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ABSTRACT
Objective  The aim of this study was to evaluate the 
potential real-world application of a machine learning 
(ML) algorithm, developed and trained on heart failure (HF) 
cohorts in the USA, to detect patients with undiagnosed 
wild type cardiac amyloidosis (ATTRwt) in the UK.
Design  In this retrospective observational study, 
anonymised, linked primary and secondary care data 
(Clinical Practice Research Datalink GOLD and Hospital 
Episode Statistics, respectively, were used to identify 
patients diagnosed with HF between 2009 and 2018 in 
the UK. International Classification of Diseases (ICD)-10 
clinical modification codes were matched to equivalent 
Read (primary care) and ICD-10 WHO (secondary care) 
diagnosis codes used in the UK. In the absence of specific 
Read or ICD-10 WHO codes for ATTRwt, two proxy case 
definitions (definitive and possible cases) based on the 
degree of confidence that the contributing codes defined 
true ATTRwt cases were created using ML.
Primary outcome measure  Algorithm performance was 
evaluated primarily using the area under the receiver 
operating curve (AUROC) by comparing the actual versus 
algorithm predicted case definitions at varying sensitivities 
and specificities.
Results  The algorithm demonstrated strongest predictive 
ability when a combination of primary care and secondary 
care data were used (AUROC: 0.84 in definitive cohort and 
0.86 in possible cohort). For primary care or secondary 
care data alone, performance ranged from 0.68 to 0.78.
Conclusion  The ML algorithm, despite being developed 
in a US population, was effective at identifying patients 
that may have ATTRwt in a UK setting. Its potential use in 
research and clinical care to aid identification of patients 
with undiagnosed ATTRwt, possibly enabling earlier 
diagnosis in the disease pathway, should be investigated.

INTRODUCTION
Transthyretin amyloid cardiomyopathy 
(ATTR-CM) is a progressive, fatal disease 
characterised by the deposition of misfolded 
transthyretin (TTR) amyloid fibrils in the 
myocardium which in turn leads to heart 

failure (HF).1 There are two forms of ATTR-
CM: wild-type (ATTRwt), which is associated 
with ageing, and hereditary (ATTRv), caused 
by genetic mutations of the TTR gene.2 Both 
forms of the disease can be difficult to diag-
nose due to similarities between ATTR-CM 
and other causes of HF.1

ATTRv is rare and thought to affect at least 
40 000 people worldwide but its prevalence 
varies geographically due to the distribution 
of specific TTR mutations.3 The prevalence 
of ATTRwt is unknown but emerging data 
suggest that it is underdiagnosed in routine 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The representativeness of Clinical Practice Research 
Datalink data to the UK general population is well 
documented, and Hospital Episode Statistics con-
tains data from all National Health Service second-
ary care activity.

	⇒ However, findings may not be generalisable to other 
geographical regions outside of England and the UK.

	⇒ In the absence of an equivalent diagnosis code for 
wild type cardiac amyloidosis (ATTRwt) (International 
Classification of Diseases-10 (ICD-10)-clinical mod-
ification) in ICD-10 WHO or Read coding systems, 
two proxy case definitions were applied—referred 
to as ‘the definitive cohort’ and ‘the possible co-
hort’. The small definitive cohort was more precise 
at detecting positive cases (high precision), but also 
missed cases (low recall). The larger possible cohort 
displayed greater uncertainty at detecting positive 
cases (low precision) but classified a larger popula-
tion with an ATTRwt diagnosis (high recall).

	⇒ To refine ATTRwt definitions using diagnosis codes 
in the UK, patients within the possible cohort who 
also had a diagnostic code for heart failure with pre-
served ejection fraction or heart failure with normal 
ejection fraction were reassigned to the definitive 
cohort, with a view to improving the recall while 
maintaining precision.
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practice. For example, evidence from non-invasive 
cardiac imaging and postmortem examination suggest 
that ATTRwt may account for up to 13% of HF with 
preserved ejection fraction (HFpEF) in older patients.4 5 
The reasons for misdiagnosis or underdiagnosis are multi-
factorial and include disease, clinician-related and system-
related factors,2 6 but identifying undiagnosed patients 
is essential to provide timely and appropriate treatment 
now that the first disease-modifying therapy for ATTR-CM 
has been approved.7 8

A non-invasive diagnostic algorithm involving nuclear 
bone scintigraphy imaging is now standard of care in 
many countries,9–11 and recent consensus recommenda-
tions1 have the potential to increase disease awareness 
and improve diagnosis rates. However, diagnostic criteria 
are reliant on a high index of clinical suspicion, which is 
often lacking and require testing at specialist clinics.

Machine learning (ML) is a branch of artificial intel-
ligence that allows an automated method of identifying 
patterns and trends in data without having to specify rela-
tionships a priori and is particularly useful for multidimen-
sional and dynamic data such as electronic health records 
(EHRs).12 13 ML techniques have been applied across 
cardiovascular diseases, including the prediction of HF 
and the detection of cardiac arrhythmias, with promising 
overall predictive ability.14 Recently, an ML algorithm was 
developed to identify undiagnosed ATTRwt in patients 
with HF using data from a medical claims database in the 
USA.15 This algorithm displayed good predictive perfor-
mance in identifying patients with ATTRwt in the USA. 
In this study, we sought to evaluate the US ATTRwt ML 
algorithm in a real-world UK population using EHR from 
primary care and secondary care.

METHODS
Data sources
This study used primary care data (from the Clinical 
Practices Research Datalink (CPRD) GOLD data set16) 
linked with secondary care data (from the Hospital 
Episode Statistics (HES) data set17) in England. The 
CPRD GOLD database contains anonymised EHR from 
over 11.3 million patients at 674 general practitioner 
(GP) practices across the UK and is representative of the 
UK general population in terms of key demographic and 
clinical characteristics.18 HES is a data warehouse of all 
National Health Service (NHS) secondary care activities 
in England. HES data was provided by CPRD as a linked 
data set for patients registered at GP practices in England 
that participated in the linkage scheme; around 75% of 
GP practices in England contribute to the CPRD linkage 
scheme.18

Study data were obtained from 01 January 2009 to 30 
June 2018, including a look-back period from 01 January 
2000 to 31 December 2008 to identify pre-existing cases of 
ATTR-CM. The index date for each patient was the date of 
their first CPRD/HES record, if this occurred during the 
study period. For patients whose first CPRD/HES record 

occurred during the look-back period, the index date was 
set to 01 January 2009. Patients were followed-up until 
the earliest of the following events: transferred out of a 
GP practice participating in CPRD, GP practice stopped 
participating in CPRD, death or end of study period.

Machine learning algorithm
The ML (random forest) algorithm was developed using 
diagnosis codes from the International Classification of 
Diseases-10 (ICD-10) clinical modification (CM), the 
codeset used in the USA. The case definition for ATTRwt 
was derived from ICD-10 CM code E85.82: wild-type 
transthyretin-related (ATTR) amyloidosis. The ML algo-
rithm mapped a set of data inputs (ICD-10 CM codes), 
known as features/phenotypes that were present in at least 
2% of patients with ATTRwt. There were 1872 features/
phenotypes used in the ATTRwt ML algorithm. Features 
were identified according to the hierarchical structure 
of the ICD-10 CM classification system, and were catego-
rised at three levels: Subchapter (diagnosis category (eg, 
I30-I5A—other form of heart disease), Major (diagnosis 
name (eg, I50 HF)) and Short Description (diagnosis 
description (eg, I50.84—end stage HF)). A feature was 
defined as the presence of code from any of the catego-
ries (Subchapter, Major or Short Description).

Patient population
Patients were initially eligible for inclusion in the study 
if they were ≥18 years of age on 01 January 2000, had a 
diagnosis of ATTRwt or HF, had at least one record in 
either CPRD or HES databases during the study period 
(01 January 2000 to 30 June 2018), and did not have a 
diagnosis of primary or amyloid light-chain (AL) amyloi-
dosis. Cohorts were later refined based on the case defi-
nition criteria outlined in table 1. In the UK during the 
study period, data were recorded in clinical practice and 
diagnoses were coded using Read codes (Clinical Terms 
V.3; CTV.3) in primary care and ICD-10 WHO 2016 (ie, 
the WHO 2016 version of ICD-10) codes in secondary 
care. While a specific ICD-10 CM code for ATTRwt (ie, 
E85.82) was used in algorithm development using US 
data, there was no equivalent diagnosis code in the 2016 
version of ICD-10 WHO. Therefore, to identify ATTRwt 
cases, two proxy case definitions were applied; referred 
to as the definitive cohort and the possible cohort, based 
on the relative confidence of the respective case defini-
tions. The first iteration of the definitive cohort included 
patients with senile systemic amyloidosis or senile cardiac 
amyloidosis, which are alternative terms for ATTRwt 
(online supplemental table S1).19 20 However, to improve 
recall (identification) of patients in the definitive cohort, 
patients in the possible cohort who also had a diagnosis 
code for HFpEF or HF with normal ejection fraction 
(HFnEF) were reassigned to the definitive cohort in the 
final iteration (table  1). The 2016 European Society of 
Cardiology Guidelines21 introduced a new class of HF 
with mildly reduced ejection fraction, but given this study 
included data from prior to 2016, this class is not referred 
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to further in this manuscript. The true positives are the 
number of true identifications of people with positive 
diagnosis and true negative values are the number of true 
identifications of people with a negative diagnosis. The 
definitive and possible cohorts are defined by the number 
of true positives plus the number of false negatives.

Patient and public involvement
As this study did not involve direct patient contact, 
patients and the public were not involved in the design, 
conduct, reporting or dissemination plans of the study.

Statistical methods
Matching to a heart failure cohort
To align with the methodology applied in developing the 
ML algorithm in the USA,15 the definitive and possible 
ATTRwt cohorts were each matched in a weighted manner 
to a non-ATTRwt HF cohort on a 1:1 ratio on age, sex 
and medical histories as per the original algorithm.15 The 
matching process ensured methodological comparability 
between algorithm development and evaluation.

Conversion from US to UK diagnosis coding classifications
To align between the different coding systems used to 
develop the algorithm in the USA and evaluate it in the 

UK, mapping between the ICD-10 CM and the ICD-10 
WHO codes used to derive features was undertaken where 
possible. Additionally, to account for limited clinical gran-
ularity in the UK secondary care coding system compared 
with the US counterpart, primary care coding was also 
used to supplement feature derivation. As such, where 
possible, Read codes were mapped to ICD-10 CM via 
ICD-10 WHO. To optimise algorithm performance, partial 
matching was performed on features without a directly 
corresponding diagnosis code but which were ranked as 
1 of the top 50 most clinically important features during 
algorithm development (ie, most strongly associated 
with ATTRwt). Due to the methodological constraints of 
applying an ML algorithm that has already been trained, 
features that had no complete or partial matches based 
on UK coding conventions in either primary care or 
secondary care had to be treated as missing.

Algorithm evaluation
The performance of the algorithm using UK EHR was 
assessed in the possible and definitive cohorts inde-
pendently. The methods applied in algorithm develop-
ment (training and testing, ie, 1:1 matching) were also 
used in this study to ensure comparability with published 

Table 1  Final case definition criteria used in the study

Definitive cohort Possible cohort

Inclusion codes

ICD-10 WHO, 2016 version None E85.9 - amyloidosis, unspecified
I43.1* - cardiomyopathy in metabolic diseases
I42.9 - cardiomyopathy, unspecified
E85.4 - organ-limited amyloidosis
E85.8 - other amyloidosis
I42.8 - other cardiomyopathies
I42.2 - other hypertrophic cardiomyopathy (non-obstructive)
I42.5 - other restrictive cardiomyopathy (constrictive)

Read (CTV.3) C373D00 - senile systemic amyloidosis
C373G00 - senile cardiac amyloidosis

Cyu8L00 -(X)other amyloidosis
G558400 - amyloid cardiomyopathy
G557000 - amyloid heart disease
C373.00 - amyloidosis
C373z00 - amyloidosis NOS
G557011 - cardiac amyloidosis
C373900 - organ limited non-hereditary amyloidosis
C373y00 - other specified amyloidosis

Patients in possible cohort with diagnosis code for HFpEF or HFnEF were reassigned to the definitive cohort

Read (CTV.3) G583.00 - heart failure with normal ejection fraction
G583.11 - HFnEF—heart failure with normal ejection fraction
G583.12 - heart failure with preserved ejection fraction

Exclusion codes (patients with any of the following codes were excluded from the cohorts)

ICD-10 WHO, 2016 version None E85.3 - secondary systemic amyloidosis

Read (CTV.3) C373C00 - AL amyloidosis
C373H00 - amyloid A amyloidosis
C373J00 - beta-2 microglobulin 
amyloidosis
C373700 - primary amyloidosis NEC

C373000 - sporadic primary amyloidosis
C373500 - secondary amyloidosis

AL, amyloid light chain; CTV3, Clinical Terms V.3; HFnEF, heart failure with normal ejection fraction; HFpEF, Heart failure with preserved 
ejection fraction; ICD, International Classification of Diseases; NOS, not otherwise specified.
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evidence on the algorithm’s performance.15 Features 
were considered present if they were recorded (ie, by the 
presence of a diagnosis code) between the index date and 
the end of the study period (30 June 2018). In line with 
algorithm training, time-dependency was not considered. 
A single risk score was produced for each patient with 
ATTRwt (ie, positive diagnosis) and also their matched 
equivalent (ie, negative diagnosis). Algorithm perfor-
mance was evaluated primarily using the area under 
the receiver operating curve (AUROC), by comparing 
the actual versus algorithm predicted case definitions 
at varying sensitivities and specificities. Sensitivity, spec-
ificity, positive predictive value and negative predictive 
value were also assessed at a predefined sensitivity level, 
as was algorithm accuracy, calculated as the sum of true 
positives and true negatives divided by the sample size‍‍

RESULTS
Patient characteristics
The definitive ATTRwt cohort consisted of 46 patients; 
all 46 patients had primary care data included in the 
analysis and 24 patients had linked secondary care data 
(figure 1). The possible ATTRwt cohort was much larger; 
of the 14 962 patients in the overall cohort, 14 286 had 
primary care data included in the analysis and 10 287 had 

secondary care data. Regardless of the care setting used 
to derive case definitions, the definitive cohort was on 
average older than the possible cohort (range: 76.2–77.8 
years vs 69.0–70.0 years) and both cohorts showed a male 
predominance (range: 54.2–65.2%; table 2).

Based on primary care and linked secondary care 
data, patients in the definitive cohort were more likely 
to have HF (34.9%) and atrial fibrillation (AF) (21.7%) 
compared with the possible cohort (21.7% and 15.8%, 
respectively), but had a similar prevalence of hyperten-
sion; 17.4% of the definitive and 20.2% of the possible 
cohort had hypertension. Medication usage was generally 
more prominent in the definitive cohort regardless of 
data source; only angiotensin II antagonists (range: 11.3–
12.2%) were more common in the possible cohort. The 
characteristics of patients in the first iteration of cohort 
definitions (ie, before the reassignment of patients with 
HFpEF/HFnEF) are shown in supplementary material 
(online supplemental table S2).

Feature set mapping
Of 1872 features in the original algorithm,15 63.9% 
(n=1184) were mapped using a combination of diag-
nosis codes from primary care and secondary care. Some 
features had a greater impact on the algorithm’s predic-
tive ability than others, which was quantified in terms of 

Figure 1  Derivation of patient numbers included each cohort. ATTRwt, wild-type transthyretin amyloid cardiomyopathy; 
CPRD, Clinical Practice Research Datalink; HF, heart failure; HFnEF, HF with normal ejection fraction; HFpEF, HF with preserved 
ejection fraction.

https://dx.doi.org/10.1136/bmjopen-2022-070028
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Table 2  Characteristics of patients with ATTRwt

Primary care only Secondary care only
Primary care and linked 
secondary care

Definitive 
cohort (n=46)

Possible 
cohort 
(n=14 286)

Definitive 
cohort (n=24)

Possible 
cohort 
(n=10 287)

Definitive 
cohort (n=46)

Possible 
cohort 
(n=14 962)

Demographic characteristics

Age (years)

 � Mean (SD) 76.2 (12.4) 69.0 (14.6) 77.8 (14.9) 70.0 (14.9) 76.2 (12.4) 69.3 (14.7)

 � Median (IQR) 78 (71–85) 71 (59–81) 81 (69–89) 72 (60–82) 78 (71–85) 71 (59–81)

 � Range 40–97 37–111 40–97 37–111 40–97 37–111

Female, n (%) 16 (34.8) 5316 (37.2) 11 (45.8) 3898 (37.9) 16 (34.8) 5551 (37.1)

Ethnicity, n (%)

 � White 10 (21.7) 2721 (19.0) * 1863 (18.1) 10 (21.7) 2753 (18.4)

 � Black, Asian and other 12 (26.1) 2281 (16.0) * 1703 (16.6) 12 (26.1) 2306 (15.4)

 � Unknown 24 (52.2) 9284 (65.0) 13 (54.2) 6721 (65.3) 24 (52.2) 9903 (66.2)

Clinical measurements, mean (SD)

 � BMI (m/kg2) 23.9 (7.1) 29.4 (7.0) 27.0 (8.3) 29.1 (7.0) 23.9 (7.1) 29.4 (7.0)

 � DBP (mm Hg) 70.7 (14.1) 76.0 (12.3) 72.1 (13.1) 75.8 (12.2) 70.7 (14.1) 76.0 (12.3)

 � SBP (mm Hg) 123.4 (29.6) 127.6 (19.8) 131.7 (29.7) 127.5 (19.4) 123.4 (29.6) 127.6 (19.8)

 � Troponin I (ng/L)† – 59.8 (61.1) – 77.7 (60.6) – 59.8 (61.1)

 � Troponin T (ng/L)† – 43.1 (45.9) – 72.9 (61.0) – 43.1 (45.9)

Comorbidities (on index date), n (%)

 � Cardiomyopathy‡ 18 (39.1) 8448 (59.1) 10 (41.7) 6314 (61.4) 18 (39.1) 8907 (59.5)

 � Hypertension 8 (17.4) 2860 (20.0) 6 (25.0) 2806 (27.3) 8 (17.4) 3023 (20.2)

 � Heart failure 16 (34.9) 3114 (21.8) 8 (33.3) 2436 (23.7) 16 (34.9) 3249 (21.7)

 � Arrhythmia 10 (21.7) 2605 (18.4) 6 (25.0) 2428 (23.6) 10 (21.7) 2774 (18.5)

 � Coronary artery 
disease

* 1857 (13.0) * 1726 (16.8) * 1968 (13.2)

 � Shortness of breath * 1294 (9.0) * 904 (8.8) * 1325 (8.8)

 � Atrial fibrillation 10 (21.7) 2235 (15.6) 6 (25.0) 2078 (20.2) 10 (21.7) 2372 (15.8)

 � Chronic kidney 
disease

* 709 (5.0) * 638 (6.2) * 742 (5.0)

 � Angina * 582 (4.1) * 598 (5.8) * 618 (4.1)

Medication, n (%)

 � ACE inhibitor 22 (47.8) 5347 (37.4) 8 (33.3) 3260 (31.7) 22 (47.8) 5352 (35.8)

 � Beta-blocker 24 (52.2) 5818 (40.7) 13 (54.2) 3629 (35.3) 24 (52.2) 5828 (39.0)

 � Loop diuretic 23 (50.0) 4223 (29.6) 13 (54.2) 2661 (25.7) 23 (50.0) 4229 (28.3)

 � Anticoagulant 15 (32.6) 2692 (18.8) 7 (29.2) 1738 (16.9) 15 (32.6) 2697 (18.0)

 � Vasodilator 5 (10.9) 1069 (7.5) * 708 (6.9) 5 (10.9) 1069 (7.1)

 � Aldosterone antagonist 10 (21.7) 2248 (15.7) * 1387 (13.5) 10 (21.7) 2251 (15.0)

 � Nitrates 5 (10.9) 1037 (7.2) * 686 (6.7) 5 (10.9) 1037 (6.9)

 � Angiotensin II 
antagonist

* 1744 (12.2) * 1165 (11.3) * 1747 (11.7)

*Cells containing <5 events have been suppressed in accordance with Clinical Practices Research Datalink requirements.
†No patients in the definitive cohort had a troponin T/I measurement.
‡Includes: dilated, hypertrophic, restrictive, infiltrative cardiomyopathies. Note: there was no diagnostic code for transthyretin amyloid 
cardiomyopath at the time of the study.
ATTRwt, wild-type transthyretin cardiac amyloidosis; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure.
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feature importance. Approximately 75% of the cumula-
tive importance of features in the algorithm was derived 
from the top 50 ranked features. Examples of the top 
ranked features that were predictive of ATTRwt included 
primary and secondary intrinsic cardiomyopathies, 
carpal tunnel syndrome and HFpEF.15 When adjusting 
for only the features that were matched to the UK coding 
system, this accounted for approximately two-thirds of the 
feature importance. There was no relationship between 
mapping coverage and feature importance, features that 
were matched or not matched were distributed across the 
entire feature importance spectrum. The rate of manual 
partial matching of the key non-matched codes was very 
low, at approximately 0.5%.

Algorithm performance in a UK setting
Algorithm performance was assessed in six scenarios: 
using primary care only, secondary care only and linked 
primary and secondary care data, in the possible and 
definitive cohorts. The performance statistics are outlined 
in table 3 and the receiver operating curves visualised in 
figure 2. In a previous study using US claims data from 
IQVIA and Optum EHR data, the algorithm achieved 
strong predictive performance (AUROC: 0.95 in both 
cohorts).15 In this evaluation study using UK EHR, perfor-
mance metrics were lower than achieved with US data.15

In the possible cohort, there was no difference in 
performance when primary care only data or secondary 
care only data were used (AUROC: 0.78). The algorithm 
performance was higher when data from both settings 
was used (AUROC: 0.86). Figure 2 shows that the algo-
rithm performed accurately in predicting cases (or 
non-cases) across varying sensitivities and specificities. 
When primary care data only were used, the algorithm 
performed well at high specificity (true negative rate), 
possessing the ability to distinguish a large proportion 
(~50%) of true cases despite a high specificity threshold. 
Conversely, when using secondary care data only, the 
algorithm was less able to distinguish true cases at high 
specificities but outperformed its use with primary care 
data in all scenarios where sensitivity was greater than 0.7.

When running the definitive cohort and matched 
equivalents through the ML algorithm, there was gener-
ally a small reduction in performance relative to the 
possible cohort. Using both primary care data with linked 
secondary care data, the algorithm was able to differen-
tiate accurately between true and false negative cases using 
the relative features across the two data sources, achieving 
the best performance (AUROC: 0.84 vs 0.68–0.79). Using 
secondary care data only, there was little difference in 
algorithm performance between the definitive cohort 
(AUROC: 0.79) and the possible cohort (AUROC: 0.78). 
Across all scenarios, relative performance in the definitive 
cohort was penalised due to the low level of recall asso-
ciated with this cohort and uncertainty surrounding the 
performance statistics given the small patient numbers 
involved. Results for the first iteration of cohort defini-
tions (ie, no reassignment of HFpEF/HfnEF) are shown 

in the supplementary material (online supplemental 
table S3 and figure S1).

DISCUSSION
This study evaluated an ML algorithm for identifying 
ATTRwt in the UK using EHR from primary care, 
secondary care and a combination of records from both 
healthcare settings. The algorithm performed well in a UK 
setting using UK data, although performance was poorer 
than that achieved using US claims data from IQVIA and 
Optum EHRs. AUROCs of 0.84 and 0.86 were achieved 

Table 3  Algorithm performance (summary statistics) by UK 
case definitions

Primary 
care only

Secondary 
care only

Primary care 
and linked 
secondary care

Definitive cohort

 � N 91 69 92

 � True positives 30 16 31

 � True negatives 26 32 38

 � False positives 19 8 8

 � False negatives 16 13 15

 � TPR 
(sensitivity)

0.65 0.67 0.67

 � TNR 
(specificity)

0.58 0.71 0.89

 � PPV 0.61 0.55 0.79

 � NPV 0.62 0.80 0.72

 � Accuracy* 0.62 0.70 0.75

 � AUROC 0.68 0.79 0.84

Possible cohort

 � N 28 841 23 724 29 924

 � True positives 9525 6858 9969

 � True negatives 11 049 9845 13 377

 � False positives 3506 3592 1585

 � False negatives 4761 3429 4993

 � TPR 
(sensitivity)

0.67 0.67 0.67

 � TNR 
(specificity)

0.76 0.74 0.89

 � PPV 0.73 0.66 0.86

 � NPV 0.70 0.74 0.73

 � Accuracy* 0.71 0.70 0.78

 � AUROC 0.78 0.78 0.86

*Accuracy should be interpreted with caution as it assumes that 
correct prediction of a positive case is equally important as correct 
prediction of a negative case, and that the number of positive and 
negative cases are similar or equal.
AUROC, area under the receiver operating characteristics; NPV, 
negative predictive value; PPV, positive predictive value; TNR, true 
negative rate; TPR, true positive rate.

https://dx.doi.org/10.1136/bmjopen-2022-070028
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for primary care and linked secondary care records for 
definitive and possible cohorts, respectively. Using UK 
data, the algorithm displayed strongest predictive ability 
when using a combination of primary care and secondary 
care data, given the ability to draw from features across 
both healthcare settings. This study is the first to evaluate 
an ML algorithm using EHR only to identify ATTRwt in 
the UK.

ATTR-CM is frequently overlooked as a cause of HF and 
is often delayed in its recognition. In the UK, the average 
diagnostic delay in patients with ATTRwt from first 
presentation with cardiac symptoms is 39 months.22 Some 
40% of patients with ATTRwt wait more than 4 years for a 
diagnosis. By the time a diagnosis is made, many patients 
will have progressed to advanced HF, missing any oppor-
tunity for early intervention to alter the course of the 
disease. The reasons for missed and delayed diagnosis are 
multifactorial and include the previously perceived rarity 
of the disease, overlap of symptoms with other conditions, 
fragmented knowledge and the heterogenic and multi-
systemic nature of the disease.2 Identifying undiagnosed 
patients is key to provide timely and appropriate treat-
ment, especially as the first disease-modifying therapy for 
ATTR-CM has been approved.7 8

To aid in the diagnosis of ATTR-CM, a non-invasive 
diagnostic algorithm for ATTR-CM has been recently 
published.9 However, effective use of this diagnostic 

algorithm requires a high degree of clinical suspicion, 
specialist consultations and patient testing at specialist 
clinics. Similarly, a set of ‘red flag’ markers designed to 
assist in the diagnosis of ATTR-CM among patients with 
HF have recently been proposed, including a combi-
nation of both cardiac and non-cardiac conditions.2 
However, many of these ‘red flags’ are common in older 
individuals and their presence does not necessarily indi-
cate individuals will develop ATTR-CM. Consequently, 
screening for ATTR-CM using this framework may be too 
broad and result in overscreening.

Alternatively, ML may offer an enhanced approach in 
identifying potential ATTRwt cases through the detec-
tion of patterns between clinical variables before patients 
enter the existing diagnostic route.23 Use of the ML algo-
rithm may aid in identifying an initial high-risk cohort 
that would warrant in-depth evaluation and confirma-
tion of ATTRwt, leading to earlier treatment for these 
patients. The ML algorithm may be useful in a clinical 
setting, as it would increase the suspicion of ATTRwt in 
patients with HF, prompting clinicians to conduct confir-
matory non-invasive diagnostic testing (eg, bone scintig-
raphy). The ML algorithm has broad applicability, as it 
is able to use Read and ICD-10 WHO codes which are 
important classifications for primary and secondary care 
in the UK. Further work would be required to map to 
SNOMED CT codes for applicability in current clinical 

Figure 2  Receiver operating curves: Algorithm performance of UK case definitions.
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practice. Diagnosis and clinical recognition of ATTRwt 
remains important due to high morbidity and mortality 
associated with the disease.

While there is commonality in the gold-standard 
methods of ATTR diagnosis between the USA and UK,9 
coding practices between the two countries vary signifi-
cantly, which affects the coverage of features derived 
from US data within UK coding systems. Despite this, the 
ATTRwt ML algorithm developed using US claims data 
from IQVIA and Optum EHR data performed well in the 
UK setting. However, there were differences in the char-
acteristics of patients with ATTRwt identified in this study 
(definitive cohort) and previously reported cohorts. In 
our study, the proportion of men was 55–65%, yet Huda et 
al15 and other studies22 24 25 have indicated a much stronger 
male predominance of ATTRwt of 80–90%. Furthermore, 
the prevalence of comorbidities including hypertension, 
coronary artery disease and AF in our definitive cohort 
were approximately one quarter to one-third that of the 
prevalence reported in the US cohorts used in algorithm 
development and validation.15 The proportion of patients 
with HF was also lower than expected (<35% across UK 
cohorts), considering ATTR-CM is a strongly associated 
cause of HF. A possible explanation is that the definitive 
cohort was identified using primary care codes, therefore 
a bias may have occurred towards individuals with less 
progressed ATTRwt who were less likely to have HF than 
those hospitalised.

Differences in clinical phenotype were also present 
between the definitive and possible cohorts in our study. 
Patients in the possible cohort were younger, more likely 
to be overweight, less likely to have HF and AF, but more 
likely to have coronary artery disease and generally were 
in receipt of fewer medications than the definitive cohort. 
Approximately 50% of the definitive cohort received ACE 
inhibitors, beta-blockers or loop diuretics. These medi-
cations may be poorly tolerated in patients with ATTR-
CM,26 further highlighting the need for timely diagnosis 
to avoid inappropriate treatment. Patient numbers in 
the definitive cohort were small and the comparisons in 
clinical phenotype between the US ATTRwt cohorts and 
the UK possible cohort should also be interpreted with 
caution.

A key limitation of the study was the lack of an equiva-
lent diagnosis code for ATTRwt (ICD-10-CM) in ICD-10 
WHO or Read coding systems arising from differences 
in coding practices between the USA and UK. Further, 
there are differences between the UK and US health-
care systems that affect data entry, and thus availability 
and quality for research beyond simply that different 
coding systems are used. Due to lack of an equivalent 
diagnosis code to identify ATTRwt cases in this study, 
two proxy case definitions were applied; referred to as 
the definitive cohort and the possible cohort based on 
the relative confidence of the respective case definitions. 
The possible cohort was larger, but uncertainty in true 
ATTRwt diagnosis was greater (ie, high recall, low preci-
sion). To refine ATTRwt definitions using diagnosis codes 

in the UK, patients within the possible cohort who also 
had a diagnostic code for HFpEF or HFnEF were reas-
signed to the definitive cohort. This step aimed to address 
the key limitation of the definitive cohort, specifically the 
low levels of recall while retaining precision using known 
relationships between HFpEF and HFnEF and the condi-
tion of interest.5 25 However, across all scenarios, relative 
performance in the definitive cohort was still penalised 
due to the low level of recall associated with this cohort 
and uncertainty surrounding the performance statis-
tics given the small patient numbers involved. How well 
these case definitions reflect the known ATTRwt popula-
tion in the UK requires further validation. The National 
Amyloidosis Centre (NAC) is situated at the Royal Free 
Hospital in London and provides diagnostic and manage-
ment advice services for the national case load of patients 
with ATTR-CM. The NAC diagnosed more than 600 new 
patients with ATTRwt between 2000 and 201722 compared 
with 46 patients with ATTRwt in the UK in our data set 
(definitive cohort) during the study period (2000–2018). 
This discrepancy in actual versus observed numbers high-
lights coding inadequacies in secondary care, notably the 
lack of specific disease codes for ATTRwt.

Only 58% of GP practices that contribute to the CRPD 
GOLD database are linked with HES,18 meaning there 
was incomplete linkage with secondary care records in 
our study data set. This may have been associated with a 
biassed study population, as the CPRD data set may not 
be representative of all GP practices and their registered 
patients in the UK, especially as linkage between CPRD 
and HES was only possible for GP practices in England. 
CPRD and HES contain data that are routinely collected 
as part of clinical care, and therefore analyses and inter-
pretation of results are dependent on the quality and 
completeness of original data entry. However, both data 
sources are used for NHS payments and reimbursements, 
the representativeness of CPRD data to the UK general 
population is well documented and HES contains data 
from all NHS secondary care activity.17 18

CONCLUSION
ATTRwt is a condition that is often underdiagnosed and 
misdiagnosed leading to diagnostic delay.2 6 As such, 
patients, their families and healthcare services may incur 
increased burden during extended contact associated 
with diagnostic investigations.22 27 28 Furthermore, delays 
in ATTRwt diagnosis are associated with more advanced 
disease at diagnosis.27 29 The findings from this study indi-
cates that the ML algorithm may aid prompt identification 
of patients with undiagnosed ATTRwt in clinical practice, 
enabling patients to be diagnosed at an earlier stage in 
the disease pathway. Beyond this first step of evaluating 
the ML algorithm in a UK setting, prospective research 
is required to further investigate the applicability of the 
algorithm in real-world UK clinical care.
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