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Abstract

We study contract design for welfare maximization in the well-known “common agency”
model of Bernheim and Whinston [1986]. This model combines the challenges of coordinating
multiple principals with the fundamental challenge of contract design: that principals have
incomplete information of the agent’s choice of action. Motivated by the significant social
inefficiency of standard contracts for such settings (which we formally quantify using a price
of anarchy/stability analysis), we investigate whether and how a recent toolbox developed for
the first set of challenges under a complete-information assumption – VCG contracts [Lavi and
Shamash, 2019] – can be extended to incomplete information.

We define and characterize the class of “incomplete information VCG contracts (IIVCG)”,
and show it is the unique class guaranteeing truthfulness of the principals and welfare maxi-
mization by the agent. Our results reveal an inherent tradeoff between two important proper-
ties required to ensure participation in the contract: individual rationality (for the principals)
and limited liability (for the agent). We design a polynomial-time algorithm for determining
whether a setting has an IIVCG contract with both properties. As our main result we design a
polynomial-time “algorithmic IIVCG” contract: given valuation reports from the principals it
returns, if possible for the setting, a payment scheme for the agent that constitutes an IIVCG
contract with all desired properties. We also give a sufficient graph-theoretic condition on the
population of principals that ensures the existence of such an IIVCG contract.
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1 Introduction

Common agency. The principal-agent model is a fundamental area of microeconomic theory,

capturing natural contractual relations with important practical implications [5, 21, 29, 28]. At

the heart of the model is a relationship between one entity (agent) who acts on behalf of another

(principal); for example, corporate management and shareholders, a freelance worker and employers,

the public regulator and citizens. In all of these examples, the agent (manager/freelancer/regulator)

acts on behalf of multiple principals (shareholders/employers/citizens). The extension of the basic

single-agent, single-principal setting to multiple principals mirrors the extension of the basic single-

seller, single-buyer auction setting to multiple buyers. This extension was introduced in 1986 by

Bernheim and Whinston [3], and is known as common agency. This fundamental theory has many

additional applications to the study of markets, for example: a marketing agency that bids for

ad space on behalf of multiple advertisers [8], a professional host on Booking.com who manages

several properties for the owners, or platforms like Airbnb that have characteristics of an agent

representing sellers (Airbnb works to promote listings of property owners).1

The agency problem. The main challenge in the principal-agent model (with one or more

principals) is the agency problem [32]: Actions that generate good outcomes for the principal(s)

are costly for the agent, who rationally acts in his own self-interest. To align the interests of the

principals with those of the agent, the principals compensate the agent depending on the outcome

of his action. This compensation scheme, designed to incentivize the agent to choose a desirable

action, is called a contract. The agency problem has two necessary ingredients (if one of these is

missing, the problem is resolved): (i) Incomplete information of the agent’s actions; (ii) Principals

are better risk bearers than the agent.

Incomplete information means that the principals cannot directly observe the agent’s choice of

action, only its resulting (stochastic) outcome. The contractual payment scheme thus depends on

the outcome, which serves as a noisy indicator of the action. This crucial feature of the model is

known as hidden action or moral hazard. For example, employers of a freelancer are not aware of

how much effort he invests, but do view the outcome of his efforts and compensate him accordingly.

The second crucial feature is the asymmetry between principals and agents in their attitude towards

risk. The principal typically has “deeper pockets” and can bear the risk that the agent’s actions will

lead to losses. The way this is incorporated into our model follows classic works like [18, 12, 6]: we

focus on contracts guaranteeing limited liability (LL) for the agent, i.e., payments in the contractual

relationship flow only from the principals to the agent. Indeed, in our examples, a manager does

not typically pay shareholders (even if he loses their investment), nor does a freelancer pay the

employers to purchase projects.2

1It was in fact in legal dispute in the EU whether Airbnb is legally an estate agent or not.
2Other works like [3] capture the asymmetry in risk attitudes among principal and agent by explicitly modeling

the agent’s risk averseness. Without LL or risk averseness, the trivial but unrealistic solution of “buying the project”
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1.1 Multiple Principals: Challenges and a Promising Approach

Having multiple principals raises intriguing new challenges:

“The principal-agent problem here is intensified: not only is there still asymmetric

information between the principals and agent that can bring moral hazard, but there

is also asymmetric information between the principals themselves [... S]ince principals’

interests often diverge, they face incentives to advance their individual interests instead

of the joint interests by all principals[...] As a result, introducing governance to align

the interests of the principals with those of the agent is much more difficult” [31].

Thus, misalignment among the principals combined with their private information (their types)

requires novel contractual mechanisms. In this paper we focus on the design of welfare-maximizing

contracts.

First price contracts. The classic literature on multiple principals has thoroughly explored

one class of contracts, which can be referred to as first price. A first price contract is a simple

mathematical object: it is a function t` for every principal ` that maps an outcome generated by

the agent’s action to the principal’s payment. The payment is simply the principal’s (reported)

value for this outcome, which can obviously be different than her true value. As we show in

Theorem 1, first price contracts can be very socially inefficient (where social efficiency is considered

in equilibrium, through the standard measures of price of anarchy/stability).

A solution designed for complete information. A possible solution arises from recent work of

Lavi and Shamash [22]. Their work studies a model with complete information about the agent’s

choice of action, and thus no agency problem. To demonstrate how different the complete and

incomplete information models are, consider a single principal and an agent choosing among two

actions (“shirking” and “working”), the second costing him more effort. There are two possible

outcomes (“failure” and “success”), and the principal’s value for the second is higher. Shirking

is more likely to produce failure than working. The precise costs, values and probabilities appear

in Example 3.5, and are set up such that working maximizes the expected social welfare (the

principal’s expected value for the action’s outcome, less the agent’s cost for the action). With full

information the principal can simply tell the agent to work and pay him his cost, thus maximizing

welfare and extracting it fully as her expected utility. But in the incomplete information world

where the agent’s action is unknown, the socially-inefficient “null” contract, which pays nothing

and incentivizes the agent to shirk, is preferable for the principal (see Example 3.5 for details).

Further evidence of the difference between the two models is the state of the literature in

each. For complete information, the problem of welfare maximization with multiple principals

and a single agent is largely settled by Bernheim and Whinston [4] (in a paper preceding their

“Common Agency” paper [3]). Lavi and Shamash [22] address a generalization of this problem to

would apply [6].
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multiple agents (the generalization is due to [26]). They instantiate an abstract concept known

as contractible contracts [25], and introduce a novel class of VCG contracts. In contrast, in the

incomplete information world, the problem of welfare maximization with multiple principals has

remained largely open even for a single agent in the three decades since the common agency model

was introduced by [3]. Several works have considered the design of contracts with incomplete

information from a computational point of view [2, 16, 19, 20, 10, 9]; some of these works have

multiple agents (e.g., [33, 1]), or agent private types [15], but none to our knowledge consider

multiple principals with private types.

VCG contracts and incomplete information. In the VGC contracts of Lavi and Shamash

[22], principal `’s payment for an outcome is no longer just her own (reported) value from this

outcome (as in first price contracts), but is a function of the other principals’ reported values as

well. In this sense, the payment functions in VCG contracts are reminiscent of payments in VCG

auctions [30, 7, 14].3 Such payments are indeed used in practice – for example, contracts with “price

match guarantee” clauses. Moreover, computerized platforms (such as freelancing platforms) make

VCG contracts easier to coordinate. Such platforms typically have a central intermediary who can

serve as “mechanism designer”. E.g., in online labor markets, the market platform serves as an

intermediary between an agent (freelancer) and the principals who hire him. The platform has

control over pricing structures and usually treats social welfare as a first-order concern [27, p. 55].

Other examples include marketing agencies (multiple advertisers and a single marketing agent),

corporate management (multiple managers and shareholders, and a single lower-level manager),

etc.

Our goal in this work is to import ideas from VCG contracts and auctions to the incomplete

information world, towards making progress on the long-standing problem of welfare maximization

in common agency settings. Our first challenge is that the class of VCG contracts is undefined

for incomplete information settings. After devising an appropriate generalization of the definition

(Section 3.4), we uncover a more serious challenge – the adaptation of VCG contracts to incomplete

information introduces negative payments. In other words, under such contracts the agent is

sometimes required to pay the principal, in violation of the LL property. Our results show this

is no coincidence, and ultimately address the challenge through algorithmic methods (Section 4).

Our main result is a polynomial-time algorithm that implements a contract with all the desired

properties, including LL, in all settings for which such a contract exists. We believe our contribution

can be a first step in a potentially rich research area of utilizing contractible contracts to address

agency problems: Indeed, it is as hopeless to solve all agency problems with first price contracts as

it is to solve all mechanism design problems with first price auctions. More general contract classes

are called for, and as with auctions, the computational viewpoint comes in handy.

3In fact, Lavi and Shamash [22] note that VCG contracts generalize second price (VCG) auctions; principals in
the former replace the buyers in the latter, and an agent replaces the social planner.
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1.2 Our Results

Design objectives. Motivated by the inefficiency of first price contracts, we seek new contracts

that satisfy the following desiderata. (i) Incentives: Since principals’ values are privately-known,

we require that principals are incentivized to report their values truthfully in dominant strategies.

We also require individual rationality (IR) so that principals’ participation is a dominant strategy,

and as explained above, also the LL property so the agent faces no risk.4 (ii) Objective: The

payment schemes should incentivize the agent to choose a welfare maximizing action (we leave

revenue maximization5 for future work). (iii) Computational efficiency: Our contracts should be

polynomial-time computable.

Beyond first price contracts. We begin with two examples showing that when the principals

offer first price contracts to the agent, there can be a highly inefficient equilibrium (Example 1

shows the price of anarchy is O( 1
n) for n principals), and it’s even possible that all equilibria are

inefficient (Example 2 shows the price of stability is 1
2+O( 1

q−1) for q actions). As our first conceptual

contribution, in Section 2 we formulate a game that allows us to consider more complex contract

formats beyond first price: Every principal ` ∈ [n] reports a valuation b` mapping outcomes to

values. (The reports can be viewed as offers made to the agent, or as “bids” to a centralized

computerized platform.) The agent then chooses an action which generates an outcome o. A

contract t = (t1, ..., tn) maps the reports b = (b1, ..., bn) and the realized outcome o to a payment

t`(b, o) from every principal ` to the agent.

The IIVCG family and an impossibility. In Section 3 we define the Incomplete Information

VCG (IIVCG) contract family, which is dominant strategy truthful and always induces welfare

maximization. Dominant strategy truthfulness is a significant advantage of IIVCG over first price

contracts: with the latter, a decades-old question is how the principals arrive at an equilibrium,

since lacking coordination they face a bargaining-like problem of how to split the welfare. Building

upon a classic result of Holmström [17], we show the IIVCG family is unique (note that all results

stated in this section are informal):

Theorem (Uniqueness of IIVCG, see Theorem 2). Every contract t such that (i) the agent is

induced to maximize welfare, and (ii) the principals’ dominant strategy is truthful, must belong to

the IIVCG family.

Our definition of the IIVCG family (Definition 2) specifies only the expected payments to the

agent for every action, where the expectation is over the action’s stochastic outcome. This is not

enough – a contract must determine the payments for every possible outcome realization. We

4One could also consider relaxing the LL constraint by requiring not that every contractual payment is non-negative
but rather that only the aggregate payment from the principals to the agent is non-negative for every outcome; this
does not change our results (see Remark 7).

5The concept of “revenue” in a multi-principal settings may require new definitions.
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address this by characterizing the outcome-specific payments that incentivize welfare maximization

on behalf of the agent:

Lemma (Payment characterization, see Lemma 1). A contract t = (t1, . . . , t`) is IIVCG if and only

if principal `’s payment function t` can be expressed using h`(·) and w`, where h`(·) is a function

of the other principals’ reports b−`, and
∑

`w
` is a payment vector belonging to the polytope of

payments incentivizing the socially efficient action.

This lemma is useful since it exactly defines our “design space”, and in particular translates to

linear constraints that are the cornerstone of our algorithmic constructions.

IIVCG contracts satisfy truthfulness and welfare maximization; what about the other desiderata

of IR and LL? Whether or not these properties hold depends on the choices of h`(·) and w` that

determine the payments for every principal `. A natural starting point is to choose these to make

principal `’s expected payment equal to the externality she imposes on the others, as in VCG

auctions with the Clarke pivot rule [7], as well as VCG contracts [22]. We refer to this instantiation

of the IIVCG family as Auction-Inspired contracts. In Section 3.4 we show that while Auction-

Inspired contracts are always IR, the LL property is not necessarily satisfied. This is no coincidence

– there is in fact an inherent clash between the two properties:

Theorem (LL-IR tradeoff, see Theorem 3). There are common agency settings for which no IIVCG

contract is both LL and IR.

The above theorem can apply even to settings with a single principal. This impossibility result

highlights how challenging it can be to design contracts under incomplete information, and how

fundamentally different this model is from the complete information one.

An algorithmic approach and main results. In light of our impossibility result, we adopt an

algorithmic approach that leverages our characterization of IIVCG contracts and uses it construc-

tively. We give a polynomial-time algorithm (Algorithm 2) that determines for a given common

agent setting whether or not there is an IIVCG contract for this setting that is both LL and IR.

If such a contract exists, we design another polynomial-time algorithm (Algorithm 1) that imple-

ments it, i.e., upon receiving reports b = (b1, ..., bn) and an outcome o, it computes h`(b−`) and w`

“on the fly” for every principal ` in order to determine the contractual payments. The algorithmic

basis of this approach gives us flexibility that may not exist when trying to design a contract with

a closed-form formula for payments.

Theorem (Main result, see Theorems 5-6). Consider a common agency setting. Algorithm 1

implements a (truthful and welfare maximizing) IIVCG contract that satisfies LL and IR whenever

such a contract exists for the setting; Algorithm 2 determines existence of such a contract. Both

algorithms run in polynomial time.
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The next observation demonstrates that IIVCG contracts can achieve welfare maximization for

settings in which first price contracts fail to achieve so even approximately.

Observation (The power of IIVCG beyond first price, see Appendix A.3). Algorithm 2 returns

“Exists” (i.e., there exists an LL, IR IIVCG contract) when run on Examples 1 and 2, which have

bad price of anarchy (respectively, stability) for first price contracts.

Finally, in Section 5 we give an instantiation of the IIVCG family called Weighted IIVCG.

Weighted IIVCG contracts are always LL, and we characterize the class of settings for which they

are also IR – namely, settings that satisfy a graph-theoretic condition on the graph whose nodes

are the principals. This completes the picture, showing the full range within IIVCG: IR and not

LL (Auction-Inspired IIVCG), LL and not IR (Weighted IIVCG), and both LL and IR whenever

possible (Algorithmic IIVCG). One avenue we do not explore in this paper but leave as an open

question is contracts that guarantee LL and IR always, but only approximately achieve the optimal

social welfare.

2 Model and Preliminaries

Common agency settings. We adopt the classic model of Bernheim and Whinston [3], in which

there is a single agent who is common to n principals. The agent chooses an unobservable action

that incurs a cost on the agent himself, and stochastically leads to an observable outcome that

benefits the principals. This is formalized by a common agency setting as we now describe.

Every setting is a tuple (A, ψ,O,V, F ) as follows. A is a set of q actions available to the agent.

ψ maps an agent’s action to its cost (we assume for simplicity no two actions have the same cost).

O is a set of m outcomes. Each principal ` ∈ [n] has a multiparameter valuation function v` : O →
R≥0, which maps an outcome to a non-negative value, and can also be thought of as a vector in Rm≥0
(valuations in our model are thus succinct objects). Valuation v` belongs to a domain V`, where

for simplicity we assume V` is a convex, polynomially-described polytope; all our results extend to

general convex domains.6 Valuation profile v is the tuple (v1, . . . , vn), and V is the tuple of domains

(V1, ...,Vn). F is a set of distributions; an action a induces a probability distribution F|a over the

outcomes (with probability po∼F|a(o) for outcome o). Throughout, principals are indexed by `,

actions by j and outcomes by i for consistency. Towards the computational analysis, we assume

that the representation size of (A, ψ,O,V, F ) is polynomial in n, q and m.

Who knows what. The setting (A, ψ,O,V, F ) is assumed to be public knowledge. The realized

outcome i is publicly known, while the agent’s chosen action j and the principals valuations {v`}
are privately known. This makes our model a hidden action, hidden type model (where the type is

of the principals).

6In the general case, the convex domains are represented by polynomial-time membership oracles. Convex valua-
tion domains appear, e.g., as the main application in [17].
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Contracts. A contract profile t = (t1, ..., tn) (contract for short) includes a payment rule t` for each

principal `. We diverge from the classic model in that the payment rules depend not only on the

outcome of the agent’s action, but also on the reported valuations of all principals: t` : V ×O → R.

Such contracts are known as contractible. We denote principal `’s report (a.k.a. bid) by b` ∈ V`

(the report need not be truthful, i.e., b` is not necessarily v`).

Taken together, the n (publicly known) payment rules incentivize the agent when choosing

an action. This introduces a tension among the n noncooperative principals to coordinate the

agent’s choice of action, on top of the usual tension between each principal and the self-interested

agent. What constitutes a desirable action depends on the principals’ valuations and on the design

objective (welfare, revenue, etc.). In this work we focus on welfare, as detailed below.

The game. Fix a common agency setting. A contract t and valuation profile v define the following

two-stage game. First, principals simultaneously report their bids b = (b1, ..., bn). After perceiving

the bids, the agent chooses a hidden action a, which imposes a distribution F|a over the outcomes.

An outcome o is realized according to this distribution, and each principal ` pays the agent t`(b, o).

We assume quasi-linear utilities and risk neutrality for all parties. The utilities of the game are as

follows: The agent’s utility is the sum of payments less cost of chosen action, i.e.,
∑

`∈[n] t
`(b, o)−

ψ(a). Thus, the agent’s action x∗(b) given bid profile b maximizes his expected utility:7

x∗(b) ∈ arg max
a∈A

∑
`∈[n]

Eo∼F|a [t`(b, o)]− ψ(a)

 .

We assume the principals know the agent is rational and can anticipate his action x∗(b) given bid

profile b. As for the utility of the principals, principal `’s utility is her value less payment, i.e.,

v`(o)− t`(b, o).

Equilibrium. A bid profile b is in equilibrium if no principal can strictly gain in expectation by

changing her bid while holding other principals’ bids fixed, and given the agent’s anticipated choice

of action x∗(b). Put differently, given bid profile b−`, principal `’s equilibrium bid b` maximizes

her expected utility Eo∼F|x∗(b) [v
`(o)] − Eo∼F|x∗(b) [t

`(b, o)] among all possible bids in V`, where b =

(b−`, b`), and x∗(b) is the agent’s anticipated action.

Consider now the incomplete information game defined by contract t when the valuation profile v

is not fixed. A strategy of principal ` in this game is a mapping from every possible valuation v`

to a bid b`. A strategy is called dominant if it is guaranteed to maximize the principal’s expected

utility for every v` no matter what the other principals bid, i.e., for every b−` ∈ V−` (and still

7As is standard in the literature, we assume the agent tie-breaks in favor of the design objective (for an example
in the context of revenue see [6]). In our case the objective is the (declared) social welfare. If among the utility-
maximizing actions there are several with highest (declared) welfare, we assume the agent chooses to invest maximum
effort, i.e., takes the one with the maximum cost. (While we feel this kind of “eager” tie-breaking is in line with the
standard tie-breaking assumption, our results do not rely on it and would hold for any consistent tie-breaking rule.)
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assuming the rationality of the agent). Principal ` is truthful as a dominant strategy if announcing

her true valuation maximizes her expected utility, i.e., v` ∈ arg maxb`∈V` Eo∼F|x∗(b) [v
`(o)− t`(b, o)]

for every v` ∈ V`, b−` ∈ V−`. We say that contract t is truthful if every principal is truthful as a

dominant strategy.

Design objectives. Our desiderata from a contract t concern (1) incentives, (2) social welfare, and

(3) computational complexity. The first group of design objectives address incentives – principals’

and agent’s willingness to participate, and principals’ willingness to provide private information.

For the latter, we focus on truthful contracts, in which every principal’s dominant strategy is to

simply report her valuation. To ensure principals’ participation in such contracts, we require that

every truthful principal has non-negative expected utility no matter how the others bid – this is

known as the individual rationality (IR) property for principals. Formally, contract t satisfies IR if

Eo∼F|x∗(b−`,v`)
[v`(o) − t`((b−`, v`), o)] ≥ 0 for every ` ∈ [n], b−` ∈ V−`, v` ∈ V`. We now turn to the

agent’s incentives, for which we need the following central definition:

Definition 1. A contract t satisfies limited liability (LL) if every payment from a principal to the

agent is non-negative: t`(b, o) ≥ 0 for every ` ∈ [n], b ∈ V, o ∈ O.

The LL requirement guarantees that the agent never pays out-of-pocket. Under LL, to ensure the

agent is guaranteed non-negative utility, we assume there exists an action with zero cost.8

The second design objective is social welfare. Given a valuation profile v, the (expected) welfare

of action a, denoted by Wela(v), is the total expected value less cost, and a∗(v) is a welfare-

maximizing action:

Wela(v) =
∑
`∈[n]

Eo∼F|a [v`(o)]− ψ(a); a∗(v) ∈ arg max
a∈A

Wela(v).

We seek contracts such that for every bid profile b, the agent’s action choice x∗(b) is “declared

welfare maximizing”; we denote this by x∗(b) = a∗(b).9 Since we focus on truthful contracts, when

playing according to their dominant strategies the principals report b = v, and the agent’s choice

a∗(v) is indeed socially efficient.

The last design objective is computational complexity: given a bid profile b and an outcome o,

the payments t`(b, o) should be computable in polynomial time for every ` ∈ [n]. To summarize our

desiderata, we seek truthful, IR and LL contracts, which incentivize the agent to maximize welfare

and whose payments are computable in polynomial time.

8This assumption is for simplicity; the alternative of requiring IR for the agent would not change our results.
9If there are multiple welfare-maximizing actions then by writing x∗(b) = a∗(b) we mean the agent chooses one

of them. Since x∗(b) is uniquely defined by the tie-breaking rule (see Footnote 7), if x∗(b) = a∗(b) then a∗(b) is also
uniquely defined.
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3 The IIVCG Family of Contracts

In this section we introduce IIVCG contracts. After giving motivation in Section 3.1, we define

the IIVCG family and show it is (uniquely) truthful and welfare-maximizing in Section 3.2. In

Section 3.3 we give the payment format and in Section 3.4 we instantiate this format such that

payments capture externalities, à la VCG auctions. We show this instantiation is IR but not LL,

and in Section 3.5 establish an inherent tradeoff between these two properties.

3.1 Motivation: The Social Inefficiency of First Price Contracts

A first price contract is a contract where each principal simply pays her bid, that is, t`(b, o) = b`(o).

As discussed in the introduction, this is the most common contract format in the literature. It

satisfies the IR and LL properties. However, as we next show, it suffers from inefficiency in terms

of social welfare. Since first price contracts are not truthful, we address their inefficiency through

the measures of price of anarchy and price of stability.10

Theorem 1. The price of anarchy of first price contracts tends to zero when the number of prin-

cipals tends to infinity. The price of stability of first price contracts tends to 1
2 when the number of

actions tends to infinity.11

The proof relies on the following examples.

Example 1 (Price of anarchy). There are three actions a1, a2, a3 and three outcomes o1, o2, o3.

Action ai deterministically yields outcome oi. The costs are: ψ(a1) = 0, ψ(a2) = ε, ψ(a3) = γ,

where 0 < ε < γ < 1. There are n > 3 principals with the following valuation domains: V1 =

{(0, 0, v) | v ≥ 0}, V2 = {(0, v, 0) | v ≥ 0}, and V` = {(v, 0, 0) | v ≥ 0} ∀` > 2. The valuations are:

v1 = (0, 0, 1 + γ), v2 = (0, 1 + ε, 0), and v` = (1, 0, 0) ∀` > 2.

In this example, the bid profile b1 = (0, 0, 1 + γ), b2 = (0, 1 + ε, 0), and b` = (0, 0, 0) ∀` > 2

induces the agent to take action x∗(b) = a3, and forms an equilibrium of the game. Note that

Wela3(v) = 1, while Wela1(v) = n − 2. Hence, the price of anarchy tends to zero when n → ∞.

The full analysis appears in Appendix A.1.

Example 2 (Price of stability). There are q ≥ 2 actions a1, ..., aq and two outcomes o1, o2. Action

ai yields outcome o2 with probability po∼F|ai (o2) = γq−i where 0 < γ < 1
q . The cost for action ai

is ψ(ai) = γ1−i − i + (i − 1)(γ + ε), where 0 < ε ≤ 1
q − γ. There is one principal with valuation

domain V1 = R2
≥q and valuation v1 = (q, q + γ1−q).

10The price of anarchy is the ratio between the worst equilibrium welfare and the optimal welfare. The price of
stability is the ratio between the best equilibrium welfare and the optimal welfare. For details see, e.g., [24, Chapter
17].

11We do not know whether 1
2

is tight.
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In this example, Welai(v) = q + i − (i − 1)(γ + ε). Thus, the socially efficient action is aq,

while the action that minimizes welfare is a1. In Appendix A.2 we show that, when using a

first price contract, the agent takes a1 in all equilibria. The intuitive reason for this is that the

principal bids to maximize her own utility rather than social welfare. Hence, the price of stability is

Wela1(v)/Welaq(v) which is at most (q + 1)/(2q − 1). The last term tends to 1
2 when q →∞. While

the starting point of Example 2 is the “gap setting” construction of [10, p. 15], we must modify

the construction in a nontrivial way and provide a new analysis (the gap in that construction is

between the optimal welfare and revenue, whereas we seek a gap between the optimal welfare and

equilibrium welfare).

3.2 Definition, Properties and Uniqueness of the IIVCG Family

As our main conceptual contribution, we propose to overcome the inefficiency of first price contracts

by introducing the following family of contracts, which we show is (uniquely) truthful and welfare-

maximizing.

Definition 2. A contract t = (t1, ..., tn) is called Incomplete Information VCG (IIVCG) if the

following two properties hold:

1. Declared welfare maximization. Given contract t, for every bid profile b ∈ V, the agent

chooses to maximize the declared social welfare, that is, x∗(b) = a∗(b).

2. Expected payment characterization. There exist functions h1, . . . , hn where h` : V−` →
R, such that for every bid profile b ∈ V, principal `’s expected payment Eo∼F|x∗(b) [t

`(b, o)] for

action x∗(b) = a∗(b) is equal to h`(b−`)−Wela
∗(b)(b−`,0) .

The first property of IIVCG contracts requires that the agent maximizes the declared social

welfare. Therefore, when principals bid truthfully, the agent takes a welfare-maximizing action,

and social efficiency is achieved. The second property characterizes the expected payment from

each principal to the agent for his action a∗(b). The characterization for principal ` uses h`, a

function of the bids of the other principals besides `, and Wela
∗(b)(b−`,0), the part of the welfare

from action a∗(b) that is due to the other principals.12

The characterization in Definition 2 determines only the payments in expectation (taken over

the random outcome) for a certain action, not the payment rules themselves. We further develop

the payment rules in Section 3.3. But Definition 2 suffices to establish truthfulness, and thus welfare

maximization, for every IIVCG contract. We also show the other direction, i.e., a sense in which

this family of contracts is uniquely truthful and welfare-maximizing.

Proposition 1. Every IIVCG contract is truthful.

12Technically, Wela
∗(b)(b−`,0) is the welfare from a∗(b) had principal `’s valuation been a zero vector, i.e., the

welfare of all principals but `.
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Proof. Let t be an IIVCG contract. Consider principal ` and fix the other principals’ bids b−`. We

show that reporting truthfully maximizes principal `’s expected utility. The key observation is that

by Property 2 of Definition 2 of IIVCG contracts, principal `’s expected utility Eo∼F|a∗(b) [v
`(o) −

t`(b, o)] for reporting b` is equal to Wela
∗(b)(b−`, v`)−h`(b−`). The first term is maximized when b` =

v`, because it is Wela(b−`, v`) when a = a∗(b−`, b`), and due to the fact that maxa Wela(b−`, v`) =

Wela
∗(b−`,v`)(b−`, v`). As for the second term, h`(b−`) does not depend on principal `’s report b`. We

conclude that the total expected utility is maximized when b` = v`. Therefore, reporting truthfully

is a dominant strategy for principal `.

The next corollary follows immediately from Proposition 1 and from Property 1 of IIVCG

contracts.

Corollary 1. In every IIVCG contract the agent maximizes social welfare.

We now show a uniqueness result for IIVCG: Whenever the agent maximizes declared welfare,

IIVCG contracts are the only contracts that incentivize principals to bid truthfully as a dominant

strategy. This result is reminiscent of the well-known result by Holmström [17], establishing unique-

ness of VCG auctions for convex domains.13 In fact, our proof makes use of a lemma from [17], in

addition to the convexity of the valuation domains. We give here a sketch of the proof and defer

the full proof to Appendix B.1.

Theorem 2 (Uniqueness). A truthful contract t that satisfies x∗(b) = a∗(b) ∀b ∈ V is an IIVCG

contract.

Proof sketch. To prove t is IIVCG we must show existence of functions {h`} that satisfy Property 2

in Definition 2 of IIVCG contracts. We first define h` : V → R, i.e., as a function of the full

bid profile. The definition is as follows: h`(b) = Eo∼F|a∗(b) [t
`(b, o)] + Wela

∗(b)(b−`,0) ∀b ∈ V. In

order to establish that t is an IIVCG contract, it suffices to show that h`(b−`, ·) is constant on b`

∀b−` ∈ V−`. To do so, we fix b−` and apply a key lemma from [17]. Roughly, this lemma states

that if two functions f : V` × V` → R, g : V` → R satisfy: (i) v` ∈ arg maxb` f(b`, v`), and (ii) v` ∈
arg maxb` f(b`, v`) + g(b`) ∀b`, v` ∈ V`, then g(·) is constant on b`. Take f(b`, v`) = Wela

∗(b)(b−`, v`)

∀b`, v` ∈ V`. It is immediate that (i) holds. Take g(b`) = −h`(b) ∀b` ∈ V`. We show that (ii)

also holds. Since principal ` is truthful as a dominant strategy, v` ∈ arg maxb`∈V` Eo∼F|a∗(b) [v
`(o)−

t`(b, o)]. That is, v` ∈ arg maxb`∈V` Wela
∗(b)(b−`, v`) − h`(b). Thus, according to the key lemma,

h`(b−`, ·) is constant on b`.

3.3 A Characterization of the Outcome-Specific Payment Scheme

The definition of IIVCG contracts in the previous section includes a characterization of expected

payments for action a∗(b). In this section we complete the picture by characterizing the outcome-

13Holström’s result is a generalization of the one by Green and Laffont [13], and in fact applies more generally to
smoothly connected domains.
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specific payments for all actions (Lemma 1). The characterization relies on Property 1 of IIVCG

contracts – that the agent always maximizes the declared social welfare. Since the agent acts in

his own self-interest, the payments must incentivize the agent to choose the welfare-maximizing

action. We use this fact to deduce the format of the payments.

The characterization makes use of the following definition. For every action a define

La =

{
w ∈ Rm≥0

∣∣ a ∈ arg max
a′
{Eo∼F|a′ [w(o)]− ψ(a′)}

}
,

where w(o) for o ∈ [m] is the oth entry of vector w. La can be interpreted as follows: It is the set of

all non-negative payment vectors w (with one payment per outcome) such that action a maximizes

the agent’s expected utility given w. Indeed, if the principals were cooperating rather than acting

each in their own self-interest, to incentivize the agent to take action a they could have jointly paid

the agent w(o) for every outcome o.

The following lemma uses La to characterize the payments:

Lemma 1 (Outcome-specific payment characterization). A contract t is an IIVCG contract if and

only if there exist functions h1, ..., hn where h` : V−` → R, and for every b ∈ V there exist vectors

w1, ..., wn ∈ Rm≥0 where
∑

`∈[n]w
` ∈ La∗(b), such that

t`(b, o) = h`(b−`)−Wela
∗(b)(b−`, w`) + w`(o) ∀` ∈ [n], o ∈ O.

Note that the payment format is parameterized by functions {h`} and vectors {w`}, which

must still be specified to get a concrete instance of an IIVCG contract, as we do in Section 3.4.

The functions {h`} in Lemma 1 are the same functions {h`} in Property 2 of IIVCG contracts

(Definition 2). The vectors {w`} are specific to a bid profile b. Note that for every action a∗(b)

that maximizes the declared welfare, La∗(b) is nonempty.

The proof of Lemma 1 appears in Appendix B.2. We outline here one of the directions, i.e., that

the conditions in Lemma 1 are sufficient for contract t to be IIVCG: Consider for simplicity a bid

profile b for which there is a single action a∗(b) that maximizes the declared welfare. The agent’s cho-

sen action x∗(b) maximizes his expected utility, i.e., belongs to arg maxa′∈A
∑

`∈[n] Eo∼F|a′ [t
`(b, o)]−

ψ(a′). Since the only term in t`(b, o) that depends on the agent’s choice of action is w`(o), and since

summing up this term over the principals gives vector
∑

`∈[n]w
` ∈ La∗(b), it follows that x∗(b) =

a∗(b).14 Thus Property 1 of IIVCG holds. Property 2 can also be verified, by observing that the

expected payment is Eo∼F|a∗(b) [t
`(b, o)] = h`(b−`) −Wela

∗(b)(b−`,0) ∀b ∈ V. See Appendix B.2 for

details.

14Recall that the agent tie-breaks in favor of the declared welfare-maximizing action a∗(b).
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3.4 IIVCG Instantiation: Auction-Inspired IIVCG

The payments developed in the previous section (Lemma 1) are parameterized by functions {h`}
and bid-dependent vectors {w`}. In this section we give a first instantiation of the IIVCG family of

contracts by specifying these functions and vectors. The instantiation is closely related to the VCG

contracts of [22] as well as to VCG auctions, so we refer to the resulting contracts as “Auction-

Inspired IIVCG”.

Definition 3. Contract t is an Auction-Inspired IIVCG contract if

t`(b, o) = Wela
∗(b−`,0)(b−`,0)−Wela

∗(b)(b) + b`(o) ∀` ∈ [n], b ∈ V, o ∈ O.

Observation 1. Every Auction-Inspired IIVCG contract belongs to the IIVCG family of contracts.

Proof. Follows from Lemma 1 by setting h`(b−`) = Wela
∗(b−`,0)(b−`,0), and setting w` = b` for bid

profile b.

Since the IIVCG family is guaranteed to be truthful (Proposition 1) and welfare-maximizing

(Corollary 1), our main concern in what follows is with the properties of IR and LL.

It is not hard to see that in Auction-Inspired IIVCG contracts, the expected payment of prin-

cipal ` given bid profile b is her externality on the other principals: the difference between their

(declared) expected welfare had she not participated, i.e., Wela
∗(b−`,0)(b−`,0), and their (declared)

expected welfare with her participation, i.e., Wela
∗(b)(0, b`). This is exactly as in VCG auctions

with the Clarke pivot rule. Interestingly, we now show that this natural instantiation of IIVCG

does not satisfy all our desiderata – while it guarantees IR, it does not necessarily guarantee LL.

In Section 3.5 we show this is no coincidence – there is an inherent tradeoff among IR and LL.

Observation 2. Every Auction-Inspired IIVCG contract is IR.

Proof Sketch. It can be verified that principal `’s expected utility when she truthfully bids b` = v`

and when others bid b−` is maxa∈AWela(b−`, v`) − maxa∈AWela(b−`,0), which is clearly non-

negative.

Proposition 2. There exist common agency settings for which Auction-Inspired IIVCG contracts

do not satisfy LL.

Proof Sketch. Consider a common agency setting with a valuation profile such that no principal

has a positive externality on the others. Assume the principals are truthful (LL should hold for

any bid profile, including truthful ones). As mentioned above, in any Auction-Inspired IIVCG,

principal `’s expected payment is her externality. The principals’ expected payments are therefore

all zero. The LL requirement that the agent is never paid a negative amount then means that he

cannot be paid a positive amount either. When all payments are zero, the agent will not take any

action with nonzero cost, in contradiction to the requirement that the agent maximizes welfare.
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A specific setting that illustrates Proposition 2 appears in the next section (proof of Theorem 3).

3.5 The LL-IR Tradeoff

As we have seen, a natural IIVCG instantiation (namely Auction-Inspired IIVCG) is IR, but does

not guarantee LL. In Section 5 we show a different instantiation that guarantees LL but not IR. We

now show that the clash between LL and IR is unavoidable (see Appendix B.3 for the full proof):

Theorem 3. There exist common agency settings for which no IIVCG contract satisfies both LL

and IR, even with a single principal.

Proof Sketch. Consider the following common agency setting: There are two actions a1, a2 and

two possible outcomes o1, o2. The distributions imposed by the actions are po∼F|a1 (o1) = 1
2 ,

po∼F|a1 (o2) = 1
2 , po∼F|a2 (o1) = 0, po∼F|a2 (o2) = 1. The costs for the actions are ψ(a1) = 0 and

ψ(a2) = ε. There is one principal with the following valuation domain V1 = R2
≥0.

Suppose towards a contradiction that there exists an IIVCG contract t for this setting which

satisfies IR and LL. For every valuation profile v, contract t is truthful and incentivizes the agent

to take the socially efficient action (Proposition 1 and Corollary 1). Consider the valuation profile

v1 = (0, ε′), where ε′

2 > ε. Note that Wela1(v) = ε′

2 and Wela2(v) = ε′ − ε. Thus, the socially

efficient action is a2. Since the agent maximizes welfare, his expected payoff from a2 is at least his

expected payoff from action a1. That is,

t1(v, o2)− ψ(a2) ≥
1

2
· t1(v, o1) +

1

2
· t1(v, o2)− ψ(a1) ⇐⇒

1

2
· t1(v, o2) ≥

1

2
· t1(v, o1) + ε.

This implies that

t1(v, o2) > t1(v, o1) ≥ 0. (1)

Since t also satisfies IR, the principal’s expected value Eo∼F|a2 [v1(o)] = ε′ from her truthful bid is

at least her expected payment Eo∼F|a2 [t1(v, o)], which by (1) is strictly positive. By Property 2 of

IIVCG contracts, Eo∼F|a2 [t1(v, o)] = h1(v−1) −Wela
∗(v) (v−1,0). Putting everything together we

get:

ε′ ≥ h1(v−1)−Wela2 (v−1,0) > 0. (2)

Recall that Wela2 (v−1,0) = −ε, thus ε′ ≥ h1(v−1) + ε > 0. However, h1(·) is independent of v1 and

so cannot depend on ε′. This is a contradiction.

Remark 4. With two or more principals, Theorem 3 is related to the classic result of Myerson and

Satterthwaite, by which there do not exist socially-efficient and budget-balanced mechanisms [23].

Indeed, the agent in our setting can be viewed as the mechanism designer in the classic result,

and the principals in our setting can be viewed as the players. However, the impossibility result
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of Myerson and Satterthwaite crucially relies on the existence of two players, whereas Theorem 3

applies even to settings with a single principal.

4 Algorithmic IIVCG

Motivated by the LL-IR tradeoff (Theorem 3), in this section we formulate a necessary and sufficient

condition on a common agency setting for the existence of an IIVCG contract that is both LL and

IR (Lemma 2). Our characterization is constructive, yielding an IIVCG contract that satisfies both

properties whenever such a contract exists. There is a conceptual difference between this contract

design and Auction-Inspired IIVCG (presented in Section 3.4) or Weighted IIVCG (presented in

Section 5). In the latter classes, the contract mapping t : V × O → Rn is expressed using a short

mathematical formula. We introduce Algorithmic IIVCG contracts, in which t is algorithm-based:

Definition 4 (Contract ALG1). For a given common agency setting, ALG1 : V × O → Rn is the

contract that for every bid profile b ∈ V and outcome o ∈ O, maps (b, o) to Algorithm 1’s output

on b and o for this setting.

The following two theorems constitute our main results:

Theorem 5. For every common agency setting for which an IIVCG contract that satisfies LL

and IR exists, contract ALG1 is such a contract. Furthermore, for every bid profile b ∈ V and

outcome o ∈ O, Algorithm 1 computes the payment profile ALG1(b, o) in polynomial time.

To use contract ALG1, one must determine for a given setting whether there exists an IIVCG

contract with both properties. Algorithm 2 leverages our necessary and sufficient condition and

provides a procedure to do so. Formally:

Theorem 6. Given a common agency setting, Algorithm 2 determines in polynomial time whether

there exists an IIVCG contract that is both LL and IR for this setting.

Proof overview. The proofs of both theorems are given in Sections 4.1 and 4.2, respectively. At

a high-level they proceed as follows. Given a common agency setting, we present two bounds on

principals’ payments:

1. m`(b) ∀b ∈ V, is an upper bound on principal `’s expected payment in any IIVCG contract t

that satisfies IR, i.e., Eo∼F|a∗(b) [t
`(b, o)] ≤ m`(b) ∀` ∈ [n], b ∈ V (Claim 1).

2. ka∗(b) ∀b ∈ V, is a lower bound on the sum of principals’ expected payments in any IIVCG

contract t that satisfies LL, i.e., ka∗(b) ≤
∑

`∈[n] Eo∼F|a∗(b) [t
`(b, o)] ∀b ∈ V (Claim 2).

It follows that if there exists an IIVCG contract that is both LL and IR for the given setting, then

ka∗(b) ≤
∑
`∈[n]

m`(b) ∀b ∈ V. (3)
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Surprisingly, the reverse direction is also true, i.e., if the predicate in Eq. (3) holds, one can construct

an IIVCG contract that is both LL and IR (Claim 3 and Algorithm 1). Section 4.2 shows that this

predicate can be computed in polynomial time.

4.1 Proof of Theorem 5

In this section we explain Algorithm 1 and prove Theorem 5 step by step. As a first step, we

provide the following upper bound on principals’ payments.

Claim 1. Consider a common agency setting. Define:

m`(b) = min
ṽ`∈V`

Wela
∗(b−`,ṽ`)(b−`, ṽ`)−Wela

∗(b)(b−`,0) ∀` ∈ [n], b ∈ V.

An IIVCG-contract t satisfies IR if and only if Eo∼F|a∗(b) [t
`(b, o)] ≤ m`(b) ∀` ∈ [n], b ∈ V.

Proof. By definition, t satisfies IR if and only if each principal’s expected payment when she bids

truthfully is at most her expected value. That is, Eo∼F|a∗(b−`,v`)
[t`((b−`, v`), o)] ≤ Eo∼F|a∗(b−`,v`)

[v`(o)]

∀` ∈ [n], b ∈ V, v` ∈ V`. By Property 2 in the definition of IIVCG (Definition 2), the above holds if

and only if h`(b−`)−Wela
∗(b−`,v`)(b−`,0) ≤ Eo∼F|a∗(b−`,v`)

[v`(o)] ∀` ∈ [n], b ∈ V, v` ∈ V`. By adding

Wela
∗(b−`,v`)(b−`,0)−Wela

∗(b)(b−`,0) to both sides of the inequality, we have that t satisfies IR if and

only if h`(b−`) −Wela
∗(b)(b−`,0) ≤ Wela

∗(b−`,v`)(b−`, v`) −Wela
∗(b)(b−`,0) ∀` ∈ [n], b ∈ V, v` ∈ V`.

Since the left-hand side is independent of v`, the above is equivalent to the following condition

(obtained by minimizing the right-hand side over all v` ∈ V` and dropping the ∀v` ∈ V` quanti-

fier): h`(b−`) −Wela
∗(b)(b−`,0) ≤ minṽ`∈V` Wela

∗(b−`,ṽ`)(b−`, ṽ`) −Wela
∗(b)(b−`,0) ∀` ∈ [n], b ∈ V.

That is, by Property 2 in the definition of IIVCG, and by the definition of m`(b), if and only if

Eo∼F|a∗(b) [t
`(b, o)] ≤ m`(b) ∀` ∈ [n], b ∈ V.

Proposition 3. m`(b) can be computed in polynomial time by solving the following linear program

and subtracting F|a∗(b) · b−` − ψ(a∗(b)) from its solution.

minimize
ṽ`∈V`,h`∈R

h` (LP1)

subject to F|aj · (b
−` + ṽ`)− ψ(aj) ≤ h` ∀j ∈ [q],

where b−`(o) =
∑
6̀=`′∈[n] b

`′(o) ∀o ∈ O.

Proof. The linear program above is solvable in polynomial time since it consists of O(m) vari-

ables: 0 ≤ h`, ṽ` ∈ V` ⊆ Rm; and polynomially-many constraints: O(q) constraints in addition to

the polynomially-many constraints ensuring that v ∈ V (recall that V` is a convex, polynomially-

described polytope for every `). Note that Welaj (b−`, ṽ`) = F|aj · (b−` + ṽ`) − ψ(aj). Thus, the

jth constraint ensures that the welfare from action aj given (b−`, ṽ`) is at most h`. Altogether
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we have that the optimal welfare Wela
∗(b−`,ṽ`)(b−`, ṽ`) ≤ h` at the feasible region. Minimizing

h` over all ṽ` ∈ V` gives the first term in m`(b). To complete m`(b)’s computation, subtract

Wela
∗(b)(b−`,0) = F|a∗(b) · b−` − ψ(a∗(b)) from h`.

Claim 2. Consider a common agency setting. Define: ka = minw∈LaEo∼F|a [w(o)] ∀a. If an

IIVCG-contract t satisfies LL, then ka∗(b) ≤
∑

`∈[n] Eo∼F|a∗(b) [t
`(b, o)] ∀b ∈ V.

Proof. By linearity of expectation it suffices to show that (
∑

`∈[n] t
`(b, o))o∈O ∈ La∗(b) ∀b ∈ V. By

definition of La∗(b), we need to show that: (i)
∑

`∈[n] t
`(b, o) ≥ 0 ∀o ∈ O. This follows from LL.

(ii) a∗(b) ∈ arg maxa′{Eo∼F|a′ [
∑

`∈[n] t
`(b, o)] − ψ(a′)}. This follows from the definition of IIVCG,

where the agent takes a∗(b).

Proposition 4. ka∗(b) can be computed in polynomial time by solving the following linear program.

minimize
w∈Rm

Fa∗(b) · w (LP2)

subject to F|aj · w − ψ(aj) ≤ F|a∗(b) · w − ψ(a∗(b)) ∀j ∈ [q],

wk ≥ 0 ∀k ∈ [m].

Proof. The linear program above is solvable in polynomial time since it consists of O(m) vari-

ables: w ∈ Rm, and O(q + m) constraints. The first set of constraints ensures that a∗(b) ∈
arg maxa′{Eo∼F|a′ [w(o)]− ψ(a′)}. The second set of constrains ensures that w ∈ Rm≥0. Altogether,

w ∈ La∗(b) at the feasible region. Minimizing Fa∗(b) · w = Eo∼F|a∗(b) [w(o)] computes ka∗(b).

Lemma 2 (Necessary and sufficient condition). Consider a common agency setting. There exists

an IIVCG contract that satisfies LL and IR if and only if ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b ∈ V.

Proof. For the forward direction, suppose that there exists an IIVCG-contract t that satisfies both

LL and IR. By claims 2, 1, we conclude that ka∗(b) ≤
∑

`∈[n] Eo∼F|a∗(b) [t
`(b, o)] ≤

∑
`∈[n]m

`(b)

∀b ∈ V. The backwards direction is constructive and relies on the following claim.

Claim 3. If a setting satisfies ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b ∈ V, an IIVCG contract that satisfies LL

and IR may be constructed by using Lemma 1, and

1. h`(b−`) = minṽ`∈V` Wela
∗(b−`,ṽ`)(b−`, ṽ`) ∀` ∈ [n], b−` ∈ V−`.

2. For every b ∈ V, take wb ∈ arg minw∈La∗(b)Eo∼F|a∗(b) [w(o)] and choose w1, ..., wn as follows:

w` = xb` · wb where 0 ≤ xb`, xb` · ka∗(b) ≤ m`(b) ∀` ∈ [n], and
∑

`∈[n] x
b
` = 1.

Proof of Claim 3. We first show that this contract is in IIVCG, by proving that Lemma 1 can

be applied. Note that
∑

`∈[n]w
` = wb ∈ La∗(b) ∀b ∈ V, and that h` is indeed independent

of b`. Thus, the constructed contract is an IIVCG contract. To show LL, we must show that
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t`(b, o) = h`(b−`)−Wela
∗(b)(b−`, w`) + w`(o) ≥ 0 ∀` ∈ [n], b ∈ V, o ∈ O. Since w`(o) is non-negative,

the last inequality holds if h`(b−`)−Wela
∗(b)(b−`, w`) ≥ 0 ∀` ∈ [n], b ∈ V. By adding Eo∼F|a∗(b) [w

`(o)]

to both sides of the inequality, we have that the above holds if h`(b−`) − Wela
∗(b)(b−`,0) ≥

Eo∼F|a∗(b) [w
`(o)] ∀` ∈ [n], b ∈ V. By our choice of h`(b−`) = minṽ`∈V` Wela

∗(b−`,ṽ`)(b−`, ṽ`) and

of w` = xb` · arg minw∈La∗(b)Eo∼F|a∗(b) [w(o)], this is equivalent to m`(b) ≥ xb` · ka∗(b) ∀` ∈ [n], b ∈ V,

which holds by construction. IR follows from Claim 1, the choice of h`(b−`), and IIVCG expected

payment formula: Eo∼F|a∗(b) [t
`(b, o)] = h`(b−`)−Wela

∗(b)(b−`,0).

Observation 3. The following linear program computes x from Claim 3 (2) in polynomial time.

maximize
xb∈Rn

∑
`∈[n]

xb` (LP3)

subject to
∑
`∈[n]

xb` ≤ 1, xb` · ka∗(b) ≤ m`, 0 ≤ xb` ∀` ∈ [n].

Lemma 3. If a setting satisfies ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b ∈ V, Algorithm 1 computes the construc-

tion in Claim 3 in polynomial time.

Proof. The first loop computes h`(b−`) ∀` ∈ [n]. Line 4 computes wb, and line 6 computes x. The

last loop computes the exact payments according to Lemma 1. All linear programs are solvable in

polynomial time as argued above (Propositions 3, 4 and Observation 3).

Proof of Theorem 5. According to Lemma 2, Claim 3 and Lemma 3, ALG1 is an IIVCG contract

that satisfies LL and IR for every setting where such a contract exists. Truthfulness and social

efficiency follow from the definition of IIVCG. By Lemma 3, Algorithm 1 computes the payments

of ALG1 in polynomial time.

Remark 7. One may consider relaxing the LL constraint, by requiring that only the aggregate

payment from all principals to the agent is non-negative. The proof of Claim 2 shows that requiring

the payments from each individual principal to the agent to be non-negative is without loss of

generality.

4.2 Proof of Theorem 6

In this section we prove Theorem 6, providing a method for determining when there exists an IIVCG

contract that is both LL and IR. According to the characterization in Lemma 2, there exists such

a contract if and only if ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b ∈ V. A key observation is that in order to test this

predicate, it suffices to test only O(q) bid profiles as follows (where q is the number of actions).

Observation 4. Define Va = {v ∈ V | a = a∗(v)} ∀a. Then ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b ∈ V if and

only if ka ≤ minb∈Va{
∑

`∈[n]m
`(b)} ∀a.
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ALGORITHM 1: Returns the payments of an IIVCG contract that satisfies IR and LL for the setting,
or Impossible if no such contract exists.

Input: Bid profile b ∈ V, outcome o ∈ O and an access to the setting (A,O,V, F, ψ).
1 for ` ∈ [n] do
2 Solve LP1 to find h`;

3 m` ← h` − {F|a∗(b) · b−` − ψ(a∗(b))};
4 Solve LP2 to find ka∗(b) and wb;

5 if ka∗(b) >
∑

`∈[n]m
` then return Impossible;

6 Solve LP3 to find x.
7 for ` ∈ [n] do
8 t`(b, o)← h` − {F|a∗(b) · (b−` + xb` · wb)− ψ(a∗(b))}+ xb` · wb(o);

9 return {t`(b, o)}`∈[n];

Observation 4 follows directly from the definition of Va, and will be used in the proof of Theorem 6.

Claim 4. Consider an action a. The following linear program computes minb∈Va
∑

`∈[n]m
`(b) in

polynomial time.15

minimize
b∈Va,ṽ∈V,h∈Rn

∑
`∈[n]

{h` − (F|a · b−` − ψ(a))} (LP4)

subject to F|aj · (b
−` + ṽ`)− ψ(aj) ≤ h` ∀j ∈ [q], ` ∈ [n].

Proof. This linear program is similar to LP1, which computes the first term in m`(b), and is referred

to as h`. We use the same set of constraints for each principal to ensure that Wela
∗(b−`,ṽ`)(b−`, ṽ`) ≤

h` ∀` ∈ [n] at the feasible region. However, the search space and the objective are different. Instead

of computing the first term in m`(b), we subtract F|a · b−`−ψ(a) = F|a∗(b) · b−`−ψ(a∗(b)) and sum

over all principals to compute
∑

`∈[n]m
`(b). We can do so since ṽ`s are independent. Further, the

search space is all b ∈ Va on top of all ṽ ∈ V to find min
∑

`∈[n]m
`(b).

Proof of Theorem 6. Recall Algorithm 1. Note that upon receiving a bid profile b and an outcome

o, in addition to computing the payments of ALG1, it computes ka∗(b) ≤
∑

`∈[n]m
`(b), and returns

Impossible if this predicate does not hold (see line 5 in Algorithm 1). According to Observation 4,

given a common agency setting, it suffices to test if ka ≤ minb∈Va
∑

`∈[n]m
`(b) ∀a to determine

whether there exists an IIVCG contract that satisfies both LL and IR. This is done in Algorithm 2.

For each action a, line 2 uses LP4 to find arg minb∈Va
∑

`∈[n]m
`(b). Then, using Algorithm 1, we test

if ka ≤
∑

`∈[n]m
`(b). Thus, Algorithm 2 computes ka ≤ minb∈Va

∑
`∈[n]m

`(b) ∀a and determines

whether a “good” IIVCG contract exists.

15To set b ∈ Va as a linear constraint we use the constraints of La (as in Algorithm 1) with weak and strict
inequalities according to the tie-breaking in a∗(·). A standard technique for strict inequalities in a linear program is
adding a small constant that depends on the bit precision, see e.g., [11].
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ALGORITHM 2: Determines if there exists an IIVCG contract that satisfies LL and IR for a given
setting.

Input: Setting (A,O,V, F, ψ)
1 for a ∈ A do
2 Solve LP4 to find arg minb∈Va

∑
`∈[n]m

`(b);

3 if Algorithm 1 on b and arbitrary o returns Impossible then
4 return Impossible;

5 return Possible;

Remark 8. When the principals have no private information (i.e., their types are fixed and publicly

known so Vi is a singleton), there are always contracts in IIVCG that satisfy LL and IR. I.e., our

Algorithm 2 will return “Possible” and our Algorithm 1 will find the best such contract for the

principals. As a concrete example, one LL and IR IIVCG contract is as follows. Take h` =

Wela
∗(v)(v), and w` = v` in Lemma 1 of the IIVCG characterization. One can verify that a

principal’s payments in this contract are exactly her values. LL holds since the principal’s values

are non-negative, and IR holds since the principal’s utility is zero. We mention that this contract

favors the agent’s utility over that of the principals’. At the other extreme, one can use Algorithmic

IIVCG. Our LP approach to this class assures that the minimum payment required to incentivize

the agent is charged from the principals, thus favoring their utility over the agent’s.

5 IIVCG Instantiation: Weighted IIVCG Contracts

In this section we introduce a class within IIVCG which guarantees LL but not necessarily IR,

and give a condition on common agency settings (“G-correlation”) that suffices for the existence of

IR as well. The high-level idea is as follows. By Proposition 2, in order to satisfy LL, principals’

expected payment should be more than their externality on others. While increasing principals’

payments may damage IR, a type of contract which we term Weighted IIVCG succeeds in providing

IR for a wide family of common agency settings. The central idea is to approximate each principal’s

valuation according to other principals using the concept of a correlation graph, and use this to

set the payments. Correlation graphs and G-correlated settings are defined in Section 5.1, and in

Section 5.2 we use these to define Weighted IIVCG.

5.1 Correlation Graphs and G-Correlated Settings

A correlation graph (Definition 5) describes how principals’ valuations are correlated. (As one

interpretation, principals’ valuations can be intuitively thought of as reflecting their socioeconomic

status, and the correlation graph as a natural way to describe it.)

Definition 5. A correlation graph G is a weighted directed graph with vertex set [n] and weights

on edges d : [n]2 → [0, 1] such that
∑

k∈[n] d(k, `) = 1, and d(`, `) = 0 ∀` ∈ [n].
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We introduce the following “running example” for this section to demonstrate our definitions.

Figure 1 depicts a correlation graph of the setting in the following example.

Example 3. There are 3 principals, 2 actions and 2 outcomes. The valuation domain is V` =

[10, 15]2 ∀` ∈ [3]. The costs are: ψ(a1) = 0, and ψ(a2) = 1. The probabilities over outcomes are:

po∼F|a1 (o1) = 1, and po∼F|a2 (o1) = 0.25, and principals’ valuations are: v1 = (11, 13), v2 = (12, 14),

and v3 = (10, 11).

Figure 1: A possible correlation graph of the common agency setting in
Example 3.

We mention that a correlation graph may consist of several connected components. (In our

intuitive interpretation, think of a state with multiple cities, within each city individuals are so-

cioeconomically correlated.)

Given a correlation graph G, we define principals’ approximate valuations, referred to as their

G-weighted valuations, as follows.

Definition 6. Consider a correlation graph G, and a valuation profile v. The G-weighted valuation

of principal ` is: v̂`G =
∑

k∈[n] d(`, k) · v̂k, where v̂k = vk(o)−mino′ v
k(o′) ∀o ∈ O, k ∈ [n].

In words, the G-weighted valuation of principal ` is a weighted average on other principals

valuations, when their valuations are shifted downwards. We will demonstrate this for Example

3 and the correlation graph G in Figure 1: The G-weighted valuation of principal 1 is v̂1G =

d(1, 2) · v̂2 + d(1, 3) · v̂3. It can be verified that v̂2 = (0, 2), v̂3 = (0, 1), and since d(1, 2) = 0.8, and

d(1, 3) = 0.5, the G-weighted valuation of 1 is v̂1G = (0, 1.6) + (0, 0.5) = (0, 2.1).

Definition 7. Given a correlation graph G, a setting is G-correlated if Wela
∗(v−`,v̂`G)(v−`, v̂`G) ≤

Wela
∗(v)(v) ∀` ∈ [n], v ∈ V.

That is, a setting is G-correlated if the welfare when principal `’s valuation is replaced with

her G-weighted valuation, is bounded by the actual welfare (for every valuation profile). We

demonstrate this condition for the setting and the valuation profile in Example 3, and the correlation
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graph in Figure 1. Recall that v̂1G = (0, 2.1). It can thus be verified that Wela1(v) = 33, Wela2(v) =

35.75 and that Wela1(v−`, v̂`G) = 22, Wela2(v−`, v̂`G) = 24.825. Thus, the welfare when principal `’s

valuation is replaced with her G-weighted valuation is bounded by the actual welfare (for v).

Examples of G-correlated settings. The following claims describe natural special cases for

G-correlated settings.

Claim 5. Consider a common agency setting. If principals share the same expected value for each

action, there exists a correlation graph G for which the setting is G-correlated.16

Proof. Take G as any graph on [n] vertices that has a weighted in-degree and out-degree of

1 for all vertices.17 Consider a valuation profile v and a principal `. To satisfy the condi-

tion for G-correlation it suffices to have Eo∼F|a [v̂`G(o)] ≤ Eo∼F|a [v`(o)] ∀a. Since it implies that

Wela
∗(v−`,v̂`G)(v−`, v̂`G) ≤ Wela

∗(v−`,v̂`G)(v−`, v`) ≤ Wela
∗(v)(v). By the definition of v̂` and of v̂k,

Eo∼F|a [v̂`G(o)] = Eo∼F|a [
∑

k∈[n] d(`, k) · v̂k(o)] ≤ Eo∼F|a [
∑

k∈[n] d(`, k) · vk(o)]. Since principal’s share

the same expected valuation, Eo∼F|a [
∑

k∈[n] d(`, k) · vk(o)] =
∑

k∈[n] d(`, k) ·Eo∼F|a [v`(o)], and since∑
k∈[n] d(`, k) = 1, the last term is Eo∼F|a [v`(o)]. We conclude that Eo∼F|a [v̂`G(o)] ≤ Eo∼F|a [v`(o)]

∀a as desired. This completes the proof.

Claim 6. Consider a common agency setting. If principals’ valuation domain is [a, b]m where

b− a ≤ a, there exists a correlation graph G for which the setting is G-correlated.

We mention that in this case, first price contracts may fail.

Proof. The proof proceeds as in Claim 5, but requires a different argument for proving that

Eo∼F|a [v̂`G(o)] ≤ Eo∼F|a [v`(o)] ∀a. By definition, Eo∼F|a [v̂`G(o)] = Eo∼F|a [
∑

k∈[n] d(`, k) · v̂k(o)]. Note

that since vk(o) ≤ b, and a ≤ mino′∈O v
k(o′), we have that v̂k(o) ≤ b− a ≤ a ∀k ∈ [n], o ∈ O. This

implies that, Eo∼F|a [
∑

k∈[n] d(`, k) · v̂k(o)] ≤
∑

k∈[n] d(`, k) · a, and since
∑

k∈[n] d(`, k) = 1 the last

term is a. Recall that principal’s valuations are at least a. Thus, a ≤ Eo∼F|a [v`(o)]. We conclude

that Eo∼F|a [v̂`G(o)] ≤ Eo∼F|a [v`(o)] ∀a. This completes the proof.

5.2 G-Weighted IIVCG Contracts

We can now use the concepts introduced in the previous section to define Weighted IIVCG contracts

and analyze their properties.

16While this is natural, one can show that first price contracts do well in this case: Since principals have the same
expected value for each action, and principals’ domains are independent, the welfare of each action is fixed. Thus,
the welfare maximizing action is unified for all valuation profiles (and bid profiles). In first price contracts, the agent
maximizes declared welfare. Thus the socially efficient action is always chosen by the agent.

17As two simple examples for such graphs, consider the graph defined by d(`, ` + 1) = 1 ∀` ∈ [n], where ` + 1 is
calculated modulo n, and the graph is defined by d(`, k) = 1

n−1
∀`, k ∈ [n].
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Definition 8. Consider a correlation graph G. A G-Weighted IIVCG Contract is given by

t`(b, o) = Wela
∗(b−`,b̂`G)(b−`, b̂`G)−Wela

∗(b)(b−`, b̂`G) + b̂`G(o) ∀` ∈ [n], b ∈ V, o ∈ O.

Proposition 5. Consider a correlation graph G. Every G-Weighted IIVCG contract is in IIVCG.

Proof. The proof relies on Lemma 1 when h`(b−`) = Wela
∗(b−`,b̂`G)(b−`, b̂`G) and w` = b̂`G(o). We

prove that the conditions of Lemma 1 are met. First, h` is independent of b`, since b̂`G is independent

of b` (d(`, `) = 0 ∀` ∈ [n]). Second, we show that
∑

`∈[n]w
` ∈ La∗(b). To do so, we establish that∑

`∈[n]w
` =

∑
`∈[n] b̂

` using the following chain of equalities:

∑
`∈[n]

w`
(1)
=
∑
`∈[n]

∑
k∈[n]

d(`, k)b̂k
(2)
=
∑
k∈[n]

∑
`∈[n]

d(`, k)b̂k
(3)
=
∑
k∈[n]

b̂k.

Equality (1) follows from the choice of w`s above, and the definition of b̂`G (Definition 6). Equality

(2) changes the order of summands, and Equality (3) follows from the fact that
∑

k∈[n] d(k, `) = 1

∀` ∈ [n] (Definition 7). Thus,
∑

`∈[n]w
` =

∑
`∈[n] b̂

`, and it suffices to show that
∑

`∈[n] b̂
` ∈

La∗(b). To do so, we show that
∑

`∈[n] b̂
` ∈ Rm≥0 and that a∗(b) ∈ arg maxa′{Eo∼F|a′ [

∑
`∈[n] b̂

`(o)]−
ψ(a′)}. First, by definition b̂`(o) ≥ 0 ∀o ∈ O, ` ∈ [n]. Thus,

∑
`∈[n] b̂

` ∈ Rm≥0. Second, by def-

inition of a∗(b), it holds that a∗(b) ∈ arg maxa′{Eo∼F|a′ [
∑

`∈[n] b
`(o)] − ψ(a′)}. Thus a∗(b) ∈

arg maxa′{Eo∼F|a′ [
∑

`∈[n] b
`(o) − y] − ψ(a′)} ∀y ∈ R, and specifically for y =

∑
`∈[n] mino∈O b

`(o).

We conclude that a∗(b) ∈ arg maxa′{Eo∼F|a′ [
∑

`∈[n] b̂
`(o)]− ψ(a′)}. This completes the proof.

Theorem 9. Consider a correlation graph G. Every G-Weighted IIVCG contract satisfies LL.

Furthermore, IR is satisfied if and only if the setting is G-correlated.

Proof. Truthfulness and social efficiency are immediate since G-Weighted IIVCG is in IIVCG. LL

follows from the fact that the first term in the payment formula ,Wela
∗(b−`,b̂`G)(b−`, b̂`G), is (weakly)

higher than the second term, Wela
∗(b)(b−`, b̂`G), and since b̂`G(o) ≥ 0 ∀o. We prove IR if and only if

the setting is G-correlated. By definition, IR holds if and only if each principal `’s expected payment

when she bids truthfully is at most her expected value. That is, by the definition of G-Weighted

IIVCG IR holds, if and only if Wela
∗(b−`,b̂`G)(b−`, b̂`G)−Wela

∗(b−`,v`)(b−`,0) ≤ Eo∼F|a∗(b−`,v`)
[v`(o)]

∀b−` ∈ V−`, v` ∈ V`, ` ∈ [n]. By adding Wela
∗(b−`,v`)(b−`,0) to both sides of the inequality, we get

Wela
∗(b−`,b̂`G)(b−`, b̂`G) ≤Wela

∗(b−`,v`)(b−`, v`) ∀b−` ∈ V−`, v` ∈ V`, ` ∈ [n]. Denoting b = (b−`, v`),

this condition is equivalent to Definition 7 of the G-correlated setting. This completes the proof.
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A Social Inefficiency of First Price Contracts

A.1 Price of Anarchy: Analysis of Example 1

In this section we prove that in Example 1, action a3 and the bid profile b1 = (0, 0, 1+γ), b2 = (0, 1+

ε, 0) and b` = (0, 0, 0) ∀` > 2 constitute an equilibrium. To do so, we show that the agent maximizes

his utility, and that each principal cannot benefit from deviating and switching her bid. Note that

Wela3(v) = 1, while the action which maximizes social welfare is a1 with Wela1(v) = n − 2 > 1.

Therefore, the price of anarchy is Wela3(v)/Wela1(v) = 1/(n− 2), which tends to zero when n→∞.

For the agent, the payoff from taking action a3 or action a2 is 1, while the payoff from action

a1 is 0. Recall that the tie-breaking rule is in favor of the declared welfare and then the cost (see

footnote 7). Since a2 and a3 have the same declared welfare the agent takes action a3 which incurs

more cost. Therefore, x∗(b) = a3. Principal 1 cannot raise her utility by changing the bid for o3. If

she raises her bid, the agent still takes a3 and her utility will strictly decrease since she pays more

to the agent. If principal 1 lowers her bid, then the agent takes a2, and principal 1’s utility will not

vary. Principal 2 cannot raise her utility by changing the bid for o2. If she raises her bid, the agent

takes a2 and her utility will strictly decrease since she pays more then her value to the agent. If

principal 2 lowers her bid, then the agent still takes a3, and principal 2’s utility does not vary. As

for principal ` > 2, she cannot raise her utility by announcing a different bid for o1. Assume she

announces a positive bid b̃`(o1) > 0 and consider two cases: (i) If b̃`(o1) ≤ 1, the agent takes a3

and the utility of principal ` does not vary. (ii) If b̃`(o3) > 1, the agent takes a1, yet the utility of

principal ` becomes negative. We have shown that neither the agent nor the principals may benefit

from deviation. Hence, action a3 and the bid profile b constitute an equilibrium.

A.2 Price of Stability: Analysis of Example 2

In this section we prove that in Example 2, the agent takes a1 in all equilibria. The proof relies on

the following Claim.
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Claim 7. Consider Example 2. For every bid profile that incentivizes the agent to take ai for i > 1,

the principal’s expected utility is at most 1− ε/(1− γ).

Observe that the smallest possible bid profile b1 = (q, q) incentivizes the agent to take action a1.

Also, the principal’s expected utility given b1 is 1 > 1 − ε/(1 − γ). Thus, there is no equilibrium

where the agent takes ai for i > 1.

Proof of Claim 7. Let b1 be a bid profile that incentivizes ai for i > 1. It must hold that Eo∼F|ai [b
1(o)]−

ψ(ai) ≥ Eo∼F|ai−1
[b1(o)]−ψ(ai−1). That is, (γq−i−γq−(i−1))(b1(o2)−b1(o1)) ≥ γ1−i(1−γ)−1+(γ+ε).

Since b1(o1) must be at least q, it follows from the last inequality that b1(o2) ≥ q + γ1−q − γi−q +

ε/(γq−i − γq−(i−1)). Using this, the following chain of inequalities shows that the principal’s ex-

pected utility is at most 1− ε/(1− γ):

Eo∼Fai
[v1(o)− t1(b, o)]

= γq−i(v1(o2)− b1(o2)) + (1− γq−i)(v1(o1)− b1(o1))

≤ γq−i(v1(o2)− q − γ1−q + γi−q − ε/(γq−i − γq−(i−1))) + (1− γq−i)(v1(o1)− q)

= γq−i(γi−q − ε/(γq−i − γq−(i−1)))

= 1− ε/(1− γ).

A.3 Existence of IIVCG for Examples 1 and 2

Proposition 6. There exists an IIVCG contract for the setting in Example 1.

Proof. We must show that ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b ∈ V. We use the following case analysis:

1. a∗(b) = a1. Note that ka1 = 0, and thatm`(b) ≥ 0 ∀` ∈ [n], b ∈ V. Thus, ka∗(b) ≤
∑

`∈[n]m
`(b).

2. a∗(b) = a2. Note that ka2 = ε by using w = (0, ε, 0). Further, since a∗(b) = a2, and by the

definition of the domain, Wela
∗(b)(b) = b2(o2)− ε. Thus, Wela

∗(b)(b−1,0) = Wela
∗(b)(b−`,0) =

b2(o2)−ε ∀` > 2, and minṽ1∈V1 Wela
∗(b−1,ṽ1)(b−1, ṽ1),minṽ`∈V` Wela

∗(b−`,ṽ`)(b−`, ṽ`) ≥ b2(o2)−
ε ∀` ∈ [n]. This implies that m1(b) = m`(b) = 0 ∀` > 2. Further, Wela

∗(b)(b−2,0) = −ε.
Thus, m2(b) ≥ ε. It follows that ka∗(b) ≤

∑
`∈[n]m

`(b).

3. a∗(b) = a3. Note that ka3 = γ by using w = (0, 0, γ). Further, since a∗(b) = a3, and by the

definition of the domain, Wela
∗(b)(b) = b1(o3)−γ. Thus, Wela

∗(b)(b−2,0) = Wela
∗(b)(b−`,0) =

b1(o3)−γ ∀` > 2, and minṽ2∈V2 Wela
∗(b−2,ṽ2)(b−2, ṽ2),minṽ`∈V` Wela

∗(b−`,ṽ`)(b−`, ṽ`) ≥ b1(o3)−
γ ∀` ∈ [n]. This implies that m2(b) = m`(b) = 0 ∀` > 2. Further, Wela

∗(b)(b−1,0) = −γ.
Thus, m1(b) ≥ γ. It follows that ka∗(b) ≤

∑
`∈[n]m

`(b).

This completes the proof.
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Proposition 7. There exists an IIVCG contract for the setting in Example 2.

To prove this, we first state the following claims.

Claim 8. kaj = γ1−j − 1 + ε/(1− γ) ∀j ∈ [q].

Claim 9. m`(b) = q + ψ(a∗(b)) ∀b ∈ V.

Proof of Proposition 7. As shown in Section 4.1, the setting is applicable if ka∗(b) ≤ m1(b) ∀b ∈ V.

Equivalently, according to Claims 8 and 9, the setting is applicable if γ1−j − 1 + ε/(1 − γ) ≤
q+γ1−j−j+(j−1)(γ+ε), where aj = a∗(b), for all b ∈ V. Note that (j−1)(1−γ−ε)+ε/(1−γ) ≤ q
for all j ∈ [q], since the left-hand side is at most (q− 1)(1− γ − ε) + 1 which, in turn, is at most q.

This completes the proof.

Proof of Claim 8. Recall that kaj = minw∈LaEo∼F|aj [w(o)]. We show that one w which minimizes

Eo∼F|aj [w(o)] is w = (0, γ1−q − γj−q + γj−q · ε/(1− γ)). Thus, kaj = γ1−j − 1 + ε/(1− γ).

First, we prove that w ∈ Laj . To do so, we must show that aj ∈ arg maxa′∈A Eo∼F|a′ [w(o)] −
ψ(a′). Equivalently, that Eo∼F|aj [w(o)] − ψ(aj) ≥ Eo∼F|aj′ [w(o)] − ψ(aj′) ∀j′ ∈ [q]. That is,

(γq−j − γq−j′)(w2 −w1) ≥ ψ(aj)− ψ(aj′) ∀j′ ∈ [q]. Replacing w and ψ, the last inequality holds if

(γq−j − γq−j′)(γ1−q − γj−q + γj−q · ε/(1− γ)) ≥ γ1−j − γ1−j′ − (j − j′)(1− γ − ε) ∀j′ ∈ [q].

Reorganizing both sides, this is equal to

γ1−j − γ1−j′ + (γq−j − γq−j′)(−γj−q + γj−q · ε/(1− γ)) ≥ γ1−j − γ1−j′ − (j− j′)(1− γ− ε) ∀j′ ∈ [q].

Which, by subtracting γ1−j − γ1−j′ from both sides, holds if

(γq−j − γq−j′)(−γj−q + γj−q · ε/(1− γ)) ≥ −(j − j′)(1− γ − ε) ∀j′ ∈ [q]. (4)

Observe the left-hand side in (4), by dividing the first term by γq−j and multiplying the second

term by γq−j , it is equal to (1 − γj−j′)(−1 + ε/(1 − γ)) = −(1 − γj−j′)(1 − γ − ε)/(1 − γ). Then,

by dividing both sides in (4) by −(1− γ − ε), we conclude that w ∈ Laj if

(1− γj−j′)/(1− γ) ≤ (j − j′) ∀j′ ∈ [q]. (5)

The following case analysis shows the above inequality holds:

1. For j − j′ = 0,j − j′ = 1, this is immediate.

2. For j − j′ ≥ 2, (5) holds since 1− γj−j′ ≤ 1 ≤ 2 · (1− 1
q ) ≤ 2 · (1− γ) ≤ (j − j′)(1− γ).

3. For 0 > j−j′, (5) holds since 1−γj′−j = −( 1γ
j′−j−1) ≤ −(2j

′−j−1) ≤ −(j′−j) ≤ (j−j′)(1−γ),

where the first inequality follows from the fact that γ ≤ 1
q ≤

1
2 .
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We have shown that w ∈ Laj . It is now left to show that w minimizes Eo∼F|aj [w(o)]. Observe

that for every w′ ∈ La, it must hold that Eo∼F|aj [w′(o)] ≥ Eo∼F|aj−1
[w′(o)]. That is, (γq−j −

γq−j+1)(w′2−w′1) ≥ γ1−j−γ2−j− (1−γ− ε). By reorganizing both sides, the last inequality equals

to γq−j(1 − γ)(w′2 − w′1) ≥ (γ1−j − 1)(1 − γ) + ε. Dividing both sides by γq−j(1 − γ), and since

w′1 ≥ 0, it holds that w′2 ≥ γ1−q − γj−q + ε/(γq−j − γq−(j−1)). Since w meets these lower bounds,

it minimizes Eo∼F|aj [w(o)]. This completes the proof.

Proof of Claim 9. Recall that m1(b) = minṽ1∈V1 Wela
∗(b−1,ṽ1)(b−1, ṽ1)−Wela

∗(b)(b−1,0). Note that

Wela
∗(b)(b−1,0) = −ψ(a∗(b)). Further, minṽ1∈V1 Wela

∗(b−1,ṽ1)(b−1, ṽ1) = q, when ṽ1 = (q, q):

Since for every v1 6= ṽ1 ∈ V1 it holds that ṽ1 ≤ v1 (element wise). Thus, Wela
∗(b−1,ṽ1)(b−1, ṽ1)

≤Wela
∗(b−1,ṽ1)(b−1, v1) ≤Wela

∗(b−1,v1)(b−1, v1). This completes the proof.

To complete the picture, one IIVCG contract for Example 2 may be contracted using h1(b−1) = q

and w = (0, γ1−q − γj−q + γj−q · ε/(1− γ)) where aj = a∗(b) ∀b ∈ V. That is,

t1(b, o1) = q − {(j − 1)(1− γ − ε) + ε/(1− γ)}.

t1(b, o2) = q − {(j − 1)(1− γ − ε) + ε/(1− γ)}+ γ1−q − γj−q + γj−q · ε/(1− γ).

This contract satisfies limited liability because q ≥ (q−1)(1−γ−ε)+1 ≥ (j−1)(1−γ−ε)+ε/(1−γ),

and γj−q−γj−q · ε/(1−γ) = γ1−q ·γj−1 · (1− ε/(1−γ)) ≤ γ1−q, since γj−1, (1− ε/(1−γ)) ≤ 1. This

contract also satisfies individual rationality since for aj = a∗(v), it must hold that Eo∼F|aj [v1(o)] ≥
q + ψ(aj) = Eo∼F|aj [t1(v, o)]. The inequality is immediate for j = 1, since ψ(aj) = 0 and v ∈
V = R2

≥q. Suppose towards a contradiction that it does not hold for j > 1, then Wela1(v) ≥ q ≥
Eo∼F|aj [v1(o)]− ψ(aj) = Welaj (v), in contradiction to the fact that a∗(v) = aj .

B IIVCG Contracts: Missing Proofs from Section 3

B.1 Uniqueness of IIVCG Contracts: Proof of Theorem 2

To prove Theorem 2 we rely on a result of Holmstrom [17]:

Lemma 4 (Lemma 1 in [17]). Let f : [0, 1]2 → R and g : [0, 1]→ R satisfy:

1. y ∈ arg maxm∈[0,1] f(m, y),

2. y ∈ arg maxm∈[0,1] f(m, y) + g(m),

3.
∣∣∂f(m,y)

∂y

∣∣ ≤ K <∞ for all m, y ∈ [0, 1].

Then g(m) = constant on [0, 1].
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Proof of Theorem 2. Define h` : V → R as follows: h`(b) = Eo∼F|a∗(b) [t
`(b, o)] + Wela

∗(b)(b−`,0)

∀b ∈ V and fix an arbitrary b−` ∈ V−`. To show that t is an IIVCG contract, it suffices to show

that h`(b−`, ·) is constant on b`. We make the following observations: First, bidding truthfully is

socially efficient, i.e.,

v` ∈ arg max
b`∈V`

Wela
∗(b)(b−`, v`) ∀v` ∈ V`. (6)

Second, since principal ` is truthful, v` ∈ arg maxb`∈V` Eo∼F|a∗(b) [v
`(o)−t`(b, o)] ∀v` ∈ V`. Replacing

Eo∼F|a∗(b) [t
`(b, o)] with h`(b)−Wela

∗(b)(b−`,0), it holds that

v` ∈ arg max
b`∈V`

Wela
∗(b)(b−`, v`)− h`(b) ∀v` ∈ V`. (7)

After establishing (6) and (7), we show that h`(b−`, ·) is constant on b`. Equivalently, we

show that for every pair of bid profiles b`, b̃` ∈ V` h`(b−`, b`) = h`(b−`, b̃`). To do so, define

V`(b`, b̃`) = {v`(y) | y ∈ [0, 1]}, where v`(y) : O → R as follows v`(y; o) = yb`(o) + (1 − y)b̃`(o)

∀o ∈ O, y ∈ [0, 1]. Note that v`(1) = b` and that v`(0) = b̃`. Thus, it suffices to show that

h`(b−`, v`(1)) = h`(b−`, v`(0)). By the assumption that V is convex, V`(b`, b̃`) is a sub domain of

V`. Hence, it follows from (6) and (7) that, using the notation of a(m) = a∗(b−`, v`(m)),

y ∈ arg max
m∈[0,1]

Wela(m)(b−`, v`(y)) ∀y ∈ [0, 1]. (8)

y ∈ arg max
m∈[0,1]

Wela(m)(b−`, v`(y))− h`(b−`, v`(m)) ∀y ∈ [0, 1]. (9)

Define f(m, y) = Wela(m)(b−`, v`(y)) and g(m) = −h`(b−`, v`(m)) ∀m, y ∈ [0, 1]. With these

notations, note that (8), (9) are exactly 1,2 in Lemma 4 (respectively). To apply Lemma 4 we

show that 3 holds. Define K = arg maxa∈A
∣∣Eo∼F|a [b`(o)− b̃`(o)]

∣∣. Since A is a finite set, K < ∞.

We show that
∣∣∂f(m,y)

∂y

∣∣ ≤ K for all m, y ∈ [0, 1] as follows. By definition of f and of the social

welfare Wel(·), ∣∣∣∣∂f(m, y)

∂y

∣∣∣∣ =

∣∣∣∣∂Wela(m)(b−`, v`(y))

∂y

∣∣∣∣ =

∣∣∣∣∂Eo∼F|a(m)
[v`(y, o)]

∂y

∣∣∣∣ (10)

By definition of v`(y, o),

Eo∼F|a(m)
[v`(y, o)] = y · Eo∼F|a(m)

[b`(o)] + (1− y) · Eo∼F|a(m)
[b̃`(o)]. (11)

According to (10) and (11) and definition of K,∣∣∣∣∂Eo∼F|a(m)
[v`(y, o)]

∂y

∣∣∣∣ =
∣∣Eo∼F|a∗(m)

[b`(o)− b̃`(o)]
∣∣ ≤ K.
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By Lemma 4, g(m) is constant on m. That is, h`(b−`, v`(m)) is constant on m. We conclude that

h`(b−`, v`(1)) = h`(b−`, v`(0)) and the proof is complete.

B.2 Characterization of IIVCG: Proof of Lemma 1

Proof of Lemma 1. We start with the forward direction. Let t be an IIVCG contract. Note that

t` : V ×O → R can be re-composed as the sum of two functions; c` : V → R, that depends only

on b, and g` : V ×O → R that depends on b as well as on the realised outcome, i.e., t`(b, o) =

c`(b) + g`(b, o). With these notations, for every principal ` and every bid profile b,

Eo∼F|a∗(b) [t
`(b, o)] = c`(b) + Eo∼F|a∗(b) [g

`(b, o)]. (12)

By IIVCG Definition, there exist {h`} such that

Eo∼F|a∗(b) [t
`(b, o)] = h`(b−`)−Wela

∗(b)(b−`,0), (13)

where h` does not depend on b`. Equalizing (12), (13) we get c`(b) = h`(b−`)−Wela
∗(b)(b−`, g`(b, o)).

Since t`(b, o) = c`(b) + g`(b, o), t`(b, o) = h`(b−`) − Wela
∗(b)(b−`, g`(b, o)) + g`(b, o). By IIVCG

contract definition, the agent maximizes the (declared) social welfare, i.e., x∗(b) = a∗(b). Thus,

a∗(b) ∈ arg maxa∈A Eo∼F|a [
∑

`∈[n] t
`(b, o)] − ψ(a). The only outcome-depended term in t`(b, o) is

g`(b, o).18 Hence,

a∗(b) ∈ arg max
a∈A

Eo∼F|a [
∑
`∈[n]

g`(b, o)]− ψ(a). (14)

Define w` : O → Rm≥0 as follows: w`(o) = g`(b, o) − mino∈O g
`(b, o) ∀o ∈ O. Hence, t`(b, o) =

h`(b−`)−Wela
∗(b)(b`, w`) + w`(o), where

∑
`∈[n]w

` ∈ La∗(b) by (14) and the definition of La.
For the backward direction, let t be a contract as specified in Lemma 1. Note that the only

outcome dependent term in t`(b, o) is w`(o). Thus,

arg max
a∈A

Eo∼F|a [
∑
`∈[n]

t`(b, o)]− ψ(a) = arg max
a∈A

Eo∼F|a [
∑
`∈[n]

w`(o)]− ψ(a). (15)

Since,
∑

`∈[n]w
` ∈ La∗(b), a∗(b) ∈ arg maxa∈A Eo∼F| [

∑
`∈[n]w

`(o)] − ψ(a). Thus, and according

to (15) we conclude that a∗(b) maximizes the agent’s utility. Furthermore, Property 2 in the defini-

tion of IIVCG (Definition 2) is also met. since principal `’s expected payment is Eo∼F|a∗(b) [t
`(b, o)] =

h`(b−`)−Wela
∗(b)(b`, w`)+Eo∼F|a∗(b) [w

`(o)].After rearranging the above Eo∼F|a∗(b) [t
`(b, o)] = h`(b−`)−

Wela
∗(b)(b`,0) as desired.

18If h`(b−`) depends on the realised outcome, then it would also depend on principal `’s bid (since `’s bid influences
the realised outcome indirectly by influencing the chosen action).
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B.3 A Trade-off between LL and IR: Proof of Theorem 3

Here, we formally prove Theorem 3.

Example 4. There are two actions a1, a2 and two possible outcomes o1, o2. The distributions

imposed by actions are: po∼F|a1 (o1) = 1
2 , po∼F|a2 (o1) = 1. There is one principal with valuation

domain V1 = R2
≥0. The cost for each action is: ψ(a1) = 0, ψ(a2) = ε.

Proof of Theorem 3. Consider the common agency setting in Example 4 and the valuation pro-

file v1 = (3ε, 0). Note that Wela1(v) = 1.5ε, and Wela2(v) = 2ε. Thus, the socially efficient action

is a2. Suppose toward a contradiction that there exists an IIVCG contract t that satisfies LL

and IR. Since t is an IIVCG contract, in a dominant strategy equilibrium the principal is truth-

ful, and the agent takes the socially efficient action, i.e., a2. Since the agent maximizes the sum

of payments minus cost, it must hold that
∑

`∈[n] t
`(b, o1) − ε ≥

∑
o∈O

1
2 ·
∑

`∈[n] t
`(b, o). Thus,

t1(b, o1) − t1(b, o2) ≥ 2ε. By the assumption that t satisfies LL, t1(b, o2) ≥ 0, so, t1(b, o1) ≥ 2ε.

That is, t1(b, o1) = Eo∼F|a2 [t1(b, o)] = h1(b−1) −Wela2(b−1,0) ≥ 2ε. Since Wela2(b−1,0) = −ε, we

conclude that h1(b−1) ≥ ε. Now, consider the following valuation profile: ṽ1 = (0, 0). Again, in

a dominant strategy equilibrium the principal is truthful b̃ = ṽ and the agent takes the socially

efficient action, which is now a1. By definition of IIVCG, h1 is independent of b1. Thus, h1(b−1) =

h1(b̃−1) ≥ ε. Recall that Eo∼F|a1 [t1(b̃, o)] = h1(b̃−1)−Wela1(b̃−1,0), where Wela1(b̃−1,0) = 0. Thus,

Eo∼F|a1 [t1(b̃, o)] = h1(b̃−1) ≥ ε, while Eo∼F|a2 [ṽ1(o)] = 0. This is a contradiction to the fact that t

satisfies IR.
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