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Abstract—The Ghaf is a drought-resilient tree native to some
parts of Asia and the Indian Subcontinent, including the United
Arab Emirates (UAE). To the UAE, the Ghaf is a national tree,
and it is regarded as a symbol of stability and peace due to its
historical and cultural importance. Due to increased urbanization
and infrastructure development in the UAE, the Ghaf is currently
considered an endangered tree, requiring protection. Utilization
of modern-day aerial surveillance technologies in combination
with Artificial Intelligence (AI) can particularly be useful in
keeping count of the Ghaf trees in a particular area, as well as
continuously monitoring unauthorized use to feed animals and to
monitor their health status, thereby aiding in their preservation.
In this paper, we utilize one of the best Convolutional Neural
Networks (CNN), YOLO-V5, based model to effectively detect
Ghaf trees in images taken by cameras onboard light-weight,
Unmanned Aircraft Vehicles (UAV), i.e. drones, in some areas of
the UAE. We utilize a dataset of over 3200 drone captured images
partitioned into data-subsets to be used for training (60%),
validation (20%), and testing (20%). Four versions of YOLO-V5
CNN architecture are trained using the training data subset. The
validation data subset was used to fine tune the trained models in
order to realize the best Ghaf tree detection accuracy. The trained
models are finally evaluated on the reserved test data subset
not utilized during training. The object detection results of the
Ghaf tree detection models obtained by the use of four different
sub-versions of YOLO-V5 are compared quantitatively and
qualitatively. YOLO-V5x model produced the highest average
detection accuracy of 81.1%. In addition, YOLO-V5x can detect
and locate Ghaf trees of different sizes moreover in complex
natural environments and in areas with sparse distributions of
Ghaf trees. The promising results presented in this work offer
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fundamental grounds for AI-driven UAV applications to be used
for monitoring the Ghaf tree in real-time, and thus aiding in its
preservation.

Index Terms—Convolutional Neural Networks, Ghaf tree, Ob-
ject detection, YOLO-V5, Drone imagery

I. INTRODUCTION

The Ghaf tree also known as the tree of life by local people
in Bahrain and much of Arabia, is a drought-resilient tree
capable of withstanding the extreme harsh conditions of a
desert environment [1]. The Ghaf tree, scientifically known
as Prosopis cineraria [2], can survive in extremely dry and
hot weather for hundreds of years with no artificial irrigation
required. In the United Arab Emirates (UAE) particularly,
the Ghaf was declared a National tree in 2008 due to its
historical and national importance [3], [4]. The leaves of Ghaf
trees have historically been used as food for camels, while its
tender leaves are still used in the UAE to make salads and
for various medicinal purposes. Like any other natural entity
in the environment, the Ghaf trees have, in the recent years,
increasingly become threatened by the ever expanding human
activity in the UAE as a result of urbanization and infrastruc-
tural development projects [3]. Given the arid environment in
which the Ghaf trees exist, aerial surveillance systems such as
Unmanned Aerial Vehicles (UAV) based imagery are naturally
the preferred monitoring mechanism for aerial monitoring of
habitats in such environments. Specifically, light-weight UAV-
based (i.e., Drone) imagery and sensing has in the recent
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past been utilized in detecting and mapping woody species’
encroachment in subalpine grassland [5], estimating carbon
stock for native desert shrubs [6], and several other desert and
forest monitoring applications [7]–[10]. While UAV imagery
has enabled large scale high resolution and fast landscape
mapping, the use of this significant imagery data is still largely
limited to offline use, with much more to be realized for real-
time applications [9], [11], [12].

More recently, deep learning, a branch of Artificial In-
telligence (AI), has become the mainstream technology for
solving object detection and classification problems in com-
puter vision [13], replacing the traditional machine learning
based approaches. The reason for the superior performance
of this new approach is that deep learning allows for the
automation of feature engineering automation as opposed to
classical machine learning approaches where feature engi-
neering is not automated. Popular deep neural networks used
in image processing applications, (i.e., applications on 2D
data), Convolutional Neural Networks (CNNs), can be divided
into two categories. The first category is the Region-based
CNN (R-CNN) with popular variations being, Fast R-CNN,
and Faster R-CNN [14]–[16]. They are basically two-stage
networks that generate region proposals in an initial stage, and
then do classification and regression on the region proposals.
The other category is the one-stage CNN architectures such
as You Only Look Once - unified, real time object detection
(YOLO) and single shot detector (SSD) [17], [18]. These
architectures basically use only one CNN network to directly
predict the categories and locations of different targets.

Over the past 5 years, YOLO has evolved from YOLO-V1,
V2, V3, V5, V6, V7 [19] and the latest being V8. According
to our recent research [20] and other related work [21]–
[24] YOLO-V5 performs better than the previous versions of
YOLO (i.e. V1, V2 and V3), SSD and R-CNN architectures
for most object detection and classification tasks. YOLO-V5 is
the more established version of the original family of YOLO
CNNs and has hence been used in the proposed research.
However, it is noted that YOLO V6 [25], V7 [26] and V8 [27],
have been designed to achieve faster convergence, marginally
better object localisation and classification accuracy and faster
deployment times.

In this paper we investigate the use of four YOLO-V5 sub-
variants representing DNN architectures of different depth,
S (Small-shallowest), M (Medium), L (Large) and X (Extra
Large).

For clarity of presentation, this paper is divided into five
sub-sections. Section-1 provided an introduction to the appli-
cation and research context. Section-2 provides the method-
ology to be used including dataset preparation, data labelling
and training the Deep Neural Network models, YOLO-V5,
S, M, L and X. Section-3 presents the Ghaf Tree detection
experimental results and a detailed analysis of the performance
of the four models trained. Finally, Section-4 concludes with
an insight to future work and suggestions for improvements
of the established DNN models.

II. METHODOLOGY

The workflow of the proposed method is shown in Figure 1.
It includes two main stages: training stage (including training
and validation) and testing stage. The details of each phase (i.e.
data preparation, training, validation and testing) are described
in the following sections [28].

Fig. 1. The workflow of the proposed method

A. Data Preparation

A total 368 images containing 5000 Ghaf trees were
randomly selected from a large number of images taken
during a drone’s flight. Drone imagery was collected by the
Dubai Desert Conservation Reserve (DDCR) team with DJI
Phantom-4 and DJI Mavic 2 Pro drones flying at different
heights/altitudes. The selected image dataset was then divided
into three data subsets for training (60%), validation (20%)
and testing (20%). In the dataset used, as some of the images
have a significantly larger number of Ghaf trees as compared to
some others, the number of images in the training, validation
and test data subsets were 298, 30 and 40, respectively. To
start the training phase, each Ghaf tree in the training and
validation dataset subsets was labeled with a bounding box
using the labelImg tool and was labelled as type ”Ghaf”. It is
specifically noted that some Ghaf trees can contain a number
of canopies that grow from the same root structure, while
some have only one canopy. Therefore it is often impossible
to judge whether some adjacent canopies belong to the same
root structure (as sand covers or occludes most of the roots
and trunks) and hence form a single Ghaf tree. Therefore in
this paper rather than attempting to detect a Ghaf tree, we
attempt to detect Ghaf trees canopies. It should be therefore
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noted that counting canopies, for example, will not allow us
to count the total number of Ghaf trees.

TABLE I
NUMBER OF LABELED GHAF TREE CANOPIES IN EACH DATA SUBSET

Dataset Number of labeled Ghaf tree canopies
Training 3200

Validation 900
Testing 900

The labeled data of the training data subset is used to train
the four sub-versions of YOLO-V5 CNN. The training is for a
single class of an object, ’Ghaf Tree’ and hence a Ghaf tree is
detected by differentiating it from its background. Similarly,
the tagged Ghaf trees from the validation dataset subset is
used to fine tune the training model of YOLO-V5 CNN when
determining the optimal parameters of the model. Finally, the
test dataset subset is used to evaluate the performance of the
trained model. The labelled Ghaf trees in the validation set
is used during training to optimize the network parameters,
whilst the labelled Ghaf trees in the test dataset is used as
benchmark data to determine the accuracy of prediction.

When labelling data for training and validation, when
Ghaf trees are enclosed within rectangles, the rectangles may
contain Ghaf trees of different sizes and may overlap or be
obscured by other Ghaf trees or objects. Moreover, they may
have different backgrounds (i.e. sand, bushes/shrub under-
growth, etc.). It is therefore important to capture rectangles
of image pixels with the above possible variations for testing
and training, as it will effectively test the generalizability of
the trained CNN model for subsequent Ghaf tree detection
tasks.

B. Network Architecture, Training and Detection

1) YOLO-Version 5 and Training: During training, four
sub-versions of YOLO-V5 deep neural network, that in-
cludes YOLO-V5s (small), YOLO-V5m (medium), YOLO-
V5l (large) and YOLO-V5x (extra-large), were trained by
using the data related to the annotated rectangles containing
Ghaf trees of the training data subset. Each sub-version of
the YOLO-V5 network has a different model depth, but
their designs are based on the same underlying structure,
composed of three main parts: backbone, neck and head. The
architectures of the S, M, L and X YOLO-V5 sub-versions
indicate that the depth of the network increases [29] from S
to X. Figure 2 [30] shows the network architecture of YOLO-
V5s, which also represent the core basic architecture of all
network sub-versions of YOLO-V5.

The model backbone of YOLO-V5 is used to extract basic
features from a given input image. It is designed based on
the Cross Stage Partial Network (CSPNet) [31] to extract ad-
vanced features while maintaining high accuracy and reducing
model processing time. The model neck is mainly used to
collect feature maps from different stages of the model trunk to
generate feature pyramids. In YOLO-V5, the Path Aggregation
Network (PANet) [32] is used to obtain the feature pyramid.

The important function of a feature pyramid is to help the
model identify the same objects with different sizes and scales.
Finally, the model head is used for the final detection part
of YOLO-V5. The design architecture of the model head of
YOLO-V5, is the same as that of YOLO-V3 and YOLO-
V4. It applies Anchor Boxes [33] to the final feature map
and generates the final output vector with object score, class
probability and boundary box coordinates.

As shown in Figure 2, YOLO-V5 has many sub-components
in each part (i.e. backbone, neck and head) of its network, such
as Focus, CBL, CSP and SPP modules. The Focus module is
a module for processing input images. It uses four parallel
slicing operations to create feature maps. The CBL module
is a basic module. It uses a Convolution operation (Conv)
combined with Batch Normalization (BN) [34] and leaky-
ReLU [35] activation function to extract features. The CSP
module is a module designed based on CSPNet. There are
two types of CSP modules in YOLO-V5 network, i.e as CSP1
and CSP2. The CSP1 and CSP2 modules are applied to the
backbone and neck of YOLO-V5 network. CSP1 contains one
CBL module and N, Residual (RES) units. CSP2 contains
N + 1 CBL modules. CSP1 UN and CSP2 N module runs
under the same operation, divides the input feature mapping
into two parts, and then integrates cross level features, where
n represents the number of res units and CBL modules in
CSP1 and CSP2 respectively. The more RES units and CBL
modules, the deeper the network. Table 2 shows the usage of
CSP modules in the four sub-versions of YOLO-V5 network.
The SPP module is a module for mixing and collecting spatial
features in the model backbone. It contains up to three Pool
layers. The input feature is down sampled through three
parallel Maximum Pool layers [36], and then the results are
connected to the initial feature.

TABLE II
THE CSP MODULES USED IN DIFFERENT VERSIONS OF YOLO-V5

NETWORKS

Modules YOLO-V5s YOLO-V5m YOLO-V5l YOLO-V5x
CSP1 CSP1 1 CSP1 2 CSP1 3 CSP1 4
CSP1 CSP1 3 CSP1 6 CSP1 9 CSP1 12
CSP1 CSP1 3 CSP1 6 CSP1 9 CSP1 12
CSP2 CSP2 2 CSP2 4 CSP2 6 CSP2 8
CSP2 CSP2 2 CSP2 4 CSP2 6 CSP2 8
CSP2 CSP2 2 CSP2 4 CSP2 6 CSP2 8
CSP2 CSP2 2 CSP2 4 CSP2 6 CSP2 8
CSP2 CSP2 2 CSP2 4 CSP2 6 CSP2 8

All experiments were conducted on a PC equipped with an
Intel Core i7-6850k CPU, NVIDIA GeForce gtx-1080ti GPU
and 32 GB ram. The operating system on the computer used
was, Windows10.

2) Ghaf Tree Detection: After completing the training
process, the trained models of each of the YOLO-V5 network
sub-version is used as a detector to detect the Ghaf trees in
the test data subset. Each of the tests image of size 5472
×3648 pixels is automatically adjusted to 608×608 pixels by
the network, while maintaining the original aspect ratio of
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Fig. 2. The network architecture of YOLO-V5s

the input image. Then, the square image is processed through
the network to extract features, and feature maps of three
sizes, i.e., 76×76, 38×38 and 19×19 pixels are generated
for prediction. The prediction under the feature map size of
76×76 pixels is used to detect small-size Ghaf trees, and the
prediction under the feature map sizes of 38×38 and 19×19
pixels are used to detect medium-sized and large-size Ghaf
trees, respectively. Under each prediction scale, each feature
mapping unit predicts three bounding boxes using the three
anchor box scales automatically learned in the training process.
Each bounding box contains coordinates, width, height, a
prediction confidence related score, and the class probability.
The confidence score reflects the confidence level of the
bounding box (i.e Ghaf tree) containing the object. If the
confidence score (0-1 range) of the bounding box is low
or zero, it means that the bounding box does not contain
any objects. By setting a threshold, the model can delete
bounding boxes with low confidence so that only bounding
boxes containing objects of interest are retained.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we compare the performance of the Ghaf
tree detection models generated from the four versions of
YOLO-V5. Each model was trained with the same set of
UAV images of the training data subset, validated on the
same validation data subset and tested on the same test data
subset. The performance of the four models are compared
booth quantitatively and intuitively, below.

A. Quantitative Performance Comparison

A number of metrics can be used to analyze the performance
of an object detector / model.

• TP (True Positive): The sample’s true category is a
positive example, and the model’s anticipated result is

also a positive example, indicating that the prediction is
right.

• TN (True Negative): The sample’s true category is a
negative example, and the model predicts that it will be
a negative example, which is right;

• FP (False Positive): The sample’s true class is a negative
example, but the model predicts a positive example,
which is incorrect;

• FN (False Negative): The sample’s true class is a positive
example, but the model predicts a negative example,
resulting in an incorrect prediction.

• IoU (Intersection over Union): IoU is a key notion in
object detection. In general, it refers to the intersection
of the bounding box and the model’s projected Ground
Truth. If the IoU is greater than an agreed threshold, we
can conclude that the forecast was right.

• mAP (mean Average Precision): mAP can characterize
the entire precision-recall curve (see Fig.3). The area un-
der the precision-recall curve is mAP [In our experiments
we set a threshold of 0.5].

Performance measures Accuracy, Recall and Precision can
be derived as per the equations below, where TP, TN, FP, FN
refers to the number of true positives, true negatives, false
positives, and false negatives, respectively:

• Accuracy (all correct / all):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Recall (true positives / all actual positives):

Recall =
TP

TP + FN
(2)

• Precision (true positives / predicted positives):

Precision =
TP

TP + FP
(3)
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In determining the accuracy of an object detector, it is
important to judge the accuracy based not only on the fact
that an object has been correctly identified as being of a
particular type, but also to determine how close the location of
the object identified, is to the ground truth. Therefore, instead
of using Accuracy, in this research we use mAP@0.5IoU as
a measure to determine correctness of object detection. In
our experiments we compared the performance of the four
object detection models we obtained by training the four sub-
versions of YOLO-V5, with models based on other popular
Deep Neural Networks, SSD (Single Shot Multibox Detector)
[37] and Faster R-CNN (Faster Region-based Convolutional
Neural Networks) [38] (see Table-3).

The results tabulated in Table-3 also show that SSD requires
significant amount of time for the convergence of training (i.e.
completion of training) and also take significant amount of
extra time for testing. Recall, precision and mAP@0.5IoU
values also remain significantly lower than those of the
YOLO-V5 models. Faster-RCNN took the lowest amount of
time to complete training and has very good testing speeds,
second only to YOLO-V5s, the shallowest YOLO-v5 sub-
version. However, Accuracy, precision, mAP@0.5IoU values
were much lower than in the case of the four YOLO-V5
models. Comparing the performance of the four YOLO-V5
models, it is observed that when the complexity/depth of the
architecture increases, more time is taken for training and
generally the same trend exists when it comes to testing, with
YOLO-V5x taking significantly more time than sub-versions,
m and l for testing. In comparison to other models, YOLO-
V5x achieved the highest mean average precision (81.1%) in
Ghaf tree detection, as shown in Table 3. Figure 3 illustrates
the Precision vs Recall graph for YOLO-V5x indicating a
mAP@0.5IoU value of 0.811.

TABLE III
PERFORMANCE COMPARISON OF DNN BASED OBJECT DETECTION

MODELS

Model Training Hours Recall Precision mAP
SSD 18 0.50 0.14 28.6%

Faster-RCNN 5 0.52 0.56 57.6%
YOLO-V5s 6 0.71 0.82 78.8%
YOLO-V5m 7 0.69 0.86 78.3%
YOLO-V5l 8 0.72 0.83 77.4%
YOLO-V5x 10 0.71 0.88 81.1%

In summary, based on the objective performance values
presented and discussed above, it can be concluded that the
object detector models generated from YOLO-V5 and its
sub versions are far superior in performance as compared to
models generated by other popular CNNs such as SSD and
Faster-RCNN. In particular the deeper the architecture, the
objective performance improves when comparing the different
sub-versions of YOLO-V5.

B. Subjective Performance Comparison

As shown by the objective performance results tabulated in
Table 3, all four YOLO-V5 sub-versions can detect Ghaf trees

Fig. 3. Precision Vs Recall Graph

(a) SSD (b) Faster R-CNN

(c) YOLO-V5s (d) YOLO-V5m

(e) YOLO-V5l (f) YOLO-V5x

Fig. 4. The visual performance comparison of Ghaf tree detector models
derived from DNN architectures, (a) SSD, (b) Faster-RCNN, (c) YOLO-V5s,
(d) YOLO-V5m, (e) YOLO-V5l, and (f) YOLO-V5x

with a typically acceptable mAP of over 77.4%. To further
analyze and compare the performance of the various models
developed, this section provides a comprehensive subjective
performance analysis. Figures 4-8 provide a number of dif-
ferent images taken from the drone footage of different areas
that contain Ghaf trees. Some areas only contain Ghaf trees,
and others contain other types of trees or plants.

Figure 4 illustrates the performance of the six models on
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a desert area only containing Ghaf trees. Unfortunately, SSD
based model did not pick up any of the Ghaf trees and The
Faster-RCNN based model did not detect a number of Ghaf
trees. The performance of the models created by the four sub-
versions of YOLO-V5 were very much comparable. It is noted
that in this image Ghaf trees have been captured at a high
resolution with clear views of trees, with no other types of
objects in the background.

Figure 5 illustrates the performance of models created by
the four sub-versions of YOLO-V5, on a drone captured image
of a higher altitude (hence trees appearing smaller) and in
an area where there are other trees and objects. The yellow
circles denote missed Ghaf trees. The model based on YOLO-
V5x outperforms the models based on other YOLO-V5 sub-
versions. YOLO-V5s misses some sparse canopies. YOLO-
V5s, m and l misses Ghaf trees located at the boundary of the
image.

Further inspecting the images included in Figure 6, it can
observe that the models generated by training the four YOLO-
V5 sub-versions, perform very well most of the time, and their
operational / accuracy gaps only exists in some detail. YOLO-
V5x performs marginally better when detecting small canopy,
overlapped and close canopies.

Figure 7 illustrates the use of the models created by the four
sub-versions of YOLO-V5 in detecting Ghaf trees in a more
complex area, that includes other trees. This image consists
of Ghaf trees of a wider size variation. Comparing with the
labelled ground truth image, the model generated by YOLO-
V5x demonstrates a better performance as compared with the
performance of the model created by YOLO-V5l. When the
scene becomes complex, significantly more data is needed for
training a deeper Neural Network. Thus, if we can have more
high quality data for training YOLO-V5x, the results can still
be improved.

Figure 8 illustrates the performance of the four models
on another test image in which other different size of trees
or plants exist in a complex area. In this specific case the
model created by YOLO-V5m, performs better than other
versions, rarely missing a Ghaf tree. Once again, the slightly
less accurate detection capability of YOLO-V5l and YOLO-
V5x can be attributed to the lack of substantial quantities of
training data. The depth of the model and the amount of data
will affect the actual detection situation. In certain situations,
a certain model may perform better.

IV. CONCLUSION

In this paper we investigated the use of Convolutional
Neural Networks in detecting Ghaf trees in videos captured
by a drone, flying at different altitudes and in different
environments that consists Ghaf trees. To the best of authors
knowledge, this is the first attempt in using Convolutional Neu-
ral Networks in automatically detecting Ghaf trees, that poses
a significant challenge to detecting them using traditional
machine learning approaches. Despite the relatively small
number of images utilized for training the DNNs in this work,

(a) YOLO-V5s

(b) YOLO-V5m

(c) YOLO-V5l

(d) YOLO-V5x

Fig. 5. The results of Ghaf tree detection in drone imagery using the YOLO-
V5s, YOLO-V5m, YOLO-V5l, and YOLO-V5x
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(a) YOLO-V5s (b) YOLO-V5m

(c) YOLO-V5l (d) YOLO-V5x

Fig. 6. The results of Ghaf tree detection in drone imagery using the YOLO-
V5s, YOLO-V5m, YOLO-V5l, and YOLO-V5x

(a) YOLO-V5s (b) YOLO-V5m

(c) YOLO-V5l (d) YOLO-V5x

Fig. 7. The results of Ghaf tree detection in drone imagery using the YOLO-
V5s, YOLO-V5m, YOLO-V5l, and YOLO-V5x

the high mAP@0.5IoU value of 81.1% obtained by the YOLO-
V5x based model in detecting Ghaf trees in approximately 78
MS, is a promising step towards achieving real-time detection
using aerial imagery. The training time for model generation
was high, approximately 10 hours and this was mainly due
to hardware limitation of the computer utilized. The training
time could be considerably reduced if a faster computer
hardware was utilized. Models trained based on all other
sub-versions of YOLO-V5 resulted in mAP@0.5IoU values
of above 77.4%, whilst other popular DNNs such as SSD
and Faster-RCNN performed less efficiently. Rigorous visual
inspection of Ghaf tree detections obtained using all four sub-
versions of YOLO-V5 revealed that YOLO-V5x particularly

(a) YOLO-V5s (b) YOLO-V5m

(c) YOLO-V5l (d) YOLO-V5x

Fig. 8. The results of Ghaf tree detection in drone imagery using the YOLO-
V5s, YOLO-V5m, YOLO-V5l, and YOLO-V5x

outperforms the other YOLO-V5 networks at detecting Ghaf
trees in scenarios where images are overlapping, blurred,
obstructed with different backgrounds, and where there is a
significant size variation of Ghaf trees.

This work utilized just over 5000 ghaf trees with 3200 of
them used during training. If this number can be expanded
to 10,000 + images, the detection performance will be further
improved as the models would then be able to better generalize
on new unseen data and accurately identify Ghaf trees. Dataset
limitation notwithstanding, the results obtained in this work
promise ground for real-time detection of the Ghaf using
aerial surveillance, thus aiding in the efforts to preserve this
endangered national tree of the UAE. The models can be used
to design change detection software to identify damages to
Ghaf trees based on drone captured aerial footage.
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