a given value, or words wherein participants alternated between

providing the opposite to the word or providing an object for a verb. Overall, results showed

that on these bivalent mixed lists, RTs were slower relative to the pure lists wherein only a

single task was performed. Indeed, Spector and Biederman (1976; Experiment 3) also

observed slower RTs on bivalent mixed lists wherein participants alternated between adding
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and subtracting three, relative to pure lists, with this cost to performance being 402ms per

item on mixed lists. Furthermore, Spector and Biederman (Experiment 4) also found that

the addition of a cue (i.e., +3 or -3 was presented alongside each two-digit number), resulted

in marked reductions to RTs relative to those found in Experiment 3; however a cost4 to

performance between mixed and pure lists was still observed, although the authors suggested

that this may have reflected the time taken to read the cue indicating which task to perform

on mixed lists, with such a requirement unnecessary on pure lists.

1.5 Theories of switch costs

1.5.1 Task set inertia

Despite the methodological issues, Jersild’s (1927) work provided the basis for later

research into task switching, resulting in the development of new paradigms for use in

investigations, as well as the development of various theories attempting to account for the

observation of task switch costs. One such theory is that of task set inertia (TSI), developed

by Allport et al. (1994). Across a series of experiments, Allport et al. used tasks similar to

the list procedure employed by Jersild (1927; Experiments 1-4), varied the response-stimulus

interval (Experiment 5), and used rapid sequential visual presentation tasks (Experiments 6

and 7). Perhaps the most critical of these experiments for the development of the TSI

account was Experiment 5 wherein the RSI—the duration between response on trial N-1 and

presentation of stimuli on trial N—was manipulated, being either 20, 550, or 1,100ms long

within a given block. Stimuli were made up of pairs of incongruent Stroop colour words (see

4 Given that the list procedure used by Jersild (1927) does not allow for the estimation of true switch costs,
the cost to performance observed here and in studies using the list procedure is referred to as the alternating
list cost or global switch cost (see e.g., Vandierendonck et al., 2010).
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e.g., MacLeod, 1991; Stroop, 1935), meaning the word and the colour the word was written

in never matched (e.g., the word “red” written in the colour blue). As such, the tasks would

be to either name the colour word (i.e., word task) or the colour the word was written in

(i.e., colour task; colours used were red, blue, green, yellow, and pink), with participants

informed beforehand which task to perform on which item in each pair (e.g., perform the

colour task for the first item in each pair and perform the word task for the second item in

each pair). Furthermore, neutral trials were also included wherein stimuli consisted of colour

words written in black if the task was to name the colour word, or xxxxx in one of the

colours used if the task was to name the colour of the word; thus, on neutral trials, the

stimuli explicitly cued the participant as to which task to perform. This allowed not only

examination of the Stroop effect via comparison of incongruent and neutral trials, but also

investigation of the extent to which costs to performance may be influenced by the innate

cues present on the neutral stimuli.

Previous research (see e.g., MacLeod, 1991) had shown that performance in the

colour task, but not performance on the word task, was dependent upon the congruency of

the stimuli. When stimuli were congruent (i.e., the colour word and the colour the word was

written in matched), performance on the colour task was improved relative to when the

stimuli were incongruent. However, in the word task, performance was found to not differ to

any great extent regardless of the congruency of the stimuli. As such, it is held that the word

task is automatic, requiring little-to-no cognitive control to perform (i.e., the dominant task),

whereas the same cannot be said for the colour task (i.e., the non-dominant task). Therefore,

it would be plausible to assume that switching from the non-dominant to the dominant task
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would be much quicker than switching from the dominant to non-dominant task. However,

contrary to this assumption, results from Experiment 5 of Allport et al. (1994) revealed the

opposite effect; switching from the non-dominant to the dominant task resulted in a

substantial switch cost relative to the lack of cost when switching from the dominant to

non-dominant task (i.e., an asymmetric switch cost), independent of the duration of the RSI.

This led Allport et al. (1994) to suggest that when a switch in task occurs, the task set

relevant for the previous trial (i.e., trial N-1 ) interferes with the task set associated with the

now relevant trial (i.e., trial N ) and must therefore be inhibited to prevent this proactive

interference (i.e., the TSI account of task switch costs). The required level of inhibition is

dependent upon the dominance of the task previously performed, with a switch from a

dominant to non-dominant task requiring a greater level of inhibition to prevent interference

than the inverse. As such, any subsequent switch from a non-dominant task to a dominant

task will require recovery of the relevant task set from a greater level of inhibition.

While some research showed further evidence of this asymmetry (see e.g., Allport &

Wylie, 2000; Yeung & Monsell, 2003a, 2003b), other research found no such asymmetrical

switch cost (see e.g., Monsell et al., 2000; Reuter et al., 2006; Yeung & Monsell, 2003a), with

Wylie and Allport (2000) suggesting that negative priming rather than proactive interference

was responsible for the asymmetric switch costs observed (see also Waszak et al., 2003, 2005,

2004). Additionally, Bryck and Mayr (2008) observed asymmetrical costs with task

repetitions. Stimuli in Experiment 1 of Bryck and Mayr consisted of an arrow pointing either

to the left or right, while stimuli in Experiment 2 consisted of incongruent Stroop colour

words. In Experiment 1, participants responded with the direction of the arrow presented on
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screen by pressing either the left or right arrow key on a keyboard; however, response

compatibility was manipulated, with the dominant condition mapping responses to the

compatible key (e.g., left facing arrow indicated a left arrow key press), while in the

non-dominant condition, responses were mapped to the incompatible key (e.g., left facing

arrow indicated a right arrow key press). In Experiment 2, participants vocalised either the

colour word (i.e., dominant condition) or the colour the word was presented in

(non-dominant condition). Crucially, an alternating-runs task5 was used wherein participants

performed four trials of one task before switching to the other task (e.g., AAAABBBB), with

each run further broken down into pairs of trials (e.g., AA-AA-BB-BB), giving rise to task

switches (e.g., AA-BB) and task repetitions (e.g., AA-AA). The RSI between each trial

within a pair (i.e., AA or BB) was held constant at 50ms in Experiment 1 and 500ms in

Experiment 2, with the longer duration in Experiment 2 due to the requirement of a vocal

response; however the RSI between each pair (e.g., AA-AA, AA-BB) was varied to be either

500ms or 5,000ms. Bryck and Mayr (2008) attempted to measure what they called the

selection cost by comparing performance on the first and second trial within each pair

(independent of whether the trial repeated or switched), hypothesising that re-retrieval of the

relevant task set from long-term memory would be required at longer RSIs even if the task

did not change. The results from these experiments supported this hypothesis, with Bryck

and Mayr finding reliable asymmetrical costs for both task switches and task repetitions,

leading the authors to suggest that task switches are not a necessary condition to observe an

5 The alternating-runs task was developed by Rogers and Monsell (1995) to account for methodological
issues which arose from Jersild’s (1927) earlier work, namely the various imbalances between pure and mixed
blocks of trials, such as the number of task sets that were required in each type of block or the effort required
for performance of each block type.
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asymmetrical selection cost.

1.5.2 Task set reconfiguration

Manipulation of the RSI was also involved in the development of a further prominent

theory of task switch costs, the task set reconfiguration (TSR) account. Across a series of

experiments, Rogers and Monsell (1995) used alternating-runs tasks wherein participants

performed two trials of one task before switching to the other task (e.g., AABBAA;

Experiments 1-5) or performed four trials of one task before switching to the other task (e.g.,

AAAABBBB). Stimuli consisted of a letter and digit pair (e.g., G7) presented in one of four

quadrants of the screen (Experiments 1-5); on each successive trial, the stimulus moved

clockwise to the next quadrant, with imaginary vertical and horizontal boundaries indicating

a change in task. For example, if the stimulus appeared in the top-left quadrant in the first

trial, it would then move to the top-right quadrant on the second trial wherein participants

would perform the same task. However, when the stimulus moved to the bottom-right

quadrant, a change in task would occur. In Experiment 6, a circular shape was presented,

segmented into eight pieces, with a thicker line along either the horizontal or vertical

indicating when a change in task was required; stimuli were again presented in a clockwise

manner. Overall, these experiments revealed increased error rates and RTs on switch trials

relative to repetition trials. While the extent of these switch costs were modulated by the

duration of the RSI (i.e., increased RSIs reduced the cost associated with a switch), leading

to Rogers and Monsell (1995) suggesting switch costs reflected the time course of task set

reconfiguration, there still remained a residual switch cost, even when the RSI increased to

1,200ms. On the TSI account, such a cost is easily explained on the basis that interfering
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processes occur independently of the extent of preparation time available during a switch in

task; however, on the TSR account, an additional mechanism to account for such a cost was

required. Thus, Rogers and Monsell outline that the process of switching task involves an

endogenous control process required for updating the task set, with a further exogenous

process initiated upon presentation of the stimuli required to complete the process of

reconfiguration.

1.6 Subsequent research on task switching

1.6.1 The explicit cuing procedure

While the work by Allport et al. (1994) and Rogers and Monsell (1995) led to the

development of two distinct theories of switch costs, an issue remained in that the tasks used

to develop these accounts do not allow for distinction between the processes that contribute

to such costs. Both mechanisms suggested by the TSI and TSR accounts occur during the

RSI and as such, neither of the tasks used by Allport et al. (1994) and Rogers and Monsell

(1995) could decompose the relative contributions of each of these mechanisms to the switch

cost. However, a novel paradigm developed by Meiran (1996; see also Sudevan and Taylor,

1987) which presented cues at the beginning of each trial to indicate which task to perform

(i.e., the explicit cuing procedure) enabled independent investigation of the contributions of

TSI and TSR on switch costs. For example, if a series of single digits are presented as stimuli,

the cue at the beginning of some trials could be the word value indicating that the task to

perform is a higher or lower than five judgement or the word parity indicating that the task

to perform is an odd or even judgement. Crucially, by presenting a cue at the beginning of

each trial, the RSI is segmented into two distinct parts, the response-cue interval (RCI), the
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duration between response on trial N-1 and cue presentation on trial N and the cue-stimulus

interval (CSI), the duration between presentation of the cue and stimulus on trial N. During

the RCI, the cue is not yet known meaning that no reconfiguration of task set can occur; as

such, it is during this interval that inhibition and/or task set dissipation of the previous task

set occurs, in line with the TSI account. Conversely, during the CSI, now that the cue is

known, reconfiguration of task set can occur in line with the TSR account. It should be

noted that inhibition of the previously relevant task set could still hypothetically occur

during the CSI, however this interval is primarily associated with the updating of task set.

In a series of experiments, Meiran (1996) used a 2x2 grid wherein a circle stimulus

appeared in one of the four quadrants. The goal of this task was to report the location of the

stimulus either in terms of the vertical (i.e., up or down discrimination) or horizontal (i.e.,

left or right discrimination) by pressing the relevant key on a numberpad; arrows presented

alongside the empty grid prior to stimulus presentation indicated which of the two tasks was

to be performed. Across all experiments, the CSI (termed the cue-target interval by Meiran)

was also manipulated; for instance, in Experiments 2 and 3, the CSI could either be long

(1,716ms) or short (216ms). Results from these experiments revealed that increasing the CSI

resulted in reductions to—but not elimination of—switch costs. Meiran (1996) highlighted

that these results are in line with the notion of advance reconfiguration proposed by the TSR

account, however also suggested that the results obtained by Rogers and Monsell (1995)

which led to the development of the TSR account could be explained by the proactive

interference employed by the TSI account by Allport et al. (1994). While Rogers and

Monsell (1995) found a significant interaction between the RSI and task switch costs when
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RSI varied within a block of trials only, Meiran (1996) observed a significant interaction

between the CSI and task switch costs when CSI varied within a block of trials.

Furthermore, the switch costs observed by Meiran were almost entirely eliminated with the

use of a substantially shorter interval than that used by Rogers and Monsell (1995).

Together, these findings directly contrast two assumptions made by Rogers and Monsell

(1995) in relation to conditions that are required for advance reconfiguration to occur, 1)

that stimulus presentation must be predictable and 2) that stimulus presentation must be

temporally distinct enough from the cue to allow reconfiguration to occur. Meiran (1996)

highlighted that one plausible reason for the discrepancy between the results of the two

studies is the nature of the cues used. While Rogers and Monsell (1995) used exogenous cues,

Meiran (1996) suggested that the use of explicit cues is likely to be more robust against

varying interval durations within a block of trials. As such, while the results from Meiran

(1996) provided some evidence in support of an advance reconfiguration mechanism, Meiran

did not explicitly invoke a endogenous control process as being responsible. Furthermore,

later research by Meiran et al. (2000) provided evidence to suggest that the notion of task

set dissipation cannot yet be ruled out.

Across a series of experiments Meiran et al. (2000) used a paradigm similar to that

used previously in Meiran (1996) wherein a stimulus (smiling face character) appeared in one

of the four quadrants of a 2 x 2 grid. The task again was to report the location of the

stimulus either in terms of the vertical or horizontal by pressing the relevant key on a

numberpad. Arrows presented alongside the empty grid prior to stimulus presentation again

indicated the task to be performed on each trial. Critically, within this set of experiments
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the RCI was manipulated (132ms at shortest, 3,032ms at longest), with results showing that

switch costs were reduced—but again, not eliminated—with increases in RCI. Thus, these

results suggest that some form of passive dissipation of task set occurs once response is

provided, somewhat in line with that suggested by proponents of the TSI account (see e.g.,

Allport et al., 1994). Furthermore, additional reductions to the extent of the switch cost

were observed by increasing the duration of the CSI (again termed the cue-target interval by

Meiran et al., 2000). Taken together, Meiran et al. suggest that switch costs reflect an

interplay of three different mechanisms, 1) dissipation of the now irrelevant task set, 2)

reconfiguration of task set for an upcoming task, and 3) some residual component associated

with the switch cost remaining despite sufficient time to prepare for an upcoming switch in

task.

1.6.2 Cue switch costs

One shortcoming of the explicit cuing procedure however, relates to the fact that

when a task repeats or switches, the cue follows suit. As such, it is plausible that some degree

of the task switch cost could be attributed to a switch in cue. A method for combating this

confound is to use two cues per task (Logan & Bundesen, 2004; see e.g., Logan & Bundesen,

2003; Mayr & Kliegl, 2003; Monsell & Mizon, 2006), which results in three distinct

sequencing conditions: cue repetitions, wherein cue and task repeat, cue switches, wherein

cue switches but task repeats, and task switches, wherein both cue and task switch. For

example, if single digits are used as stimuli, cues for a magnitude judgement task could be

low and high, while cues for a parity judgement task could be odd and even. Use of this 2:1

mapping means that the true or corrected task switch cost can be found by comparing
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performance between cue switches and task switches, while the influence of a cue switch can

be assessed through comparison of performance between cue repetitions and cue switches.

Results from cue switching research have been quite mixed, with some studies showing large

cue switch costs with small corrected task switch costs (Logan & Bundesen, 2004; see e.g.,

Logan & Bundesen, 2003; Monsell & Mizon, 2006), while other studies reported more

substantial corrected task switch costs (Mayr & Kliegl, 2003; Monsell & Mizon, 2006). The

initial work by Logan and Bundesen (2003) on cue switching led the authors to develop a

formal model which stated that a compound representation of both the cue and stimulus is

generated, with responses made on the basis of this compound representation. For example,

in a task switching paradigm wherein participants perform either a magnitude or parity

judgement, if the cue odd is presented with the digit 3 presented as the stimulus

subsequently, a response (i.e., keypress) will be made on the basis of the compound odd-3.

This compound cue encoding facilitates the retrieval of the appropriate response from

long-term memory, meaning that no endogenous reconfiguration process is required as the

task remains the same regardless of which of the two judgement tasks are being performed:

respond to the compound representation. Indeed, comparison of three models, one wherein

task set reconfiguration occurred, one wherein compound cue encoding occurred, and one

wherein a combination of both occurred, revealed that the compound cue encoding model

provided the best fit to the data. An alternative explanation of cue switching offered by

Mayr and Kliegl (2003; see also Mayr and Kliegl, 2000) also implemented a mechanism of

retrieval from long-term memory, in this case the retrieval of S-R mappings, with a further

process involved in task implementation upon stimulus presentation. Crucially however,

neither the TSI or TSR accounts of task switch costs offer an explanation for the influence of
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a cue switch on the true switch cost, hence the necessity of further models.

1.6.3 Attentional set switching

Perhaps most relevant to the present research is previous task switching work which

examined the impact of switching attentional but not intentional set. To reiterate,

attentional set relates to the processes involved in identifying and selecting relevant

information, while the intention set refers to the assignment of a S-R mapping that is used to

perform the given task (see e.g., Kopp et al., 2006; Liefooghe & Verbruggen, 2019; Meiran et

al., 2000; Rushworth et al., 2005, 2002; Yeung & Monsell, 2003b). One such study by Meiran

and Marciano (2002) made use of a same or different judgement task wherein stimuli

consisted of four feature dimensions, shape, fill, size, and tilt however, only shape and fill

were ever relevant. Participants were placed in one of three groups, the dimension group

wherein the task was always the same (e.g., is the relevant feature different?), but where the

feature dimension could change at random, the decision rule group wherein the relevant

feature dimension remained the same, but the task could change at random (i.e., is the

relevant feature different? or is the relevant feature the same?), and finally the response

mapping group wherein both task and feature dimension remained the same, but response

mapping could change randomly (e.g., if yes is mapped to the right arrow key and no to the

left, these could be reversed). The aim of this study was to examine how switching between

feature dimensions was impacted by manipulations of the CSI (again termed the cue-target

interval by Meiran & Marciano, 2002). These manipulations meant the CSI was either 170,

470, 1,470, or 2,470ms with results from Experiment 1 showing that increases in CSI

duration resulted in reductions to the switch costs observed in both decision rule and
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response mapping groups, but not in the dimension group. In Experiment 2, Meiran and

Marciano sought to extend these findings by comparing the simultaneous presentation used

in Experiment 1 with sequential presentation; while both stimuli were presented concurrently

in Experiment 1 following presentation of the cue, in Experiment 2, after presentation of the

cue, half of the participants were presented with one of the two stimuli for 300ms before the

second stimulus was presented. This was based on previous research which had found costs

to performance when switching between simultaneous and sequential presentation modes (see

García-Ogueta, 1993), as well as other research which observed reduced interference with

sequential presentation relative to simultaneous presentation (see Santee & Egeth, 1980).

Results revealed a significant main effect of presentation, with faster responses

observed in sequential presentation (706ms) relative to simultaneous presentation (993ms),

with a significant main effect of switching also observed; here RTs were faster on repetition

trials (816ms) relative to switch trials (883ms). These results indicate that while there was

an impact of switching, a substantial advantage to performance was obtained from sequential

presentation in line with results obtained from the previous work by Santee and Egeth

(1980). However, Meiran and Marciano (2002) also found a non-significant main effect of CSI

as well as a non-significant interaction of CSI and task switching, with Meiran and Marciano

highlighting that extended CSIs actually caused slower performance on repetition trials,

albeit exclusively found within the simultaneous presentation condition. The authors state

that such an underadditive interaction does not reflect a process of reconfiguration, but

rather acts as an index of task set dissipation; given that the task set remains the same on a

repetition trial, dissipation of the task set would result in reduced performance. Therefore,
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as RT was not recorded until presentation of the entire stimulus display in the sequential

presentation condition (i.e., 300ms later than in the simultaneous presentation condition),

this appears to have allowed the task set to dissipate to a greater extent, resulting in

participants being more prepared for the upcoming task.

1.7 The present research

The aim of the present research is to examine the role of attentional control in vSTM

resource allocation in the presence of multiple feature dimensions (e.g., colour, orientation)

using a variety of different tasks which probe vSTM, namely change detection, continuous

report, and change localisation. These tasks will be embedded within task switching

paradigms which introduce an element of attentional control; critically, in the experiments

throughout this thesis, participants will not repeat or switch between different tasks, but

rather perform the same task (e.g., change detection) wherein the relevant feature dimension

will either repeat (e.g., colour–colour) or switch (e.g., colour–orientation) on a given trial. As

the capacity of vSTM is limited, the cognitive system must ensure that the resources

available are allocated to the most relevant information, with the present work focusing on

how attentional control may be involved in such allocation.
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2 Chapter 2: Initial change detection

This chapter outlines an initial series of experiments which aimed to investigate the impact

of switching between different feature dimensions by embedding change detection tasks within

task switching paradigms.

2.1 Introduction

2.1.1 Overview

One’s ability to temporarily retain information from the surrounding visual

environment in memory is highly limited, with only a small amount of information able to be

stored at a given time. It is postulated that this limitation of visual short-term memory

(vSTM) arises as a result of either an upper-limit to the total capacity of the system (see e.g.,

Luck & Vogel, 1997; Pashler, 1988; Vogel et al., 2001; Zhang & Luck, 2008) or due to the

allocation of a finite memory resource (see e.g., Bays et al., 2009; Bays & Husain, 2008;

Frick, 1988; Wilken & Ma, 2004). On the former of these models, vSTM is believed to hold

fixed and high resolution representations of approximately four items, with no information

pertaining to items outside this capacity limit retained (see e.g., Luck & Vogel, 1997). On

the latter model, it is believed that a memory resource is allocated to each item in the

immediate visual environment, with the amount of resource each item receives responsible

for the precision of the internal memory representation (see e.g., Bays et al., 2009).

Despite such explanatory models facilitating advances in our understanding of vSTM,

some aspects still remain underdefined. The purpose of the present study is to provide an

initial insight into one such aspect, specifically how the memory resource outlined by Bays

and colleagues (see e.g., Bays et al., 2009; Bays & Husain, 2008; Ma et al., 2014; Wilken &
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Ma, 2004) is allocated to relevant visual information when multiple features are present.

Most of the existing research investigating resource allocation in vSTM makes use of

univalent stimuli (i.e., stimuli defined by a single feature), most typically colour. This is

atypical of our everyday environment wherein stimuli we encounter are often multivalent

(i.e., stimuli consisting of any number of different features), for example road traffic signs or

advertising. Thus, if only a subset of this information is relevant, the cognitive system faces

a challenge to ensure that the limited vSTM resources available are allocated to the relevant

information only.

The present study aims to provide a first look at the possible role of attentional

control in such allocation by embedding change detection tasks within task switching

paradigms. Change detection involves presentation of two stimulus displays (e.g., coloured

squares) separated by some duration of time; on some trials, the display will remain the

same, whereas on others it will change (e.g., a change in colour of one square). Observers

simply report whether they believe a change occurred between the first and second displays.

Task switching on the other hand involves either repeating performance of the same task or

switching between performance of two (or more) tasks; a consistent finding within the

literature shows that switching between tasks incurs a penalty to performance relative to

repeating a task, known as the task switch cost. However, unlike traditional task switching

paradigms, participants in the present study perform the same task throughout (i.e., change

detection), with the relevant feature dimension (i.e., stimulus displays will always contain

colour and orientation) either repeating or switching across trials. Therefore, should vSTM

resource allocation rely on attentional control, performance on trials wherein there is a
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requirement to switch feature dimension should be poorer than performance on trials

wherein the relevant feature dimension repeats.

While a number of studies have previously investigated the role of attention in vSTM

resource allocation (see e.g., Dube et al., 2017; Emrich et al., 2017; Henderson et al., 2020),

these studies used univalent stimuli with manipulations such as cue validity or investigations

of age differences. It should also be highlighted that most research into resource allocation

utilise continuous report tasks, wherein participants respond with the feature value of a

probed item using a 360◦ wheel (e.g., a particular orientation). While such tasks are

extremely beneficial for deconstructing performance into various parameters through the

application of mixture modelling (see e.g., Grange & Moore, 2022), change detection is used

in the present study to provide a more systematic account of resource allocation in vSTM;

later chapters employ similar methodologies using continuous report (Chapter 4) and change

localisation (Chapter 6) tasks.

2.1.2 Background on visual short-term memory capacity

Change detection tasks have perhaps been the most extensively used task in

investigations of vSTM capacity (see e.g., Alvarez & Cavanagh, 2004; Luck & Vogel, 1997;

Pashler, 1988; Phillips, 1974; Vogel et al., 2001). Perhaps one of the most influential papers

on vSTM capacity is that by Luck and Vogel (1997), wherein the authors conducted a series

of change detection tasks using univalent and multivalent stimuli. In one such experiment,

the authors observed that change detection performance with coloured squares did not differ

to any great extent up to set sizes of four; however, as set size increased above four, Luck

and Vogel observed systematic reductions in performance. Through the use of Pashler’s
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(1988) K measure, a method for estimating memory capacity, it was found that

approximately four items were retained in memory at a given time, a finding supported by

later work (see e.g., Vogel et al., 2001; however, see also Olson & Jiang, 2002; Wheeler &

Treisman, 2002; Xu, 2002). This led the authors to suggest that vSTM could only retain a

small number of items in memory simultaneously, with a later experiment revealing a similar

capacity limit even when items contained up to four features; this led Luck and Vogel to also

state that vSTM stored integrated item percepts rather than individual features.

Despite the findings of Luck and Vogel (1997) receiving some support, Vogel et al.

(2001) highlighted that it was possible that lower fidelity item representations which exceed

the capacity limit may be retained, a possibility previously considered by Frick (1988). On

Frick’s model, the capacity limit of vSTM (termed the visuospatial sketchpad by Frick, see

e.g., Baddeley & Hitch, 1974), was associated with a finite amount of “representational

medium” distributed to items in the immediate visual environment and responsible for the

fidelity of internal item representations. Clearly, such a view is in line with that suggested by

Bays and colleagues (see e.g., Bays et al., 2009; Bays & Husain, 2008), with low fidelity

representations being generated when set size (i.e., the total number of items presented) is

high as less medium or resource can be allocated to each item. Additionally, Wilken and Ma

(2004) provided evidence against a fixed-capacity nature of vSTM through a series of

experiments using continuous report tasks wherein participants were presented with either

coloured squares (Experiment 7; set size N = 2, 4, 6, or 8), Gabor patches (Experiment 8;

set size N = 2, 3, 4, or 5), or Gabor patches with added spatial frequency (Experiment 9; set

size N = 2, 4, 6, or 8).
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Results revealed that the precision of participant responses decreased monotonically

as set size increased. This led Wilken and Ma to state that if vSTM capacity is limited by

the total number of items that can be retained simultaneously, the fidelity of internal

representations of probed items should be high and equal until the capacity limit is reached,

meaning accuracy of responses should be excellent; upon exceeding capacity, performance

should decrease given that the probability of an item not stored in memory increases,

resulting in increased variability of responses. However, given that Wilken and Ma observed

reductions in precision as set size increased below the supposed capacity limit provided

evidence against a fixed-capacity vSTM, with the authors suggesting that the limit may be

artefactual due to increasing noise with increases in set size.

2.1.3 Development of measurement models

Later research by Zhang and Luck (2008) however appeared to rule out the possibility

of low fidelity representations, suggesting that an “all-or-none” encoding process is required

to generate robust item representations in memory. In a series of continuous report tasks,

Zhang and Luck used standard estimation techniques to recover the parameters Pm, the

probability that an item was represented in memory, and s.d., a measure of how precisely the

probed item was represented in memory. Across four experiments with varying set sizes

(Experiment 1 N = 3 or 6; Experiment 2 N = 1, 2, 3, or 6; Experiment 3 N = 4;

Experiment 4 N = 3), results revealed that precision as indicated by the s.d. parameter did

not vary to any great extent between set sizes of three and six, however Pm was found to be

approximately twice as large at set sizes of three relative to set sizes of six. Such a result

indicated that as set size increased past a certain threshold, there was a reduced probability



MULTIDIMENSIONAL RESOURCE ALLOCATION 60

that the probed item would be represented in memory. More critically to the notion of the

generation of low fidelity representations however, Zhang and Luck (2008) used masking, a

manipulation which mimics the effect of eye movements by disrupting the visual stream (see

e.g., Agaoglu et al., 2015). The authors stated that by presenting the mask early, low fidelity

representations could be generated, thus causing reductions in precision (i.e., increases in the

s.d. parameter). Conversely, if an all-or-none encoding process was required, masking would

only result in reductions of the probability that the probed item is held in memory (i.e.,

reductions in the Pm parameter). Indeed, results of this experiment track with these

hypotheses, with presentation of a mask 110ms after stimulus presentation resulting in major

reductions to Pm, with s.d. remaining unaffected (but see van Moorselaar et al., 2015).

These results led Zhang and Luck to suggest that in order for robust representations to be

generated, an all-or-none process of encoding was required, seemingly negating the claim

that low resolution representations could be generated.

This work led to the development of the two-component mixture model, a

measurement model for performance on continuous report tasks. On this model, responses in

this task are a probabilistic mixture of responding to the probed item based on a noisy

memory representation and random guessing. However, later work by Bays et al. (2009)

highlighted that performance on continuous report tasks are not solely reliant on memory for

a given feature value (e.g., the colour red), but also rely on memory for the location of that

feature in the stimulus display; both the feature value and the spatial location of the feature

value must be bound together to provide an accurate response. Bays et al. go on to state

that should no information pertaining to location be held in memory it is possible that a
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non-target value could be reported instead, which on the two-component model would be

classified simply as a guess. As such, Bays et al. (2009) extended the two-component model

developed by Zhang and Luck (2008) to contain an additional component, with responses on

this model a probabilistic mixture of responding to the target based on a noisy memory

representation, random guessing, and the probability of responding with a non-target value

(i.e., the three-component mixture model). Bays et al. (2009) fitted the three-component

model to data obtained from a continuous report experiment using coloured squares and

manipulations of set size (N = 1, 2, 4, or 6). Model fitting revealed that as set size increased,

precision decreased and the frequency of non-target responses increased. Perhaps the most

crucial finding of this experiment was that precision was reduced even when set size

increased from one to two; this conflicts with the account put forward by Zhang and Luck

(2008) as precision would not be influenced until capacity was exceeded. Bays et

al. suggested on the basis of these results that vSTM capacity is better accounted for by a

finite resource deployed across all items in the immediate visual environment, with increases

in the number of items to be represented in memory causing reduced fidelity representations.

2.1.4 The role of attentional control

Building upon this work, later research by Marshall and Bays (2013) provided

evidence which suggested that this vSTM resource could be allocated unintentionally by

investigating the possibility of obligatory encoding of task-irrelevant features when attending

to task-relevant features on the same item. In Experiment 1, three conditions were used; a

full-memory condition wherein two sequential stimulus displays were presented each

consisting of two coloured, oriented bars, with participants instructed to remember all eight
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features, a cued-absent condition wherein one stimulus display contained coloured circles and

the other oriented bars, with participants instructed to remember all four features, and a

cued-present condition wherein the stimulus displays were identical to those used in the

full-memory condition with a cue indicating which feature should be retained on each of the

stimulus displays. Following presentation of the displays, a probe was presented with

response provided by turning a dial to change the colour or orientation of the probe to that

which was believed to best match the stimulus which appeared in the same location.

It was revealed that error distributions from Experiment 1 showed less variability for

the cued-absent condition relative to the full-memory condition, which Marshall and Bays

highlight tracks with previous research on the relationship between precision and memory

load (see e.g., Bays & Husain, 2008; Zhang & Luck, 2008). In contrast however, error

distributions on the cued-present condition were similar to those on the full-memory

condition, which the authors take as evidence to suggest that the inclusion of irrelevant

features in the cued-present condition—wherein participants were instructed to remember

four feature values—resulted in an increase in variability to similar levels as that observed in

the full-memory condition—wherein participants were instructed to remember eight feature

values. By calculating precision gain—a measure of precision improvements on each of the

cued conditions relative to the full-memory condition—Marshall and Bays found a significant

improvement in precision for both feature dimensions in the cued-absent condition but not

the cued-present condition. The authors suggested that despite instructions, task-irrelevant

features in the cued-present condition were obligatorily encoded into memory, with this

encoding consuming vSTM resources to a similar extent as the encoding of actively attended
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features (i.e., full-memory condition).

In Experiments 2a and 2b, Marshall and Bays (2013) investigated if simply attending

to an item with no instruction to remember it facilitated storage of irrelevant features. In

Experiment 2a, four conditions were used; all conditions began with presentation of an initial

stimulus display consisting of two coloured, oriented bars, with a requirement to remember

the orientation of both bars. This was followed by a brief interval where the display was

blanked. In the full-memory condition, a second stimulus display was then presented

consisting of two more coloured, oriented bars with a requirement to remember the

orientations of both bars. One of the four orientations could be probed for recall with equal

probability. In the match-feature-absent condition, the second stimulus display consisted of

two coloured circles, with instructions to press a button if the colours matched or withhold

response if different. In the match-different-feature condition, the second stimulus display

contained two coloured bars with instructions to press a button if the bars matched in colour.

Finally, in the match-same-feature condition, the second stimulus display consisted of two

coloured, oriented bars, with instructions to press a button if the bars matched in

orientation. Participants were then also probed to report the orientation of one of the two

stimuli presented on the initial display. Experiment 2b simply reversed the order of

presentation for the memory and matching displays, with everything else remaining identical.

Results from Experiment 2a revealed that recall precision was higher in the

match-feature-absent condition—wherein participants attended to non-oriented stimuli while

retaining orientation information in memory—relative to the full-memory condition. This is

in line with findings from Experiment 1 and previous research showing reductions in
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precision with increases in memory load. Contrastingly, in the match-different-feature and

match-same-feature conditions—wherein participants attended to oriented stimuli during a

matching task while also retaining orientation information in memory—recall precision was

found to be comparable to the full-memory condition; Marshall and Bays highlighted that

this increase in variability appeared to be due to simply attending oriented stimuli during

the matching task, independent of whether the feature dimension was relevant to the

matching task. Results from Experiment 2b—wherein comparison occurred in the first

stimulus display with the second stimulus display being retained in memory—showed that

recall precision in all three matching conditions was significantly higher than that observed

in the full-memory condition. The authors state that this provides evidence to suggest that

while irrelevant features are encoded into memory obligatorily, consuming vSTM resources,

these resources can be redistributed when new information is presented, resulting in recall

precision akin to that observed when no competing information is presented.

2.1.5 Using task switching to investigate attentional control

This study by Marshall and Bays (2013) clearly highlights a role for attentional

control in the allocation of resources to visual information containing multiple feature

dimensions. As can be seen from the results, when competing information is present,

resources can be automatically allocated to task-irrelevant information, thus reducing the

resources available for task-relevant information. Indeed, later studies have also examined

the role of attention in vSTM resource allocation (see e.g., Dube et al., 2017; Emrich et al.,

2017; Henderson et al., 2020), however these studies use univalent stimuli. As stated

previously, the current study will embed change detection tasks within task switching
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paradigms. In traditional task switching, participants either repeat performance of the same

task (e.g., Task A–Task A) or switch between performance of different tasks (e.g., Task

A–Task B). Consistent findings show that when there is a requirement to switch between

tasks, performance in terms of response times (RT) and error rate is poorer relative to when

the task repeats, referred to as the task switch cost.

In order to perform a given task, one must activate a task set in memory. What

precisely a task set is varies with researcher (see Grange & Houghton, 2014, pp. 4–6 for

discussion on the differing definitions), with some suggesting that a task set is a grouping of

processes and representations needed to perform an given task (see e.g., Rogers & Monsell,

1995), while others have suggested a task set contains a set of parameters which are

programmed by the cognitive system depending on the task to be performed (see e.g., Logan

& Gordon, 2001; Logan & Schneider, 2010). Despite the variance, one assumption is common

across most definitions of task set—when the task changes, a new task set must be activated

in order to correctly perform the task (however, see Altmann & Gray, 2008 for an alternative

view). The structure of a task set can also be broken down into two distinct components, the

stimulus or attentional set, which deals with the identification and selection of information

relevant to the task, and the response or intentional set, which deals with the assignment of

appropriate stimulus-response (S-R) mappings (see e.g., Kopp et al., 2006; Liefooghe &

Verbruggen, 2019; Meiran, 2000; Rushworth et al., 2005, 2002; Yeung & Monsell, 2003b).

At present, two accounts of switch costs are most prominent, the interference and

reconfiguration accounts. Initial research on the interference view stated that switch costs are

believed to arise as the result of proactive interference. If a task switch occurs after response
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on trial N-1, a new task set will be required to correctly perform the new task on trial N ;

however, the task set inertia account (see e.g., Allport et al., 1994) states that the

persistence of the task set from trial N-1 may interfere with the newly relevant task set on

trial N if it is not appropriately suppressed or if it has not fully dissipated. In contrast,

initial research on the reconfiguration view stated that the switch cost reflects the time

course of activating the newly relevant task set; activation of task sets is a time consuming

process and as such, on the task set reconfiguration account (see e.g., Rogers & Monsell,

1995), increased RTs on switch trials are indicative of this process of activation, while errors

are reflective of a failure to activate the task set appropriately.

Independent of the origin of task switch costs—which have also been postulated to be

a mixture of both interference and reconfiguration (see e.g., Rubinstein et al., 2001;

Vandierendonck et al., 2010)—the act of switching requires some degree of attentional

control. Put simply, attentional control refers to a combination of attentional and inhibitory

processes, with the former allocating the focus of attention to relevant information and the

latter preventing interference from competing, irrelevant information (see e.g., Friedman &

Miyake, 2004; Miyake et al., 2000; Yantis, 1998). Therefore, task switching provides a

somewhat simplistic way in which to investigate the role of attentional control in vSTM

resource allocation, which in the present study is achieved by requiring attendance to

different feature dimensions on different trials on a change detection task. As such, only the

attentional set will change when a switch in task occurs, with the intentional set remaining

the same throughout (i.e., detect changes), enabling a measure of vSTM performance to be

obtained under situations where attentional control is required to select the relevant
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information.

2.1.6 The present study

In the present study, multivalent stimulus displays will be used; in some cases stimuli

will be multivalent containing both colour and orientation, while in others, stimuli will be

univalent (i.e., either coloured or oriented), however stimulus displays will always consist of

both features. Participants will perform a change detection task on each trial, however

crucially, the feature dimension relevant on a given trial will either repeat (e.g.,

colour–colour) or switch (e.g., colour–orientation). Should a cost to performance be observed

on dimension switch trials relative to dimension repetition trials in the present set of

experiments, this would suggest that attentional control is required for appropriate resource

allocation, with switching potentially resulting in a misallocation of resources to the

irrelevant feature dimension.

2.2 Experiments 1 and 2: General method

2.2.1 Participants

45 participants completed Experiment 1a, with 57 participants completing

Experiment 1b. 48 participants completed Experiment 2a, with 45 participants completing

Experiment 2b. As these experiments made up the initial, exploratory set, data was

collected from as many participants as possible within a predetermined timeframe. Except

for Experiment 1a, a binomial test was conducted on each experiment to identify

participants who did not perform significantly greater than chance. Change performance in a

change detection task is 0.5 (50%), with performance at this level indicative of guessing. As

a result, 13 participants were excluded from data analysis in Experiment 1b (final N = 44),



MULTIDIMENSIONAL RESOURCE ALLOCATION 68

with four participants excluded in Experiment 2a (final N = 44). No participants were

removed from Experiment 2b. Participants were recruited via Prolific (prolific.co), with

unique participants recruited for each experiment. Participants were aged between 18 and 60

years of age (inclusive) and self-reported normal or corrected-to-normal visual acuity and

normal colour vision. Recruitment was limited to the United Kingdom (UK) and the United

States of America (USA). Participants were paid a small fee for taking part and ethical

approval for Experiments 1 and 2 (and all subsequent experiments within this thesis) was

obtained from the Psychology Ethics Committee at Keele University.

Figure 4
Figure showing stimuli used in Experiments 1 and 2. Note that in Experiments 1b and 2b a
change also occurred in the irrelevant feature dimension.

2.2.2 Stimuli and materials

Stimuli in Experiment 1 consisted of four bivalent circular shapes which displayed

both colour and orientation (see Figure 4a). In Experiment 2, four univalent stimuli were

used, two of which were the same circular shapes as those used in Experiment 1 with the
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exception that they were always white (i.e., colourless), with coloured circles making up the

remaining two stimuli (see Figure 4b). In Experiment 2, participants were reminded at the

beginning of the task and throughout that white would not be tested as a colour. The RGB

(red, green, blue) coordinates for the colours used in these experiments were: black (0, 11,

16), blue (65, 105, 225), cyan (20, 253, 255), green (0, 250, 3), purple (255, 41, 255), red (255,

54, 31), and yellow (253, 254, 21). The RGB coordinates for the white oriented stimuli in

Experiment 2 were 255, 255, 255. RGB coordinates for the background were 127, 128, 128,

with both cues and fixation crosses in Experiment 1 being white. Given the use of white

stimuli in Experiment 2, the colour of the fixation crosses was changed to dark grey (89, 89,

89). Cues consisted of the word “col” if colour was relevant, with the word “ori” presented if

orientation was relevant. Stimuli were presented within a dark grey square frame positioned

in the centre of each screen. Each experiment was created and run using Gorilla Experiment

Builder (Anwyl-Irvine et al., 2020), with restrictions limiting participation in each

experiment to those using desktop or laptop computers only.

2.2.3 Procedure

In each experiment, participants made a change or no change judgement in pure

blocks wherein the relevant feature dimension repeated (i.e., all colour or all orientation

trials; pure repetition) and mixed blocks, wherein the relevant feature dimension could repeat

(e.g., colour–colour; mixed repetition), or switch (e.g., colour–orientation; mixed switch).

Practice blocks in each experiment consisted of a total of 40 trials (10 pure orientation, 10

pure colour, 20 mixed), with a total of 450 trials making up the main experimental section

(75 pure orientation, 75 pure colour, 300 mixed). These were separated into cycles following
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the same ordering pattern of 25 pure orientation, 25 pure colour, and two blocks of 50 mixed

trials. Self-paced breaks were given every 50 trials.

At the beginning of each trial, participants were presented with a fixation cross for

750ms, followed by a 500ms cue indicating which feature dimension was relevant for the

current trial. If colour was relevant, the word “col” was presented, while the word “ori” was

presented if orientation was relevant. A cue-stimulus interval (CSI) of 500ms followed, with

subsequent presentation of the memory display for 200ms. A retention interval of 1,500ms

was followed by presentation of the test display for 200ms. Responses were provided by

pressing one of two keys on a keyboard; pressing “M” indicated a change response, while

pressing “Z” indicated a no change response. On change trials in Experiments 1a and 2a, a

change occurred in the relevant feature dimension only, whereas in Experiment 1b and 2b, a

change occurred in the irrelevant feature dimension on every trial. Participants were

instructed to respond as quickly and as accurately as possible, with accuracy and response

time (RT) recorded on each trial. Responses were not time-limited and were followed by a

250ms intertrial interval (ITI).

2.2.4 Statistical analysis

Bayesian analysis of variance (ANOVA) tests were used to examine the effect of

sequencing condition (pure repetition, mixed repetition, mixed switch) on change detection

accuracy, RT, and two measures from detection theory, d′ (“dee-prime”), a measure of

sensitivity defined in terms of the inverse of the normal distribution function z (Macmillan &

Creelman, 2004), with h representing hits and f representing false alarms:
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d′ = z(h) − z(f), (4)

and criterion (c), a measure of response bias:

c = 1
2[z(h) + z(f)] (5)

Detection theory measures were implemented using the R pacakge sdtt (see Moore,

2022). Bayesian paired-samples t-tests were used if the Bayes Factor (BF10) was 10 or

greater which indicates strong evidence in support of the alternative hypothesis;

interpretation of BFs follows that outlined by Lee and Wagenmakers (2013). All Bayesian

analysis was conducted using the R package BayesFactor (see Morey & Rouder, 2021) using

package default priors, namely a Cauchy distribution centred on zero effect with scale

parameter r = 0.707. Prior to analysis, the first trial in each block was removed as this is

neither a repetition or switch trial. Additionally, the trial immediately following an error was

removed prior to analysis of accuracy, sensitivity, and response bias data; as the nature of an

error cannot be determined, this can make the sequencing condition of the subsequent trial

inaccurate, thus having the potential to produce unreliable results. Prior to RT analysis, RTs

less than 150ms and 2.5 standard deviations (SDs) above the mean were trimmed per

participant, per condition using the R package trimr (see Grange, 2022). Error trials and

trials immediately following an error were also removed prior to RT analysis due to the



MULTIDIMENSIONAL RESOURCE ALLOCATION 72

potential for post-error slowing. All analyses were conducted using R6. Anonymised data and

analysis code for each experiment and all experiments within this thesis can be found on the

Open Science Framework at the following link:

https://osf.io/dnqxz/?view_only=e68968defbcc471dbcd1b1561ec515f6.

2.3 Experiment 1a

Experiment 1a served as the initial investigation into the impact of dimension

switching on change detection performance. While some previous studies have utilised

multivalent stimuli (see e.g., Luck & Vogel, 1997), these studies did not systematically

investigate the effect of switching between detecting changes in different feature dimensions.

As such, the role of atttentional control with respect to change detection performance and

vSTM resource allocation more broadly remains unclear. The set size of four used in the

present experiment—and in many subsequent experiments—is based on previous research

suggesting vSTM has a capacity limit of approximately four items (see e.g., Luck & Vogel,

1997; Vogel et al., 2001; Zhang & Luck, 2008). Therefore, should a disruptive impact to

performance be observed in these experiments, this cannot be attributed to exceeding this

supposed upper limit.

6 Analyses in all experiments within this thesis used R (Version 4.2.0; R Core Team, 2022) and the
R-packages afex (Version 1.1.1; Singmann et al., 2022), BayesFactor (Version 0.9.12.4.3; Morey & Rouder,
2021), coda (Version 0.19.4; Plummer et al., 2006), cowplot (Version 1.1.1; Wilke, 2020), dplyr (Version 1.0.9;
Wickham, François, et al., 2022), effsize (Version 0.8.1; Torchiano, 2020), forcats (Version 0.5.1; Wickham,
2021), ggplot2 (Version 3.3.6; Wickham, 2016), ggpubr (Version 0.4.0; Kassambara, 2020), lme4 (Version
1.1.29; Bates et al., 2015), magick (Version 2.7.3; Ooms, 2021), Matrix (Version 1.4.1; Bates et al., 2022),
mixtur (Version 1.2.0; Grange & Moore, 2021), papaja (Version 0.1.1; Aust & Barth, 2020), plyr (Wickham,
2011; Version 1.8.7; Wickham, François, et al., 2022), purrr (Version 0.3.4; Henry & Wickham, 2020), readr
(Version 2.1.2; Wickham, Hester, et al., 2022), sdtt (Version 0.2.0; Moore, 2022), stringr (Version 1.4.0;
Wickham, 2019), tibble (Version 3.1.7; Müller & Wickham, 2022), tidyr (Version 1.2.0; Wickham & Girlich,
2022), tidyverse (Version 1.3.1; Wickham et al., 2019), tinylabels (Version 0.2.3; Barth, 2022), and trimr
(Version 1.1.1; Grange, 2022).

https://osf.io/dnqxz/?view_only=e68968defbcc471dbcd1b1561ec515f6
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2.3.1 Results

Means for each of the measures used in Experiments 1a and 1b can be found in

Figure 5. Analysis of accuracy data revealed a BF10 = 0.14 indicating moderate evidence for

the absence of an effect of sequencing condition. Analysis of RT data revealed a BF10 = 1.43

indicating anecdotal evidence for the presence of an effect of sequencing condition. Analysis

of d′ data revealed a BF10 = 0.14 indicating moderate evidence for the absence of an effect of

sequencing condition. Finally, analysis of c data revealed a BF10 = 0.27 indicating moderate

evidence for the absence of an effect of sequencing condition. Note that the log-linear

correction (see Hautus, 1995) was used to calculate hit and false alarm rate due to extreme

values.

2.3.2 Discussion

Clearly, the results from Experiment 1a suggest that sequencing condition had no

impact on change detection performance. However, it is possible that a methodological

oversight may have contributed to the overwhelming absence of switch costs on this task. On

change trials in this experiment, a change only occurred in the relevant feature dimension; as

such, participants would have been able to attend to the entire stimulus display (i.e., both

colour and orientation) rather than selectively attending to the relevant feature dimension.

Such a whole-display monitoring technique renders the cue non-essential for correct task

performance and does not require updating of attentional set as the task set would remain

the same on each trial (i.e., monitor the entire display and detect any change), negating any

potential switch costs that may have arisen. Therefore, the aim of Experiment 1b was to

rectify this oversight by making the cue essential for correct performance of the task.
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2.4 Experiment 1b

Experiment 1b employed the same methodology as Experiment 1a with the exception

that on every trial a change occurred in the irrelevant feature dimension. Having a change in

both relevant and irrelevant feature dimensions means that adoption of the whole-display

monitoring technique—which may have contributed to the results observed in Experiment

1a—is less effective. Rather, in the present experiment, it would be more beneficial to

performance to attend to only the cued feature dimension. While some research has

suggested that performance on change detection tasks can be negatively impacted by a

change in the irrelevant feature dimension (i.e., the irrelevant change effect, see e.g., Jaswal

& Logie, 2011), a number of studies have demonstrated that this effect appears to present

primarily at shorter retention intervals Bocincova et al. (2017). Based on this research, the

1,500ms retention interval used in the present experiment means that a change in the

irrelevant feature dimension should not be as disruptive—or at least be minimally

disruptive—to performance.

2.4.1 Results

Analysis of accuracy data revealed a BF10 = 1,816.37 indicating extreme evidence in

support of an effect of sequencing condition. A Bayesian paired-samples t-test between pure

repetition (M = 0.80, SD = 0.08) and mixed repetition (M = 0.78, SD = 0.09) data

revealed a BF10 = 0.49 indicating anecdotal evidence in support of the absence of a mixing

cost. A further Bayesian paired-samples t-test between mixed repetition and mixed switch

(M = 0.75, SD = 0.08) data revealed a BF10 = 51.22 indicating very strong evidence for the

presence of a switch cost. The relationship between pure repetition and mixed switch data is
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theoretically uninformative therefore no analysis was conducted between these conditions.

Analysis of RT data revealed a BF10 = 49.94 indicating very strong evidence in support of

an effect of sequencing condition. A Bayesian paired-samples t-test between pure repetition

(M = 958.38, SD = 193.04) and mixed repetition (M = 979.58, SD = 191.33) data revealed

a BF10 = 0.38 indicating anecdotal evidence in support of the absence of a mixing cost.

Further analysis between mixed repetition and mixed switch (M = 1,023.58, SD = 209.30)

data revealed a BF10 = 24.46 indicating strong evidence in support of a switch cost.

Analysis of d′ data revealed a BF10 = 3,196.53 indicating extreme evidence in support

of an effect of sequencing condition. A Bayesian paired-samples t-test between pure

repetition (M = 1.79, SD = 0.56) and mixed repetition (M = 1.71, SD = 0.64) data revealed

a BF10 = 0.35 indicating anecdotal evidence in support of the absence of a mixing cost. A

further Bayesian paired-samples t-test between mixed repetition and mixed switch (M =

1.46, SD = 0.52) data revealed a BF10 = 46.61 indicating very strong evidence in support of

a switch cost. Analysis of c data revealed a BF10 = 3.95 indicating moderate evidence for

the presence of an effect of sequencing condition. Note that the log-linear correction (see

Hautus, 1995) was used to calculate hit and false alarm rate due to extreme values.

2.4.2 Discussion

Contrasting the results of Experiment 1a, the results of Experiment 1b appear to

show that switching between different feature dimensions does result in a cost to change

detection performance (i.e., a dimension switch cost). While both accuracy and RT showed

reduced performance on mixed switch relative to mixed repetition trials, perhaps the most

notable result was the finding that sensitivity was impacted by dimension switching. This
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suggests that on switch trials, participants were less sensitive to a change in the relevant

feature dimension, perhaps due to the need to update attentional set from that previously

used or due to interference from the previously active attentional set. Finally, while there is

evidence to suggest dimension switching has little effect on response bias, it is perhaps

interesting to note that bias became more liberal across sequencing conditions as can be seen

in Figure 5d. This may be indicative of an increased failure to attend to the relevant feature

dimension during mixed blocks of trials, resulting in performance of the task on the wrong

feature dimension.
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Figure 5
Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′), and d) response bias
( c) across each sequencing condition in Experiment 1 (PR = pure repetition, MR = mixed
repetition, MS = mixed switch). Error bars represent the standard error of the mean.
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2.5 Experiment 2a

While Experiment 1 provided an initial look at the impact of dimension switching on

change detection performance with multivalent stimuli, Experiment 2 sought to investigate

the impact of dimension switching with univalent stimuli. On a given trial within

Experiment 2, stimulus displays consisted of two of the circular shapes in Experiment 1,

however these were always white (i.e., colourless), with the remaining two stimuli being

coloured circles. Previous research concerning resource models of vSTM suggest that

irrelevant features of an item are encoded automatically when attending to a relevant feature

on the same item (see Marshall & Bays, 2013), with such encoding utilising a portion of the

available memory resource. Based on this research, attending to univalent stimuli—such as

those used in Experiment 2—will use less resource relative to attending multivalent

stimuli—such as those used in Experiment 1. This suggests that performance on the present

task will be markedly better than that observed in Experiment 1 as no obligatory encoding

of irrelevant features will occur (although this is not tested statistically here). In keeping

with the methodology employed in Experiment 1, changes in Experiment 2a only occur in

the relevant feature dimension.

2.5.1 Results

Analysis of accuracy data revealed a BF10 = 6.48 indicating moderate evidence in

support of an effect of sequencing condition. Analysis of RT data revealed a BF10 = 0.17

revealing moderate evidence in support of the absence of an effect of sequencing condition.

Analysis of d′ data revealed a BF10 = 0.72 indicating anecdotal evidence in support of the

absence of an effect of sequencing condition. Finally, analysis of c data revealed a BF10 =
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0.63 indicating anecdotal evidence in support of the absence of an effect of sequencing

condition. Note that the log-linear correction (see Hautus, 1995) was used to calculate hit

and false alarm rate due to extreme values.

2.5.2 Discussion

Means for each of the measures used in Experiments 2a and 2b can be found in

Figure 6. The results of Experiment 2a reveal a similar pattern in that switching between

feature dimensions does not impact change detection performance. Most notably, a low

degree of evidence was observed for an effect of sequencing condition in accuracy, although

from Figure 6a, it appears that this effect is likely due to the difference between pure

repetition and mixed switch trials, a theoretically uninformative relationship. The general

lack of evidence for an effect of sequencing condition may be again be due to the cue not

being essential for correct performance of the task, with participants potentially attending to

the whole display. Indeed, this would be a much easier technique to adopt in Experiment 2a

than in Experiment 1a as only four features were present on four stimuli in Experiment 2a

relative to the eight total features on four stimuli in Experiment 1a.

2.6 Experiment 2b

Experiment 2b used the same methodology as Experiment 2a with the exception that

a change in the irrelevant feature dimension occurred on every trial. This ensured that the

cue was essential for correct performance of the task.

2.6.1 Results

Analysis of accuracy data revealed a BF10 = 1.69 indicating anecdotal evidence in

support of an effect of sequencing condition. Analysis of RT data revealed a BF10 = 278.31



MULTIDIMENSIONAL RESOURCE ALLOCATION 80

indicating extreme evidence in support of an effect of sequencing condition. A Bayesian

paired-samples t-test between pure repetition (M = 882.52, SD = 220.08) and mixed

repetition (M = 855.19, SD = 219.49) data revealed a BF10 = 5.87 indicating moderate

evidence in support of a mixing benefit. A further Bayesian paired-samples t-test between

mixed repetition and mixed switch (M = 902.28, SD = 245.58) data revealed a BF10 =

5,858.72 indicating extreme evidence in support of a switch cost. Analysis of d′ data revealed

a BF10 = 0.24 indicating moderate evidence in support of the absence of an effect of

sequencing condition. Finally, analysis of c data revealed a BF10 = 133,214.05 indicating

extreme evidence in support of an effect of sequencing condition. A Bayesian paired-samples

t-test between pure repetition (M = 0.20, SD = 0.22) and mixed repetition (M = 0.05, SD

= 0.18) data revealed a BF10 = 111.19 indicating extreme evidence in support of a mixing

cost. A further Bayesian paired-samples t-test between mixed repetition and mixed switch

(M = -0.02, SD = 0.23) data revealed a BF10 = 1.17 indicating anecdotal evidence in

support of a switch cost. Note that the log-linear correction (see Hautus, 1995) was used to

calculate hit and false alarm rate due to extreme values.

2.6.2 Discussion

Results from Experiment 2b present a somewhat different pattern of results from

those observed in Experiment 1b. While RT showed a high level of evidence for the presence

of an effect of sequencing condition, RT was faster on mixed repetition trials relative to

mixed switch trials resulting in a mixing benefit rather than a mixing cost. As such, this

faster performance on mixed repetition trials may have contributed to the high level of

evidence supporting the presence of a switch cost. Perhaps a further notable observation
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from this study is the fact that similar to Experiment 1b, mixed blocks caused response bias

to become more liberal. This suggests that while switching between feature dimensions did

not have any impact on bias, the rate at which participants fail to attend to the relevant

feature dimension increases on mixed blocks of trials.
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Figure 6
Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′), and d) response bias
( c) across each sequencing condition in Experiment 2 (PR = pure repetition, MR = mixed
repetition, MS = mixed switch). Error bars represent the standard error of the mean.
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2.7 Experiment 3 : General method

While Experiments 1 and 2 provided insight into the impact of dimension switching

on change detection performance, Experiment 3 aimed to provide a more nuanced

examination of switch costs, as well as examine performance under other experimental

manipulations. As such, in Experiment 3, pure repetition trials were removed meaning more

mixed trials could be included. Experiments 3a and 3b were similar to Experiments 1b and

2b respectively, with the exception that stimuli were isosceles triangles, being coloured and

oriented in Experiment 3a and coloured or oriented in Experiment 3b. Experiment 3c simply

doubled the total number of univalent stimuli from Experiment 3b from four to eight, while

in Experiment 3d coloured circles were overlaid onto white (i.e., colourless) oriented isosceles

triangles. These experiments are based on previous work by Markov et al. (2019) who

investigated feature vs. object-based storage in vSTM.

2.7.1 Participants

A sequential Bayes Factor design as outlined by Schönbrodt and Wagenmakers (2018)

was implemented in Experiment 3 (see Sequential Bayes Factor analysis for more detail).

This resulted in a total of 47 participants completing Experiment 3a, 73 in Experiment 3b,

72 in Experiment 3c, and 75 in Experiment 3d. A binomial test to identify participants who

did not perform significantly greater than chance (i.e., 50%) resulted in the exclusion of two

participants from Experiment 3a (final N = 45), three participants from Experiment 3b (final

N = 70), two participants from Experiment 3c (final N = 70), and five participants from

Experiment 3d (final N = 70). Participants were recruited via a combination of the SONA

Participant Recruitment System at Keele University and Prolific (prolific.co). Participants
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were aged between 18 and 60 years (inclusive) and reported normal or corrected-to-normal

visual acuity and normal colour vision. Unique participants were recruited for each

experiment, with those who had taken part in Experiments 1 and 2 prevented from

participating in Experiment 3. Recruitment was limited to the UK and USA and

participants were paid a small fee for taking part (Prolific) or awarded course credit (SONA).

Figure 7
Figure showing stimuli used in Experiment 3.

2.7.2 Stimuli and materials

Stimuli in Experiment 3a consisted of four isosceles triangles containing both colour

and orientation. In Experiment 4b, four univalent stimuli were used, two of which were the

same isosceles triangles used in Experiment 3a with the exception that they were always

white (i.e., colourless), with two coloured circles making up the remaining stimuli. Stimuli in
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Experiment 3c were the same as that in Experiment 3b just with a doubling of set size (i.e.,

four colourless isosceles triangles and four coloured circles). Finally, stimuli in Experiment

3d consisted of four colourless isosceles triangles with four coloured circles overlaid (see

Figure 7). The RGB coordinates for the colours used in Experiment 3 were identical to those

used in Experiments 1 and 2, with the fixation cross presented in dark grey (89, 89, 89)

across all experiments. Each experiment was created and run using Gorilla Experiment

Builder (Anwyl-Irvine et al., 2020), with restrictions limiting participation in each

experiment to those using desktop or laptop computers only.

2.7.3 Procedure

The procedure for Experiment 3 was the same as the procedure for Experiments 1

and 2 with the exception that only mixed blocks of trials were used and that a constant

change in the irrelevant feature dimension was employed in all experiments. Thus,

participants made a change or no change judgement in blocks wherein the feature dimension

could repeat (e.g.., colour–colour; mixed repetition) or switch (e.g., colour–orientation; mixed

switch). Practice blocks again contained 40 trials (10 pure orientation, 10 pure colour, 20

mixed) which allowed participants to familiarise themselves with the task. The main

experimental section consisted of a total of 400 trials, separated into blocks of 50. Self-paced

breaks were given every 50 trials.

2.7.4 Sequential Bayes Factor analysis

A sequential Bayes Factor analysis with maximal sample size was implemented within

each experiment. A minimum sample size of 20 was required for each experiment with a

maximum of 70. The critical test was a Bayesian paired-samples t-test conducted on mixed
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repetition and mixed switch accuracy values. Once data had been collected for the minimum

sample size, the test was performed; if the BF10 was greater than 10 or less than 0.1,

indicating strong evidence in support of the alternative and null hypotheses respectively (see

Lee & Wagenmakers, 2013), data collection was terminated. If neither limit was reached,

data collection continued, with the critical test performed every five participants until the

maximum sample size was reached at which point data collection was terminated.

2.7.5 Statistical analysis

Bayesian paired-samples t-tests were used to analyse performance between mixed

repetition and mixed switch data across all measures. As in Experiments 1 and 2, all

Bayesian analysis was conducted using the R package BayesFactor (see Morey & Rouder,

2021), using package default priors (a Cauchy distribution centred on zero effect with scale

parameter r = 0.707). All remaining data analysis (i.e., calculation of detection theory

measures) and data preparation (i.e., error removal, RT trimming) was identical to that used

in Experiments 1 and 2.

2.8 Experiment 3a

Experiment 3a sought to confirm the findings from Experiment 1b that dimension

switching impacts change detection performance. The same change detection switching task

was used, however the stimuli in Experiment 3a were coloured, oriented isosceles triangles.

By using different stimuli here, should switch costs be observed, this would demonstrate that

this effect can occur across a range of stimulus types.
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2.8.1 Results

A Bayesian paired-samples t-test on accuracy between mixed repetition (M = 0.76,

SD = 0.08) and mixed switch (M = 0.74, SD = 0.08) data revealed a BF10 = 31.85

indicating very strong evidence in support of the presence of a switch cost. Analysis of RT

between mixed repetition (M = 1,036.01, SD = 267.64) and mixed switch (M = 1,104.30,

SD = 312.91) data revealed a BF10 = 162.06 indicating extreme evidence in support of the

presence of a switch cost. Analysis of sensitivity between mixed repetition (M = 1.58, SD =

0.54) and mixed switch (M = 1.37, SD = 0.56) data revealed a BF10 = 85.07 indicating very

strong evidence in support of the presence of a switch cost. Finally, analysis of response bias

between mixed repetition (M = 0.29, SD = 0.54) and mixed switch (M = 0.22, SD = 0.26)

data revealed a BF10 = 3.21 indicating moderate evidence in support of the presence of a

switch cost.

2.8.2 Discussion

Results from Experiment 3a are very similar to those observed in Experiment 1b,

with dimension switching impacting performance primarily on accuracy, RT, and sensitivity

measures. Therefore, it appears that switching between feature dimensions when stimuli are

bivalent results in a cost to performance.

2.9 Experiment 3b

Experiment 3b aimed to confirm the findings of Experiment 2b using univalent

stimuli, with two white (i.e., colourless) isosceles trianges and two coloured circles.
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Figure 8
Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′), and d) response bias
( c) across each sequencing condition in Experiment 3 (MR = mixed repetition, MS = mixed
switch). Error bars represent the standard error of the mean.
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2.9.1 Results

A Bayesian paired-samples t-test on accuracy between mixed repeititon (M = 0.89,

SD = 0.09) and mixed switch (M = 0.88, SD = 0.10) data revealed a BF10 = 11.05

indicating strong evidence in support of the presence of a switch cost. Analysis of RT

between mixed repetition (M = 1,036.01, SD = 267.64) and mixed switch (M = 1,104.30,

SD = 312.91) revealed a BF10 = 8.10 indicating moderate evidence in support of the

presence of a switch cost. Analysis of sensitivity between mixed repetition (M = 2.79, SD =

1.00) and mixed switch (M = 2.62, SD = 1.00) data revealed a BF10 = 4.10 indicating

moderate evidence in support of the presence of a switch cost. Finally, analysis of response

bias between mixed repetition (M = 0.07, SD = 0.22) and mixed switch (M = -0.04, SD =

0.24) data revealed a BF10 = 14.88 indicating strong evidence in support of the presence of a

switch cost. Note that the log-linear correction (see Hautus, 1995) was used to calculate hit

and false alarm rate due to extreme values.

2.9.2 Discussion

Overall, the results from Experiment 3b appear to deviate somewhat from those

observed in Experiment 2b, however such a statement should be taken with a degree of

caution. The evidence in Experiment 2b suggested a lack of an effect of sequencing condition

on accuracy, whereas a high level of evidence in support of a switch cost was found for

accuracy in the present experiment. Additionally, the finding of a mixing benefit for RT in

Experiment 2b may have contributed to the high level of evidence in support of a switch

cost, whereas the level of evidence supporting a switch cost in Experiment 3b was not nearly

as high. Finally, while the low level of evidence for a switch cost in sensitivity somewhat
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follows the general lack of evidence in Experiment 2b, strong evidence for a switch cost in

response bias was found in Experiment 3b relative to the lack of evidence for such an effect

in Experiment 2b. This result shows that response bias became more liberal on mixed switch

relative to mixed repetition trials which is perhaps indicative of an increased failure to

attend to the relevant feature dimension on switch trials; as a change in the irrelevant

feature dimension occurred on each trial in Experiment 3b, it follows that more change

responses would be made if attending to the irrelevant feature dimension.

2.10 Experiment 3c

Experiment 3c aimed to extend the findings from Experiment 3b by doubling the

number of stimuli. As such, four white (i.e., colourless) isosceles triangles were used along

with four coloured circles. This resulted in a total set size of eight. Thus, while only two

stimuli were relevant on a given trial in Experiment 3b, four stimuli were relevant on each

trial within Experiment 3c.

2.10.1 Results

A Bayesian paired-samples t-test on accuracy between mixed repetition (M = 0.78,

SD = 0.08) and mixed switch (M = 0.76, SD = 0.08) data revealed a BF10 = 4.59 indicating

moderate evidence in support of the presence of a switch cost. Analysis of RT between

mixed repetition (M = 956.21, SD = 257.15) and mixed switch (M = 994.10, SD = 265.08)

data revealed a BF10 = 18,845.37 indicating extreme evidence in support of the presence of a

switch cost. Analysis of sensitivity between mixed repetition (M = 1.72, SD = 0.60) and

mixed switch (M = 1.53, SD = 0.61) data revealed a BF10 = 509.30 indicating extreme

evidence in support of the presence of a switch cost. Finally, analysis of response bias
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between mixed repetition (M = 0.34, SD = 0.27) and mixed switch (M = 0.25, SD = 0.26)

data revealed a BF10 = 40.81 indicating very strong evidence in support of the presence of a

switch cost. Note that the log-linear correction (see Hautus, 1995) was used to calculate hit

and false alarm rate due to extreme values.

2.10.2 Discussion

Results from Experiment 3c show that dimension switching greatly impacted

performance across most measures; while little evidence was observed for a switch cost in

accuracy, high levels of evidence were observed across RT, sensitivity, and response bias.

Thus, it appears that switching was more detrimental in this experiment relative to

Experiment 3b potentially due to the doubling of set size despite the fact that only four

stimuli were relevant on a given trial. Given that substantial evidence in support of a switch

cost was observed for both sensitivity and response bias measures, this suggests that

dimension switching resulted in participants becoming less able to detect changes (in the

relevant feature dimension) on switch trials, as well as attending to the irrelevant feature

dimension more often on switch trials relative to repetition trials.

2.11 Experiment 3d

Experiment 3d again attempted to extend findings from the previous experiments by

using spatially overlapping stimuli. This consisted of four coloured circles overlaid onto four

white (i.e., colourless) isosceles triangles. The purpose of such a manipulation was so that

the same number of features (eight) were presented as in Experiment 3c, however, based on

the Gestalt principles of grouping, it would be expected that these spatially overlapping

stimuli would be perceived as complex objects made up of multiple features.
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2.11.1 Results

A Bayesian paired-samples t-test on accuracy between mixed repetition (M = 0.77,

SD = 0.09) and mixed switch (M = 0.76, SD = 0.08) data revealed a BF10 = 4.48 indicating

moderate evidence in support of the presence of a switch cost. Analysis of RT between

mixed repetition (M = 1,010.11, SD = 254.34) and mixed switch (M = 1,052.42, SD =

268.36) data revealed a BF10 = 3,310.76 indicating extreme evidence in support of the

presence of a switch cost. Analysis of sensitivity between mixed repetition (M = 1.69, SD =

0.69) and mixed switch (M = 1.50, SD = 0.57) data revealed a BF10 = 71.23 indicating very

strong evidence in support of the presence of a switch cost. Finally, analysis of response bias

between mixed repetition (M = 0.35, SD = 0.23) and mixed switch (M = 0.28, SD = 0.23)

data revealed a BF10 = 142.00 indicating extreme evidence in support of the presence of a

switch cost. Note that the log-linear correction (see Hautus, 1995) was used to calculate hit

and false alarm rate due to extreme values.

2.11.2 Discussion

Interestingly, the results of Experiment 3d are very similar to the results from

Experiment 3c. Again little evidence in support of a switch cost was observed for accuracy,

however high levels of evidence in support of a switch cost was found for all other measures,

suggesting that on switch trials, participants became less able to detect changes in the

relevant feature dimension and attended to the irrelevant feature dimension more regularly.

It could be suggested that this is indicative of participants viewing the spatially overlapping

stimuli used in Experiment 3d as separate items, more akin to the set size of eight univalent

stimuli used in Experiment 3c rather than the set size of four bivalent stimuli used in
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Experiment 3a. Indeed, the finding that RT was faster overall in Experiment 3d relative to

Experiment 3a may lead to the suggestion that participants were able to more effectively

suppress information pertaining to the irrelevant feature dimension.

2.12 General discussion

2.12.1 Summary of results

The purpose of the present study was to provide an initial look at how attentional

control may be used to allocate vSTM resources to relevant information. This was achieved

by introducing an element of cognitive control into a task that has been extensively used in

investigations of vSTM capacity and performance, namely the change detection task.

However, while typical change detection tasks only assess performance on a single feature

dimension, here the task was embedded within a task switching paradigm wherein

participants performed the same change detection task or the same or different feature

dimensions, thus introducing an element of attentional control to change detection.

In Experiments 1 and 2 it was shown that disruption on this task only occurred when

the cue was essential for correct performance of the task. In both Experiments 1a and 2a, no

substantial impact to performance was observed which would suggest that dimension

switching does not impact change detection performance. However, given that a change only

occurred in the relevant feature dimension, participants could simply monitor the entire

display for any change; this would therefore negate the requirement to switch between

relevant feature dimensions. As such, a constant change in the irrelevant feature dimension

in Experiments 1b and 2b made the cue essential for correct performance of the task, with

sequencing condition having an effect in most measures across these experiments. Despite
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this, some results from Experiment 2b should be interpreted with caution. For instance, the

mixing benefit observed for RT is difficult to account for and may have contributed to the

substantial evidence observed in support of a switch cost. Interestingly however, from Figure

6 it can be seen that in Experiment 2a, a minor benefit to performance on mixed repetition

relative to mixed switch trials was also observed, suggesting that this benefit was increased

by making the cue essential for correct task performance.

Experiment 3 sought to both confirm and extend findings from Experiments 1 and 2

by removing pure repetition trials and increasing the number of mixed trials. The

methodology employed in Experiments 3a and 3b were essentially the same as that used in

Experiments 1b and 2b respectively, with the exception that instead of coloured, oriented

circular shapes, the stimuli in Experiment 3 were isosceles triangles. Results from

Experiment 3a seemingly confirmed findings from Experiment 1b, with dimension switch

costs observed for accuracy, RT, and sensitivity, while little evidence of such an effect was

observed for response bias. In relation to Experiment 3b, some results deviated from those

observed in Experiment 2b, perhaps notably an increased level of evidence supporting the

presence of a dimension switch cost for accuracy and reduced evidence in support of a

dimension switch cost for RT. Thus, it is difficult to state that this experiment confirmed

findings from Experiment 2b, however, it does appear that dimension switching does impact

change detection performance with univalent stimuli.

Extending these results, Experiment 3c doubled the number of univalent stimuli in

Experiment 3b from four to eight while Experiment 3d used spatially overlapping stimuli,

with coloured circles overlying white isosceles triangles. Perhaps somewhat interestingly, the
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results of these experiments were similar; while little evidence in support of the presence of a

switch cost for accuracy was observed in both experiments, substantial levels of evidence for

such a cost were found across all other measures. In terms of Experiment 3c, this may be

simply due to the increased number of stimuli, whereas in Experiment 3d, it may be the case

that participants viewed the spatially overlapping stimuli as distinct items.

2.12.2 Dimension switch costs as a result of resource misallocation

While the present set of experiments only provides an initial, behavioural view

concerning the impact of dimension switching on change detection performance, the finding

that switching between different feature dimensions is disruptive across various measures and

experimental manipulations suggests that such switching impacts some aspect of trial

processing. The dimension switch costs observed in some of the experiment detailed within

this chapter are indeed akin to the task switch cost found consistently within the task

switching literature (see e.g., Hsieh, 2012) and indeed, are extremely similar to costs found in

research wherein switches of attentional set were required (see e.g., Meiran & Marciano,

2002). Despite the critical switching element in the present study being feature dimension

and not task, the theories outlined to account for switch costs could be co-opted to account

for the disruption by dimension switching observed here.

While definitions of task set are variable across researchers, the requirement for

configuration of cognitive processes and representations relevant to a given task (i.e., the

task set) is consistent (see e.g., Logan & Gordon, 2001; Mayr & Kliegl, 2000; Meiran, 2010;

D. W. Schneider & Logan, 2014). The task set underlies goal-directed behaviour, facilitating

not only the selection of task-relevant information, but also the way in which to respond to
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such information in the form of a stimulus-response (S-R) mapping (see e.g., Dreisbach et al.,

2007). For instance, on a colour trial within one of the experiments in the present study, a

task set would direct attention to the relevant feature dimension (colour) and how to

respond (“if there is a change in colour, press the ‘M’ key, if there is no change in colour,

press the ‘Z’ key). While the generation of a robust task set facilitates goal-directed action

for a specific task, some degree of attentional control is required to update it in service of a

new task or goal, as well as guard against interference from task-irrelevant information which

may in some instances afford the same response (see e.g., Cooper et al., 2005; Goschke, 2000;

Houghton & Tipper, 1994). However, as evidenced by numerous task switching studies, as

well as in cases of frontal lobe damage (see e.g., Lhermitte, 1983), such control is disrupted,

resulting in increased error and RTs in the case of task switching, and performance of actions

unrelated to current goals in the case of some frontal lobe damage.

In terms of the present research, if the generation of a reliable task set facilitates

goal-directed action, the appropriate allocation of vSTM resources therefore relies on a task

set consisting of the correct processes and representations for performance of a given task,

and as such, relies on attentional control to update the task set when necessary. Using the

example of a colour trial, task-relevant representations held in memory should bias attention

towards the colours of the presented stimuli (see e.g., Carlisle et al., 2011; Desimone &

Duncan, 1995; Duncan, 1984), with vSTM resources subsequently allocated to the colour

feature of each stimulus; however, if this colour trial was preceded by an orientation trial,

attentional control would be required to update the currently relevant task set, as well as

guard against interference from the previously relevant task set. The task-relevant
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representation of orientation on trial N-1 would no longer be sufficient for detecting changes

in colour in trial N and would therefore require updating to correctly perform the new task

which would then lead to a misallocation of some (or all) resources to the incorrect feature

dimension. More specifically, attentional control in this instance is required to update the

attentional set—the element of the task set which identifies and selects relevant

information—but not the intentional set—the element of the task set which implements the

appropriate S-R mapping—as the relevant feature dimension switched but the task remained

the same.

While the process of updating task set takes time, invariably leading to increased RTs,

a failure of attentional control to update task set would result in attention being biased

towards the irrelevant feature dimension, which would subsequently impact upon the

allocation of resources. This would therefore lead to increased error rates, reductions in

sensitivity to change, and an increase in change responses (provided there is a constant

change in the irrelevant feature dimension; i.e., participants would simply perform the

incorrect task). Results from the present set of experiments provides some support for such a

view; while evidence for dimension switch costs varies across measure and experimental

manipulation, in general it appears that accuracy is most affected when stimuli are

multivalent (see Experiments 1b and 3a). This may be indicative of a failure of attentional

control and a subsequent misallocation of vSTM resources to the irrelevant feature

dimension, driven by the integration of relevant and irrelevant features on the same stimuli.

Sensitivity to changes appeared to be most impacted by dimension switching when stimulus

displays are more populated, either by multivalent stimuli or an increased number of
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univalent stimuli (see Experiments 1b, 3a, 3c, and 3d). Thus, it could be suggested that the

impact of dimension switching on discrimination was exacerbated by the increased noise

associated with these stimulus displays. Finally, response bias appears to have only been

impacted to any great extent with either spatially separated (see Experiment 3c) or spatially

overlapping (see Experiment 3d) univalent stimuli.

2.12.3 Further research

One area of further research that is explored in the following chapter is to determine

whether the dimension switch costs observed throughout the present study is the result of

task set inertia or reconfiguration. Through simple trial timing manipulations, the impact of

interference from a previously relevant task set or the impact of configuring a new task set

will be investigated. Previous research within the task switching literature suggests that by

increasing the duration of the response-cue interval (RCI)—the period between response on

trial N-1 and presentation of the cue on trial N—facilitates the decay of the task set used on

trial N-1, subsequently reducing switch costs; shortening the duration of the RCI on the

other hand prevents such decay from occurring (see e.g., Meiran, 2000; however, see also

Horoufchin et al., 2011a, 2011b). In contrast, increasing the cue-stimulus interval (CSI)—the

period between presentation of the cue and presentation of the stimulus on trial N—is

believed to provide more time for configuration of the newly relevant task set on switch

trials, resulting in reduced switch costs, while shortening of the CSI reduces the time

available to reconfigure task set (see e.g., Meiran, 1996).

Similarly, potentially confounding variables will also be investigated in the following

chapter to ensure that the disruption by dimension switching observed here was not due to
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some uncontrolled factor; the factor in question is that of the use of a single cue. In the task

used throughout the present study, a dimension repetition was paired with a cue repetition,

while a dimension switch was paired with a cue switch. Such cue switching has received

some attention within the task switching literature, having been shown to contribute to the

overall switch cost (see e.g., Logan & Bundesen, 2003; Mayr & Kliegl, 2003). As such,

further experiments within the next chapter will use two cues per task as a way to overcome

this potential confound. By using two cues per task, sequencing consists of cue repetitions,

cue switches, and task switches, with the true cost of a task switching the difference between

a cue switch and a task switch.

2.12.4 Conclusion

In summary, the present study provides an initial look at how attentional control may

be used to allocate vSTM resources. Despite findings varying across measure and

experimental manipulation, it appears that the requirement to switch between attending to

different feature dimensions while performing a change detection task has a disruptive

impact on performance. While speculative, it is suggested that such disruption arises as the

result of a failure of attentional control to appropriately update the attentional set required

to identify and attend to the relevant visual information, thus causing a misallocation of

vSTM resources. Subsequent investigations aim to determine whether the origin of such

dimension switch costs is associated with task set inertia or reconfiguration, as well as

account for the potential confound caused by using a single cue per task.
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3 Chapter 3: Intervals and cues

This chapter outlines a series of experiments which builds upon those in Chapter 2 by

investigating the influence of cue-stimulus and response-cue intervals and cue switching on

dimension switch costs.

3.1 Introduction

3.1.1 Overview

Attentional control is central in the ability to perform goal-directed behaviour and is

critical in everyday life, particularly in situations wherein different tasks are performed in

quick succession. Such task switching is demanding and the environment (i.e., stimuli) can

often afford performance of more than one task (e.g., writing a manuscript on a computer or

replying to emails). This requires a delicate balance between attendance to the relevant task

and inhibition of goal-irrelevant behaviour, all while maintaining the ability to change tasks

when goals change (see e.g., Goschke, 2000). Experimentally, task switching has been studied

using various paradigms wherein participants either repeat the same task or switch between

performance of two (or more tasks, for reviews see e.g., Grange & Houghton, 2014; Kiesel et

al., 2010; Monsell, 2003; Vandierendonck et al., 2010), for instance, the list procedure (see

e.g., Jersild, 1927; Spector & Biederman, 1976), the alternating runs paradigm (see e.g.,

Rogers & Monsell, 1995), the explicit cuing paradigm (Meiran, 2000; see e.g., Meiran, 1996;

Sudevan & Taylor, 1987), and the voluntary task switching paradigm (see e.g., Arrington &

Logan, 2004b; Arrington & Weaver, 2015). Performance on these tasks is measured by error

rates (i.e., accuracy) and response times (RTs), with a consistent finding showing that both

error rates and RTs are increased when the task switches relative to when the task repeats,
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referred to as a switch cost. A widely held assumption is that each task is associated with a

task set, the definition of which varies with researcher. Simply put, a task set consists of a

set of processes and representations required to perform a given task and must be updated

when the task changes (however, for an alternative view, see Altmann & Gray, 2008).

While the observation of switch costs is a consistent finding within the task switching

literature, debate remains regarding the origin of such costs. On one hand, some research

suggests that switch costs refelct interference from a previously relevant task set (i.e., task

set inertia; TSI, hereafter referred to as the interference view); when a switch occurs, the

task set associated with the now-irrelevant task persists (i.e., proactive interference) and

must be inhibited to prevent interference with the now-relevant task set (see e.g., Allport et

al., 1994; Allport & Wylie, 2000; Wylie & Allport, 2000). An alternative account suggests

that an endogenous control process reconfigures the task set for performance of the

now-relevant task (i.e., task set reconfiguration; TSR, hereafter referred to as the

reconfiguration view); when a switch occurs, the process of updating the task set is

time-consuming, thus, the reconfiguration view states that the increased RT on switch trials

reflects this process of updating (see e.g., Rogers & Monsell, 1995; Rubinstein et al., 2001).

Further accounts suggest that switch costs may arise due to a combination of both

interference and reconfiguration (Meiran, 2000; see e.g., Meiran, 1996). Additionally,

research has shown that in certain task switching paradigms, a switch in cue can contribute

greatly to the observed switch cost, referred to as the cue switch cost (Logan & Bundesen,

2004; see e.g., Logan & Bundesen, 2003; Mayr & Kliegl, 2003; Monsell & Mizon, 2006; D. W.

Schneider & Logan, 2005, 2011).
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The present study aims to investigate the contributions of interference,

reconfiguration, and cue switching to the dimension switch cost. In the previous chapter, it

was shown that by embedding a change detection task within an explicit cuing

paradigm—wherein participants either detected changes in colour or

orientation—performance was impacted across a range of measures and experimental

manipulations when the relevant feature dimension switched relative to when it repeated.

These results led to the speculation that the dimension switch cost arises as a result of

misallocation of visual short-term memory (vSTM) resources (see e.g., Bays et al., 2009;

Bays & Husain, 2008) on switch trials, with experiments here seeking to investigate this

possibility further. Results from the present study do not rule out this possibility, but

highlight the potential for a distinct origin of dimension switch costs, as interference,

reconfiguration, and cue switching were shown to contribute little to the cost of a dimension

switch. First, a brief background on the literature surrounding task switching and the

various origins of switch costs is presented, as well as a concise outline of the process of

resource allocation in vSTM. The cue-stimulus interval and response-cue interval will be

manipulated independently in Experiments 1a and 1b respectively, while in Experiment 2,

the contribution of cue switching to the overall dimension switch cost will be investigating

using two cues per task. Results are discussed in terms of their impact on previous theories

while also attempting to adapt such theories to account for the observed results.

3.1.2 Origins of interference and reconfiguration

The seminal work by Allport et al. (1994) and Rogers and Monsell (1995) was

responsible for the development of the TSI and TSR accounts respectively (and indeed, the
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revival of interest in task switching). While both studies employed different experimental

paradigms, both observed switch costs, and in some experiments, the same experimental

manipulation was performed. Perhaps one of the key manipulations was that of preparation

time; by extending the duration between response on trial N-1 and presentation of the

stimulus on trial N (i.e., the response-stimulus interval; RSI), participants would have

additional time to prepare for an upcoming switch, either in terms of dissipating interference

or enhanced inhibition on the TSI account, or increased time for reconfiguration on the TSR

account. Interestingly, while both studies did find a reduction in the switch cost with

extended preparation time, switch costs were never completely eliminated, even at the

longest durations (1,110ms and 1,200ms respectively for Allport et al., 1994; Rogers &

Monsell, 1995).

While Allport et al. (1994) hypothesised that the switch cost would not be eliminated

by increased preparation time, highlighting interference as the cause, explanation of the

residual switch cost was more difficult on the TSR account. Rogers and Monsell (1995) had

stated that the switch cost observed in their previous experiments reflected the time course

of reconfiguration of the task set and as such, extending the time for preparation could

reduce the switch cost until it reached zero. However, based on results from the preparation

time experiment, Rogers and Monsell suggested that while preparation facilitated an

endogenous component of reconfiguration, a second, exogenous component was required for

the completion of reconfiguration; this additional component was triggered upon

presentation of the stimulus meaning that the RSI had no influence over this aspect of

reconfiguration. Indeed, this suggestion of a two-stage process has some degree of crossover
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with theories based on interference, such as that associated with response selection/execution

(see e.g., Philipp et al., 2007), further highlighting the potential for a theory on the origin of

switch costs encompassing both the interference and reconfiguration views.

Despite the theoretical advances made by Allport et al. (1994) and Rogers and

Monsell (1995), a major drawback of these studies was the inability to distinguish between

which theory best accounted for the origin of switch costs; the mechanisms associated with

both the TSI and TSR accounts occurred during the RSI and as such, neither of the

paradigms used were able to decompose the influence of interference or reconfiguration on

switch costs. It was the application of explicit cuing to a task switching procedure by Meiran

(1996) that facilitated a more detailed look at the true nature of switch costs. In explicit

cuing, a cue is presented at the beginning of each trial which indicates which task to perform

on the upcoming stimuli. For example, if a single digit is presented on each trial, the cue

‘value’ could indicate the task to be performed is a higher/lower judgement, while the cue

‘parity’ could indicate an odd/even judgement. The most important aspect of this paradigm

however, was that the addition of a cue partitioned the RSI into two distinct intervals: the

response-cue interval (RCI) and the cue-stimulus interval (CSI). This meant that the impact

of interference from the previously relevant task set and the impact of reconfiguration could

be independently investigated. During the RCI, given that the cue has not yet been

presented for the upcoming trial, this time period allows for dissipation of the previously

relevant task set, but not advance preparation. During the CSI, the cue is now known and

while dissipation of the previously relevant task set can still theoretically occur within this

interval, this duration is primarily associated with advance reconfiguration of the
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now-relevant task set.

Meiran (1996) found that when the CSI (termed the cue-target interval by Meiran)

was extended (1,716ms; Experiments 2 and 3), switch costs were lower relative to when a

shorter CSI was used (216ms). Meiran highlighted that the results observed in these

experiments were not confounded with task set dissipation as the RCI was held constant,

stating that these were the first results which could not be explained in terms of proactive

interference. Instead, Meiran suggested that the reduction of switch costs at longer CSIs

reflected a process of advance reconfiguration. However, Meiran also outlined disagreement

with the theoretical account put forth previously by Rogers and Monsell (1995), stating that

it is possible the results obtained by Rogers and Monsell could be explained by the TSI

account. Rogers and Monsell outlined two assumptions for advance reconfiguration to occur;

the first stated that target onset must be predictable and the second that there should be

sufficient time to allow for the completion of reconfiguration. These assumptions were used

by Rogers and Monsell to account for the finding that manipulating RSI within a block did

not result in any significant interaction with sequencing condition (i.e., target onset was

unpredictable with such a manipulation). However, in contrast to this finding, Meiran (1996)

observed a significant interaction between CSI duration and sequencing condition, stating

that this provided evidence that reconfiguration occurred irrespective of whether target onset

was predictable.

While these results suggested that the process of reconfiguration was responsible for

switch costs, later research by Meiran et al. (2000) showed that interference still played a

role. Results of this study showed that when the RCI was varied (132–3032ms), switch costs
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were reduced at longer intervals but again, not abolished. This led the authors to suggest

that three distinct components contribute to the overall switch cost: 1) dissipation of the

previously relevant task set, 2) reconfiguration of the newly relevant task set, and 3) a

residual cost that appears to be unaffected by extentions to preparation time (i.e., both CSI

and RCI). Taken together, the initial research surrounding the origin of switch costs suggests

no consensus was reached; while results are similar in some instances, competing theories

have emerged (e.g., Allport et al., 1994; Rogers & Monsell, 1995), with some reconciliation

(Meiran et al., 2000; see e.g., Meiran, 1996). Indeed, in a review of task switching by

Vandierendonck et al. (2010), the authors discuss the interplay of both interference and

reconfiguration, closing with a discussion of theoretical integration of both accounts (see also

Kiesel et al., 2010).

3.1.3 Cue switch costs

Despite aiding in the development of theories surrounding the origin of switch costs,

the explicit cuing task, like many of the task switching paradigms which had come

previously, suffered from a major issue. In a typical task cuing procedure, task repetitions

result in cue repetitions, while task switches result in cue switches due to the use of a single

cue per task. Thus, it was plausible to assume that a degree of the switch cost in the explicit

cuing paradigm could originate from cue switching processes. In order to combat this issue,

Logan and Bundesen (2003) and Mayr and Kliegl (2003; see also Logan and Bundesen, 2004;

Monsell and Mizon, 2006) employed two cues per tak (hereafter referred to as 2:1 mapping),

which resulted in three sequencing conditions: 1) cue repetitions, wherein both the cue and

task repeat, 2) cue switches, wherein the cue switched but the task repeated, and 3) task
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switches, wherein both the cue and task switched. Thus, the true or corrected task switch

cost lies in the difference between performance on cue switch and task switch trials, while

the impact of a cue switch is the difference between cue repetition and cue switch trials.

Results from these studies showed that cue switches do indeed contribute to the

uncorrected task switch cost, with both Mayr and Kliegl (2003) and Logan and Bundesen

(2003) finding large cue switch costs. Given that neither the interference or reconfiguration

accounts offered explanation for the impact of a cue switch, Mayr and Kliegl (2003)

suggested that advance preparation consisted of the retrieval of stimulus-response (S-R)

mappings from long-term memory (LTM), with a further process involving the

implementation of the task upon presentation of the stimuli. Based on this model, the cost

of a cue switch arose as a result of a change in retrieval path in LTM on cue switch trials,

whereas on cue repetition trials, a benefit was conferred due to priming of the path.

However, Logan and Bundesen (2003) presented an alternative view, suggesting that

participants encode both the cue and stimulus (i.e., compound-cue encoding, see also

Arrington & Logan, 2004a; Logan & Bundesen, 2004; D. W. Schneider & Logan, 2005) and

use this joint cue as a method for retrieval of the correct response from LTM. As such, on

this view, the cost of a cue switch reflects the process of encoding a new cue-stimulus

compound, with cue repetitions conferring a priming benefit.

Later work by Arrington et al. (2007) attempted to dissociate between the encoding

of cues and processing of stimuli by having participants respond to the cue prior to target

presentation and then respond to the stimulus. This was based on the assumption that the

processing of cues and stimuli during the explicit cuing procedure is serial. Thus, if
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dissociated correctly, cue responses should only be impacted by factors that influence cue

encoding, while processing of stimuli should only be impacted by factors that influence

stimulus processing. Upon successful dissociation Arrington et al. observed substantial

switch costs in stimulus responses, independent of cue encoding. The authors take this as

evidence supporting a priming account of cue switch costs, suggesting that some form of

representation is generated once the cue is encoded. This is in direct conflict with the view

that compound-cue encoding could account for the entirety of observed switch costs in the

absence of an endogenous control process (see e.g., Logan & Schneider, 2006; D. W.

Schneider & Logan, 2005).

These two theories of cue switch costs have been further distinguished in an attention

switching study manipulating cue transparency (see Grange & Houghton, 2010), wherein

participants searched for an oval target among other ovals containing different features (e.g.,

border, shaded). Note that in this case, cue transparency is defined as being the extent to

which the cue exogenously aids in generation of representations required for task

performance; that is to say, a square with a thick border (i.e., an iconic cue) is a more

transparent cue than the word “border”. Across two experiments, the authors showed the

presence of cue switch costs with less transparent cues, which was eliminated when iconic

cues were presented (Experiment 1), while also showing that the absence of a cue switch cost

was not due to cue collapsing, wherein pairs of iconic cues could be treated as a single cue

(Experiment 2; see e.g., Monsell and Mizon (2006)). Grange and Houghton state that the cue

switch cost observed for word cues is indicative of a control process required to form

representations in working memory. Interestingly, when both the cue and target switched
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(referred to as an attention switch by Grange and Houghton), costs to performance were

equivalent, with the authors highlighting that such a difference between cue and attention

switching shows that the cost associated with each arise from different origins. This research

further supports the view that an endogenous control process is required when the cue

changes, refuting the suggestion that a compound cue can account for performance on 2:1

mapping tasks (Logan & Bundesen, 2004; see e.g., Logan & Bundesen, 2003).

3.1.4 Visual short-term memory resource allocation

The purpose of the present study is to adopt these methods for investigation of

switch costs in an attempt to determine the underlying nature of resource allocation in

vSTM. At present, two theories of vSTM capacity are dominant within the literature; on one

hand, capacity is believed to be limited to a small number of high resolution representations

(approximately four), with no further information about other items stored above this

capacity limit (see e.g., Luck & Vogel, 1997; Vogel et al., 2001; Zhang & Luck, 2008).

Alternatively, another theory suggests that capacity is limited by a finite memory resource,

distributed to each item in the immediate visual environment, with increasing set szie

reducing the precision of each internal representation (see e.g., Bays et al., 2009; Bays &

Husain, 2008; Wilken & Ma, 2004). While more recently these theories have been examined

via the use of continuous report tasks, initial development of theories surrounding vSTM

capacity utilised change detection tasks which will be used here in an attempt to provide a

more comprehensive investigation of resource allocation.

Previously (see Chapter 2), a change detection paradigm was embedded within a

explicit task cuing procedure with stimulus displays consisting of either bivalent, coloured,
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oriented shapes, or univalent shapes either coloured or oriented (note that colour and

orientation was present on every stimulus display). A cue was presented at the beginning of

each trial indicating which feature dimension was relevant, meaning that in some instances

participants attended to the same dimension on consecutive trials (e.g., colour–colour), while

on others, switched between dimensions (e.g., colour–orientation). It was found that

switching between attending to different feature dimensions relative to attending the same

feature dimension impacted performance across a range of measures to varying degrees

(potentially due to the experimental manipulations used); accuracy becoming poorer, RTs

longer, while sensitivity to change signals was also reduced and the number of change

responses increased. It was also observed that these dimension switch costs do not present

when there is a change in the relevant feature dimension only; such a method means that

participants are free to monitor the entire display for any change, rendering the cue

non-essential and negating any switch cost that may have occurred.

While these dimension switch costs could simply be a manifestation of “standard’ ’

task switch costs discussed previously, in order to fully develop a theory surrounding vSTM

resource allocation, it is important to verify the underlying nature of the process. For

instance, given that much of the research discussed previously implicates an additional,

rather unspecified process which is initiated upon presentation of a stimulus and which

occurs outside the usual endogenous control process associated with reconfiguration, it is

plausible to suggest such a process may in fact be (or contain) vSTM resource allocation.
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3.1.5 The present study

To investigate the origin of these dimension switch costs, the same embedded change

detection switching task used in Chapter 2 (see Experiment 1b) was employed here. In

Experiment 1, the CSI and RCI was manipulated independently (Experiments 1a and 1b

respectively), with the short interval set to 100ms and the long interval to 900ms. If the

dimension switch cost reflects a reconfiguration process, performance on switch trials should

be poorer when the CSI is short, with improvements when the CSI is long. Conversely, if the

dimension switch cost reflects interference, poorer performance on switch trials should be

observed with a shorter RCI, with improvements at longer RCIs. In Experiment 2, two cues

were used per task to investigate the contribution of cue switching to the dimension switch

cost. As such, Experiment 2a had three sequencing conditions, cue repetitions, cue switches,

and task switches. In Experiment 2b cue repetitions were removed.

3.2 Experiment 1: General method

3.2.1 Participants

A sequential Bayes Factor design (see Schönbrodt & Wagenmakers, 2018) was

implemented in Experiment 1 (see Sequential Bayes Factor analysis for more detail). This

resulted in a total of 70 participants completing Experiment 1a and 69 participants

completing Experiment 1b. A binomial test was used to identify participants who did not

perform significantly greater than chance (i.e., 50%); this resulted in the exclusion of six

participants from data analysis in Experiment 1a (final N = 64) and nine participants from

Experiment 1b (final N = 60). Participants were recruited via a combination of the SONA

Participant Recruitment System at Keele University and Prolific (prolific.co). All
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participants were aged between 18 and 60 years (inclusive) and reported normal or

corrected-to-normal visual acuity and normal colour vision. Unique participants were

recruited for each experiment, with participants who had completed any of the experiments

in Chapter 2 also excluded form participation. Recruitment was limited to the UK and USA

and participants were paid a small fee for taking part (Prolific) or awarded course credit

(SONA).

Figure 9
Figure showing example trial procedures in a) Experiment 1a and b) Experiment 1b. Note
that a change occurred in both the relevant and irrelevant feature dimensions. The response
screen (indicated with a question mark) was blank during the each experiment.

3.2.2 Stimuli and materials

Stimuli in Experiment 1 consisted of four circular shapes which displayed both colour

and orientation (see Figure 9). The RGB (red, green, blue) cooridnates for the colours used

in Experiment 1 were: black (0, 11, 16), blue (65, 105, 225), cyan (20, 253, 255), green (0,

250, 3), purple (255, 41, 255), red (255, 54, 31), and yellow (253, 254, 21). The background

colour was light grey (127, 128, 128), with both cues and fixations presented in dark grey

(89, 89, 89). Stimuli were presented within a dark grey frame positioned in the centre of the
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screen. The cues were “col” if colour was the relevant dimension and “ori” if orientation was

the relevant dimension. Both Experiment 1a and 1b were created and run using Gorilla

Experiment Builder (Anwyl-Irvine et al., 2020) with restrictions limiting participation to

those using desktop or laptop computers only.

3.2.3 Procedure

In each experiment, participants made a change or no change judgement in mixed

blocks of trials wherein the relevant feature dimension could repeat (e.g., colour–colour;

repetition) or switch (e.g., colour–orientation; switch). On every trial, an additional change

occurred in the irrelevant feature dimension which participants were instructed to ignore.

Practice blocks in each experiment consisted of 20 pure repetition trials (10 colour only and

10 orientation only), followed by 20 mixed trials. Accuracy feedback was given at the end of

each trial during the practice section only. The main section of the experiment consisted of

eight blocks of 50 trials for a total of 400 trials. Self-paced breaks were given every 50 trials.

In Experiment 1a, the duration of the CSI was manipulated, with the duration of the

RCI manipulated in Experiment 1b. In each of the experiments, the short interval was

100ms, with the long interval 900ms. In Experiment 1a, the RCI was constant at 500ms

across all trials, with the CSI in Experiment 1b also constant at 500ms across all trials. At

the beginning of each trial in Experiment 1a, participants were presented with a fixation

cross for 250ms, followed by presentation of the cue for a further 250ms. If colour was

relevant, the word “col” was presented, with the word “ori” presented if orientation was

relevant. Upon extinction of the cue, a CSI of either 100ms or 900ms followed the cue, with

subsequent presentation of the memory display for 200ms. After a retention interval of
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1,500ms, the test display was presented for 200ms. Upon extinction of the test display,

participants could provide response. Pressing “M” indicated a change response while

pressing “Z” indicated a no change response. Once a response was provided, an intertrial

interval of 250ms followed. The trial procedure for Experiment 1b was identical to that of

Experiment 1a with the following exceptions; the fixation cross presented at the beginning of

each trial was either presented for 50ms (short) or 450ms (long), the CSI was held constant

at 500ms, and the intertrial interval was either 50ms (short) or 450ms (long).

3.2.4 Sequential Bayes Factor analysis

In each experiment, a sequential Bayes Factor analysis with maximal sample size was

implemented, with a minimum sample size of 20 and a maximum sample size of 60. Once

data was collected from the initial 20 participants, a two-stage procedure began. First, a

Bayesian paired-samples t-test was conducted to determine the presence of an overall switch

cost. If the BF10 was greater than 10 or less than 0.1, a second test was then performed; if

not, data collection continued. The second test examined the difference between the switch

cost values for long and short intervals. This was again a Bayesian paired-samples t-test,

with data collection terminated if the BF10 was greater than 10 or less than 0.1; if neither

threshold was reached, data collection continued. After collection of the initial sample, this

two-stage procedure was performed every five participants. On one occasion the BF10 for the

first-stage test in Experiment 1b exceeded 10, however remained within the limits in the

second-stage test. Due to time-constraints placed on data collection in Experiment 1a, prior

to running the final two-stage procedure for samples 55–60, four additional samples were

collected due to possible attrition (i.e., exclusion due to the result of the binomial test). As
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the BF10 at sample size of 60 did not exceed either limit, the additional four samples have

been included in the analysis.

3.2.5 Statistical analysis

Bayesian ANOVAs were used to examine the impact of sequencing condition

(repetition, switch) and trial type (long, short) on accuracy, RT, and two measures from

signal detection theory d′, a measure of sensitivity given as:

d′ = z(h) − z(f), (6)

and criterion (c), a measure of response bias given as:

c = 1
2[z(h) + z(f)], (7)

with z representing the inverse of the normal distribution function, h representing

hits, and f false alarms (see Macmillan & Creelman, 2004). Detection theory measures were

implemented using the sdtt package in R (see Moore, 2022). All Bayesian analysis was

conducted using the R package BayesFactor (see Morey & Rouder, 2021) using package

default priors (a Cauchy distribution centred on zero effect with scale parameter r = 0.707).

Prior to analysis, the first trial in each block was removed as this is neither a repetition or

switch trial. Additionally, the trial immediately following an error was removed prior to

analysis of accuracy, sensitivity, and response bias data; as the nature of an error cannot be

determined, this can make the sequencing condition of the subsequent trial inaccurate, thus
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having the potential to produce unreliable results. Prior to RT analysis, RTs less than 150ms

and 2.5 standard deviations (SDs) above the mean were trimmed per participant, per

condition using the R package trimr (see Grange, 2022). Error trials and trials immediately

following an error were also removed prior to RT analysis due to the potential for post-error

slowing.

3.3 Experiment 1a

In Experiment 1a, the duration of the CSI was manipulated in an attempt to

investigate the contributions of task set reconfiguration to dimension switch costs. Should

reconfiguration be an origin of such costs, reducing the CSI to 100ms should result in greater

switch costs as there is less time for the cognitive system to reconfigure the task set.

Conversely, increasing the CSI to 900ms should lead to reductions to the extent of the switch

cost as there will be more time for the process of reconfiguration to occur; given previous

research, even should the switch cost be reduced, there is an expectation that residual switch

costs will still be present (see e.g., Rogers & Monsell, 1995).

3.3.1 Results

See Table 1 for BFs for all models in Experiment 1a. Means for each measure in

Experiment 1 can be found in Figure 10. Analysis of accuracy data revealed the model

containing sequence only as the best model (BF10 = 8.06), with comparison of this model

against the next best model (sequence + interval, BF10 = 1.34) showing the data are 6.01

times more likely under the model containing sequence only. All other models had a BF10

less than one, therefore model comparison was not conducted. Analysis of RT data also

revealed the model containing sequence only as the best model (BF10 = 10,857.69).
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Table 1
Table displaying Bayes Factors (BF10) for each model across accuracy,
response time, sensitivity, and response bias analyses in Experiment 1a.
The BF10 for each model is in comparison to the null model.

Measure Model BF Error
Accuracy Sequence 8.056 0.037

Interval 0.167 0.019
Sequence + Interval 1.34 0.015
Sequence + Interval + Interaction 0.237 0.023

Response time Sequence 10857.693 0.013
Interval 0.172 0.007
Sequence + Interval 2120.144 0.038
Sequence + Interval + Interaction 6678.776 0.025

Sensitivity Sequence 10.174 0.057
Interval 0.141 0.011
Sequence + Interval 1.37 0.015
Sequence + Interval + Interaction 0.287 0.022

Response bias Sequence 0.333 0.013
Interval 0.453 0.007
Sequence + Interval 0.152 0.014
Sequence + Interval + Interaction 0.033 0.026

Comparison of this model against the next best model (sequence + interval + interaction,

BF10 = 6,678.78) showed the data are 1.63 times more likely under the model containing

sequence only and 5.12 times more likely when compared to the third best model (sequence

+ interval, BF10 = 2,120.14). Analysis of sensitivity data revealed the model containing

sequence only as the best model (BF10 = 10.17), with comparison of this model against the

next best model (sequence + interval, BF10 = 1.37) showed the data are 7.43 times more

likely under the model containing sequence only. Analysis of response bias data revealed a

BF10 less than one for all models. Note that the log-linear correction (see Hautus, 1995) was

used to calculate hit and false alarm rate due to extreme values.
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3.3.2 Discussion

While the results of Experiment 1a revealed varying degrees of evidence for a

dimension switch cost across all measures, the extent of the switch cost does not appear to

be influenced by the length of the CSI. These results suggest that advance reconfiguration

does not contribute to the dimension switch cost observed here and in previous experiments

using the same task (see Chapter 2). It is possible that the origin of the dimension switch

cost lies with interference from the previously relevant task set which will be investigated in

Experiment 1b.
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Figure 10
Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′), and d) response bias
( c) across sequencing condition and interval duration for Experiment 1a and Experiment 1b.
Error bars represent the standard error of the mean.
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3.4 Experiment 1b

In Experiment 1b, the duration of the RCI was manipulated to investigate the

contributions of TSI (i.e., interference, inhibition). As in Experiment 1a, the short duration

was set to 100ms with the long duration set to 900ms. At the shorter RCI, should TSI

contribute to the dimension switch cost, switch costs will increase as there will be less time

for the previously relevant task set to dissipate or be inhibited. Conversely, increasing the

duration of the RCI should provide more time for these processes to occur, thus reducing the

extent of the switch cost. Again, even if reductions to the switch cost are observed, it is still

expected that residual switch costs will be present (see e.g., Allport et al., 1994).

3.4.1 Results

See Table 2 for BFs for all models in Experiment 1b. Analysis of accuracy data

revealed the model containing sequence only as the best model (BF10 = 152.78). Comparison

of this model against the next best model (sequence + interval, BF10 = 21.26) showed the

data is 7.18 times more likely under the model containing sequence only. A further

comparison showed the data were 28.59 times more likely under the model containing

sequence only when compared to the third best model (sequence + interval + interaction,

BF10 = 5.34. Analysis of RT data revealed that all models had a BF10 less than one.

Analysis of sensitivity data revealed the model containing sequence only as the best model

(BF10 = 441.76). Comparison with the next best model (sequence + interval, BF10 = 58.47)

revealed the data are 7.56 times more likely under the model containing sequence only and

32.78 times more likely compared to the third best model (sequence + interval + interaction,

BF10 = 13.48). Analysis of response bias data revealed that all models had a BF10 less than
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Table 2
Table displaying Bayes Factors (BF10) for each model across accuracy,
response time, sensitivity, and response bias analyses in Experiment 1b.
The BF10 for each model is in comparison to the null model.

Measure Model BF Error
Accuracy Sequence 152.782 0.037

Interval 0.141 0.019
Sequence + Interval 21.264 0.014
Sequence + Interval + Interaction 5.345 0.024

Response time Sequence 0.248 0.013
Interval 0.938 0.007
Sequence + Interval 0.259 0.038
Sequence + Interaval + Interaction 0.058 0.026

Sensitivity Sequence 441.765 0.056
Interval 0.139 0.011
Sequence + Interval 58.468 0.015
Sequence + Interval + Interaction 13.475 0.022

Response bias Sequence 0.291 0.013
Interval 0.137 0.008
Sequence + Interval 0.04 0.014
Sequence + Interval + Interaction 0.009 0.025

one. Note that the log-linear correction (see Hautus, 1995) was used to calculate hit and

false alarm rate due to extreme values.

3.4.2 Discussion

While evidence for dimension switch costs was observed for both accuracy and

sensitivity in Experiment 1b, it appears that the extent of these costs was not influenced by

the duration of the RCI. As such, it appears that the extent of dimension switch costs are

not determined by interference or inhibition. Taken together, the results of Experiment 1

suggest that the origin of dimension switch costs is either entirely distinct from that

observed in traditional task switching or that processes associated with the task set on
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switch trials have minimal influence on resource allocation, making these differences barely

detectable. Indeed, it is also plausible that the dimension switch cost is simply a cue switch

cost, which will be investigated in Experiment 2.

3.5 Experiment 2: General method

3.5.1 Participants

A total of 84 participants took part in Experiment 2a with 100 participants

completing Experiment 2b. In Experiment 2a7 a sequential Bayes Factor design was used

(see Sequential Bayes Factor analysis for more detail). A binomial test was used to identify

participants who did not perform significantly better than chance (i.e., 50%). As such, 14

participants were excluded from analysis in Experiment 2a (final N = 70), while 15

participants were excluded from analysis in Experiment 2b (final N = 85). Participants were

recruited via a combination of the SONA Participant Recruitment System at Keele

University and Prolific (prolific.co). All participants were aged between 18 and 60 years

(inclusive) and reported normal or corrected-to-normal visual acuity and normal colour

vision. Participants who had previously completed any of the experiments within Chapter 2

or Experiments 1a or 1b within the current chapter were prevented from participating.

Recruitment was limited to the UK and USA and participants were paid a small fee for

taking part (Prolific) or awarded course credit (SONA).

7 Data from Experiment 2b was obtained as part of a separate study within our group which investigated the
association between depression symtomatology and vSTM in our switching design.
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Figure 11
Figure showing example trial procedure in Experiment 2. Note that a change occurred in both
the relevant and irrelevant feature dimensions.

3.5.2 Stimuli and materials

The stimuli used in Experiment 2 were identical to those used in Experiment 1 (see

Figure 11. The addition in Experiment 2 was that a total of four cues were used. If colour

was relevant, the cue could either be the word “colour” or the word “shade”, whereas if

orientation was relevant, the cue could either be the word “orientation” or the word “angle”.

Both experiments were created and run using Gorilla Experiment Builder (Anwyl-Irvine et

al., 2020), with participation limited to those using desktop or laptop computers only.
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3.5.3 Procedure

In each experiment, participants made change or no change judgements; in

Experiment 2a, both the dimension and cue could repeat (i.e., a cue repetition trial), the

dimension could repeat but the cue could switch (i.e., a cue switch trial), or both the

dimension and cue could switch (i.e., a dimension switch trial). In Experiment 2b, cue

repetition trials were removed. On every trial, an additional change in the irrelevant feature

dimension occurred which participants were instructed to ignore. Practice blocks in each

experiment consisted of 20 pure repetition trials (10 colour only and 10 orientation only)

followed by 20 mixed trials. Accuracy feedback was provided at the end of each trial in the

practice section only. In the main section of the experiments participants completed eight

blocks of 50 trials for a total of 400 trials. Self-paced breaks were given every 50 trials.

At the beginning of each trial, participants were presented with a fixation cross for

750ms, followed by presentation of the cue indicating which feature dimension was relevant

for 500ms. If colour was relevant, the cue could either be the word “colour” or “shade”, while

if orientation was relevant, the cue could either be the word “orientation” or “angle”. A CSI

of 500ms then followed, with subsequent presentation of the memory display for 200ms. A

retention interval of 1,500ms was followed by presentation of the test display for 200ms.

Once the test display was extinguished, participants provided response by pressing one of

two keys; pressing “M” indicated a change response, while pressing “Z” indicated a no change

response. Responses were not time limited and were followed by a 250ms intertrial interval.
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3.5.4 Sequential Bayes Factor analysis

A sequential Bayes Factor analysis with maximal sample size was implemented in

Experiment 2a, with a minimum sample size of 20 and a maximum of 70. The critical test

was a Bayesian repeated-measures ANOVA to determine the impact of sequencing condition

(cue repetition, cue switch, dimension switch) on accuracy data. If the BF10 was greater

than 10 or less than 0.1 (indicative of strong evidence in favour of the alternative and null

respectively; see Lee and Wagenmakers (2013)), data collection was terminated. If neither

threshold was reached, data collection continued with the test performed every five

participants until the maximum sample size was reached.

3.5.5 Statistical analysis

Bayesian repeated-measures ANOVAs were used to examine the effect of sequencing

condition (cue repetition, cue switch, dimension switch) on accuracy, RT, sensitivity, and

response bias measures in Experiment 2a. If the BF10 was greater than or equal to 10, a

Bayesian paired-samples t-test was conducted to determine where the effect lay. In

Experiment 2b, Bayesian paired-samples t-tests were used to examine the difference between

performance on cue switch and dimension switch trials for accuracy, RT, sensitivity, and

response bias. Analysis methods and procedures for data trimming and error removal were

identical to those used in Experiment 1.

3.6 Experiment 2a

In Experiment 2a, the general task was identical to that used in Experiment 1 except

that the trial timings were constant across all trials. The manipulation in this experiment

concerned the use of two cues per task; when colour was relevant, the word “colour” or
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“shade” were presented at the beginning of the trial, whereas when orientation was relevant,

the word “orientation” or “angle” was presented. Thus, this resulted in three sequencing

conditions, cue repetitions, cue switches, and dimension switches; the contributions of a cue

switch can be observed independently from that concerned with dimension switching,

enabling a corrected dimension switch cost to be obtained.

3.6.1 Results

Means from each measure in Experiment 2 can be seen in Figure 12. Analysis of

accuracy data revealed a BF10 = 2.52 indicating anecdotal evidence in support of an effect of

sequencing condition. Analysis of RT data revealed a BF10 = 47.93 indicating very strong

evidence in support of an effect of sequencing condition. A follow-up Bayesian paired-samples

t-test between cue repetition (M = 1,011.15, SD = 289.90) and cue switch (M = 1,007.65,

SD = 264.02) data revealed a BF10 = 0.14 indicating moderate evidence in support of the

absence of a cue switch cost, while further analysis between cue switch and dimension switch

(M = 1,050.17, SD = 298.04) data revealed a BF10 = 35.32 indicating very strong evidence

in support of the presence of a switch cost. Analysis of sensitivity data revealed a BF10 =

9.66 indicating moderate evidence in support of an effect of sequencing condition. Given this

result was essentially at the threshold for post-hoc comparisons as stated in the method,

comparison of sensitivity between cue repetition (M = 1.33, SD = 0.61) and cue switch (M

= 1.29, SD = 0.62) data revealed a BF10 = 0.17 indicating moderate evidence in support of

the absence of a switch cost. Comparison of cue switch and dimension switch (M = 1.16, SD

= 0.62) data revealed a BF10 = 2.82 indicating anecdotal evidence in support of a switch

cost. Finally, analysis of response bias data revealed a BF10 = 1.59 indicating anecdotal
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evidence in support of an effect of sequencing condition. Note that the log-linear correction

(see Hautus, 1995) was used to calculate hit and false alarm rate due to extreme values.

3.6.2 Discussion

Dissociation of the contributions of a cue switch to the uncorrected dimension switch

cost in Experiment 2a provide some evidence that cue switches do not contribute to

dimension switch costs to any great extent. Despite a general lack of evidence supporting an

effect of sequencing condition for most measures, the observation of a substantial corrected

switch cost for RT and lack of cue switch cost support the notion that dimension switch

costs originate from a source other than cue switching. Experiment 2b provides a more

robust estimate of the corrected dimension switch cost.

3.7 Experiment 2b

The task in Experiment 2b is identical to that used in Experiment 2a with the

exception that cue repetition trials were removed. This resulted in an increase in cue switch

and dimension switch trials which will allow a more robust estimate of the corrected

dimension switch cost to be obtained.

3.7.1 Results

Analysis of accuracy between cue switch (M = 0.72, SD = 0.10) and dimension

switch (0.70, SD = 0.09) data revealed a BF10 = 2.57 indicating anecdotal evidence in

support of the presence of a switch cost. Analysis of RT data between cue switch (M =

1,015.30, SD = 347.44) and dimension switch (M = 1,051.68, SD = 423.40) data revealed a

BF10 = 3.01 indicating moderate evidence in support of the presence of a switch cost.

Analysis of sensitivity between cue switch (M = 1.37, SD = 0.71) and dimension switch (M
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( c) across sequencing condition (CR = cue repetition, CS = cue switch, DS = dimension
switch) in Experiment 2. Error bars represent the standard error of the mean.
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= 1.22, SD = 0.61) revealed a BF10 = 24.89 indicating strong evidence in support of the

presence of a switch cost. Finally, analysis of response bias between cue switch (M = 0.34,

SD = 0.30) and dimension switch (M = 0.29, SD = 0.28) data revealed a BF10 = 5.29

indicating moderate evidence in support of the presence of a switch cost.

3.7.2 Discussion

The aim of Experiment 2b was simply to provide a more robust estimate of the

corrected dimension switch cost. While there was a marked reduction in evidence supporting

the presence of a switch cost for RT relative to that found in Experiment 2a, the most

notable result from Experiment 2b is perhaps the substantial evidence observed for a

dimension switch cost in sensitivity, suggesting that participants found discrimination of

change signals more difficult on dimension switch trials.

3.8 General discussion

3.8.1 Summary of results

To recap, Experiment 1 sought to determine the contributions of reconfiguration

(Experiment 1a) and interference (Experiment 1b) to dimension switch costs. Overall, the

results showed that dimension switch costs did not differ as a function of interval duration;

sequencing condition had the greatest impact on performance, with lower levels of evidence

supporting an interaction effect between sequencing condition and interval duration.

Experiment 2 aimed to determine contributions of a cue switch to the dimension switch cost.

Primarily, results from Experiment 2a showed little evidence for an effect of sequencing

condition overall; however, most notably, substantial evidence was found for a dimension

switch cost in RT whereas there was little evidence supporting a cue switch cost. Experiment



MULTIDIMENSIONAL RESOURCE ALLOCATION 131

2b simply provided a more robust estimate of the corrected cue switch cost.

3.8.2 Theoretical impact

As alluded to in the introduction, the switch costs found previously in Chapter 2 may

reflect a misallocation of vSTM resources; on switch trials, these resources may be allocated

to the incorrect feature dimension due to incomplete reconfiguration or persisting

interference of previously relevant task sets. However, the results of the present study appear

to suggest that dimension switch costs have an origin distinct to those found in more

traditional task switching paradigms. Considering the manipulations in Experiment 1,

previous research showed that the extent of the task switch cost can be attenuated by

extending preparation time (see e.g., Allport et al., 1994; Rogers & Monsell, 1995), with this

additional time facilitating either the process of reconfiguration or dissipation/inhibition of a

previously relevant task set. Given the lack of evidence to suggest interval duration impacted

the extent of the dimension switch cost for both CSI and RCI manipulations, this may

suggest that dimension switching relies on a process (or processes) distinct from those

associated with traditional task switching. In addition, it is also possible that there may be

an effect of CSI or RCI on the dimension switch cost, but that the experiments employed

here were not sensitive enough to capture this. This may have been a power issue, however it

may be more plausible to assume that the use of online testing may have impacted the

results of this study more so than sample size.

One possibility is that processes associated with dimension switching are contained

within the exogenous component suggested by Rogers and Monsell (1995) to account for

residual switch costs on the TSR account. Rogers and Monsell suggested that extending
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preparation time (i.e., the RSI) facilitates completion of the endogenous component during a

task switch; however, as switch costs were still observed at longer intervals, the authors

hypothesised that an additional, exogenous component was required to complete

reconfiguration. As this exogenous component is triggered by presentation of the stimuli, it

is unaffected by manipulations of preparation time. While others have suggested alternative

processes distinct to the endogenous component occur prior to stimulus presentation (see

e.g., Meiran, 1996), it would be plausible to assume that a process of resource allocation is

initiated upon presenation of the stimuli and as such, the dimension switch costs observed in

Experiment 1 may directly reflect issues within this exogenous component, namely a

misallocation of resources that cannot be attenuated through increased time for

reconfiguration. Indeed, given that the task itself remained the same throughout (i.e., detect

a change in the relevant feature dimension), it could be suggested that performance on the

paradigm used in Experiment 1 reflects only the exogenous component, with disruption to

associated processes responsible for the observed switch costs.

Perhaps a more refined view can be garnered based on the executive control theory of

visual attention (ECTVA, see e.g., Logan & Gordon, 2001; Logan & Schneider, 2010).

Within this model, certain parameters have been adopted to distinguish between different

aspects of a task set. The parameters β and π represent a measure of response bias and

attentional weighting of stimuli respectively which, broadly speaking, can be considered as

representations of intentional set and attentional set (see also Meiran, 2000). In the present

study, while the attentional set changed when a switch in feature dimension occurred, the

intentional set remained the same on every trial. Thus, it could be suggested that the switch
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cost observed reflects the cost associated with the updating of only the π parameter in terms

of the ECTVA model; in more general terms, dimension switch costs may in fact originate

from processes pertaining to the stimuli (e.g., resource allocation, stimulus encoding), and

not those associated with interference or reconfiguration. While these stimulus-based

processes may still be under executive control (see e.g., Logan & Schneider, 2010), given that

they are only initiated upon presentation of the stimuli, extended preparation time would

have little effect on the disruption of these processes as the result of a switch.

In relation to cue switch costs, while previous research employing a 2:1 mapping (see

e.g., Logan & Bundesen, 2003; Mayr & Kliegl, 2003; Monsell & Mizon, 2006) has shown

substantial contributions of cue switching to the task switch cost, no such cost was observed

in the present study. Rather, there was a general lack of evidence supporting an effect of

sequencing condition in Experiment 2a however, notably substantial evidence was observed

for a dimension switch cost for RT relative to the lack of evidence for a cue switch cost.

Further developing the line of reasoning discussed previously which suggested that only the

attentional set changed, it could be posited that the cue switch cost relates to changes in

intentional set which is why little evidence was found for such a cost in the present study. In

traditional task switching experiments the processes and representations (i.e., the task set)

necessary for performance of the upcoming task require activation when a switch in task

occurs; the timecourse of such activation likely initiated upon sufficient encoding of the cue.

However, in the present study, the cue simply indicated which feature dimension was

relevant, helping to weight attention towards the most relevant information. It may therefore

be plausible that cue switch costs more directly reflect the requirement to update intentional
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set despite the fact that the task itself may remain the same.

In general, the results from Experiment 2, however weak, appear to show that cue

switching does not contribute to dimension switch costs to any great extent. As such, the

results observed may fall more in line with those found by Grange and Houghton (2010),

wherein word cues produced a cue switch cost, but iconic cues did not; yet an equivalent

attention switch cost (here this would be the dimension switch cost) was observed for both

word and iconic cues. These results are indicative of a dissociation between costs—and

therefore potentially processes—associated with switching cues and switching attention.

Indeed, further experimentation is required before drawing any robust conclusions, however

it is pertinent to provide at least some theoretical speculation given that this is one of the

first investigations of cue switching in a dimension switching context.

3.8.3 Conclusion

The present study aimed to determine the relative contributions of manipulations of

the CSI and RCI as well as cue switching to the dimension switch cost. Overall, these results

suggest that dimension switch costs are unaffected by manipulations which have been shown

to influence task switch costs in traditional task switching experiments. Despite the presence

of dimension switch costs, there was little evidence to suggest that such costs are impacted

by the duration of both the CSI or RCI. It is postulated that these results may reflect an

additional, exogenous component associated with the attentional set and unaffected by

reconfiguration and proactive interference. Further results from the present study also show

that cue switching does not contribute to the overall dimension switch cost; while perhaps

more speculative, it is suggested that this may be due to the lack of requirement to generate
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a new intentional set when the task or cue switches however, additional research should be

undertaken before making any robust claims. Taken together, these results highlight an

origin of disruption distinct to that found in traditional task swtiching however, given the

prevalence of these effects within the task switching literature (in particular the CSI), it is

crucial that further, laboratory-based research is conducted.
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4 Chapter 4: Continuous report

This chapter outlines an experiment which made use of a continuous report task embedded

within a task switching paradigm to further investigate the impact of switching between

different feature dimensions. A more nuanced look at potential origins for the dimension

switch cost was achieved via mixture modelling.

4.1 Introduction

4.1.1 Overview

Visual short-term memory (vSTM) is inextricably linked with other forms of

cognition such as attention (see e.g., Awh & Jonides, 2001) thus, our understanding of this

system can help to better understand other functions within the brain and disorders that

may arise. Through the years, a number of different theories regarding the underlying nature

of vSTM have been developed, with two most prominent. One theory suggests that vSTM is

limited in capacity by the total number of high resolution item representations that can be

retained at a given time (see e.g., Zhang & Luck, 2008, 2011), while an alternative theory

suggests that vSTM is limited by a finite memory resource, responsible for the precision at

which items are represented at in memory (see e.g., Bays et al., 2009; Bays & Husain, 2008;

Wilken & Ma, 2004); on this resource account, as the total number of items to be retained

increases, the precision of each internal item representation decreases as less resource can be

allocated to each item. More recently, the role of attention in the allocation of such vSTM

resources has been investigated (see e.g., Dube et al., 2017; Emrich et al., 2017; Henderson et

al., 2020), with the suggestion that attention serves to allocate resources to relevant visual

information. To further examine this suggestion, the present chapter makes use of a novel
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continuous report task; in standard versions of this task, participants are presented with

stimuli (typically coloured shapes) and report the colour of a probed stimulus using a 360◦

response wheel. Here, participants instead reported either the colour or orientation of a

probed stimulus, with the relevant feature either repeating (e.g., colour–colour) or switching

(e.g., colour–orientation) on consecutive trials. This addition of switching introduces an

element of attentional control to a task otherwise devoid of such control. Furthermore, the

fitting of a mixture model to behavioural data will allow a more nuanced look into the origin

of any observed cost to performance.

4.1.2 Initial research on visual short-term memory precision

While much earlier research alluded to a memory resource being responsible for the

fidelity of internal representations (see e.g., Frick, 1988), perhaps the most influential paper

challenging the notion of a fixed-capacity vSTM was that by Wilken and Ma (2004)

(specifically Experiments 7–9). Previous research (see e.g., Luck & Vogel, 1997; Vogel et al.,

2001) had suggested that only a small number high resolution item representations could be

retained in memory at a given time (around 3–4). However, Wilken and Ma (2004)

highlighted issues with the type of high-threshold (HT) model used to arrive at such a

conclusion, namely that items are encoded into memory in the absence of noise. Initial

experiments (Experiments 1–6) examined how well two signal detection theory accounts fit

data obtained from change detection tasks with various manipulations (e.g., set size, target

number), relative to a HT model. However, while both the maximum absolute differences

(MAD) and sum of absolute differences (SAD) models provided a better fit to the data than

the HT model, Wilken and Ma used a continuous report task to more directly estimate the
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noise associated with stimulus encoding. Rather than presenting a second stimulus array,

wherein comparisons are made between stimuli in the first and second displays, Wilken and

Ma presented a probe display, highlighting the location of one of the stimuli in the initial

stimulus display; participants then simply attempted to reproduce the feature value in the

corresponding position from the first stimulus display.

Stimuli consisted of coloured squares (Experiment 7), Gabor patches (Experiment 8),

and Gabor patches with additive spatial frequency (Experiment 9). Set size varied with N =

2, 4, 6, or 8 for the colour and spatial frequency tasks and N = 2, 3, 4, or 5 for the

orientation task. Following presentation of the stimuli, a probe display was presented,

highlighting the location of one of the stimuli; participants responded by either clicking a

location on a 360◦ colour wheel they believed best matched the colour of the stimulus that

appeared in the probed location (colour task) or manipulated a probe Gabor using the left

and right arrow keys to the position they believe best matched the stimulus that appeared in

the probed location (orientation and spatial frequency tasks), pressing spacebar to confirm

response. By calculating the angular deviation—the distance between response and the true

value of the target—Wilken and Ma were able to obtain an estimate of how precisely the

probed item was represented in memory, with error distributions revealing that precision

declined as set size increased. Critically, no substantial reduction in precision was observed

as set size exceeded the supposed capacity limit suggested by previous research

(approximately four items, see e.g., Luck & Vogel, 1997; Pashler, 1988; Vogel et al., 2001).

Wilken and Ma (2004) take this as evidence against a fixed-capacity vSTM, stating that

should capacity be fixed in such a way, performance on this continuous report task should be
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excellent until the upper limit was reached as, according to previous research, all items would

be stored in memory with a high degree of precision (see e.g., Luck & Vogel, 1997). Once the

capacity limit was breached, this would lead to a marked increase in noise, with participants

forced to guess on some trials as only a subset of items would be represented in memory.

4.1.3 Development of the two-component mixture model

Later work by Zhang and Luck (2008) however, seemingly ruled out vSTM models

wherein a larger number of items (than the previously supposed fixed capacity limit) could

be stored at resolutions determined by the total number of items to be encoded. Like Wilken

and Ma (2004), Zhang and Luck (2008) used a continuous report task wherein stimuli were

coloured squares with varying set size (Experiment 1 N = 3 or 6; Experiment 2 N = 1, 2, 3,

or 6; Experiment 3 N = 4; Experiment 4 N = 3). Through the use of standard estimation

techniques, Zhang and Luck extracted two components from the behavioural data obtained

from these experiments Pm representing the probability that an item was represented in

memory and s.d. representing how precisely the probed item was represented in memory.

This model was later formalised as into what is referred to as the two-component mixture

model:

p
(
θ̂

)
= (1 − pu) ϕκ

(
θ̂ − θ

)
+ pu

1
2π

, (8)

where θ represents the value of the probed stimulus (in radians), θ̂ represents the

participant’s response, with pu representing the probability of a random guess. ϕ represents

the probability density of the von Mises distribution with mean zero and concentration
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parameter κ (see e.g., Grange & Moore, 2022). Experiment 1 revealed that while s.d. (i.e.,

precision) did not vary to any great extent between set sizes of three and six, Pm was found

to approximately half when set size increased from three to six. The authors took this as

evidence to rule out other models which suggested that vSTM wherein all items are stored

with resolution a function of the total number of items to be stored. However, Zhang and

Luck also highlighted the possibility that both limited capacity (i.e., fixed slots) and a finite

resource could contribute to performance. To investigate this notion, in Experiment 2 the

authors tested two differing models, the slots-plus-resources and slots-plus-averaging models.

On the slots-plus-resources model, while capacity is still limited to a small number of items,

the resource can be flexibly allocated across these items, meaning a single item could receive

more resource than others, increasing its resolution. The slots-plus-averaging model on the

other hand posits that each of the slots contains a set amount of resource; while each slot

can store a single item, a single item can also be stored in multiple slots, thus increasing its

resolution. Results from Experiment 2 revealed that s.d. increased as set size increased from

one to three, remaining constant as set size increased to six, a prediction made by both

models; as set size is below the supposed upper limit of vSTM capacity, additional resource

is available to be allocated across items. Further results from Experiment 2 revealed that Pm

gradually declined as set size increased from one to three before declining dramatically as set

size increased to six, providing further evidence against models wherein all items would be

stored with precision dependent on set size.

In order to discern which of the slots-plus-resources and slots-plus-averaging models

Experiment 3 made use of a line in the stimulus display cuing participants to a particular
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stimulus. On 70% of trials the cued stimulus was probed (i.e., valid trials), while each of the

remaining stimuli were probed on 10% of trials (i.e., invalid trials), with neutral cues wherein

all four stimuli were probed also included. Zhang and Luck stated that the slots-plus-resource

model predicted that on such a task, the majority of the resource would be allocated to the

cued stimulus causing a substantial difference in s.d. between the different trial types, but

having only a minimal effect on Pm. In contrast, the slots-plus-averaging model posited that

most of the slots would be allocated to the cued item, resulting in substantial differences in

Pm between valid and invalid trials; on valid trials, the probed stimulus would be represented

in memory having been allocated multiple slots however, on invalid trials, the slots would

have been allocated to the wrong stimulus. Furthermore, the authors stated that s.d. would

be reduced on valid trials relative to neutral trials due to the averaging of slots, whereas

there would be no difference between neutral and invalid trials as each stimulus would receive

either one or two slots. The results from Experiment 3 revealed that Pm was vastly increased

on valid trials relative to invalid trials, suggestive of participants allocating more slots to the

cued stimulus, with s.d. reduced on valid trials relative to neutral trials within the range

that would be expected from the averaging of slots. Finally, s.d. was essentially the same on

invalid and neutral trials, which the authors suggest is indicative of resources not being

directed to the cued stimulus only. Zhang and Luck go on to state that these results suggest

that it is unlikely that a lower resolution representation can be generated using minimal

resources, favouring the slots-plus-averaging model over the slots-plus-resources model.

Following from this, Experiment 4 aimed to investigate whether an “all-or-none”

encoding process was required to generate robust memory representations. By presenting a
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masks to interfere with stimulus encoding (110 or 340ms after onset of the stimulus display),

Zhang and Luck sought to determine whether low resolution representations can be

generated; should generation of such a representation be possible, presentation of the early

mask would result in a decrease in s.d.. If not, decreasing the onset of the mask would only

influence Pm, indicating that an all-or-none process is required to generate representations

that are able to survive subsequent sensory input. The results of Experiment 4 revealed that

s.d. did not differ between masking intervals whereas Pm was substantially reduced (but see

van Moorselaar et al., 2015). This led Zhang and Luck to suggest that generation of

representations requires this all-or-none process, seemingly ruling out pure resource models

and models wherein resources can be allocated flexibly across a fixed number of items (i.e.,

the slots-plus-resources model). However, later research (see e.g., Bays et al., 2009; Bays &

Husain, 2008) countered this by highlighting that performance on the continuous report task

could not simply be deconstructed into responses based on a noisy memory representation

and random guessing, but that another critical piece of information was required.

4.1.4 Development of the three-component model

Across a series of experiments, Bays and Husain (2008) used tasks wherein

participants were tested on their memory for orientation and location. In the orientation

tasks, stimuli consisted of oriented arrows, while in the location tasks, stimuli consisted of

coloured squares and set size was varied with experiment (Experiment 1 N = 1, 2, 4, or 6;

Experiment 2 N = 5). The goal was to report the direction of change in a probed stimulus

(i.e., clockwise or counter-clockwise in the orientation task; left or right in the location task).

In Experiment 1, a series of conditions relating to whether an eye movement was required
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were also implemented and controlled via the use of eye-tracking. In the fixation condition,

participants simply fixated on a cross presented in the centre of the display, while in the

saccade condition, participants made a saccade to one item in the display after 1,000ms. In

two further conditions, after 1,000ms one of the stimuli in the display began to flash; in the

saccade-to-cue condition this acted as a cue to saccade to the flashing stimulus, whereas in

the fixation-with-cue condition, this acted as a distractor, with participants required to

continue fixating on the cross. Note that the flashing item in each of these conditions did not

indicate which stimulus would be probed on a given trial. In Experiment 2, the dynamic

allocation of resources was investigated, wherein participants fixated on each of the five

stimuli one at a time, with the display extinguished upon saccade to the final item; four of

the stimuli were presented surrounding the fifth which acted as the final saccade target and

saccade onset was cued with an auditory click.

Results from Experiment 1 revealed that in both the orientation and location tasks,

performance was high with set sizes of one and in the absence of eye movement, with

performance declining as a function of increasing set size. However, unlike the notable

reductions in performance that have been observed in previous studies when set size has

increased past a supposed capacity limit (see e.g., Luck & Vogel, 1997; Vogel et al., 2001;

Zhang & Luck, 2008), no such pronounced reduction was observed here. Comparing response

precision between fixation and saccade conditions, it was found that there were no

substantial difference and interestingly, precision was found to decline even at lower set sizes

in both conditions; the most substantial reduction was observed between set sizes of one and

two, clearly conflicting with previous research suggesting an fixed capacity to vSTM around
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four items (see e.g., Luck & Vogel, 1997). Given these results, Bays and Husain (2008)

suggested that a model wherein a resource is distributed across items, with the precision of

internal representations a function of set size, is a more appropriate model relative to a

model positing a fixed upper limit to vSTM capacity. Indeed, the finding that in the saccade

condition, the target of the saccade was recalled with greater precision when probed than

non-targets in both orientation and location tasks. This is further supported by results from

the saccade-to-cue and fixation-with-cue conditions, wherein the flashing stimulus was

recalled with greater precision when probed relative to when the probe was a non-flashing

stimulus. This suggests that additional resources can be allocated to the target of a saccade,

but also that covert shifts of attention are sufficient to allocate resources. Results from

Experiment 2 revealed that in both the orientation and location tasks, precision was highest

for the final stimulus in the display despite this stimulus not being fixated as the display was

extinguished upon initiation of the saccade to the final stimulus. This is again indicative of

the ability for covert shifts of attention to facilitate resource allocation, with further results

showing that there were no substantial differences between the final fixated stimulus

(stimulus four) and any of the other previously fixated stimuli. Based on these results, Bays

and Husain (2008) stated that given the increased precision for the final stimulus can only

survive a single eye-movement, suggesting that resources are reallocated when the focus of

attention changes.

Extending this work, Bays et al. (2009) used a continuous report task wherein

participants were presented with coloured squares and following a retention interval, were

probed with the location of one of the squares. The goal of the task was to report the colour
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of the probed stimulus using a 360◦ colour wheel. Performance on this task was assessed

across varying set sizes (N = 1, 2, 4, or 6) and stimulus display durations (100, 500, or

2,000ms). Critically, Bays et al. stated that while performance on the continuous report task

had previously been associated with memory for colour (see e.g., Zhang & Luck, 2008), it

also relied on memory for location as well. This led Bays et al. (2009) to extend the

two-component mixture model to a three-component model which states that performance on

continuous report is a probabilistic mixture of; 1) responding to the target value based on a

noisy memory representation, 2) random guessing, and 3) responding to a non-target value

(i.e., the location component). This model is given formally as:

p
(
θ̂

)
= (1 − pu − pn) ϕκ

(
θ̂ − θ

)
+ pu

1
2π

+ pn
1
n

n∑
i

ϕκ

(
θ̂ − θ∗

i

)
, (9)

where θ, θ̂, pu, ϕ, and κ are the same as in the two-component model, with pn representing

the probability of a non-target response and θ∗
i representing the non-target feature values

(see e.g., Grange & Moore, 2022). Results from Bays et al. (2009) revealed that precision

decreased as set size increased, even when set size increased from one to two, similar to the

findings from Bays and Husain (2008) and again conflicting with previous research suggesting

a fixed upper-limit to vSTM capacity. Crucially, the finding that responses were centred on

non-target feature values at a rate greater than what would be predicted by chance and

which increased as set size increased, led Bays et al. (2009) to highlight that memory for

location was also essential for performance of the continuous report task; clearly, the results

from this experiment show that on some trials, memory for location failed, resulting in
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participants reporting the feature value of one of the non-targets (i.e., a swap error).

4.1.5 The role of attention in resource allocation

While the research discussed previously provides some evidence for the role attention

in vSTM resource allocation, additional research has also suggested that vSTM resources

and attention are synonymous or at least that attention mediates the allocation of vSTM

resources (see e.g., Bays & Husain, 2008; Dube et al., 2017; Emrich et al., 2017; Henderson

et al., 2020; Huynh Cong & Kerzel, 2021; Kiyonaga & Egner, 2013; van den Berg et al.,

2012). Such a view therefore suggests that the control of attention is essential for the

appropriate allocation of vSTM resources, but on occasion, attentional control fails; therefore

if attention and vSTM resource allocation are intertwined, such failures would lead to

sub-optimal resource allocation and reduced task performance. Indeed, a study by

Henderson et al. (2020) which investigated how deficits in attentional control as a result of

healthy aging influence vSTM resource allocation provide support for such a view.

Henderson et al. assessed performance on a continuous report task wherein stimuli consisted

of coloured squares (N = 4; baseline condition N = 1), with probabilistic cues (lines) also

presented alongside the stimuli; a total of four cuing conditions were used (N = 4, 100%

valid; N = 2, 100% valid; N = 1, 100% or 50% valid). A further no distractor condition was

implemented wherein a single coloured square was presented with no cue; as such, this meant

that non-cued stimuli were only probed in the 50% valid, one cue condition, meaning

non-cued stimuli could be ignored in other conditions. After presentation of the stimuli, a

probe appeared indicating the location of one of the previously presented stimuli; responses

were provided by manipulating a colourwheel to best match the colour of the probed
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stimulus. Performance was assessed between younger (M = 21.10 years) and older (M =

73.32 years) adults, with the authors hypothesising that response error would be poorer for

older adults while also stating that older adults would have difficultly in allocating resources

when attentional control demands peak.

Results of this study revealed evidence to show that both younger and older adults

were able to utilise the cues to a similar level to flexibly allocate resources, with both groups

reporting stimuli with the same validity (i.e., 50% valid, one cue and 100% valid, two cue

conditions) with similar levels of error, however error was found to be greater overall for

older adults. Additionally, comparison of the 100% and 50% valid one cue conditions showed

greater error in the 50% valid condition, suggesting that participants used the cues to

prioritise resource allocation, with older adults again having a greater response error than

younger adults. In terms of distractors, comparison of performance on the no distractor and

100% valid one cue condition revealed that participants could effectively ignore distractors,

with the older adults group again having greater response error. Taken together, the authors

stated that these results showed that both groups were able to effectively allocate vSTM

resources to relevant information through the use of probabilistic cues. However, fitting of

the three-component model (see Bays et al., 2009) revealed that older adults were less

precise across each of the conditions employed, with older adults also having a greater guess

rate in general. Interestingly, in terms of non-target errors, little evidence was observed

supporting a difference between younger and older adults, with the greatest evidence for a

difference observed in the 50% valid one cue condition (BF10 = 4.03). Further analysis of

this condition revealed that while target colour—but not cued colour—significantly predicted
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response colour in younger adults, both target and cued colour were significant predictors of

response colour in older adults. This suggests that when probed with a non-cued stimulus,

older adults often reported the cued stimulus instead; given that this is the only condition

wherein a non-cued stimulus can be probed, this is the condition wherein attentional control

demands will be greatest. As such, these results are indicative of attentional control deficits,

with Henderson et al. (2020) suggesting that older adults may have found it difficult to

inhibit the cued stimuli when a non-cued stimulus was probed.

4.1.6 Implementing switching within continuous report

While the use of probabilistic cuing and retroactive cuing has been used extensively

to investigate the role of attentional control in vSTM resource allocation, a further, perhaps

more simplistic method for investigation of this role of attentional control is through the use

of task switching. Task switching involves either repeating performance of the same task or

switching between performance of two or more tasks; a consistent finding is that switching

tasks relative to repeating tasks results in a detriment to performance (typically assessed by

error rate and response time) referred to as the switch cost (see e.g., Grange & Houghton,

2014; Kiesel et al., 2010; Vandierendonck et al., 2010). Critically, the difference between

performance of a repetition trial and a switch trial lies in the need to update the task set.

While definitions vary across researcher, a task set is simply a grouping of processes and

representations required to perform a given task (see e.g., Grange & Houghton, 2014 for a

discussion of the varying definitions). When repeating a task, the task set can remain the

same however, when the task switches, new processes and representations are required to

effectively carry out this task. This requirement to update task set forms the basis of many
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theories which attempt to account for switch costs, including two of the most prominent, the

interference and reconfiguration accounts. The interference account is based on research by

Allport et al. (1994) which suggested that when switching tasks, the previously relevant task

set interferes with the newly relevant task set and thus disrupts performance (see also

Allport & Wylie, 2000; Wylie & Allport, 2000), with such disruption leading to increased

RTs and error rates. On the other hand, the reconfiguration account is based on research by

Rogers and Monsell (1995) which stated that switch costs are a product of advance

reconfiguration of the task set; increased RT on a switch trial reflects the time taken to

update the task set while an error reflects a failure of the task set to be sufficiently

reconfigured in order to perform the task.

Crucially to the present study however, task sets can be deconstructed into two

constituent parts, the attentional set and the intentional set. The attentional set facilitates

identification and selection of information relevant to the current task or goal, while the

intentional set facilitates the assignment of stimulus-response mappings to provide

appropriate responses for the current task or goal (see e.g., Kopp et al., 2006; Liefooghe &

Verbruggen, 2019; Rushworth et al., 2005, 2002). Therefore, as implemented in previous

chapters, switching between which feature dimension is relevant on a given trial while the

task remains the same will require the updating of the attentional set only. Previous

research by Meiran and Marciano (2002) implemented a dimension switch within a same or

different judgement task; stimuli were made up of four features, shape, fill, size, and tilt,

however shape and fill were the only relevant features, with participants allocated to one of

three groups. In the dimension group, the task remained the same throughout but the
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relevant feature dimension could change at random. In the decision rule group, the relevant

feature dimension remained the same but the task could change at random. Finally, in the

response mapping group, both feature dimension and task remained the same throughout,

but the response mapping could change randomly. The purpose of this study was to

investigate the influence of advance reconfiguration through manipulation of the

cue-stimulus-interval (CSI; either 170, 470, 1,470, or 2,470ms) on dimension switching.

Importantly, results of Experiment 1 revealed that while increasing the duration of the CSI

resulted in reductions to the switch costs observed for the decision rule and response

mapping groups, this reduction was not found for the dimension group. Such a result not

only follows with results obtained in Chapter 3 (Experiment 1a), but also fits well with a

previous supposition by Rogers and Monsell (1995) based on the finding that residual switch

costs were still observed even when preparation duration was long. The authors stated that

while an endogenous control process was required to update the task set, a further,

exogenous process, triggered upon stimulus presentation was required to complete

reconfiguration, and which was unaffected by manipulations of preparation time.

4.1.7 The current study

The present study aimed to provide a more nuanced insight into the impact of

dimension switching on vSTM resource allocation and the role of attentional control in such

allocation. Previous chapters have examined the impact of dimension switching on change

detection, finding that such switching impacts various measures of performance across a

range of experimental manipulations. However, the cause of this disruption cannot be

ascertained from change detection data, allowing only for speculative conclusions to be
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drawn. Through the use of mixture modelling, the parameters returned can be examined

across sequencing condition, allowing identification of any changes that may occur between

repetition and switch trials, which could provide some information relating to the underlying

cause of the dimension switch costs observed in previous chapters. While some previous

research has investigated the role of attentional control in vSTM resource allocation (see e.g.,

Dube et al., 2017; Emrich et al., 2017; Henderson et al., 2020), these studies have examined

performance across a single feature dimension. This is clearly atypical of everyday life where

stimuli are often multivalent; therefore, the mechanism by which vSTM resources are

allocated to relevant information within a multivalent stimulus has not yet been fully

investigated. As such, by embedding a continuous report task within a dimension switching

design wherein the relevant feature dimension either repeats (e.g., colour–colour) or switches

(e.g., colour–orientation), a more detailed picture of the impact of dimension switching on

vSTM can be obtained. Through the application of mixture modelling (specifically the

three-component mixture model, see Bays et al., 2009), one can determine the impact of

dimension switching on precision, the probability of making target and non-target responses,

and the probability of guessing.

4.2 Experiment 1: General method

4.2.1 Participants

A total of 50 participants completed Experiment 1. Data collection for this

experiment began shortly after restrictions on laboratory-based testing due to the

Coronavirus (COVID-19) pandemic were lifted. As such, protocols pertaining to controlling

the spread of the virus in the laboratory were put in place, reducing the number of datasets
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that could be collected in a given time period. Additionally, previous guidance which had

placed many teaching sessions online vastly reduced the available participant pool.

Participants were aged between 18 and 60 years (inclusive) and self-reported normal or

corrected-to-normal visual acuity and normal colour vision. Recruitment was conducted via

the SONA Participant Recruitment System at Keele University. Participants were awarded

course credit for taking part.

4.2.2 Stimuli and materials

The task used in Experiment 1 was created and run using PsychoPy (Peirce et al.,

2019). Stimuli in Experiment 1 consisted of four coloured, oriented circular shapes (see

Figure 13) and were presented in the centre of a 24.5 inch display (ASUS ROG SwiftTM

PG258Q) at a viewing distance of 52cm. Viewing distance was held constant through the use

of a chin rest. Four colours were selected at random on each trial from a circular portion of

the CIE L*a*b colour space (L = 90, a = 20, b = 38) with a radius of 60. Four orientations

were also selected at random on each trial, with the restriction that each of the colours and

orientations on a given stimulus display had at least 40◦ separation. The RGB coordinates of

the background colour were 170, 171, 171, with cues and fixations crosses presented in black.

The stimuli had a radius of 30 with the bar indicating orientation set to a height of 60. If

colour was the relevant feature dimension, the word “colour” was presented as the cue,

whereas if orientation was relevant, the word “orientation” was presented. On the probe

screen, the locations of three of the stimulus locations were outlined with a black circle, with

the location of the fourth, probed stimulus a solid black circle. When colour was relevant, a

colour wheel of radius 250 and a width of 35 was presented surrounding the locations of the
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four stimuli on the probe screen; when orientation was relevant, this wheel was black. If a

location was selected on either response wheel, the probed stimulus took on the value

selected (e.g., if 180◦ was selected, the probe would display a stimulus oriented to 180◦).

Figure 13
Figure showing example trial procedure in Experiment 1. Note that if orientation was relevant,
the wheel presented on the probe display was black.

4.2.3 Procedure

In Experiment 1, participants were presented with four coloured, oriented circular

shapes and then attempted to reproduce either the colour or orientation of a probed shape

location. The relevant feature dimension could either repeat (e.g., colour–colour; repetition)

or switch (e.g., colour–orientation; switch). After demonstrating three trials each for colour

and orientation, participants performed 10 colour only trials, followed by 10 orientation only

trials. The main experimental section consisted of a total of eight blocks of 50 trials for a
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total of 400 trials. Self-paced breaks were given every 50 trials. At the beginning of each

trial, participants were presented with a fixation cross for 500ms followed by presentation of

the cue for 500ms. If colour was relevant, the word “colour” was presented, whereas the word

“orientation” was presented if orientation was relevant. After a 500ms cue-stimulus interval,

the stimulus display was presented for 200ms. This was followed by a 1,000ms retention

interval and subsequent presentation of the probe screen; the probe screen was presented

until a response was provided. Participants responded by clicking on the location they

believed best matched that of the stimulus in the probed location and pressing spacebar to

confirm response; responses were not time-limited. A 500ms intertrial interval followed

response.

4.2.4 Model fitting and statistical analysis

The three-component mixture model (see Bays et al., 2009) was fit to the data

obtained from Experiment 1 using the R package mixtur (see Grange & Moore, 2022). Prior

to model fitting, response time (RT) trimming was performed; RTs less than 1,000ms and 2.5

standard deviations above the mean were trimmed per participant, per condition using the R

package trimr (see Grange, 2022). Following model fitting, participants with a probability of

guessing (pu) greater than 0.5 were removed from further analysis. This is based on previous

simulations which showed that when pu exceeds 0.5, precision as indicated by the parameter

κ becomes unstable (see e.g., Grange & Moore, 2022). As such, seven participants were

excluded from analysis post model fitting (final N = 43). Bayesian paired-samples t-tests

were then used to investigate whether the parameters returned by the model fitting (κ, pt,

pnt, pu) differed across sequencing condition (repetition, switch); this was done using the R
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package BayesFactor (see Morey & Rouder, 2021), using package default priors, namely a

Cauchy distribution centred on zero effect with scale parameter r = 0.707.

4.3 Experiment 1
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Figure 14
Plots displaying a) mean values for each of the parameters returned by the three-component
model, b) participant-averaged response error (points) with overlaid model fit (solid line), and
c) mean response time across sequencing condition in Experiment 1. Error bars represent the
standard error of the mean.
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4.3.1 Results

Means for each of the parameter values returned by the model fit, RTs, and model fit

can be found in Figure 14. Analysis of κ parameter values between repetition (M = 9.71, SD

= 3.72) and switch (M = 9.06, SD = 3.53) data revealed a BF10 = 0.28 indicating moderate

evidence in support of the absence of a switch cost. Analysis of pt parameter values between

repetition (M = 0.69, SD = 0.15) and switch (M = 0.67, SD = 0.16) data revealed a BF10 =

0.89 indicating anecdotal evidence in support of the absence of a switch cost. Analysis of pnt

parameter values between repetition (M = 0.05, SD = 0.08) and switch (M = 0.08, SD =

0.13) data revealed a BF10 = 3.79 indicating moderate evidence for the presence of a switch

cost; however, note the effect size is small (d = 0.26). Analysis of pu parameter values

between repetition (M = 0.26, SD = 0.11) and switch (M = 0.24, SD = 0.13) data revealed

a BF10 = 0.20 indicating moderate evidence in support of the absence of a switch cost.

Finally, analysis of RT data between repetition (M = 2,565.63, SD = 711.30) and switch (M

= 2,644.93, SD = 744.32) revealed a BF10 = 151.34 indicating extreme evidence in support

of the presence of a switch cost.

Additional analysis on behavioural measures returned from the mixtur package were

also conducted. A Bayesian paired-samples t-test on precision between repetition (M = 0.75,

SD = 0.33) and switch (M = 0.71, SD = 0.35) data revealed a BF10 = 0.34 indicating

anecdotal evidence in support of the absence of a switch cost. Comparison of mean absolute

error between repetition (M = 0.55, SD = 0.21) and switch (M = 0.59, SD = 0.25) data

revealed a BF10 = 17.32 indicating strong evidence in support of a switch cost. Comparison

of resultant vector length between repetition (0.65, SD = 0.15) and switch (M = 0.63, SD =
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0.18) data revealed a BF10 = 1.67 indicating anecdotal evidence in support of a switch cost.

Finally, comparison of bias between repetition (M = 0.00, SD = 0.11) and switch (M = 0.00,

SD = 0.17) data revealed a BF10 = 0.17 indicating moderate evidence in support of the

absence of a switch cost.

4.4 General discussion

4.4.1 Summary of results

The purpose of the present study was to gain a more detailed insight into the impact

of dimension switching on vSTM resource allocation; while results from previous chapters

revealed that dimension switching disrupts change detection performance across a range of

measures and experimental manipulations, the underlying cause of such disruption cannot be

inferred from binary change detection data. By utilising a continuous report task embedded

with a dimension switching design, an element of attentional control was introduced to a

task typically devoid of such a requirement, with mixture modelling then allowing for a more

nuanced examination of the underlying cause of dimension switch costs. Specifically, the

three-component mixture model (see Bays et al., 2009) was fit to the behavioural data,

returning the parameters κ, an estimate of precision, pt, the probability of responding to the

target, pnt, the probability of responding to a non-target, and pu, the probability of random

guessing. In general, comparison of the parameter values returned for repetition and switch

data revealed little evidence in support of a switch cost; indeed, evidence for the absence of a

switch cost was found for κ, pt, and pu, with pnt showing weak evidence in support of a

switch cost.
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4.4.2 Speculation on the notion of resource misallocation

From this study, the most notable result was the finding that dimension switching

impacted the probability of non-target responses, with responses to non-targets increasing

when a dimension switch occurred relative to when the dimension repeated. While clearly

the evidence for this cost is weak, given that it was the only parameter comparison which

yielded any evidence in support of a cost, it is pertinent to offer some discussion of the

implications; it may be the case that the effect does in fact exist however, the methodology

employed in the present study may not have been sufficient to capture it. In previous

chapters it was shown that switching between feature dimensions disrupted performance on a

change detection task across a range of measures. It was suggested that these dimension

switch costs may have been due to a misallocation of resources; when a switch in dimension

occurred, attentional control is required in order to ensure that resources are allocated to the

relevant feature dimension. However, on occasion, such control may mistakenly allocate

resources to the irrelevant feature dimension if the representations (i.e., the attentional set)

required to perform the task has not been sufficiently configured. Such misallocation cannot

be ruled out at present; given the fact that the non-targets used within the modelling in the

present study were taken from the relevant feature dimension, it cannot be determined

whether a misallocation of resources to the irrelevant feature dimension occurred. In an ideal

situation, the values of the irrelevant feature dimension would be used as the non-target

values, allowing for investigation of resource misallocation. However, in the present

experiment, this was not possible; while orientation may have influenced responses when

colour was relevant (i.e., participants mistakenly report the orientation of a stimulus on the
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colour wheel), colour could not influence responses when orientation was relevant as

responses were provided on a black wheel.

However, if in theory we take the finding of increased non-target responses in the

present study to be a true effect, it is possible that dimension switching causes an increase in

the misbinding of visual information (i.e., binding of features and location, see e.g., Siegel &

Castel, 2018). In simple terms, misbinding causes the feature values from two different

stimuli becoming swapped in memory; for example, if presented with multiple coloured

stimuli, the colours of two of the stimuli may swap due to misbinding, resulting in an

incorrect response if one of these stimuli are probed (i.e., a swap error reflected by the pnt

parameter in the three-component mixture model, see e.g., Bays et al., 2009). Much previous

research has shown that the binding of visual features into an integrated object requires

attention (see e.g., Rensink, 2000; Treisman, 1988; Treisman & Gelade, 1980; Treisman &

Schmidt, 1982; Wheeler & Treisman, 2002). Feature Integration Theory (FIT, see e.g.,

Treisman, 1988; Treisman & Gelade, 1980) is perhaps one of the most well-known theories of

attention, which states that features from different dimensions can be processed in parallel

however, combining these features into an integrated object representation requires focused

attention. Building on this, later work by Wheeler and Treisman (2002) led to the suggestion

of a two-stage model of vSTM wherein the capacity of each feature dimension is independent

and limited to a small number of items, but that binding between feature dimensions is only

possible via attention. A number of later studies have also provided support for the view

that attention is required for feature binding (see e.g., Hyun et al., 2009; Wan et al., 2020;

Zokaei et al., 2014), however, it has also been suggested that feature binding is a passive
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process, requiring no additional attention (Allen et al., 2012; see e.g., Allen et al., 2006).

Based on the view that the binding in vSTM requires attention, it is therefore

plausible that the disruption caused by dimension switching is due to both binding and

dimension switching being attentionally demanding processes, resulting in misbinding. In a

review of working memory and attention, Oberauer (2019) outlines the notion of attention as

a limited resource, positing three differing classes based on what the attentional resource will

be utilised for; storage and processing, perception and maintenance, and controlling attention.

In the latter of these classes, Oberauer suggests that it is not attending to a stimulus which

depletes the resource, but rather the top-down control of attention. For instance, attention

may be automatically drawn to several stimuli during a visual search task however, the

attentional resource is not required for such occurrences. Rather, controlling the action of

allocating attention to stimuli of interest in service of task performance consumes the

attentional resource, with such control limited to a single process at any given time. This

therefore gives rise to two possibilities concerning the dimension switching design employed

in the present study (and those in previous chapters): 1) the process of switching feature

dimensions depleted the attentional resource to such a level that little was available for

feature binding or 2) incomplete configuration of the attentional set meant that the action of

feature binding could not be controlled by attention. In either case, such a view negates the

requirement of a memory resource as the source of limitations in vSTM, as on this account

the limiting factor concerns the ability to control a given action (e.g., allocation of

perceptual attention) rather than a limitation based on the allocation of a memory resource.
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4.4.3 On the general absence of dimension switch costs

To reiterate, the discussion of misbinding simply serves to provide some theoretical

speculation based on the view that the increased probability of non-target response on

switch trials observed in the present study is a true effect. Evidence for this effect in the

current study is weak, therefore it is appropriate to reinforce that the previous discussion is

purely speculative and not based on substantial evidence. While some studies in previous

chapters found substantial costs to performance due to dimension switching in change

detection tasks, this is not the case in the present study. Thus, it may be that

methodological factors may determine the impact of dimension switching on vSTM

performance. Perhaps the most notable difference between the change detection tasks used

previously and the continuous report task used in the present study is the vast difference in

the task to be performed. In change detection, the memory and test displays are compared

with participants then tasked with deciding whether a change occurred. In the continuous

report task however, the relevant feature value must be retained in memory and

subsequently reproduced using a 360◦ response wheel. Indeed, it could be suggested that

continuous report tasks are somewhat analogous to a retrocued visual search task (see e.g.,

D. Schneider et al., 2018 for an example of a retrocued visual search task) wherein search

takes place following extinction of the stimulus display and requires reproduction of the

target value rather than simple identification of the location of the target. As such, it is clear

that continuous report tasks are more difficult to perform than change detection, which may

have had an influence over the presentation of a switch cost.

It should also be highlighted that the observation of dimension switch costs observed
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in previous chapters were associated with change detection tasks wherein a constant change

in the irrelevant feature dimension occurred. While there are clearly no changes in either

relevant or irrelevant feature dimensions within continuous report tasks, the implementation

of this irrelevant change ensured that the cue was essential for correct performance of the

task. Experiments 1a and 2a in Chapter 2 utilised a change in the relevant feature dimension

only, with results revealing little evidence in support of a dimension switch cost. It was

suggested that this was due to the cue being non-essential for correct performance of the

task; as the change only occurred within the relevant feature dimension, it was plausible that

participants monitored the entire stimulus display for any change, removing the need to

switch between feature dimensions and negating any potential switch costs that may have

arisen. As such, it is possible that participants performing the continuous report task simply

attended to the entire stimulus display, with performance reflecting the difficulty of the task

rather than the influence of dimension switching.

In line with this rationale regarding the difficulty of the tasks, while responses in

change detection are binary (change or no change), there are 360 different responses that can

be provided in the continuous report task. Given the high number of possible responses and

hence decisions on which value best reflected that presented in the probed location, it is

possible that this may have influenced performance on the continuous report task,

particularly if a whole-display monitoring technique was adopted. Responses in change

detection are based on comparison of noisy representations of the memory and test displays,

with increases in set size increasing the noise associated with the decision (see e.g., Palmer,

1990). In contrast, responses in continuous report are based on a noisy representation of the
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memory display and subsequent selection of one of 360 different response options. As such,

the number of response options may contribute to the noise associated with decision making,

thus adding to the notion that performance on the task used in the present study reflected

task difficulty and not the influence of dimension switching.

In a similar manner, the method of response was also vastly different between the two

tasks. In the change detection tasks, responses were provided by pressing one of two keys on

a keyboard; first responses were final and providing a response progressed the experiment. In

contrast, responses in the continuous report task involved clicking a location on a 360◦ wheel

with a mouse-driven pointer and pressing spacebar to confirm response. Therefore, given the

larger number of response options and the ability to select multiple options before confirming

an answer in the continuous report task would result in more substantial RTs. Thus, it could

be plausible that any impact of dimension switching is short-lived, perhaps only being

observable up to a specific duration after stimulus extinction. Indeed, mean RT from the

present study showed that participants took well over 2,000ms in each condition (repetition

M = 2,565ms; switch M = 2,644ms), while mean RT within the change detection studies in

Chapter 2 only ever exceeded 1,100ms once (Experiment 3a, switch).

4.4.4 Recommendations for future research

Based on the limitations discussed previously, future research using similar methods

would benefit from developing a continuous report switching paradigm wherein responses on

each of the tasks are provided in the same manner. Given that responses in the task used in

the present study were either provided on a colour wheel or a solid black wheel, it was not

possible to investigate resource misallocation to the irrelevant feature dimension on switch
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trials. By standardising the method of response across both tasks, the irrelevant feature

dimension could therefore be used as non-target feature values for input to the

three-component model and thus provide insight into the notion of resource misallocation; if

the rate of non-target response increases on switch relative to repetition trials, this would

indicate a misallocation of resources to the irrelevant feature dimension on switch trials. It

may also be of benefit to investigate the influence of the retention interval on performance.

As alluded to previously, it is possible that the influence of dimension switching is

short-lived, with previous research also suggesting that the rate of misbinding increases with

longer retention interval durations (see Pertzov et al., 2017). However, to dissociate between

the influence of the retention interval and the influence of dimension switching on

misbinding, this would require a task that includes blocks of pure repetition trials for both

colour and orientation, with further blocks containing mixed trials (i.e., colour and

orientation trials). Comparison of pnt parameter values between these different sequencing

conditions would enable dissociation of the impact of the retention interval and dimension

switching on misbinding.

4.4.5 Conclusion

In general, the results of the present study suggest that dimension switching has little

impact on precision, probability of target and non-target response, and guess rate as

evidenced by comparisons between sequencing conditions for parameter values from the

three-component mixture model (see Bays et al., 2009). Some speculative discussion based

on the observation of weak evidence in support of a switch cost for non-target response rate

suggests that dimension switching may cause an increase in misbinding. However, the
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evidence is by no means substantial enough to draw any robust conclusions. There are also a

number of methodological differences between the present study and those which have

previously found dimension switch costs which may indicate the unsuitability of the

continuous report task for capturing such costs. As such, the final empirical chapter will

adapt a change localisation task and modelling implemented by Shin and Ma (2017) in an

attempt to identify the cause of dimension switch costs.
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5 Chapter 5: Change localisation

This chapter outlines experiments which made use of a change localisation task embedded

within a task switching paradigm to further investigate the impact of switching between

different feature dimensions. Computational modelling was also used within this chapter with

the aim to provide some form of explanatory account of dimension switch costs.

5.1 Introduction

5.1.1 Overview

A central aspect of the debate surrounding visual short-term memory (vSTM)

capacity concerns whether items consisting of multiple features (e.g., colour, orientation) are

stored in memory as integrated object representations or as groups of individual features (see

e.g., Alvarez & Cavanagh, 2004; Luck & Vogel, 1997; Vogel et al., 2001; Wheeler & Treisman,

2002). An object-based storage view would suggest that when a task-relevant feature of an

item is encoded then so too are other, task-irrelevant features on the same item. Evidence

for such a view comes from research examining whether the addition of irrelevant features

results in reduced performance tasks probing vSTM (see e.g., Luria & Vogel, 2011; Vogel et

al., 2001), with findings from these studies revealing no impact on performance, leading the

authors to suggest that irrelevant features are not encoded. However, it has also been

highlighted that these findings can be accounted for by independent pools of memory

resource for each feature dimension (see e.g., Hyun et al., 2009; Shen et al., 2013; Wheeler &

Treisman, 2002). More recently, explanatory modelling of the processes of memory encoding

and resource allocation by Shin and Ma (2017) using change localisation have enabled a

greater insight into the notion of separate resource pools.
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Previous chapters have explored the impact of dimension switching on vSTM

performance across a range of experimental paradigms. Chapters 2 and 3 showed consistent

and sometimes substantial disruptions to change detection performance when required to

switch between feature dimension relative to repeating feature dimension, which was

suggestive of a failure of attentional control to allocate resources to the relevant feature

dimension. While the disruption caused by dimension switching was much more muted in

Chapter 4 which used a continuous report task, there was weak evidence suggesting that

participants responded with the feature of a non-probed stimulus at a greater rate when the

feature dimension switched relative to when it repeated. To build upon these findings, the

present chapter aims to develop an explanatory account of the impact of dimension

switching on vSTM performance. The present study makes use of the methods and

modelling (specifically Model 4) applied by Shin and Ma. A change localisation task will be

used wherein participants determine the location of a change; crucially, the feature

dimension in which the change occurs will either repeat (e.g., colour–colour) or switch (e.g.,

colour–orientation). By developing variations of the model used by Shin and Ma, it is hoped

that this will help identify any differences in encoding and resource allocation that may

occur between repeating and switching dimensions, having the potential to highlight the

origin of disruption in dimension switching.

5.1.2 Object- vs. feature-based storage

Perhaps two of the most influential papers surrounding the notion of objects as the

unit of storage in vSTM were those conducted by Luck and Vogel (1997; outlined in detail in

Chapter 1) and Vogel et al. (2001). These studies employed similar methodologies, using
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change detection tasks with various stimulus types and experimental manipulations. In one

such task (Experiment 11, Vogel et al., 2001), participants were presented with coloured and

oriented bars (set size N = 2, 4, or 6) and instructed to remember the colour of the bars only

(colour condition), the orientation of the bars only (orientation condition), or both the colour

and orientation of the bars (conjunction condition). Therefore, at a given set size, the

memory requirement on the conjunction condition was double that in either the colour or

orientation conditions. Results from this experiment revealed that while set size impacted

performance, with increasing set size reducing performance, there was no effect of condition

or any interaction between set size and condition. This meant that participants were able

retain the colour and orientation of a stimulus in memory as easily as retaining the colour or

orientation only, which the authors stated provided evidence supporting the notion of an

object-based vSTM.

However, the authors then stated that the lack of disruption in the conjunction

condition could be explained based on an inability to selectively attend the relevant feature

dimensions in the colour and orientation conditions. That is to say, if both features are

encoded into memory irrespective of their relevance to the task, there is no need to invoke

the notion of integrated object storage in vSTM. To test this, Experiment 12 of Vogel et

al. removed information pertaining to the irrelevant feature dimension by making the stimuli

all vertical in the colour condition and all black in the orientation condition; the conjunction

condition remained the same as that used in Experiment 11. Results of this experiment

revealed a similar picture to that found previously; despite removing variation in the

irrelevant feature dimension, performance on the conjunction condition was on par with
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performance on the single-feature conditions. To ensure that participants did not obligatorily

encode the irrelevant feature despite the lack of variation, a further experiment (Experiment

13) was conducted which eliminated irrelevant information entirely, with the coloured stimuli

having no discernible orientation and the orientation stimuli having no discernible colour;

again, the conjunction task remained the same as previous. Results from this experiment

again revealed that performance between all three conditions was at a similar level; if

performance in the previous experiments had been based on the number of features that

were automatically encoded into memory, a notable increase in performance should have

been observed between the colour and orientation conditions relative to the conjunction

condition given the latter required encoding of double the number of features. Given that

this was not the case, the authors stated that these results are in line with the view of

integrated object storage in vSTM.

Extending these findings, in Experiment 14 Vogel et al. also tested whether this

object-based view of vSTM held for stimuli defined by a greater number of features, namely

colour, orientation, size, and the presence or absence of a gap. Thus, in the single-feature

conditions, participants only needed to retain information pertaining to the relevant feature

(e.g., colour), whereas in the conjunction condition, all four features present on each stimulus

needed to be retained. Results from this experiment revealed no effect of condition or

interaction between condition and set size; this meant that despite the vast number of

features needed to be retained in the conjunction condition, participants were able to do this

as well as retaining the four features needed in the single-feature conditions. While the

authors stated that this provided further support for object-based storage, they also
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highlighted that the results could still be explained by independent memory stores for a

given feature dimension. To investigate this possibility, a final experiment was conducted

wherein stimuli were made up of an inner square of one colour and an outer square of a

different colour (i.e., a colour–colour conjunction). Two single-feature conditions were used

wherein either the inner squares or outer squares were presented; in the conjunction, both

squares were presented. In the conjunction condition, a change occurred in the inner square

on 25% of trials, on the outer square 25% of trials, and on the remaining 50% of trials there

was no change. In keeping with the results of previous experiments, while set size did

influence performance, there was no effect of condition or interaction between set size and

condition. As such, the authors stated that participants could retain double the number of

colours in the conjunction condition relative to the single-feature conditions, further

supporting the view of integrated object storage in vSTM.

This object-based view of vSTM storage fits well with pre-established views on more

general short-term memory and attention, with the chunking together of separate pieces of

information (e.g., digits, letters) prevalent in verbal short-term memory for instance (see e.g.,

Miller, 1956). Additionally, previous research concerned with the distribution of visual

attention (see e.g., Duncan, 1984; Egly et al., 1994; Vecera & Farah, 1994) has suggested

that the grouping of features within an integrated object representation confers a benefit to

performance. For instance, Egly et al. (1994) used a task wherein participants were cued to

a location on one of two parallel rectangles. In the valid condition, the target square

appeared in the same location as the cue; in the invalid, same-object condition, the target

appeared in a different location within the same rectangle that had been cued on that trial;
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and in the invalid, different-object condition, the target appeared in a location on the

rectangle which had not been cued on that trial. In both invalid conditions, the target was

equidistant from the cue meaning that there was no confound with increased spatial

separation. Results from this experiment revealed that performance was faster in the valid

condition relative to both invalid conditions, with performance on the invalid, same-object

condition being faster than performance on the invalid, different-object condition. Given

that the cues and targets were of equal distance in both invalid conditions, these results

clearly show that a benefit to performance is conferred when cue and target remained within

the same object (however, see also Chen et al., 2020).

However, despite the rather elegant links between the notion of object-based storage

in vSTM and other research on short-term memory and attention, later failings to replicate

findings from Luck and Vogel (1997; see e.g., Olson and Jiang, 2002; Wheeler and Treisman,

2002; Xu, 2002), as well as research which has highlighted that stimulus complexity also

factors into vSTM storage (see e.g., Alvarez & Cavanagh, 2004), cast doubt on such a view.

For example, Wheeler and Treisman (2002) attempted to replicate the finding from Luck and

Vogel (1997) that two values from the same feature dimension (colour) could be retained in

memory as easily as a single feature value (see also Vogel et al., 2001). Wheeler and

Treisman used bicoloured stimuli with varying arrangements of the inner and outer squares

(set size N = 3) and found significant differences between performance with each of the

bicoloured stimulus types and a control condition wherein three single coloured stimuli were

presented (Experiment 1). Wheeler and Treisman (2002) took these findings as evidence

showing that performance on this task was limited by the total number of features present
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on the display, providing evidence against an object-based vSTM storage. However, it should

be noted that these experiments differ from the colour–colour conjunction task used by Luck

and Vogel (1997) wherein set size varied (N = 2, 4, or 6), arrangement of the inner square

was not manipulated, and memory for simple features (i.e., squares with a single colour) was

tested by presenting either the inner or outer squares separately. As such, Wheeler and

Treisman (2002) conducted a further experiment (Experiment 2) which more closely

replicated the task used by Luck and Vogel (1997). Results revealed a significant effect of

condition, indicating that performance was worse with the single coloured squares relative to

the bicoloured squares, providing further evidence against the notion of object-based storage,

with Wheeler and Treisman (2002) stating that capacity for colour is limited by the number

of colours presented and not the total number of objects.

In addition, work by Alvarez and Cavanagh (2004) highlighted that visual

information (i.e., the features that make up a given object and that are encoded into

memory) plays a role in the amount of information that can be stored in memory at a given

time. While the stimuli used by Luck and Vogel (1997) and Vogel et al. (2001) were

relatively simple coloured and/or oriented shapes, Alvarez and Cavanagh used coloured

squares, letters, Chinese characters, polygons, shaded cubes, and Snodgrass images (simple

drawings of objects, e.g., a pen; see Snodgrass and Vanderwart (1980)). The authors

estimated information load using a visual search task, assuming that with increased

information load the time taken to process these items will increase. Following this, a change

detection task was then used to estimate capacity for each of the stimulus types using

Pashler’s (1988) k measure. In the visual search task, a target stimulus was presented in the
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centre of the display followed by a search array (set size N = 4, 8, or 12) containing stimuli

from the same class; on 50% of trials, the target was present in the search array. In the

change detection task, a memory display was presented (set size N = 1, 3, 5, 7, 9, 11, 13, or

15) with stimuli from the same class, followed by a brief blank and then the test display. A

change occurred on 50% of the trials. Results revealed that coloured squares had the largest

capacity (N = 4.4), followed by letters (capacity N = 3.7), Snodgrass images (capacity N =

2.6), Chinese characters (capacity N = 2.8), polygons (capacity N = 2), and finally shaded

cubes (capacity N = 1.6). Alvarez and Cavanagh stated that these results clearly show that

the total number of stimuli that can be retained in memory is dependent on the complexity

of the stimulus, and not solely on the total number of stimuli present. This, the authors

argued, conflicts with theories of vSTM which postulate that capacity is based soley on the

number of objects. In addition, the authors also highlighted that it is apparent given the

inverse relationship between information load and capacity found in this study that

additional capacity must be directed to more complex stimuli, a view which on face value

appears more compatible with resource models of vSTM (see e.g., Bays et al., 2009; Bays &

Husain, 2008; Wilken & Ma, 2004) than discrete capacity models (see e.g., Luck & Vogel,

1997; Vogel et al., 2001; Zhang & Luck, 2008).

5.1.3 Resource models of visual short-term memory

A consequence of research which postulates that vSTM stores integrated objects (see

e.g., Luck & Vogel, 1997; Vogel et al., 2001) is that the capacity limitation of vSTM was held

to be dependent on the total number of items that needed to be retained in memory at a

given time. Perhaps the most influential of these papers is that by Luck and Vogel (1997),
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wherein the authors estimated memory capacity using a change detection task and Pashler’s

(1988) k measure. With varying set size, the authors observed that performance up to set

sizes of four did not differ to any great extent however, once set size exceeded four, they

found systematic reductions in performance; therefore, Luck and Vogel took this as evidence

to suggest that vSTM is limited in capacity to approximately four items. However, a later

study by Wilken and Ma (2004) challenged this view, employing both change detection tasks

(Experiments 1–6) and continuous report tasks (Experiments 7–9). In the latter of these

tasks, participants were instructed to retain the feature values for presented stimuli in

memory (set size N = 2, 4, 6, or 8 for the colour and spatial frequency tasks; 2, 3, 4, or 5 for

the orientation task); the location of a single stimulus was then probed with participants

required to report the feature value they believed best matched the stimulus in that location.

This was achieved by clicking on a 360◦ colour wheel in the colour task or by manipulating a

probe Gabor patch using the left and right arrow keys in the spatial frequency and

orientation tasks. By calculating the angular deviation between participant response and the

true value of the target, an estimate of how precisely the probed feature was held in memory

could be obtained. Findings from this experiment revealed that as set size increased, the

precision of participant response decreased (i.e., responses became further from the target

value). Wilken and Ma took this as evidence against a capacity limitation of vSTM defined

by the total number of items that could be retained simultaneously, arguing that if such a

view was correct, precision on the continuous report task should have been excellent until

memory capacity was full, at which point a substantial reduction in precision should be

observed. Rather, the authors stated that the supposed upper-limit to vSTM capacity

espoused by previous research (see e.g., Luck & Vogel, 1997; Vogel et al., 2001), may simply
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be artefactual, reflecting the increase in noise associated with encoding and storage as set

size increases.

However, later work by Zhang and Luck (2008) revivified the notion of a

fixed-capacity vSTM through a series of experiments using continuous report with coloured

squares and varying set sizes (Experiment 1 set size N = 3 or 6; Experiment 2 set size N =

1, 2, 3, or 6; Experiment 3 set size N = 4; Experiment 4 set size N = 3). From the data

obtained from these experiments, Zhang and Luck were able to extract two parameters using

standard estimation, Pm, representing the probability that an item was held in memory and

s.d., representing the precision at which the probed item was represented in memory. Results

from Experiment 1 revealed that when set size doubled from three to six, Pm was found to

have halved whereas no notable difference was observed in s.d.. The authors took this as

initial evidence in support of a model of vSTM wherein only a small number of

high-resolution item representations can be stored at a given time, suggesting that vSTM

contained a fixed number of slots, each able to retain a single item representation at a high

resolution (i.e., the slots model). Subsequent experiments (Experiments 2 & 3) aimed to

examine predictions of two distinct versions of the slots model. The models in question were

the slots-plus-resource and slots-plus-averaging models. On the slots-plus-resources model,

both slots and resources are held as having an influence over performance, with resources

allocated to an item within a slot to generate a robust representation. Conversely, the

slots-plus-averaging model states that when set size does not exceed the capacity limit, items

can be stored across multiple slots, thus increasing the representational strength of that item;

responses are based on an average of the representations stored across multiple slots. Zhang
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and Luck stated that crucially, on both models, while set size remains below the capacity

limit, precision will be improved relative to when set size exceeds capacity. Indeed, results

from Experiment 2 track with this, revealing that precision was reduced as set size increased

from 1–3 and then plateaued at set sizes of six, whereas Pm was found to decline as set size

increased from 1–3, with a marked reduction at set sizes of six.

While both models were able to account for these results, Experiment 3 utilised

probabilistic cuing in an attempt to further examine their predictions; on valid trials (70% of

trials), a cue was presented simultaneously with the stimulus display indicating a single

stimulus that would then be probed. On invalid trials (10%), one of the non-cued stimuli

were probed, with neutral trials making up the remainder wherein all four stimulus locations

were cued. Thus, the slots-plus-resources model would predict that the majority of resources

will be allocated to the cued item which will result in a notable difference in precision

between valid, invalid, and neutral trials, whereas Pm will be mostly unaffected. In contrast,

the slots-plus-averaging model would predict that the majority of slots will be allocated to

the cued item resulting in a notable difference in Pm on valid and invalid trials, with a

difference in s.d. only observable between valid and neutral trials due to averaging. Results

from this experiment revealed a larger Pm on valid relative to invalid trials, with s.d.

reduced on valid relative to neutral trials, in line with predictions made by the

slots-plus-averaging account. Zhang and Luck took this as evidence against a resource model

of vSTM, stating that these results appear to show that low-fidelity representations cannot

be generated by allocating a minimal amount of memory resource. Extending these results,

Zhang and Luck further investigated the possibility that low resolution representations can
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be generated by employing a visual mask, arguing that if representations become more stable

over time, an early mask (110ms) will reveal the presence of low resolution representations

(i.e., reduced s.d.); conversely, if the generation of robust representations requires an

“all-or-none” process, masking would only impact Pm. Presentation of the early mask was

found to influence Pm only (however, see van Moorselaar et al., 2015), leading the authors to

suggest that low resolution representations are not sufficient to survive further visual input,

providing further evidence against resource models of vSTM.

Despite this work by Zhang and Luck (2008) seemingly providing substantial evidence

ruling out resource models of vSTM, subsequent research by Bays and colleagues (see e.g.,

Bays et al., 2009; Bays & Husain, 2008) highlighted a number of issues surrounding the way

in which these conclusions were reached. Notably, Bays and Husain (2008) highlighted that

Zhang and Luck (2008) did not control for eye movements which, based on the results from

Bays and Husain (2008), play a crucial role in biasing precision in favour of the targets of a

fixation. In Experiment 2, Bays and Husain presented participants with five stimuli

(coloured squares in the location task; coloured, oriented arrows in the orientation task),

requiring each to be fixated in turn; successful fixation was indicated by an auditory click.

Once a saccade to the final target was detected, the screen was blanked and a subsequent

display probing a random stimulus from the initial display, either displaced horizontally

(location task) or rotated (orientation task), with participants required to indicate the

direction of the displacement or rotation. Findings from this experiment revealed that when

the final stimulus in the display was probed (the non-fixated stimulus), performance was

highest in both the location and orientation tasks. There were also no significant differences
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found between performance on any of the previously fixated stimuli, nor did fixation

duration have any influence on performance. Bays and Husain took this as evidence to

suggest that the high degree of precision observed for a saccade target can only survive a

single eye-movement. This not only suggests that covert shifts of attention are sufficient to

generate high resolution item representations, but also that resources appear to be recovered

from a previously fixated item and redistributed to a new target.

Extending this work further, Bays et al. (2009) used a continuous report task almost

identical to that used by Zhang and Luck (2008) with the exception of differing set sizes (N

= 1, 2, 4, or 6) and varying display durations (100, 500, or 2,000ms); Bays et al. also

monitored eye movements during performance of the task. The purpose of this experiment

was to investigate precisely what is required when performing the continuous report task;

while the continuous (colour) report task had previously been thought of as simply a test of

memory for colour, Bays et al. (2009) highlighted that memory for location was also a

crucial requirement of the task. A mixture model developed by Zhang and Luck (2008; the

two-component model, given formally below) on the basis of their results stated that

responses on the continuous report task were a probabilistic mixture of responding to the

target based on a noisy memory representation and random guessing:

p
(
θ̂

)
= (1 − pu) ϕκ

(
θ̂ − θ

)
+ pu

1
2π

, (10)

where θ represents the target value, θ̂, participant response (in radians), pu, the probability

of random guessing, and ϕ, the probability density of the von Mises distribution which is the
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circular analogue of the normal distribution with a mean of zero and standard deviation κ

(see e.g., Grange & Moore, 2022). However, such a model fails to account for the influence of

memory for the location of a given stimulus, instead collating all failures of memory for

location as random guessing. Indeed, results from the experiment conducted by Bays et al.

(2009) revealed that as set size increased, precision was reduced, even as set size increased

from one to two. More crucially however, responses were found to be centred on non-target

feature values more often than would be expected based on chance performance alone, with

this also increased with set size increases. Thus, not only do these results track with that

found previously by Wilken and Ma (2004) in terms of reductions in precision as set size

increases even below the supposed capacity threshold, but also that memory for location is a

crucial component for successful performance of the continuous report task. As such, Bays et

al. (2009) extended the two-component model developed by Zhang and Luck (2008) to also

account for location (the three-component model):

p
(
θ̂

)
= (1 − pu − pn) ϕκ

(
θ̂ − θ

)
+ pu

1
2π

+ pn
1
n

n∑
i

ϕκ

(
θ̂ − θ∗

i

)
, (11)

where θ, θ̂, ϕ, and κ the same as in the two-component model, with pn representing the

probability of a non-target response and θ∗
i (θ∗

1, ..., θ∗
N) representing the non-target values.

5.1.4 Modelling resource allocation and encoding

While the development of the two- and three-component models has led to significant

advances in our understanding of vSTM as well as the development of further models (see

e.g., Bays, 2014; Schurgin et al., 2020; van den Berg et al., 2012), these mixture models only
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provide a descriptive account of performance. While descriptive models provide a description

of a given behaviour or function, they do little in terms of explaining the underlying causes

of the behaviour or function. Explanatory models on the other hand offer an explanation of

the way in which a given behaviour or function occurred, allowing for identification of

processes of interest (e.g., resource allocation) or, more critically for the present research,

processes disrupted by a given variable (e.g., dimension switching). More recently, Shin and

Ma (2017) developed several explanatory models which allow for a closer examination of the

processes of resource allocation and memory encoding in an attempt to determine the nature

of vSTM storage (i.e., features or objects). In total, Shin and Ma developed six models,

three wherein memory resources were shared between feature dimensions (the shared

resource models; Models 1–3) and three wherein each feature dimension had an independent

pool of resources (the independent resource models; Models 4–6). Additionally, the irrelevant

feature dimension was encoded in two of the models from each class, with this dimension

either being ignored or influencing decisions, with a third model from each class not

encoding the irrelevant feature dimension at all. Each of these models were fit to data

obtained from change localisation tasks wherein participants were presented with coloured

and/or oriented stimuli (set size N = 4 or 8) and instructed to respond with the location

they believed a change occurred. In Condition A, stimuli were either coloured or oriented, in

Condition B, stimuli were coloured and oriented with both feature dimensions being relevant

(i.e., a change could occur in either colour or orientation), in Condition C, stimuli were

coloured and oriented, with one relevant and one irrelevant feature dimension, with

Condition D identical to Condition C with the exception that a change also occurred in the

irrelevant feature dimension. Prior to discussing the results of Shin and Ma (2017), it would
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first be pertinent to outline the steps involved with the model, encoding, inference, and

response probability. In the interest of clarity, the discussion will concerned with stimuli

defined by a single feature dimension.

Encoding. On each memory display, feature values of stimuli are represented by a

vector of values θ (θ1,. . . ,θN) with N representing set size. In Shin and Ma, each θi was

drawn from a uniform distribution. Between the memory and test displays a single stimulus

chosen at random changes, denoted L (location), with the magnitude of that change drawn

from a uniform distribution and denoted ∆. Stimuli on each test display are represented by φ

(φ1,. . . ,φN ), where φi = θi with the exception of the changing stimulus which is φL = θL + ∆.

On both memory and test displays, memory of each stimulus will be noisy, with such noise

independent across stimulus displays and stimuli; on the memory display, this is represented

by the measurement vector xi (x1,. . . ,xN), while on the test display this is represented by yi

(y1,. . . ,yN). Measurement vectors for both stimulus displays are drawn from a von Mises

distribution such that the measurement vector for the memory display is given by:

p(xi|θi) = 1
2πI0 (κx,i)

eκx,icos(xi−θi), (12)

while the measurement vector for the test display is given by:

p(yi|φi) = 1
2πI0 (κy,i)

eκy,icos(yi−φi), (13)

where most crucially, κx,i and κy,i are concentration parameters (see e.g., Grange & Moore,
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2022), with I0 representing the modified Bessel function of the first kind of order zero.

The precision at which a feature on a given stimulus was encoded was modelled based

on the amount of memory resource allocated to that stimulus and feature. For a given

stimulus location (i) in a display (J ′
array), the memory resource allocated to this stimulus

was free to vary across stimulus displays (memory and test), locations, and trials. Therefore,

J ′
array,i was drawn from a gamma distribution with mean J̄ ′ and scale parameter τ

independently across stimulus displays, stimuli, and trials such that:

(
J̄ ′, τ

)
= Jarray,i (14)

Following this8, the precision values are then converted into concentration parameters

(κarray,i) via:

Jarray,i = κarray,i
I1 (κarray,i)
I0 (κarray,i)

, (15)

where I1 represents the modified Bessel function of the first kind of order one.

Inference. During the inference stage, the vector representing noisy memory for the

initial memory display is compared with the vector representing noisy memory for the test

display. The model then determines the location in which a change occurred by selecting the

8 Prior to this step, Shin and Ma (2017) multiply J ′
array,i by the bottom-up factor α such that

Jarray,i = αJ ′
array,i. However, given that Shin and Ma provide little information regarding the α parameter

and in the interest of simplicity, it was held constant at one in the modelling within the current study,
negating any influence it may have had.
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location with the greatest difference between the memory and test displays. Given the noisy

measurement vectors x and y which represent the memory and test display respectively, the

posterior probability of a change in a given stimulus p(L|x, y) independent of other locations

is computed such that:

dL = I0 (κx,L) I0 (κy,L)
I0

(√
κ2

x,L + κ2
y,L + 2κx,Lκy,Lcos (xL − yL)

) , (16)

where dL represents the likelihood ratio of the decision variable, with the location (i.e.,

stimulus) in which dL is highest being chosen.

Response probabilities. Monte Carlo simulations were used to calculate the probability

of a correct response for combinations of parameters (ω) and a given change magnitude

(p(correct|∆, ω)). 1,280 samples of Jx,i and Jy,i were generated for the memory and test

displays using the same procedure as that detailed in the encoding section. Concentration

parameters (κx,i and κy,i) were then computed from these measurement vectors using

Equation 15, with measurement vectors x and y then drawn from von Mises distributions

using the given concentration parameters. Means for each of the von Mises distributions was

held constant at zero with the exception of one measurement from the y vector which had a

mean of ∆. The decision rule was then assessed, with correct responses providing an

estimate of the probability of a correct response for a given combination of parameters and

change magnitudes.

In Experiments 1 and 2, Shin and Ma ruled out all three models wherein resources
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are shared across feature dimensions. Experiment 1 tested Models 1 (irrelevant dimension

encoded and influences decision) and 2 (irrelevant dimension encoded but ignored) in

Conditions A and C. Both models predicted lower performance on Condition C (bivalent

stimuli, one relevant feature, one un-changing irrelevant feature) relative to Condition A

(univalent stimuli) given that they share resources between feature dimensions. Analysis of

behavioural data revealed no effect of condition, going against the predictions of the models.

Formal model comparison between Models 1 and 2 and Models 5 and 6 (which would also

predict lower performance in Condition C relative to Condition A) using Akaike’s

Information Criterion (AIC) revealed higher values for Models 1 and 2 (lower AIC value

determines best model), leading to their rejection. Subsequently, Experiment 2 ruled out the

last remaining shared resource model, Model 3; this experiment compared performance on

Condition B (two relevant features) and Conditon C. Given resources are shared on this

model and irrelevant features are not encoded, Model 3 would predict that performance on

Condition C would be markedly better than performance on Condition B given there is no

need for resources to be shared to the irrelevant feature dimension; given both features are

relevant in Condition B, the resources would be shared across features. Again, analysis of

the behavioural data revealed no effect of condition, rejecting the predictions made by Model

3; subsequent formal model comparison revealed the AIC for Model 3 was greater than that

for both Models 5 and 6.

Previous work by Shin and Ma (2016) had already eliminated the possibility of Model

6 wherein each feature dimension had a separate pool of resources but where the irrelevant

feature dimension was not encoded. They used change localisation tasks (Experiments 1 and
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2) wherein participants were presented with coloured, oriented stimuli (set size N = 4) and

tasked with indicating the location of a change (both colour and orientation changed on each

trial). The relevant feature dimension remained constant throughout the first 30 trials,

followed by a trial wherein the change in the irrelevant feature dimension was also probed

following a probe of the relevant feature change (e.g., in Experiment 1, the colour change

was also probed on the 31st as the orientation change was probed on the initial 30). A total

of 31 trials were used with 600 participants providing analysable data. Results from

Experiments 1 and 2 revealed that performance was poorer on the online version

(Mechanical Turk) of the task relative to the lab-based study and that performance on the

irrelevant trial was not significantly different from chance performance. The authors stated

that the chance performance observed in these experiments could be the result of a number

of factors, such as the requirement to first respond to the relevant feature before responding

to the irrelevant feature. This would therefore result in a delay, potentially causing

degradation of any representation of the irrelevant feature held in memory. Shin and Ma also

highlight a study by Marshall and Bays (2013) which stated that while irrelevant features

are automatically encoded when attending a relevant feature on a multivalent stimulus, there

is no requirement to maintain this irrelevant feature in memory. Therefore, Shin and Ma

(2016) argued that any representation of the irrelevant feature may have been discarded

upon trial completion. Furthermore, the authors also suggest that irrelevant features may

only be encoded when set size is lower however, what appears to be the most likely

explanation (and indeed, the least difficult to verify) is that participants may not have been

aware that they were required to respond differently. Shin and Ma found that on trial 31 in

Experiments 1 and 2, 36% and 41% of participants respectively, responded to the irrelevant
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feature change with the same response given for the relevant feature change.

To combat these issues, Shin and Ma (2016) conducted a further two experiments

making use of the continuous report task; participants were briefly (100ms) presented with a

single coloured, oriented stimulus and tasked with reporting the colour or orientation of the

stimulus after a retention interval (1,000ms). As in Experiments 1 and 2, the relevant feature

dimension remained constant throughout the first 30 trials; on trial 31, the irrelevant feature

dimension was instead probed of the relevant feature dimension (e.g., in Experiment 3,

colour was probed instead of orientation as orientation had been probed on the initial 30

trials). Therefore, a total of 31 trials were used and a further 600 participants naive to the

irrelevant manipulation were recruited. Given that Model 6 (Shin & Ma, 2017) predicts the

irrelevant feature dimension is not encoded, response distributions on trial 31 would be

uniform as participants would simply be guessing. Results from Experiments 3 and 4 of Shin

and Ma (2016) revealed that this was not the case; while error rate certainly increased for

the irrelevant feature dimension relative to the relevant feature dimension (although the

difference in trial numbers should also be taken into account when comparing error

distributions), the response distributions were significantly different from uniform9.

In Experiment 3 of Shin and Ma (2017), the remaining two models were tested,

Models 4 and 5; both models assume independent resource pools for each feature dimension

and while both also assume the irrelevant feature dimension is encoded, the irrelevant

feature dimension is taken into account during the decision process in Model 4 and ignored

9 Shin and Ma (2016) note that there is a substantial difference between performance for colour and
orientation (particularly noticeable from the response distributions on p. 6) reinforcing the notion that colour
is a more salient or perhaps, as stated by Shin and Ma, more ecologically necessary.
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in Model 5. These models were tested in Condition C (bivalent stimuli, one relevant feature,

one unchanging irrelevant feature) and Condition D (bivalent stimuli, one relevant feature,

one irrelevant feature that could change). Six total sessions were conducted in Experiment 3,

three wherein colour was relevant and three wherein orientation was relevant: two sessions of

Condition C, two sessions of Condition D wherein one change occurred, and two sessions of

Condition D wherein two changes occurred. Results from this study failed to provide

evidence supporting one model over the alternative; while Model 5 would predict similar

performance across all three conditions as the irrelevant feature dimension is ignored during

decision making (the only difference between Models 4 and 5), Model 4 predicts that

performance would be highest on Condition C, followed by one-change Condition D, and

finally, two-change Condition D. However, analysis of behavioural data did not reveal any

support for Model 4 but based on the experiment reported in Shin and Ma (2016), the

authors highlighted the potential for the irrelevant feature to be stored in memory at a low

resolution. Critically, calculation of AIC for Models 4 and 5 revealed that Model 4 was

preferred however, Shin and Ma (2017) highlight that they were unable to determine with

any certainty that the irrelevant feature dimension is considered during the decision process,

going on to state that if it is considered, it has little influence on decisions as it is encoded at

such a low resolution.

5.1.5 The current study

The primary purpose of the present study is to investigate how dimension switching

impacts the resource allocation and memory encoding processes by adapting the methods

employed by Shin and Ma (2017). Previous chapters made use of tasks which probe vSTM
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(e.g., change detection, continuous report) embedded within dimension switching designs to

investigate the role of attentional control in the allocation of vSTM resources. In these

experiments, participants performed the same task (e.g., change detection), while the

relevant feature dimension either repeated (e.g., colour–colour) or switched (e.g.,

colour–orientation). These tasks were based on more traditional task switching experiments

wherein participants switch between two (or more) tasks; a consistent finding from the task

switching literature shows that when there is a requirement to switch between tasks,

performance is reduced relative to when the task repeats, a detriment referred to as the task

switch cost (for comprehensive reviews on task switching, see Grange & Houghton, 2014;

Kiesel et al., 2010; Vandierendonck et al., 2010). While findings from the initial change

detection experiments (see Chapters 2 & 3) showed a notable impact of dimension

switching—which was not attenuated by manipulations of trial timings—use of the

continuous report task and mixture modelling in Chapter 4 revealed little evidence to

suggest dimension switching impacted performance. The present work serves to further these

findings by introducing a dimension switching element into the change localisation task; thus,

on a given trial, the relevant feature dimension may repeat (e.g., colour–colour) or switch

(e.g., colour–orientation). Crucially, Model 4 of Shin and Ma (2017) was adapted to develop

six models; while in some models, parameters were fixed across sequencing condition

(repetition, switch), in others they were free to vary across sequencing condition. Therefore,

should differences in the model parameters between repetition and switch trials be observed,

this would indicate a source of disruption as a result of dimension switching. For instance,

differences in J̄ and/or τ parameter values between sequencing conditions would indicate

that dimension switching impacts the precision at which the relevant features are encoded
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into memory, while differences in p would indicate an impact of dimension switching on

resource allocation, specifically if higher p values are observed on switch trials, this would

suggest a misallocation of resources to the irrelevant feature dimension.

5.2 Experiment 1: General method

5.2.1 Participants

A total of 40 participants took part in Experiment 1a and a further 40 participants

took part in Experiment 1b. Participants were aged between 18 and 60 years (inclusive) and

self-reported normal or corrected-to-normal visual acuity and normal colour vision.

Participants who took part in Experiment 1a were prevented from participating in

Experiment 1b. Participation was again limited to those within the United Kingdom and

United States of America. Recruitment was conducted via the use of Prolific (prolific.co) and

participants were paid a small fee for taking part.

5.2.2 Stimuli and materials

Both experiments were created and run using Gorilla Experiment Builder

(Anwyl-Irvine et al., 2020) with participation restricted to those using desktop or laptop

computers only. The make-up of the tasks used in Experiment 1a and 1b were almost

identical. Stimuli in both experiments consisted of four coloured, oriented circular shapes

(see Figure 15). Colours were selected at random on each trial from a circular portion of the

CIE L*a*b colour space (L = 70, a = 20, b = 38) with a radius of 60. Four orientations were

also selected at random on each trial. In both experiments, a change occurred on every trial,

with the magnitude of a change in Experiment 1a being either 5, 15, 30, or 45◦, while in

Experiment 1b the magnitude of a change was either 5, 30, 60, or 90◦; both the changing
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stimulus and change magnitude was selected at random on each trial with equal probability.

The RGB coordinates of the background colour were 127, 128, 128, with cues and fixation

crosses presented in white. If colour was the relevant feature dimension, the word “col” was

presented as a cue, whereas if orientation was the relevant feature dimension, the word “ori”

was presented.

Figure 15
Figure showing example trial procedure in Experiment 1. Note that the same stimuli were
used in both Experiment 1a and 1b with the only difference between experiments being the
change magnitudes used. The change in this example occurred in the top-right stimulus.

5.2.3 Procedure

In both experiments, participants were presented with four coloured, oriented circular

shapes with the goal of the task to determine in which of the four shapes a change occurred.

Crucially, the change could either occur in colour or orientation on a given trial meaning
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that the relevant feature dimension could repeat (e.g., colour–colour) or switch (e.g.,

colour–orientation). A change occurred on every trial, however the magnitude of the change

varied across trials. The practice section of the experiments consisted of 10 colour only trials,

10 orientation only trials, and 20 mixed trials, with the main section of each experiment

consisting of a total of eight blocks of 50 trials for a total of 400 trials. Self-paced breaks

were given every 50 trials. At the beginning of each trial, a fixation cross was presented for

250ms followed by presentation of the cue for 500ms; if colour was relevant, the word “col”

was presented, while if orientation was relevant, the word “ori” was presented. This was

followed by a 250ms cue-stimulus-interval and then subsequent presentation of the memory

display for 200ms. A retention interval of 1,000ms was then followed by presentation of the

test display for 200ms. Upon extinction of the test display, participants were able to provide

a response. Response was provided by pressing one of four keys: if the change was believed

to have occurred in the top-left, response was provided with the “A” key; top-right, response

was provided with the “K” key; bottom-left, response was provided with the “Z” key;

bottom-right, response was provided with the “M” key. Responses were not time-limited and

were followed by a 500ms intertrial interval.

5.2.4 Model fitting and statistical analysis

Six variants of Model 4 as implemented in Shin and Ma (2017) were used in the

model fitting for both experiments; these are named the full model, fixed model, fully free

model, free j-bar model, free tau model, and the free p model. All models had some variation

of the parameters J̄ , τ , and p, with variation based on whether the parameters were free to

vary across sequencing condition (repetition and switch) and feature dimension (colour and
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orientation). The p parameter relates to the amount of resource allocated to the irrelevant

feature dimension; as such, it is not included in Shin and Ma’s single feature dimension model

discussed in the Introduction. The p parameter is initially drawn from a random uniform

distribution and in simple terms, constricts the precision at which the irrelevant feature

values represented, with the model fit routine subsequently finding the optimal p values to

implement. Thus, if colour is relevant for example, precision would be determined by:

(
J̄col, τcol

)
= Jcol, (17)

whereas orientation would be determined by:

(
pJ̄ori, τori

)
= Jori (18)

The parameter composition for each of the models is as follows: full model, J̄ , τ , and p could

vary across sequence, but only J̄ and τ could vary across dimension; fixed model, no

parameter could vary across sequence and only J̄ and τ could vary across dimension; fully

free model, all parameters could vary across sequence and dimension; free j-bar model, J̄

could vary across both sequence and dimension, τ could vary across dimension only, and p

was fixed across both sequence and dimension; free tau model, J̄ could vary across dimension

only, τ could vary across both sequence and dimension, and p was fixed across both sequence

and dimension; free-p model, J̄ and τ could vary across dimension only, while p could vary

across sequence only.
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For each model, a genetic algorithm was used to fit the model to the experimental

data of each individual participant separately. Genetic algorithms are conceptually based on

evolutionary genetics, wherein a population evolves over generations, with reproduction

based on the fitness of a mate (see e.g., Lewandowsky & Farrell, 2011, pp. 90–95). In the

present study, 256 parameter sets (i.e., the initial population) were generated for a given

model. Each of these parameter sets were then used as input to simulate the given model,

with 5,000 trials simulated per parameter sets. For each of the 256 parameter sets,

log-likelihood was calculated indicating the quality of the model fit. Following this, noise was

added to the initial parameter values to generate a new generation of parameters, which were

then used as input to simulate the model in question; once complete, log-likelihood was

calculated for each of these parameter sets. The initial population and the new generation

were then bound and the best fitting parameter values (determined by log-likelihood) were

retained, with population size reducing with each generation. Thus, the updated population

size (α) would be given as α = σβ, where β represents the previous population size, and σ

the reduction rate which was set to 0.98 in the present study. Prior to noise being added to

the remaining parameter values, the level of noise was manipulated, reducing with each

generation to narrow in on the optimal parameter values. This process repeated for a total of

128 generations with the remaining parameter sets being those providing the best fit based

on the model fit routine in question. Akaike’s Information Criterion (AIC)—a method for

estimation of the quality of a model based on prediction error which is penalised by the total

number of parameters—was calculated for each of the models and is given by:
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AIC = −2L̂L + 2p, (19)

where LL represents the log-likelihood of the model fit and p the number of parameters in

the model. The AIC for each model was calculated for each participant with the overall

model AIC calculated by summing participant-level AIC, with the preferred model being

that with the lowest AIC value overall.

Bayesian ANOVAs were used to examine the impact of sequencing condition

(repetition, switch) and change magnitude on accuracy and RT. Further Bayesian ANOVAs

were used to investigate the impact of sequencing condition and feature dimension on

parameter values within the full, fully-free, free j-bar, free-tau, and free-p models. In

instances where a parameter only varied across either sequencing condition or feature

dimension, Bayesian paired-samples t-tests were used. All Bayesian analysis was conducted

using the R package BayesFactor (see Morey & Rouder, 2021) and used package default

priors (a Cauchy distribution centred on zero effect with scale parameter r = 0.707). Prior

to response time (RT) analysis, RTs slower than 150ms and 2.5 standard deviations above

the mean were trimmed using the trimr package (see Grange, 2022). Given the expectation

that performance would be poorer at smaller change magnitudes (i.e., 5◦, 15◦), no trials were

removed on the basis of errors, nor were any participants excluded from analysis based on

not performing significantly different than chance.
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5.3 Experiment 1a

The aim of Experiment 1a was to provide an initial look at how dimension switching

may impact resource allocation and memory encoding processes. This was achieved through

modifying the change localisation task used by Shin and Ma (2017) to also include trials

wherein the dimension repeated (e.g., colour–colour) or switched (e.g., colour–orientation).

In addition, six models were fit to the behavioural data obtained from the change

localisation task.

5.3.1 Results

Behavioural analysis. See Table 3 for BFs for all models in the accuracy and RT

analysis in Experiment 1a. A Bayesian ANOVA examining the effects of sequencing

condition (repetition, switch) and change magnitude (5, 15, 30, 45) on accuracy data

revealed the model containing the main effect of change magnitude only as the best model

(BF10 = 1.42e+36), with the data being 4.43 times more likely under this model than the

next best model (sequence + change magnitude; BF10 = 3.22e+35), and 75.30 times more

likely than the third best model (sequence + change magnitude + interaction; BF10 =

1.89e+34). The model containing sequence only showed evidence in support of the null, thus

no comparisons were made. To determine where the effect of change magnitude lay, three

Bayesian paired-samples t-tests were conducted. The first compared performance between

change magnitudes of 5◦ (M = 0.25, SD = 0.07) and 15◦ (M = 0.30, SD = 0.07) revealing a

BF10 = 242.02 indicating extreme evidence in support of a difference in performance. The

second compared performance between change magnitudes of 15◦ and 30◦ (M = 0.39, SD =

0.11) revealing a BF10 = 19,722,904.14 indicating extreme evidence in support of a difference
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Table 3
Table displaying Bayes Factors (BF10) for each model across accuracy and response
time analyses in Experiment 1a. The BF10 for each model is in comparison to the
null model.

Measure Model BF Error
Accuracy Sequence 0.171 0.038

Change magnitude 1.42e+36 0.009
Sequence + Change magnitude 3.22e+35 0.012
Sequence + Change magnitude + Interaction 1.89e+34 0.015

Response time Sequence 0.2 0.013
Change magnitude 0.044 0.005
Sequence + Change magnitude 0.009 0.03
Sequence + Change magnitude + Interaction 0.001 0.017

in performance. The final t-test compared performance between change magnitudes of 30◦

and 45◦ (M = 0.46, SD = 0.14) revealing a BF10 = 1,006.91 indicating extreme evidence in

support of a difference in performance. A further Bayesian ANOVA examining the effects of

sequencing condition and change magnitude on RT data revealed that all models showed

evidence in support of the null.

Formal model comparison. Log-likelihoods and AICs for each of the models in

Experiment 1a can be found in Table 4. AIC was calculated for each of the six models,

revealing the fixed model as the best (AIC = 19764), with this model being the best for

77.50% of participants. The second best model was the free tau model (AIC = 19841; 10% of

participants), followed by the free j-bar model (AIC = 19845; 12.50% of participants), the

free p model (AIC = 19882), the full model (AIC = 20028), and finally the fully free model

(AIC = 20184). Despite the fixed model being the preferred model on the basis of the model

comparison, analysis on parameter values for each model was still undertaken and will be

reported in turn, preceded by results of the behavioural analysis.
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Table 4
Table displaying variability of parameters across
sequencing condition and feature dimension,
log-likelihood, and AIC for each model in Experiment 1a.
A ⊕ symbol indicates that the parameter was free to
vary across sequencing condition, while a ⊖ symbol
indicates that the parameter was not free to vary across
feature dimension.

Model J̄ τ p LL AIC

Fully free ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ -9,611.86 20,183.72
Full ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ -9,613.84 20,027.68
Free j-bar ⊕ ⊕ ⊖ ⊕ ⊖ ⊖ -9,642.72 19,845.44
Free tau ⊖ ⊕ ⊕ ⊕ ⊖ ⊖ -9,640.45 19,840.90
Free p ⊖ ⊕ ⊖ ⊕ ⊕ ⊖ -9,661.00 19,882.00
Fixed ⊖ ⊕ ⊖ ⊕ ⊖ ⊖ -9,681.77 19,763.54

Note. Here, the resources dedicated to colour and
orientation are held to vary, hence why J̄ and τ are free
to differ across feature dimension in all models.

Full model. Within the full model, the J̄ and τ parameters could vary across both

feature dimension and sequencing condition, while the p parameter could only vary across

sequencing condition. A Bayesian ANOVA conducted on J̄ parameter values revealed

evidence in support of the null for all models. Similarly, a Bayesian ANOVA conducted on τ

parameter values revealed evidence in support of the null for all models. As the p parameter

could only vary across sequencing condition, comparison of p values for repetition (M = 0.64,

SD = 0.34) and switch (M = 0.64, SD = 0.36) revealed a BF10 = 0.17 indicating moderate

evidence in support of the absence of a switch cost for the p parameter.

Fixed model. The J̄ and τ parameters could only vary across feature dimension in the

fixed model, while he p parameter was not allowed to vary across either feature dimension or

sequencing condition. Comparison of J̄ parameter values between colour (M = 5.65, SD =

4.26) and orientation (M = 5.93, SD = 5.32) revealed a BF10 = 0.19 indicating moderate
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evidence in support of no difference between J̄ parameter values between feature dimension.

Comparison of τ parameter values between colour (M = 22.78, SD = 15.18) and orientation

(M = 24.21, SD = 14.91) revealed a BF10 = 0.20 indicating moderate evidence in support of

no difference in τ parameter values between feature dimension.

Fully-free model. Within the fully-free model, all parameters could vary across feature

dimension and sequencing condition. A Bayesian ANOVA conducted on J̄ parameter values

revealed evidence in support of the null for all models. A further Bayesian ANOVA

conducted on τ parameter values also revealed evidence in support of the null for all models.

Finally, a Bayesian ANOVA conducted on p parameter values revealed the model containing

dimension only as the best model (BF10 = 9.62), being 5.18 times more likely than the

second best model (sequence + dimension; BF10 = 1.86). All other models showed evidence

in support of the null.

Free j-bar model. In the free j-bar model, the J̄ parameter could vary across feature

dimension and sequencing condition, while the τ parameter could only vary across feature

dimension. The p parameter could not vary across either feature dimension or sequencing

condition. A Bayesian ANOVA conducted on J̄ parameter values revealed evidence in

support of the null for all models. Comparison of τ parameter values between colour (M =

27.43, SD = 10.48) and orientation (M = 22.99, SD = 14.04) revealed a BF10 = 0.83

indicating anecdotal evidence in support of no difference between feature dimensions.

Free tau model. In the free tau model, the J̄ parameter could vary across feature

dimension only, while the τ parameter could vary across both feature dimension and
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sequencing condition. The p parameter could not vary across either feature dimension or

sequencing condition. Comparison of J̄ parameter values between colour (M = 4.66, SD =

3.51) and orientation (M = 5.10, SD = 4.23) revealed a BF10 = 0.23 indicating moderate

evidence in support of no difference between feature dimensions. A Bayesian ANOVA

conducted on τ parameter values revealed the model containing dimension only as the best

model (BF10 = 2.50); all other models revealed evidence in support of the null hence no

comparisons were made.

Free p model. In the free p model, both the J̄ and τ parameters could vary across

feature dimension only, while the p parameter could vary across sequencing condition only.

Comparison of J̄ parameter values between colour (M = 5.67, SD = 4.12) and orientation

(M = 5.03, SD = 4.67) revealed a BF10 = 0.29 indicating moderate evidence in support of

no difference between feature dimensions. Comparison of τ parameter values between colour

(M = 22.88, SD = 14.05) and orientation (M = 18.41, SD = 13.52) revealed a BF10 = 0.73

indicating anecdotal evidence in support of no difference between feature dimensions. Finally,

comparison of p parameter values between repetition (M = 0.49, SD = 0.38) and switch (M

= 0.68, SD = 0.33) revealed a BF10 = 2.00 indicating anecdotal evidence in support of a

switch cost.

5.3.2 Discussion

While results from the behavioural analysis in Experiment 1a revealed a substantial

effect of change magnitude on accuracy, there was a distinct lack of evidence to suggest an

effect of sequencing condition or an interaction between sequencing condition and feature

dimension. Furthermore, results from comparisons between model parameters revealed that
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values did not differ to any great extent between sequencing condition in models wherein

parameters were free to vary. Support for these findings is also given through formal model

comparison, which found the fixed model to be the best. On this model, the J̄ and τ

parameters could vary only across feature dimension, while the p parameter was fixed across

all conditions. This suggests that the data obtained here are best explained by a model

where switching does not influence the precision of representations in memory. However, it

should be noted that performance on this task was somewhat poor; this may have been due

to the relatively small change magnitudes employed in this experiment (5, 15, 30, and 45).

As such, Experiment 1b employed the use of more substantial change magnitudes.

5.4 Experiment 1b

As stated, Experiment 1b used larger change magnitudes (5, 30, 60, 90) than those

used in Experiment 1a. This was based on the possibility that performance on Experiment

1a suffered due to the use of smaller change magnitudes, which may have impacted results

and model fits.

5.4.1 Results

Behavioural analysis. See Table 5 for BFs for all models in the accuracy and response

time analysis in Experiment 1b. A Bayesian ANOVA examining the effect of sequencing

condition (repetition, switch) and change magnitude (5, 30, 60, 90) on accuracy data

revealed the model containing the main effect of change magnitude only as the best model

(BF10 = 3.6e+78) with the data being 6.76 times more likely under this model than the next

best model (sequence + change magnitude; BF10 = 5.33e+77), and 199 times more likely

than the third best model (sequence + change magnitude + interaction; BF10 = 1.81e+76).
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Figure 16
Plots displaying a) fixed model fit and b) free tau model fit in Experiment 1a. Note that the
fixed model provided the best fit to the data, followed by the free tau model.
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Figure 17
Plots displaying the remaining model fits in Experiment 1a; a) free j-bar model, b) free p
model, c) full model, d) fully-free model.

The model containing the main effect of sequence only showed evidence in support of the

null, hence no comparisons were made. To determine where the effect of change magnitude

lay, three Bayesian paired-samples t-tests were conducted. The first compared performance

between change magnitudes of 5◦ (M = 0.24, SD = 0.05) and 30◦ (M = 0.41, SD = 0.09)

revealing a BF10 = 41819876327160728 indicating extreme evidence in support of a

difference in performance. The second compared performance between change magnitudes of

30◦ and 60◦ (M = 0.56, SD = 0.13) revealing a BF10 = 3,159,000,436,247,178.00 indicating

extreme evidence in support of a difference in performance. The final comparison was

between change magnitudes of 60◦ and 90◦ (M = 0.60, SD = 0.13) revealing a BF10 = 32.80
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Table 5
Table displaying Bayes Factors (BF10) for each model across accuracy and response time
analyses in Experiment 1b. The BF10 for each model is in comparison to the null model.

Measure Model BF Error
Accuracy Sequence 0.13 0.039

Change magnitude 3.6e+78 0.009
Sequence + Change magnitude 5.33e+77 0.012
Sequence + Change magntidue + Interaction 1.81e+76 0.015

Response time Sequence 0.12 0.014
Change magnitude 6617215980.609 0.004
Sequence + Change magnitude 846210059.834 0.031
Sequence + Change magnitude + Interaction 60438529.44 0.017

indicating strong evidence in support of a difference in performance.

A further Bayesian ANOVA examining the effects of sequencing condition and change

magnitude on RT data also revealed the model containing the main effect of change

magnitude only as the best model (BF10 = 6,617,215,980.61), with the data being 7.82 times

more likely under this model than the next best model (sequence + change magnitude; BF10

= 846,210,059.83), and 109.49 times more likely compared to the third best model (sequence

+ change magnitude + interaction; BF10 = 60,438,529.44). The model containing the main

effect of sequence only showed evidence in support of the null, hence no comparisons were

made. To determine where the effect of change magnitude lay, three Bayesian paired-samples

t-tests were conducted. The first examined performance between change magnitudes of 5◦

(M = 847.09, SD = 248.00) and 30◦ (M = 817.26, SD = 264.07) revealing a BF10 = 0.38

indicating anecdotal evidence in support of the absence of a difference in performance. The

second compared performance between change magnitudes of 30◦ and 60◦ (M = 739.25, SD

= 186.78) revealing a BF10 = 20.00 indicating strong evidence in support of a difference in
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Table 6
Table displaying variability of parameters across
sequencing condition and feature dimension,
log-likelihood, and AIC for each model in Experiment 1b.
A ⊕ symbol indicates that the parameter was free to
vary across sequencing condition, while a ⊖ symbol
indicates that the parameter was not free to vary across
feature dimension.

Model J̄ τ p LL AIC

Fully free ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ -9,724.06 20,408.12
Full ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ -9,723.93 20,247.86
Free j-bar ⊕ ⊕ ⊖ ⊕ ⊖ ⊖ -9,773.38 20,106.76
Free tau ⊖ ⊕ ⊕ ⊕ ⊖ ⊖ -9,758.05 20,076.10
Free p ⊖ ⊕ ⊖ ⊕ ⊕ ⊖ -9,777.20 20,114.40
Fixed ⊖ ⊕ ⊖ ⊕ ⊖ ⊖ -9,791.50 19,983.00

Note. The models used in Experiment 1b were identical
to those used in Experiment 1a.

performance. The final comparison was between change magnitudes of 60◦ and 90◦ (M =

705.10, SD = 171.88) indicating a BF10 = 1.24 indicating anecdotal evidence in support of a

difference in performance.

Formal model comparison. Log-likelihoods and AICs for each of the models in

Experiment 1b can be found in Table 6. AIC was calculated for each of the six models,

revealing the fixed model as the best (AIC = 19983), with this model being the best for

87.50% of participants. The second best model was the free tau model (AIC = 20076; 7.50%

of participants), followed by the free j-bar model (AIC = 20107; 5% of participants), the free

p model (20114), the full model (AIC = 20248), and finally the fully free model (AIC =

20408).

Full model. Within the full model, the J̄ and τ parameters could vary across both

feature dimension and sequencing condition, while the p parameter could only vary across
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sequencing condition. A Bayesian ANOVA conducted on J̄ parameter values revealed that

all models showed evidence in support of the null. A further Bayesian ANOVA conducted on

τ parameter values revealed the model containing feature only as the best model (BF10 =

6.74); the data was 5.72 times more likely under this model than the next best model

(sequence + dimension; BF10 = 1.18). All other models showed evidence in support of the

null. A Bayesian paired-samples t-test between repetition (M = 0.65, SD = 0.34) and switch

(M = 0.69, SD = 0.30) values for the p parameter revealed a BF10 = 0.20 indicating

moderate evidence in support of the absence of a switch cost.

Fixed model. The J̄ and τ parameters could only vary across feature dimension in the

fixed model, while he p parameter was not allowed to vary across either feature dimension or

sequencing condition. Comparison of J̄ parameter values between colour (M = 5.42, SD =

4.05) and orientation (M = 6.77, SD = 4.33) revealed a BF10 = 0.57 indicating anecdotal

evidence in support of no difference between values across feature dimension. Comparison of

τ parameter values between colour (M = 15.63, SD = 14.27) and orientation (M = 24.92,

SD = 12.14) revealed a BF10 = 14.11 indicating strong evidence for a difference between

values across feature dimension.

Fully-free model. Within the fully-free model, all parameters could vary across feature

dimension and sequencing condition. A Bayesian ANOVA conducted on J̄ parameter values

revealed that all models showed evidence in support of the null. Analysis of τ parameter

values revealed the model containing feature only as the best model (BF10 = 2.80); all other

models showed evidence in support of the null, hence no comparisons were made. Finally,

analysis of p parameter values also revealed the model containing feature only as the best
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model (BF10 = 4.38); again, all other models showed evidence in support of the null.

Free j-bar model. In the free j-bar model, the J̄ parameter could vary across feature

dimension and sequencing condition, while the τ parameter could only vary across feature

dimension. The p parameter could not vary across either feature dimension or sequencing

condition. A Bayesian ANOVA conducted on J̄ parameter values revealed that all models

showed evidence in support of the null. Comparison of τ parameter values between colour

(M = 24.80, SD = 12.39) and orientation (M = 26.86, SD = 10.90) revealed a BF10 = 0.23

indicating moderate evidence in support of no difference between values across feature

dimension.

Free tau model. In the free tau model, the J̄ parameter could vary across feature

dimension only, while the τ parameter could vary across both feature dimension and

sequencing condition. The p parameter could not vary across either feature dimension or

sequencing condition. Comparison of J̄ parameter values between colour (M = 5.63, SD =

3.93) and orientation (M = 6.31, SD = 3.75) revealed a BF10 = 0.28 indicating moderate

evidence in support of no difference between values across feature dimension. A Bayesian

ANOVA conducted on τ parameter values revealed the model containing feature only as the

best model (BF10 = 2,488.40); the data is 5.16 times more likely under this model than the

next best model (feature + sequence; BF10 = 481.81) and 20.49 times more likely under this

model than the third best model (sequence + change magnitude + interaction; BF10 =

121.47). The model containing sequence only showed evidence in support of the null.

Free p model. In the free p model, both the J̄ and τ parameters could vary across
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feature dimension only, while the p parameter could vary across sequencing condition only.

Comparison of J̄ parameter values between colour (M = 5.78, SD = 4.35) and orientation

(M = 6.69, SD = 4.36) revealed a BF10 = 0.28 indicating moderate evidence in support of

no difference between values across feature dimension. Comparison of τ parameter values

between colour (M = 17.47, SD = 15.15) and orientation (M = 25.66, SD = 12.88) revealed

a BF10 = 4.12 indicating moderate evidence in support of a difference between values across

feature dimension. Finally, comparison of p parameter values between repetition (M = 0.61,

SD = 0.31) and switch (M = 0.59, SD = 0.34) revealed a BF10 = 0.18 indicating moderate

evidence in support of the absence of a switch cost.

5.4.2 Discussion

Overall, the results of Experiment 1b paint a similar picture to those from

Experiment 1a. Behavioural analysis revealed a substantial impact of change magnitude on

performance however, a lack of evidence for an effect of sequencing condition. Perhaps the

most notable deviation in results relative to Experiment 1a was found in comparison of

parameters within the free tau model; while not being of critical importance to the present

study, a substantial effect of feature dimension was observed for the τ parameter.

Interestingly, the model containing both main effects of sequencing condition and feature

dimension, as well as the model containing the interaction, also showed substantial evidence

for the presence of an effect, yet the model containing only the main effect of sequencing

condition showed evidence in favour of the null. Comparison of parameter values within the

remaining models revealed a distinct lack of evidence for any differences across both

sequencing condition and feature dimension. Formal model comparison again revealed the
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fixed model as being the best model, with the free tau model came in at second-best, as it

did in Experiment 1a. Taken together, the results of Experiments 1a and 1b suggest

that—at least in terms of the paradigm used in this study—dimension switching has little

impact on memory encoding and resource allocation.
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Figure 18
Plots displaying a) fixed model fit and b) free-j model fit in Experiment 1b. Note that the fixed
model provided the best fit to the data, followed by the free-j model.
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Figure 19
Plots displaying the remaining model fits in Experiment 1b; a) free-p model, b) free-tau model,
c) full model, d) fully-free model.
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5.5 General discussion

5.5.1 Summary of results

The aim of the present study was to investigate the impact of dimension switching on

the processes of resource allocation and memory encoding by adapting methods and models

from Shin and Ma (2017). This involved two change localisation experiments wherein

changes varied in magnitude and the goal was to determine where the change occurred. Six

models were then fit to the data obtained from these experiments, with all models containing

the parameters J̄ , τ , and p. The J̄ and τ parameters determine the precision at which a

feature is encoded into memory, with p reflecting the amount of resource allocated to the

irrelevant feature dimension. Thus, variations in these parameter values across sequencing

condition (repetition, switch) would indicate issues within the processes these parameters

reflect. Whether these parameters were free to vary across sequencing condition and feature

dimension was variable across models. Analysis of behavioural data across Experiments 1a

and 1b revealed no evidence to suggest any main effect of dimension switching, with evidence

pointing to a substantial impact of change magnitude. Formal model comparison across

Experiments 1a and 1b also found that a model wherein parameters could not vary across

sequencing condition was also favoured over all other models. Taken together, these results

suggest that dimension switching has little influence over the processes of resource allocation

and memory encoding, contrasting results from initial change detection experiments

(Chapters 2 and 3), but supporting those found in the continuous report experiment

(Chapter 4).
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5.5.2 On the lack of evidence for a dimension switch cost

While some theoretical speculation was offered based on similar results in Chapter 4,

it is more difficult to offer the same kind of speculation here given the overwhelming lack of

evidence in support of any impact of dimension switching. As such, the majority of this

discussion will be dedicated to potential reasons why a lack of evidence may have been

observed in the present study, highlighting directions for future versions of this task. The

results of the present study seemingly indicate that dimension switching does not have any

impact on resource allocation and memory encoding, as well as having little influence on

performance in the change localisation task, contrasting findings from previous chapters

(Chapters 2 and 3). Perhaps most crucially, the results obtained in the present study provide

evidence against the notion that dimension switching causes a misallocation of resources to

the irrelevant feature dimension. The p parameter in all of the model fit routines represents

the amount of resource allocated to the irrelevant feature dimension. Results from the formal

model comparison revealed that the fixed model was favoured over all other models,

indicating that the amount of resource allocated to the irrelevant feature dimension was

sufficiently captured by a single value regardless of sequencing condition (or feature

dimension). Had dimension switching caused a misallocation of resources to the irrelevant

feature dimension, this would have been reflected by poor fits for models wherein p could not

vary across sequencing condition and differences between p values across sequencing

condition in models wherein p was free to vary.

The present results also contradict speculation from Chapter 4 concerning misbinding.

While weak evidence was observed for an increased rate of non-target responses on
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dimension switch trials relative to dimension repetition trials, a theoretical account was

given based on this being a true effect. Previous research has stated that attention is

required for the binding of relevant visual information (Hyun et al., 2009; Rensink, 2000;

Treisman, 1988; Treisman & Gelade, 1980; Treisman & Schmidt, 1982; Wan et al., 2020;

Wheeler & Treisman, 2002; Zokaei et al., 2014), with attention also required for switching

between feature dimensions. Thus, if attention is considered as a finite resource responsible

for controlled action (see e.g., Oberauer, 2019), it was suggested that the process of

configuring the relevant attentional set either depletes this attentional resource to such an

extent that little or no resource is available for feature binding or that a failure to sufficiently

configure attentional set prevents binding from occurring, as attention can only be directed

to a single process at any given time.

The absence of dimension switch costs within the behavioural analysis in the present

study would suggest that this notion of misbinding due to depletion of attention is incorrect.

If such depletion occurred and was responsible for misbinding leading to poorer performance

on switch relative to repetition trials, this would be reflected by a switch cost within the

behavioural measures, primarily accuracy. In terms of the model fitting, while it is difficult

to state with any certainty which parameters would be affected by misbinding, it is likely

that there would have been some difference in the J̄ and/or τ parameters across sequencing

condition had misbinding occurred. As shown by previous research (see e.g., Bays et al.,

2009), misbinding leads to an increase in errors; thus, had misbinding been observed in the

present study, it could be suggested that this may have been reflected within the model fits

in terms of less precise memory encoding. However, results clearly indicate that the data is
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best explained in terms of a model wherein switching has no influence on the precision of

representations in memory (i.e., the fixed model). Within the fixed model the J̄ and τ

parameters were free to vary across feature dimension, but no parameters (including p) were

able to vary across sequencing condition. This suggests that the process of memory encoding

across sequencing condition was sufficiently captured by a single value, without the need to

invoke separate values for each sequencing condition.

It is also worth noting that less detailed speculation within the discussion in Chapter

4 suggested that the effect of dimension switching may have been short-lived. This was based

on the differences in the change detection tasks wherein dimension switch costs were

observed and the continuous report task wherein little evidence for such a cost was found. In

the change detection tasks, responses were binary (change or no change), with response

selection causing the task to progress. In the continuous report task, participants had 360◦

different response options to choose from and could select multiple responses using a

mouse-driven pointer before confirming a response by pressing spacebar. As such, the

number of responses and method of response is vastly different between the tasks, with

overall RTs substantially larger on continuous report tasks relative to change detection tasks.

This led to the suggestion that the absence of any major evidence in support of dimension

switch costs in Chapter 4 may have been due to the effect only lasting for a brief period after

stimulus presentation. However, based on results from the present set of experiments, this

notion appears to be incorrect. While change detection and change localisation tasks are

somewhat different, with change localisation having an increased number of possible

responses and variation in change magnitudes, responses should typically be provided at
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faster rates than those observed in continuous report. Indeed, RTs from the present study

were found to be no greater than 1,110ms (for a given change magnitude) relative to RTs

from the continuous report task in Chapter 4 which exceeded 2,000ms. Based on this and

the results from the present study, it therefore appears that the notion of the effects of

dimension switching being short-lived can be ruled out.

However, it is important to highlight what may be a crucial methodological difference

between previous change detection experiments which found the presence of a dimension

switch cost (i.e., most experiments within Chapters 2 and 3) and the change localisation

experiments within the present study. Throughout the present thesis, robust evidence for

dimension switch costs were only observed in experiments which employed an additional,

constant change in the irrelevant feature dimension. In Experiments 1a and 2a in Chapter 2

however, a change was only implemented in the relevant feature dimension, with results

showing little impact of dimension switching on performance. It was suggested that this was

due to the cue being non-essential for correct performance of the task; as a change only

occurred in the relevant dimension, it was possible for participants to simply monitor the

entire display and report any change, eliminating the need to switch between dimensions and

negating any potential switch costs that may have presented. As such, it is possible that a

similar strategy was adopted by participants in the present study; as a change only occurred

within the relevant feature dimension, it could have been the case that participants simply

ignored the cue and monitored the entire stimulus display for any change, again negating any

potential switch costs that may have presented. While initial evidence for such a possibility

was only offered by behavioural data from the change detection tasks, the finding that the
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fixed model provided the best fit to the data for both experiments within the present study

may provide further support for the notion that participants did not switch between feature

dimensions, but simply attended to the entire stimulus display.

While an additional change in the irrelevant feature dimension could be implemented

in this change localisation task, the difficulty of the task led to the decision not to include

such a change. In contrast to change detection, there are four possible responses in a change

localisation task, increasing the number of decisions that need to be made which could

impact performance and cloud the dimension switch cost. In addition, the use of smaller

change magnitudes means that on some trials, the change is barely noticeable, making

localisation of the change much more difficult. Critically, these factors may not only have

influenced behavioural performance on the task, but may also have confounded the results

from model fitting and formal model comparison and as such, it was deemed appropriate to

not include a constant irrelevant change. Future research implementing similar methods may

benefit from including an additional change in the irrelevant feature dimension to ensure

that the cue is essential for correct performance of the task, either as a irrelevant change

with a constant change magnitude or an irrelevant change with a change magnitude

matching that of the relevant change.

In relation to methodological limitations, there are a number of further issues which

may have contributed to the results obtained in the present study. Perhaps most importantly

was the trial number used; while Shin and Ma (2017) used between 2,400 and 3,600 trials,

only 400 trials were used per participant in each of experiments detailed previously. As such,

it would be pertinent to perform a conceptual replication of this study using a higher
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number of trials which may also allow for sample size to be reduced. Furthermore, while the

online experimentation used in the present study did provide decent data, it would be more

appropriate to conduct this experiment in a laboratory setting. This allows for greater

control over experimental parameters which may have impacted performance in the current

study. For instance, differences in screen sizes used by participants when performing the task

may have had some impact; it may, for example, have been more difficult to notice changes

of smaller magnitudes with a smaller screen size or different brightness settings.

5.5.3 Conclusion

The present study aimed to determine the influence of dimension switching on

resource allocation and memory encoding processes through the application of explanatory

models to behavioural data obtained from change localisation tasks. Findings show an

overwhelming absence of evidence in support of any influence of dimension switching on

these processes, both in terms of analysis of behavioural data and formal model comparison.

While these results may suggest that dimension switching has little impact on resource

allocation, methodological issues may be the cause for the lack of evidence for such an

impact. Perhaps the most crucial issue is that pertaining to the use of a constant change in

the irrelevant feature dimension which has been suggested to ensure the cue is used for

correct task performance. Thus, it would be appropriate for future research to investigate

the influence of an additional irrelevant change on this task however, there are obvious

concerns regarding the influence such a change may have on model fitting.
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6 Chapter 6: General discussion

This chapter provides an overview of the results obtained in Chapters 2-5 in relation to the

overarching research question concering the role of attentional control in the allocation of

visual short-term memory resources. In addition to the theoretical implications of the findings

from previous chapters, some theoretical speculation will also be discussed.

6.1 The research question

Stimuli within our everyday environment are often multivalent, containing any

number of feature dimensions (e.g., colour, shape) or indeed, multiple values within the same

dimension. Therefore, given the limited nature of visual short-term memory (vSTM), the

cognitive system must ensure that the limited resources available are allocated to the most

relevant information. As such, the aim of the research within this thesis was to investigate

the role of attentional control in the allocation of vSTM resources to relevant information.

This involved embedding a range of tasks which probe vSTM (e.g., change detection) into

task switching paradigms. Stimulus displays consisted of either bivalent, coloured and

oriented shapes or univalent shapes displaying either colour or orientation, but critically,

each stimulus display always contained both colour and orientation. While in traditional

task switching participants either repeat or switch between two (or more) tasks, here

participants performed the same task throughout with the critical switching element relating

to which feature dimension was relevant on a given trial. Therefore, on some trials the

relevant feature dimension could repeat (e.g., colour–colour) or switch (e.g.,

colour–orientation). Prior to discussion of the theoretical contributions and limitations of

this research, an overview of the results obtained within Chapters 2–5 is given.
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6.2 Overview of results

6.2.1 Chapter 2

Chapter 2 consisted of a total of three change detection experiments wherein

participants were presented with either bivalent stimuli containing colour and orientation or

univalent stimuli containing either colour or orientation. On each trial, the relevant feature

dimension (colour or orientation) could either repeat (e.g., colour–colour) or switch (e.g.,

colour–orientation); the task always remained the same throughout (determine if a change

occurred in the relevant dimension). This introduced an element of attentional control to a

task which otherwise did not require such control. Experiments 1 and 2 aimed to provide

initial insight into the role of attentional control in the allocation of vSTM resources using

bivalent and univalent stimuli respectively. Results from Experiment 1a revealed that

dimension switching appeared to have no impact on change detection performance across a

range of measures. While this may have suggested that dimension switching did not

influence vSTM performance, a possible methodological oversight may have led to these

results; given that a change only occurred in the relevant feature dimension, participants

would be able to ignore the cue and monitor the entire display for any change. As such, this

would remove the requirement to switch between dimensions and negate any cost to

performance that may be observed. Therefore, in Experiment 1b, an additional, constant

change in the irrelevant feature dimension was introduced, making the cue essential for

correct performance of the task. Results from Experiment 1b revealed a substantial impact

of dimension switching on performance across accuracy, RT, and sensitivity, suggesting that

dimension switching did impact change detection performance, but only when the cue was
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essential for correct task performance. Results from Experiment 2a were much in line with

those from Experiment 1a, with the finding that dimension switching did not impact change

detection performance to any great extent. However, results from Experiment 2b revealed a

somewhat differing picture from those in Experiment 1b; the impact to performance

appeared to be most prevalent between pure (wherein the feature dimension always

repeated) and mixed blocks of trials. The general lack of evidence in support of a dimension

switch cost here could therefore be attributed to the fact that stimuli were univalent,

meaning only two stimuli were relevant on a given trial.

Experiment 3 aimed to both confirm findings from Experiments 1 and 2 and to

extend these findings. Experiment 3a and 3b were conceptual replications of Experiments 1b

and 2b, with Experiment 3a finding substantial evidence for the presence of a switch cost for

accuracy, RT, and sensitivity, again suggesting that dimension switching impacted

performance on the change detection task. While also providing support for the presence of

a dimension switch cost, the extent of evidence in Experiment 3b was much more modest,

again highlighting the possibility that stimulus valency moderates the extent of the

dimension switch cost. In Experiment 3c, univalent stimuli were again used however, set size

was doubled from four to eight. This meant that while a greater number of stimuli were

presented, the total number of features presented was equivalent to that of Experiment 3a,

as were the total number of relevant stimuli on a given trial. Results from Experiment 3c

revealed that dimension switching impacted performance, with the highest evidence found

for RT, sensitivity, and response bias measures. Finally, Experiment 3d used spatially

overlapping stimuli (coloured circles overlaid onto white isosceles triangles). Interestingly,
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results from Experiment 3d were notably similar to those from Experiment 3c, with both

accuracy and response bias for sequencing condition being almost identical. Taken together,

the results from Chapter 2 provided support for the notion that dimension switching impacts

change detection performance, with the suggestion that such disruption was due to a

misallocation of resources to the irrelevant feature dimension on switch trials.

6.2.2 Chapter 3

Chapter 3 consisted of two experiments which sought to investigate the impact of trial

timing manipulations and cue switching on the extent of the dimension switch cost in the

same change detection paradigm used in Chapter 2. Experiment 1a manipulated trial timings

by having either a long or short cue-stimulus interval (CSI), while Experiment 1b had either

a long or short response cue-interval (RCI). The CSI is the duration between presentation of

the cue and stimulus on trial N and is associated with the process of advance reconfiguration

(see e.g., Rogers & Monsell, 1995), whereas the RCI is the duration between response on trial

N-1 and cue presentation on trial N and is associated with the effect of proactive interference

(see e.g., Allport et al., 1994). Crucially, extending the duration of either of these intervals

had previously been shown to attenuate the task switch cost (for reviews on task switching,

see e.g., Grange & Houghton, 2014; Kiesel et al., 2010; Vandierendonck et al., 2010), with

Experiment 1 aiming to investigate whether a similar effect was found for dimension switch

costs. Results from both Experiments 1a and 1b revealed that manipulation of the CSI or

RCI respectively did not have any impact on the extent of the dimension switch cost,

suggesting that the origin of such costs lies with processes not associated with those

concerning interference from previous task sets or configuration of new task sets.
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Experiment 2 employed a two cues per task (2:1 mapping) paradigm wherein

participants performed the same change detection switching task outlined in Experiment 1b;

in this experiment however, each feature dimension could be probed by one of two cues,

giving rise to three different sequencing conditions that those seen previously. On some trials,

both the cue and relevant feature dimension could repeat, referred to as a cue repetition; on

some trials the cue could switch while the relevant feature dimension repeated, referred to as

a cue switch; and finally, on some trials, both the cue and relevant feature dimension could

switch, referred to as a dimension switch. Differences in performance between cue repetition

and cue switch trials reflects the impact of a cue switch independent of a dimension switch

(Logan & Bundesen, 2004; for the impact of a cue switch on measures of the task switch cost,

see e.g., Logan & Bundesen, 2003; Mayr & Kliegl, 2003), while differences in performance

between a cue switch and dimension switch reflects the true impact of a dimension switch

cost. In Experiment 2a, all three sequencing conditions were used with results showing that

cue switching did not contribute to the overall dimension switch cost. Results from

Experiment 2b—which removed cue repetition trials and increased cue switch and dimension

switch trial numbers—also found that cue switching did not contribute to the overall

dimension switch cost.

6.2.3 Chapter 4

Chapter 4 aimed to provide a more nuanced insight into the cause of dimension switch

costs by implementing the same dimension switching design within a continuous report task.

Here, participants were presented with four bivalent coloured, oriented stimuli and then

probed with the location of one of the stimuli; if colour was relevant, participants used a
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360◦ colour wheel to provide the colour of the stimulus in the probed location, whereas if

orientation was relevant, participants used a 360◦ black wheel to provide the orientation of

the stimulus in the probed location. The three-component mixture model (see Bays et al.,

2009) was then fit to the data obtained from this experiment; this model returns parameters

estimating the precision at which the probed items were held in memory (κ), the probability

of making a target (pt) and non-target (pnt) response, and the probability of guessing (pu).

Results from the model fitting revealed support for no dimension switch cost in most

parameters, with only weak evidence for a switch cost in the pnt parameter, suggesting that

dimension switching does not impact resource allocation on the continuous report task.

However, if a true effect, the weak evidence in support of the presence of a switch cost in the

pnt parameter may reflect misbinding of relevant information. As dimension switching and

binding are attentionally demanding processes, it is possible that on switch trials attention

was depleted to such an extent that improper binding of relevant information upon stimulus

presentation occurred, leading to a higher rate of non-target responses.

6.2.4 Chapter 5

Chapter 5 attempted to provide deeper insight into the cause of dimension switch

costs by adapting methods and models used by Shin and Ma (2017). Two experiments

involving change localisation tasks were used. On each trial, a change occurred in either

colour or orientation, meaning the relevant feature could either repeat (e.g., colour–colour)

or switch (e.g., colour–orientation). The magnitude of the change on each trial varied, with

participants required to report the location of where the change occurred. Six different

models were generated based on Model 4 from Shin and Ma (2017), with these models
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containing the parameters J̄ , τ , and p. Each model differed in relation to whether the

parameters were free to vary across feature dimension (colour, orientation) and sequencing

condition (repetition, switch). Results from Experiment 1a revealed evidence to suggest that

dimension switching had no impact on performance in this task, with substantial effects of

change magnitude observed. Perhaps more crucially, formal model comparison revealed that

the model wherein no parameter was free to vary across sequencing condition (the fixed

model) was favoured. This suggested that the data obtained in this experiment was best

explained by a model wherein switching has no influence on the allocation of resources or the

precision of representations in memory, a finding which stood for the results of Experiment

1b. Experiment 1b was a conceptual replication of Experiment 1a with larger change

magnitudes. Results again revealed no impact of dimension switching on behavioural

measures of performance and formal model comparison again revealed the fixed model as the

best, suggesting that dimension switching has little influence on resource allocation and

memory encoding. As such, these results suggest that the previous theory surrounding a

misallocation of resources to the irrelevant feature dimension on switch trials is incorrect as

such misallocation would have been reflected by switch costs within the behavioural

measures, as well as formal model comparison favouring a model wherein the p parameter

was free to vary across sequencing condition.
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6.3 Attentional control and visual short-term memory resource allocation

6.3.1 Support for attentional control as the mechanism for resource

allocation

As stated previously, the aim of the present research was to investigate the role of

attentional control in the allocation of vSTM resources to relevant information. Overall,

results from the studies conducted within this thesis seemingly show that attentional control

plays some part in how vSTM resources are allocated; however, this appears to be based on

the methodology employed. Initial investigations using change detection tasks embedded

within the dimension switching design showed a relatively consistent cost to performance as

the result of switching feature dimensions; it was postulated that these costs may have arisen

as the result of a misallocation of resources to the irrelevant feature dimension. This was

based on previous task switching research which stated that to perform a given task, a task

set must be activated; task sets can simply be thought of as a grouping of processes and

representations necessary for performance of a task (see e.g., Grange & Houghton, 2014;

Logan & Gordon, 2001; Logan & Schneider, 2010; Rogers & Monsell, 1995). More crucially

to the present research however, task sets can be further deconstructed into attentional sets

and intentional sets. While intentional sets are associated with the assignment of

stimulus-response (S-R) mappings, the attentional set is responsible for the identification

and selection of relevant information (see e.g., Kopp et al., 2006; Liefooghe & Verbruggen,

2019; Meiran, 2000; Rushworth et al., 2005, 2002; Yeung & Monsell, 2003b). Given that the

task always remained the same in the present research (e.g., detect a change in the relevant

feature dimension), the intentional set could remain the same while the attentional set
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required updating on dimension switch trials. Thus, a failure to sufficiently update the

attentional set on a dimension switch trial would likely lead to vSTM resources being

allocated to the irrelevant feature dimension, leading to reduced performance on switch trials.

Such a view appears to be supported from the results of CSI and RCI manipulations

within Chapter 3. Previous research had shown that increasing the response-stimulus

interval (RSI)—the duration between response on trial N-1 and stimulus presentation on

trial N—attenuated the extent of the task switch cost (see e.g., Allport et al., 1994; Rogers

& Monsell, 1995). While Allport et al. (1994) attributed this reduction of the switch cost to

allowing more time for the previously relevant task set to dissipate (i.e., reduce proactive

interference), Rogers and Monsell (1995) stated that the reduction was due to more time

being allowed for advance reconfiguration of the task set. Given that both the process of

task set dissipation and advance reconfiguration occurred within the RSI, there was no way

to dissociate between these processes using the paradigms employed by both studies.

However, later work by Meiran (1996) facilitated such a dissociation; by cuing participants

to which task should be performed on a given trial, this separated the RSI into the RCI—the

duration between response on trial N-1 and cue presentation on trial N—and the CSI—the

duration between cue and stimulus presentation on trial N. During the RCI, the upcoming

task is not yet known as the cue has not been presented, meaning this only allows for

dissipation of the previously relevant task set. Alternatively, during the CSI the cue is

known, which allows for reconfiguration of the task set; theoretically, task set dissipation can

still occur during this time however, this interval is primarily associated with task set

reconfiguration. Critically, CSI and RCI manipulations within the change detection
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switching task in Chapter 3 were used to determine whether proactive interference or

reconfiguration impacted the extent of the dimension switch cost. Results revealed that the

effect of interval duration showed evidence in favour of the null, indicating that interval

duration did not influence the extent of the dimension switch cost.

Previously Rogers and Monsell (1995) hypothesised that increasing the RSI allows

completion of an endogenous control process which is responsible for the updating of task

sets. However, the finding that a task switch cost still presented when the RSI was large led

the authors to hypothesise that an additional, exogenous component was required for the

completion of task set reconfiguration. This exogenous component is only initiated upon

presentation of the stimuli and therefore is unaffected by manipulations of preparation time.

It could therefore be suggested that performance on the change detection switching task

reflects this exogenous component only which is unaffected by manipulations of CSI and RCI;

indeed, it would be plausible to assume that the process of resource allocation is only

initiated upon stimulus presentation, with the dimension switch cost reflecting a disruption

of this process due to insufficient configuration of the attentional set. Indeed, a more refined

view of such disruption may be gained through the executive control theory of visual

attention (ECTVA, see e.g., Logan & Gordon, 2001; see also Bundesen, 1990; Bundesen et

al., 2005; Nosofsky & Palmeri, 1997). In simple terms, this theory proposes that executive

control processes are used to manipulate parameters associated with subordinate processes,

configuring them in such a way that allows for performance of an upcoming task. Two such

parameters are β and π, representing a measure of response bias and attentional weighting of

stimuli respectively; broadly speaking however, these parameters could also be taken as
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representations of intentional and attentional set. Therefore, given that the intentional set

remained the same throughout, it could be suggested that the dimension switch cost

originates from processes related to stimulus processing only (e.g., resource allocation,

encoding), with this reflected by updating of the π parameter only in terms of the ECTVA

model. Implementation of this model within the dimension switching design used in the

present research may provide some additional insight into which aspects associated with task

sets contribute to the dimension switch cost.

Experiment 2 within Chapter 3 investigated the contributions of cue switches to the

dimension switch cost by implementing a 2:1 cues to task mapping. In typical versions of the

explicit cuing procedure—wherein participants are presented with a cue at the beginning of

each trial indicating which task to perform—a single cue is used per task. As such, when the

task repeats, so too does the cue, with a switch in task also requiring a switch in cue. As

such, some researchers suggested that the cue switch may in fact contribute to the overall

task switch cost (see e.g., Logan & Bundesen, 2003; Mayr & Kliegl, 2003). To determine the

contributions of a cue switch to the task switch cost, a 2:1 cues to task mapping was

employed wherein two cues were used per task (e.g., for colour, the cues could be “colour”

and “shade”). This gave rise to three sequencing conditions, cue repetitions, wherein both

cue and task repeat, cue switches, wherein the cue switches and the task repeats, and task

switches, wherein both cue and task switch. Here, the true impact of a task switch is

reflected in the difference between a cue switch and task switch, whereas the influence of a

cue switch is reflected in the difference between cue repetition and cue switch trials. Both

Logan and Bundesen (2003) and Mayr and Kliegl (2003) found that cue switching does
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indeed contribute to the overall task switch cost however, neither of the theories surrounding

proactive interference and task set reconfiguration offered an explanation for cue switch costs.

Therefore, Logan and Bundesen (2003; see also Arrington and Logan, 2004a; Logan and

Bundesen, 2004; D. W. Schneider and Logan, 2005) stated that participants encode both the

cue and stimulus, with this compound cue used to retrieve the correct response from

long-term memory (LTM). Critically, participants encode both the cue and stimulus on each

trial and respond accordingly, meaning that there is no requirement to update task set as the

task requirement would always be encode both the cue and stimulus. Thus, on this account,

cue repetition trials receive a benefit through priming; as the cue had been encoded on the

previous trial, this speeds up the process of cue encoding on the subsequent trial. Mayr and

Kliegl (2003) also invoked a process of retrieval from LTM, suggesting that advance

preparation requires retrieval of the appropriate S-R mapping from LTM, followed by

implementation of the task when stimuli are presented. As such, a benefit is conferred on cue

repetition trials as the retrieval path in LTM remains the same as the previous trial.

In general, the results from Experiment 2 revealed that cue switching does not

contribute to the overall dimension switch cost. This is somewhat in line with the notion

that the dimension switch cost reflects processes associated with changes in the attentional

set only. As the cue in the present study simply indicated which feature dimension was

relevant on a given trial and the task remained the same throughout (determine whether a

change occurred in the relevant feature dimension), no further rules or parameters for task

completion needed to be retrieved from LTM. Quite simply, the only aspect which required

updating was which information was relevant on a given trial. As such, it could be posited
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that the cue switch cost reflects changes in intentional set. Given both theories of cue switch

costs described above state that performance is highest when the cue repeats, it therefore

follows that the poorer performance on trials wherein the cue switches is entirely due to the

requirement to encode the cue in order to retrieve task rules from LTM; for instance, the

compound cue encoding account states that performance on cue switches and task switches

should be similar however, on a cue switch the task remains the same whereas on a task

switch both cue and task change. This therefore suggests that despite the same task being

performed, a change in cue requires a complete process of retrieval of task rules in the same

manner as when both the cue and task switch. In the context of the present task, no such

retrieval of task rules or S-R mappings was required as the cue did not indicate which task

to perform, but rather indicated which feature dimension was relevant, therefore only

necessitating the updating of attentional set.

6.3.2 Evidence against the requirement of attentional control for resource

allocation

Overall, Chapters 2 and 3 appear to provide evidence in support of the view that

attentional control is required for the appropriate allocation of vSTM resources to relevant

information. However, in an attempt to extend these results and investigate the specific cause

of the disruption by dimension switching, later studies employing continuous report (Chapter

4) and change localisation (Chapter 5) tasks revealed a distinct lack of evidence in support of

such a view. The use of a continuous report task in Chapter 4 was to determine the cause of

the dimension switch cost by fitting the three-component mixture model (see Bays et al.,

2009) to the data. On this model, responses are a probabilistic mixture of 1) responding to
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the true target value based on a noisy memory representation, 2) responding to a non-target

value, and 3) random guessing. When fit to data, the three-component model returns the

parameters κ, an estimate of precision, pt, the probability of responding to the target, pnt,

the probability of responding to the non-target, and pu, the probability of guessing.

Crucially, this mixture model enables identification of the source of error on continuous

report tasks. Therefore, by including a dimension switching element within a continuous

report task, differences in model parameters across sequencing condition (repetition, switch)

would highlight the source of disruption as a result of dimension switching.

Results from this experiment revealed little evidence to suggest that dimension

switching impacts continuous report performance. Indeed, the most notable findings were

weak evidence in support of a switch cost in the pnt parameter and stronger evidence in

support of a switch cost in mean absolute error, with the latter suggesting that dimension

switching does have some impact on performance, the three-component model is unable to

establish precisely what has caused this. While overall there is little evidence to suggest

dimension switching impacts continuous report performance, it is perhaps of interest that pnt

was the only parameter within the three-component model which showed evidence

supporting a switch cost. If a true effect, this would suggest that dimension switching

impacts the ability to bind relevant information. While previously suggested that the

dimension switch cost was the result of a misallocation of resources to the irrelevant feature

dimension, if we hypothetically assume that the switch cost in the pnt parameter is a true

effect, this would provide evidence against such a view and rather support the notion that

dimension switching impacts the ability to bind information. As participants were cued to
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the relevant feature dimension on each trial, the non-target feature values used in the model

fit routine were those belonging to the relevant feature dimension only. This therefore

suggests that on switch trials, participants were less able to bind the relevant feature values

with the spatial location of the stimuli, leading to what Bays et al. (2009) referred to as a

swap error (e.g., the colours of two stimuli may be swapped in memory).

Previous research has shown that binding requires attention (see e.g., Hyun et al.,

2009; Rensink, 2000; Treisman, 1988; Treisman & Gelade, 1980; Wan et al., 2020; Wheeler &

Treisman, 2002; Zokaei et al., 2014); given that both the process of switching dimension and

binding are attentionally demanding processes, it could be suggested that on switch trials,

attention is depleted to such a point that binding becomes extremely difficult. Such a

theoretical stance is perhaps more tenable when attention is considered as a resource. For

instance, Oberauer (2019) provides a review of working memory and attention, discussing

the notion of attention as a finite resource, highlighting three distinct classes; in one class,

the attentional resource is responsible for attentional control of a given action. While

attention may be drawn automatically to a certain stimulus when performing a task (e.g.,

when a stimulus is more salient than others), this does not require any attentional resource.

Rather, it is the control of a given action (e.g., selectively attending a stimulus) which

requires this attentional resource; crucially, this control can only be allocated to a single

action at a given time. As such, it could be suggested that dimension switch costs observed

within the present research are caused by a depletion of this attentional resource; dimension

switching is an attentionally demanding process which could consume most of the

attentional resource, leaving little for the process of binding upon stimulus presentation.
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Alternatively, incomplete configuration of the attentional set during a switch in dimension

could mean that the resource is prevented from controlling the action of binding relevant

information upon stimulus presentation.

This view of misbinding would also account for the dimension switch costs observed

within the studies implementing change detection tasks. Given that two stimulus displays

are presented within these tasks, there is a possibility that misbinding could occur on both

the memory and test displays however, misbinding on the memory display would likely have

a greater impact on performance. For example, if on a switch trial wherein colour is relevant,

if the colours of two stimuli are swapped, this would lead to the perception of a change in

colour when the test display is subsequently presented. In fact, there is a possibility that this

perception of a change in colour may be accentuated due to the appearance of a colour

change in two of the stimuli. This would invariably lead to a change response, which is

indeed reflected in the response bias measure across many of the change detection

experiments within this thesis. While the level of evidence for a switch cost in response bias

varied across experiments, it was consistently found that on switch trials response bias

became more liberal relative to repetition trials, which could be explained by misbinding. In

the case of both a depletion of attentional resources or prevention of the attentional resource

from controlling binding, the notion of such a resource being responsible for the processes

necessary for attending to and encoding stimuli into memory removes the need for a vSTM

resource to explain dimension switch costs; on such an account, the limitation of vSTM

would lie solely with the control of attention rather than the allocation of specific memory

resources which are responsible for the precision of internal representations.



MULTIDIMENSIONAL RESOURCE ALLOCATION 235

However, results from Chapter 5 of the present thesis provide some evidence against

such a view and more critically, evidence against the notion of a role for attentional control

in vSTM resource allocation. Behavioural analysis within the change localisation studies

revealed that dimension switching had no impact on performance; while this may suggest

that dimension switching did not impact vSTM resource allocation on this task, it is also

possible that methodological limitations are responsible for the null results. For instance, the

experiments may have been underpowered or, perhaps more critically, the data may have

been too noisy given that it was collected using online means. In addition to the behavioural

analysis, six models were developed to determine the influence of dimension switching on

memory encoding and resource allocation. These models contained the parameters J̄ , τ , and

p; the J̄ and τ parameters reflect the precision of memory encoding whereas the p parameter

reflects the amount of resource allocated to the irrelevant feature dimension. Thus, an

increase in the p parameter value on switch trials would be indicative of a misallocation of

resources to the irrelevant feature dimension, which had previously been suggested to be the

cause of the dimension switch cost (see Chapter 2). While each model contained these

parameters, whether these could vary across sequencing condition and feature dimension

varied depending on the model in question. Accuracy data was used as input to these models

and it was revealed that the fixed model was favoured over all other models in both

experiments within Chapter 5.

In the fixed model, while the J̄ and τ parameters were free to vary across feature

dimension, all parameters including p were unable to vary across sequencing condition. That

this model was favoured over other models—including those wherein different values of the p
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parameter for repetition and switch trials—provides support for the results of the

behavioural analysis, suggesting that a model wherein a single value can capture the process

of resource allocation across both repetition and switch trials was sufficient to capture the

data from these experiments. This therefore provides weight to the notion that attentional

control is not required for vSTM resource allocation. In terms of previous supposition that

dimension switch costs are caused by misbinding, from the results of Chapter 5, it is difficult

to state with any certainty whether this is the case. Given that no dimension switch costs

were observed, it could be suggested that misbinding is not responsible for the dimension

switch costs observed in previous experiments or that some methodological issues may have

contributed to the null effect. Additionally, none of the parameters within the models used

in this study directly reflect the process of binding relevant information. Indeed, J̄ and τ

relate to the precision at which features are represented in memory, similar to the κ

parameter returned by the three-component model (see e.g., Bays et al., 2009). Given that κ

parameter values were found to be similar across sequencing condition within the continuous

report task in Chapter 4, suggesting that the fidelity of feature representations was not

impacted by dimension switching, it is unlikely that misbinding would have resulted in

differences between the J̄ and τ parameters in Chapter 5.

6.3.3 Summary of findings

The aim of the present thesis was to investigate the role of attentional control in the

allocation of vSTM resources to relevant visual information contained on multivalent stimuli.

This was investigated through the use task which probe vSTM wherein the relevant feature

dimension could either repeat or switch; on switch trials, this introduced an element of
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attentional control required to perform the task, with poorer performance on switch relative

to repetition trials indicative of insufficient attentional control. Taken together, the results of

the present research are somewhat inconclusive. While dimension switch costs were observed

across a range of measures for change detection tasks with different experimental

manipulations (e.g., set size, interval duration), suggesting attentional control plays some

role in vSTM resource allocation, other than relatively strong evidence in support of a switch

cost in mean absolute error in the continuous report task, there was little evidence for such a

cost within other behavioural measures in the continuous report and little evidence overall

within the change localisation tasks. Furthermore, data from the continuous report and

change localisation tasks were used in modelling which also revealed little evidence for

disruption by dimension switching. Weak evidence was observed for a dimension switch cost

in non-target response rate for modelling of continuous report data, with formal model

comparison of models using change localisation data as input revealing that a model wherein

parameters for encoding precision and resource allocation are fixed is sufficient to capture

the data. Together, the results of the behavioural analysis and modelling provide weight to

the notion that attentional control is not required for vSTM resource allocation.

However, it is also possible that the lack of dimension switch costs within chapters

employing continuous report (Chapter 4) and change localisation (Chapter 5) tasks may be

due to methodological limitations. These have been highlighted previously and are also

discussed later in this chapter however, there is one limitation which may be of greatest

importance, specifically that concerning whether the cue is essential for correct performance

of the task. In Chapter 2, little evidence for a dimension switch cost was observed when a
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change occurred in the relevant feature dimension only; it was suggested that this may have

led to participants ignoring the cue and monitoring the entire display, rather than encoding

the cue and attending to the relevant feature dimension. As such, an additional, constant

change in the irrelevant feature dimension was used to ensure that the cue was essential for

correct task performance, resulting in dimension switch costs across a range of measures and

experimental manipulations. Critically, within the continuous report and change localisation

tasks, no mechanism was implemented to ensure that the cue was essential for correct

performance of these tasks. Thus, it is possible that the lack of dimension switch costs

observed in these studies is simply due to participants ignoring the cue and attending to the

entire stimulus display, removing the need to switch between feature dimensions and

negating any impact of dimension switching. To combat this issue, it would be beneficial to

rerun these experiments with the addition of a mechanism to ensure that the cue is essential

for correct performance of the task. While this is somewhat straightforward within change

localisation tasks (i.e., adding a constant change in the irrelevant feature dimension like in

the change detection tasks), such a mechanism is perhaps more difficult to implement within

the continuous report task. However, given that modelling of change localisation data offers

a greater insight into the cause of the dimension switch cost (e.g., the ability to investigate

potential resource misallocation), it may be that change localisation may be the more

preferred task in any case.
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6.4 Limitations and future research

6.4.1 Methodological limitations

While alluded to in the previous section, it is necessary to discuss the limitations

relating to the use of online testing within the present research. While use of online

experimentation has increased within the last few years (even prior to the COVID-19

pandemic, see e.g., Dance, 2015), there are still some issues with the quality of data obtained

from these sources. The most notable issue with online data collection concerning the

research detailed within this thesis arose with the continuous report task. Given that at

response, this task presents a wheel with 360 different options, it is perhaps understandable

that the quality of data obtained from two online experiments was poor. This could be due

to a range of different reasons; when colour was relevant for example, screen size, screen

quality, or brightness may have impacted the ability to discern between similar colour values

when responding. Furthermore, experiment timings are heavily reliant on secure internet

connections; indeed, in a few instances within the online version of the continuous report

task, it was apparent that the internet connection became unstable, resulting in a response

being provided multiple times and with all responses subsequently appended to the data.

A further limitation of the experiments used within the present research, particularly

within the change localisation study, is the number of trials used. For example, within Shin

and Ma (2017), 1,200 trials per session were used in Experiment 1 compared to the 400 total

trials used in each of the change localisation experiments within Chapter 5. Given that the

experiments within Chapter 5 were conducted online, it would therefore be beneficial to run

an in-person version of this task with an increased number of trials per condition in order to
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gain a more reliable picture of performance and indeed, provide more reliable results

pertaining to model fitting. The duration of the retention interval may have also been a

methodological limitation of the current research given that retention intervals have been

shown to influence both precision and memory strength (see e.g., Bays et al., 2009; Brady et

al., 2013; Nosofsky & Gold, 2016). As the retention interval did not fall below 1,000ms in

any of the present studies, it could therefore be suggested that the performance observed was

based on noisier or weaker memory representations, which may have clouded the true

influence of dimension switching. Thus, implementing a range of retention intervals would

allow a more accurate picture of performance within these paradigms.

Finally, there are also methodological limitations associated with participant

screening; participants in the present study all self-reported normal or corrected to normal

visual acuity and normal colour vision. Given the lack of access to validated online and

in-person versions of the Ishihara Test, this was deemed to be the most appropriate option

however, more rigorous methods should be used in any future research to ensure that

participant screening is 100% accurate.

6.4.2 The impact of the Coronavirus pandemic

Given that the majority of the research discussed within this thesis was conducted

during the Coronavirus (COVID-19) pandemic, it would be pertinent to discuss subsequent

issues which arose as a result. Perhaps the most notable issue was the suspension of

in-person testing from March 2020 to October 2021 at Keele University which disrupted

plans to conduct all research in-person and required a switch to online testing. Initially, the

research plan was to utilise the continuous report task for most of the experimental work,
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implementing a number of experimental manipulations (e.g., set size); however, given the

need to transition research online, this posed a challenge for programming of the continuous

report experiment. While the in-person version of the experiment was programmed in

Python using PsychoPy (see Peirce et al., 2019), the School of Psychology had a subscription

for online testing with Gorilla Experiment Builder (see Anwyl-Irvine et al., 2020) which uses

JavaScript. This therefore required a complete rewrite of the experiment in another

programming language, which required assistance from the team at Gorilla. Thus, it seemed

appropriate to develop a similar set of experiments using change detection tasks which were

much simpler to program while awaiting development of the online version of the continuous

report task. Unfortunately, once completed, the data obtained from the online version of the

continuous report task was extremely noisy; given that the task measures the precision of a

participant’s response, it is likely that extraneous variables influenced performance (e.g.,

screen size, brightness, the environment the task was performed in). As such, the data

obtained from the online version of the continuous report task was essentially unusable,

particularly when exclusion procedures were implemented which resulted in the removal of a

large number of participants. Therefore, given that in-person testing was still unavailable at

this stage, the online change localisation studies were developed. Once restrictions on

in-person testing were relaxed, some data from the original version of the continuous report

task was collected which provided much more usable data. However, given that previous

restrictions on in-person teaching had resulted in many students deciding to attend

university remotely, this greatly reduced the size of the participant pool for recruitment,

meaning only 50 datasets were collected.
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6.4.3 Future research

Given discussion concerning the limitations of the present research, perhaps the most

obvious first step for future research would be to run each of the experiments within this

thesis in an laboratory setting As alluded to previously, there is the potential for the data

collected using online methods to be noisier than that collected in an in-person setting,

which may have contributed to results within the present thesis. In-person testing not only

offers a more controlled environment (e.g., calibrated monitors, noise, lighting), which leads

to greater reliability, but may also highlight areas of discrepancy between online and

in-person data, adding to the growing body of knowledge surrounding differences between

the two methods of data collection. While the continuous report study detailed within this

thesis was conducted in-person, it would also be of interest to repeat this study with a

greater sample size or increased number of trials. While previous research (see e.g., Grange

& Moore, 2022) has shown that 200 trials per cell of the experiment design are required to

obtain good recovery of parameter values within the three-component model, increasing the

number of trials would lead to more accurate model predictions which could offer greater

insight into whether the weak evidence of a switch cost in the pnt parameter (reflecting

non-target response rate) is a true effect.

In terms of extending the theoretical contributions of this research, perhaps the most

logical first step would be to examine the impact of dimension switching with varying set

sizes. Much previous research has highlighted the importance of set size in various tasks

probing vSTM performance (see e.g., Bays & Husain, 2008; Luck & Vogel, 1997; Vogel et al.,

2001; Wilken & Ma, 2004; Zhang & Luck, 2008), therefore it would be of interest to
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determine whether the extent of the dimension switch cost observed in change detection

switching tasks is influenced by set size, or if set size has any impact on results from the

modelling outlined in Chapters 4 and 5. Based on previous research, it would be expected

that set size would have a detrimental impact on performance, primarily accuracy. However,

it is difficult to state with any large degree of certainty whether set size would impact the

extent of the dimension switch cost; hypothetically, if misbinding is responsible for the

dimension switch cost, it could be assumed that switch costs may be greater at larger set

sizes given that there is an increase in the number of stimuli and thus, greater potential for

misbinding.

It would also be beneficial to determine the impact of the duration of the retention

interval on performance in these tasks. For instance, shorter retention intervals—which have

been suggested to result in the generation of stronger memory representations (see e.g.,

Brady et al., 2013)—may in fact influence the extent of the dimension switch cost. In a

similar manner, investigation of the possibility for an asymmetrical switch cost could provide

greater insight into the role of attentional control in vSTM resource allocation. When

switching between tasks of unequal difficulty, the asymmetrical switch cost reflects the

heightened switch cost when switching from the difficult task to the easy task relative to

switching from the easy to difficult task (see e.g., Meuter & Allport, 1999; Wylie & Allport,

2000; Yeung & Monsell, 2003a). The easier task is dominant therefore requiring greater

top-down control when this task is not relevant (i.e., during performance of the more

difficult, non-dominant task). Thus, when switching from the difficult task, more substantial

switch costs (relative to switching from the easy task) present as a result of activating the
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task set associated with the easy task which had previously been well-inhibited (see e.g., Wu

et al., 2015). It would therefore follow that greater attentional control would be required to

inhibit a feature dimension that is somewhat automatically identified (e.g., colour) relative

to a feature dimension that is less automatically identified (e.g., size).

In line with limitations discussed previously, implementation of a mechanism ensuring

that the cue is essential for correct task performance in both continuous report and change

localisation tasks would be essential for advancement of any theory. Given that the majority

of dimension switch costs were observed within change detection tasks employing a constant

change in the irrelevant feature dimension—making the cue essential for correct task

performance—it is possible that the absence of such a mechanism within the continuous

report and change localisation studies in the present thesis contributed to the general

absence of dimension switch costs within these tasks. While such a mechanism is easily

implemented in change localisation tasks by simply adding a constant change (either of a set

or variable magnitude) in the irrelevant feature dimension as in the change detection tasks

reported here, implementation of such a mechanism within a continuous report task is more

problematic. Perhaps one method of identifying whether participants are attending to the

entire stimulus display or the cued feature is to compare performance between the explicitly

cued continuous report task and a continuous report task using retrocues. While in the

former, participants could either attend to the cued feature or the entire stimulus display,

the latter requires attendance to the entire stimulus display, with comparison of performance

between methodologies perhaps indicating what participants are attending to upon stimulus

presentation.
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Perhaps most crucially to theoretical advancement however, is the ability to

investigate the possibility of resource misallocation. While this is possible through the

modelling of change localisation data, additional evidence obtained from mixture modelling

would strengthen this theory. Within the present thesis, such misallocation could not be

investigated using the continuous report task or mixture modelling. In the task used here,

orientation could have influenced responses on colour trials (i.e., participants selected an

orientation on the colourwheel rather than a colour) however, colour could not influence

responses on the orientation task as responses to the orientation task were provided on a

black wheel. Thus, in order to investigate the misallocation of resources using continuous

report and mixture modelling, a task wherein responses are given using the same format (i.e.,

the probe screen for both features is identical) is required.

6.4.4 Conclusion

In conclusion, the present research aimed to investigate the role of attentional control

in the allocation of vSTM resources to relevant information. This was achieved through a

combination of tasks which probe vSTM performance and adaptation of task switching

paradigms to require participants to either repeat or switch between relevant feature

dimensions while performing the same task. Evidence from a number of studies using change

detection tasks suggests that attentional control does play some role in vSTM resource

allocation, with costs to performance observed when required to switch between feature

dimensions relative to when the feature dimension repeated. Furthermore, it was found that

manipulations of the CSI and RCI—which have been shown to influence the extent of the

task switch cost—have no influence on the dimension switch cost and that cue switching
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does not contribute to the overall dimension switch cost. Together, results from these initial

studies not only indicate a role for attentional control in vSTM resource allocation, but also

that the origin of the dimension switch cost lies outside that associated with the widely

reported task switch cost. However, later studies using continuous report and change

localisation tasks are in direct opposition, in general finding little evidence for the presence

of dimension switch costs, suggesting that attentional control is not required for resource

allocation. Furthermore, modelling of data collected within these continuous report and

change localisation studies provide support for this view, with perhaps most crucially, change

localisation modelling revealing greatest support for a model wherein resource allocation is

sufficiently captured by a single parameter rather than separate parameters for repetition

and switch trials. While these results may be indicative of the lack of need for attentional

control to allocate vSTM resources, weak evidence observed for a switch cost in non-target

response rate within the continuous report task was found. It is speculated that this may

reflect misbinding as the result of a depletion of attentional resources however, such a view

will require much further research, not only due to the weak evidence, but also some

methodological limitations of the present work. Thus, at present it appears that attentional

control is required for vSTM resource allocation in some contexts as evidenced by dimension

switch costs, but not others; however, it is possible that limitations of the research contained

within this thesis meant that the methods used were insufficient to capture dimension switch

costs within some experimental paradigms.
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Figure captions

Figure 1. Figure showing an example trial procedure within a change detection

task using coloured squares as stimuli.

Figure 2. Figure showing an example trial procedure within the continuous (colour)

report task.

Figure 3. Probability density functions for different values of κ, the concentration

parameter of the von Mises distribution. A higher value of κ indicates

more precise memory representations.

Figure 4. Figure showing stimuli used in Experiments 1 and 2. Note that in

Experiments 1b and 2b a change also occurred in the irrelevant feature

dimension.

Figure 5. Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′),

and d) response bias (c) across each sequencing condition in Experiment

1 (PR = pure repetition, MR = mixed repetition, MS = mixed switch).

Error bars represent the standard error of the mean.

Figure 6. Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′),

and d) response bias (c) across each sequencing condition in Experiment

2 (PR = pure repetition, MR = mixed repetition, MS = mixed switch).

Error bars represent the standard error of the mean.

Figure 7. Figure showing stimuli used in Experiment 3.

Figure 8. Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′),

and d) response bias (c) across each sequencing condition in Experiment

3 (MR = mixed repetition, MS = mixed switch). Error bars represent

the standard error of the mean.

Figure 9. Figure showing example trial procedures in a) Experiment 1a and b)

Experiment 1b. Note that a change occurred in both the relevant and

irrelevant feature dimensions. The response screen (indicated with a

question mark) was blank during the each experiment.



Figure 10. Plots displaying mean a) accuracy, b) response time, c) sensitivity (d′),

and d) response bias (c) across sequencing condition and interval duration

for Experiment 1a and Experiment 1b. Error bars represent the standard

error of the mean.

Figure 11. Figure showing example trial procedure in Experiment 2. Note that a

change occurred in both the relevant and irrelevant feature dimensions.

Figure 12. Plots displaying mean a) accuracy, b) response time, c) sensitivity

(d′), and d) response bias (c) across sequencing condition (CR = cue

repetition, CS = cue switch, DS = dimension switch) in Experiment 2.

Error bars represent the standard error of the mean.

Figure 13. Figure showing example trial procedure in Experiment 1. Note that if

orientation was relevant, the wheel presented on the probe display was

black.

Figure 14. Plots displaying a) mean values for each of the parameters returned

by the three-component model, b) participant-averaged response error

(points) with overlaid model fit (solid line), and c) mean response time

across sequencing condition in Experiment 1. Error bars represent the

standard error of the mean.

Figure 15. Figure showing example trial procedure in Experiment 1. Note that the

same stimuli were used in both Experiment 1a and 1b with the only

difference between experiments being the change magnitudes used. The

change in this example occurred in the top-right stimulus.

Figure 16. Plots displaying a) fixed model fit and b) free tau model fit in Experiment

1a. Note that the fixed model provided the best fit to the data, followed

by the free tau model.

Figure 17. Plots displaying the remaining model fits in Experiment 1a; a) free j-bar

model, b) free p model, c) full model, d) fully-free model.

Figure 18. Plots displaying a) fixed model fit and b) free-j model fit in Experiment

1b. Note that the fixed model provided the best fit to the data, followed

by the free-j model.



Figure 19. Plots displaying the remaining model fits in Experiment 1b; a) free-p

model, b) free-tau model, c) full model, d) fully-free model.



Table captions
Table 1. Table displaying Bayes Factors (BF10) for each model across accuracy,

response time, sensitivity, and response bias analyses in Experiment 1a.

The BF10 for each model is in comparison to the null model.

Table 2. Table displaying Bayes Factors (BF10) for each model across accuracy,

response time, sensitivity, and response bias analyses in Experiment 1b.

The BF10 for each model is in comparison to the null model.

Table 3. Table displaying Bayes Factors (BF10) for each model across accuracy

and response time analyses in Experiment 1a. The BF10 for each model

is in comparison to the null model.

Table 4. Table displaying variability of parameters across sequencing condition and

feature dimension, log-likelihood, and AIC for each model in Experiment

1a. A ⊕ symbol indicates that the parameter was free to vary across

sequencing condition, while a ⊖ symbol indicates that the parameter was

not free to vary across feature dimension.

Table 5. Table displaying Bayes Factors (BF10) for each model across accuracy

and response time analyses in Experiment 1b. The BF10 for each model

is in comparison to the null model.

Table 6. Table displaying variability of parameters across sequencing condition and

feature dimension, log-likelihood, and AIC for each model in Experiment

1b. A ⊕ symbol indicates that the parameter was free to vary across

sequencing condition, while a ⊖ symbol indicates that the parameter was

not free to vary across feature dimension.
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