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Abstract—There is a growing interest among the research
community in the search for possible technology-driven strategies
for the conservation of the much-needed, historically rich and
culturally important, desert life. In this work, we investigate the
use of one of the best available Deep Neural Networks, YOLO
Version-5 (v5), to enable offline detection, identification and
classification of three popular desert animals (i.e Camels, Oryxes,
and Gazelles) in a Drone Imagery Dataset captured by the Dubai
Desert Conservation Reserve (DDCR), United Arab Emirates.
The dataset contains over 1200 images, which were partitioned
into training, validation, and testing data sub-sets in a 8:1:1
ratio, respectively. We trained three multi-class models, animal
classification models, based on YOLO v5 Small(S), Medium(M)
and Large(L), representing increasingly deep and complex ar-
chitectures, to simultaneously detect and label the 3 kinds of
animals. Models’ performance was compared on the basis of
classification accuracy (F1-Measure). The multi-class detector
models generated were also compared with the single animal
detector models created using the same network architectures,
to assess the trained network’s robustness against detecting more
than one class of object. YOLO v5 L achieved the highest multi-
class average classification accuracy of 96.71 percent (95.39 —
98.98). In comparison with the single animal detector models,
the multi-class models exhibited the ability to correctly detect the
target objects even for cases where the objects are located close
to each other. We show that the promising results achieved in
this work provide a promising foundation for the development of
real-time multiclass identification and classification applications
utilizing UAV imagery, to aid in the conservation efforts of fauna,
particularly in the urbanized modern-day deserts and semi-desert
places, such as the DDCR. We provide comprehensive test results
and an analysis of results to demonstrate the effectiveness of the
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proposed models.
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I. INTRODUCTION

As the world continues to experience several ambitious
urbanization and infrastructural developments, the importance
of conserving the fauna cannot be overemphasized. Particu-
larly crucial to conservation, is the continuous monitoring and
observation of wildlife in deserts and semi-desert regions, as
this consequently facilitates their protection. In the year 2000,
the government of Dubai designated a 225-square-kilometer
land as the Dubai Desert Conservation Reserve (DDCR) to
protect the different animal and plant species native to the
Dubai Desert [1]. Famous among the desert animals of the
United Arab Emirates (UAE) are the Oryxes, Camels, and
Gazelles [2]. In order to better observe and thus monitor
the activities of animals in the DDCR, the use of drone-
based surveillance has been adopted recently. However, the
analysis of the image content has been restricted to manual
means, i.e. human observers conducting the analysis based
on the captured drone footage [2]. Based on images cap-
tured from UAVs and drones that give an advantageous view
direction for video / image analysis, the success of manual
approaches to ecological image analysis using RGB cameras
and basic automated approaches to image analysis based on
captured multi-spectral images, have been well demonstrated
in literature [3—17]. In addition to this the use of the more
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traditional machine learning approaches [17] and the more
recent deep learning based approaches for done based animal
detection [4], remote sensing [16] and analysing camera trap
data (i.e. cameras set at ground-level) [18-21] for automatic,
computer based, wildlife/ecological/livestock analysis, have
been demonstrated in more recent literature. Drone-based
surveillance offers several benefits including low noise image
capture, long-range and fast coverage, being able to maximize
the observation of animals in a reserve without affecting
their activities, providing a unique view direction that is not
available to capture based on cameras set up at ground level
(e.g. camera traps) and real-time, high-resolution data capture
at a relatively reasonable cost [14] . Additionally, drones
also effectively allow animals to be observed while moving
along with them, thereby enabling additional opportunity to
collect more useful data such as grazing patterns and other
habitat aspects relevant to the conservation of the monitored
animals. However, a common challenge with drone-based
surveillance is the considerable amount of time and effort
required to manually do visual inspection of the obtained drone
imagery [15] . These challenges have consequently inspired
the recent growing interest within the research communities
of ecological remote sensing, wildlife protection, machine
learning, to attempt to use computer-based, object detection
or/and classification algorithms/models for automated drone
image analysis [4, 16, 17]. Further, recently, there have been
several attempts of using the more recent advances in Deep
Neural Networks for detecting multiple animal classes in
Camera Trap Images [18-21] and in drone footage [4] .
Although Deep Neural Networks are superior in their ability
to detect and recognise objects under challenging environmen-
tal (night-time, dust, fog, etc.), lighting (shadows, illumination
intensity, colour constancy etc.), and spatial (i.e., orientation,
occlusion etc.) conditions, their effective use is not yet demon-
strated widely in many application areas. Effectively training
Deep Neural Network models to detect and recognise objects
under challenging conditions require, domain knowledge of
the practical problem being addressed, knowledge of how
the various architectures of Deep Neural Networks can be
optimised and tailored for use in solving a given problem,
substantial amount of data for training and following careful
approaches to data labelling, which is an essential, but is often
ineffectively carried out. Therefore, a truly inter-disciplinary
approach to research needs to be followed, with careful con-
sideration given to the selection of the right network, optimally
selecting its parameters, ensuring the right amount and type of
data is used and the data is appropriately labelled, for training.
In this paper, we utilize a comprehensive drone imagery
dataset generated by the DDCR, Dubai drone-team (captured
in collaboration and with guidance from the authors) to
effectively train a Deep Neural Network based on the latest
version of the popular CNN architecture, You Only Look
Once (YOLO) — Version 5 [22] , to automate the detection
and classification of the three types of desert animals, namely
Oryxes, Camels, and Gazelles. YOLOVS is one of the most
effective one-stage CNN architectures used in many practi-

cal object detection and recognition applications at present
[22, 23] , but it’s use in animal / wild-life detection and
recognition, based on drone footage, has not yet been fully
exploited to-date. In our previous work [24] we demonstrated
the use of YOLOVS for the detection of single type of animals,
i.e. Oryxes, but using one model that can detect multiple
types of animals calls for more careful design, solving the
challenges around class-imbalance, between the animal types.
A further popular one-stage CNN architecture is the Single
Shor Detector (SSD) [25]. However, our previous research [24]
demonstrated that YOLOVS5 is much more accurate that SSD in
detecting objects/animals as seen from drones. Alternatively,
two-stage CNN architectures such as, R-CNN [26] , and Fast
R-CNN [27] have better accuracy for specific tasks, but need
substantial time for training and requires a large computing
power to train. They are also not designed in a way that they
can locate the detected objects within frames. Therefore, a
better speed-accuracy tradeoff would be to utilize one-stage
methods, such as YOLO as opted for in this current work.
The ultimate aim of this research was to support the team
of ecological experts within DDCR by automating the detec-
tion and classification of dessert wildlife and other protected
animals, based on footage captured by surveillance drones,
allowing the team to monitor the whereabouts, movements and
bahaviour of such herds. In the proposed research we develop
three different animal detection and recognition CNN models
from YOLO-VS5 sub-version architectures, namely, S(small),
M(medium) and L(large) and compare their performance and
suitability.

For clarity of presentation, this paper is divided into several
sub-sections. Section-2 proposes the research background,
including a brief introduction to the YOLOVS, it’s sub-version
architectures and defines the network anetwork architecture,
it’s associated methodology adopted for creating the CNN
models for animal detection and recognition. Section-3 pro-
vides experimental results and a comprehensive analysis of the
results. Finally section-4 concludes with an insight to potential
future research.

II. PROPOSED METHODOLOGY

— — Multiclass-
Animal
Model Training
7_,/
_— Testing

UAV Imagery from DDGR
Detector

Fig. 1. The flow diagram of the project framework

The YOLO architecture has evolved over time and is
currently in it’s Sth version, YOLOvV5[22] . Though having
a similar backbone architecture, the YOLOVS architecture can
further be subdivided into sub-version architectures, namely,
YOLOVSS, YOLOvSM and YOLOVSL, corresponding to
smallest to highest depth of network and the size of feature
map used, respectively. i.e YOLOVSL has the highest network
depth as well as the largest feature map, while YOLOVSS
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has the smallest network depth and the smallest feature map
size. Due to this it is the least complex network, and hence
training is faster and deployment of models created requires
lets computational capacity. However , YOLOVSS architecture
often produces the lowest average precision (AP) accuracy. It
is the preferred network of the three if the target object that
needs detection is sufficiently large enough. For the M and L
YOLOVS architectures, the network becomes deeper and more
complex, and therefore the AP accuracy increases accordingly,
but at the expense of speed (i.e more time is needed for training
and testing). It is noted that a fourth sub-version of YOLOVS5
exists, V5X (extra-large) and due to the added complexity of
its architecture we have excluded its use in this paper.

The complexity of a Deep Neural Network architecture is
typically defined by the network depth and width, which are
often represented by the depth-multiple and the width-multiple
respectively, as per previous implementation of YOLO-VS5 [23]
. The Table I indicates the values utilized for the two network
parameters, depth and width, for the three different YOLOvS
architectures, trained and tested in this work.

TABLE I
THE DEPTH AND WIDTH FOR YOLO-V5 S, M, AND L FROM THE CODE OF
BACKBONE. [23]

YOLOVS Backbone | Depth | width | CSP units
YOLOVSS 0.33 0.5 128
YOLOv5SM 0.67 0.75 256
YOLOvVSL 1.0 1.0 512

Table I illustrates that moving from S, M to L, both
the network depth and width increases. When the network
becomes deeper, the ability of feature extraction and integra-
tion will become better. On the other hand, when the width
increases, during the convolution process, the so-called Focus
structure [28] of the neural network, uses more convolution
kernels, making the feature map wider. For example, in S,
the network uses 32 convolution kernels and the feature map
is 304*304*32, whereas M uses 48 convolution kernels and
the feature map thus used is 304*304*48. With the network
becoming wider, it gains a better learning ability due to the
extraction of more features.

During training, it is important to appropriately set the
batch-size, and to change the model weights accordingly. The
three YOLOVS networks we have used, i.e., S, M and L, have
different weight files. If a batch-size that is too large is selected
[29], the reduction of training loss will become hard due to the
generalization gap becoming large. On the other hand, a large
batch-size will need more memory, and a small batch-size will
need more time for training. Given the above reasoning, we
have chosen a batch-size of 16 for v5S and batch-size of 8 for
v5M and v5L.

The dataset available for training and testing comprised of
approximately 1200 images of oryxes, gazelles and camels
captured/photographed from a drone. However, due to the need
of maintaining class-balance in training, we were only able
to use 300 images of each type of animal for training. 40

drone captured images were used for testing, having variable
numbers of each of the three types of animals . The training
and test mages were randomly selected from the available
images of the specific animal type from within the original
1200 image set. It is vital that class balance is maintained to
optimize the accuracy of detecting all three types of animals.

The Labellmg [30] tool was used in labelling the samples
of each animal type. The tool provides a simple way to draw
a rectangle around an identified animal and giving the labelled
area a name, i.e. oryx, gazelle or camel. The tool automatically
picks up the coordinates of the four corners of the rectangle
drawn (from which the model training process can capture a
sub-image for training the deep neural network) and assigns a
label for the selected rectangle. The coordinates and the label
data is saved in a text file to be later used in training.

TP+TN
Accuracy(allcorrect/all) = TPLTN P+ FN (1)
TP
~all(T P 1t = 2
Recall(TP/allpositives) TP L FN 2)
. TP
Precision = W (3)

Pl 2 * Precision x Reacll

4
Precision + Recall @

After training the three YOLOVS architectures, the trained
models were evaluated on a reserved (i.e. a dataset not used for
training) test data subset and their performance were compared
based on the observed confusion matrices. The confusion
matrix is defined as per Table below, given prediction X, the
following terms hold:

Predicted Class True Class

True Positive (TP): False Positive(FP):
Positive X prediction is positive | X Prediction is positive

and X is true. and X is false.

False Negative (FN): True Negative(TN):
Negative X prediction is negative | X Prediction is negative

and X is true. and X is false.

III. EXPERIMENTAL RESULTS

The following sections present a rigorous comparison of
experimental results obtained, when the three Deep Neural
Network models created by training the three sub-versions of
YOLOVS, S, M and L, were used for the detection and clas-
sification of Oryxes, Gazelles and Camels in drone footage.

A. Multiclass Classification Results for each of the three
YOLOv5 configurations (YOLOvS S, M, L)

1) YOLO-V5s: Table II tabulates the prediction results
obtained when using YOLO-VS5S. It indicates that out of the
603 Camels, 540 were correctly classified as Camels (True
Positives), 2 were classified wrongly as Oryxes, one wrongly
as a Gazelle, and the remaining 60 were not detected, i.e., a
total of 63 False Negatives. Out of the 174 Oryxes, 161 were
correctly classified as Oryxes, none of them were wrongly
classified as a Camel, one was wrongly classified as a Gazelle
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and 12 were not detected. Finally, out of the 239 Gazelles,
236 were correctly classified as Gazelles, one was wrongly
classified as a Oryx and 2 were not detected. Table also lists
that 127 unrelated objects such as trees, white stones, etc.,
were wrongly detected and classifies as Camels (i.e. FP =
127 + 2 + 1 = 130), 13 such objects were wrongly detected
and classified as Oryxes and 63 were wrongly classified as
Gazelles.

TABLE II
THE CONFUSION MATRIX FOR YOLO-V5s
Predicted Class(1134labels)

Yolo V58 Camel | Oryx | Gazelle
Camel(603) 540 2 1
Oryx(174) 0 161 1

Actual Class 0 e239) 10 1 736
Others 127 13 63

2) YOLO-V5M: Table III tabulates the prediction results
obtained when using YOLO-V5m. It indicates that out of the
603 Camels, 574 were correctly classified as Camels (True
Positives), none were classified wrongly as Oryxes or as
Gazelles, and the remaining camels were not detected, i.e.,
a total of 27 False Negatives. Out of the 174 Oryxes, 159
were correctly classified as Oryxes, one of them were wrongly
classified as a Camel, none was wrongly classified as a Gazelle
and 14 were not detected. Finally, out of the 239 Gazelles,
238 were correctly classified as Gazelles, one was wrongly
classified as a Oryx and none were identified as Camels. Table
also lists that 83 unrelated objects such as trees, white stones,
etc., were wrongly detected and classifies as Camels (i.e. FP
=83 + 0 + 1 = 84), 16 such objects were wrongly detected
and classified as Oryxes and 76 were wrongly classified as
Gazelles.

TABLE III
THE CONFUSION MATRIX FOR YOLO-V5m

Predicted Class(1150labels)

Yolo V5M Camel | Oryx | Gazelle
Camel(603) 574 0 0
Oryx(174) 1 159 |0

Actual Class Gazelle(239) | 0 T 238
Others 83 16 76

3) YOLO-V5L: Table IV tabulates the prediction results
obtained when using YOLO-VS5L. It indicates that out of the
603 Camels, 572 were correctly classified as Camels (True
Positives), two were classified wrongly as Oryxes and none
were wrongly classified as Gazelles, and the remaining camels
were not detected, i.e., a total of 27 False Negatives. Out of
the 174 Oryxes, 169 were correctly classified as Oryxes, none
of them were wrongly classified as Camels nor Gazelles, and
5 were not detected. Finally, out of the 239 Gazelles, none
were wrongly classified as Camels or Oryxes. Table also lists
that 47 unrelated objects such as trees, white stones, etc., were
wrongly detected and classifies as Camels (i.e. FP =47 + 0 +
2 =49), 9 such objects were wrongly detected and classified
as Oryxes and 45 were wrongly classified as Gazelles.

TABLE IV
THE CONFUSION MATRIX FOR YOLO-V5L

Predicted Class(1150 labels)

Yolo V5L Camel | Oryx | Gazelle
Camel(603) 572 2 0
Oryx(174) 1 169 10

Actual Class Gazelle(239) | 0 1 239
Others 47 9 45

The subjective performance comparison of the performance
of the single object detection models developed above, using
the three sub versions of YOLO-VS5, for detecting Oryx,
Camels and Gazelles, are illustrated in Fig 2-4 below.

Fig 2, 3 and 4 demonstrate the subjective performance of the
three models on a set of selected images that are representative
of test and training image datasets used in the experiments.
Although the three images of Fig.2 illustrate similar number
of detections, a closer look at the confidence values of objects
in the three images indicate that will YOLO-V5L, the detection
confidence as a Oryx is much higher than in the case of the
other two models. It is noted that the size of the Oryxes are
much larger in Fig.2 as compared to the sizes in Camels and
Gazelles. Fig.3 demonstrates that YOLO-VS5SL detects more
camels on the bottom right-hand corner of the image, not
detected by the other two models. A closer investigation of
Fig.4 reveals that the models created by the sub versions S
and M results in false detections at the top right hand corner
of the images, which are avoided by the model created by
YOLO-VSL. It is also noted in Fig.4 that the YOLO-V5M
has more false positives than YOLO-VS5S. This is likely to be
due to the fact that the training data used in the experiments
is not sufficient to train the deeper network of YOLO-V5M.

.82 (43 ]
anx D205 o,

Fig. 2. The oryx detection results from YOLO-V5 S, M, and L

Fig. 3. The camel detection results from YOLO-VS5 S, M, and L
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Fig. 4. The gazelle detection results from YOLO-VS S, M, and L

B. Comparison of performance of single-object detection
models and the multiclass detector model, when using each
of the three YOLO configurations (YOLOv5S, M, L)

The multi-class detector was trained on 300 samples of
each type of animals. Although we had 3500 labelled Oryxes
and 1600 labelled Gazelles, as we only had 300 Camels, to
maintain class-balance during training, 300 samples of Oryxes
and 300 samples of Gazelles were randomly picked up and
used in training along with the 300 samples of Camels.
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Fig. 5. [Left] The multi-class animal detector (YOLO-VS5L) and the [Right]
best single animal detector (YOLO-V5L) for oryx detection.

Fig. 6. [Left] The multi-class animal detector (YOLO-V5L) and the [Right]
best single animal detector (YOLO-VS5L) for gazelle detection.

(a) (b) (e)

Fig. 7. [Left] The multi-class animal detector (YOLO-V5L) and the [Right]
best single animal detector (YOLO-V5L) for camel detection.

In this section we compare the performance of the multi-
class animal detector with single animal detectors modelled

using 3500, 1600 and 300, Oryxes, Gazelles and Camels,
respectively. Fig.5 and Fig.6 provides a comparison of results
for between the best (out of the sub-versions) YOLO-V5
based model, YOLO-V5L (Right image), and when using the
multi-class classifier (left-image). Whilst both models detect
all animals (Oryxes and Gazelles), the single-class model
indicates a higher level of confidence in detections. This is
expected as it only deals with one class, rather than three.
The confidence levels indicated by the multi-class detector is
still very much comparable with that of the two single-class
detectors.

Out of the three types of animals being considered in this
research, drove video footage used for observing Camels are
the lowest in resolution. This was to restrictions around the
minimum altitude a drone is given permission to fly over
human occupied camp sites, as against in nature reserves.
Unfortunately, this means that the size of camels used in
training and testing are significantly smaller than the size of
the animals of the other two classes. When we compared
the performance of the sub versions of YOLO-VS5, within
the multi-animal-detection model architecture, we found that
YOLO-V5M and 5L performs much better than YOLO-VS5S.
This is because a deeper architecture is needed to create
effective detection models for smaller objects which could
otherwise be difficult to differentiate with other smaller ob-
jects. Fig.7 (b) and (c) illustrate the outcomes. It is seen that
when using YOLO-VS5L, the false detections are far less than
when using YOLO-V5M. The YOLO-V5L model for multi
animal detection picked up all camels and did not pick up any
false positives. We illustrate the results of the single-animal
detection model for Camels in Fig.7 (a). It is seen that some
camels have not been detected at all. However the best single-
animal detector model obtained was based in YOLO-VS5S,
which will find difficult to analyse fine features of objects
to contribute to a positive detection result. When using the
single-animal detection approach, we found that YOLO-V5M
and YOLO-VS5L models did not perform effectively. The 300
samples used for training for a single type of obvjects was no
sufficient to fine tune the deeper neural network architectures.

In the natural drone footage, we were able to capture, it was
very rarely that we were able to find images that included
more than one type of animals, when considering Camels,
Oryxes and Gazelles. Camels are domesticated animals and
Oryxes and Gazelles live in the wild or animal sanctuaries,
in herds, and hence the three types are seen together very
rarely. Therefore in Fig 8-10, we use Windows Image Capture
to create various image mosaics that mimics the collective
presence of these animals to test the single-class detectors and
the multi-class classifier further in environments that include
multiple type of animals.

Fig.8 illustrates the outcomes of applying the multi-animal
detector and the single-animal detectors trained for Oryx only
or Gazelle only detection on the mosaic image that includes
both Oryxes and Gazelles. Fig.8 (a) shows the effective ability
of the multi-animal detector to differentiate between Gazelles
and Oryxes. The two types of animals have been differentiated
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Fig. 8. Application of (a) multi-animal detector, (b) Gazelle-only detector,
(c) Oryx-only detector on mosaic images

with confidence of over 0.7 in all cases of detections. None
of the animals have been mis-classified or not detected and
there are no false positives. Animals part occluded have also
been accurately detected and classified. Fig.8 (b) shows the
failure of the Gazelle only detector to prevent the detection
of Oryxes as Gazelles, although the confidence values in-
dicated in detecting and labelling a Oryx as a Gazelle is
marginally lower than the confidence shown in a true-positive
Gazelle detection. However in Fig.8 (c) it shows that the Oryx
only detector has been able to successfully avoid picking up
Gazelles and Oryxes. This is due to the fact that the Oryx
only detector has been better trained with more samples or
Oryxes taken at various altitudes/sizes, orientations and in
different environments. It knows how to identify an Oryx more
accurately.

Fig.9 and Fig.10 provides further experimental results on
two different mosaic images. The conclusions above can be
further justified by the results illustrated.

C. Overall performance comparison between the three YOLO-
V5 sub-configurations (YOLO-V5- S, M and L)

Table V and VI bellow tabulates, Accuracy, Precision/Recall
and TP/FR/F1-score values respectively when using YOLO-
V5 (S, M amf L) models for detecting the three types of
animals.

From the results tabulated in Table V and VI, it is seen
that YOLO-VS5L has the highest accuracy, procession, recall,
TP and FI1 scores and the lest FPs for all three types of
animals. However, there is a significant difference between the
performance of YOLO-VS5 sub-versions, in detecting smaller
sized animals (camels) used in training and test data. As
mentioned previously the footage of camels were taken from
high altitude drone flights making their size relatively small in
the images used for training and testing. It is clear that YOLO-
V35S did not perform well in the detections of such small sized
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Fig. 9. Application of (a) multi-animal detector, (b) Gazelle-only detector,
(c) Oryx-only detector on mosaic images
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Fig. 10. Application of (a) multi-animal detector, (b) Gazelle-only detector,
(c) Oryx-only detector on mosaic images

TABLE V
COMPARISON OF ACCURACY, PRECISION AND RECALL
Accuracy/precision/Recall | Camel Oryx Gazelle
88.54%/ | 98.5%/ 94.44%/
S 80.60%/ | 92%/ 78.67%/
89.55% | 92.53% | 99.16%
92.52%/ | 98.43%/ | 93.13%/
M 87.37%/ | 90.34%/ | 75.15%/
9520% | 91.91% | 99.58%
95.39%/ | 98.98%/ | 95.76%/
L 92.11%/ | 94.94%/ | 84.75%/
94.86% | 97.13% | 99.99%
TABLE VI
COMPARISON OF TP/FP/F1-SCORE
TP/FP/F1 | Camel Oryx Gazelle
S 540/130/84.84% | 161/14/92.26% | 236/64/87.57%
M 574/83/91.11% 159/17/90.86% | 238/79/85.61%
L 572/49/93.46% 169/9/96.02% 239/46/91.22%
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animals. The best performance of YOLO-VS5 S model was in
detecting Oryxes, the largest sized animals used in training
and testing. When it comes to analysing the performance of
models in detecting Gazelles, the variations of background on
top of the smaller size, impacts negatively on precision and
recall, more specifically. The lowest recorded precision and
recall values are in the detection of Gazelles.

We also investigated the performance of the single animal
detection models we created. The results demonstrated that in
most cases, the YOLO-V5M models have a similar detection
accuracy result as compared with YOLO-V5L models, partic-
ularly when the objects to be detected are sufficiently large,
e.g, in detecting Oryxes. But when the object is small and not
well differentiated from the background (Camels, Gazelles)
the YOLO-VSL models demonstrated better performance .
However, it was also clear that deeper the network architecture,
more data is needed for effective training. Further with the
increasement of data used in training, the performance of
multi-class detector models exceeded the performance on
single class detector models.

The overall results and detailed analysis above leads to
the recommendation that multi-class animal detectors that can
be created using YOLO-V5 sub-versions, requires significant
amount of balanced data for training. The training data should
have sufficient variations in resolution, size, angle, changes
in background and illumination, occlusions etc., to be able to
build the most accurate animal detectors and classifiers that
can be applied on drone captured video footage.

IV. CONCLUSION

This paper investigated the effective use of Deep Neural
Network architectures in the detection and classification of
multiple animal types, Camels, Oryxes and Gazelles, in images
captured from drones. The work presented compared the use
of the Single Shot Detection DNN with the use of YOLO-
V5 and its sub-versions, S, M and L. The results concluded
the superiority of YOLO-VS5 over SSD and the ability of its
sub versions with a deeper architecture to accurately detect
and classify the animals. The importance of adopting effective
approaches to training the DNN architectures, the impact of
class-balance, low resolution imagery and the size of objects
being detected and their relationship to the different sub-
versions of YOLO-V5 was investigated, establishing a number
of recommendations for their practical use. The research also
presented single animal detection models created using the
sub-versions of YOLO-V5 and compared their performance
with the performance of the multiple-animal-detector models
derived. It is concluded that YOLO-VS5 provides suitable
architectures for the accurate detection and classification of
animals via drone footage, under significant variations of
image quality, altitude of drone flying, size and inter/intra
class variations. Accuracy levels of above 98 percent has
been achieved with above 94 percent precision and recall 97
percent recall for detecting Oryxes, for which the best data
was available for training.
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