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We investigate a theoretical model of a molten viscous planar liquid dome spreading under gravity over an
inclined substrate. The liquid in the dome cools as it spreads, losing its heat to the surrounding colder air
and substrate. Coupled nonlinear evolution equations for the dome’s thickness and temperature describing
the spreading flow are derived employing the lubrication approximation. The coupling between the flow and
cooling is via a temperature-dependent viscosity. For intermediate Péclet numbers, a new one-dimensional
free surface shape is identified. In this solution, the hotter and more mobile liquid piles up behind the dome’s
colder and less mobile leading edge, forming a distinct elevated ridge at the flow front. The ridge solution is
mapped in parameter space. The transverse stability of the one-dimensional ridge solution is investigated using
linear stability analysis and numerical simulations. The existence of a thermo-viscous fingering instability is
revealed. For this instability to occur the presence of the ridge is shown to be necessary. Two-dimensional
simulations confirm the stability analysis elucidating the underlying thermo-viscous mechanism.

I. INTRODUCTION

The slow viscous spreading of a mass of liquid is ubiq-
uitous in a wide range of problems1,2. It has many im-
portant applications in chemical engineering, such as in
coating flows3, in pancake making and surface coating
applications4, and in the spreading of reactor core melt
in nuclear engineering5. It also occurs in many geophys-
ical and environmental scenarios, such as in lava6 and
glacier7 flows, and in mudslides8. In these large-scale
geophysical and environmental flows, and in some heavy-
duty industrial coating flows, spreading is gravity-driven
causing the liquid to flow down the underlying surface
resisted by the viscous forces of the liquid, commonly
referred to as a viscous-gravity current9.

The isothermal spreading of viscous-gravity currents
is well studied both experimentally and theoretically1,2.
In comparison, fewer studies have considered non-
isothermal spreading. This is a complex scenario involv-
ing the spreading of a molten liquid undergoing cooling
via heat loss to the colder overlying air and underlying
substrate. This is relevant in many flow scenarios, such
as in lava6, high-temperature corium melt5, molten metal
coating (e.g., in spray metallizing for marine coatings10)
and making of pancakes4. The coupling between the flow
and the transfer of heat energy presents challenges from
both experimental and theoretical perspectives. For in-
stance, the extent of cooling may lead to variations in
flow rheology. Viscosity variations in temperature can
be quite significant11; flows may exhibit non-Newtonian
behaviour due to changes in flow composition as a result
of cooling6,12; under certain conditions phase change at
the flow surface could result in solidification and forma-
tion of a surface crust6. Conversely, the flow convects
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the heat causing cooling. The interplay between the flow
and cooling results in a variety of dynamic flow patterns,
such as the flow front branching in a fingering-type insta-
bility, e.g., advancing pahoehoe lava flow fronts develop
toe-shaped protrusions6. A common theme in these flow
scenarios is that these spatial instabilities are unwanted.
A fingering instability can prevent uniform coating of a
molten metal on a substrate in spray metallizing10 or
in making a pancake of uniform thickness4; branching of
lava flows enhances its spreading, which can be hazardous
and can cause damage to infrastructure and buildings;
similarly with the spreading of core melt in a nuclear
reactor accident. These behaviours have motivated ana-
lysts to investigate the interplay between the spreading
flow and cooling in order to better understand the mech-
anisms driving fluid instabilities and develop strategies
on how to control or eliminate them.

It is important to note previous studies that have in-
vestigated fingering instabilities in isothermal flow using
fluids of different viscosities along the flow direction. Al-
though this flow scenario does not capture the thermo-
viscous coupling, nevertheless, these studies provided the
basic mechanism underlying the fingering instabilities ob-
served in such flows. The classical work by Saffman &
Taylor13 identified the existence of a viscous fingering in-
stability in confined porous media flow involving a less
viscous fluid displacing a more viscous fluid. Recently,
Kowal14 demonstrated that the viscous fingering insta-
bility is also observed in the isothermal flow of an un-
confined viscous-gravity current involving a longitudinal
viscosity contrast between two fluids, referred to as a
viscous banding instability. The instability is shown to
exist when a less viscous fluid intrudes into a band of
more viscous fluid. The key driving mechanism is a jump
in the hydrostatic pressure gradient across the intrusion
front which manifests as a discontinuity in the free sur-
face slope there. The instability is shown to be stabilized
by buoyancy forces at large transverse wavenumbers.
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Sansom et al.15,16 were the first to investigate the
thermo-viscous effect on the dynamics of a spreading
cooling viscous-gravity current. They considered spread-
ing on a horizontal substrate using three temperature-
dependent viscosity models (linear, exponential and bi-
viscosity). Their results showed free surface profiles with
a steep flow front followed by a central plateau (the
pancake-shaped profile). This is due to preferential cool-
ing of fluid near the flow front which forms a barrier,
forcing the height at the front to grow as hot, less vis-
cous fluid continues to be fed in behind the front. They
also showed that, when the coupling between the vis-
cosity and temperature was strong and sufficient cooling
produced a significant viscosity contrast along the flow
front, then transverse perturbation to the flow front can
become unstable leading to a fingering instability.

The non-isothermal spreading of a viscoplastic dome
on a horizontal plane was investigated by Balmforth and
Craster 17 . Solutions were obtained for the growth of a
vertically isothermal lava dome in the asymptotic limit
of low reduced Péclet number. They also considered the
development of non-axisymmetric domes and used the
thin layer model to explore the possibility of fingering-
type instabilities. Balmforth, Craster, and Sassi 18 ex-
tended this study to allow the reduced Péclet number
to be O(1). They described solutions that illustrate
the dynamics of an expanding Bingham fluid with a
temperature-dependent viscosity. A key feature (also
noted in the PhD thesis of Sansom 19) is that liquid near
the flow front gets cooler and less mobile and is then
overridden as the hot and more mobile fluid expands,
creating a so-called collar of cold liquid. Two reduced
models that approximate the temperature equation: a
vertically isothermal theory (similar to Balmforth and
Craster 17), and a skin theory are compared to the O(1)
reduced Péclet number numerical simulations.

The seminal works by Sansom et al.15,16 and Balmforth
et al.17,18, have contributed significantly in developing
the theoretical framework to investigate non-isothermal
aspects of these flows. However, their studies were con-
fined to spreading over a horizontal substrate. In this
work, we demonstrate that the inclination of the sub-
strate, under certain conditions, can further enhance the
mobility of the hot and less viscous liquid behind the
cooler and less mobile flow front, resulting in the piling-
up of the liquid there and subsequently forming an ele-
vated fluid ridge. This feature is absent in non-isothermal
spreading flows over a horizontal substrate. Moreover,
we also demonstrate that the thermo-viscous instability
mechanism postulated in the previous studies could be
reinforced in the presence of the ridge, resulting in it
losing its stability to transverse perturbations. Such an
instability could be a precursor to the fingering instabili-
ties observed in such flows. The absence of this feature in
spreading flows over a horizontal substrate may have con-
tributed to why these studies have simulated only weak
(very small growth rate) fingering instabilities using this
configuration.

Based on the above considerations, the goal of this pa-
per is twofold: firstly, to include the effect of substrate
inclination, and to delineate the domain of existence of
the fluid ridge in parameter space. Secondly, to inves-
tigate the transverse stability of the fluid ridge solution
to small-amplitude variations in the thickness and tem-
perature. The plan of the paper is as follows. In §II we
extend the models by Sansom et al. and Balmforth et
al. to include the horizontal component of gravity aris-
ing due to the inclination of the substrate. The existence
of the fluid ridge is shown via numerical solutions of the
evolution equation in §III. In §IV, we characterize the
ridge solution and show its existence in parameter space
(Fig. 5). The stability of the ridge solution is considered
using a linear stability analysis in §V A and numerical
simulations in §V B. In §VI, we provide concluding re-
marks and outline future work.

II. MATHEMATICAL MODEL

We follow the modelling framework developed in previ-
ous related studies15,18. Consider a dome of hot liquid at
initial temperature T ∗

e spreading under the influence of
gravity down a colder inclined substrate at temperature
T ∗
s , as shown in Fig. 1. Hot liquid at constant temper-

ature T ∗
e and time-dependent flux Q∗

s(t
∗) is introduced

into the dome through a source at a specified location on
the substrate (see Fig. 1). The substrate is inclined at
an angle β to the horizontal.

We introduce a planar Cartesian coordinate system
(x∗, y∗, z∗) with the x∗, y∗-axes along the plane, the z∗-
axis normal to the plane and the origin is fixed at the
location of the source, as shown in Fig. 1. We denote
the free surface of the dome (the air-liquid interface) as
z∗ = h∗(x∗, y∗, t∗). The characteristic dome height, H∗,
is assumed to be much smaller than the typical length
scale, L∗, in the flow direction.

We assume that the liquid in the dome is Newtonian
with constant properties, except, the liquid viscosity is
dependent on the temperature. The flow within the dome
is assumed to be slow and viscous dominated. The liq-
uid in the dome loses its heat via the colder free surface
exposed to the colder air at temperature T ∗

a assumed
constant external to the liquid dome, and substrate at
z∗ = 0 at constant temperature T ∗

s < T ∗
e . We do not

consider phase transition associated with solidification
due to cooling near the surface or substrate. T ∗

a and T ∗
s

are assumed to be much higher than the melting point
to prevent the dome from solidifying. We also assume
that the plane is pre-wetted with a thin precursor layer
with the same liquid as in the dome, of constant thick-
ness H∗

b , with H∗
b � H∗. We note that this layer is a

mathematical regularization to avoid the contradiction
between applying the no-slip boundary condition at the
fluid-solid interface and the motion of the contact lines
at the dome’s edges, referred to as “contact line para-
dox”. This approach is appropriate even if the substrate
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Figure 1: Sketch of a hot liquid dome spreading down
on a colder inclined plane.

is dry but the liquid is completely wetting, as long as
H∗

b � H∗.

A. Governing Equations and boundary conditions

The governing equations are given by the conservation
of mass and momentum,

∇∗ · u∗ = 0, (1a)

u∗
t∗ + u∗ · ∇∗u∗ = − 1

ρ∗
∇∗p∗ +∇∗ · τ∗ + g∗, (1b)

where ρ∗ is the liquid density (assumed constant), τ∗ de-
notes the liquid viscous stresses, u∗ = (u∗, v∗, w∗) denote
the components of the liquid velocity in the x∗, y∗ and
z∗ directions, respectively, p∗ is the pressure in the liq-
uid, ∇∗ = ( ∂

∂x∗ ,
∂

∂y∗ ,
∂

∂z∗ ) and g∗ = g∗(sinβ, 0,− cos(β)),
where g∗ is the acceleration due to gravity and β is the
angle of inclination of the substrate. The constitutive re-
lation between the liquid stress and its rate of strain for
a Newtonian liquid is written as:

τ∗ = µ∗(T ∗)γ̇∗, (2)

where µ∗ is the liquid viscosity, γ̇∗ is the rate of strain
tensor and T ∗ is the temperature.

The energy equation governing the temperature, T ∗,
is given by:

ρ∗c∗p [T
∗
t∗ + u∗ · ∇∗T ∗] = κ∗∇?2T ∗, (3)

where c∗p is the specific heat of the liquid (assumed
constant), κ∗ is its thermal conductivity (assumed con-
stant) or alternatively the liquid’s thermal diffusivity is
κ∗
d = κ∗/(ρ∗c∗p). We neglect viscous heating effects.
The viscosity increases as temperature decreases. We

use an exponential viscosity decay model to describe this
relationship, given by:

µ∗(T ∗) = µ∗
min + (µ∗

R − µ∗
min)e

−α∗(T∗−T∗
R), (4)

where T ∗
R is a reference temperature, µ∗

R is the viscosity
at the reference temperature, µ∗

min is a minimum viscos-
ity limit and α∗ is a temperature decay constant. This

viscosity-temperature relationship is applicable for vari-
ous types of lava11. Other temperature-viscosity relation-
ships considered in the literature include a bi-viscosity
model15,20. It can be written as: µ∗ = µ∗

e, if T ∗ > T ∗
m and

µ∗ = µ∗
a, otherwise, where µ∗

a = µ∗(T ∗
a ), µ∗

e = µ∗(T ∗
e )

(with µ∗
a > µ∗

e) and T ∗
m (T ∗

a < T ∗
m ≤ T ∗

e ) is a fixed tem-
perature in the solidus-liquidus transition. This relation-
ship is a proxy of a nearly solidified layer characterised by
a higher viscosity. In this paper, we only report results
using the exponential viscosity model which is adequate
to describe the basic underlying instability mechanism
reported here.

We impose the no-slip boundary condition for the ve-
locity field at the surface of the plane z∗ = 0, with
the flow speed from the source given by w∗

s(x
∗, y∗, t∗)

taken as a vertical velocity. Therefore u∗ = 0, w∗ =
w∗

s(x
∗, y∗, t∗) at z∗ = 0. Assuming well-developed

Poiseuille flow through this vent (assumed rectangular
between |x∗| ≤ x∗

0, |y∗| ≤ y∗0 , where (x, y)∗0 is the half-
width of the source), with liquid flux, Q∗

s, w∗
s is approxi-

mated as:

w∗
s =

9Q∗
s(t

∗)

16x∗
0y

∗
0

[
1−

(
x∗

x∗
0

)2
]
+

[
1−

(
y∗

y∗0

)2
]
+

, (5)

where the subscript + denotes the positive part when
(x∗, y∗) ≤ (|x∗

0|, |y∗0 |), and zero otherwise.
The heat transfer at the free surface, z∗ = h∗(x∗, y∗, t∗)

and the substrate, z∗ = 0 is assumed to follow Newton’s
law of cooling. Using this, the boundary condition at the
substrate, z∗ = 0, is18:

κ∗T ∗
z∗ =ρ∗c∗p(T

∗(x∗, y∗, 0, t∗)− T ∗
e )w

∗
s

+ b∗s(T
∗(x∗, y∗, 0, t∗)− T ∗

s ), (6)

where b∗s is a heat transfer coefficient (assumed constant).
The first term on the right represents the convective heat
transfer from the vent into the bulk liquid and the sec-
ond term on the right is the Newton cooling to the sub-
strate. Similarly, on the free surface, z∗ = h∗(x∗, y∗, t∗),
we have18:

−κ∗(n∗ · ∇∗T ∗) = a∗m(T ∗(x∗, y∗, h∗, t∗)− T ∗
a ), (7)

where a∗m is a heat transfer coefficient at the free surface
and T ∗

a is the ambient temperature. The first term on
the right is the Newton cooling to the surrounding air.

Taking the pressure of the liquid in the dome relative
to the air pressure and neglecting surface tension, the
normal stress at the air-liquid interface is written as:

(−p∗I + τ∗) · n∗ = 0, at z∗ = h∗(x∗, y∗, t∗), (8)

where, n∗= ∇∗(z∗−h∗(x∗,t∗))
|∇∗(z∗−h∗(x∗,t∗))|=

1√
1+h?2

x∗+h?2

y∗

(
−h∗

x∗ , h∗
y∗ , 1

)
,

is the unit outward normal to the free surface
z∗ = h∗(x∗, y∗, t∗). The corresponding tangent
vectors to the free surface in the x∗ and y∗ directions are
given by [t∗x, t∗y] = 1√

1+h?2

x∗+h?2

y∗

[
(1, 0, h∗

x∗), (0, 1, h∗
y∗)
]
,
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respectively. Using these, we can write the normal and
two tangential components of Eq. (8) as

1√
1 + h?2

x∗ + h?2

y∗

[−2h∗
x∗τ∗zx − 2h∗

y∗τ∗yz + 2h∗
x∗h∗

y∗τ∗xy

+ τ∗zz + h?2

x∗τ∗xx + h?2

y∗τ∗yy] = p∗, (9a)

h∗
x∗(τ∗zz − τ∗xx) + τ∗xz(1− h?2

x∗)− h∗
x∗h∗

y∗τ∗yz − h∗
y∗τ∗xy = 0,

(9b)

h∗
y∗(τ∗zz − τ∗yy) + τ∗yz(1− h?2

y∗)− h∗
x∗h∗

y∗τ∗xz − h∗
x∗τ∗xy = 0.

(9c)

The kinematic condition at the free surface z∗ =
h∗(x∗, y∗, t∗) is based on this being a material surface
so that fluid particles which lie on the surface must al-
ways remain on the surface. This implies that D

Dt [z
∗ −

h∗(x∗, y∗, t∗)] = 0. This can be written as:

h∗
t∗ + u∗h∗

x∗ + v∗h∗
y∗ = w∗. (10)

B. Nondimensionalisation of the governing equations and
boundary conditions

We define an aspect ratio ε = H∗/L∗ � 1. Also,
U∗ = (ρ∗g∗H∗3

)/(µ∗
RL

∗) cosβ, is a typical flow speed in
the x∗ and y∗−direction which is derived by balancing
the horizontal liquid pressure gradient (ρ∗g∗ cosβ/L∗)
with the liquid viscous shear stress (µ∗

RU
∗/H∗2), µ∗

R, is
a reference viscosity. The pressure is measured using a
characteristic scale P ∗ = ρ∗g∗H∗ cosβ (the hydrostatic
pressure). We introduce the following dimensionless vari-
ables:

(x∗, y∗) = L∗(x, y), (z∗, h∗) = H∗(z, h), (11)
(u∗, v∗, w∗) = (U∗u,U∗v, εU∗w), p∗ = P ?p,

τ∗ = µ∗
R

(
U∗

H∗

)
τ, γ̇∗ =

(
U∗

H∗

)
γ̇, µ∗ = µ∗

Rµ,

θ =
(T ∗ − T ∗

a )

(T ∗
e − T ∗

a )
, t∗ = (L∗/U∗)t.

The dimensionless equations for the flow and energy
can be written as:

ux + vy + wz =0, (12a)
ε2Re [ut + uux + vuy + wuz] = −px + S + ε∂xτxx

+ ε∂yτxy + ∂zτxz, (12b)
ε2Re [vt + uvx + vvy + wvz] = −py + ε∂xτyx

+ ε∂yτyy + ∂zτyz, (12c)
ε4Re [wt + uwx + vwy + wwz] = −pz − 1 + ∂xε

2τzx

+ ε2∂yτzy + ε∂zτzz,
(12d)

ε2Pe [θt + uθx + vθy + wθz] = ε2θxx + ε2θyy + θzz.
(12e)

The nondimensionalised constitutive relation between
the liquid stress and its rate of strain for a Newtonian
liquid is written as:

τ = µ(θ)γ̇. (13)

The exponential viscosity-temperature model in dimen-
sionless form is written as:

µ(θ) = µmin + (1− µmin)e
−αθ. (14)

The dimensionless strain rate tensor becomes

γ̇ =

 2εux ε(uy + vx) uz + ε2wx

ε(uy + vx) 2εvy vz + ε2wy

uz + ε2wx vz + ε2wy 2εwz

 . (15)

The nondimensional boundary conditions at z = 0 can
be written as:

u = 0, w = ws(x, y, t), at z = 0, (16a)
θz = ε2Pe(θ − 1)ws + b(θ − θs), at z = 0. (16b)

where

ws = [9Qs0Qs(t)/16]

[
1−

(
x

x0

)2
]
+

[
1−

(
y

y0

)2
]
+

,

(17)

where Qs0 is a dimensionless parameter, Qs0 =
Q∗

s0/(x
∗
0y

∗
0εU) and Q∗

s0 is a characteristic source flow
rate, and the dimensionless vent width is (x0, y0) =
(x∗

0, y
∗
0)/L

∗. The nondimensional boundary conditions
at z = h(x, y, t) are given by

ht + uhx + vhy = w, (18a)

p =
ε

[1 + ε2(h2
x + h2

y)]

(
τzz + ε2h2

xτxx + ε2h2
yτyy

−2εhxτxz − 2εhyτyz + 2ε2hxhyτxy
)
, (18b)

τxz(1− ε2h2
x) + εhx(τzz − τxx)− εhyτxy

− ε2hxhyτyz = 0, (18c)
τyz(1− ε2h2

y) + εhy(τzz − τyy)− εhxτxy

− ε2hxhyτxz = 0, (18d)

θz = ε2hxθx + ε2hyθy − aθ
√
1 + ε2h2

x + ε2h2
y. (18e)

The dimensionless parameters are: S = tanβ/ε, is a
measure of the downslope, (0 ≤ S < ∞), the Reynold’s
number, Re = U∗L∗/µ∗

R = (g∗H∗3

/µ∗2

R ) cos θ, compares
inertial and viscous effects (assumed to be small, so in-
ertial effects are neglected), the Péclet number, Pe =
(ρ∗c∗pU

∗L∗)/κ∗, compares convective and diffusive heat
transport, the heat transfer coefficients at the free surface
and substrate, b = b∗sH

∗/κ∗ and a = a∗mH∗/κ∗, respec-
tively, α = α∗(T ∗

e − T ∗
a ), is the decay constant and µmin

is a minimum viscosity limit in the exponential viscosity
model.
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C. Lubrication approximation and evolution equations

Using the lubrication approximation, the leading order
equations governing the flow are given in Appendix A.
We can sequentially solve for the O(1) quantities, using
which the evolution equation for h(x, y, t) can be derived.
The details of the derivation are provided in Appendix
A. The depth-averaged evolution equation for h is given
by:

ht +Q(x)
x +Q(y)

y = ws. (19)

Using the expressions for Q(x), Q(y) given in Eq. (A6),
we can write the evolution equation for h(x, y, t) as:

ht = ∇ ·

([∫ h

0

(h− z)2

µ(θ)
dz

]
∇h

)
− S

(∫ h

0

(h− z)2

µ(θ)
dz

)
x

+ ws, (20)

where ws(x, y, t) is given by Eq. (17). We note that the
lubrication approximation limits the leading order flow
within the dome to be dominated by viscous shear with
extensional (straining) flows relegated to O(ε2) which are
neglected here. For sufficiently large changes in viscos-
ity a complicated mixture of shearing and extensional
(straining) flows particularly in a thin diffusive skin near
the free surface could generate additional viscous resis-
tance, which could have a significant influence on the
evolution and spreading characteristics. A “skin theory”
developed by Balmforth, Craster, and Sassi 18 applies in
this situation.

The flow is coupled with the temperature field via the
viscosity relationship µ(θ) given in Eq. (14). The nondi-
mensionalised governing equation and boundary condi-
tions for the temperature field are given by:

Per [θt + uθx + vθy + wθz] = ε2θxx + ε2θyy + θzz,

(21a)
θz = Per(θ − 1)ws + b(θ − θs), at z = 0, (21b)

θz = ε2hxθx + ε2hyθy − aθ
√

1 + ε2h2
x + ε2h2

y,

at z = h(x, y, t), (21c)

where the flow speeds, u,v and w are given by (A3a,A3b)
and (A4), respectively. We consider the general case
where the reduced Péclet number, Per = ε2Pe = O(1),
so that the heat convection terms on the left-hand-side
of Eq. (21a) are of the same order as the vertical con-
duction term on the right-hand-side (third term on the
right-hand-side of Eq. (21a)).

For future reference, we also consider the particular
case of Eqs. (20,21) in the limit where the reduced Pé-
clet number, Per = O(ε2), so that the Péclet number,
Pe = O(1), and (a, b) = O(ε2). This is referred to as the
conduction-dominated scenario. In this limit, the leading
order θ is independent of z (vertically isothermal) and the
integrals in Eq. (20) can be evaluated analytically. Using

this, Eq. (20) can be reduced to Eq. (22a) given below
for the evolution equation for the free surface h(x, y, t).
Moreover, the limit of small Péclet number allows the
higher-order effects of diffusion in x and y at O(ε2) to
enter into the temperature equation, Eq. (21a), at the
same order as convection, and that taking an integral in z
then furnishes Eq. (22b) below for the temperature field
θ(x, y, t). The evolution equations for relatively small Pé-
clet number are given by (see derivation in Appendix B):

ht =
1

3µ(θ)
∇ · (h3∇h)− S

3µ(θ)
(h3)x + ws, (22a)

θt = − 1

h

[
Q − 1

Pe
∇h

]
· ∇θ +

1

Pe
∇2θ

− 1

hPe
[aθ + b(θ − θs)] +

ws

h
(1− θ), (22b)

where Q=(Q(x), Q(y))=
(

1
3

h3

µ(θ) (S − hx),− 1
3

h3

µ(θ)hy

)
.

Equation (22a) shows the contribution to the evolution
of h from the fluxes due to the horizontal and vertical
components of gravity (first and second term on the right,
respectively). The evolution of the temperature, θ, given
in Eq. (22b) shows the contribution to the heat transport
due to: convection by the flow (first term on the right),
diffusion or conduction (second term on the right), heat
loss or cooling to the colder surrounding air and substrate
and the gain in heat coming from the source (last 2 terms
on the right, respectively).

Eqs. (20,22a), are the same as those derived in pre-
vious related studies17,18, except for the inclusion of the
horizontal component of gravity term via the downslope
parameter S.

III. NUMERICAL SOLUTIONS

We seek numerical solutions of the evolution of the
dome height, h, and the temperature field, θ, by vary-
ing the key parameters: the reduced Péclet number Per
(or the Péclet number Pe in the conduction-dominated
scenario), the heat transfer coefficients, a, b, at the free
surface and substrate, respectively, and the temperature-
viscosity coupling constant, α, in the temperature-
viscosity relationship. We do not restrict the choice of
the values of the above parameters based on specific flow
scenarios, but allow for a full range of realistic values to
be explored in (Per (or Pe), a, b, α) space.

We consider variations in the above parameters for
ε = 0.1, S = 1 (plane inclined at angle of approximately
6o - a representative choice corresponding to the average
slope of a typical terrain in real lava flows), and for con-
stant volume or zero source flux (Qs0 = 0) and constant
flux. The inclination angle chosen above vis the param-
eter S is just representative; the qualitative features of
the evolution and the instability are not influenced by
this. We do not show results corresponding to S = 0
(horizontal plane). These have been investigated in the
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works by Sansom et al.15,16 and Balmforth et al.17,18; we
will refer to this case when comparing with the spreading
on an inclined plane.

While the precursor layer thickness does not affect the
bulk flow, it influences the steepness of the liquid front
at the dome’s leading edge. We do not show any results
varying δ (where δ = H∗

b /H
∗ is a dimensionless precursor

layer thickness); in all the simulations shown below we
fix the value of δ = 10−3 to represent the dynamics of a
thin precursor layer.

A. y - independent evolution: The 1D time-dependent
base state

We first investigate the evolution characteristics as-
suming that there is no variation in the y-direction trans-
verse to the flow. Equation (20) for h(x, t) is solved
for x ∈ [−L,L], where L is the length of the compu-
tational domain. For nonzero source flux, we assume the
vent to be one-dimensional akin to a line source between
−x0 ≤ x ≤ x0, and the vertical velocity through the vent
is ws(x, t) = (9Qs0Qs(t)/16)[1− (x/x0)

2]+.
The two-dimensional evolution equation for the tem-

perature, θ(x, z, t), Eq. (21a), is solved for (x, z) ∈
[−L,L] × [0, h(x, t)] with boundary conditions given by
Eqs. (21b, 21c) at z = 0, h(x, t), respectively, and θx = 0
at x = ±L. For computational convenience, it is useful to
map the temperature field, θ(x, z, t), onto a rectangular
domain using the change of variables z̄ = z/h. The trans-
formed evolution equation for the temperature, θ(x, z̄, t)
is solved for (x, z̄) ∈ [−L,L]×[0, 1]. The transformed evo-
lution equations for h and θ are given by Eqs. (C3a− f)
shown in Appendix C. In what follows, we drop the bar
in z with the implicit understanding that z ∈ [0, 1].

The initial conditions for h and θ are chosen as:

h(x, 0) = (1− x2)H(1− x2) + δ,

θ(x, 0) = H(1− x2), x ∈ [−L,L]. (23)

H is the Heaviside function. The initial conditions repre-
sent a one-dimensional parabolic liquid dome at uniform
temperature θ = 1 (or T ∗ = T ∗

e ) between −1 ≤ x ≤ 1
connecting onto the precursor layer which is at tempera-
ture θ = 0 (or T ∗ = T ∗

a ).
The boundary conditions are: h → δ and θx → 0 as

x → ±∞. The length of the computational domain L
is chosen sufficiently large so that the bulk of the fluid
never reaches the edge of the domain for the times consid-
ered here. Otherwise, these boundary conditions would
impact the flow.

The equations are solved numerically using the Method
of Lines21,22 on a uniform and fixed computational mesh
in the spatial directions (x, z). The spatial derivatives are
discretised using second-order centered finite difference
schemes including a first-order upwind scheme for con-
vection terms in the temperature equation, and the time
derivative is kept continuous. We use the trapezoidal rule

to approximate the integrals in Eqs. (A3,A4,20). The re-
sulting system of differential-algebraic equations for the
unknowns in h and θ at each grid point are solved in
MATLAB (Release 2013a, The MathWorks Inc., Nat-
ick, Massachusetts, United States) using the stiff ODE
solver ode15i.

Typical domain lengths in the x-direction varied be-
tween 10 units for simulations without a fluid source
and 20 units for those including a fluid source. These
were sufficiently long to capture the essential features of
the spreading process as well as to satisfy the bound-
ary conditions. The corresponding computational mesh
sizes were ∆x = 10−2 in the x-direction and ∆z =
10−2 − 10−1 in the z-direction resulting in a system of
O(104 − 105) differential-algebraic equations (DAEs) re-
quired to be solved at each time step. For Per�1, the
problem can have very narrow thermal boundary lay-
ers near z = 0, h(x, t) of width O(Pe

−1/3
r ). The smallest

value of ∆z = 10−2 is sufficient to resolve these boundary
layers for Per≤104. For Per>104, much smaller values
of ∆z are required which increases the number of DAEs
at each time step, hence the computational effort. These
results are not shown here as they are not different from
the Per=104 results.

The time step was controlled within the solver to main-
tain the stability of the numerical solutions. The accu-
racy and convergence of the numerical scheme are for-
mally checked for sample cases corresponding to a low,
intermediate and high reduced Péclet number Per. This
is done as follows. At a specified time, t, we measure
the error in the solution for h and θ using the max norm
for decreasing mesh sizes, ∆x, ∆z. This is done sys-
tematically by (i) varying ∆x, keeping ∆z fixed, and (ii)
varying ∆z, keeping ∆x fixed. Based on this, we can
confirm that for the mesh sizes stated above the numer-
ical solutions presented below are an accurate reflection
of the spreading process.

We first consider the results for S = 1 and Qs0 = 0
(constant volume drop). The other parameter values
kept fixed are: α = 2, a = 0.02 and b = 0.03. In Fig.
2(a− c), (d−f) and (g− i), we show the contour plot for
θ(x, z, t) at times t = 1 (a, d, g), t = 14 (b, e, h) and t = 30
(c, f, i) for varying Per = 10, 102, 104. The temperature
contours are superimposed on the corresponding free sur-
face profiles, h(x, t). We observe that, in general, the free
surface profiles are non-symmetric about x = 0 and the
dome slumps as it spreads with a steep front at its leading
edge where it connects onto the precursor film. For large
Per (represented by Per = 104), we observe from the
contour plots shown in Fig. 2(g− i) for θ(x, z, t) that the
cooling is localised near the dome’s leading edge forming
a collar of cooler liquid there. The collar of cooler liq-
uid is formed due to advection of the cooler liquid at the
surface being deposited to the dome edge. The bulk liq-
uid within the dome is insulated at a higher temperature
θ ≈ 1 (or T ∗ = T ∗

e , the initial temperature). This results
in a much lower overall viscosity, and consequently faster
spreading compared to lower values of Per. On the other
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Figure 2: The contour plot for (a) θ(x, z, t = 1), (b) θ(x, z, t = 14) and (c) θ(x, z, t = 30) for Per = 10, (d)
θ(x, z, t = 1), (e) θ(x, z, t = 14) and (f) θ(x, z, t = 30) for Per = 102, and (g) θ(x, z, t = 1), (h) θ(x, z, t = 14) and (i)

θ(x, z, t = 30) for Per = 104. The other parameter values kept fixed are: α = 2, Qs0 = 0, θs = 0, a = 0.02 and
b = 0.03.

hand, for small Per (results not shown here), the cooling
is uniform over the entire domain resulting in the tem-
perature quickly dropping uniformly to its equilibrium
value, θ = 0 (or T ∗ = T ∗

a , the ambient temperature).
Once this is achieved and the liquid viscosity is almost
everywhere µ(θ) = 1, the free surface evolution of h(x, t)
is similar to that of isothermal spreading at that viscos-
ity. As the overall viscosity is higher than that at large
vales of Per, the spreading is comparatively slower. Fig-
ure 2(a− c, d−f) capture the temperature variations for
intermediate values of Per represented by Per = 10, 102,
respectively. The cooling is less uniform in the flow di-
rection compared to small and large Per. There is loss of
a large amount heat and consequently more pronounced
cooling near the leading edge of the advancing front and
the trailing edge of the dome where h is small, compared
to elsewhere. This is due to the rate of heat loss per
unit thickness being inversely proportional to h. The
temperature within the bulk liquid in the dome remains

almost at uniform and higher temperature. The temper-
ature variations are almost uniform along any vertical
cross-section of the dome’s thickness. We observe the
formation of a characteristic elevated fluid ridge devel-
oping near the dome’s leading edge. The temperature
behind the leading edge is much higher than that ahead;
the increase in mobility due to the reduced liquid viscos-
ity results in the hotter liquid piling-up over the relatively
colder liquid ahead of it resulting in the development of
the elevated ridge in the free surface shape near the lead-
ing edge. This non-uniformity in cooling is absent for
small Per and not sufficiently strong at large Per (due
to the localised nature of the cooling close to the dome’s
leading edge), and hence precludes any piling-up of hotter
liquid at the leading edge. Therefore, we do not observe
the development of the fluid ridge for these cases.

Having established the existence of the fluid ridge, we
further explore and characterize the evolution of h(x, t)
for varying Per in Fig. 3(a − f) making comparisons
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with isothermal spreading. The other parameter values
are fixed at α = 2, a = 0.02 and b = 0.03. The dashed
curves in Fig. 3(a, d) show the evolution of h(x, t) for
t = 0−30 with µ = 1 (or θ = 0 everywhere corresponding
to a dome with liquid at the ambient temperature, T ∗

a )
and µmin = 10−3 (or θ = 1 corresponding to a dome with
liquid at a hotter temperature, T ∗

e ), respectively. Both
these cases are isothermal with differing liquid viscosities.
The solid curves in Fig. 3(a, b, c, d) show the evolution
of h(x, t) for t = 0 − 30 for Per = 10−1, 10, 102, 104, re-
spectively. For small Per (represented by Per = 10−1 -
solid curves in Fig. 3(a)), the liquid viscosity is almost
everywhere µ(θ) = 1, the evolution of h(x, t) is similar
to that of isothermal spreading at that viscosity (dashed
curves in Fig. 3(a)). This is consistent with the long-
time self-similar solution h =

√
µ(θ)x/(St) for isother-

mal spreading23,24. For much larger Per (represented by
Per = 104 - solid curves in Fig. 3(d)), the liquid viscos-
ity is almost everywhere µ(θ) = µmin. This results in
a much lower overall viscosity, and consequently faster
spreading compared to lower values of Per. The evo-
lution of h(x, t) is almost indistinguishable from that of
isothermal spreading with µ(θ) = µmin (dashed curves in
Fig. 3(d)) even at early time. For intermediate Per (rep-
resented by Per = 10, 102 - solid curves in Fig. 3(b, c)),
we clearly observe the development of the fluid ridge at
the leading edge of the dome which gradually subsides in
time.

Figures 3(e, f) track the evolution of the location of
the dome’s front, xf (t), and the corresponding thickness,
hf = h(xf , t), respectively, as a function of t for Per be-
tween 10−1 ≤ Per ≤ 104. The location of xf is assumed
to be where the dome attains its maximum thickness hf

near the leading edge. We observe that xf is always
bounded by the two isothermal curves corresponding to
µ(θ) = 1, µmin, respectively (dashed curves in Fig. 3(e)).
The spreading rates for small and large Per tend to these
limiting rates. We observe the spreading rate for smaller
Per tends to that corresponding to µ = 1 much slower
than for larger Per, which is indistinguishable from the
spreading rate corresponding to µ = µmin from very early
time (also see Fig. 3(a, d)). This is due to the delay in
the dome uniformly cooling from θ = 1 to θ = 0 for small
Per whereas for larger Per, the bulk liquid is always in-
sulated at θ = 1.

For constant volume and isothermal spread-
ing, the long-time spreading rate is xf,iso(t) =

[9SV 2/(4µ(θ))]1/3t1/323,24, where V is the dome’s
volume. Hence, [9SV 2/4]1/3t1/3 ≤ xf,iso(t) ≤
[9SV 2/(4µmin)]

1/3t1/3 for 0 ≤ θ ≤ 1. Similarly,
hf,iso(t) is bounded by the two limiting isother-
mal curves represented by the dashed curves in
Fig. 3(f). The long-time behaviour is hf,iso(t) =√

µ(θ)xf,iso/(St) = [3V µ(θ)/(2S)]1/3t−1/323,24, hence
[3V µmin/(2S)]

1/3t−1/3 ≤ hf,iso(t) ≤ [3V /(2S)]1/3t−1/3

for 0 ≤ θ ≤ 1. We also note that for isothermal
spreading, the evolution for h does not exhibit a fluid

ridge but will monotonically increase to the maximum
height hf,iso(t) (see dashed curves in Fig. 3(a, d)). We
observe from Fig. 3(f) that for Per = 10−1, hf (t) is
almost parallel to the limiting curves indicating that the
spreading behaviour is close to isothermal with no fluid
ridge. For Per = 10, 102, a fluid ridge is guaranteed
to exist with hf overshooting hf,iso at θ = 0. For
Per = 104, the spreading behaviour is again close to
isothermal with no fluid ridge.

We conclude this section by considering the effects of
an influx of liquid from a source or vent with Qs0 = 5
(representative non-zero source flux). Figure 4 shows
the influence of the source flux with Per = 102, α = 2,
a = b = 0.02 . The free surface profiles show a notice-
able growing ridge over the majority of the dome (Fig.
4(a)). The temperature profiles show maximum cooling
near the flow front causing build up of very viscous cold
fluid there. The hot interior fluid piles-up over this cooler
region and develops a fluid ridge. The mechanism is sim-
ilar to the case of Qs0 = 0, (zero source flux) except that
the constant flux through the vent increases the volume
of hot fluid piling-up into the fluid ridge.

IV. MAPPING THE FLUID RIDGE IN PARAMETER
SPACE FOR Per�1

In this section, we conduct a parameter survey in
(Pe, a = b, α) space shown in Fig. 5 to investigate the ex-
istence of free surface shapes, h(x, t), with and without a
fluid ridge near the leading edge. We use the conduction-
dominated scenario given by Eq. (22) valid in the limit
Per=ε2Pe�1 (Pe=O(1)) to plot the curves in Fig. 5.
This is less computationally intensive compared to the
Per=O(1) case. For a typical value of ε = 0.1, the range
of values 0 ≤ Per ≤ 102 (or 0 ≤ Pe ≤ 104) have been
used in the above calculations. While this is strictly out-
side the range of validity of the conduction-dominated
asymptotic analysis, nevertheless there is evidence from
our Per = O(1) calculations that this still holds, for ex-
ample, see Fig. 2(a− f) where θ(x, z, t) is almost every-
where independent of z.

We use a geometric criterion to quantify the eleva-
tion of the ridge (see Appendix D for details). This is
based on the change in the local angle of elevation given
by tan−1(hx|max)− tan−1(hx|min) should exceed a pre-
scribed threshold value during the evolution. If this is the
case, then the ridge is classified to be elevated. We use
the threshold criterion that the local angle of elevation
described above should exceed 10o over the prescribed
period of time that the simulations are run in order to
plot the parameter survey in Fig. 5. The black, green
and red circles separate the no ridge regions from the
ridge regions for α = 2, 4, 6, respectively.

Figure 5 shows that the region where ridges are ob-
served expands as α increases. We also note here that
the height of the fluid ridge gets bigger as α increases
(not shown). This is due to the liquid viscosity contrast
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Figure 3: The evolution of h(x, t) for t varying between t = 0− 30 corresponding to (a) Per = 10−1 (solid curves)
and µ = 1 (dashed curves; isothermal case with θ = 0), (b) Per = 10, (c) Per = 102, (d) Per = 104 (solid curves)
and µ = µmin = 10−3 (dashed curves; isothermal case with θ = 1). The evolution of (e) the leading edge of the

dome, xf , and (f) the maximum in h, hf = h(xf , t), as a function of time, t, for various reduced Péclet number,
Per. The parameter values are: S = 1 (plane inclined at 6o), α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.
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Figure 4: The evolution of (a) h(x, t) for t varying between t = 0− 20 and the contour plot for (b) θ(x, z, t = 1), (c)
θ(x, z, t = 12), and (d) θ(x, z, t = 20), with S = 1, Per = 102, α = 2, Qs0 = 5, θs = 0, a = b = 0.02.
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Figure 5: Parameter survey in (Pe, a = b, α) space for the conduction-dominated case to show existence of free
surface shapes, h(x, t) with and without a fluid ridge near the leading edge. The black, green and red circles

separate the no ridge regions from the ridge regions for α = 2, 4, 6, respectively. The parameter values are: S = 1
(inclination angle approximately 6o) and ε = 0.1.
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between the hotter bulk liquid behind the front and the
colder liquid at the front being even more enhanced for
larger values of α. We observe that no ridges exist for
very low and high values of a, b; at these values cooling
of the liquid in the dome is either uniformly negligible
or rapid resulting in the mechanism of ridge formation
being suppressed.

We also note that for the S = 0 (horizontal plane)
case (not shown), there are no solutions exhibiting a
ridge in (Pe, a = b, α) space - the evolution of h fol-
lows either a symmetrically flattening dome profile or a
pancake-shaped profile15–18. Therefore, the inclination
of the plane is necessary to enhance the liquid mobility
resulting in the formation of the ridge at the dome’s lead-
ing edge. Increasing the inclination angle is observed to
enhance the elevation of the ridge.

V. STABILITY TO TRANSVERSE PERTURBATIONS
FOR Per�1

In this section, we examine the transverse stability of
the conduction-dominated (or vertically isothermal) sce-
nario given by Eq. (22) to small-amplitude transverse
perturbations superimposed on a base state flow and tem-
perature field. We do this using both a transient linear
stability analysis (§V A) and nonlinear stability analysis
via two-dimensional numerical simulations (§V B). The
base state flow and temperature are represented by the
y− independent numerical solutions that have been com-
puted in §III A in the limit Per = ε2Pe � 1 (Pe = O(1)).

We focus on investigating the linear and nonlinear sta-
bility of the elevated ridge solution. In order to do this,
we choose an initial base state for h that has already
formed an elevated ridge. For the parameter values con-
sidered below, the earliest time when the y− independent
solution for h forms an elevated ridge is t = 2. We use
this and the corresponding solution for θ to represent the
initial base states (h, θ)0(x, t = 0) for the stability study
in §V A and V B. We do the same for investigating the
stability of the case without an elevated ridge. Based on
the above considerations, the starting time for the sta-
bility calculations shown below is t = 0.

For the parameters, we choose S = 1 and ws(x, t) = 0
and focus on varying Pe, a, b and α. We vary these based
on the parameter survey conducted in (Pe, a = b, α)
space (Fig. 5) for representative base states displaying a
fluid ridge or not in their evolution.

A. Linear stability analysis

We impose a perturbation on the base states obtained
from the y-independent solutions, (h, θ)0(x, t) (say), with
small disturbances, (h, θ)1(x, t), of prescribed transverse
wavenumber k (of the form eiky). Substituting into (22),

we obtain the evolution equations for (h, θ)1:

h1t +
1

3

3h2
0h1(S − h0x)− h3

0h1x − µ1(θ0, θ1)
h3
0(S−h0x )
µ0(θ0)

µ0(θ0)


x

+
1

3
k2

h3
0h1

µ0(θ0)
= 0, (24a)

θ1t +
h1

h0
θ0t +

1

3

h2
0

µ0(θ0)
(S − h0x)θ1x+

θ0x
3

[
3h0h1

µ0(θ0)
(S − h0x)−

h2
0h1x

µ0(θ0)
− h2

0µ1(θ0, θ1)

µ2
0(θ0)

(S − h0x)

]
=

1

h0Pe
[h0θ1x + h1θ0x ]x − 1

h0Pe
k2h0θ1

− 1

h0Pe
[a+ b+ ws] θ1, (24b)

µ0(θ0) = (1− µmin)e
−αθ0 + µmin,

µ1(θ0, θ1) = −(1− µmin)αθ1e
−αθ0 . (24c)

These are subject to the boundary conditions (h, θ)1 → 0
and all their derivatives decay to zero as x → ±∞.

The time-dependence of the base states (h0, θ0) pre-
vents the application of normal mode analysis to deter-
mine the dispersion relationship and necessary and suffi-
cient conditions for the linear instability. One can ‘freeze‘
the base states at a given time and assume exponential
growth or decay in (h, θ)1 = (φ1, φ2)e

λt, where (φ1, φ2)
are the eigenfunctions corresponding to a growth rate λ.
Substituting this in Eq. (24) gives an eigenvalue prob-
lem, solving which provides the dispersion relation for
the instantaneous growth rate λ = λ(k). One can then
compute the dispersion relation for base states at differ-
ent snapshots in time to determine the time variation of
the growth rate as the base state evolves.

An alternative method, which we follow here, is to
solve Eq. (24) as an initial value problem with prescribed
initial conditions for the base states and perturbations.
One can then measure the transient amplification of the
perturbation and the corresponding growth rate relative
to the evolving base states25.

The initial base states (h, θ)0(x, t) are chosen as men-
tioned at the beginning of this section. The correspond-
ing initial conditions for the perturbations are chosen
as: (h1, θ1) = A0 exp(−B0(x − xf )

2), where A0, B0 are
the amplitude and width of the perturbation, respec-
tively. The perturbations are imposed around the fluid
ridge region at x = xf where we anticipate maximum
amplification16–19,26.

Eq. (24) coupled with the y− independent form of Eq.
(22) are solved numerically using the method of lines and
ode15s in Matlab. The typical domain size was 20 units
and the computational mesh size was O(10−3); the am-
plitude and width of the perturbations A0 = 10−3, B0 =
102, respectively. We investigate the transverse stabil-
ity of two representative base states corresponding to
(Pe, a = b, α) equal to: (i) (102, 0.1, 2) (no ridge), and
(ii) (104, 10, 2) (ridge).
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Figure 6(a, b) show a typical evolution of the base
states (h0, θ0), respectively, and the superimposed per-
turbations (h (×10−4), θ1 (×10−3)), for t = 0−500 in 50
time units. The parameter values are, (Pe, a = b, α, k) =
(104, 10, 2, 3). We observe peaks in both (h1, θ1) in the
vicinity of the leading edge of the dome - the peaks in
h1 are much steeper than those in θ1. (h1, θ1) amplify in
time suggesting that (h0, θ0) are linearly unstable for the
parameter set considered. At much later times, (h1, θ1)
become smaller as (h0, θ0) flatten out. Figure 6(c, d) show
a close-up view of (h0,1, θ0,1) near the leading edge of the
dome at t = 50 for varying wavenumbers k = 1, 3, 10.
The peaks in (h1, θ1) coincide with the steep gradient in
(h0, θ0), respectively. The peaks in h1 are sharper than
θ1 due to the steeper gradient in h0 compared to θ0 in
the vicinity of the flow front. For small values of k, we
observe that (h1, θ1) ∝ −(h0x , θ0x) (see k = 1 in Fig.
6(c, d)); h1 < 0 between the peak and the back edge of
the ridge, where h0x > 0; (h1, θ1) > 0 at the leading
edge of the dome, where (h0x , θ0x) < 0. As k increases,
the magnitude of the peak in (h1, θ1) and the local min-
imum in h1 at the back edge of the ridge increase with
k (k = 3, 10 in Fig. 6(c, d) - note the difference in scal-
ing with k shown). Moreover, we also observe that as k
increases the width of the region where h1 < 0 decreases
with k (see k = 3, 10 in Fig. 6(c, d) between the peak
and the back edge of the ridge in h0).

Necessary condition for linear instability

The results in Fig. 6 demonstrate that the lin-
ear instability is localized around the leading edge xf .
Based on this, we define a local scaled variable ξ =
[x − xf (t)]SPe1/3. We also define the scaled variables
h0,1(x, t) = H0,1(ξ, τ)Pe−1/3, θ0,1(x, t) = θ0,1(ξ, τ), t =
(Pe1/3/S2)τ and k = SPe1/3k̂. Substituting in Eq.
(24a) gives:

H1τ − x̂fτH1ξ

+
1

3

3H2
0H1(1−H0x)−H3

0H1x − µ1(θ0, θ1)
H3

0 (1−H0x )
µ0(θ0)

µ0(θ0)


x

+
1

3
k̂2

H3
0H1

µ0(θ0)
= 0, (25)

where x̂fτ = xfτSPe1/3. Integrating Eq. (25) between
ξ = ±∞, and assuming that (H, θ)1 and all their deriva-
tives decay to zero as as ξ → ±∞, gives:

d

dt

∫ ∞

−∞
H1 dξ = −1

3
k̂2
∫ ∞

−∞

H3
0H1

µ0(θ0)
dξ. (26)

For the time derivative of the integral to be positive
(characterising a growing volume), a criterion for H1 to

be linearly unstable is then given by
∫ ∞

−∞

H3
0H1

µ0(θ0)
dx < 0

provided
∫ ∞

−∞
H1 dx > 0 or

∫ ∞

−∞

H3
0H1

µ0(θ0)
dx > 0 provided∫ ∞

−∞
H1 dx < 0. Figure 7(a) plots the unscaled volume

integral
∫ ∞

−∞
h1 dx

[
=

1

SPe2/3

∫ ∞

−∞
H1 dξ

]
as a function

of time t for varying wavenumbers k = 1, 3, 10, 20. For
k = 1, 3, 10, this integral is positive for the range of
times shown. In fact, this also applies for k ≤ 15
(result not shown here). This is due to the contribu-
tion from h1 > 0 at the dome’s leading edge dominat-
ing the h1 < 0 contribution between the peak and the
back edge of the ridge. At early times, the integral
increases with k; at later times the integral decreases
as k increases. This integral can also become nega-
tive for the range of times shown (see k = 20 in Fig.
7(a)). We note that the transition actually occurs around
k = 15 (result not shown here). For these values of k,
h1 changes sign with h1 < 0 at the dome’s leading edge
dominating the h1 > 0 contribution between the peak
and the back edge of the ridge; the other characteris-
tics of h1 are similar to Fig. 6(c). The magnitude of
this integral decreases as k increases. Figure 7(b) plots

−1

3
k2
∫ ∞

−∞

h3
0h1

µ0(θ0)
dx

[
= − S

3Pe
k̂2
∫ ∞

−∞

H3
0H1

µ0(θ0)
dξ

]
as a

function of time for varying wavenumbers k = 1, 3, 10, 20.
The linear instability criterion is satisfied at early times
for the range of wavenumbers shown. For k = 1, 3, 10, the
dominant contribution to the integral is from the region
between the peak and the back edge of the ridge where
h3
0h1

µ0(θ0)
< 0. In fact, this also applies for k ≤ 15 (result

not shown here). Here h0 ∼ hf and µ0(θ0) ∼ µmin en-
sures that the contribution from h1 < 0 dominates the
h1 > 0 contribution at the leading edge of the dome
where h0 ∼ δ and µ0(θ0) ∼ 1. This physically translates
to the increased mobility of the hotter liquid in the fluid
ridge region compared to that in the colder region at the
leading edge of the dome. Moreover, the severity of the
linear instability increases with k at early times since this
contribution increases with k (note that the magnitude of
h1 increases with k eventhough the width of this region
decreases; see Fig. 6(c)). However, at later times, the

linear instability gradually subsides as h3
0h1

µ0(θ0)
> 0 domi-

nates the contribution to the integral at these times. The
decay is quicker as k increases. For k > 20, the domi-
nant contribution to the integral at early times is again
from the region between the peak and the back edge of

the ridge where h3
0h1

µ0(θ0)
> 0, so −1

3
k2
∫ ∞

−∞

h3
0h1

µ0(θ0)
dx < 0

(Fig. 7(b)). This also applies for k ≥ 15 (result not shown
here). Hence, the linear instability criterion still holds

provided
∫ ∞

−∞
h1 dx < 0 (see k = 20 in Fig. 7(a)). At

later times, h3
0h1

µ0(θ0)
< 0 dominates the contribution to the
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Figure 6: The evolution of (a) h0 (solid) and h1 (×10−4) (dashed), and (b) θ0 (solid) and θ1 (×10−3) (dashed) for
k = 3 and t = 0− 500 in 50 time units. (c) h0, h1 and (d) θ0, θ1 at t = 50 for k = 1, 3, 10. The parameter values are:

(Pe, a = b, α) = (104, 10, 2).

integral and the linear instability gradually subsides. For
small k, we can determine a necessary condition for insta-
bility based on the observation that (h, θ)1 ∝ −(h0, θ0)x.
k = 1 in Fig. 6(c) shows that h1 < 0 in the region where
h0 displays a fluid ridge. Hence, a necessary condition for
the base state h0 to be linearly unstable is that it must
exhibit a fluid ridge in the vicinity of the front. How-
ever, the fluid ridge is not sufficient for linear instability
as observed at much later times when the fluid ridge in
h0 gradually subsides, the h1 > 0 contribution starts
dominating reducing the growth rate and eventually h1

decays to zero. We also show a case corresponding to a
lower Péclet number where the base state h0 develops a
weak ridge during the evolution. We classify this case
as not displaying a ridged profile because the local eleva-
tion angle is lower than the threshold angle for the range
of times considered. Figures 7(c, d) plot the unscaled

volume integral
∫ ∞

−∞
h1 dx

[
=

1

SPe2/3

∫ ∞

−∞
H1 dξ

]
and

−1

3
k2
∫ ∞

−∞

h3
0h1

µ0(θ0)
dx

[
= − S

3Pe
k̂2
∫ ∞

−∞

H3
0H1

µ0(θ0)
dξ

]
as a

function of time for varying wavenumbers k = 1, 2, 3 and
(Pe, a = b, α) = (102, 0.1, 2). The first integral decreases

in time from an initial volume of 1.8 × 10−4 with the
rate of decrease increasing with k. For k = 1, there is a
slight increase in volume around t = 10, and the volume
decreases very slowly thereafter. The second integral is
negative for k = 2, 3 suggesting that the h1 > 0 contri-
bution dominates near the leading edge, and the evolu-
tion is linearly stable. The contribution from h1 < 0,
although it still exits due to the weak ridge, is less domi-
nant. For k = 1, the second integral becomes slightly pos-
itive around t = 10 when the base state starts developing
a weak ridge, and the contribution from h1 < 0 starts to
dominate. This weak linear instability is not sustained
and the integral becomes negative as time progresses due
to a combination of further weakening of the ridge and
h1 > 0 contribution beginning to dominate. Hence, the
evolution for this set of parameter values shows a weak
linear instability gradually weakening in time for k = 1
and is linearly stable for all k > 1.
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Figure 7: (a)

∫ ∞

−∞
h1 dx

[
=

1

SPe2/3

∫ ∞

−∞
H1 dξ

]
, and (b) −1

3
k2
∫ ∞

−∞

h3
0h1

µ0(θ0)
dx

[
= − S

3Pe
k̂2
∫ ∞

−∞

H3
0H1

µ0(θ0)
dξ

]
for

t = 0− 500 and k = 1, 3, 10, 20. The parameter values are: (Pe, a = b, α) = (104, 10, 2). (c)

∫ ∞

−∞
h1 dx, and (d)

−1

3
k2
∫ ∞

−∞

h3
0h1

µ0(θ0)
dx for t = 0− 300 and k = 1, 2, 3 for the parameter values (Pe, a = b, α) = (102, 0.1, 2).

Amplification of linear instability

To further strengthen the above assertions, we now
consider the amplification and growth rates of the per-
turbations as a function of the wavenumber for the rep-
resentative parameter values mentioned above. Based
on the above considerations, the amplification and corre-
sponding growth rate of the perturbations are measured
as follows25:

Ah(t) =

∣∣∣∣ Eh1(t)/Eh0(t)

Eh1
(t = 0)/Eh0

(0)

∣∣∣∣ , λh(t) =
1

Ah(t)

dAh(t)

dt
,

Eh0,1
(t) =

∫ ∞

−∞
h0,1(x, t)dx. (27)

We first show the results for Pe = 102, a = b = 0.1,
α = 2. Figure 8(a) shows the amplification ratio, Ah,
for this case for varying wavenumbers k. Ah < 1 for the
range of k and times shown, and decreases in time except
for k = 1 where there is a slight increase in Ah at around

t = 10 followed by a slow decrease. Moreover, the rate of
decrease in Ah increases with k. We next consider the ef-
fect of increasing Pe. Figure 8(b) shows Ah for Pe = 104,
a = b = 10, α = 2, for varying k = 0 − 10, 15, 20, 30. At
very early times, the growth rate λh > 0 for the range of k
shown, since Ah increases at these times. Moreover, per-
turbations with the largest values of k grow the fastest.
This is consistent with the analysis above which shows
that the that the perturbations grow as the wavenum-
ber k increases when the necessary condition on the base
state h0 displaying a fluid ridge near its leading edge is
satisfied (see Figs. 6(c) and 7(a)). We observe the max-
imum in Ah to be attained at t ≈ 50 for k = 0 − 20.
Moreover, the maximum in Ah increases for k in this
range. Ah begins to decrease for t > 50. The rate of
decrease, λh, is more prominent for very large k (see Fig.
8(b) for k = 15, 20). The gradual decay of the fluid ridge
in the base state is the stabilising influence for these val-
ues of k. For lower values of k, the long time decay in Ah
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Figure 8: The amplification ratio Ah for varying wavenumber k. The parameter values are: (a) Pe = 102,
a = b = 0.1, α = 2, (b) Pe = 104, a = b = 10, α = 2, and (c) Pe = 104, a = b = 10, α = 4.

is very slow (see Fig. 8(b) for k ≤ 10). For even larger
values of k, the initial growth of the instability saturates
earlier than that corresponding to k = 0 − 20. We ob-
serve that for k = 30 in Fig. 8(b), the maximum in Ah

is attained earlier and is lower than that corresponding
to k = 20. The subsequent rate of decrease, λh, is also
greater than that corresponding to k = 20. This suggests
that the stabilizing influence as the fluid ridge in the base
state gradually decays is much stronger for these values
of k (as observed for k = 30). Figure 8(c) show the effect
of increasing α for varying k, the other parameters are
the same as in the case above. The amplification ratios
and growth rates are much higher for larger α. This is
again consistent with the necessary condition for insta-
bility to occur; the fluid ridge in the base state h0 is more
amplified for larger α and also persists for a longer time,
which explains the enhanced amplification and growth
rates. Moreover, increasing α also increases the viscosity
contrast at the leading edge, enhancing the instability.

We note the following parameter variations without
showing the results here. Increasing the inclination angle
accentuates the instability via a more pronounced ridge.
Similarly, introducing a source flux, Qs0 > 0, creates a

sustained fluid ridge prolonging the instability. In con-
clusion, the linear stability analysis shows the existence
of the fluid ridge and the viscosity contrast between the
ridge and the leading edge of the front to be necessary
for linear instability. When this is satisfied, the short-
est transverse waves (large k) grow fastest at early times
and decay fastest at late times, stabilized by the decay in
height of the initial fluid ridge and the viscosity contrast.
Generally, surface tension would also stabilize the larger
wavenumbers, but is not important for the problem con-
sidered here. Extensional viscous stresses omitted in the
lubrication theory here could also be important for sta-
bilization at large k27.

B. Nonlinear stability

In this section, we examine the nonlinear transverse
stability of Eq. (22) to small-amplitude transverse per-
turbations superimposed on a base state flow and temper-
ature field using two-dimensional numerical simulations.
We seek 2π-periodic solutions (2-periodic used in compu-
tations) in y for −L ≤ x ≤ L and 0 ≤ y ≤ 2π, where L
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is the length of the computational domain in the x direc-
tion. We introduce initial localised periodic transverse
perturbations around the leading edge of the front of a
given wavenumber of the form:

[h(x, y, t = 0), θ(x, y, t = 0)] = [h0(x), θ0(x)]

+

M∑
i=1

Ai cos(kiπy)e[−K(x−xf )
2], (x, y) ∈ [−L1, L2]× [−1, 1],

where ki is the wavenumber and Ai is the amplitude of
the 2-periodic transverse mode, K controls the width of
the localised perturbation which is applied at x = xf ,
the location of the leading edge of the front. We are in-
terested in investigating and simulating the existence of
a fingering instability when the front spreads to a much
longer distance. In this scenario, the order of a wave-
length in the transverse y direction is much smaller than
the spreading length.

The evolution equation for h(x, y, t) and θ(x, y, t) given
by Eq. (22) are solved numerically by the method of
lines using finite-difference schemes similar to those de-
scribed in §III A. The boundary conditions are: h → δ
and θx → 0 as x → ±∞. In all the results shown be-
low, we fix the source flux Qs0 = 0 (constant volume
spreading), the precursor thickness, δ = 10−3 and S = 1
(inclined plane at an angle of approximately 6o). The
typical domain length considered in the simulations is
[−2, 16]× [−1, 1] and the mesh sizes are ∆x = 0.02−0.03
and ∆y = 0.02. This resulted in a system of O(105)
differential-algebraic equations at each time step which
were solved in MATLAB (Release 2013a, The Math-
Works Inc., Natick, Massachusetts, United States) using
the stiff ODE solver ode15i. We have tested the accuracy
and convergence of our numerical scheme by reproducing
the planar solutions shown in §III A for a variety of pa-
rameter values.

We have also tested the nonlinear simulations with the
corresponding linear stability analysis results, when the
initial perturbation is sufficiently small. The linear sta-
bility equations, Eqs. (24), are scaled appropriately to
compare with the 2-periodic nonlinear simulations. We
compare the amplification ratios at early times for per-
turbations with a prescribed wavenumber k. In these
comparisons, the amplitude and width of the perturba-
tion A = 10−3,K = 102, respectively, are chosen to be
the same for both sets of calculations. Figure 9(a, b, c)
compares the amplification ratios, Ah(y = 0, t) (labelled
‘nonlinear’) and Ah(t) (labelled ‘linear’), at early times
for varying wavenumbers k. Ah(y = 0, t) is calculated
based on h1(x, y = 0, t) = h(x, y = 0, t) − h0(x, t). The
parameter values are: Pe = 102, a = b = 0.1, α = 2 (Fig.
9(a)), Pe = 102, a = b = 0.1, α = 6 (Fig. 9(b)), and
Pe = 104, a = b = 10, α = 4 (Fig. 9(c)). Depending on
the parameter values, the results agree quantitatively at
very early - early times as illustrated in Figs. 9(a−c). For
the stable case shown in Fig. 9(a), Ah < 1 in both the lin-
ear and nonlinear results and decreases in time with the
rate of decrease in Ah increasing with k (consistent with

Fig. 8(a)). The rate of decrease in Ah for the nonlinear
simulations, however, slows down as time progresses in
comparison to the exponential decay in the linear stabil-
ity results. For the unstable case shown in Fig. 9(c), we
observe that Ah decreases with k at early times in both
the linear and nonlinear results. Following this, Ah be-
gins to increase with k as the perturbations grow. The
linear stability results show exponential growth with k
at these times (consistent with Fig. 8(b, c)). However,
the nonlinear simulations show the modes to saturate
(with the higher modes saturating earlier) and gradu-
ally decrease as time progresses; eventually the k = 1
mode becomes the dominant wavenumber. For the un-
stable case shown in Fig. 9(b), the linear and nonlinear
results agree quantitatively at very early times when Ah

decreases with k. As time progresses, the agreement is at
best qualitative for this case even when the perturbations
are small. As the perturbations grow, the growth rates of
the k ≥ 2 modes slowly decrease in time, and the k = 1
mode eventually becomes the dominant wavenumber.

In order to explain the differences between the linear
and nonlinear results it is instructive to compare the
weakly nonlinear terms in h given by 2k2h2

0h
2
1/µ0 and

−2k2h3
0µ1/(3µ

2
0), with the corresponding linear term,

k2h3
0h1/(3µ0) (see Eq. (24a)). We measure the ampli-

fication of the ratio of the weakly nonlinear versus lin-
ear terms which can be written as:

∫∞
−∞ 6h1/h0 dx and∫∞

−∞ 2αθ1dx. These are evaluated at y = 0 from the
nonlinear simulations (labelled ‘nonlinear’) and the cor-
responding linear stability analysis (labelled ‘linear’), and
shown in Figs. 9(d, e, f) for k = 1. The values are nor-
malized with the corresponding values at t = 0. For the
case considered in Figs. 9(f), there is not much differ-
ence between the linear and nonlinear results at early
times, suggesting that the weakly nonlinear evolution is
well captured by the linear stability analysis (Figs. 9(c)).
In contrast, Fig. 9(e) shows the nonlinear results to di-
verge from the linear results except at very early times,
reflected in the difference between the linear and nonlin-
ear amplification seen in Fig. 9(b). Assuming that the
base state h0 ∼ t−β (0 < β < 1) (Fig. 3(f)) and the per-
turbation h1 ∼ eλt (λ > 0), then

∫∞
−∞ 6h1/h0 dx ∼ tβeλt.

The amplification at early times ∼ tβ which is due to the
decay of the base state (rather than growth in perturba-
tions); at later times the exponential growth in h1 dom-
inates the amplification of the weakly nonlinear terms.
The time at which this transition occurs can be esti-
mated as t ∼ (

√
β − β)/λ (corresponding to an inflec-

tion point). Depending on the values of β and λ (which
depend on the system parameters and the wavenumber),
this linear-to-weakly nonlinear transition can occur at
early times (Fig. 9(f)) or only at very early times (Fig.
9(e)). For the stable case,

∫∞
−∞ 6h1/h0 dx ∼ tβe−λt. In

this case, the amplification at early times is due to the
decaying base state; at later times the weakly nonlinear
terms gradually decay compared to the exponential de-
cay in the linear term (Fig. 9(d)). The transition from
linear-weakly nonlinear in this case occurs at t ∼ β/λ.
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Figure 9: (a, b, c). Comparison of the amplification ratios from the nonlinear simulations, Ah(y = 0, t) (labelled
‘nonlinear’), and Ah(t) from the linear stability analysis (labelled ‘linear’), for varying wavenumbers. (d, e, f).
Comparison of the amplification of the ratio between the weakly nonlinear and linear terms at y = 0 from the

nonlinear simulations and from the linear stability analysis, for k = 1 (see text for details). The amplification ratios
are normalized with the corresponding values at t = 0. The parameter values are: (a, d) Pe = 102, a = b = 0.1,

α = 2, (b, e) Pe = 102, a = b = 0.1, α = 6, and (c, f) Pe = 104, a = b = 10, α = 4.

We confirm that the weakly nonlinear terms are stabi-
lizing, contributing to the nonlinear saturation and slow
decrease in the amplification ratios in the nonlinear sim-
ulations (Figs. 9(a, b, c)).

The slow dominance of the k = 1 mode over the

other wavenumbers observed in Fig. 9(b, c) is further ex-
plored in the nonlinear simulations shown below. Figure
10 shows the contour plot of the evolution of h(x, y, t)
(a, c, e) and θ(x, y, t) (b, d, f) for times, t = 0, 10, 30, re-
spectively, with Pe = 102, α = 6, a = b = 0.1. The base
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Figure 10: Contour plot of the evolution of h(x, y, t) (a, c, e) and θ(x, y, t) (b, d, f) for time, t = 0 (a, b), t = 10 (c, d)
and t = 30 (e, f) with S = 1 (inclination angle approximately 6o), Pe = 102, α = 6, a = b = 0.1, k = 1 and A = 0.02.

state h0(x) for this case has a slumped dome-shaped pro-
file with a fluid ridge (Fig. 10(a)) and a sufficiently large
gradient in θ0(x) exists at the dome’s leading edge (Fig.
10(b)), both precursors for linear instability to be initi-
ated. We impose a transverse perturbation with a single
wavenumber k = 1 and amplitude A = 0.02 on both
(h, θ)0(x) (see Fig. 10(a, b)). We observe clearly in this
case that both base states lose their stability to a finger-
ing instability in the transverse direction. The instability
mechanism is as follows. A perturbation of the fluid ridge
making it higher at a point along with an increase in
temperature due to the perturbation in θ makes it move
faster due to the horizontal component of gravity, and
the perturbation will grow. This manifests itself at the
dome’s leading edge as a protruding finger (Fig. 10(c)),
hotter in the middle and cooler at the edges (Fig. 10(d)).
However, transverse diffusion (controlled by Pe)) moves
heat away from the centre to the edges cooling down the
emerging finger (Fig. 10(f)). This combined with the
decay in the base state slows down the finger gradually
weakening it. A much weaker instability (smaller growth
rate compared to k = 1) is observed for k = 2 and the
perturbations decay to zero for t ≥ 10 (see Fig. 9(b)). A
similar behaviour is observed for k ≥ 3 (see Fig. 9(b)).

We next consider the evolution of h(x, y, t) and
θ(x, y, t) for intermediate values of Pe, represented by
Pe = 104. Figure 11 shows the contour plot of the time
evolution of h(x, y, t) (left panels) and θ(x, y, t) (right
panels), with Pe = 104, α = 4, a = b = 10 and k = 1.
We impose a transverse perturbation with wavenumber
k = 1 and amplitude A = 0.02 on both h0(x) and θ0(x)
(see Fig. 11(a, b)). We observe that the both the base
states lose their stability to a fingering instability with
a similar mechanism as in the previous case, except that
instability is more localised around y = 0. This is due to
transverse diffusion of heat being much weaker for larger
Pe so the centre of the protruding finger loses heat (cools)
much more slowly, allowing the finger to be sustained for
a longer period of time. Figure 12 shows the evolution of
h(x, y, t) (left panels) and θ(x, y, t) (right panels) for the
same parameter set, except k = 2. The fingering insta-
bility still exists for this wavenumber with a growth rate
comparable to k = 1 (see Fig. 9(c)). Similar behaviour is
observed for k = 3, except that the instability weakens in
time (see Fig. 9(c)); results not shown here). The weaker
transverse diffusion of heat promoting the finger is now
offset by the stabilizing effect of the flow due to trans-
verse diffusion, i.e., Q(y) in Eq. (A6), which is potentially
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Figure 11: Contour plot of the time evolution of h(x, y, t) (left panels) and θ(x, y, t) (right panels), with S = 1
(inclination angle approximately 6o), Pe = 104, α = 4, a = b = 10, k = 1 and A = 0.02.
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Figure 12: Contour plot of the time evolution of h(x, y, t) (left panels) and θ(x, y, t) (right panels), with S = 1
(inclination angle approximately 6o), Pe = 104, α = 4, a = b = 10, k = 2 and A = 0.02.
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enhanced at higher wavenumbers. A similar behaviour is
observed for k ≥ 3 (see Fig. 9(c)).

VI. DISCUSSION

We used the thin film equation coupled to an
advection-diffusion equation for the temperature to in-
vestigate the spreading and cooling of a hot Newtonian
liquid dome down an inclined plane. We considered
non-isothermal conditions for the reduced Péclet num-
ber, Per = O(1), including a temperature-dependent
viscosity and heat loss due to cooling at the free surface
and substrate. Our results highlighted a key feature dur-
ing the spreading process, namely the preferential cooling
near the dome’s leading edge where the rate of heat loss is
maximum. The extent of this cooling ranged from a col-
lar of colder liquid near the dome’s leading edge (for in-
termediate Per) to one where the temperature isotherms
became almost vertical across the dome (for low Per).

Our results advance beyond previous work on cooling
spreading domes on horizontal surfaces15–18. We showed
that the cooler more viscous collar near the dome’s lead-
ing edge holds back less viscous hotter fluid behind it;
the enhanced mobility of the hotter fluid due to both the
lower viscosity and inclination of the substrate resulted
in the formation of a localized fluid ridge at the leading
edge of the dome overriding a spreading slumped dome.
The fluid ridge played an important role in the nonlin-
ear dynamics and fingering instability of the contact line
at the dome’s leading edge. This structure is absent for
spreading on a horizontal substrate. Although the above
scenario also exists here, the absence of extra mobility
does not allow the creation of the fluid ridge.

The main highlight of this study is that the relatively
weak instability examined for cooling spreading domes
on horizontal surfaces15–18 can be made more powerful
by placing the fluid on an inclined surface. The extent to
which the fluid ridge and temperature gradient (and cor-
responding viscosity contrast) near the dome’s leading
edge necessitate the initiation of the fingering instabil-
ity is revealed using a linear stability analysis combined
with numerical simulations. The necessary conditions
combined with the parameter mapping shown in Fig. 5
provided the threshold conditions for predicting a priori
whether the fingering will occur or not. Previous stabil-
ity studies17,18 for cooling spreading domes on horizontal
surfaces identified the thermo-viscous instability mecha-
nism elucidated in §V B but they could only predict a
very weak instability, possibly due to the absence of a
fluid ridge in this case. The instability is damped out
eventually for constant volume spreading, however, intro-
ducing a constant flux of hot liquid through the vent sus-
tained the fingering instability (results not shown here).

The viscous fingering instability observed in this work
is similar to viscous banding instability first identified by
Kowal14, except that the viscous banding here is dynam-
ically generated due to temperature variations along the

viscous-gravity current. While the viscous banding lin-
ear instability mechanism reported by Kowal14 is directly
related to the free surface slope discontinuity across the
intrusion front, no fluid ridge is observed. This may be
due to the sharp discontinuity in viscosity assumed at
the intrusion front, whereas in our work there is a length-
scale O(Pe−1/3) over which the discontinuity in viscosity
is smoothed allowing for a ridge solution to exist across
the intrusion front. Moreover, the fluid ridge played a
crucial role in the linear instability through destabilizing
buoyancy forces with the instability enhanced for increas-
ing wavenumbers (§V A and Fig. 8(b, c)), stabilizing at
later times as the ridge dissipates. This is in contrast to
Kowal14 where the buoyancy forces stabilize the linear
instability at large wavenumbers.

There are limitations to this study. The linear stabil-
ity analysis and numerical simulations were performed
using Per = O(1) values, which pushes the boundaries
of the Per � 1 (vertically isothermal) asymptotic the-
ory on which they are based on. Although we have
not made a direct comparison between Per � 1 and
Per = O(1) (vertically non-isothermal) results, the non-
linear dynamics displayed by the Per = O(1) numer-
ical results are captured and their underlying physical
mechanisms preserved. Based on this we can be confi-
dent about extending the asymptotic theory to the range
of intermediate Per values considered here. We would
need to perform the stability analysis including the three-
dimensional temperature field to investigate much higher
values of Per. This will be considered in future work.

We have only investigated Newtonian rheology. In re-
ality, such flows exhibit non-Newtonian and viscoplastic
behaviour, and the yield stress can be strongly depen-
dent on temperature17,18. The interaction between the
so-called pseudo-plug region (which starts forming from
the surface) and surface cooling is important when the
cooling boundary layer at the surface advances into the
plug region, otherwise the plug shields the dome from
cooling. As part of the future work, we would need to
extend our model to include temperature-dependent non-
Newtonian effects and their influence on cooling.

A key ingredient missing in this work is phase transi-
tion due to solidification at both the free surface (surface
crust) and the substrate. Previous models have consid-
ered spreading under the influence of solidification of the
underlying substrate28,29; a bi-viscosity model15 has also
been used as a proxy to model a very viscous surface
crust. The crust can directly affect the dynamics by con-
tributing additional mechanical forces, e.g., a tensile re-
straining force30. The formation of the liquid ridge would
depend on the competition between the force pushing the
hotter liquid behind the front against the restoring force
applied by the surface crust. Hence, the interaction be-
tween the surface crust and the underlying hot liquid flow
would need to be taken into account.
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Appendix A: Derivation of the evolution equation in Eqs.
(19,20)

Using the lubrication approximation, the leading order
equations governing the flow can be written as:

ux + vy + wz = 0, (A1a)
− px + ∂zτxz + S = 0, (A1b)
− py + ∂zτyz = 0, (A1c)
− pz − 1 = 0, (A1d)
τxz = τyz = p = 0,

ht + uhx + vhy = w, at z = h(x, t), (A1e)
u = 0, v = 0, w = ws(x, y, t), at z = 0. (A1f)

Integrating Eq. (A1d) with respect to z between z = 0
and z = h, and using the boundary condition for p in
Eq. (A1e) gives p = h(x, t) − z. Integrating Eq. (A1b)
with respect to z between z = 0 and z = h, and using
the boundary condition for τxz in Eq. (A1e) and p above
gives τxz(x, z) = (S − hx)(h− z). Integrating Eq. (A1c)
with respect to z between z = 0 and z = h, and using
the boundary condition for τyz in Eq. (A1e) and p above
gives τyz(x, z) = (−hy)(h − z). Using Eqs. (13),(15)
and the shear stresses τxz, and τyz, we obtain the leading
order shear rate,

uz = (S − hx)
(h− z)

µ(θ)
, vz = (−hy)

(h− z)

µ(θ)
. (A2)

Integrating Eq. (A2) with respect to z and using the
boundary conditions for u and v in Eq. (A1f), we obtain

u(x, y, z, t) = (S − hx)

∫ z

0

(h− z′)

µ(θ)
dz′, (A3a)

v(x, y, z, t) = (−hy)

∫ z

0

(h− z′)

µ(θ)
dz′. (A3b)

Using the continuity equation, Eq. (A1a), and the
boundary condition for w in Eq. (A1f), gives

w(x, y, z, t) = −
∫ z

0

uxdz
′−
∫ z

0

vydz
′+ws(x, y, t). (A4)

Now, the leading order liquid flux through a cross-section
can be written as:

Q(x)(x, y, t) =

∫ h

0

(h− z)uzdz,

Q(y)(x, y, t) =

∫ h

0

(h− z)vzdz. (A5)

Using the expression for uz, and vz above, we obtain

Q(x)(x, y, t) = (S − hx)

∫ h

0

(h− z)2

µ(θ)
dz,

Q(y)(x, y, t) = (−hy)

∫ h

0

(h− z)2

µ(θ)
dz. (A6)

Integrating the continuity equation, Eq. (A1a), using
the boundary conditions in Eq. (A1f) and substituting
into the kinematic boundary condition in Eq. (A1e), one
obtains the depth-averaged evolution equation for h:

ht +Q(x)
x +Q(y)

y = ws. (A7)

Using the expressions for Q(x), Q(y) from above, we can
write the evolution equation for h(x, y, t) as:

ht = ∇.

([∫ h

0

(h− z)2

µ(θ)
dz

]
∇h

)
− S

(∫ h

0

(h− z)2

µ(θ)
dz

)
x

+ ws, (A8)

where ws(x, y, t) is given by Eq. (17).

Appendix B: Derivation of the reduced model for Pe = O(1)

We consider the asymptotic limit, where the Péclet
number, Pe = O(1), so that the reduced Péclet num-
ber, Per = O(ε2). We also impose the heat trans-
fer coefficients (a, b) = O(ε2). In this limit, let θ =
θ0(x, y, z, t) + ε2θ2(x, y, z, t) + . . . Substituting into Eq.
(21) gives to leading order:

θ0zz = 0, θ0z = 0 at z = 0 and z = h(x, y, t). (B1)

This implies θ0 = θ0(x, y, t). Hence, θ = θ0(x, y, t) +
ε2θ2(x, y, z, t) + . . ..

Substituting this in Eq. (21) gives

Pe [θ0t + uθ0x + vθ0y] = [θ2zz + θ0xx + θ0yy] , (B2a)
θ2z = hxθx + hyθ0y − aθ0, at z = 0, (B2b)
θ2z = Pe(θ0 − 1)ws + b(θ0 − θ0s), at z = h(x, y, t).

(B2c)
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Integrating Eq. (B2a) from z = 0 to z = h, and using
the boundary conditions Eqs. (B2b,B2c), we obtain

hxθ0x + hyθ0y − aθ − [Pe(θ0 − 1)ws + b(θ0 − θ0s)] =

Pe(hθ0t + θ0x

∫ h

0

udz + θ0y

∫ h

0

vdz)hθ0xx − hθ0yy.

(B3)

Dropping the subscripts, the leading order tempera-
ture field is thus gives by

θt + [
Q(x)

h
− hx

hPe
]θx + [

Q(y)

h
− hy

hPe
]θy =

1

Pe
[θxx + θyy]

− 1

hPe
[aθ + b(θ − θs)]−

ws

h
(θ − 1), (B4)

where

Q(x) =
1

3

h3

µ(θ)
(S − hx), Q(y) =

1

3

h3

µ(θ)
(−hy). (B5)

Thus, the evolution equation for the free surface and
the temperature field are given by:

ht +Q(x)
x +Q(y)

y = ws, (B6a)

θt + [
Q(x)

h
− hx

hPe
]θx + [

Q(y)

h
− hy

hPe
]θy =

1

Pe
[θxx + θyy]

− 1

hPe
[aθ + b(θ − θs)]−

ws

h
(θ − 1), (B6b)

Q(x) =
1

3

h3

µ(θ)
(S − hx), Q(y) =

1

3

h3

µ(θ)
(−hy), (B6c)

µ(θ) = e−αθ, (B6d)

ws = [9Qs0Qs(t)/16]

[
1−

(
x

x0

)2
]
+

[
1−

(
y

y0

)2
]
+

.

(B6e)

Appendix C: Mapping (x, z) ∈ [0, 1] × [0, h] to a
Rectangular Domain (x, z) ∈ [0, 1] × [0, 1]

In order to solve Eqs. (20),21a) numerically, it is in-
structive to map (x, z) ∈ [0, 1] × [0, h] to a rectangular
domain (x, z) ∈ [0, 1] × [0, 1]. We apply the following
change of variables:

x̄ = x, z̄ =
z

h(x, t)
, t̄ = t. (C1)

Using the chain rule, we can write

∂

∂x
=

∂

∂x̄
− z̄hx̄

h

∂

∂z̄
,

∂

∂z
=

1

h

∂

∂z̄
,

∂

∂t
=

∂

∂t̄
− z̄ht̄

h

∂

∂z̄
. (C2)

Applying the above change of variables, the new set of
transformed evolution equations for h(x̄, t̄) and θ(x̄, z̄, t̄)

can be written as:

ht̄ +Qx̄ = ws, (C3a)

Q = h3(S − hx̄)

∫ z̄=1

z̄=0

(1− z̄)2

µ(θ)
dz̄, (C3b)

ws =

{
9
16Qs0Qs(t)

[
1− (x̄/x̄0)

2
]
, x̄ ≤ |x̄0|,

0, otherwise, (C3c)

ε2Pe[θt̄ + uθx̄ + (w − z̄uhx̄ − z̄ht̄)
1

h
θz̄] =

1

h2
θz̄z̄,

(C3d)
θz̄ = ε2hPe(θ − 1)ws + bh(θ − θs), at z̄ = 0, (C3e)

θz̄ =
ε2hhx̄θx̄
1 + ε2z̄h2

x̄

− ahθ

1 + ε2z̄h2
x̄

, at z̄ = 1. (C3f)

We need to determine the transformed velocity field,
(u,w). In order to do this, the Eq. (A2) is first trans-
formed and solved for horizontal velocity component
which implies

uz̄ = h2(S − hx̄)
(1− z̄)

µ(θ)
. (C4)

Using the continuity equation in transformed variables
gives

wz̄ = z̄hx̄uz̄ − hux̄. (C5)

Integrating Eq. (C4) subject to u = 0 on z̄ = 0 gives

u(x̄, z̄, t̄) = h2(S − hx)

∫ z̄

0

(1− ź)

µ(θ)
dź, (C6)

Substituting Eq. (C4) and (C6) into transformed con-
tinuity equation, we obtain

wz̄ = h2hx̄(S − hx̄)
z̄(1− z̄)

µ(θ)

− h∂x̄

(
h2(S − hx̄)

∫ z̄

0

(1− ź)

µ(θ)
dź

)
. (C7)

Integrating with respect to z̄ and using the condition
w = ws on z̄ = 0 implies

w(x̄, z̄, t̄) = h2hx̄(S − hx̄)

∫ z̄

0

ź(1− ź)

µ(θ)

− h∂x̄

(
h2(S − hx̄)

∫ ź

0

(∫ ´́z

0

(1− ź)

µ(θ)
d´́z

)
dź

)
+ ws.

(C8)

The above equation can be simplified by changing the
order of the integration. An integral of the form∫ ź

0

∫ ´́z

0

f(x, z, t)dźd´́z, (C9)

on interchanging the order of integration becomes∫ ź

0

∫ ´́z

0

f(x, z, t)dźd´́z =

∫ ź

0

f(x, z, t)(z − ź)dź. (C10)
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Therefore Eq. (C8) can be written as:

w(x̄, z̄, t̄) = h2hx̄(S − hx̄)

∫ z̄

0

ź(1− ź)

µ(θ)
dź

− h∂x̄

(
h2(S − hx̄)

∫ z̄

0

(1− ź)(z̄ − ź)

µ(θ)
dź

)
+ ws. (C11)

Appendix D: Geometric criterion to quantify the elevation
of the fluid ridge

In order to quantify the elevated ridge near the flow
front observed for intermediate values of Per, it is in-
structive to plot the slope of the free surface hx there.
Figures 13(a, b) show hx (dashed curves) at t = 30 near
the flow front for Per = 102, 104, respectively, corre-
sponding to the free surface shape profiles h(x, t = 30)
(solid curves; time evolution shown in Fig. 3(c, d)). We
observe that for Per = 102 which exhibits an elevated
ridge at the flow front during the evolution (solid curve in
Fig. 13(a)), hx has a prominent local maximum between
the back edge and the main peak of the ridge (dashed
curve in Fig. 13(a)). In contrast for Per = 104, al-
though a local maximum in hx exists here (Fig. 13(b)),
it is much less prominent compared to Fig. 13(a). The
degree of elevation is quantified as follows. We observe
a local minimum in hx (dashed curves in Fig. 13(a, b))
where the curvature of h changes from concave down (in
the bulk section of the dome) to concave up (at the back
edge of the ridge).

A geometric criterion to quantify the elevation of the
ridge is that the change in the local angle of elevation
given by tan−1(hx|max)− tan−1(hx|min) should exceed
a prescribed threshold value during the evolution. If this
is the case, then the ridge is classified to be elevated.

REFERENCES

1A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution
of thin liquid films,” Rev. Mod. Phy. 69, 931–980 (1997).

2R. Craster and O. Matar, “Dynamics and stability of thin liquid
films,” Rev. Mod. Phys. 81, 1131–1198 (2009).

3T. G. Myers, “Surface tension driven thin film flows,” in The
Mechanics of Thin Film Coatings (Wiley, 1996).

4E. Boujo and M. Sellier, “Pancake making and surface coating:
Optimal control of a gravity-driven liquid film,” Phys. Rev. Flu-
ids 4, 064802 (2019).

5C. Journeau, F. Sudreau, J. Gatt, and C. Gérard, “Ther-
mal, physico–chemical and rheological boundary layers in multi–
component oxidic melt spreads,” Int. J. Thermal Sci. 38, 879–891
(1999).

6R. W. Griffiths, “The dynamics of lava flows,” Annu. Rev. Fluid
Mech. 32, 477–518 (2000).

7J. F. Nye, “Mechanics of glacier flow,” J. Glaciol. 2, 82–93 (1952).

8A. M. Johnson, Physical Processes in Geology (Freeman, San
Francisco, 1970).

9H. E. Huppert, “Gravity currents: a personal perspective,”
J. Fluid Mech. 554, 299–322 (2006).

10H. Bleile and S. Rodgers, “Marine coatings,” in Encyclopedia of
Materials: Science and Technology, edited by K. J. Buschow,
R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Ma-
hajan, and P. Veyssière (Elsevier, Oxford, 2001) pp. 5174–5185.

11S. Diniega, S. E. Smrekar, S. Anderson, and E. Stofan, “The in-
fluence of temperature-dependent viscosity on lava flow dynam-
ics,” J. Geophys. Res.: Earth Surface 118, 1516–1532 (2013).

12C. Ancey, “Plasticity and geophysical flows: A review,” J. Non-
Newtonian Fluid Mech. 142, 4–35 (2007).

13P. G. Saffman and G. Taylor, “The penetration of a fluid into
a porous medium or hele-shaw cell containing a more viscous
liquid,” Proc. R. Soc. Lond. A 245, 312–329 (1958).

14K. N. Kowal, “Viscous banding instabilities: non-porous viscous
fingering,” J. Fluid Mech. 926, 926–946 (2021).

15J. R. King, D. S. Riley, and A. Sansom, “Gravity currents with
temperature-dependent viscosity,” Comput. Assist. Mech. Eng.
Sci. 7, 251–277 (2000).

16A. Sansom, J. R. King, and D. S. Riley, “Degenerate-diffusion
models for the spreading of thin non-isothermal gravity currents,”
J. Eng. Maths 48, 43–68 (2004).

17N. J. Balmforth and R. V. Craster, “Dynamics of cooling domes
of viscoplastic fluid,” J. Fluid Mech. 422, 225–248 (2000).

18N. J. Balmforth, R. V. Craster, and R. Sassi, “Dynamics of
cooling viscoplastic domes,” J. Fluid Mech. 499, 149–182 (2004).

19A. Sansom, Spreading gravity currents with temperature–
dependent viscosity, Ph.D. thesis, University of Nottingham
(2000).

20J. J. Wylie and J. R. Lister, “The effect of temperature-dependent
viscosity on flow in a cooled channel with application to basaltic
fissure eruptions,” J. Fluid Mech. 305, 239–261 (1995).

21G. D. Smith, Numerical Solution of Partial Differential Equa-
tions: Finite Difference Methods, 3rd ed. (Macmillan, 1985).

22K. W. Morton and D. F. Mayers, Numerical Solution of Par-
tial Differential Equations, 2nd ed. (Cambridge University Press,
2005).

23J. R. Lister, “Viscous flows down an inclined plane from point
and line sources,” J. Fluid Mech. 242, 631–653 (1992).

24L. Kondic, “Instabilities in gravity driven flow of thin fluid films,”
SIAM Rev. 45, 95–115 (2003).

25B. D. Edmonstone, O. K. Matar, and R. V. Craster, “Flow of
surfactant–laden thin films down an inclined plane,” J. Engrg.
Math. 50, 141–156 (2004).

26N. J. Balmforth, A. S. Buridge, R. V. Craster, J. Salzig,
and A. Shen, “Visco–plastic models of isothermal lava domes,”
J. Fluid Mech. 403, 37–65 (2000).

27N. J. Balmforth, R. V. Craster, and C. Toniolo, “Interfa-
cial instability in non–Newtonian fluid layers,” Phys. Fluids 15,
3370–3384 (2003).

28M. Bunk and J. R. King, “Spreading melts with basal solidifica-
tion,” Z. Angew. Math. Mech. 83, 820–843 (2003).

29T. Myers, J. Charpin, and S. J. Chapman, “The flow and so-
lidifiction of a thin fluid film on an arbitrary three-dimensional
surface,” Phys. Fluids 14, 2788–2803 (2002).

30R. M. Iverson, “Lava domes modeled as brittle shells that en-
close pressurized magma,” in Lava Flows and Domes: Emplace-
ment Mechanisms and Hazard Implications, edited by J. Fink
(Springer, 1990) pp. 47–69.

31G. A. Algwauish, The non-Newtonian and non-isothermal
spreading of liquid domes using mathematical and numerical
methods, Ph.D. thesis, Keele University (2019).

http://dx.doi.org/ https://doi.org/10.1016/B0-08-043152-6/00899-8
http://dx.doi.org/ https://doi.org/10.1016/B0-08-043152-6/00899-8


25

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

3 4 5 6 7 8 9
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 13: hx(x, t = 30) (dashed curves) corresponding to h(x, t = 30) (solid curves) for (a) Per = 102 and (b)
Per = 104. The parameter values are: S = 1 (plane inclined at 6o), α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.
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