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Abstract

In this thesis, we consider a regime switching GARCH MIDAS model with Student-¢
innovations. By allowing the error term to be non-Gaussian, we want to see how effec-
tive it is in describing the volatility displayed in financial time series. For the long-term
volatility component, as natural explanatory variables we also consider realised volatil-
ity (RV) calculated as absolute returns. This extension is particularly important since
regime switching GARCH MIDAS models have been partially implemented by very
few authors where they assumed innovations are normally distributed and calculated
RV as squared returns.

In addition, by Monte Carlo simulation and a real data application we provide
evidence to support our proposed model setting RS GARCH MIDAS-t with RV. We
consider the misspecification in terms of; (a) not considering regime switching, (b)
misspecifying the error term, (c) omitting the long-term volatility component, (d) all
three combined. The simulation results confirms the importance of correctly specifying
volatility models. We show that when models are misspecified, the bias of parameter
estimates increase while the ability of regime switching process to correctly identify
regimes deteriorate quite considerably. Moreover, the long-term volatility in misspeci-
fied models leads to an overestimation.

The validity of our proposed model is then explored through a real data applica-
tion. Empirical analysis of West Texas Intermediate crude oil returns show that regime
switching models outperform single-regime models. Specifications with Student-¢ in-
novations are superior to their Gaussian counterparts in terms of higher log-likelihood
value, lower model selection criteria, and ability to better identify the volatility regimes.
This provides strong within-sample estimation evidence in favour of our non-Gaussian

assumption. We also find that production has a significant positive effect on crude oil



volatility while demand has insignificant negative effect. For out-of-sample forecasting
evaluation, while considering models with long-term volatility component, we show
that under loss functions models with ¢ innovations are favoured over those with a

normal innovation, while RS GARCH MIDAS-¢ with RV outperforms other models.
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Chapter 1

Introduction

Accurately modelling and forecasting volatility is of significant importance for investors,
traders, policy makers and anyone else involved in the financial markets. Since the in-
troduction of Markov switching model by Hamilton (1989, 1990), regime switching
models have been extensively applied in research. In particular, RS GARCH mod-
els have been widely used in financial time series forecasting because of their ability
to identify and account for the impact of different changes in volatility and capture
many conditional volatility characteristics (Hamilton and Susmel, 1994; Dueker, 1997;
Klaassen, 2002; Fong and See, 2002; Gunay, 2015; Herrera et al., 2018; Haas and Liu,
2018; Zhang et al., 2019).

Mixed data sampling (MIDAS) regression scheme introduced by Ghysels et al.
(2007) have attracted attention in the literature because of their ability to capture
complicated volatility dynamics and inclusion of data from different frequencies in the
same mode. This makes it possible to combine the high-frequency return data with
macroeconomic data that are only observed at lower frequencies. Using a GARCH MI-
DAS model within MIDAS framework proposed by Engle et al. (2013) we can describe
volatility in two components where one component is linked to the short-term volatil-
ity, similar to GARCH setting, and the other component describes long-term volatility
driven by realised volatility or macroeconomic variables. Furthermore, to capture the
potential regime changes we introduce regime switching framework into GARCH MI-
DAS model, since according to Lamoureux and Lastrapes (1990) and Cai (1994), the

unconditional volatility may change across different regimes due to structural breaks
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in the volatility.

The regime switching model of Hamilton (1989), was derived with the assumption
that the error term follows a normal distribution. However, significant evidence sug-
gests that most asset return distributions exhibit a fat-tailed behaviour (Bollerslev,
1987), meaning they have more of the distribution in the tails than would a normal
distribution with the same mean and variance. Hence, the idea of applying an ap-
propriate distribution to accommodate excess kurtosis became essential. A commonly
used alternatives of Gaussian innovations are fat-tailed distributions such as Student-t,
General Error Distribution (GED), and their skewed versions. Furthermore, in recent
years, more and more researchers introduce regime switching to more general classes
of non-Gaussian models. For some examples see Gunay (2015), Haas and Liu (2018)
and Herrera et al. (2018).

In this thesis we consider a regime switching GARCH MIDAS model with non-
Gaussian innovation setting. This is particularly important since RS GARCH MIDAS
models have been partially implemented by few authors where they all assume inno-
vations are normally distributed. Furthermore, we try to see how this model performs
under different innovations, especially under fat tail distribution.

While consistency and asymptotic theory for the quasi maximum likelihood esti-
mator (QMLE) for RS GARCH (Xie, 2009; Bauwens et al., 2010) and for a special
case of GARCH MIDAS (Wang and Ghysels, 2015) with realised volatility as the ex-
planatory variable have been established, to the best of our knowledge, it is not yet
available for RS GARCH MIDAS models especially if the explanatory variables are
considered. Therefore, we first evaluate the finite-sample performance of QMLE in a
Monte Carlo simulation to show that QMLE is unbiased and the asymptotic standard
errors are valid. Furthermore we demonstrate the importance and consequences of po-
tential misspecification. We consider the misspecification in terms of not considering
regime switching, misspecifying the error term, omitting the long-term volatility com-
ponent, or all three combined. We find that GARCH models have shortcomings when
there are regime shifts in the volatility process causing upward biased estimate in the

degree of volatility persistence. In addition, we find that when the models are mis-
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specified, the bias of parameter estimates increase while the ability of regime switching
process to correctly identify regimes deteriorate quite considerably. Consistent with
Conrad and Kleen (2020) we also find that changing the innovation in single compo-
nent GARCH and GARCH MIDAS models hardly affects the parameter estimates.
However, omission of regime switching, causes an overestimation of the long-term com-
ponent in GARCH MIDAS models. These simulation results confirms the importance
of correctly specifying volatility models.

Finally, the validity of our proposed model, RS GARCH MIDAS with Student-¢
innovations is assessed through a real data application. We apply this model to West
Texas Intermediate crude oil returns for the period between 1986 and 2020 (34 years in
total). We compare 6 models, GARCH, RS GARCH, GARCH MIDAS, RS GARCH
MIDAS, Endogenous RS GARCH and Endogenous RS GARCH MIDAS. Furthermore,
we consider the MIDAS component with realised volatility, where it is calculates as
absolute returns, and two macroeconomic variables, demand and production. For
regime-switching models, we only allow one parameter to switch between a low and high
volatility regime, following Marcucci (2005) who showed that the differences between
the parameters o and [ are likely to be insignificant. The within-sample estimation
demonstrates that models with ¢ innovation easily beats their Gaussian counterparts
and RS GARCH MIDAS-t with RV outperforms all other models in terms of the
highest log-likelihood value and lowest model selection criteria. Moreover, we compare
our results with the findings of Pan et al. (2017). We find that production has a
significantly positive impact on long-term crude oil volatility while demand has an
insignificantly negative effect, meaning that demand has a negligible influence on the
monthly component of crude oil daily volatility. These results contradict to findings of
Pan et al. (2017) but align with the conclusions drawn by Wei et al. (2017) who also
found that the demand factor is insignificant, meanwhile, the supply factor is positive
and statistically significant in oil volatility modelling.

For out-of-sample forecast evaluation we estimate all models on a rolling window
approach and compare the RS GARCH MIDAS-t where the long-term component is

driven by RV with competitor models. Furthermore, following Patton (2006) we eval-
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uate all models using MSE and QLIKE loss functions and compare the forecasts by
implementing equal predictive ability test introduced in Diebold and Mariano (1995).
When considering models with long-term volatility component, we find that neither
GARCH MIDAS with RV nor RS GARCH MIDAS models with macroeconomic vari-
ables can beat RS GARCH MIDAS-t with RV only. This findings coincides with Conrad
and Loch (2015) who showed that almost all specifications based on macroeconomic
variables performed worse than their benchmark model, GARCH MIDAS with RV.
On the contrary, this contradicts to Pan et al. (2017). A possible explanation for this
is that we use absolute returns as a realised volatility measure, while they considered
squared returns. Furthermore, we follow an approach developed by Klaassen (2002) to
overcome path dependence problem whereas Pan et al. (2017) implement Gray (1996)
approach.

To summarise, this thesis contributes to the current literature in several ways.
We begin by providing evidence to support the chosen model setting, RS GARCH
MIDAS-t, through Monte Carlo simulation. We conduct a systematic investigation into
how different components capture volatility, particularly focusing on regime-switching,
short-term, and long-term volatility components and how each component affects each
other. By dissecting the volatility dynamics, we contribute to a deeper understanding
of the interplay between various components and their impact on the overall volatility
structure. The simulation results demonstrate the importance of correctly specifying
volatility models. By conducting the simulation, we establish a solid foundation for
the subsequent empirical analysis.

Next, we conduct an empirical analysis specifically focused on West Texas Interme-
diate (WTI) crude oil returns. This analysis emphasizes the significance of correctly
specifying the error distribution within the volatility models. The results obtained
from the empirical analysis indicate that models incorporating Student-¢ innovations
outperform those with Gaussian counterparts in terms of higher log-likelihood value,
lower model selection criteria and regime identification. The filter probabilities show

that regime switching models with ¢ innovations are able to capture the major events in

the market. For instance, the filter probabilities obtained from RS GARCH MIDAS-
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t show that the crude oil market switches to high-volatility regime during the 1990
Gulf War, 1996 backwardation in the oil market, during the Asian financial crisis in
1997, after the terrorist attack in 2001, during the U.S. invasion of Iraq in 2003, the
financial crisis of 2007-2008 and so on. Thus, this thesis presents strong within-sample
estimation evidence in favour of the non-Gaussian assumption.

Lastly, taking into consideration the long-term volatility component we evaluate
the performance of different models for out-of-sample forecasting. Two loss func-
tions, namely MSE and QLIKE, are utilized for the evaluation. The findings reveal
that the GARCH MIDAS and RS GARCH MIDAS models with Student-t innova-
tions outperform those with normal innovation, again supporting the superiority of
non-Gaussian assumptions. Additionally, our proposed model, RS GARCH MIDAS-¢
demonstrates better forecasting performance compared to other models that incorpo-
rate low-frequency component.

Overall, this thesis makes significant contributions to the literature by providing
empirical evidence for the importance of correctly specifying volatility models, high-
lighting the superiority of non-Gaussian assumptions, and examining the dynamics of
different volatility components. These contributions advance the existing literature
and contribute to a more comprehensive understanding of volatility modelling in the
context of WTI crude oil volatility. To the best of our knowledge this is the first
attempt to estimate and predict the volatility of crude oil prices using RS GARCH
MIDAS approach with Student-t innovations and RV as absolute returns.

The rest of this thesis is organised as follows: Chapter 2 is the literature review
where the characteristics of volatility are given and the importance of these character-
istics are discussed. The main focus of this chapter is on the exploration of different
volatility estimation and forecasting models in the literature that are applied to volatil-
ity with different innovations. Starting with GARCH model more advanced GARCH
type models are introduced. Moreover, GARCH type models with different distri-
bution of the innovations are discussed. In Chapter 3 various model specifications
are described along with their estimation procedures, properties and out-of-sample

forecasting steps. Chapter 4 presents our simulation study, where we first evaluate
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a finite-sample performance of QMLE in a Monte Carlo simulation and demonstrate
the importance and consequences of potential misspecification. In Chapter 5 the va-
lidity of our proposed model is then explored through a real data application. The
within and out-of-sample performances are compared between Normal and Student-¢
innovations. Model selection criterion and likelihood ratio tests are computed while
for out-of-sample evaluation we calculate loss function and implement equal predictive
ability test. Concluding remarks as well as ideas for future research are provided in
Chapter 6.

The definitions of terms are given in Appendix A and supplementary materials for
Chapter 4 and Chapter 5 are given in Appendix B. To facilitate the replication of our

results we provide R codes for data simulation, estimation and forecasting in Appendix

C.



Chapter 2

Literature Review

2.1 Characteristics of volatility

Over the past few decades modelling and forecasting crude oil price volatility has be-
come an important subject in research area (Ma et al., 2019) due to the high levels
of price volatility observed in oil market prices (Ural, 2016). In addition, the accu-
rate estimation and forecasting of market volatility are essential for various financial
applications, including risk management, portfolio optimization, option pricing, and
trading strategies. The ability to capture and anticipate changes in volatility patterns
can provide valuable insights for investors and financial institutions, allowing them to
make informed decisions in a rapidly evolving market environment. However, the esti-
mation and forecasting of market volatility pose significant challenges due to a number
of volatility characteristics present in many time series returns.

For instance, a well-known phenomenon called volatility clustering, observed by
Mandelbrot (1963), states that large changes in the asset prices tend to be succeeded by
other large changes, likewise small changes were often followed by other small changes.
The presence of volatility clustering has also been documented by Chou (1988) and
Schwert (1988) among others. Furthermore, the existence of volatility clustering sug-
gests extreme volatility persistence, therefore, it is important to detect and analyse the
causes of such clustering. Another stylized fact of volatility is that volatility may be
stationary, since it evolves over time by varying within some fixed range and does not

diverge to infinity (Tsay, 2005).
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The leverage effect, highlighted in Poon and Granger (2003), is another significant
factor impacting volatility. It describes the phenomenon where volatility tends to rise
more prominently following a significant price decline, as opposed to an equal increase.
As a result, it is highly unlikely that positive and negative shocks will have the same
impact on volatility. Moreover, there exists a negative correlation between returns and
conditional volatility, known as asymmetric volatility (Engle and Ng, 1993; Zakoian,
1994). These characteristics play a crucial role in the development of volatility models.
While various models, such as diffusion and stochastic volatility models, have been
developed to estimate volatility, well known and frequently applied models are the

heteroscedastic models.

2.2 GARCH models

The first model that provides a systematic framework for volatility modelling is the
Autoregressive Conditional Heteroscedasticity (ARCH) model by Engle (1982). This
model was developed to improve econometric models by replacing the assumption that
the variance of the error term is constant, also known as homoscedasticity. In addition,
ARCH model is able to capture the persistence and volatility clustering, however it only
considers past returns to adequately describe the volatility process of an asset return.
Furthermore, it was found that a rather long lag structure for the conditional variance
is required to capture the long memory present in the data.

By extending the idea of ARCH, Bollerslev (1986) proposed a useful extension
known as Generalised ARCH (GARCH) model. The GARCH model adds an autore-
gressive component to the ARCH process by letting the conditional variance be depen-
dent on both past innovations and its lags. GARCH type models are especially useful
when the aim is to analyse and forecast volatility. The advantages of GARCH model
is that it can capture some behaviours in financial time series such as fat tails, excess
kurtosis and volatility clustering. For instance, Bollerslev (1986) showed that GARCH
model is an extremely useful tool for describing the influence of volatility clustering
and its relationship to fat-tails in return distributions. On the other hand, a limitation

of GARCH model is that it allows the variance to be affected only by the square of

8
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the lagged innovation, thus completely disregarding the sign of that innovation, hence
failing to capture the leverage effect which is a phenomena where the tendency for
volatility to increase more after a large fall in prices rather than after an increase on
the same amount.

Over the course of time, ARCH and GARCH models have been extended numer-
ously to consider leverage effects, asymmetric volatility and nonlinearity. For instance,
Nelson (1991) argued that the non-negativity constraints in the GARCH model are
too restrictive and hence developed an exponential GARCH model (EGARCH) where
it captures asymmetry in volatility induced by big positive and negative returns. He
showed that this model significantly outperforms their counterparts that do not ac-
commodate the asymmetry. Furthermore, EGARCH model uses a conditional vari-
ance equation in logarithmic form which allows the parameter restriction in GARCH
models to relax. Glosten et al. (1993) proposed GJR-GARCH to take into account
the negative and positive shocks caused by leverage phenomenon. Another volatility
model commonly used to handle leverage effects is the threshold GARCH (TGARCH)
model proposed by Zakoian (1994). The GJR-GARCH and TGARCH models are
very similar to each other where they both use an indicator function to allow more
reaction to negative shocks. Other variations include Integrated GARCH (IGARCH)
which restricts the persistence parameter to be equal to one. Mikosch and Starica
(2004) showed that applying GARCH model to a sample displaying structural changes
in the unconditional volatility creates an IGARCH effect. Moreover, in ARCH and
GARCH models the conditional variance is a linear function of past squared residu-
als and lagged conditional variances. Asymmetric GARCH models can therefore be

regarded as a non-linear GARCH specifications.

2.3 Regime switching GARCH models

The accumulated evidence from empirical research suggests that the volatility of finan-
cial markets display some type of persistence that cannot be appropriately captured by
GARCH model and its variations (Lamoureux and Lastrapes, 1990; Engle and Mustafa,

1992). In particular, these models usually indicate high persistence in the conditional

9
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volatility (Hamilton and Susmel, 1994; Gray, 1996). It has also been shown that ob-
served high-volatility persistence can be due to neglected non-linearities such as level
shifts (Lamoureux and Lastrapes, 1990) and neglecting such potential non-linearities
can lead to poor forecasts (Hamilton and Susmel, 1994). Furthermore, Klaassen (2002)
also showed that GARCH forecasts are too high in volatile periods, and the reason for
such excessive forecasts may be high persistence.

Lamoureux and Lastrapes (1990) and Kim and Kon (1999) among others found
that the introduction of different regimes into the GARCH process reduces the persis-
tence parameters in the GARCH process. Furthermore, Gray (1996) has argued that
GARCH models may be misspecified since they are not flexible enough, thus ignor-
ing possible structural changes in volatility processes. This prompted the shift toward
regime switching models.

Markov switching model also known as regime switching (RS) model governed by
Markov-chain was first introduced in 1989 by Hamilton (1989) which was further anal-
ysed by Kim (1994) and since then continued to gain popularity especially in financial
time series. The Markov switching model is a regime switching model that incorpo-
rates the assumption that unobserved states are determined by a Markov chain. In the
simplest case, known as a two-regime switching model, the economy is characterized
by two distinct states, ”calm and turbulent” (Ho et al., 2004). The two states differ in
that the turbulent state has more volatile and higher index value than the calm state.
The economy switches from one state to the other according to a constant or time-
varying transition probability. We will discuss the time-varying transition probability
in the Section 2.11.

RS models have been extended and applied to a broad range of fields in the lit-
erature. For instance, Schwert (1988) considered a model in which returns may have
high or low variance and the switches between these two states are determined by a
two-state Markov process. Hamilton and Susmel (1994) introduced an ARCH model
with regime switching parameters in order to account for sudden changes in the con-
ditional variance. They found that implementing a regime switching model improves

fit and forecasting accuracy by distinguishing between high- and low-volatility regimes

10
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where high-volatility regimes are loosely associated with recessions. Cai (1994) applied
similar idea by incorporating both the regime switching and the ARCH model. He
noted that the volatility of treasure bills becomes much less persistent when allowing
for regime switching in some parameters.

Later, a class of regime switching GARCH models named RS GARCH model was
presented by Gray (1996) where he concluded that the RS GARCH model outper-
forms the no regime models in forecasting performance and reduces the persistence in
volatility. However, the limitation of Gray’s variant is that it is unable to compute
the multi-period-ahead volatility forecasts needed for a detailed forecasting analysis.
Therefore, Klaassen (2002) proposed a modified version of Gray’s model where the
multi-period-ahead forecasts can be obtained through a convenient first-order recur-
sive procedure. Another approach namely Markov switching GARCH by using ARCH
(00) specification was developed by Haas et al. (2004). They found significantly im-
proved forecasts in exchange rate volatility as the regimes are able to account for the
changes in unconditional variance. However, they also found that in some cases the
transition probabilities are not significant meaning that necessarily not all volatility

series have a regime switching structure.

2.4 Volatility component models

Volatility changes can be caused by many factors such as inflation, deflation, extreme
events like war, financial crisis, changes in government policy or market disruptions.
These factors can also lead to structural breaks in the data. For instance, regular
modification in government policies increase internal and external uncertainties which
lead to increase in stock market volatility. In addition, Hamilton and Susmel (1994)
argued that volatility seems to change or switch between different regimes due to many
existing factors such as extreme events and business cycles.

Volatility component models have attracted attention in the literature because of
their ability to capture complicated volatility dynamics and also handle structural
breaks in asset return volatility (Wang and Ghysels, 2015; Andreou and Ghysels, 2002).

Engle et al. (1999) developed a volatility component model where the conditional vari-
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ance is specified as the sum of two components; long-run (trend) component and short-
run (transitory) component and applied this to S&P 500 and NIKKEI 225. They
showed that this new specification beats traditional GARCH model. By introducing
a regression scheme, namely mixed data sampling (MIDAS) which allows inclusion of
data from different frequencies into the model, Ghysels et al. (2007) made it possible
to combine high frequency data with macroeconomic data that are only observed at a
lower frequency.

Later in 2008, Engle and Rangel (2008) proposed a new model namely multiplica-
tive two component Spline-GARCH which consists of gradually changing deterministic
and a short-term GARCH component. By extending Spline-GARCH model, Engle
et al. (2013) developed GARCH MIDAS model where GARCH term uses standard
GARCH(1,1) to model short-term (high-frequency) volatility while MIDAS term is
used to describe the long-term (low-frequency) process. The difference between Spline-
GARCH and GARCH MIDAS is the specification of long-term component. Spline-
GARCH describes low-frequency volatility in a nonparametric way, meaning that long-
run variance is time varying. This specification allows the model to be more flexible,
however it loses its mean reverting property. Whereas, in GARCH MIDAS the long-
term component facilitates a direct inclusion of low-frequency macroeconomic data
and this is an advantage of this model since it allows to directly examine the macroe-
conomic variable’s impact on the volatility. Using commodity futures Nguyen and
Walther (2020) conducted an empirical study where they fitted both Spline-GARCH
and GARCH MIDAS and found that disentangling high- and low-volatilities produced
better in-sample fit for both models.

The GARCH MIDAS model has become a popular model to investigate the re-
lationships between aggregate volatility and macroeconomic variables (Conrad et al.,
2014; Conrad and Loch, 2015; Wei et al., 2017; Pan et al., 2017; Conrad et al., 2018;
Conrad and Kleen, 2020). Conrad and Loch (2015) applied GARCH MIDAS to a
wide set of macroeconomic variables related to U.S., whereas Pan et al. (2017) ap-
plied RS GARCH MIDAS model to oil price volatility in terms of supply and demand
characteristics. Using GARCH-MIDAS model, Wei et al. (2017) investigated which

12
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determinant helps to make the most accurate daily volatility forecasts across three
different forecasting horizons.

Based on a simulation study of Conrad and Kleen (2020), if correctly specified, the
GARCH MIDAS model beats two competitor models which are RS GARCH and nested
GARCH. This argument is based on an out-of-sample forecast evaluation employing
QLIKE loss function. Majority of the above mentioned papers find a significant effect
of the macroeconomic variables on the volatility series under consideration. Moreover,
these papers find that the volatility forecast at longer horizons are improved sub-
stantially over the basic GARCH model. Also, current literature primarily finds that
including realised volatility as macroeconomic variable or any other single macroeco-

nomic variable provides useful information in forecasting volatility (Takahashi et al.,

2021).

2.5 Regime switching GARCH MIDAS models

Despite the inclusion of a long-term macroeconomic component, Engle et al. (2013)
found that the full sample models are not immune to structural breaks when using
production and inflation as macroeconomic factors. Therefore, they had to split their
sample into sub-samples to improve fit. The fact that the structural breaks are not
accounted for is a significant limitation of GARCH MIDAS model. This overcome this
shortcoming Pan et al. (2017) developed a RS GARCH MIDAS model where he set
the short-term volatility component to change between two states. Their in-sample
estimation results showed that the level of macroeconomic variables has a significantly
adverse effect on the oil volatility, whereas the out-of-sample results showed that two-
regime GARCH MIDAS model can significantly beat the single-regime GARCH MIDAS
model and additional macroeconomic variables can significantly increase the predictive
performance of RS GARCH MIDAS model. While Pan et al. (2017) kept the long-
term component non-switching, Ma et al. (2021) modified long-term volatility pro-
cess by introducing regime switching structure. Furthermore, they set the transition
probabilities to be time-varying and are driven by global economic policy uncertainty

(GEPU). Their out-of-sample findings indicate that RS GARCH MIDAS model with
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time-varying transition probabilities and GEPU outperforms other models. The latest
research comes from Wang et al. (2022) where they extended Pan et al. (2017) and
Ma et al. (2021) models to incorporate Markov-regime switching into both short- and
long-term components, separately or in combination. They found that for in-sample
estimation Full RS GARCH MIDAS model, where both short- and long-term compo-
nents switch, can best capture the volatility of renewable energy stock market. As for
out-of-sample forecasting their model generated more accurate volatility forecasts in
short-term while for long-term forecasting Ma et al. (2021) model showed the best pre-
diction. Thus, these studies suggest that it is necessary to adopt an appropriate model
that can include short-term, long-term or both terms in regime switching to improve

the model’s forecasting accuracy (Pan et al., 2017; Ma et al., 2021; Wang et al., 2022).

2.6 The stochastic volatility models

In addition to the GARCH class models, the literature offers various alternative volatil-
ity estimation models that can be applied to modelling volatility. One such model is
the stochastic volatility (SV) models, where the evolution of volatility in a time series is
described by introducing a stochastic innovation to the conditional variance equation.
This additional stochastic innovation could then be used to explain the unexpected
shocks to the volatility process. Notable examples include Melino and Turnbull (1990),
Taylor (1994) and Vo (2009).

In recent years, SV models have been extended to allow for long-memory in volatil-
ity. This extension is driven by the observation that the autocorrelation function of the
squared or absolute value series of asset returns often exhibits slow decay, even when
the return series has no serial correlation (Ding et al., 1993). For example, Abbara and
Zevallos (2023) proposed a new method to estimate a univariate long-memory stochas-
tic volatility (LMSV) model by formulating the LMSV model in a state-space repre-
sentation with non-Gaussian perturbations in the observation equation. Furthermore,
Kalimipalli and Susmel (2004) introduces the regime switching into stochastic volatil-
ity framework (RSV) to explain the behaviour of short-term interest rates whereas Vo

(2009) used RSV in an attempt to explain the behaviour of crude oil prices to forecast
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their volatility.

One of the limitations of SV models is the problems that arise as a consequence of
the intractability of the likelihood function which prohibits its direct evaluation (Hafner
and Preminger, 2010). Moreover, according to Mazzeu et al. (2019) the long-memory
stochastic volatility models are not an effective alternative due to the complexity re-
garding their estimation and because they are based on fractional integrated roots.
Therefore, in this thesis we consider GARCH type models since the likelihood function

is easier to handle than continuous-time models.

2.7 Estimation of model parameters

GARCH models can be estimated via maximum likelihood estimation (MLE). Hamil-
ton (1989) used filter probabilities to evaluate the log-likelihood function and applied
a modified Newton-Raphson method to obtain MLE. Expectation-maximization (EM)
algorithm is another method to estimate the parameters of a switching regression. EM
algorithm maximises the expectation of the log-likelihood function based on the com-
plete data that we observe. Hamilton (1990) used EM algorithm for Markov switching
autoregressive models while Kim (1994) gave Markov-switching models a state-space
representation together with its filtering and smoothing algorithm. Another method
is Markov Chain Monte Carlo (MCMC) method was developed by Kim and Nelson
(1998) to fit the Markov switching models which is based on Bayesian inference.

For regime switching models various methods of estimating the parameters have
been developed. The computation of the likelihood function of RS GARCH model
is not feasible due to the well known problem of path dependence. Path dependence
occurs because the current conditional variance depends on the entire sequence of past
regimes due to the recursive nature of the GARCH process. When Hamilton and Sus-
mel (1994) introduced an ARCH model with Markov-switching parameters they used
ARCH specification instead of GARCH to avoid this problem. Since regimes are not
observable when computing the sample likelihood it is required to integrate over all pos-
sible paths, which becomes unfeasible since the number of possible regime paths grow

exponentially with time. To bypass this problem a variety of approaches have been
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proposed, see Gray (1996), Dueker (1997), Klaassen (2002). Gray (1996) proposed a
method where the path dependence problem is removed by aggregating the conditional
variance from the regimes at each step. While integrating out the unobserved regimes
Gray’s approach uses only a part of available information, while Klaassen (2002) pro-
posed to use all available information. In this thesis Klaassen’s path-independent RS
GARCH framework that permits the estimation of all model parameters using quasi
maximum likelihood estimation (QMLE) will be used. The consistency and asymp-
totic theory for the quasi maximum likelihood estimator (QMLE) for RS GARCH
was established by Xie (2009), whereas the asymptotic properties for the RS GARCH
model with finite number of regimes using MCMC estimation have been studied by
Bauwens et al. (2010). The non-bayesian estimation of RS GARCH model was stud-
ied by Francq et al. (2005) where they proposed to estimate the model by generalised

method of moments.

2.8 Crude oil price volatility

Among academicians and policy makers, oil price volatility has become an important
topic of discussions for many decades since it has serious implications on the economy
of most oil producing nations. During 1980’s and 1990’s oil prices remained relatively
low and stable, however, since 2003, prices started to experience a steady upward
trend. Since 2005, this upward increase became more rapid and in July 2008 oil prices
reached unprecendented highs to only fall dramatically by the end of the same year.
However, since the end of 2008 oil prices have rose sharply until mid-June 2014 when
the petroleum prices began to fall worldwide and that drop continued through the end
of January 2015. A historic drop occurred on April 2020, when the prices of WTI crude
oil dropped by almost 300% and was trading at around negative $37 per barrel.

The fluctuations in the crude oil prices has originated from an imbalance between
supply and demand which resulted from events such as wars, geopolitical tensions,
changes in political regimes, economic crisis and cost of inflation. Modelling and fore-
casting crude oil price volatility is crucial in many financial and investment applications

since oil prices like many other commodity prices have been volatile and characterised
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by uncertainties. Furthermore, empirical studies suggest that crude oil time series, also
exhibit fat-tail distributions, asymmetry and volatility clustering (Fan et al., 2008).
Even though regime switching models are effective in capturing potential state
transition and non-linearity in crude oil price volatility, for forecasting this is incon-
clusive. For instance, in Sévi (2014) and Zhang et al. (2019) claim that RS GARCH
model performs quite well in-sample, but the out-of-sample results show weak limited
significance. On the contrary, Hillebrand (2005) claimed that when the model shows
high persistence, the forecasts suffer, hence if this persistence is reduced by properly
accounting for structural changes one can expect an improvement in forecasting per-
formance. Fong and See (2002) showed that out-of-sample tests indicate that the RS
model performs noticeably better than non-switching models when applied to crude oil

futures.

2.9 Macroeconomic variables

Many scholars have investigated the impact of macroeconomic variables on volatility
forecasts and the underlying mechanisms that drive their influence (Barsky and Kilian,
2004; Asgharian et al., 2013; Conrad et al., 2014; Pan et al., 2017; Conrad et al., 2018;
Conrad and Kleen, 2020; Fang et al., 2020; Yu and Huang, 2021; Ma et al., 2021;
Chuang and Yang, 2022). And because it is difficult to point out which factors have
the dominant effect on the oil prices, numerous determinants such as macroeconomic
uncertainty, financial market uncertainty, world uncertainty index, national economic
policy uncertainty, (EPU), global economic policy uncertainty (GEPU) indices, along
traditional determinants, such as global oil demand, supply, and speculation, were
examined for their capacity to predict crude oil price volatility. For instance, while
investigating the effect of uncertainty on crude oil returns, Aloui et al. (2016) showed
that EPU indices significantly increase crude oil returns, however only during certain
periods. This was also supported by Ma et al. (2019) who found that EPU has a
positive and significant impact on the crude oil return volatility, especially the U.S.
EPU index which has the best forecasting power for crude oil return volatility over the

long-term. The effects of macroeconomic uncertainty and financial market uncertainty
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indices were examined by Chuang and Yang (2022) who concluded that both indices
have positive impacts, whereas default yield spread has negative impacts on the crude
oil market volatility.

However, if all possible factors are added into the existing model, it may affect
the forecasting results because of over-fitting problems. Therefore, of the various de-
terminants, global oil demand and supply have traditionally been considered the most
powerful. For instance, Dees et al. (2007) suggest that crude oil prices are mainly influ-
enced by oil supply. Hamilton (2009) observed that oil price fluctuation in 2007-2008
were due to excess demand at the period of declined world production. Barsky and Kil-
ian (2004) and Hamilton (2009) argued that most of crude oil fluctuations experiences
in the past were caused by political events rather than market forces. Furthermore,
Barsky and Kilian (2004) splits oil price shocks into supply shocks, demand shocks,
and precautionary demand shocks, and points out that the oil price rise until mid-
2008 was mainly driven by growth in aggregate demand. According to Baumeister and
Kilian (2015), the crude oil price fall in 2014 was due to a production that exceeded
the demand. Recent pandemic outbreak, COVID-19, has badly affected all sectors by
bringing a series of chain reactions such as surge in unemployment, a drop in oil prices
and a decline in a stock markets. Since the prices of crude oil have significant influence
on the global economy, COVID-19 led to an unexpectedly sharp drop in demand for oil.
This drop in demand is essentially caused by the quarantine restrictions of countries
which lead to a drop in consumption.

Overall, the oil price fluctuations are found to be susceptible to several factors,
described above and including speculative trading, economic outlook, volatility of the
real exchange rate and the political stability of major oil exporting countries. However,
in the long run, supply and demand are still the primary and main influencing factors
of crude oil price fluctuations (Zhao, 2022; Le et al., 2023), hence we use production

and demand levels as our macroeconomic variables affecting oil prices.
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2.10 Alternative error distributions

When GARCH model was first introduced for modelling financial time series, the
main assumption was that the errors are normally distributed, however, empirical
evidence suggests that the financial time series is rarely normal but are leptokurtic and
often skewed (Bollerslev, 1987). Due to this fact, normal distribution was found to be
inappropriate in capturing the tail behaviour of the series. Most often a GARCH model
with a non-normal error distribution is required to fully capture the observed fat-tailed
behaviour displayed in returns. Therefore, Bollerslev, 1987 proposed to use Student-¢
distribution in order to capture the long tail behaviour of return series. Fernandez and
Steel (1998) extended the Student-¢ distribution by allowing for skewness and proposed
a skewed Student-t. Another non-normal distribution is generalised error distribution
(GED) proposed by Nelson (1991). These distributions, known as fat-tailed error
distributions, are used to describe the characteristics of financial data.

For GARCH model estimation, the QMLE can accommodate for fat-tail situation
through their specification which will still generate consistent estimates. However, for
regime switching models if the regimes are leptokurtic instead of normal the use of
within-regime normality seriously affects the identification of regimes (Klaassen, 2002;
Ardia, 2009). Hence an appropriate distribution to capture the excess kurtosis of the
time series for RS GARCH models is important.

There exists a great deal of literature on the model distribution comparison, see
Gunay (2015), Haas and Liu (2018), Herrera et al. (2018), Hung et al. (2018). Gunay
(2015), for instance, found that RS GARCH-t model outperforms all other GARCH
models in estimating volatility by accurately capturing the most stylized facts of time
series. Haas and Liu (2018) showed that in both in- and out-of-sample estimation,
regime-switching models with Student-¢ innovations dominate their Gaussian counter-
parts. Even though both models showed fairly persistent regimes, the persistence was
more pronounced with Student-¢ innovations (Haas and Liu, 2018). Furthermore, they
concluded that Gaussian specification turns out to suffer from its inability to correctly
track regime switching process. Herrera et al. (2018) evaluated out-of-sample forecast-

ing performances of different volatility models including GARCH and RS GARCH of oil
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returns and showed that due to the extremely high kurtosis in the oil return volatility
RS GARCH-t did better job at forecasting and also yielded more accurate long-term
forecasts of the spot WTI return volatility. Using three GARCH type models under
four different distributions, Hung et al. (2018) found that EGARCH(1,1) model with
Student-t distribution provides the most accurate forecast. Therefore, the choice of a
distribution is central since specifying the most suitable error distribution in volatility

modelling could yield a model which has higher estimation and forecasting ability.

2.11 Endogeneity in regime switching

Although regime switching models have been proven to be quite useful in a wide range
of contexts it has some limitations. Firstly, these models assume that the underlying
finite state markov chain choosing a state of regime is completely independent from
all other parts of the model, thus implying that the future transition between states
is completely determined by the current state and does not rely on the observed time
series. Secondly, they cannot accommodate non-stationarity in the transition proba-
bility, i.e., the markov chain determining the state of regime is assumed to be strictly
stationary. All of the regime switching models discussed up to now are assumed to
be exogenous, i.e., constant regime switching transition probabilities. However, stud-
ies including Kim et al. (2008), Kim (2004, 2009), reported evidence of endogeneity
in regime changes. Furthermore, Ma et al. (2021) built a Markov regime switching
GARCH MIDAS model with time varying probabilities and showed that it is better
than the RS GARCH MIDAS model with constant probabilities. Inference via maxi-
mum likelihood estimation is possible with slight modifications to existing Hamilton’s
recursive filters and the genetic algorithm of Kim (1994).

To the best of our knowledge this is the first attempt to estimate and predict
the volatility of crude oil prices using RS GARCH MIDAS approach with Student-¢
innovations. This extension is particularly important as a regime switching GARCH
MIDAS models have been partially implemented by Pan et al. (2017), Ma et al. (2021),
Wang et al. (2022) where they only consider Gaussian innovations. Furthermore, there

is also a need to study the effect of misspecifying the RS GARCH MIDAS distributional
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assumption during estimation.
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Chapter 3

Methodology

This chapter delves into the specifications, estimation, and forecasting techniques of
various models. We start by exploring the GARCH model, followed by discussions
on RS GARCH, GARCH MIDAS, RS GARCH MIDAS, and Endogenous RS GARCH

models. Finally, we conclude with an examination of forecast evaluation methods.

3.1 The GARCH model

Over the past few years, GARCH models have been extensively used for analysing,
modelling and forecasting volatility of a time series because of their ability to capture
some behaviours in financial time series such volatility clustering and volatility per-
sistence. The GARCH model proposed by Bollerslev (1986) is an extension of Engle
(1982) ARCH model. The ARCH model expresses the conditional variance as a func-
tion of past squared returns whereas the GARCH model expresses it as a function of
past squared returns and past variances.

Let r; be a return of a time series. A general GARCH(p, ¢) model is given by:

Tt = [t + Q, a; = \/ ey,

P a (3.1)
he=w+ Y aa; ;+ Y Bihj, VtEL,

i=1 j=1

where p; represents the conditional mean of the return process of r, and is defined as

e = Ery| Fi—q] with F,_; representing the information set available up to time t — 1.
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The innovation at time ¢ is a; and {&;} is a sequence of independent and identically
distributed (i.i.d.) random variables with mean zero and unit variance. To ensure the
conditional variance, h;, is positive as well as stationary, we set w > 0, o; > 0 for

i=1,..,p, ; >0for j=1,...,q and

i+ Bi<l (3.2)
i=1 j=1

In Equation (3.1) and Equation (3.2), «; represents how volatility reacts to new in-
formation whereas 3; represents persistence of the volatility. The larger 3; indicates
persistent volatility since shocks to the conditional volatility take long time to die out,
whereas the larger o; means larger response of h; to new information.

Moreover, p and ¢ are the orders of the GARCH model and it may depend on the
frequency of the return series. For example, daily returns of a market index often show
some minor serial correlations, but monthly returns of the index may not contain any
significant serial correlation. In the case where ¢ = 0, the model simplifies to Engle’s
ARCH model, where the conditional variance is given as a function of past squared
returns (Engle, 1982). On the other hand, when both p and ¢ are equal to 1, the model
represented by Equation (3.1) becomes a GARCH(1,1) model, which is the simplest

case of GARCH(p, ¢) and has the following form:

a; = \/h_t5t7

hi = w + aa? | + Bhy_1,

(3.3)

with w >0, « >0, 5 >0 and a + < 1 (Bollerslev, 1986).

As to the distribution of innovations, {&;} is often assumed to follow a standard
normal distribution. Although normal GARCH models are able to capture some of the
non-linearity displayed in volatility, empirical evidence shows the usefulness of the non-
normal distributions such as Student-t, generalised error distribution (GED), skewed
Student-t distribution, skewed generalised error distribution (GED) and normal inverse
Gaussian (NIG) when dealing with fat tails of the conditional errors, extreme obser-

vations, skewness and outliers in returns. Bollerslev (1987) suggested replacing the
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assumption of conditional Normality with that of conditional Student-¢ distribution
in estimation of volatility since Gaussian GARCH model could not explain the lep-
tokurtosis displayed in returns. The GED distribution proposed by Nelson (1991) was
used in estimation of EGARCH models. Skewed Student-t distribution was proposed
by Hansen (1994) and Fernandez and Steel (1998), whereas the skewed GED was first
used by Theodossiou (1998) to capture the skewedness of GED. These non-normal dis-
tributions have been proven to describe the volatility better than normal distribution
in GARCH models (Bollerslev, 1987; Hansen, 1994).

There have been studies that compared the performance of different error distribu-
tions in financial modelling and forecasting, including the Student-¢, skewed Student-¢,
and GED and skewed GED. Empirical evidence has suggested that the Student-¢ distri-
bution can often provide better fit and forecasting performance compared to alternative
distributions. For instance, Wilhelmsson (2006) conducted a comparative study of nine
different error distributions, including the Student-t distribution, in GARCH model-
ing. The results showed that the model estimated with the Student-¢ distribution
exhibited superior performance compared to other distributions considered. Liu and
Morley (2009) found that the model with the Student-¢ distribution slightly outper-
formed the one with the GED distribution in terms of forecasting accuracy. Similarly,
Mattera et al. (2018) compared six alternative distributions in GARCH modeling and
forecasting. They found that the model with the Student-t¢ distribution consistently
outperformed the other distributions in terms of in-sample evaluation.

These studies provide empirical support for the effectiveness of the Student-¢ distri-
bution in financial modelling and forecasting. Therefore, in this thesis as an alternative

to Gaussian we consider standardised Student-¢ distribution.

3.1.1 Model estimation

Maximum likelihood estimation (MLE) method is typically used to estimate GARCH
parameters. However, due to the complexity of the maximum likelihood function for

GARCH(1, 1) models, one generally uses an approximating function
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f(Blxo,...,xn) = f(zo,...,24|0) = f(xn|Fn-1) f(@n_1|Fn-sa) ... f(x1|Fo)f(x0]0)

(3.4)
where 6 is a vector of parameters to be estimated, f(zo,...z,|@) is the joint prob-
ability distribution of {r¢,...r,} in a GARCH model with parameters 8. To derive
the likelihood the distribution of {g;} also needs to be specified. It is important to
note that even when {e;} is assumed to be i.i.d. and Normally distributed since the
distribution of A; is unknown the distribution of a; is also not known. A standard way
in estimating GARCH models when deriving the likelihood is to make use of Equation
(3.4) by assuming {e;} is Gaussian and then remove this assumption later. This is
called Quasi-maximum likelihood estimation (QMLE). The general idea of the QMLE
is to construct a likelihood function conditionally on random or fixed initial values and
based on the sample data and its assumed distribution, then by maximising this likeli-
hood function the parameter estimates can be obtained. Using an iterative algorithm
this method provides the parameters that are most likely to describe the observed data.
Furthermore, this method provides consistent and asymptotically normal estimators for
strictly stationary GARCH models (Francq and Zakoian, 2019). The asymptotic prop-
erties of QMLEs for the GARCH(1,1) models have been studied by Lee and Hansen
(1994) and Lumsdaine (1996) whereas the general GARCH(p, ¢) models were studied
by Horv et al. (2003) and Francq and Zakoian (2019).

3.1.1.1 GARCH with Gaussian innovations

Let the observations {as,...,a,} represent a realisation of length n of the unique
non-anticipative strictly stationary solution a; of a GARCH(p,q) model. The pa-
rameters are 8 = (w,aq,...,p, B1,..., 5;)', while the true value of the parameters
0y = (wo, 21, ..., Qop, Bot, ---, Bog)’ are unknown. Here no assumptions on the distri-
bution of these variables are made. Instead we consider Gaussian quasi-likelihood,
which conditional on initial values coincides with the likelihood when the {&;} are dis-
tributed as standard Normal. The initial values, i.e. ay,...,a;_, are unavailable and

00, -.-, 01—¢ are unobservable. For a given value of 8, under the second-order stationar-
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ity assumption, a reasonable choice for the unknown initial values is the unconditional

variance:

9 w

- p q )

1= ai=D_ 8
i=1 j=1

However, such initial values are not always suitable, for instance for IGARCH

(3.5)

model, resulting in Equation (3.5) being undefined. Hence a suitable initial values
are set to:

a@g=..=a_ =6a=..=0_ ,=uw, (3.6)

or

a=..=a_, =60=..=0, ,=a. (3.7)

Given initial values, the conditional Gaussian quasi-likelihood function, denoted as

L,(0), is given by

- 1 a?
2(0)=L,(0;a4,...,a,) = (——t>, .
L,(0)=L,(0;a1,...,a,) g =P~ 55 (3.8)
where G, are defined recursively, for ¢ > 1 by
p q
5} = 5}(0) =w+ Z oz,-atz,l- + Z ﬁjét—j- (39)
i=1 j=1

A QMLE of 0 is then defined as any measurable solution 0,, of:

~

0, = argmax/l,,(6). (3.10)

Taking the logarithms, maximising the likelihood is equivalent to minimising with

respect to 6:
a2
- (3.11)

)
Ot

- 1 <&
L,(0) — - > “log (6,) +
t=1

!Computation of in(B) involves number of operations of order n?, whereas Francq and Zakoian
(2019) propose a method which involves a number of order n. More details can be found in Francq
and Zakoian (2019), Ch.7
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and &, is defined in Equation (3.9). A QMLE is thus a measurable solution 6, of:
0,, = argminI, (6). (3.12)

Consider the simplest case of GARCH(1,1) model with normally distributed inno-

vations, the log QML function is a function of @ (with fixed ay, ..., a,) is given by:

, (3.13)

p

log £,,(0) = —% [nlog(27r) + Z (log (6¢) + a_f)

where G, is given in Equation (3.9) with p = ¢ = 1. The likelihood function in Equation
(3.13) is then maximised to obtain QML estimates of the parameters in the conditional
variance equation in addition to any parameters in the density function. In this case
the parameters are @ = (w, «, ). The choice of initial values are not important for the

asymptotic properties of the QMLE (Francq and Zakoian, 2019).

3.1.1.2 GARCH with Student-¢{ innovations

The Student-t distribution has an additional parameter v to describe the degrees of
freedom which controls the fatness of the tails. In addition, Student-¢ distribution can
accommodate the excess kurtosis of the innovations (Bollerslev, 1987). The kurtosis
of a random variable that follows a Student-¢ distribution is higher for lower v. When
v — oo the Student-t distribution converges to Normal distribution whereas a lower
value of v indicates fatter tails. The constraint v > 2 is imposed to ensure that the
second order moment exist. Let t, denote a Student-¢ distribution with v degrees of

freedom. Then:

Var(t,) = v > 2. (3.14)

v—2’

The probability density function of ¢; can be written as:

Fedv) = 2 }_ S ouso, (3.15)

(v —=2)7T(3)

where ¢, = t,/1/v/v — 2 and I'() is the usual Gamma function.

Following the same procedure as for the normal distribution and using a; = v/h;ey,
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the conditional log-likelihood becomes:

(1+0) ilog [1 N Ua_?] | (3.16)

The unknown parameters set is @ = (w, o, ..., ap, b1, ..., By, v)’. For the simple GARCH-
(1,1) model given in Equation (3.3) with Student-t¢ innovations, the quasi log-likelihood

function is given by:

log L,,(0]a) =nlog

14+7) —
REELE
t=1

1o .
-5 Z log(w + aa? | + Bhi_1)
t=1

2
ay

w—+aa? |+ Bh_1)(v—2)]

(3.17)

1+
(

In this case the parameter set is 6 = (w, «, 5, v).

3.1.2 Out-of-sample forecasting

For the GARCH(1, 1) model in Equation (3.3), suppose that we have information up
to time t and are interested in forecasting h;,;, where [ > 1. The positive integer [ is
the forecast horizon and t is the forecast origin. Thus for one-step-ahead forecast we

obtain:

hipr = w + aa; + Bhy, (3.18)

where it is assumed that a; and h; are known at time index ¢t. Similarly for [ = 2 we

get:
ht+2 =w+ OéE[(l?+1|.E] + Bht—i-l
(3.19)
=w+ (a+ B)his
For [ = 3:
hers = w+ aEla} o] Fi] + Bhio
=w+ (a+ B)hie
(3.20)

=w+ (a+ ) (w+ (a+ B)hi)

= w(l+a+B)+ (a+ B8)*(hes).
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For [ = 4:
hipa = w+ QE[G?+3|‘Ft] + Bhis
=w+ (a+ f)hess
(3.21)
=w+ (a+B)(w+ (a+ B)hita)
=w(l+ (a+B8)+ (a+B)?) + (a+ B)*(hu).

In general, the [-step-ahead forecast of the conditional variance, for [ > 2 is:

hipr =w + (a + B)hiyi—a

=w> (a+B)]+ (a+B) " (aa] + Bh)
i=0 (3.22)

As the forecast horizon tends to infinity, provided that Var(a,) exists, the multi-step-
ahead volatility forecasts of GARCH(1,1) converge to the unconditional variance of the

process, i.e., as [ — oo we have:

hevt = w(L+ (@ + 8) + (@ +B) +...) = —— (3.23)

(a+5)

provided that a + 5 < 1. The forecasting steps for GARCH(1,1) model can easily be
generalised to GARCH(p, ¢) model.

3.2 The RS GARCH model

Although GARCH model is able to capture the volatility displayed in time series,
when the returns experience a short period of high volatility the GARCH model tends
to overestimate the persistence which leads to an overestimation of the conditional
volatility in a period after the shock (Lamoureux and Lastrapes, 1990). Mikosch and
Starica (2004) showed that the high persistence can be explained by level shifts in the
unconditional variance. This was also supported by Lamoureux and Lastrapes (1990)

who demonstrated that by introducing deterministic shifts in the variance reduced the
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degree of volatility persistence. This suggests that to prevent overestimation of this
persistence we allow for structural breaks by merging GARCH with regime switch-
ing model first introduced by Hamilton (1989). The general idea behind the Markov
switching GARCH (RS GARCH) model is to reduce the long GARCH persistence by
switching from one variance structure to another. Hamilton and Susmel (1994) were
among the first scholars to discuss the RS GARCH model. A distinguishing feature
of regime switching models is the possibility for some, or for all parameters to switch
throughout the whole sample period. This switch is governed by a state variable s,
based on a Markov process. An advantage of RS GARCH models is its ability to deal
with fat-tails (Haas et al., 2004).

Let r; be the return of time series. The general regime switching GARCH(p, ¢) (RS

GARCH(p, ¢)) model is represented as follows:

Ty = [t + Gy, ay =/ hs, 1€,
p q (3.24)
2 2 :
hst,t = Ws, + E Qs iy + Bstajhsht—j’
i=1 j=1

where i, is the conditional mean of the return process r; defined as pu; = E[ry|F;—1] and
hs, .+ is the conditional variance Var(r;|F;_1) with F;_; representing the information set
available up to time ¢ — 1. As usual, the {&;} is a sequence of i.i.d. random variables
with mean equal to zero and unit variance. The regime switching process, s;, indicates
the states of the market and the necessary conditions to ensure the conditional variance
remains positive in each regime are same as in GARCH(p, ¢) model given in Equation
(3.2).

The state variable, s;, in Equation (3.24) evolves according to a first-order Markov

chain with the following transition probabilities:
Pr(s; = jlsi—1 = 1) = pij, (3.25)

which indicates the probability of switching from state ¢ at time ¢t — 1 to state j at time

t. By grouping together these probabilities we obtain a transition matrix P which is
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given by:
P11 P12 ... DiK
P21 P22 ... D2k
P =
| PKk1 Pr2 --- PKK|

The simplest case of RS GARCH(p, ¢) model, namely RS GARCH(1,1) model is

when p = ¢ = 1, and only considering two states can be written as follows:

Ty = [t + ay, ar = \/ hiee,

N wi + aral | + Bihit—1 when s =1, (3.26)
st,t —

Wy + ana? | + Bohoy—1 when s, =2,

where {g;} is a sequence of i.i.d. random variables with mean zero and unit variance.
Furthermore, hs, ; is the conditional volatility in state s; at time ¢, where s, is assumed
to be a stationary, irreducible Markov process with discrete state space {1,2} and
transition probabilities defined in Equation (3.25). To ensure the conditional volatility
is positive as well as stationary we set wio > 0, a2 > 0, 812 > 0 and for process to
be covariance stationary we set a9+ f12 < 1.

A two-state transition matrix is given by:

PT(St:1|St_1:1) PT’(St:2|St_1:1)

P=
Pr(s;=1|s.1=2) Pr(ss=2|s_1=2)
] (3.27)
B P11 1 —pn | Pt Pr2
|1 — D2 P22 P21 P22

This matrix governs the random behaviour of the state variable and it only contains
two parameters (pj1, pe2) which determine the persistence of each regime. If p;; and
poo are large then the model has highly persistent regimes and the transition between
regimes will be limited.

Most available RS GARCH models are constructed based on the assumption that

the innovations follow a Gaussian distribution. Since regime switching can account
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for large unconditional kurtosis, the non-normal distributions might be considered not
necessary. However, empirical evidence suggests that by introducing Student-t inno-
vations, estimation and volatility forecasting performance of RS GARCH models are
significantly improved (Gunay, 2015; Haas and Liu, 2018; Herrera et al., 2018) because
it can capture the observed fat-tailed behaviour displayed in returns. Furthermore,
Klaassen (2002) showed that Student-t innovations improves the stability of regimes.

Furthermore, it should be noted that the single-regime GARCH is nested in RS
GARCH where the regime specific parameters (w;, ay, §;) are equal across the two
regimes. A difficulty with this model is that it may not be easy to estimate the
parameters because the state variables are unobservable and transition probabilities

are unknown. Hence statistical inference is drawn based only on observed a;.

3.2.1 Model estimation

Here we focus on the model in Equation (3.26) and discuss its quasi-maximum like-
lihood estimation. The consistency and asymptotic theory for the quasi maximum
likelihood estimator (QMLE) for RS GARCH can be found in Xie (2009).

A two-state RS GARCH(1,1) model with Gaussian innovations can be written as

follows:

T = W+ Qy, Ay = \/ htgt, Et i;'i\./d N(O,l),
(3.28)

hspt = Ws, + s, a7y + Bs, e,
where s; = {1,2}, a; is the error at time ¢, and {&;} is an i.i.d. sequence with mean
zero and unit variance. The vector of parameters is 8 = (w1, wa, ay, g, 51, B2, P11, P22)’
The GARCH specification in Equation (3.28) implies that conditional variance at
time ¢ depends not only on s, but also indirectly on {s;_1, $;—2,...}. That is to say that
hs,+ at time t is depended on the whole unobserved regime path s; = {s¢, S¢—1, ..., St—n }.

The conditional variance is therefore given as:
hs. = Varla|se, Fr-1]. (3.29)

This makes the model more complex and the estimation procedure becomes in-

tractable since the number of possible paths of the regime process grows exponentially
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as t increases. The likelihood function has to be constructed by integrating out all
possible paths since regimes are unobserved (Klaassen, 2002). This makes the estima-
tion of log-likelihood infeasible and leads to a path dependence problem. Furthermore,
Hamilton and Susmel (1994) showed that estimating path dependence is challenging
because the exact computation of the likelihood is infeasible in practice. Consequently
some authors proposed to use a modified versions of RS GARCH to avoid this problem.
For example, Cai (1994) and Hamilton and Susmel (1994) reduced the RS GARCH
model to an RS-ARCH model by leaving out the GARCH term. With their specifi-
cation, the conditional variance only depended on the current regime, which allowed
them to bypass this path dependence issue. However, this solution is not very feasi-
ble since the persistence parameter [ is discarded. To tackle the path dependence,
Gray (1996) proposed to use conditional expectation of the lagged conditional variance
E;_o{hs,+—1} instead of lagged conditional variance hy, ;—1 in Equation (3.26) thus by
summing over all possible regimes it makes it possible to construct the conditional
variance by integrating out the dependence on the entire regime. Hence there will be
no need to consider all possible values of (s, ..., s1). Gray’s approach can be written

as follows:

hs,t-1 = Er—o{hg,t-1} = Pr(si—1 = 1|/Fi—2)h11-1 + Pr(si—1 = 2|Fi—2)hos—1. (3.30)

Furthermore, Gray showed that by applying this method, the likelihood function
can be evaluated in a first order recursive way. A modification of Gray’s approach
was suggested by Klaassen (2002) where they proposed to use the conditional expected
value Ey_1{h_1|s:} instead of E;_o{hs, +—1}. This means that when integrating out the
previous regime s;_1, Klaassen’s specification uses the information up to time ¢ — 1
with regime s;, whereas Gray’s approach only considers information up to time ¢ — 2
with regime s, 1. Moreover, Klaassen (2002) has argued that if regimes are highly
persistent then current regime provides valuable information about past regime and

thus it should be included in the probability calculation.
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Klaassen’s specification for the conditional variance can be written as:

hst,t = Wg, + ozstat{l + ﬁstEtfl {hst,t71|5t} . (331)

where the expected conditional variance is calculated as:

E, 4 {hst,t—1|3t} =L {hst,t—1|$t = Z}

2 2 2 (3.32)
= Zﬁjz’,tﬂ [/ﬂ + hst,tfl] — [Z ~jz‘,tl,u] ;
j=1 j=1
with the probabilities pj;; 11 given by:
ﬁji,tfl = Pr<3t71 = j’St = Z.aJT'-tfl)
Pr(s; =1i|s;_1 = J)Pr(si—1 = j|Fi-
_ Prisc=ilss = 9)Pris = 1) -
Pr(s; =i|Fi1)
_ PjiPjt-1
Dit ’

where i, j = 1, 2 denotes the two regimes and s; is the regime variable. The aggregated
conditional variance is a weighted average of the regime dependent conditional variances
weighted with the probability of being in the specific regime conditioned on all observed
information. A notable feature of Equation (3.32) is that both hy:—1 and hey; have
been used to form h;_; making it path independent. Thus, this model can be computed
without considering all possible values of (sy, ..., s1). Since Klaassen’s approach contains
information up to time ¢ — 1, we will be using this approach. Moreover, comparing the
RS ARCH model of Hamilton and Susmel (1994) and Cai (1994), the RS GARCH model
of Klaassen (2002) allows all the GARCH parameters to switch and does not impose any
constraints on these parameters thus offering much more flexibility. Another advantage
of Klaassen’s method compared to Gray’s approach is that it provides a straightforward
expression for the multi-step ahead volatility forecasts that can be computed recursively
as in standard GARCH model (Marcucci, 2005).

Let F; = {ay, ..., a1} denote a collection of all observed variables up to time ¢, which
represents the information set we have at time ¢t. Then Fr denotes the information set

based on the full sample. The density of returns conditioned on all observed history
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is defined as f(a;|F;_1;0). Since a; is set to switch between different two regimes we
can rewrite the conditional density as a weighted average of the joint density functions,
weighted with the probability of being in regime j at time t. This takes the following

form:

2

fla]Fio1;0) = flag, s = j|Fi-1;0)

=1

)

= Z fladlsy = j, Fi1;0) Pr(s; = j|Fi-1;0) (3.34)

7=1
2

= Z f(at|8t == j7 -thl; 0) X pj9t’
7j=1

where the density of a; conditional on F;_; and random variable s; with the assumption

of Normality is then given by:

2
flacls: = j, Fi-1;0) = \/%}WQXP( - 22;1‘/)- (3.35)

In Equation (3.34), p, are the predicted probabilities and it is the probability of
being in state j at time t given all available information up to time ¢t — 1. Since the
states s; are unobservable, Hamilton (1989) introduced an iterative algorithm, namely
Hamilton’s filter, to draw probabilistic inference about this unobservable state given
observations on a;. Applying Hamilton’s filter, the predicted (prior) probabilities can

be written as:
2
Pr(s; = jlFi_1;0) = ZPr(st = jlsi_1 = i) Pr(s;—1 = i|Fi_1;0), (3.36)

=1

where Pr(s; = j|s;—1 = i) are the transition probabilities given in Equation (3.25).
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The probability of being in regime 1 at time ¢ given all observable information up

to time t — 1 is derived as:

Pr(s; = 1|1Fi_1;0) = Pr(s; = 1|s4_1 = 1) Pr(s;—1 = 1|F1_1;0)
+ Pr(s; = 1]s;-1 = 2)Pr(s;—1 = 2| Fi_1)
= puPr(si—1 = 1|1F2150) + (1 — pa2) Pr(si—1 = 2|Fi—1; 0)

= p1Pr(si—1 = 1|Fi-1;0) + (1 — pa)(1 — Pr(s;—1 = 1|F-1;0)),
(3.37)

where py; and pgo are the transition probability parameters to be estimated. Similarly,
one can obtain the probability of being in regime 2 at time t given all observable
information up to time ¢ — 1.

By applying the Bayes theorem and the law of total probability, the posterior

probabilities also known as filtered probabilities can be written as:

P?“(St,1 = Z"thl; 9) = P?“(St,1 = Z”atfl,./t‘tfg; 0)
flaga|si 1 =i, Fi0;0)Pr(s;1 = i|F;_2;0)

: (3.38)
Z flag—1|si—1 =i, Fi_2;0) Pr(s,_1 = i|F1_2;0)

i=1

By substituting the Equation (3.38) in Equation (3.36), the probability if being in
regime j at time t can be calculated. Since probabilities only depend on constants,
P11, P22, last periods regime probability and densities, the regime probability are called a
first-order recursive process. The filtered probabilities Pr(s;_1 = i|F;_1;0) for t = t+1
are obtained recursively from Hamilton’s filter?.

Having specified the dynamics of regime switching probabilities, the sample quasi-

log-likelihood function can be calculated as:

L£,(0) = Zlog[f(at|st = J,Fi-1;0)]
o (3.39)
= Zlog [pref(aglsy = 1, Fi1;0) + po f (ar|se = 2, F1—150)]

t=1

Zsee Hamilton (2020)[Chapter 22] for more details.
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or written completely

(12

= 1 1 a2
ﬁn 0) = lo ———eX <__t> + (1 — ex <_ t ) )
(@) ; g [pl,t T P\ =5 (1 —pue) e T

(3.40)

In Equation (3.40), as discussed previously, hs, + suffers from path dependence problem.
To overcome this, Klaassen’s approach described in Equation (3.31) to Equation (3.33)
is implemented. By maximising the log-likelihood function in Equation (3.39) the
QML estimates for RS GARCH(1,1) model are obtained. The detailed flow-chart for
recursive calculation of Hamilton’s filter probabilities and the log-likelihood value for
RS GARCH(1,1) model with two-regimes is given in Figure 3.1.

In some applications, it is more appropriate to assume that {s;} follows a heavy-
tailed distribution such as a standardised Student-t distribution. The parameter set of
RS GARCH(1,1) model with standardised Student-¢ innovations is
0 = (wq,ws, vy, g, B1, B2, P11, P22, V), where v represents degrees of freedom. The calcu-
lation of quasi-log-likelihood function is similar to Equation (3.39) with the conditional

density of returns changed from Normal to Student-t¢ density function.
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Figure 3.1: Flow-chart for recursive calculation of Hamilton’s filter probabilities for RS
GARCH.

Pr(si1 =1 ai1,...,a1; )

Pr(sy =7, s;-1 =1 | a4_1,...,a1; 0) = Pr(s;_1 =i | ay_1,...,a1;0) X Pr(s; =j | s—1 =1)

2
Pr(s;=j | ai-1,...,a1;0) = >  Pr(s; =j, s¢-1 =1 | ar_1,...,a1; 0)

7

ar =1y, hg = ws, +ag,a? 1+ Bs, i1 {hi—1 | st}

2
E, {ht—l | St = Z} = Zﬁji,t—l X hst,t—l

J=1

t=t+1

2
Pr(sgpr=1i|a)=> Pr(ss=j | as...,a1; 0) X Pr(sgy =1 s4 =)
i=1

~ _ _ _ pjiPr(st=j | ai—1) __ pjipj
Djit =Pr(s; =17 se1 =1, ar) =& Jib

Pr(si+1=t | at) Dit+1

flag, ss=7 | a_1,...,a1; )= f(ry | se =J,ai-1,...,a1; 0) X Pr(s; =7 | as_1,...,a1;0)

f(7"t ‘ At—1, ..., A1, 0) = Z (an St =17] ’ At—1, ..., A1; 9)

)

Jj=1
_ . _ flat, s¢=j | at—1,...,a1; 0)
PT’(St_j ’ Qs --; A1 0) =

flat | ag—1,...,a1; 0)

Notes: This flow-chart provides recursive calculation of Hamilton’s filter probabilities when model

is two-state RS GARCH(1,1). The p;; ;—1 can be obtained from Equation (3.33).
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3.2.2 Out-of-sample forecasting

For the RS GARCH (1,1) model one-step-ahead volatility is calculated as the weighted

average of volatility forecasts in two regimes:
ht+1 = PT(St+1 = 1|]:t)h§-1|-)1 + P(8t+1 = 2|'E)h1(€-2§-)17 (341)

where

Pr(siy1 = 1|F) = puiPr(s; = 1|F,) + par Pr(s; = 2|F), (3.4

Pr(si1 = 2|F) = p12Pr(s; = 1|F,) + paaPr(sy = 2| Fy).
The Pr(s; = 1|F;) and Pr(s; = 2|F;) are the filter probabilities obtained using Hamil-
ton’s filter at time t and pi1, p2o are the transition probabilities estimated from the
model.
As for further horizons, following Klaassen (2002), we need to sum the actual volatil-

ity during the k periods to forecast the k-step-ahead volatility at time t as:
k ko2
ht,t+kz = Z ht,t+r = Z Z PT(3t+r = i|ft)h(st+rzi),t,t+r7 (3-43)
=1 r=1 i=1

where Ny ;1 denotes the volatility forecasts at time ¢ for the next k steps and

P(ssr=i)t,t+r can be computed recursively as:

h(5t+r:i)7t7t+r = W, + (ast + ﬂst)E{h(sHT:i),tJrrfl’St—i-r:i}; (344)

is the r-step ahead volatility forecast of regime ¢ at time ¢.
The above specification provides with a straightforward expression for multi-step

ahead forecast that can be obtained recursively in a similar manner to GARCH model.

3.3 The GARCH MIDAS model

In this subsection the GARCH MIDAS model is introduced and its estimation methods
with theoretical properties are discussed.

Although GARCH and RS GARCH models are able to capture the volatility, a
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number of studies showed usefulness of the macroeconomic and financial variables
in modelling and forecasting volatility (Engle et al., 2013; Conrad and Loch, 2015;
Conrad et al., 2018). The GARCH MIDAS model proposed by Engle et al. (2013) can
directly incorporate these variables to model volatility. They showed that the inflation
and industrial production rates are useful for forecasting long-horizon US stock return
volatility. Moreover, Conrad and Loch (2015) also concluded that GARCH MIDAS
is advantageous since it allows the incorporation of macroeconomic variables in low
frequencies to forecast daily asset volatility.

A GARCH MIDAS model is a multiplicative two component model that describes
the conditional variance. This model decomposes conditional volatility into two com-
ponents, where the high-frequency, i.e. short-term component is modelled as a mean
reverting unit daily GARCH process while the low-frequency, i.e. long-term component
is determined by realised volatility and/or some macroeconomic variables. Let i be a
day within a period t, whereby the index t = 1, ..., T refers to a certain period such as

a week or month. The return 7;; can be modelled as:

Tig = 1+ /Tt hitEig, Vi=1,..., V. (3.45)

where p is return mean, {g;,} is an i.i.d. innovation process with mean equal to zero
and unit variance, and N; is the number of trading days included in ¢. The expected
return is assumed to be constant, i.e. E(r;;|Fi—1:) = p for all ¢ and ¢, where F;_1; is
the information set in period ¢. The distribution of ¢;, is similar to what we discussed
in GARCH model. Different distributions can be used while here we consider Normal
and Student-t innovations. In Equation (3.45), 6275 = 7:h;; is the total conditional
variance and the volatility is decomposed into two parts where 7, captures the long-
term volatility and h;; describes the short-term fluctuations. The role of 7; is to
describe smooth movements in the conditional variance. We assume that 7;; is fixed
for all 7 in period ¢, whereas h;; varies daily, hence we can rewrite 7; removing subscript
1. Alternatively, one can specify 7; to change daily similar to the short-term volatility
component. However, the findings of Engle et al. (2008) show that both specifications

of 7; yield similar empirical fit, hence we assume that 7, changes only once every NN,
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days. The short-term volatility component is intended to describe day-to-day volatility

and is assumed to follow a standard GARCH(1,1) process:

. _ 2
hip=(1—a—=f)+ ATzt = i) Bhi—1z (3.46)

Tt
where it is assumed that o« > 0,8 > 0 and o« + 8 < 1 to ensure that h;; remains
positive. The feature that distinguishes GARCH MIDAS model in Equation (3.46)
from standard GARCH model is w When 7, = 1, GARCH MIDAS model in
Equation (3.46) is simplified to GARCH(1,1) model.

The MIDAS approach proposed by Ghysels et al. (2007) tackles the problems in-
volved in using the data sampled at different frequencies within the same model. The
innovation of Engle et al. (2013) lies in the definition of 7; in the MIDAS term. The
first specification of the 7, for GARCH MIDAS model dates back to work of Schwert
(1988) and others, where they measure long-run volatility by realised volatility over
a different horizons. In particular, they consider monthly RV,. However, 7; here is
specified is a weighted sum of K lags of smoothed RV over a long horizon and takes

the following form:

K
logr; =m+ 0 Z oi(K)RVy_s,
i=1

Ny
RV, = E r?
t — it
i=1

where m is constant, K is the number of lagged months, quarters or annuals, § measures

(3.47)

the impact of lags of r; and RV stands for realised volatility. It is also important to
note that the 7; is predetermined F; 1[(r;; — p)?] = 7E;_1(h;y) = 7, assuming that
Ei_1(h;y) = 1. Furthermore, it can be modified to involve the macroeconomic variables

along with RV to see the impact of these variables on the long-term volatility:
K K
log 7, = m + (91 > gi(k)RVii + 62 ) @-(@)Xt_i> : (3.48)
i=1 i=1

The variable X; refers to one of the macroeconomic variables. Taking logarithm en-
sures non-negativity of the long-term component even when the explanatory variables

take negative values. When 6, = 0, the realised volatility has no influence on long-term
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volatility, similarly when 65 = 0 the macroeconomic variable has no effect on volatility.
Moreover, when #; = 05 = 0, both realised variance and macroeconomic factors have
no impact on volatility, meaning that all volatility is captured by the short-term com-
ponent and the model becomes GARCH(1,1) model with 7, = 1. In this case, standard
GARCH model is nested in the GARCH MIDAS model.

The ¢;(k) in Equation (3.47) are the weighting schemes which are based on the ex-
ponential or the beta-weight specification. The most commonly used weighting schemes

as suggested by Engle et al. (2013) are:

Beta weights,

¢i(K) = ' (3.49)

Exponential weights.

,
<.
Il

—

These specifications involve two parameters kK = (k1, k2), however the Beta weight-
ing scheme can be restricted to a one parameter by setting x; = 1. Such single param-
eter specifications are often used in practice (Ghysels et al., 2007; Pan et al., 2017) and
existing literatures have shown that both methods yield similar results (Engle et al.,
2008). Furthermore, the weights capture the effect of past fundamental information
on return volatility and can be freely estimated or fixed before estimation. Following
work of Pan et al. (2017) we use a single parameter beta weighted specification which

can be written as:

(1 — &)t
¢i(ka) = — : ,  d=1,2, (3.50)
J rkg—1
1— 2 \Kd
;( K1)

where the weights ¢;(kg) sum up to 1. The formulation of the weighting function
requires only two parameters k1, ko and guarantees that all weights are non-negative.

For the choice of K, Conrad and Loch (2015) showed that as long as the selected K
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is large enough, the estimation results are robust with respect to the specific choice of

the maximum number of lags included.

3.3.1 Model estimation

The estimation of the GARCH MIDAS model is done via QMLE following the iden-
tification of long-term component in Equation (3.47) and specification of innovations.
The estimation steps are similar to GARCH model since the difference between these
two models is the long-term volatility parameter 7; in conditional variance. Consis-
tency and asymptotic normality of the QML estimator for GARCH MIDAS model was
established by Wang and Ghysels (2015) but only for a special case with RV as the
explanatory variable.

To write the likelihood of the GARCH MIDAS model a distribution for the i.i.d.
variables {&;} must be specified as well as the specification for the long-term component.
For the GARCH MIDAS model with rolling window RV the parameter set is 8 =
(v, B,m, 0, k) whereas with a rolling window RV and a macroeconomic variable the

parameter set is @ = («, ,m, 01,05, k1, K2)" The conditional Gaussian quasi-likelihood

is given by:
. 1 (re — N)Q
L,(0)=L,(0;11,...,7) = —~exp< — (3.51)
t=1 \/2mh; 4T, 2N 4Ty
where izi,t and 7; are defined recursively, for t > 1 by
hig = hig(0) = (1 —a = ) + M + Bhi-1t,
t—1
(3.52)
7o =7,(0 m+92¢1 )RV; i,
The likelihood function:
b3 (ri = )?
lr(6) =log L1(0) = —= ZZlog (27) + log(7ihis) + (Zt 7 L; , (3.53)
t=1 i=1 Tt

is then maximised to obtain parameter estimates.
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If the long-term component of a GARCH MIDAS model with Student-¢ innovations
is described by RV and a macroeconomic variable, then the parameters set is 8 =
(cv, B,m, 01,605, K1, k2,v)". The constraint v > 2 is imposed to ensure that the second
order moment exist. QMLE for GARCH MIDAS Student-t is obtained similarly as for
GARCH MIDAS Normal distribution.

3.3.2 Out-of-sample forecasting

While standard GARCH models accurately forecast the short-term return volatility
(Andersen and Bollerslev, 1998), empirical evidence suggests that using models such
as GARCH MIDAS model which include explanatory variables have been successful at
forecasting longer horizons (Engle et al., 2013; Conrad and Loch, 2015).

To forecast the return volatility using the identified GARCH MIDAS model with
macroeconomic variables assume that the volatility is estimated on the last day of

period t. The one-step ahead volatility forecast for GARCH MIDAS can be written as:

2 _
Oit41 = Piti1 X Ty,

('f’i,t — 1)

2
hi,t—i—l = (1 —04_5)‘{‘@ +Bhi,ta (3‘54>

Ti41

K
10g Tt4+1 =M + 0 Z Qsi(/{)R‘/;f—ia
=1

where 7;,1 is pre-determined at point ¢ and it is assumed that 7,1 is constant across
all days within period ¢ and thus changes only when the month changes.

For further horizons, the short-term forecasts h;; can be obtained iteratively from
GARCH part given sub-sample parameter estimates. We use the estimated 7; from
Equation (3.47) and Equation (3.48) as the prediction of the long-term variance. Since
at the beginning of period ¢, the long-term volatility component is predetermined with

respect to F;_1, the volatility forecast for a specific day ¢ in period t is given by:
E[hi,tTtgz‘Q,t‘ftfl] = TtE[hi,t‘ftfl]; (3.55)

where

Elhiol Fior] = 1+ (a + B) (b — 1), (3.56)
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and F;_; is the information set available in period ¢t — 1. As the forecast horizon tends
to infinity, E[h;¢|Fi—1] converges to unity, i.e. to its (constant) unconditional variance
of given in Equation (3.23) hence in the long-run the GARCH MIDAS forecasts are
entirely driven by the long-term components. The volatility forecast forecast for period

t is then given by:

M) , (3.57)

E[hi,me?,tlft—l] =T (N(t) + (gu - 1) l—a—§

For a more than one-period-ahead prediction, we need to forecast the 7 itself. For
longer horizons Conrad and Loch (2015) assumed that the long-term component is
Tigst—1 = Ty—1 for s > 0 which means that it remains at the level of the one-step
prediction. Daily volatility forecasts are then calculated as the product of GARCH

and the long-term component forecasts.

3.4 The RS GARCH MIDAS model

It is reasonable to assume that the conditional volatility of a return may switch across
regimes because of structural breaks (Cai, 1994). Hence combining Markov-switching
with GARCH MIDAS, a RS GARCH MIDAS model is developed. Pan et al. (2017)
applied a RS GARCH MIDAS model to forecast crude oil volatility by allowing the
short-term volatility component to switch. In their paper they assumed that the in-
novations follow a Normal distribution. However, since returns exhibit heavy tails, to
capture the fat tails situation we consider a RS GARCH MIDAS model with Student-¢
distribution to see whether this model is effective in describing volatility displayed in
financial time series.

In order to allow for regime switches in the short-term volatility component it is
assumed the h;,; in Equation (3.46), depends on the latent and unobservable state s, ;.

This implies that RS GARCH MIDAS model now takes the form:

(7’2'—1715 - H)Q

Ty

+ ﬁsi,tﬁsi_l’“ (358)

hsi,t = Wy, T Qg

where the s;; indicates the states of the market and is governed by a first order ergodic
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homogeneous Markov Chain with the transition probability matrix
Pr(s;y =mlsi—1: = 1) = pim, (3.59)

where p;,,,° implies that the current state si+ depends only on the prior state s;_;;.

The general transition matrix P is given by:

P11 .. DK

Prk1 ... PKK

The simplest case of RS GARCH MIDAS model with two-states can be written as
follows:

Tit = p+/hiTeciy

wy + alw + pfrhi—1y when s =1, (3.60)

Tt

hiy =
wy + azw + fahi—1y when s, =2,
where {¢;,} is a sequence of i.i.d. random variables with mean zero and unit variance.
The necessary conditions to ensure that conditional variance remains positive in each
regime as well as the two-state transition matrix are same as in RS GARCH(1, 1) model
given Equation (3.27).

Coming to the long-term component we assume that 7; is fixed for all 7 in period t,
because of two reasons. First, Engle et al. (2008) and Wang et al. (2022) showed that
daily and monthly switching 7; yield similar empirical fit. Second, we did consider in-
corporating RS in the long-term component, however, the results showed insignificance
of the long-term component switching, which also coincides with work of Ma et al.
(2021) who showed that the in-sample estimation results for the transition probabili-
ties in the long-term component are small and not statistically significant. Therefore, 7,
with RV can be written as in Equation (3.47) and 7 with RV and macroeconomic vari-

able, X;, takes the form in Equation (3.48). The parameter weighting scheme is exactly
same as in GARCH MIDAS defined in Equation (3.50). The conditional distribution

3The transition probability becomes Pr(s;; = m|sn, , —1 =) on the first day of the new month.
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is assumed to follow either standard normal or standardised Student-t¢ distribution.

3.4.1 Model estimation

Here we focus on the model in Equation (3.60). The parameters can be estimated using
the QMLE with the filtering probabilities obtained by Hamilton’s filter. We present the
estimation procedure of this model in detail. To the best of our knowledge, asymptotic
results for the RS GARCH MIDAS model are not yet available. However, we evaluate
the performance of QMLE using a Monte Carlo simulation.

As in RS GARCH model RS GARCH MIDAS model also suffers from the issue
of path dependence due to a presence of h;_;,; in the short-term volatility process in
Equation (3.60). By adopting Klaassen (2002) approach and following similar steps as
in RS GARCH, we can rewrite h;_1; as:

. (Tifl,t - H)2
hs it = ws,t + Qs t—————+ Bs, 1 Ei1e {hi—14|si+} (3.61)

Ty

where the expected conditional variance is calculated as:
2
Ei_1ihicit]sit) = Eicit[hici4]sie = 1] = Zﬁji,(pl,t) X N, -1, (3.62)
j=1
with the probabilities pj; ;—1,) given by:

Piiii—1,4) = Pr(sicie = jlsie = i, Fic1y)

Pr(s;y = i|si—10 = j)Pr(si—1, = j|Fi1t)

N Pr(sic = i|7:12) (3.63)

_ pjipj,(ifl,t)j
Pit
where i,j = 1,2 and s, = {1, 2}.
The log-likelihood function can be derived in a similar way to RS GARCH model
where we slightly modify it to include the long-term component. For a two-state RS
GARCH MIDAS model in Equation (3.60) the density of returns conditional on F;_1 ;

is given by:
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2
f(rigl Fie1;0) = Z f(rig, se = jlFic1,6:6)
j=1

) (3.64)
= Z f(Tz‘,t|St =7, Fi-14; 0)Pr(s, = j|]:i—1,t; 0).
j=1
Under the assumption of Gaussian innovations:
. 1 (ris — #)2)
ittt = J, Fi- §9=—6X(—’—. 3.65
f( ,tl t J 1,t ) \/m p 2hi7t7-t ( )
Under the assumption of Student-t innovations::
r() (o= 17
Titlse = J, Fio140) = 2 [1 - 2—} . (3.66)
Fridse =3 Firi6) (0 —2)mhomD(2) L (v —2)hym
Applying Hamilton’s filter, the predicted probabilities are written as:
2
Pr(s; = j|lFic14;0) = > Pr(s; = jlsi1 = i) Pr(siy = i|Fi_1,4:6), (3.67)

i=1

where Pr(s; = j|s;—1 = i) are the transition probabilities. Applying the Bayes theorem
and the law of total probability, the filtered probabilities can be recursively computed

as:

Pr(si—1 = i|Fic14;0) = Pr(si—1 = t|ti—14, Fi—o4; 0)
f('rifl,tlstfl =1, -Fi72,t; O)PT(Stfl = Z-|-Fif2,t; 9)

== _(3.68)
Z f(rifl,tystfl = Z}}—iq,t; H)P’f’(é‘tfl = Z“«/T_‘iflt; 9)
i=1
Hence, the log-likelihood function is obtained as:
La(0) =D 1og[f (rislse = j, Fi146)]
o (3.69)

= Zlog [pref(riglse =1, Fic14:0) + pouf(rielse = 2, Fima 1 0)],

t=1

where the unknown parameter set is @ = (wo, w1, @, 8, m, 0y, 01, ko, K1, Poo, P11)- The
QML estimates are obtained by maximising the log-likelihood in Equation (3.69) where

the conditional densities for Gaussian innovations are specified in Equation (3.65) and
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for Student-t in Equation (3.66). Similar to RS GARCH model, to avoid the path
dependence problem caused by h;_1., Klaassen’s approach, Equations (3.61) - (3.63)
are implemented. The iterative steps to obtain Hamilton’s filter probabilities are given

in more details in Figure 3.2.

3.4.2 Out-of-sample forecasting

The main step for generating out-of-sample volatility forecasts for RS GARCH MIDAS
is the calculation of the short-term volatility component, which is done in a similar way
to RS GARCH model. The forecasting process for the long-term volatility component
is the same as in single-regime GARCH MIDAS and it is predetermined by Equation
(3.47) and Equation (3.48). We calculate one-step-ahead short-term volatility forecast

as the weighted average of volatility forecast in two regimes:

Elhi1 4| Fiel = hiv1y (3.70)

= P(sit1+ = 1Fit) X hiiv1e + P(siz1e = 2|Fit) X hojit1s,
where

P(sip10=1|Fip) = p11 X Pr(siy = 1|Fit) + pa1 X Pr(s;s = 2|Fiz), (3.71)

P(sit14 = 2|Fip) = p12 X Pr(siy = 1|Fit) + pa2 X P(siy = 2| Fiy).

The forecast of total volatility is defined as the product of short-term and long-term
volatility forecasts components. The [-step ahead forecast within the same period t is
written as:

E[hz’+l,t7't|-7:z‘,t] = TtE[hz‘+l,t|]:i,t]

=7 [Pr(siyie = 1Fir) E[hivie| Firl + Pr(sizis = 2| Fit) Elhoivie] Fitl]
(3.72)

For longer horizons it is common to assume that 7, = 7,41 for s > 1, see Conrad

and Kleen (2020).
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Figure 3.2: Flow-chart for recursive calculation of Hamilton’s filter probabilities for RS
GARCH MIDAS.
PT‘(Sz‘—Lt =1 | Fio1; @)

Pr(siz =17, Sic1p =1 |Fic1e; ©) = Pr(sic1e =1 |[Fic1.,0) X Pr(sie =J | Sic10 = 1)

2
Z PT’(Sz‘,t =7 Si—1,t =1 | -7'—1‘71,:5; @)

si—1,t=1

P'r(Si,t =J ’ Efl,t; @) =

b
)

rit = p+ /7t hiz where 7 =m + exp (90 Z ¢i(ko)RViei + 01 Z Gi(F1) X
i=1 =1
B = W) 4 e g SR s

. 2
Ei 14 {hz@u \ Si,t} = Z_:lﬁij,(z‘—u) X hET’)vt

2
PT<Si+1,t =J | Tifl,t) = Z p(si,t =1 ’ Efl,t; @) X PT(5i+1,t =J ‘ Sit = Z)

Dij, it = Pr(siy =1 | Sig16 = J, Ti-1,t)

it=i41,t

Si,tzl

_ piPrisie=i | ric14) _ pijpis
Pr(sit1,6=J | mi—1,t) Pjt+1

f(ri,b Sit =7 ’ }—ifl,t; @) = f(Ti,t ‘ Sit = Js ‘7:1‘71,1&; @) X PT(Si,t =7 | Ti—1t, «Fifl,t)

2
f(Ti,t | E—l,t; @) = Z f(Ti,ta Sit = | ~7'_z‘—17t§ @>

Si’til

_ . _ flrag, sip=J | Fi1,4; ©)
PT(Si’t =J | Tits @> o flrie | Fic1,e; ©)

Notes: This flow-chart shows how to derive Hamilton’s filter probabilities and conditional log-
likelihood. The ¢;(ko) and ¢;(x1) is the weighting scheme given in Equation (3.50). The R Code

to implement this flow chart is given in Appendix B.
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3.5 The Endogenous RS GARCH models

In all of the above mentioned regime switching models, the evolution of s; is inde-
pendent of r,_1, meaning that pi;, pss are constants and the switching of regimes is
exogenous. However, this assumption sometimes needs to be modified to enrich the
dynamics of the model by introducing endogenous regime switching. Moreover, studies
including Kim (2004), Choi (2009) and Kim et al. (2008) reported evidence of endogene-
ity in regime changes. Hence two extra models namely Endogenous RS GARCH(1,1),
denoted as Endo RS GARCH(1,1), and Endogenous RS GARCH MIDAS, denoted as
Endo RS GARCH MIDAS are considered. Following, Choi (2009) we specify p;; and
poo as a function of r;_1, so that the transition probabilities are time-varying and are
driven by past observation. The specification of this model is similar to RS GARCH
model in Equation (3.24) and RS GARCH MIDAS in Equation (3.58) with the only
difference in transition probabilities.

Consider the following specification for the endogenous transition probabilities:

o expler + 7 1) Doy — exp(ca + 92 Te-1)
— 9 22 — *
1 +exp(er +v 1e-1) 1 +exp(ca + 72 1e-1)

Pu (3.73)

Notably, the time-varying probabilities in Equation (3.73) can be reduced to constant
transition probabilities when the parameters v, and 7, are set to equal to zero. An
advantage of modelling endogeneity this way is that we can directly specify the time-
varying transition probabilities as function of lagged values of r;.

The parameters can be estimated using QMLE with a slight modification in filtering
probabilities obtained by Hamilton’s filter and the genetic algorithm of Kim (1994).
For Endo RS GARCH(1,1) with two-regimes the conditional density is similar to Equa-
tion (3.34). The predicted probabilities can be computed as in Equation (3.36) where
Pr(s; = j|si—1 = 1) is given in Equation (3.73), while the filtered probabilities are com-
puted recursively using Hamilton’s filter as in Equation (3.38). Then the log-likelihood
function is similar to Equation (3.39) for Endo RS GARCH and Equation (3.69) for
Endo RS GARCH MIDAS. The parameter set is: 0 = {ws,, as,, By, C1, 2,71, Y2},
while the parameter set for Endo-RS GARCH MIDAS will have five extra parame-
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ters {m, 01,602, k1, K2} and v for Student-¢ distribution.

3.6 Forecast evaluation

In this section we are interested in evaluating the performances of the forecasting
models discussed up to now. The out-of-sample predictive ability is important in the
field of forecasting volatility, hence various types of measures are employed to evaluate
the volatility prediction of a specific model.

When estimating and forecasting volatility models, we face a problem that the true
volatility is unobserved, hence we need a good volatility proxy for it. The volatility
proxy aims to represent the true, unobservable, volatility process which the generated
forecasts will be evaluated against. Various measures have been suggested as proxy
variables for volatility in financial markets, some of which are the squared and absolute
returns, realized volatility, i.e., the sum of squared intraday returns. For example, see
Hansen and Lunde (2005); Ghysels et al. (2006); Triacca (2007); Giles (2008); Patton
(2006); Pan et al. (2017). In the present context, our aim is to compare the relative
predictive accuracy of various models, and if the loss function is quadratic, the use of
squared returns ensures that we actually obtain the correct ranking of models (Awartani
and Corradi, 2005).

One way to evaluate how well the model fits the dataset is to use loss functions.
The types of loss function are: Mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), root mean absolute error (RMAE), Gaussian
quasi-likelihood (QLIKE) and etc. While there are many loss functions in the liter-
ature, Patton (2006) proved that only certain loss functions are robust to noise in
the volatility proxy. Here we only consider two commonly used loss functions MSE
and QLIKE, because they are more robust to the imperfect volatility proxies (Pat-
ton, 2006), which means that using a volatility proxy yields the same ranking as using
the unobserved volatility. This also coincides with the findings of Conrad and Kleen
(2020). Furthermore, Patton (2006) showed that QLIKE loss function provides con-
sistent ranking because of the lower impact of the most extreme observations in the

sample.
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The MSE and QLIKE is defined as:

1 2 A2\2
MSE:?Z(U- —07)*,

=1
. (3.74)

1 R 03
QLIKE = > <1og(af) + ;) :

=1

2

where o2 is the volatility proxy for the out-of-sample forecasting, &7

2 is the forecast

value of volatility obtained by the proposed models and T is the total number of
volatility forecasts. The forecast model with the lowest MSE and QLIKE loss coefficient
is preferred. Nevertheless, the loss functions do not tell us whether the differences
between the forecasts are statistically significant. To make meaningful inferences about
predictive ability of the forecasts we need suitable significance tests.

In addition, researchers are often interested in determining which of the two com-
peting forecasting models predicts the volatility best. Such tests are known as relative
forecast performance tests. Examples of the relative forecast performance tests include
Diebold and Mariano (1995) and West (1996). Diebold-Mariano (DM) test provides
information about whether the difference in forecast performance is statistically sig-
nificant or not, i.e., it compares if the two forecasts have equal predictive accuracy.
For this test, let 7; and 7; denote two sequences of forecasts of r;, generated from two
competing models ¢ and j. Next, let b; and ¢; be the residuals for the two forecasts

calculated as:

by =1 7227
(3.75)
Ci=T; — TA']'.
The loss differential d; is then obtained by:

to calculate the relative performance between the models. Under the null hypothesis
of equal predictive accuracy F(d;) = 0 for all t. The only assumption required by DM

test is for the loss differential to be covariance stationary. The test statistic for DM
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test can then be formulated as:

d

DM = — (3.77)
\/[’YO +2> iy V)
n
where 7, is given as:
1 © - -
Ve = — Z (d; — d)(di—, — d), (3.78)
o
and d is calculated as:
N
d= ﬁ;di, (3.79)

where 4, is the auto-covariance at lag k and DM ~ N(0,1). The null hypothesis of

the DM test is that the two forecasts have the same level of accuracy.
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Chapter 4

Simulation

In this chapter we evaluate the quasi-maximum likelihood estimator of RS GARCH
MIDAS model in a Monte Carlo simulation. The consistency and asymptotic theory for
the QMLE for RS GARCH, (Xie, 2009; Bauwens et al., 2010) and for a special case of
GARCH MIDAS (Wang and Ghysels, 2015) with realised volatility as the explanatory
variable have been established. However, this is not yet available for regime switching
GARCH MIDAS models. Therefore, we first evaluate the finite-sample performance of
QMLE in a Monte Carlo simulation to show that QMLE is unbiased and the asymptotic
standard errors are generally applicable.

Since correctly specifying and modelling volatility has important implications, we
also examine the potential impact of misspecification. Therefore, we compare the
QML estimates of the misspecified models against the QML estimates of correctly
specified model to see how the misspecification affects the results. We assume the
misspecification in terms of: (a) not considering regime switching, (b) misspecifying
the error term, (c) omitting the long-term volatility component, (d) a combination of

all three.

4.1 Data generating process

Since our empirical application focuses on the RS GARCH MIDAS model with Student-

t innovations, we simulate 1,000 replications from the following data generating process
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(GDP):

Tit = hi,tTtgi,ta (4~1)

where {¢;;} are assumed to be i.i.d. and follow a standardised Student-t¢ distribution
with 6.6087 degrees of freedom. We generate daily data for the period of 340 months
where we assume that each month consists of N; = 22 days. This gives us a total of 7480
daily observations, which is approximately the same length as our empirical dataset.
To simulate the regimes we first generate a random number from uniform distribution
between 0 and 1. If the random number is less than the specified probability, we set
sy = 0, otherwise 1.

From simulated daily returns the monthly realised volatility is calculated as the
sum of absolute daily returns, RV, = Zf\ﬁl |7:.¢|, as a measure of the monthly variance.
The reason behind using absolute returns rather than squared returns is discussed in
Chapter 5. The parameters of the short-term volatility, i.e., the GARCH specification,
hit, are set to be w; = 0.1785, wy = 0.4044, av = 0.0944 and 5 = 0.7241. In addition,
the state variables are assumed to be p1; = 0.9961 and pys = 0.9986.

Now, considering the MIDAS part, we set the long-term volatility component, 7;, to
be fluctuating at a monthly frequency. We also assume that the long-term component
is driven by the dynamics of realised volatility without any additional macroeconomic
variables. The specification for the 7; is set to be exactly same as in Equation (3.47)
where m = 0, # = 0.0262 and we choose the MIDAS weights to be specified according
to the Beta weighting scheme in Equation (3.50) with x = 4.4037 and K = 8. Setting
k = 4.4037 implies a monotonically decaying weights, meaning that the lower weights
are given to the most recent observations. The choice of K = 8 months as a lag length,
follows our empirical application where we estimated the model with various lag lengths
beginning from 6 months to 12 month and stopped at 8 month when the improvement
in the log-likelihood was negligible.

These parameters are also reported in the first column of Table 4.1. The reason
we set these parameters to be equal to the values given is because they are the QML
estimates from our empirical application, Table 5.3, which we discuss in more details in

the next chapter. Furthermore, it should be noted that taking lags in model estimates
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leads to a loss of observations, as a result both the short and long-term volatilities start
from month 9. Moreover, we set the first 8 months of the RV to be equal to the realised

volatility obtained from our empirical application of WTT crude oil return data.

4.2 Parameter estimates

In this section, using the full sample we obtain QML estimates of the model param-
eters and investigate the effect of model misspecification. Tables 4.1 and 4.2 reports
the average of the QML estimates and average bias across 1,000 Monte Carlo simula-
tions, respectively. Based on these replication we also calculate the average asymptotic
standard errors. The asymptotic standard errors of the estimates are obtained using
the Hessian matrix. It is possible to estimate the standard errors of parameters by

calculating the square root of the inverse of the diagonal. The equation for obtaining

s.e. (0) = \/diag <#>, (4.2)

where J and I are the expected Hessian and Information matrix respectively and diag

these errors is written as:

denotes the diagonal elements of the matrix.

The average parameter estimates along with their corresponding standard errors in
brackets, and empirical standard deviations in curly brackets are reported in Table 4.1.
For a better observation we also provide average bias of the estimates in Table 4.2. Let
GARCH-N and GARCH-t denote GARCH(1,1) model where N and ¢ indicate normal
or Student-¢ distributions, respectively. Other models are denoted similarly.

Starting with Table 4.2 panel B, since this is where we correctly specified the density
we observe that the average bias for most of the parameters is close to zero except for
k, v and 8 in GARCH and RS GARCH along with wy in RS GARCH. For these
parameters, except for v which displays a negative bias in two models, we clearly see
a positive bias. Conrad and Kleen (2020) also observed that r is positively biased in
their simulation.

Furthermore, by comparing empirical standard deviation with asymptotic standard
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errors we can see that nearly all of the asymptotic standard errors in the true model are
close to the empirical standard deviation of the estimated parameters except for the x
parameter, where it appears that the asymptotic standard error is too big. On the other
hand, in the misspecified RS GARCH-t model some of the asymptotic standard errors
appear to be too small compared to the empirical standard deviation. Overall, most
of the asymptotic standard errors are quite close to the empirical standard deviation,
hence we can say that the performance of asymptotic standard errors is satisfying.

Next, we investigate the effect of model misspecification, where long-term compo-
nent and regime switching is omitted and look at the bias of single-component GARCH
and GARCH MIDAS models. From a quick inspection, we observe that the average
bias for GARCH and GARCH MIDAS models in both innovations are quite similar to
each other, except for the x in GARCH MIDAS. Moreover, it appears that in GARCH
models parameter [ is positively biased. Andreou and Ghysels (2002) and Mikosch
and Starica (2004) showed that an upward bias in the degree of persistence in GARCH
models can be caused by failure to accommodate structural changes in the model. The
parameter £ in GARCH MIDAS models is also positively biased. Additionally, from
Table 4.1 we can see that 6 is nearly twice as large as the true parameter. These re-
sults indicate that changing the innovation in single component GARCH and GARCH
MIDAS models hardly affects the parameters. These findings are also consistent with
work of Conrad and Kleen (2020). On the other hand, omitting regime switching in
GARCH MIDAS models in both innovations causes 6 to be larger than the true pa-
rameter. This large value of # causes the scale of long-term volatility component to be
large as well. A possible explanation for such effect, is that a larger 6 in low-frequency
component makes it possible to capture extreme observations. The effect of a large
scale of long-term component will be shown at the end of the Section.

Furthermore, according to o + (8 in Table 4.1 the volatility persistence in GARCH
models is close to 1 whereas it is much lower in GARCH MIDAS. The reason for this
might be that accounting for long-term volatility can reduce the persistence in the
short-term volatility component.

Now, by replacing the Student-¢ errors with normal innovations we misspecify the
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CHAPTER 4. SIMULATION

density and investigate the consequences of this misspecification. For RS GARCH-N
and RS GARCH MIDAS-N models, in Table 4.2 Panel A, wy parameter is substan-
tially positively biased whereas the corresponding transition probability is negatively
biased. This is expected, because larger values of w are required to compensate for
the more extreme and frequent observations. Moreover, the regime persistence is more
pronounced with Student-t innovations where both p;; and psy are rather close to
unity. By calculating the unconditional volatility! for each of the models we find that
the state 2 always has higher volatility than state 1, in both innovations. The higher
wsy parameters in regime switching models in Table 4.1 is also an indication for this.
Therefore, it is reasonable for us to assume that regime 1 is the low-volatility regime
while regime 2 is the high-volatility regime.

Next, to visualise how this misspecification affects the identification of transi-
tion probabilities in regime switching models we present the filter probabilities of RS
GARCH MIDAS-N and RS GARCH MIDAS-¢ for a single simulation in Figure 4.1.
Figure 4.1 (A) and (B), shows the filter probabilities of being in low-volatility and
high-volatility regimes for RS GARCH MIDAS-N, whereas (C) and (D) shows the fil-
ter probabilities of being in low and high-volatility regime for RS GARCH MIDAS-t,
respectively. Since all simulations have similar behaviour, we do not present all results.
In Figure 4.1, (A) and (B) we can see that the Gaussian specification suffers from its
inability to correctly identify the regime switching process. Similar results were shown
by Haas and Liu (2018). This is because the probability for RS GARCH MIDAS-N to
stay in high-volatility regime is very low at 0.5195, whereas for low-volatility regime
it is 0.9019, indicating that it is more likely to stay in low-volatility regime most of
the time as seen in plot (A). Furthermore, from plots (C) and (D) we can clearly see
that RS GARCH MIDAS-t can distinguish between low- and high-volatility regimes.
Similarly, RS GARCH model with Gaussian innovations also suffers from inability to
correctly identify the regimes, whereas RS GARCH-t can identify them. The plots of
filter probabilities for RS GARCH-N and RS GARCH-t can be found in Appendix C.1.
This shows that the model under correctly specified innovations can capture more ex-

treme observations than misspecified models. Moreover, plotting the filter probabilities

Wy

ICalculated as atsy-
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CHAPTER 4. SIMULATION

with squared returns in Figure 4.2 indicates that the high-volatility regimes given in
red, for RS GARCH MIDAS-t coincides with the time simulated returns experienced
volatility changes.

As discussed before, the innovation change in GARCH MIDAS models hardly affects
the parameters, and the plot of long-term volatility in Figure 4.3 also shows that
there is barely any difference. On the other hand, by introducing regime switching we
compare the long-term volatility in RS GARCH MIDAS models. It clearly shows that
misspecifying the error term causes overestimation in long-term component, probably
because of larger value for . In addition, the degree of persistence in the long-term
component in RS GARCH MIDAS-¢, measured by o0 = pi1 + pa2 — 1, is very high at
0.9926, and in RS GARCH MIDAS-N it is very low at 0.4214.

In summary, under our simulation setting, we first evaluated the performance of the
QMLE and afterwards analysed the effect of model misspecification in terms of omitting
the long-term volatility component, not considering regime switching and ignoring fat-
tails. We found that the correctly specified model, RS GARCH MIDAS-¢, has much
smaller bias compared to misspecified models and the asymptotic standard errors are
close to the empirical standard deviation of the estimated parameters except for the x
parameter. Interestingly, GARCH and GARCH MIDAS models were not affected by
misspecified innovations, however misspecification in terms of not considering regime
switching affected GARCH MIDAS models, in both innovations, causing # parameter
to be large, leading to an over-estimation in the long-term volatility component.

More importantly, the misspecified innovations in regime switching models caused
regime identification problem. To elaborate, the Gaussian specification in RS GARCH
MIDAS model could not correctly identify high and low-volatility regimes, which lead
to larger wy parameter estimates and more frequent regime changes due to lower poo
parameter. In addition, this misspecification also caused an over-estimation of long-
term component.

Hence we show importance of correctly specified model, in our case, the volatility
model should contains long, short volatility component and regime switching with

fat-tailed error distribution. We also conclude that, models with correctly specified
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innovations, namely Student-¢ innovations dominate their Gaussian counterparts for
in-sample estimation in terms of smaller bias, asymptotic standard errors close to
the empirical standard deviation and ability to correctly identify the low and high-
volatility regimes. Some additional evidence is given in our empirical application in

the next chapter.
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Chapter 5

Application

5.1 West Texas Intermediate crude oil

Pan et al. (2017) fitted RS GARCH-MIDAS model to the daily spot price data of West
Texas Intermediate (WTT) from 1986 to 2015. They suggested that two-regime GARCH
MIDAS model can significantly outperform its no regime counterpart in forecasting
oil volatility out-of-sample. Here we consider slightly longer series and use a fat-
tailed distribution to see if there are any significant improvements in estimating and
forecasting crude oil volatility.

The daily spot prices of WTI crude oil, $ per barrel, are obtained from Energy
Information Administration (EIA) website!. The sample period is from January 1, 1986
to July 27, 2020. The total number of observations is 8709. The data is divided into
two subsets. The in-sample which covers periods from January 2, 1986 to December 31,
2015 (30 years) resulting in 7567 observations is used for estimation purposes while the
remaining period from January 1, 2016 to July 27, 2020 (4 years) with 1142 observations
is used for forecasting evaluation.

Volatility changes can be caused by many factors and it is difficult to point out
which specific factors have the dominant effect on the oil prices. Many scholars have
investigated the impact of various macroeconomic variables, such as macroeconomic
uncertainty, national economic policy uncertainty (EPU), global economic policy un-

certainty (GEPU), along traditional determinants, such as global oil demand, supply,

Thttps://www.eia.gov/dnav/pet /hist/RWTCD.htm

69



CHAPTER 5. APPLICATION

and speculation, were examined for their capacity to predict crude oil price volatility.
Overall, the oil price fluctuation is found to be susceptible to several factors, however,
the oil market’s demand and supply shocks remain the major drivers (Zhao, 2022; Le
et al., 2023). Furthermore, the GEPU index wasn’t considered because the monthly
dataset is only available from 1997 onward, while the W'TT crude oil prices start from
January 1986, on the other hand, we did consider the U.S. EPU index in our analy-
sis, however, the results obtained from incorporating the US EPU in our models were
statistically insignificant. Therefore, as a fundamental factor, production and demand
levels are considered as main factors affecting oil prices. Further discussion can be
found in Section 2.9.

The monthly data reflecting oil production and demand levels are selected for the
period January 1986 to July 2020. Global oil production, obtained from EIA is used
as a proxy of world oil supply where the data is given in number of barrels produced
per month. Following recent market studies by Baumeister and Kilian (2015), Pan
et al. (2017), index of Kilian (2009) is used as the signal for oil demand. Kilian (2009)
developed a structural VAR model to explain the global crude oil price fluctuation
where the crude oil price was decomposed into three components: crude oil supply
shock, shocks to the global demand for all industrial commodities and the demand
shock to the global crude oil market.

The daily oil prices are converted to log returns using the first order difference
of log prices r = 100[log(p:) — log(pi—1)], where p; denotes crude oil price at time
t. The reason that the log returns are considered instead of simple returns is the
additivity property of log returns which is not seen in simple returns. The graphical
representations of daily WTI crude oil prices (A), returns (B) and squared returns (C)
are shown in Figure 5.1. From the plot it is observed that crude oil prices experience
high uncertainty over time. As discussed in Section 3.6 daily squared returns is used
as volatility proxy.

In Figure 5.1 (C) two largest volatilities occur around 1990-1991 and 2020. The
oil price increase, in plot Prices (A) in 1990-1991 was caused by Iraq invading Kuwait

leading to the first Gulf war, resulting in higher prices due to decrease of oil produc-

2https://www.dallasfed.org/research /igrea
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Figure 5.1: Daily crude oil prices, returns and volatilities
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Notes: This figure shows the graphical representations of WTI crude oil prices, given in dollars

per barrel in (A), returns in (B) and squared returns used as volatility proxy in (C).

tion. Whereas in 2020, a historic drop, plot (A), occurred in April due to COVID-19,
when the prices of WTTI crude oil dropped by almost 300% and was trading at around
negative $37 per barrel. This drop in demand is essentially caused by the quarantine
restrictions in countries which lead to a drop in consumption. Furthermore, in (A),
the increase in crude oil prices between 2003 - 2008 is driven by economic boom in
2014, crude oil prices fell sharply following a production that exceeded the demand
(Baumeister and Kilian, 2015). This indicates that some supply and demand shocks
can lead to large fluctuations in crude oil markets. Therefore it is vital to estimate and
forecast crude oil price volatility using appropriate models with appropriate macroe-
71
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Table 5.1: Descriptive statistics of daily WTT crude oil returns and monthly macroe-
conomic variables.

WTI Production | Demand
Mean 0.0049 0.1020 -0.1961
Var 6.3840 1.1438 243.9191
Min -40.6396 -7.0825 -100.1827
Max 19.1507 4.5266 69.4562
Skewness | -0.7194 -1.2432 -0.9112
Kurtosis 17.2860 12.8387 10.5614
JB (x10%) | 6.5042*** 0.1567*** 0.0921**
(0.0000) (0.0000) (0.0000)
ADF(5) -38.4600*** | -9.8045*** | -8.4187***
(0.0100) (0.0000) (0.0100)
Q(5) 35.4960** | 10.1960* 45.0490**
(0.0000) (0.0699) (0.0000)
Q%(5) 461.6090** | 7.0149 106.2500***
(0.0000) (0.2195) (0.0000)
ARCH(5) | 333.0900** | 5.9610 86.7260**
(0.0000) (0.3100) (0.0000)

Notes: Jarque-Bera (JB), augmented Dickey-Fuller (ADF), Ljung-Box, Q(5), and ARCH are the
statistics testing for normal distribution, stationarity, serial correlation and heteroskedastic effects
respectively. The corresponding p-values are given in brackets. WTI, production and demand are
unitless.

* denote the rejection of null hypothesis at 10% significance level.

** denote the rejection of null hypothesis at 5% significance level.

*** denote the rejection of null hypothesis at 1% significance level.

conomic variables. To include these periods in our estimation we select the period
from January 1986 to December 2015 as the within-sample period. The graphical
representations of production and demand levels can be found in Appendix C.2 and
C.3.

Descriptive statistics of the crude oil returns, production and demand levels for the
within-sample period are given in Table 5.1. The full dataset descriptive statistics are
reported in Appendix C.1. As Table 5.1 shows, the WTI crude oil has a daily average
return of 0.0049 with a variance of 6.3840. The returns and macroeconomic variables
exhibit negative skewness indicating that the data’s are slightly skewed to the left with
production being the lowest, which confirms the existence of asymmetry. This might be
due to asymmetric tendencies sometimes observed in financial time series such as lever-

age effects. Furthermore, the negative skewness and positive excess kurtosis imply that
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the returns are not normally distributed indicating that fat-tailed distributions might
be necessary to describe these variables. In addition, this is confirmed by the Jarque
and Bera (1980) (JB) test, which rejects the null hypothesis of normally distributed
returns at any level of significance for all three datasets.

Thus, a non normal distribution, such as Student-¢ might provide a better fit to the
data for it can capture fat-tails. The augmented Dickey-Fuller (ADF) unit-root test
yields a p-value of less than 0.01 for all data series considered indicating that WTTI,
production and demand returns are stationary. Furthermore, we use Engle’s ARCH
test to assess the significance of ARCH effects present in the series. The ARCH test
confirms the presence of heteroscedasticity and therefore a significant ARCH effects
in the crude oil returns and demand but not in production. This can also be seen
in autocorrelation function (ACF) plots of the three datasets given in Appendix C.4.
Finally, the Ljung-Box statistics, Q(5) and Q?*(5) of serial correlation suggests the
significant autocorrelations in both returns and squared returns in WTI and demand.
The Q?(5) statistic for production is not statistically significant at any significance level
and thus indicates strong evidence for the null hypothesis whereas Q(5) statistic shows
that production returns are statistically significant at 10%. This can also be seen in

the ACF plot for production shown in Appendix C.4.

5.2 Within-sample estimation evaluation

In this section we discuss the estimation results of models with different specifications.

We begin by estimating simple GARCH(1,1) model presented in Equation (3.3).
Since mean of WTT crude oil returns are close to zero, we assume that ¢ = 0 in all model
specifications. Furthermore, for a fair comparison of GARCH model with GARCH
MIDAS we set w = (1 — a — ). Let GARCH-N and GARCH-t denote GARCH(1,1)
model where N and ¢ indicate normal or Student-¢ distributions, respectively.

Next, since macroeconomic variables are sampled at lower frequencies we use a
MIDAS approach to link these variables to the long-term component. The GARCH
MIDAS model given in Equation (3.45) allows us to incorporate the short- and long-

term volatility components (Equations (3.46), (3.47), (3.48)) directly into the model to
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detect the effects of these variables on oil price volatility. Following work of Pan et al.
(2017), in long-term component we assume m = 0. Similar to GARCH model, denote
GARCH MIDAS-N for normal and GARCH MIDAS-¢ for Student-¢ innovations.

Based on the empirical evidence that the volatility of financial markets display some
type of persistence that cannot be appropriately captured by GARCH model and its
variations (Lamoureux and Lastrapes, 1990; Engle and Mustafa, 1992) we introduce
regime switching to reduce the persistence parameters and to take into account the role
of structural breaks. The models considered are RS GARCH(1,1) given in Equation
(3.26) and RS GARCH MIDAS in Equation (3.58). Similarly, denote RS GARCH-N,
RS GARCH-¢, RS GARCH MIDAS-N, RS GARCH MIDAS-t for RS GARCH(1,1)
and RS GARCH MIDAS with Gaussian and Student-¢ innovations.

To be consistent with GARCH MIDAS model, we also set m = 0 in RS GARCH
MIDAS. Furthermore, we only allow the short-term volatility component to switch be-
tween two regimes. Additionally, in this short-term component it is assumed that only
ws, is allowed to switch regimes as Marcucci (2005) and Wang et al. (2022) showed that
the differences of parameters a and [ between two regimes are likely to be insignifi-
cant. Furthermore, according to Guérin and Marcellino (2013) and Asgharian et al.
(2013) the identification and convergence problem caused by increment of the number
of parameters will happen, hence inclusion of several macroeconomic variable in the
long-term is also not considered.

In models with long-term volatility component the realised volatility, where it is
calculated as sum of squared returns, is mainly used as the natural explanatory vari-
able (Engle et al., 2013), however, since absolute returns could also capture fluctuations
in future return volatility Ding et al. (1993), Ghysels et al. (2006) and Taylor (2008)
explored the advantages of calculating RV as absolute value of returns. For example,
Ding et al. (1993), provided evidence that the low-frequency components of volatility
might be more effectively captured by using absolute returns instead of squared returns.
Similarly, Forsberg and Ghysels (2006) showed that regressors involving volatility mea-

sures based on absolute returns are superior in predicting future volatility. Therefore
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in this thesis, absolute returns® calculated as:

Nt

RV, =Y |ril, (5.1)

=1

are considered as natural explanatory variables. As for the lag choice, we estimated the
model for different values of K and stopped when the improvement in the log-likelihood
was negligible. Conrad and Loch (2015) also showed that as long as the selected K is
large enough, the estimation results are robust with respect to the specific choice of
the maximum number of lags included.

Next, an extended Markov switching models allowing for endogeneity in regime
switching namely Endogenous RS GARCH and Endogenous RS GARCH MIDAS mod-
els are considered. These models are similar to RS GARCH and RS GARCH MIDAS
with only difference in the transition probabilities. The transition probabilities for
endogenous regime switching models are given in Equation (3.73) and if v = 0, the
transition probabilities become exogenous and our model reduces to the standard RS
GARCH and RS GARCH MIDAS.

Thus, we fit 12 different models for the WTI crude oil returns: GARCH-N, GARCH-
t, RS GARCH-N, RS GARCH-t, GARCH MIDAS-N, GARCH MIDAS-t, RS GARCH
MIDAS-N, RS GARCH MIDAS-¢t, Endo RS GARCH-N, Endo RS GARCH-¢, Endo
RS GARCH MIDAS-N and Endo RS GARCH MIDAS-N. For now we model the low-
frequency movements in conditional variance by realised volatility only. We consider
macroeconomic variables, production and demand later in the chapter.

Parameter estimates along with their corresponding standard errors are given in
Table 5.2 and Table 5.3. The degree of volatility persistence is given by p = (a + ().
The log-likelihood value (LL) is also reported as a measure of the model’s goodness of
fit.

In general, all parameters in models with Student-¢ innovations, see Table 5.3, are
statistically significant at 5% significance level and the estimates of individual param-

eters across different models are found to be relatively close to each other. On the

3We tried estimating GARCH MIDAS models using squared returns as natural explanatory vari-
ables of WTT oil returns, however, the estimation results were not something expected as it provided
unreasonable long-term volatility.
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CHAPTER 5. APPLICATION

other hand, when the innovations are assumed to follow a normal distribution, Table
5.2, several parameters become statistically insignificant. The loss of statistical sig-
nificance in certain parameters suggests that the normal distribution assumption may
not adequately capture the inherent characteristics of the volatility process in financial
time series data. This finding aligns with the results obtained from the simulation in
Chapter 4.

Moreover, positive and significant « in all cases, except for RS GARCH MIDAS-N,
confirms the presence of ARCH effects. An a < 0.10 in all cases, except for GARCH
MIDAS-N, indicates a low volatility period. Furthermore, GARCH persistence param-
eter 3, is significant in all models, and where it is lower than 0.90 indicates volatility
does not take long time to converge to average volatility. In cases when 5 > 0.90
indicates that volatility will persist for a long time following a market shock.

Looking at the volatility clustering in the data through the persistence parameter
a + B, we find that across all models in both innovations, the stationarity condition,
a + [ < 1 is satisfied. The sum of these two parameters is lower in RS GARCH
MIDAS models and lowest in Endo RS GARCH MIDAS-t compared to others where it
is above 0.90. The higher persistence usually means that volatility of crude oil return
is remarkably persistent over entire period.

The estimated degrees of freedom, v are greater than 4 in all models, suggesting
that all the conditional moments up to the fourth order exist and a lower values of v
indicate the inability of normal error to account for the fat tails.

Next, comparing the regime switching models with normal and ¢ innovations, we
observe that the regime persistence is more pronounced with Student-¢ innovations
where the probabilities p;; and pgs are close to unity. This means that if current
volatility belongs to the high volatility regime, the next day’s volatility is more likely
to stay in the same regime, i.e., the expectations of staying at both states are quite
long. Whereas if the innovation is assumed to be Gaussian then w; parameter in both
regime switching GARCH and RS GARCH MIDAS models become insignificant and
the transition between two state become more frequent due to lower p; and poy values.

Looking at the interpretation of the MIDAS component in GARCH MIDAS type
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models, both parameters 6 and x are significant. A positive 6 in all GARCH MIDAS
type models is an indicator of long-term oil volatility being positively related to realised
volatility. In fact, bigger fluctuation in the RV would cause bigger long-term crude oil
fluctuation. Whereas a lower value for x means that all the lags have similar effect on
RV thus the beta weights are declining slowly.

Next, in order to assess the performance of the models with respect to how well it
describes the crude oil data, both log-likelihood values and model selection criteria are
analysed. The most common approach involves selecting a model that minimises the
Akaike’s information criteria (AIC), Bayesian information criteria (BIC) and Hannan-

Quinn information criteria (HQIC). These are calculated as follows:

AIC(P) = —2(LL) + 2P,
BIC(P) = —2(LL) + PIn(N), (5.2)

HQIC(P) = —2(LL) + 2Pln(In(N)),

where P is the number of parameters estimated in the model, N is the number of
observations and LL is log-likelihood value. Comparing the above equations BIC tends
to select simpler models then those chosen by the AIC since it is stricter in penalising
loss of degree of freedom than AIC. Using the log-likelihood values obtained through
estimation we determine the best model is the one with lowest AIC, BIC and HQIC
values.

The log-likelihood values and the model selection criteria for all models, divided
into two panels for easier interpretation, are presented in Table 5.4. In panel A, the
innovations are assumed to follow Gaussian whereas in panel B, the innovations are
assumed to follow Student-t distribution. The highest LL and the lowest AIC, BIC,
HQIC values amongst all models are given in red, whereas the highest LL and the
lowest AIC, BIC, HQIC values among models with Gaussian innovations are given in
blue.

In general, we observe that models with Student-¢ distributed errors generally have
higher LL and lower selection criteria values than models with Gaussian distribution.

Next, the regime switching models have the highest log-likelihood values and lowest
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Table 5.4: Log-likelihood and model selection criteria.

Model LL AIC BIC HQIC
Panel A: Gaussian

GARCH -16130.07 | 32264.14 | 32278.00 | 32268.90
RS GARCH -15981.30 | 31974.60 | 32016.19 | 31988.88
GARCH MIDAS -16084.94 | 32177.88 | 32205.61 | 32187.40
RS GARCH MIDAS -15866.90 | 31749.80 | 31805.25 | 31768.83
Endo RS GARCH -15863.23 | 31742.46 | 31797.91 | 31761.49
Endo RS GARCH MIDAS | -15858.71 | 31737.42 | 31806.74 | 31761.21
Panel B: Student-t

GARCH -15864.48 | 31732.96 | 31746.82 | 31755.24
RS GARCH -15816.76 | 31647.52 | 31696.04 | 31664.17
GARCH MIDAS -15847.70 | 31705.40 | 31740.06 | 31717.30
RS GARCH MIDAS -15808.86 | 31635.72 | 31698.10 | 31657.13
Endo RS GARCH -15822.12 | 31662.24 | 31724.62 | 31683.65
Endo RS GARCH MIDAS | -15808.54 | 31639.08 | 31715.33 | 31665.25

Notes: The Table reports the log-likelihood values, AIC, BIC and HQIC statistics for different
model specifications. In panels A and B the innovations are normally or Student-t distributed.
The computation of AIC, BIC and HQIC is given in Equation (5.2). The highest LL and lowest
AIC, BIC and HQIC amongst all models is given in red, whereas for panel A they are given in
blue.

AIC, BIC and HQIC statistics compared to their no regime switching counterparts.
Specifically, among the models with Student-t errors (panel B), RS GARCH MIDAS-¢
stands out with the lowest AIC and HQIC values. RS GARCH-t, on the other hand,
has the lowest BIC value. However, the difference of 2.04 in BIC between RS GARCH-t
and RS GARCH MIDAS-t indicates there is a positive evidence in favour of the more
complex model (Raftery, 1995; Fabozzi et al., 2014).

The comparison between Endo RS GARCH MIDAS-t and RS GARCH MIDAS-¢
models reveals some interesting findings. Although the estimated parameters of the
Endogenous RS GARCH MIDAS-t model are statistically significant, the transition
probabilities given in Figure 5.2 exhibit a behaviour similar to the constant transition
probabilities produced by the exogenous RS GARCH MIDAS-¢. Despite the inclusion
of additional endogenous variables in the Endogenous RS GARCH MIDAS-t model, the
time-varying nature of the transition probabilities remains relatively stable and does
not deviate significantly from the constant transition probabilities of the exogenous

model. This suggests that the exogenous model captures the primary drivers of regime
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Figure 5.2: Transition probabilities of Endo RS GARCH MIDAS model with Student-¢

innovations.
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Notes: This Figure shows the transition probabilities of Endogenous RS GARCH MIDAS-t. The

Probability (A) and Probability (B) shows p1; and pas respectively, calculated using parameters

from Table 5.3 and Equation (3.73) .
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shifts and adequately represents the volatility dynamics in the data.

In terms of log-likelihood, Endogenous RS GARCH MIDAS-t and RS GARCH
MIDAS-t with log-likelihood values of -15808.54 and -15808.86, respectively, exhibit
very similar performance. To determine if the difference in log-likelihood is statistically
significant and to assess the goodness of fit, a likelihood ratio (LR) test can be applied.
The likelihood ratio test compares the likelihoods of nested models, where one model
is a restricted version of the other. In this case, RS GARCH MIDAS-t is nested within
the more general model Endo RS GARCH MIDAS-¢. Performing the LR test will help
determine whether the additional parameters in the more complex model significantly

improve the model fit. The test statistic is given as follows:

LR = 2[(LL,,) — (LL,)] (5.3)

where LL,, and LL, are the log-likelihoods of unrestricted model and restricted model,
respectively. This test gives us a p-value of 0.7261, thus failing to reject the null meaning
that the restricted model, RS GARCH MIDAS-#, is preferred.

When considering the models with Gaussian errors, the AIC criterion favours the
most complex model, Endo RS GARCH MIDAS-N. This preference for complexity in
regime-switching models aligns with the findings of Kapetanios (2001). On the other
hand, the BIC criterion tends to prefer endogenous RS GARCH-N, while HQIC is
lowest in Endo RS GARCH MIDAS-N.

Overall, results obtained from the log-likelihood values and model selection crite-
ria indicate that amongst the 12 model specifications the crude oil volatility is best
captured by our proposed model, RS GARCH MIDAS-t.

Comparing our results for RS GARCH MIDAS-N model with the parameter esti-
mates obtained by Pan et al. (2017), we notice that the short-term volatility parame-
ter estimates are quite similar whereas the transition probabilities and the long-term
volatility parameters differ. A plausible explanations about the difference of reported
values is that we use absolute returns as realised volatility measure and longer horizon
(30 years) for in-sample estimation whereas Pan et al. (2017) considered the squared

returns and their sample data covered the period from January 2, 1986 to December 31,
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2015 (15 years). Furthermore, they applied Gray (1996) approach to tackle the path
dependence issue whereas we follow an approach developed by Klaassen (2002) which
is a modified version of Gray’s approach. Lastly, we considered a fat tailed innovation
while they assumed that errors are normally distributed.

Once we showed that WTI crude oil volatility is best captured by RS GARCH
MIDAS model with the Student-t error distribution we turn our attention to in-depth
analysis. For regime switching type models while considering the unconditional volatil-
ity we find that state 2 in RS GARCH MIDAS-t has two times higher volatility than
state 1 whereas the volatility in regime 2 in RS GARCH MIDAS-N it is nearly 40
times higher than regime 1. The unconditional volatility in RS GARCH-t is 2.0314
and 6.5604 for regime 1 and regime 2, respectively, which again shows that the volatil-
ity in state 2 is 3 times higher than state 1. Hence, it is reasonable for us to assume
that regime 1 is the low-volatility regime while regime 2 is the high-volatility regime.

To illustrate the difference between transition probabilities we plot the filter prob-
abilities for RS GARCH MIDAS models in Figure 5.3. The Figure 5.3 (A) and (B) are
the filter probabilities of being in low-volatility regime and high-volatility regime, re-
spectively, for RS GARCH MIDAS-N model, whereas (C) and (D) are the probabilities
of being in low-volatility regime and high-volatility regime according to RS GARCH
MIDAS-t.

From Figure 5.3 we can see that RS GARCH MIDAS model with ¢ innovations,
plots (C) and (D), can easily identify the two volatility regimes, whereas the model with
Gaussian innovations fails to do so. This is probably because RS GARCH MIDAS-N
model tends to produce more frequent regime changes when there are volatile observa-
tions than the RS GARCH MIDAS-t. If the probability at time ¢ is larger than 0.5, we
can say that the volatility stays in Regime 1 (high-volatility regime) at that time, and
the volatility regime switches to Regime 2 (low-volatility regime) if the probability is
smaller than 0.5. The probability for RS GARCH MIDAS-N to stay in high-volatility
is very low at 0.4965, meaning that it is more likely to stay in low-volatility for most
of the time, which is not ideal to model volatility changes. Consequently, misspecified

models with Gaussian errors tends to over-estimate the regime changes to compensate
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Filter probabilities for RS GARCH MIDAS models.

Figure 5.3

CHAPTER 5. APPLICATION
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high-volatility regime 2, respectively, according to RS GARCH MIDAS-N, whereas (C) and (D) are the filter probabilities of being in low-volatility regime and

Notes: This Figure shows filter probabilities for RS GARCH MIDAS models. The plots (A) and (B) are the probabilities of being in low-volatility regime 1 and
high-volatility regime according to RS GARCH MIDAS-t.



CHAPTER 5. APPLICATION

the additional variation and extreme observations. These results are in line with find-
ings from our simulation in the previous chapter. Furthermore, the results in Figure
5.4 confirm the existence of regime switching due to the probabilities larger than 0.5.

Furthermore, plotting the filter probabilities of RS GARCH-t and RS GARCH
MIDAS-t with the volatility proxy in Figure 5.4 suggests the volatility regimes identified
by our model correlate well with major events affecting supply and demand for oil.
For instance, the filter probabilities indicate a high-volatility regime around 1990-1991
which is when Iraq invaded Kuwait leading to the First Persian Gulf war causing
the oil prices to increase due to lower production. Another high-volatility regime is
observed around 1994 caused by excess OPEC supply, which can be seen clearer in
Figure 5.5. Third high-volatility period is seen around 1996-1997 which coincided
with backwardation in the oil market. The last two high-volatility periods that were
identified are also discussed in Fong and See (2002). Since these periods are associated
with supply /demand crises of oil disruptions, spikes of volatility are produced (Iglesias
and Rivera-Alonso, 2022).

Crude oil prices show very strong volatility persistence during the period 1998 and
2010. During this period the economy experienced booming, recession and recovery
periods hence all volatility is captured by high-volatility regime. For instance, the east
Asian economic crisis affected the oil market and caused a collapse of oil prices in 1998
(Mabro, 2009). In 2001, the U.S. terrorist attack produced high levels and spikes of
volatility (Zavadska et al., 2020).

The most remarkable surge in the price of oil occurred between mid-2003 and mid-
2008 with the WTTI crude oil price increasing from $28 to $134 per barrel. There is a
general consensus that the surge in oil prices was not a result of oil supply disruptions
but rather a cumulative effect of numerous small increases in the demand for crude oil
over several years. Kilian (2009) and Hamilton (2009) among others argue that these
demand shifts are associated with an unexpected expansion of the global economy.
During the financial crisis of 2008 the demand for crude oil plummeted, causing a
fall in the price of oil (Baumeister and Kilian, 2016). More specifically, these periods

which were triggered by economic or financial crises are associated to higher volatility
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This Figure shows the time series plot of filter probabilit

Notes

MIDAS-t. The plot (C) shows filter probabilities of the state 2 for RS GARCH-t and RS GARCH MIDAS-¢ for the period 1986 - 1995. The black line indicates the

scaled realised volatility.



CHAPTER 5. APPLICATION

persistence, which is similar to findings of (Zavadska et al., 2020; Iglesias and Rivera-
Alonso, 2022).

There have been a number of smaller demand and supply shocks in the oil market
between 2010 and 2014. According to the filter probabilities the last period of high-
volatility regime in our in-sample period is around 2014, the oil conflict of Saudi-Arabia
with the US (Iglesias and Rivera-Alonso, 2022), when the oil prices began to decrease
worldwide and continued to drop significantly until January 2015. The reason for this
decline was an oversupply of oil compared to demand.

Additionally, in Figure 5.5 we observe that just after the high volatility in 1991, RS
GARCH-t declines slower compared to RS GARCH MIDAS-t even though parameter
estimates are very close to each other. A possible explanation for this is that accounting
for long-term volatility in regime switching GARCH MIDAS-t reduces persistence in
the short-term component.

The estimated expected duration? provide insights into the dynamics of the RS
GARCH MIDAS model and its ability to capture the volatility patterns in the data. In
the case of the RS GARCH MIDAS model with Gaussian errors, the expected duration
of the low-volatility regime is approximately 17 days, while for the high-volatility regime
it is only 2 days. This can explain the frequent regime changes observed in Figure 5.2.
A possible explanation for such pattern is due to the tendency of regimes in Gaussian
to signal a regime shift whenever an unusual small or large observations occur within
an otherwise calm regime (Haas and Paolella, 2012).

On the other hand, the RS GARCH MIDAS model with Student-¢ innovations ex-
hibits longer expected durations for both the low-volatility and high-volatility regimes.
Specifically, the expected duration for the low-volatility regime is approximately 1 year
(257 days), while for the high-volatility regime it is slightly less than 2 years (715 days).
This indicates that the model captures the persistence of volatility observed in crude
oil returns, as higher volatility periods tend to persist for a longer duration.

The findings regarding the high regime persistence in the RS GARCH MIDAS-¢
model are consistent with the results of Herrera et al. (2018), who also found that

the transition probabilities between regimes were close to one, indicating highly persis-

4Calculated as (1 — p;;)~" where i=1 or 2.
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Figure 5.5: Filter probabilities for regime switching models with Student-¢ innovations.
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Notes: This Figure shows the time series plot of filter probabilities for high-volatility regime for RS GARCH-t and RS GARCH MIDAS-¢t. The black line indicates

the scaled squared returns.
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Figure 5.6: Weighting function
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Notes: This Figure shows the behaviour of weights as a function of the number of lags in GARCH
MIDAS-N, GARCH MIDAS-¢t, RS GARCH MIDAS-N, RS GARCH MIDAS-¢, endogenous RS
GARCH MIDAS-N and endogenous RS GARCH MIDAS-¢.

tent regimes. This suggests that a substantial majority of the observations belong to
the high-volatility regime, further supporting the ability of the model to capture the
persistence in volatility.

In terms of MIDAS approach, the parameters 6 and x along with realised volatility
describes the long-term component in GARCH MIDAS models. A lower value for
in RS GARCH MIDAS-¢, implies lower persistence of the short-term volatility compo-
nent and that monthly realised volatility lags contain information that help model the
low-frequency component. Figure 5.6 illustrates the plot of weighting function, s, for
models with MIDAS component. As seen from the plot the weight function is mono-
tonically decreasing for all models, this is similar to work of Engle et al. (2008) and
Asgharian et al. (2013). A closer look at RS GARCH MIDAS-t shows the weight on
lag 1 is 0.4251, followed by 0.2699 on lag 2 and last lag equals 0.0004. This shows that
the lower weights are given to the most recent observations. Furthermore, RS GARCH
MIDAS-t for the in-sample period gives an estimate of 0.0262 for 6 and 4.4037 for k.
Hence, if a shock occurred in the current month, we would expect to see an increase of

0.0262x0.4251)

e —1=1.1201% in the long-term oil volatility the next month.

To illustrate the long-term component, 7; for GARCH MIDAS-N, GARCH MIDAS-
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t, RS GARCH MIDAS-N and RS GARCH MIDAS-t models for the in-sample period
we plot it in Figure 5.7. As can be seen from Figure 5.7, all four models give relatively
similar pattern, most of the time. Moreover, the long-term volatility is high around
1990-1991 and 2009 which is the period when crude oil returns displayed high return
volatility in Figure 5.1 (C). However, the long-term volatility is lowest in RS GARCH
MIDAS-t and highest in GARCH MIDAS-N. This high value of 7; is probably balanced
by higher short-term component caused by regime switching and extreme volatility
changes because of ¢ innovations. Similar results were obtained in simulation.

It is worth mentioning that the models without the long-term volatility component,
GARCH, RS GARCH and endogenous RS GARCH indicate a high degree of persis-
tence in the conditional volatility of WTT crude oil returns while models with MIDAS
approach have lower value of p. So whether this high persistence arises due to regime
changes or any other reasons, we can conclude that accounting for long-term volatility
reduces persistence in the short-term component.

Now we turn our attention to investigate whether or not the incorporation of
macroeconomic variables in the long-term component can describe the WTI crude
oil volatility better compared to RS GARCH MIDAS-t with RV only. When consid-
ering production and demand levels as macroeconomic variables, the models become:
GARCH MIDAS-N (RV+Prod), GARCH MIDAS-t (RV+Prod), RS GARCH MIDAS-
N (RV+Prod), RS GARCH MIDAS-t (RV+Prod), GARCH MIDAS-N (RV+Dem),
GARCH MIDAS-t (RV+4+Dem), RS GARCH MIDAS-N (RV+Dem), RS GARCH-
MIDAS-t (RV+Dem). The parameter estimates of GARCH MIDAS and RS GARCH
MIDAS models with normal and Student-¢ errors where the long-term volatility is now
described by a combination of realised volatility and macroeconomic variables are re-
ported in Tables 5.5 and 5.6. To include these additional variables in the long-term
volatility component the 7y considered is given in Equation (3.48).

From the estimation results in Tables 5.5 and 5.6 we can see that the parameter
estimates of GARCH MIDAS models are quite similar to the GARCH MIDAS model
estimates where 7; is described by RV only. On the contrary, in RS GARCH MIDAS

models with macroeconomic variables some of the parameters estimates are different
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Figure 5.7: In-sample estimation of long-term volatility.
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Notes: This Figure shows the estimated long-term volatility, 7;, of 4 different models:
GARCH MIDAS-t. The estimation covers the period from September 1986 to December 2015.
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Table 5.5: Parameter estimates with macroeconomic variables and Gaussian innova-
tions.

Parameters GARCH MIDAS RS GARCH MIDAS ~ GARCH MIDAS RS GARCH MIDAS

(RV+Prod) (RV+Prod) (RV+Dem) (RV+Dem)
w1 - 0.0465 - 0.1103
(0.1014) (0.1021)

Wo - 2.4231** - 2.7498***
(0.4183) (0.4607)

01 0.0427*** 0.0379*** 0.0438*** 0.0348***
(0.0009) (0.0020) (0.0009) (0.0020)
0 0.5635*** 0.3659*** -0.0015 -0.0005
(0.1144) (0.1062) (0.0020) (0.0021)
« 0.1431*** 0.0285** 0.1365*** 0.0162
(0.0130) (0.0140) (0.0128) (0.0124)

B 0.7165*** 0.7289*** 0.7350%** 0.7022%*
(0.0312) (0.0733) (0.0314) (0.0713)

P11 - 0.9383*** - 0.9441*
(0.0132) (0.0131)

Pao - 0.4606*** - 0.5492***
(0.1200) (0.0807)

K1 4.3554*** 5.2883*** 4.3770** 7.4000%**
(0.5234) (0.8242) (0.5334) (1.3297)

Ko 1.7725*** 1.4952%** 11.6071*** 14.8860***
(0.5007) (0.4752) (0.0030) (0.0099)

LL -16063.31 -15859.39 -16084.92 -15870.03
p 0.8596 0.7574 0.8715 0.7184

Notes: This table shows the estimation results of GARCH MIDAS and RS GARCH MIDAS for
WTI Crude oil with Normal distribution. The first row corresponds to the MIDAS regressors,
that are realised volatility and oil production level (RV+Prod), realised volatility and demand
(RV+Dem). LL denotes the log-likelihood value. The persistence of the shocks are indicated by
p = a+ . The standard errors are reported in parenthesis. The parameters 65 and k2 tell us the
quantitative effects of production/demand.

* denote the rejection of null hypothesis at 10% significance level.

** denote the rejection of null hypothesis at 5% significance level.

*** denote the rejection of null hypothesis at 1% significance level.
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Table 5.6: Parameter estimates with macroeconomic variables and Student-¢ innova-

tions.
Parametors GARCH MIDAS RS GARCH MIDAS  GARCH MIDAS RS GARCH MIDAS
RV+Prod RV+Prod RV+Dem RV+Dem
w1 - 0.2420*** - 0.1564
(0.0492) (0.0900)
Wo - 0.5504*** - 0.3660
(0.1148) (0.1893)
0, 0.0403*** 0.0251*** 0.0412*** 0.0256***
(0.0013) (0.0026) (0.0013) (0.0050)
0y 0.5635*** 0.1104** -0.0004 -0.0014
(0.1280) (0.0463) (0.0023) (0.0024)
Q@ 0.0808*** 0.1039*** 0.0808*** 0.0940***
(0.0139) (0.0141) (0.0131) (0.0247)
I3 0.8433*** 0.6516™** 0.8451*** 0.7434***
(0.0387) (0.0517) (0.0374) (0.1353)
P11 - 0.9957*** - 0.9966***
(0.0004) (0.0004)
Paso - 0.9983*** - 0.9986***
(0.0003) (0.0001)
K1 3.5804*** 8.2125*** 3.5067*** 3.7769**
(0.8470) (2.5230) (0.8680) (1.2956)
Ko 1.1612*** 5.3909*** 13.7804*** 13.8935™**
(0.2719) (0.2534) (0.0011) (0.0375)
v 6.5184*** 7.5240** 6.6293*** 7.2694***
(0.4192) (0.6587) (0.4252) (0.6260)
LL -15837.25 -15808.70 -15847.74 -15810.89
p 0.9241 0.7556 0.9259 0.8374

Notes: This table shows the estimation results of GARCH MIDAS and RS GARCH MIDAS for
WTT Crude oil with Student-¢ innovations. The first row corresponds to the MIDAS regressors,
that are realised volatility and oil production level (RV+Prod), realised volatility and demand
(RV+Dem). LL denotes the log-likelihood value and v is the degrees of freedom and the persistence
of the shocks are indicated by p = a + 8. The standard errors are reported in parenthesis. The

parameters 0o and ko tell us the quantitative effects of production/demand.

* denote the rejection of null hypothesis at 10% significance level.
** denote the rejection of null hypothesis at 5% significance level.
*** denote the rejection of null hypothesis at 1% significance level.
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Figure 5.8: In-sample long-term volatility.
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Notes: This Figure shows the behaviour of weights as a function of the number of lags in GARCH
MIDAS and RS GARCH MIDAS models. Solid line indicates x; value whereas dashed line
indicates ko value from the same model. The weights are calculated using Equation (3.50).

from our proposed model.

We also observe that production has a significantly positive impact on long-term
crude oil volatility while demand has an insignificantly negative effect, meaning that
demand has a negligible influence on the monthly component of crude oil daily volatility.
These results align with the conclusions drawn by Wei et al. (2017) who also found
that the demand factor is insignificant, meanwhile, the supply factor is positive and
statistically significant in oil volatility modelling.

Furthermore, parameter 6, together with the weighting parameter x5 tells us the
quantitative effects of oil fundamentals. For instance, in GARCH MIDAS-N model for
production the estimate of 65 is 0.5635 while for demand 6, it is -0.0015. A significant
kg of 1.7725 means that all lags have similar effect on production thus, declining slowly,
while the demand k5 of 11.6071 means that only the first couple of lags have significant
effect on demand with last values being very close to zero (rapid decline), i.e. ko value
of 11.6071 puts a weight of 0.7708 on the first lag, 0.1870 on the second, 0.0364 on the
third while the seventh and eighth input on the lags are 3.1682x1077, 2.0313x 1010

respectively. This can be seen in Figure 5.8.
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Table 5.7: Log-likelihood and model selection criteria.

Model LL AIC BIC HQIC
Panel A: (RV+Prod)

GARCH MIDAS-N -16063.31 | 32138.62 | 32180.21 | 32152.90
GARCH MIDAS-¢ -15837.25 | 31688.50 | 31737.02 | 31705.15

RS GARCH MIDAS-N | -15859.39 | 31738.78 | 31808.10 | 31762.57
RS GARCH MIDAS-t | -15808.70 | 31639.40 | 31715.65 | 31665.57
Panel B: (RV+Dem)
GARCH MIDAS-N -16084.92 | 32181.84 | 32223.43 | 32196.12
GARCH MIDAS-t -15847.74 | 31709.48 | 31758.00 | 31726.13
RS GARCH MIDAS-N | -15870.03 | 31760.06 | 31829.38 | 31783.85
RS GARCH MIDAS-t | -15810.89 | 31643.78 | 31720.03 | 31669.95

Notes: This Table reports the log-likelihood values, AIC, BIC and HQIC statistics for different
model specifications. In panels A and B the long-term component is driven by RV and explanatory
variables, production and demand. The computation of AIC, BIC and HQIC is given in Equation
(5.2). The highest log-likelihood and lowest AIC, BIC and HQIC are shown in red.

The overall results indicate that the monthly rates of production level have positive
significant impact, whereas the demand level has a negative and insignificant impact on
the WTT long-term volatility in both innovations. Moreover, as mentioned previously,
the models with ¢ innovations have higher log-likelihood values compared to models
with Gaussian innovations.

Next, in order to assess the performance of the models with respect to how well it
describes the crude oil data, both log-likelihood values and model selection criterion
AIC, BIC and HQIC, which are presented in Table 5.7, are analysed.

We have divided the table into 2 panels for ease of interpretation. Panel A contains
models with production as a macroeconomic variable whereas the models with demand
are given in panel B. The red values indicate the lowest values amongst all models.
Unsurprisingly, the regime switching models beat their single-regime counterparts re-
gardless of any evaluation criteria. Similarly, models with Student-¢ innovations are
superior compared to Gaussian. According to these results, the crude oil volatility is
best described by RS GARCH MIDAS-¢ (RV + Prod). Since the log-likelihood values
are similar, we also apply the LR test to see the relative performance of RS GARCH
MIDAS-t and RS GARCH MIDAS-t (RV+Prod) model. The test statistic obtained is

0.32 and the corresponding p-value is 0.852, thus we fail to reject the null hypothesis.
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Therefore, we can conclude that our proposed model RS GARCH MIDAS-t with RV
only is still the best amongst all models. This result does not coincide with Pan et al.
(2017) who found that both oil supply and demand have significant impacts on oil
price volatility whereas our finding indicates that demand does not have a significant
impact on the oil price volatility. This could again be because we used absolute returns
as realised volatility.

An interesting finding is that p in RS GARCH MIDAS-t is higher than 0.85, whereas
it much lower in RS GARCH MIDAS-t (RV+Prod) at 0.7556 and slightly lower in
RS GARCH MIDAS-t (RV+Dem) at 0.8374. This implies that both production and
demand are potential sources of volatility persistence. Similar result was shown by Pan

et al. (2017).

5.3 Out-of-sample forecast performance

In the real world investors are more concerned about out-of-sample (OOS) forecasting
performance compared with in-sample estimation since out-of-sample is more likely
to show how the model behaves in the future. In our case we compare RS GARCH
MIDAS-t with other models in terms of their out-of-sample forecasting performance.

To forecast the volatility out-of-sample, we predict it from the model fitted to all
previous values. Hence all the predictions are one-step-ahead forecasts. Furthermore we
use a rolling window approach to keep the sample size same. The forecasting horizon is
from January 1, 2016 to July 27, 2020 where the model is refitted and parameters are re-
estimated every month (22 days), as new information becomes available. It is common
practice in the literature to use monthly frequency to re-estimate the model parameters.
Furthermore, because of the long-term volatility component that changes monthly, it
would be unlikely that forecasts will change much if we re-estimated parameters daily.
Since the volatility is unobservable we compare the accuracy of our out-of-sample
volatility forecasts from different models against the volatility proxy which is the daily
squared returns.

The choice of loss functions and forecasting criteria is crucial for assessing the

predictive accuracy of volatility models. In this study, we adopt the Mean Squared
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Error (MSE) and QLIKE as our primary loss functions, following the findings of Patton
(2006) who demonstrated their robustness to imperfect volatility proxies.

The MSE measures the average squared difference between the predicted volatility
and the realized volatility. By comparing the MSE and QLIKE statistics across different
models, we can assess their relative forecasting accuracy. Lower values of these statistics
indicate better model performance. It is important to note that perfect forecasts would
result in both the MSE and QLIKE being equal to zero. For a more detailed discussion
on the rationale behind using MSE and QLIKE as evaluation criteria, please refer to
Section 3.6.

In Table 5.8, we present the forecasting performances of different models using
these two loss functions. Panel A considers models with Gaussian innovations, while
panel B assumes Student-¢ distributed innovations and incorporates only the RV as the
long-term volatility component. In panels C and D, we extend the models to include
additional macroeconomic variables, namely, production or demand levels, to capture
potential influences on volatility. These panels provide insights into the forecasting
performance when considering the combined effects of RV and macroeconomic factors.

In the analysis of forecasting performance, two key factors are observed to influence
the results: the choice of distribution and the loss function employed. It is evident that
the RS GARCH model with Student-t innovations consistently outperforms all other
models under both the MSE and QLIKE loss functions. It is important to note that all
models with ¢ innovations outperforms its Gaussian counterpart in both loss functions.
This suggests that the inclusion of Student-t innovations improves the accuracy of
volatility forecasting compared to models with Gaussian distribution. On the other
hand, when comparing the RS GARCH MIDAS-t model with the GARCH model under
MSE, the former does not exhibit superior performance. However, under the QLIKE
loss function, RS GARCH MIDAS-t outperforms the GARCH model. This difference
in performance may be attributed to the inclusion of the MIDAS component in the RS
GARCH MIDAS-t model, which updates the long-term volatility every 22 days. This
feature allows for a more dynamic and lagged effect of realized volatility, potentially

enhancing forecasting accuracy.
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Table 5.8: Forecasting performances of the models.

MSE QLIKE
Panel A
GARCH-N 6669.9470  2.8064
RS GARCH-N 6661.7790  2.7644

GARCH MIDAS-N 43802.2400  2.8173
RS GARCH MIDAS-N  10282.6700  2.7898

Panel B

GARCH-t 6736.0980  2.8186
RS GARCH-t 6534.5100 2.7579
GARCH MIDAS-t 13396.1900  2.8078

RS GARCH MIDAS-¢ 7744.8110  2.7836
Panel C: (RV + Prod)

GARCH MIDAS-N 35157.8400  2.7901
RS GARCH MIDAS-N  18515.2700  2.8487
GARCH MIDAS-¢ 12712.7500  2.7865
RS GARCH MIDAS-t  10177.6400  2.7848
Panel D: (RV + Dem)

GARCH MIDAS-N 33583.2000  2.8155
RS GARCH MIDAS-N  14791.0500  2.9969
GARCH MIDAS-t 12534.0600  2.8095
RS GARCH MIDAS-¢ 8822.3040  2.7852

Notes: This Table reports the evaluation results based on the loss functions of MSE and QLIKE
given in Equation (3.74) for different model specifications. The forecasts are obtained via rolling
window approach where the parameters are re-estimated every 22 steps. The daily squared returns
are taken as volatility proxy. In panels A and B the innovations are Gaussian and Student-
t distributed and 7; is described by realised volatility only. In panels C and D the long-term
component is driven by RV and explanatory variables, production and demand. Numbers in bold
indicate the lowest loss function values.
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To compare further the models with long-term volatility and test for the significance
of the observed differences in the forecast accuracy, we employ the equal predictive
ability test proposed by Diebold and Mariano (1995) on the equality of the MSE
and QLIKE. The benchmark model chosen for comparison is RS GARCH MIDAS-¢
model, because of the following reasons. Firstly, within sample results indicate that
this model outperforms all other models by having the highest LL, and smallest model
selection criteria, see Table 5.4. Second reason is utilizing RS GARCH-MIDAS-t model,
provides an appropriate setting to forecast high frequency oil market volatility using
global predictors that are only available at low frequency.

The pair-wise comparison of the models, along with the corresponding p-values is
presented in Table 5.9. Two forecasts have equal predictive accuracy if and only if the
loss differential has zero expectation for all ¢. For the specific results and p-values of
the Diebold-Mariano tests comparing forecasts within the same innovation and across
different innovations, please refer to Appendix C.2, C.3 and C.4.

A preliminary examination of the DM test results reveals that most of the calculated
p-values are statistically significant. This indicates that the forecasts generated by
different models exhibit varying levels of forecasting accuracy when compared to the
forecasts produced by the benchmark model.

When comparing models with a long-term volatility component, such as GARCH
MIDAS, RS GARCH MIDAS models with only realized volatility, and GARCH MI-
DAS, RS GARCH MIDAS models with both RV and macroeconomic variables, the
results in panels C and D of Table 5.8 indicate that models with Student-¢ innovations
consistently outperform models with normal distribution in terms of both lower MSE
and QLIKE values. Additionally, comparing the MSE values, models incorporating
regime switching demonstrate superior performance compared to their single-regime
counterparts. However, none of the models with macroeconomic variables are able
to outperform the RS GARCH MIDAS-¢ model with RV only. This finding is con-
sistent with the result of Conrad and Loch (2015) also demonstrated that models
incorporating macroeconomic variables tended to perform less effectively compared

to the benchmark GARCH MIDAS model with RV only, when forecasting long-term
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Table 5.9: Diebold-Mariano test p-values.

MSE QLIKE

GARCH MIDAS-N 0.0136** 0.0437**
GARCH MIDAS-¢ 0.0006** 0.0047**
RS GARCH MIDAS-N 0.1180 0.0039**
GARCH MIDAS-N (RV + Prod) 0.0161** 0.0050%**
GARCH MIDAS-¢ (RV + Prod) 0.0008*** 0.0007***
RS GARCH MIDAS-N (RV + Prod) 0.0058*** 0.0013**
RS GARCH MIDAS-t (RV + Prod) 0.0195** 0.9735

GARCH MIDAS-N (RV + Dem) 0.0077* 0.2290

GARCH MIDAS-¢ (RV + Dem) 0.0009*** 0.0066***
RS GARCH MIDAS-N (RV + Dem) 0.0399** 0.0000***
RS GARCH MIDAS-t (RV + Dem) 0.0581* 0.7229

Notes: This table presents the p-values from Diebold-Mariano test of equal predictive accuracy
using RS GARCH MIDAS-¢ with RV only forecasts as a benchmark.

* denote the rejection of null hypothesis at 10% significance level.

** denote the rejection of null hypothesis at 5% significance level.

*** denote the rejection of null hypothesis at 1% significance level.

stock market volatility over a quarter horizon. Additionally, Fang et al. (2020), also
presented compelling evidence suggesting that the significance of macroeconomic indi-
cators in explaining stock market volatility may have been overstated. Their empirical
analysis revealed that among three variables, namely, housing starts, default spread
and realised volatility, RV emerged as the most powerful predictor of the long-term
stock market volatility. On the contrary, these findings contradict the results of Pan
et al. (2017). This discrepancy could be attributed to the fact that for out-of-sample
forecasting, we utilized absolute returns and fat-tailed innovations, which differ from
the methodology employed by Pan et al. (2017). Furthermore, the results might change
if other macroeconomic variables are considered. It is also important to note that the
economy was deeply affected by COVID and our dataset only contains information
of the first couple of month, so in order to better analyse the crude oil volatility and
the effect of macroeconomic variables during the COVID period more data would be
needed.

In Figure 5.9, we present the volatility forecasts generated by the RS GARCH and

RS GARCH MIDAS models, along with the daily volatility proxy of WTT oil returns.
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Please refer to Appendix C.5 for the plot comparing GARCH and RS GARCH forecasts.
From the plot, it is evident that the highest volatility occurs between January 2020
and July 2020, which coincides with the period of the COVID-19 pandemic causing a
significant drop in WTT crude oil prices. In contrast, the period from January 2016 to
January 2020 exhibits relatively lower volatility. During the period of stable volatility,
all forecasts exhibit a similar pattern, hence, to assess the differences between the
forecasts generated by the RS GARCH and RS GARCH MIDAS models our focus is
primarily on the high-volatility period in 2020.

We plot forecasts generated by RS GARCH, GARCH MIDAS and RS GARCH
MIDAS-N, during high volatility periods in Figures 5.10 and 5.11 where RS GARCH
MIDAS-t acts as the benchmark model®. Comparing two-regime GARCH models with
the benchmark model we can see that RS GARCH models tend to under-predict the
volatility during the high-volatility period. It also shows GARCH MIDAS-N model
heavily over-predicts the volatility, while RS GARCH MIDAS can generate the forecasts
closer to the true values. This is because RS GARCH MIDAS is more flexible in term
of regime changes in volatility. Furthermore, changing the innovations to Student-¢
can also reduce the over-prediction of these models significantly. It also shows that
GARCH MIDAS models are likely to increase the lagged effect of RV compared to RS
GARCH MIDAS models.

The above results highlights the importance of correctly specifying the error distri-

bution and that misspecified models can lead to over-prediction of volatility.

5Other forecast comparisons for the high volatility period can be found in Appendix C.6 and C.7.

101



020 Arenuer - 9707 Arenue porrad o) 10§

101d 19502 9} ST SINTL] ISUUL ST, "S[PPOUT OM) I99R[ Y} I0J S[RLIRA JTWOUOIPOIRW © S AY YIM -SVATIN HOYVD SY PUe N-SVAIN HOUVD SY ‘-HOUVD
QY ‘N-HOYUVD SY £q pojyerauad ore s3seI0I0] AJ[IIRIOA 9], ‘[I0 9PIId [T A\ JO SIsedal1o] Ajfipe[oa ojdures-jo-yno pesye-dajs-ouo oY) Smoys omMSBI ST, 970N

NO|ﬂNON v0|ﬂNON FO|ﬂNON ovlﬂrom hOlﬂrON vO|ﬂv0N F0|ﬂrow ovlﬂvow n0|ﬂrow v0|wvow r0|ﬂrow orlﬂrom n0|ﬂrow ¥0-210C 10-110C orlﬂrom NO|ﬂFON vO|ﬂFON FO|ﬂroN
| | | | | | | | | | | | | | | | | | | | | | | | | | _ | | _ | | | | | | | |

0051

) T = ‘¢<‘1— :41: _‘<4£<1111 .f.i.ﬂ v T =7 v Al 4A_J<J B A AR e 41 4#4&4«&% - o
[}
- o
o
10-0202 0L-6102 10-6102 ¥0-6102 10-6102 0L-8102 10-8102 ¥0-8102 10-8L02 oL-/102 10-.102 0-,102 10-£102 0L-9102 10-9102 ¥0-9102 10-9102
_ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _ 1 1 _
ey SM00A AATDLNA NN Iy ANAAA - N SV VY] =" VAV aSIV.Ve Val A AMCIAICAN ARQIARARAAQANARSOAN A i
, m_uﬁ }(#5 ] L _k_—._ﬂ_ A d NI ,rn.;-:w ;J:.; ,.i-f—.j,u 2 f J l;.;._ ) QAN AN o A4CAARNAMAY 1”, =ay .p.‘_i&,:,_ f»;/.z !—.;-_:;r.
\ | _ \ ,
\
-
- 8
g o
- 2
o
g
Axoud Aynejon
1-SVAIN HOYVO SY
N-SVAIN HOYVO S
1-HOYVO sd
N-HOWVO Sy @ ——— | 8

CHAPTER 5. APPLICATION

0202 - 910% 10§ s|opow SYATIN HOMYD S Pue HOHYD SY jo uostredwion Surysesoioy ojdures-jo-mQ :6°g 9msL

102

suinjal pasenbg
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Figure 5.10: Out-of-sample forecasting comparison of models with RV only.
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Notes: This Figure shows the volatility forecasts of WTI crude oil. The volatility forecasts are
generated by two-regime GARCH models, single-regime GARCH MIDAS and RS GARCH MIDAS
with normal and Student-¢ innovations where 7 depends on RV only. The models are compared
with the benchmark model RS GARCH MIDAS-t.
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Figure 5.11: Out-of-sample forecasting comparison of models with macroeconomic vari-

ables.
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Notes: This Figure shows the volatility forecasts of WTI crude oil. The volatility forecasts are
generated by single-regime and two-regime GARCH MIDAS models where the macroeconomic
information is realised volatility and production level (RV+Prod). The models are compared
with the benchmark model RS GARCH MIDAS-¢ with RV only.
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Chapter 6

Conclusion and Further research

In this thesis, the focus was on analysing the effectiveness of a regime-switching GARCH
MIDAS model with non-Gaussian innovations in capturing volatility patterns observed
in financial time series. A key emphasis of the research was to identify and understand
how different components of the model capture changes in volatility over time and
to demonstrate the importance and consequences of potential misspecification. We
further assessed how well this model describes the fluctuations in volatility, compared
to GARCH, RS GARCH, GARCH MIDAS, RS GARCH MIDAS-N, Endogeneous RS
GARCH and Endogeneous RS GARCH MIDAS models with Gaussian and Student-t
innovations. By investigating the consequences of misspecification and evaluating the
model’s performance against alternative approaches, the thesis aimed to shed light on
the importance of choosing an appropriate volatility modelling framework.

The majority of prior research in the literature has been built on the assumption of
a normal distribution, which does not adequately capture the characteristics of thick
tails and spikes commonly found in financial data. Consequently, these findings may
not fully reflect real market conditions. In contrast, a heavy-tailed distribution may
be better suited to accurately describe the heavy tail behaviour observed in the data,
making it a more realistic representation of financial data distribution. Therefore, the
concept of employing an appropriate distribution to accommodate excess kurtosis has
become crucial along with a correct model specification.

This thesis contributes to the current literature in several ways. First, we start with

demonstrating the importance and consequences of potential misspecification through
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Monte Carlo simulation. We considered the misspecification in terms of not considering
regime switching, misspecifying the error term, omitting the long-term volatility com-
ponent, or all three combined. By evaluating the finite-sample performance of QMLE
in a Monte Carlo simulation we showed that QMLE is unbiased and the asymptotic
standard errors are valid for general application.

Our findings of the Monte Carlo simulation can be summarised as follows. Firstly,
we observed that the correctly specified model, RS GARCH MIDAS-¢, exhibited sig-
nificantly lower bias compared to the misspecified models. Next, the RS GARCH and
RS GARCH MIDAS models with misspecified innovations had problems with accu-
rately identifying volatility regimes. Gaussian specification in regime switching models
could not correctly identify high- and low-volatility regimes, which resulted in larger
parameter estimates for the wy parameter and more frequent regime changes due to a
lower pos parameter. Interestingly, both GARCH and GARCH MIDAS models with
misspecified innovations showed similar parameter estimate results, but the omission
of regime switching had a notable impact on the GARCH MIDAS models. It led to
an overestimation in the long-term volatility component. Ultimately, our simulation
highlighted the crucial importance of correctly specifying the model, which in our case
involved incorporating long- and short-term volatility components, regime switching
components, and a fat-tailed error distribution.

In an empirical application to West Texas Intermediate crude oil returns, we com-
pared the in-sample estimation and forecast performance of RS GARCH MIDAS-¢
model with a wide range of competitor models, such as GARCH, RS GARCH, GARCH
MIDAS, Endogeneous RS GARCH and Endogeneous RS GARCH MIDAS. This anal-
ysis emphasizes the significance of correctly specifying the error distribution within
the volatility models. In addition, following Ding et al. (1993) and Taylor (2008), we
explored the advantages of calculating realised volatility as absolute value of returns.

The results obtained from the empirical analysis indicate that models incorporating
Student-t innovations outperform those with Gaussian counterparts in terms of model
selection criteria and regime identification. This suggests that the use of Student-

t innovations is more effective in capturing the characteristics of crude oil market
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volatility. Moreover, the regime switching models with ¢ innovations were able to
capture major events in the crude oil history, such as the Gulf War in 1990, the 1996
backwardation in the oil market, the Asian financial crisis in 1997, the 2001 terrorist
attack, and the U.S. invasion of Iraq in 2003, the financial crisis in 2008. Additionally,
we found that models without long-term volatility component indicate a high degree of
volatility persistence, hence we can conclude that accounting for long-term component
could reduce the persistence in the short-term component. Furthermore, the analysis
revealed that the RV and production had a significant positive effect on long-term
volatility, while demand had an insignificant negative effect. Most importantly, among
all models, the crude oil volatility was best captured by RS GARCH MIDAS-¢.

For out-of-sample forecasting evaluation two loss functions, namely MSE and QLIKE
were utilized along with DM test. The findings reveal that, overall, models with ¢ inno-
vations have lower MSE and QLIKE values compared to their Gaussian counterparts.
Interestingly RS GARCH-t model performs best under both loss functions. In addition,
while considering models with long-term volatility component only, we find that RS
GARCH MIDAS-t with RV achieves the lowest MSE and QLIKE compared to models
with macroeconomic variables, thus indicating that macroeconomic variables do not
provide useful information regarding future oil volatility. This finding coincides with
work of Conrad and Loch (2015), but contradicts to Pan et al. (2017).

We would like to conclude this thesis by outlining some limitations and ideas for
future work. In empirical application we only considered Student-t distribution as a
representative of fat tailed innovations. To generalise this, one might consider using
other non-Gaussian innovations, such as skewed Student-t or GED. We also assumed
that the long-term volatility component is fixed for all 7 in period ¢, however one can
specify it to change daily or switch regimes similar to recent studies by Ma et al.
(2021) and Wang et al. (2022) who allowed short-term, long-term or both terms to
switch regimes in RS GARCH MIDAS models. A proper specification test could be
developed to identify the necessity of regime switching in different components of RS
GARCH MIDAS models. Furthermore, we considered endogenous regime switching

model proposed by Choi (2009) where we assumed that current transition probabilities
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depend on the previous returns. However, Kim et al. (2008) and recently Chang et al.
(2017) introduced several other ways to specify endogeneity in regime switching process.
Hence, another possible extension could be to consider using a different specification
of endogeneity in regime switching process. Additionally, in this thesis, we focused on
the inclusion of two macroeconomic variables. However, there is a wide range of other
factor that could be considered, such as financial uncertainty, default yield spread,
GEPU, EPU, etc.

In recent years, there has been an increasing interest in applying machine learning
techniques, specifically artificial neural networks, to financial volatility forecasting. For
example, Bildirici and Ersin (2014) enhanced RS GARCH type models by incorporating
artificial neural networks, to improve forecasting accuracy. Given that the current
empirical literature primarily relies on econometric models for analysis, future studies
could benefit from incorporating machine learning techniques to achieve even higher
forecasting accuracy. Utilizing machine learning techniques can assist in identifying
which macroeconomic variables are most relevant and important among the various
options available. By expanding the scope of variables and leveraging machine learning
methods, we can gain deeper insights into the factors that drive volatility and improve

the accuracy of volatility forecasting in financial markets.
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Appendix A

Definitions

In this appendix, some basic concepts such as stationarity, and some definitions that

are needed in the main chapters are introduced.
A time series, x;, is a set of random variables indexed by time ¢.

Definition A.0.1 A time series {x;} is said to be strictly stationary if for any time

points t1,ta, ..., t, and any s € Z, the joint distribution of {zy,, 4,, . .., x4, } is identical
to that of {zy,+s, Tryrs, - -, Tt +s}. In other words, strict stationarity requires that the
joint distribution of {zy,, x4,, ..., x;, } is invariant under time shift.

Definition A.0.2 A time series {x;} is said to be weakly stationary if
(1) E(zy) = p, a constant independent of ¢, and
(2) Var(x;) = 02, a constant independent of ¢, and

(3) Cov(zy,xs) is a function of s — t only, for any ¢ and s.

Definition A.0.3 Suppose there are only two states and the transition probability
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APPENDIX A. DEFINITIONS

matrix 1s

1 —

L—pa  po.
If p11 = 1, then 1 —py; = 0, meaning that once the process moves to state 1, there is no
possibility of ever returning to state 2. In this case, state 1 would be considered as an
absorbing state and the Markov chain is reducible. An irreducible Markov chain is the
Markov chain that is not reducible. Therefore, a two-state Markov chain is irreducible

if and only if p1; < 1 and poy < 1.
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Figure B.2: WTI crude oil production levels.
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Notes: This Figure shows global oil production obtained from EIA is used as a proxy of world

oil supply. Plot (A) shows the production of crude oil of barrels per month, plot (B) shows the

returns, and volatilities are displayed in plot (C) .
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APPENDIX B.

WTTI crude oil demand levels.

Figure B.3
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Table B.1: Descriptive statistics of WTI crude oil for full sample.

WTI Production | Demand
Mean 0.0138 0.0566 0.1088
Var 7.4439 1.6269 298.9061
Min -40.6396 -14.7902 -100.1826
Max 42.5832 4.5266 84.7775
Skewness | 0.0151 -4.3704 -0.4667
Kurtosis 29.9217 49.7328 8.9368
JB (x10%) | 26.3138** 3.9484*** 0.0634**
(0.0000) (0.0000) (0.0000)
ADF(5) -39.8320™* | -8.8242** | -9.8954***
(0.0100) (0.0100) (0.0100)
Q(5) 58.8780*** 5.8412 85.3490***
(0.0000) (0.3220) (0.0000)
Q%*(5) 1626.5000*** | 0.0817 120.9400***
0.0000 (0.9999) (0.0000)
ARCH(5) | 1074.2000*** | 0.1960 70.7300**
(0.0000) (0.9992) (0.0000)

Notes: This table presents the descriptive statistics for the full dataset from January 1986 to July
2020. Jarque-Bera (JB) Stat, augmented Dickey-Fuller (ADF) stat, Ljung-Box statistics, Q(5),
and ARCH are the statistics testing for normal distribution, stationarity, serial correlation and
heteroskedastic effects respectively. The corresponding p-values are given in brackets.

* denote the rejection of null hypothesis at 10% significance level.

** denote the rejection of null hypothesis at 5% significance level.

*** denote the rejection of null hypothesis at 1% significance level.
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Figure B.4: ACF plots for log and squared returns of WTT crude oil, production and
demand levels.
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Figure B.6: Out-of-sample forecasting comparison between innovations.
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Notes: This Figure shows the one-step-ahead out-of-sample comparison of GARCH-N against
GARCH-t (left), and RS GARCH-N against RS GARCH-¢ (right) for the high volatility in 2020.
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Figure B.7: Out-of-sample forecasting comparison of GARCH and RS GARCH models

for 2020.
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Notes: This Figure shows the one-step-ahead out-of-sample comparison of GARCH and RS
GARCH model with Normal and Student-¢ distribution for 2020, the high volatile period.
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Appendix C

R code

C.0.1 R code for data generating process

The below code is used for generating 1,000 Monte Carlo Simulations, used in Chapter
4, based on the true model RS GARCH MIDAS with Student-¢ innovations, described
in (3.60).

ms.garch.midas.sim=function(months, days, r0, g0, K, w, omegaO,

omegal, theta, alpha, beta, pll, p22, df1){

prob.matrix=matrix(c(p11l, (1-p11), (1-p22), p22), nrow=2,
ncol=2, byrow=TRUE)

n=months*days

el=rt.scaled(n, df=dfl, mean=0, sd=sqrt((df1-2)/df1)) #
standardised student-t

e=matrix(el, nrow=days, ncol=months)

st=matrix (0, nrow=days, ncol=months)

x=numeric (n)

phi=matrix (0, nrow=K, ncol=1)
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tau=numeric (months)

g=matrix (0, nrow=days, ncol=months)

RV=matrix (0, nrow=1, ncol=months)

RV[1,1:8]=c(56.16643, 89.97468, 115.45625, 100.93382,
68.64632, 49.45606, 72.00444, 53.52409) # values for

absolute RV of crude o0il 1-8 months

r=matrix (0, nrow=days, ncol=months)

parameter = NULL

for(o in 1:n){

x[o]l=runif (1, 0, 1)

#choosing states (0 or 1)
st [1]1=1
for(d in 2:n){
if(st[d-11==0){
if (x[d] < prob.matrix[1,1]){
st [d]=0
} elsef
st [d]=1
}
} else if(stl[d-1]1==1){
if (x[d]<prob.matrix[2,1]1){
st [d]=0
} else {

st[d]=1

3

#the beta weighting scheme
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b=1:K
phi[b]l=((1-b/(K+1)) " (w-1))/sum ((1-b/(K+1)) " (w-1))

rt=matrix (RV, nrow = months, ncol=1)

for (t in (K+1) :months){

#long-term component calculation
tault]l=exp(theta*(phi [1]*RV[t-1]+phi [2] *RV[t-2]+phi [3]*RV
[t-3]1+phi [4] *RV[t-4]+phi [6]*RV[t-5]+phi[6]*RV[t-6]+phi

[7]*RV[t-7]+phi [8]*RV[t-8]))

if (e==(K+1)){
if (st[1,t]1==0){
#short-term component calculation
gli,t] = omega0 + (alpha * rO0~2/tault]) + beta * gO
Yelse if (stl[1,t]l==1){
gli,t] = omegal + (alpha * r0~2/tault]) + beta * g0
}
Yelse{
if (st[1,t]1==0){
gll1,t] = omegaO + (alpha * r[i,t-1]"2)/tault] + beta
*x gli,t-1]
Yelse if (st[1,tl==1){
gli,t] = omegal + (alpha * r[i,t-1]1"2)/tault] + beta

* gli,t-1]

r[1,t]l=sqrt(taultl*gll,t])*e[1,t]

for(i in 2:days){
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#short-term component calculation
if (st[i,t]==0){
gli,t] = omega0 + (alpha * r[i-1,t]"2)/tault] + beta
* gli-1,t]
Yelse if (st[i,t]l==1){
gli,t] = omegal + (alpha * r[i-1,t]"2)/tault] + beta
*x gli-1,t]
}
rli,t]l=sqrt(taultl*gli,t])*el[i,t]
}

RV[t]=sum(abs(r[,t]))

parameter $x=x

parameter$state=st #simulated state
parameter$return=r #simulated return
parameter$g=g #short-term component
parameter$tau=tau #long-term component

parameter$RV=RV #realised volatility
return (parameter)
#run the simulation
true.sim=ms.garch.midas.sim(months = 340, days=22, r0=2.5266,
g0=0.005, K=8, w=4.4037, df1=6.6087, omega0 = 0.1785, omegal
= 0.4044, theta=0.0262, alpha=0.0944, beta=0.7241, pil1l

=0.9961, p22=0.9986)

d.return=true.sim$return
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C.0.2 R code for within-sample estimation

The below code is used to estimate parameters of RS GARCH MIDAS-¢ model, in

Chapter 4, by obtaining Hamilton’s filter probabilities and conditional density for

QMLE. A detailed flow-chart is given in Figure 3.2.

ms.garch.midas.simulation.estimation=function(par, a){

months=ncol (a)

days=nrow (a)

#parameters to estimate

omega=par [1:2]

theta=par [3]

alpha=par [4]

beta=par [5]

p_ij=matrix(c(par[6], 1-par[6], 1-par([7], par[7]), nrow=2,
ncol=2, byrow = TRUE)

wl=par [8] #kappa weight

dfi=par [9] #degrees of freedom

g_bar=array(rep(0, days), c(days, 2, months))

g=array(rep(0, days), c(days, 2, months))

tau=numeric (months)

K=8

phi=matrix (0, nrow=K, ncol=1)

RV=matrix (0, nrow=1, ncol=months)

RV[1,1:8]=c(56.16643, 89.97468, 115.45625, 100.93382,
68.64632, 49.45606, 72.00444, 53.52409) # values for

absolute RV of crude o0il 1-8 months

A=array(rep(0, days), c(2, 2, days,
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B=array(rep(0, days), c(days, 2, months)) #first column state
=1, second column state=2
C=array(rep(0, days), c(days, 2, months))

D=array(rep(0, days), c(days, 1, months))

E=array(rep(0, days), c(days, 2, months))

s.pi=matrix(c(1/3, 2/3), nrow=1, ncol=2) #stationary
probability

parameter=NULL

p_hat_ij=array(rep(0, days), c(2, 2, days, months))
B.C=array(rep (0, days), c(days, 2, months)) #first column

state=1, second column state=2

kl1=1:K

phi[k1]1=((1-k1/(K+1)) " (wi-1))/sum((1-k1/(K+1)) " (wi-1))

for(t in (X+1):(months)){
RV[tl=sum(abs(al,t]))
taul[t]=exp(theta* (phi [1]*RV[t-1]+phi [2] *RV[t-2]+phi [3] *RV [t
-3]+phi [4] *RV [t-4]+phi [6]*RV[t-5]+phi [6]*RV[t-6]+phi [7]x*

RV[t-7]+phi [8]*RV[t-8]))

if (t==(K+1)){
for(l in 1:2){
for(j in 1:2){
A[1,j,1,t]=p_ij[1,jl*s.pil[l] #pi = stationary

probability

}

for(j in 1:2){

B[1,j,t]l=sum(A[,j,1,t])
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for(j in 1:2){
B.C[1,j,t]l=B[1,1,t]l*p_ij[1,jl1+(B[1,2,t]l*p_1j[2,j]) #p(S
_t+l=jla_t-1)
}
for(i in 1:2){
for(j in 1:2){

p_hat_ij[j,i,1,t]l= (p_ijl[j,il*B[1,j,t]1)/(B.C[1,i,t])

}

gll,,tl=omega+(alpha*2.5267"2)/tault]+beta*x(2.5267)

Cl[1,,t]l=dt.scaled(x=all,t], df=dfl, mean=0, sd=sqrt(tault
Ixgltl,,t]1*x(df1-2)/df1))*B[1,,t]

D[1,,t]l=sum(C[1,,t])

E[1,,t]=C[1,,t]1/DI[1,,t]

Yelse{
for(l in 1:2){
for(j in 1:2){
A[l1,j,1,t]=p_ij[1,jI1*E[i,1,t-1] #pi = stationary

probability

}

for(j in 1:2){
B[1,j,t]l=sum(A[,j,1,t])

}

for(j in 1:2){
g_bar[1,j,tl=p_hat_ij[1,j,i,t-11*g[i,1,t-1]+p_hat_ij[2,

j,(i),t-11*gl[i,2,t-1]

}

for(j in 1:2){
B.C[1,j,t]1=B[1,1,t]l*p_ij[1,jl1+(B[1,2,t]l*p_1ij[2,j]) #p(S

_t+i=jla_t-1)
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}

gll,,tl=omega+(alpha*ali,t-1]"2)/tault]l+betaxg_bar([1l,,t]

for(z in 1:2){
for(j in 1:2){

p_hat_ijl[j,z,1,t]l= (p_ijl[j,zl*B[1,j,t])/(B.Cl1,z,t])

}

C[1,,t]l=dt.scaled(x=al1,t], df=dfl, mean=0, sd=sqrt(tault
Ixgl[1,,t]1*(df1-2)/df1))*B[1,,t]

D[1,,t]l=sum(C[1,,t])

E[li’t]=c[1’,t]/D[1”t]

for(i in 2:days){

for(m in 1:2){
for(j in 1:2){

Alm,j,i,tl=p_ijlm,jI*E[(i-1) ,m,t]

}

for(j in 1:2){
B[i,j,t]l=sum(A[,j,i,t])

}

for(j in 1:2){
g_bar([i,j,t]l=p_hat_ij[1,j,(i-1),tl*gli-1,1,t]1+p_hat_ij

[2,j,(i-1),t]l*gli-1,2,¢t]

}

for(j in 1:2){
B.C[i,j,t]=Bl[i,1,t]l*p_ij[1,j1+(B[i,2,tl*p_1ij[2,j]) #p(S

_t+i=jla_t-1)
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gli,,t]l=omega+(alpha*ali-1,t]"2)/tault]+beta*g_bar[i,, t]
for(m in 1:2){
for(j in 1:2){

p_-hat_ijlj,m,i,t]l= (p_ijlj,ml*B[i,j,t]1)/(B.Cli,m,t])

}

C[i,,t]l=dt.scaled(x=ali,t], df=d4dfl, mean=0, sd=sqrt(tault
I1xgli,,tl1*(df1-2)/df1))*B[i,,t]

D[i,,t]l=sum(C[i,,t])

E[i”t]=c[i’,t]/D[i”t]

log.likelihood=sum(log(D[,,(K+1) :months]))

return(log.likelihood) }

#initial parameters

ms.gm.par.t=c(0.1785, 0.4044, 0.0262, 0.0944, 0.7241, 0.9961,
0.9986, 4.4037, 6.6087)

ms.midas.garch.result.t=optim(ms.gm.par.t, ms.garch.midas.
simulation.estimation, a=d.return, method = "BFGS",control=

list (fnscale=-1, trace=5, maxit=10000), hessian = F)

C.0.3 R code for out-of-sample forecasting

The below code is used in Chapter 5, for re-estimating parameters every 22 steps and

obtaining one-step-ahead out-of-sample volatility forecasts for WTT crude oil returns.

times=seq(from = 7567, to = 8708, by = 22)
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modified.ms.garch.midas.student=function(psi, lag.value, a){
#parameters to be estimated
months=length(RV.1)
omega=psi[1:2]
theta=psi [3]
alpha=psi [4]
beta=psi [5]
p_ij=matrix(c(psi[6], 1-psil[6], 1-psil7], psil7]), nrow=2,
ncol=2, byrow = T)
w2=psi[8] #weight parameter

df1=psi[9]

g_bar=array(rep(0, length(a)), c(length(a), 2))
g=array(rep(0, length(a)), c(length(a), 2))

A=array(rep(0, length(a)), c(2, 2, length(a)))

B=array(rep(0, length(a)), c(length(a), 2)) #first column
state=1, second column state=2

C=array(rep(0, length(a)), c(length(a), 2))

D=array(rep(0, length(a)), c(length(a), 1))

E=array(rep(0, length(a)), c(length(a), 2))

s.pi=matrix(c(1/3, 2/3), nrow=1, ncol=2) #stationary
probability

parameter=NULL

p_hat_ij=array(rep(0, length(a)), c(2, 2, length(a)))

B.C=array(rep(0, length(a)), c(length(a), 2)) #first column

state=1, second column state=2

tau=numeric (months)
K=lag.value
phi=matrix (0, nrow=K, ncol=1)

kl1=1:K
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phi[k1]1=((1-k1/(K+1)) " (w2-1))/sum((1-k1/(K+1)) " (w2-1)) #Beta
weighing scheme

rt=matrix(RV.1, nrow = months, ncol=1)

for(t in (K+1) :months){
taul[t]l=exp(theta*(phi[1l]*as.numeric(RV.1[t-1])+phi[2]*as.
numeric (RV.1[t-2])+phi[3] *as.numeric (RV.1[t-3])+phi [4] *as
.numeric (RV.1[t-4]) +phi [6]*as.numeric (RV.1[t-5]) +phi [6] *
as.numeric (RV.1[t-6])+phi[7] *as.numeric (RV.1[t-7]) +phi [8]
xas.numeric (RV.1[t-8]1)))
}
srt = alhead(endpoints(a, "months") + 1, -1)]
tau.data=as.xts(tau,order.by=as.Date(index(srt)))
daily.tau=na.locf (merge(tau.data, foo=zoo0(NA, order.by=index(
a)))[, 11)
d=min(which(daily.tau!= 0))

start=d

#first day
for(i in 1:2){
for(j in 1:2){

Ali,j,start]l=p_ij[i,jl*s.pili]

}

for(j in 1:2){
Blstart,jl=sum(A[,j,start])

}

for(j in 1:2){
B.C[start,jl=Blstart,1]*p_ij[1,jl+(Blstart ,2]1*p_ij[2,3])

#p(S_t+i=jla_t-1)
}

for(i in 1:2){
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for(j in 1:2){
p_hat_ijl[j,i,start]= (p_ijl[j,il*Blstart,jl)/(B.Cl[start,i

D

}

glstart ,]=omega+alpha*as.numeric(alstart-1]) "2/as.numeric(
daily.taulstart])+beta*(omega/(1-alpha-beta))

C[start ,]=dt.scaled(x=as.numeric(alstart]), mean=0, df=df1,
sd=sqrt (as.numeric(daily.taulstart])*glstart,]l*(df1-2)/df1)
)*B[start,]

D[start]=sum(C[start,])

E[start ,]=C[start,]/D[start,]

#2nd step

for(k in (start+1):length(a)){

for(i in 1:2){
for(j in 1:2){

Ali,j,kl=p_ij[i,jI*E[(k-1),i]

}

for(j in 1:2){
Blk,jl=sum(A[,j,k])

}

for(v in 1:2){
g_bar[k,vl=p_hat_ij[1,v,(k-1)I*glk-1,1]1+p_hat_ij[2,v, (k

~1)1*gl[k-1,2]

}

for(j in 1:2){
B.C[k,jl=Blk,11*p_ij[1,j1+(Blk,21*p_ij[2,3]1)  #p(S_t+1=j

la_t-1)
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glk,]l=omega+alpha*as.numeric(alk-1]) "2/as.numeric(daily.tau
[k])+beta*g_bar[k,]
for(i in 1:2){
for(j in 1:2){

p_hat_ij[j,i,k]l= (p_ij[j,i1*Blk,jl)/(B.C[k,i])

}

C[k,]l=dt.scaled(x=as.numeric(alk]), mean=0, df=dfl, sd=sqrt
(as.numeric(daily.taulk])*g[k,]*(df1-2)/df1))*B[k,]

D[k]l=sum(C[k,]1)

Elk,]=C[k,]/D[k]

log.likelihood=sum(log(D[start:length(a)]l))

return(log.likelihood)

#Code for parameter re-estimation every 21 days.
for(i in seq(from = 7567, to = 8708, by = 22)){
#initial parameters
ms.gm.parameters.T=c(0.1785, 0.4044, 0.0262, 0.0944, 0.7241,
0.9961, 0.9986, 4.4037, 6.6087)
pos=which(times==1i)
RV.1<- apply.monthly(data2[(i-7566):(i)],abs.rv)
ms.gm.result.student=optim(ms.gm.parameters.T, modified.ms.
garch.midas.student, lag.value=8, a=data2[(i-7566):1],
method = "Nelder-Mead", control=list( fnscale=-1,trace=5,
maxit=5000), hessian=F)#, lower = c(0.000001, 0.000001,
0.000001, 0.000001, 2.01, 0.000001, 0.000001), upper = c(
Inf,Inf ,0.9999,0.9999,Inf, 0.99999,0.99999))
ms.gm.par.est.student [pos,]=ms.gm.result.student$par

print (ms.gm.par.est.student [1:pos,])
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#Code for one-step-ahead out of sample forecast

for(i in seq(from 7567, to

pos=which(times==1)

8708,

by 22))4

for(j in times[pos]:(times[pos+1]1-1)){

RV.1<- apply.monthly(data2 [(]

-7566) : (j)],abs.rv)

filter .ms.garch.midas=function(par, a){

months=length (RV.1)

#tparameters to be estimated

omega=par [1:2]

theta=par [3]

alpha=par [4]

beta=par [5]

p_ij=matrix(c(par[6], 1-par[6], 1-par([7], par([7]), nrow
=2, ncol=2, byrow = TRUE)

wl=par [8]

df1=par [9]

g_bar=array (rep(0,
g=array(rep(0, length(a)),
#A=array(rep (0, length(a)),
A=array(rep(0, length(a)),
B=array(rep(0, length(a)),
state=1, second column
C=array(rep(0, length(a)),
D=array(rep(0, length(a)),
E=array(rep(0, length(a)),
s.pi=matrix(c(1/3, 2/3),
probability

parameter=NULL

length(a)),

nrow=1,

c(length(a), 2))

c(length(a), 2))

c(2, 2, days, months))

c(2, 2, length(a)))

c(length(a), 2)) #first column

state=2

c(length(a), 2))
c(length(a), 1))
c(length(a), 2))

ncol=2) #stationary
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p_hat_ij=array(rep(0, length(a)), c(2, 2, length(a)))

B.C=array(rep (0, length(a)), c(length(a), 2)) #first
column state=1, second column state=2

tau=numeric (months)

K=8

phi=matrix (0, nrow=K, ncol=1)

kl=1:K
phil[k1]1=((1-k1/(K+1)) " (wi-1))/sum((1-k1/(K+1)) " (wi-1))
for(t in (K+1) :months){
taul[t]l=exp(theta*(phi[1]*as.numeric(RV.1[t-1])+phi [2]*
as.numeric (RV.1[t-2])+phi[3]*as.numeric(RV.1[t-3])+
phi[4] *as.numeric (RV.1[t-4])+phi [6]*xas.numeric (RV.1[t
-5])+phi [6] *as.numeric (RV.1[t-6])+phi[7]*as.numeric(

RV.1[t-7]) +phi[8] *as.numeric (RV.1[t-8])))

#converting monthly tau to daily
srt = alhead(endpoints(a, "months") + 1, -1)]
tau.data=as.xts(tau,order.by=as.Date(index(srt)))
daily.tau=na.locf (merge (tau.data, foo=zoo0(NA, order.by=
index(a))) [, 11)
d=min(which(daily.tau!= 0))
start=d
for(l in 1:2){
for(j in 1:2){
All,j,start]=p_ij[1l,jl*s.pi[1l] #pi = stationary

probability

}

for(j in 1:2){

Blstart,jl=sum(A[,j,start])
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}
for(j in 1:2){
B.C[start,jl=B[start,1]*p_ij[1,jl+(B[start,2]*p_ij[2,j
D #p(S_t+1=jla_t-1)
}
for (i in 1:2){
for(j in 1:2){
p_hat_ij[j,i,start]l= (p_ijl[j,il*Blstart,jl)/(B.CL

start,il)

}
glstart ,]=omega+alpha*as.numeric(alstart-1]) "2/as.numeric
(daily.taulstart])+beta*as.numeric(alstart]~2)
Clstart ,]=dt.scaled(x=as.numeric(alstart]), mean=0, df=
dfl, sd=sqrt(as.numeric(daily.taulstart])*glstart,]*(
df1-2)/df1))*Blstart,]
Dlstart]=sum(C[start,])
E[lstart ,]=C[start,]/D[start,]
for(i in (start+1):length(a)){
for(m in 1:2){
for(j in 1:2){

Alm,j,il=p_ij[m,jl*E[(i-1) ,m]

}
for(j in 1:2){
Bli,jl=sum(A[,j,i])
}
for(j in 1:2){
g_bar[i,jl=p_hat_ij[1,j,(i-1)1*g[(i-1) ,1]+p_hat_ij[2,
j,i-1)1xgl(i-1) ,2]
}

for(j in 1:2){
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3

B.C[i,jl=Bli,1]1*p_ij[1,j]1+(B[i,2)*p_ij[2,31) #p(S_t
+1=jla_t-1)
}
gli,]=omega+(alpha*as.numeric(al[i-1]"2))/as.numeric (
daily.taul[i])+beta*g_bar[i,]
for(m in 1:2){
for(j in 1:2){

p_hat_ijl[j,m,il= (p_ij[j,m]*B[i,j]l)/(B.C[i,m])

}

C[i,]=dt.scaled(x=as.numeric(al[i]), mean=0, df=dfl, sd=
sqrt (as.numeric(daily.taulil)*gl[i,]*(df1-2)/df1))*B[i
]

D[i]l=sum(C[i,])

E[i,]=C[i,]/DI[i,]

log.likelihood=sum(log(D[start:1length(a)]))
parameter$filter.probabilities=E
parameter$log.likelihood.value=log.likelihood
parameter$g=g

parameter$tau=tau
parameter$daily.tau=daily.tau

return (parameter)

f.p2=filter.ms.garch.midas(par=ms.gm.reest.par[pos,], a=

data2[(j-7566) :(j)]1)

probl=(f.p2$filter.probabilities [(7567) ,1]*ms.gm.par.est.

student [pos ,6]) +(f.p2$filter.probabilities [(7567) ,2]*(1-

ms.gm.par.est.student [pos,7]))
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prob2=(f.p2%$filter.probabilities [(7567) ,1]1*(1l-ms.gm.par.est
.student [pos ,6]))+(f.p28filter.probabilities [(7567) ,2] *(

ms.gm.par.est.student [pos,7]))

hO=(ms.gm.par.est.student [pos,1]+(ms.gm.par.est.student [pos
, 4]l*as.numeric(data2[j]~2))/as.numeric(f.p2%daily.tau
[7567]) +ms.gm.par.est.student [pos ,5]*f.p2$g[(7567) ,1]1) %
probl

hi=(ms.gm.par.est.student [pos,2]+(ms.gm.par.est.student [pos
, 4]l*as.numeric(data2[j]~2))/as.numeric(f.p2%daily.tau

[7567])+ms.gm.par.est.student [pos ,5]*f.p2$g[(7567) ,2])*

prob2

out.ms.gm.reest[j+1]=as.numeric(f.p2%daily.tau[7567])*(h0+

hi1)
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WTI crude oil production levels.

Figure C.2
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Notes: This Figure shows global oil production obtained from EIA is used as a proxy of world
oil supply. Plot (A) shows the production of crude oil of barrels per month, plot (B) shows the

returns, and volatilities are displayed in plot (C) .
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WTI crude oil demand levels.

Figure C.3
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This Figure shows the crude oil demand level where index of Kilian (2009) is used as the
1 for oil demand. Plot (A) shows the Kilian index per month, plot (B) shows the returns,

and volatilities are displayed in plot (C).

Notes

signa,
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Table C.1: Descriptive statistics of WTT crude oil for full sample.

WTI Production | Demand
Mean 0.0138 0.0566 0.1088
Var 7.4439 1.6269 298.9061
Min -40.6396 -14.7902 -100.1826
Max 42.5832 4.5266 84.7775
Skewness | 0.0151 -4.3704 -0.4667
Kurtosis 29.9217 49.7328 8.9368
JB (x10%) | 26.3138*** 3.9484** 0.0634***
(0.0000) (0.0000) (0.0000)
ADF(5) -39.8320" | -8.8242** | -9.8954***
(0.0100) (0.0100) (0.0100)
Q(5) 58.8780*** 5.8412 85.3490***
(0.0000) (0.3220) (0.0000)
Q%(5) 1626.5000** | 0.0817 120.9400***
0.0000 (0.9999) (0.0000)
ARCH(5) | 1074.2000** | 0.1960 70.7300***
(0.0000) (0.9992) (0.0000)

Notes: This table presents the descriptive statistics for the full dataset from January 1986 to July
2020. Jarque-Bera (JB) Stat, augmented Dickey-Fuller (ADF) stat, Ljung-Box statistics, Q(5),
and ARCH are the statistics testing for normal distribution, stationarity, serial correlation and
heteroskedastic effects respectively. The corresponding p-values are given in brackets.

* denote the rejection of null hypothesis at 10% significance level.

** denote the rejection of null hypothesis at 5% significance level.

*** denote the rejection of null hypothesis at 1% significance level.
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Figure C.4: ACF plots for log and squared returns of WTT crude oil, production and
demand levels.
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Notes: This Figure shows the ACF plots for WTT crude oil price (top), production (middle) and

demand (bottom) returns and squared returns.
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Figure C.6: Out-of-sample forecasting comparison between innovations.
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Notes: This Figure shows the one-step-ahead out-of-sample comparison of GARCH-N against
GARCH-¢ (left), and RS GARCH-N against RS GARCH-¢ (right) for the high volatility in 2020.
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Figure C.7: Out-of-sample forecasting comparison of GARCH and RS GARCH models

for 2020.
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Notes: This Figure shows the one-step-ahead out-of-sample comparison of GARCH and RS
GARCH model with Normal and Student-¢ distribution for 2020, the high volatile period.
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