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Abstract—The United Arab Emirates (UAE) values its rela-
tionship with the desert, considering it a crucial part of its
heritage and culture. However, the desert faces environmental
challenges due to the improper disposal of garbage by visitors
and the dumping of waste, as some perceive the desert as an
empty wasteland. The rise in tourism exacerbates the problem,
as litter negatively impacts the desert’s ecology, wildlife, and
natural habitats. Traditional litter collection methods involving
human patrols are inadequate for the vast desert terrain. Drones
equipped with high-resolution cameras offer a potential solution
by conducting aerial surveys quickly and efficiently. However,
the manual review of drone footage to detect litter is time-
consuming. This paper explores the use of deep neural network
architectures, such as Faster R-CNN, SSD, and YOLO, to develop
litter detection models. These models focus on distinguishing litter
from other man-made objects. The training dataset consists of
thousands of samples, and the models are evaluated based on
their performance in detecting and locating litter in drone images
captured at different altitudes and environmental conditions. The
evaluation includes objective and subjective analyses. The re-
search aims to alleviate the practical challenges of litter detection
in the desert by automating the process through computer vision-
based object detection methods.

Index Terms—Convolutional Neural Networks, Litter Detec-
tion, Object Detection, YOLO-V5, Drone Imagery, Desert Ecol-
ogy, Environment Protection, Desert Environment

I. INTRODUCTION

The global expanse of desert land measures approximately
47 million square kilometres, with deserts found extensively
across the African, Asian, Australian, American, and European
continents [1]. Prominent deserts include the Sahara in North
Africa, the Rub Khali in Saudi Arabia, and the Taklamakan
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in China [2]. Within the United Arab Emirates, the Dubai
Desert Conservation Reserve (DDCR) safeguards an area
spanning roughly 250 square kilometres, serving as a protected
habitat for numerous endangered wildlife species and flora [3].
The DDCR actively engages in diverse desert conservation
initiatives encompassing wildlife breeding, controlled release
programs, and preservation of endangered tree species. Each
year, the DDCR attracts a multitude of tourists, scientists, and
researchers. Nevertheless, frequent human presence in nature
reserves such as the DDCR often results in the significant
accumulation of litter, posing a detrimental threat to the natural
environment, flora, and fauna.

Current practices for litter removal in desert regions pri-
marily involve deploying teams of litter pickers, comprising
workers and volunteers, to high-probability litter areas, partic-
ularly popular recreational sites. These groups undertake the
laborious task of manually searching for and collecting litter,
necessitating navigation across challenging terrains either on
foot or in vehicles. However, this approach proves arduous,
as it often entails covering extensive areas where litter may
ultimately be absent. Consequently, valuable time, effort, and
resources are wasted, while individuals face potential risks.
In recent times, the prevalence of low-cost drones has led to
their utilization for terrain surveillance. By flying at significant
altitudes, drones offer the ability to swiftly cover expansive
ground areas. The subsequent images or videos captured by
drones are manually inspected by humans to identify litter
presence and mark corresponding locations. Nevertheless, this
manual review process is also burdensome, as operators of the
video surveillance system must subjectively analyse all drone
footage. Once human observations are made, litter pickers can

20
23

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
N

et
w

or
ks

, C
om

pu
te

rs
 a

nd
 C

om
m

un
ic

at
io

ns
 (I

SN
CC

) |
 9

79
-8

-3
50

3-
35

59
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IS
N

CC
58

26
0.

20
23

.1
03

23
96

0

Authorized licensed use limited to: Keele University. Downloaded on December 11,2023 at 16:18:47 UTC from IEEE Xplore.  Restrictions apply. 



be directed to marked areas, potentially via GPS coordinates,
for eventual collection.

To address these challenges, computer vision-based ap-
proaches can be employed to automatically detect and locate
litter in drone footage. Traditional machine learning methods
require the identification of distinctive litter features through
manual feature engineering, followed by the use of feature-
based object classifiers to differentiate litter from other objects.
However, a significant challenge lies in defining the most
effective features that enable accurate differentiation from
other objects. Previous attempts in the literature to employ
machine learning for litter detection have yielded limited
success, with recorded accuracy levels remaining relatively
low [4]–[6].

In recent years, deep learning, a subset of Artificial In-
telligence (AI), has emerged as the dominant technology
for addressing object detection and classification challenges
in computer vision, surpassing traditional machine learning
approaches [7]. The key advantage of deep learning lies in
its ability to automate feature engineering, unlike classical
machine learning methods that require manual feature engi-
neering [8]. In the realm of 2D image processing applications,
Convolutional Neural Networks (CNNs) are popular deep neu-
ral networks employed. They can be categorised into two main
groups. The first category is Region-based CNN (R-CNN),
which includes variations such as Fast R-CNN and Faster
R-CNN [9]–[11]. These networks operate in two stages: ini-
tially generating region proposals and subsequently performing
classification and regression on these proposals. The second
category encompasses one-stage CNN architectures like You
Only Look Once (YOLO) and single shot detector (SSD) [12],
[13]. These architectures employ a single CNN network to
directly predict the categories and locations of different targets.
YOLO has evolved over the past five years, progressing from
YOLO-V1, v2, v3 to the v5. Our recent research and related
work [14]–[18] suggest that YOLO-V5, the more established
variant, outperforms earlier versions of YOLO, SSD, and R-
CNN architectures for most object detection and classification
tasks.

In this paper, we extensively investigate the utilization
of YOLO-V5 and its four variants representing deep neural
network architectures of varying depth: S (Small-shallowest),
M (Medium), L (Large), and X (Extra Large). However, we
do not investigate the use of YOLO-V7 and YOLO-V8 in this
study as they were released during the concluding stage of
this research. Our approach focuses on single-class detection,
specifically distinguishing litter objects from the background
of the scene, without considering any other types of objects. To
thoroughly evaluate and analyse the effectiveness of this litter
detection approach, we conduct experiments in two distinct
environments: remote areas primarily composed of natural
objects in the background, and sub-urban areas where the
background includes man-made objects like camp sites.

To enhance the clarity of presentation, this paper is struc-
tured into five sub-sections. Section 1 introduces the applica-
tion and research context of the study. In Section 2, we present

the YOLO-V5 network architecture and define the objective
metrics used to measure and compare the performance of the
trained models. Section 3 outlines the research methodology,
including the experimental design details for the two ap-
proaches adopted for litter detection. Additionally, we provide
information on dataset preparation, data labelling, training, and
the testing procedure employed to evaluate the performance of
the Deep Neural Network (DNN) model. Section 4 offers a
comprehensive analysis of the litter detection results, along
with detailed insights into the performance of the trained
model under the chosen litter detection approach. Finally,
in Section 5, we conclude the paper, provide suggestions
for future work, and propose potential improvements for the
established DNN model.

II. BACKGROUND

A. Quantitative Performance Evaluation Metrics

In our study, we employ various metrics to objectively
analyse the performance of the four object detection mod-
els obtained through training the sub-versions of YOLO-V5.
These metrics serve as quantitative measures for evaluating
the effectiveness of the models. Additionally, in section 4,
we present the experimental results by utilizing these metrics
and conduct a subjective performance comparison to provide
further insights.

1) Intersection over Union (IoU): Intersection over Union
(IoU) measures the overlap between the predicted bounding
box and the ground truth bounding box of an object. To cal-
culate the IoU, the area of intersection (the overlapping region)
between the predicted bounding box and the ground truth
bounding box is divided by the area of union (the combined
region) between the two bounding boxes. The formula for IoU
is shown in Figure 1.

The IoU value ranges from 0 to 1, where a value of 1
indicates a perfect overlap between the predicted and ground
truth bounding boxes, while a value of 0 indicates no overlap at
all. IoU is used as a measure of how well the object detection
model is able to accurately localize the objects in an image.
It is often used as a criterion for evaluating the performance
of object detection algorithms and determining the accuracy
of bounding box predictions. A higher IoU score indicates a
better detection performance. In all our experiments we have
used an overlap of 0.5 as default.

2) Mean Average Precision (mAP): Mean Average Preci-
sion (mAP) is a measure of the overall performance of an
object detection model in terms of both precision and recall.
Precision refers to the accuracy of the predicted bounding
boxes, while recall refers to the ability of the model to detect
all instances of a given object class. mAP takes into account
the precision and recall values at different levels of confidence
thresholds or IoU thresholds. The calculation of mAP involves
the following steps:
1. For each class in the dataset, the precision and recall values
are computed by comparing the predicted bounding boxes with
the ground truth bounding boxes.
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Fig. 1. Intersection of Union (IoU)

2. A precision-recall curve is generated by plotting the preci-
sion values against the corresponding recall values at different
confidence thresholds or IoU thresholds.
3. The average precision (AP) is calculated for each class by
computing the area under the precision-recall curve.
4. Finally, the mAP is computed by taking the mean of the AP
values across all classes. mAP provides a comprehensive eval-
uation of the object detection model’s performance by consid-
ering both precision and recall across different object classes.
It is a widely used metric for comparing and benchmarking
different object detection algorithms or models. Higher mAP
values indicate better overall performance in terms of both
localization accuracy and object detection capabilities. In this
study, we set a threshold of 0.5.

III. METHODOLOGY

The proposed approach to litter detection is based on a
generic workflow, as depicted in Figure 2. This workflow
consists of two main stages: the training stage (comprising
training and validation) and the testing stage. Prior to training,
the collected dataset must undergo preparation to ensure its
suitability for training, and the objects of interest need to
be accurately labelled for the purposes of training, valida-
tion, and testing. Subsequently, the Deep Neural Network
is trained using the prepared dataset. Upon completion of
the training process, a model is generated, which can serve
as an object detector/classifier. During the testing stage, the
model is applied to a set of test images, where it identifies
and classifies various object types present in each image.
In the case of a single object detector model, the trained
model specifically focuses on detecting one type of object.
The specific details and procedures pertaining to each phase,
including data preparation, labelling, training, validation, and
testing, are described in the subsequent sub-sections.

A. Data Preparation

We conduct a comprehensive investigation into a specialized
approach for litter detection, focusing exclusively on a single
object class: litter objects. The performance and effectiveness
of this approach in accurately detecting litter in both natural

Fig. 2. The workflow of the proposed method

and sub-urban environments are thoroughly examined and
presented in Section 4. The results showcase the strengths
and capabilities of our approach in successfully identifying and
detecting litter objects in these specific environmental settings.

For the single-class litter detection approach, a dataset of
913 images was gathered from drone flights conducted at
various altitudes within the nature/natural areas of the DDCR.
These images were randomly selected and contained over 8000
instances of litter objects. The chosen dataset predominantly
consisted of natural habitat, devoid of substantial human-made
objects in the background. To facilitate training, validation,
and testing, the dataset was partitioned into three subsets:
training (60%), validation (20%), and testing (20%). Notably,
due to variations in the number of litter objects present
in each image, the allocation of images across the subsets
differed. Specifically, the training, validation, and test subsets
comprised 512, 236, and 165 images, respectively.

The authors collected all the drone imagery within the
nature reserve areas of the Dubai Desert Conservation Reserve
(DDCR) using DJI Phantom 4 and DJI Mavic 2 Pro drones.
The data collection process involved flying the drones at
different heights/altitudes, speeds, and with varying camera
angles to capture comprehensive aerial views.

TABLE I
NUMBER OF LABELLED LITTERS IN EACH DATA SUBSET

Dataset Number of labelled litters
Training 5000

Validation 1600
Testing 1600
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B. Data Labelling

The drone captured image set comprised images taken
in different areas of the DDCR demarcated land, including
nature and camp sites. These images were captured at vari-
ous altitudes, camera angles, and different times of the day,
specifically during daytime. The density or sparsity of litter
within each image varied across samples.

The nature-site images consisted solely of natural objects
and litter, with very few instances of man-made, non-litter ob-
jects. On the other hand, the camp-site images contained both
litter and man-made objects/structures, making it challenging
to differentiate litter without considering the image context.
A subset of images was randomly selected from the drone
captured data for training, validation, and testing purposes, as
shown in Table 1.

To label the images, the authors utilised the labelImg tool
[19], which involved placing rectangles around identifiable
objects. In the 913 images captured in the natural environment,
all litter objects were labelled as ’litter’, resulting in a total
of 8200 labelled litter objects. Among these, 5000 objects
were labelled for training, 1600 for validation, and 1600 for
testing subsets of images. It is important to note that the
litter objects encompassed various types such as glass bottles,
plastic bottles, cardboard boxes, plastic bags, etc. However,
for the purpose of detection, all litter objects were labelled
under a single object class, ’litter’, without attempting sub-
classification.

The background surrounding the litter objects exhibited
variation, predominantly consisting of sand but occasionally
including bushes, shrubs, or rarely man-made structures. Dur-
ing the labelling process, the rectangles were drawn tightly
around each litter sample, aiming to encompass the litter
object’s shape while potentially including a portion of the
background, which could be desert sand or parts of other
objects present in the background. In cases where a litter object
was partially occluded by other objects, the non-occluded
shape of the litter was inferred, and the rectangle was drawn
to include the potentially covered area of the litter object’s
body. Additionally, efforts were made to capture isolated
litter objects with clear shape, boundary, texture, and colour.
When labelling litter objects with shadows, minimizing the
inclusion of the shadow within the rectangle was considered.
All the aforementioned labelling criteria were adopted to
enable the Deep Neural Network (DNN) to learn and recognize
litter objects under various conditions, including variations in
illumination, occlusion, size, and clarity.

C. Training & Validation

The experiments were conducted on a computer system
consisting of an Intel Core i7-6850k CPU, NVIDIA GeForce
GTX-1080ti GPU, 32 GB of RAM, and running the Windows
10 operating system. In order to evaluate the effectiveness
of popular Deep Neural Network architectures in object de-
tection, we adopt the proposed Single-Class Object Detector
approach for litter detection. The training data subset, which

contains labelled information specifically related to objects be-
longing to the ’litter’ class, is utilized to train the SSD, Faster
R-CNN, and four sub-versions of the YOLO-V5 Convolutional
Neural Networks (CNNs). Furthermore, the labelled litter
samples from the validation data subset are employed to fine-
tune the CNN architectures and optimize their performance
during the training process. This involves determining the
optimal values of the network’s hyperparameters to enhance
its detection capabilities.

D. Testing

Upon completion of the training process, the trained CNN
model is employed as a litter/object detector to identify litter
within the test data subsets. Each test image, initially sized at
3840 × 2160 pixels, is automatically adjusted by the network
to 608 × 608 pixels while maintaining the original aspect
ratio. The processed image is then passed through the network
to extract features, generating feature maps of three different
sizes: 76 × 76, 38 × 38, and 19 × 19 pixels, respectively, for
prediction. The 76 × 76 feature map is utilized for detecting
small-sized litter, while the 38 × 38 and 19 × 19 feature
maps are used for detecting medium and large-sized litter,
respectively.

At each prediction scale, the model predicts three bounding
boxes using anchor box scales that were learned automatically
during the training process. Each bounding box consists of
coordinates, width, height, a prediction confidence score, and
class probability. The confidence score reflects the level of
confidence in the bounding box containing the object. Bound-
ing boxes with low or zero confidence scores indicate the
absence of objects. By applying a threshold, the model can
filter out bounding boxes with low confidence, retaining only
those that contain objects of interest.

It should be noted that when dealing with larger input
image sizes, it may be necessary to divide the input images
into smaller tiles (at least 3840 × 2160 pixels, as utilized in
this study) to ensure the accuracy of object detection is not
compromised due to the automatic re-scaling to the 608 × 608
pixel image size before object detection is performed.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this study, we present the experimental results and
a comprehensive performance analysis of all CNN models
developed. The evaluation of these models is carried out using
a combination of quantitative and qualitative approaches. The
testing phase involves a dedicated test image set, which has
been reserved exclusively and not utilized in any previous
training or validation processes. This test set comprises drone
images captured within both the nature areas and the campsites
of the DDCR.

The effectiveness of the four object detection models, gen-
erated through the training of the four sub-versions of YOLO-
V5, is thoroughly examined. Additionally, we compare these
models with others created by training widely adopted Deep
Neural Networks, specifically SSD (Single Shot Detector)
and Faster R-CNN (Faster Region-based Convolutional Neural
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Networks). All six networks undergo training, validation, and
testing on identical datasets, as outlined in Table 1.

A. Quantitative Performance Comparison

The comparison of quantitative results is presented in Table
2. Our analysis shows that SSD has the fastest training
convergent time, but requires significant time for testing (i.e.
high deployment time / resources), and its recall, precision, and
mAP@0.5IoU values remain substantially lower than those
of the four YOLO-V5 models. Faster R-CNN, on the other
hand, takes the longest time for the convergence of training
but has relatively good testing speeds / deployment costs
as compared to the YOLO-V5 based models. However, the
accuracy, precision, and mAP@0.5IoU values of the Faster
R-CNN model are inferior to those of the four YOLO-V5
models. Comparing the performance of the four YOLO-V5
models, we observed that as the complexity/depth of the
architecture increases, more time is required for training and
testing, with YOLO-V5l and x taking significantly more time
than sub-versions s and m. YOLO-V5l achieved the highest
mean average precision (71.5%) in litter detection as compared
to other models, as presented in Table 2. Given the above
observations, considering the objective performance metrics,
we recommend the use of YOLO-V5l for litter detection.

TABLE II
PERFORMANCE COMPARISON OF DNN BASED OBJECT DETECTION

MODELS

Model Training Hours Recall Precision mAP
SSD 10.5 0.30 0.21 15.9%

Faster-RCNN 15.6 0.28 0.14 20.2%
YOLO-V5s 14.6 0.61 0.76 65.3%
YOLO-V5m 14.8 0.62 0.81 69.5%
YOLO-V5l 15.1 0.65 0.76 71.5%
YOLO-V5x 15.2 0.65 0.79 71.3%

In summary, based on the objective performance values
presented and discussed above, it can be concluded that the
object detector models generated from YOLO-V5 and its
sub versions are far superior in performance as compared
to models generated by other popular CNNs such as SSD
and Faster-RCNN. The deeper the architecture, the objective
performance improves when comparing the different sub-
versions of YOLO-V5.

B. Visual Performance Comparison

As indicated in Table 2, all four versions of YOLO-V5
exhibit the ability to detect various types of litter in the im-
ages, achieving precision levels of over 76%. The exceptional
precision values, along with strong recall rates, further validate
the successful performance of all YOLO-V5 models. This
objective assessment aligns consistently with the subjective
evaluation presented in Figure 3, which showcases the models’
proficient performance.

In contrast, both SSD and Faster R-CNN demonstrate
subpar performance. These models exhibit deficiencies in ac-
curately detecting numerous litter objects, as clearly depicted

(a) SSD (b) Faster R-CNN

(c) YOLO-V5s (d) YOLO-V5m

(e) YOLO-V5l (f) YOLO-V5x

Fig. 3. The visual performance comparison of litter detector models derived
from DNN architectures, (a) SSD, (b) Faster-RCNN, (c) YOLO-V5s, (d)
YOLO-V5m, (e) YOLO-V5l, and (f) YOLO-V5x

in Figure 3. The lacklustre performance of SSD and Faster
R-CNN models is further highlighted by their lower precision
and recall values, as evidenced in Table 2.

It is important to note that the relative performance of the
models remains consistent across all test images utilized in
the evaluation. Considering this consistent pattern and the
comprehensive results provided in Table 2, future performance
comparisons exclude the SSD and Faster R-CNN based mod-
els.

Figure 4 presents a visual assessment of litter detection by
employing the four sub-versions of YOLO-V5 models. While
all four models successfully detect all litter objects, it should
be noted that the YOLO-V5s and YOLO-V5m models missed
more litters than l and x did.

Additional experimental results, comparing the performance
of litter detection models generated using the four sub-versions
of YOLO-V5, are presented in Figures 5 and 6. In these
figures, the ’yellow circles’ represent instances where the
models failed to detect litter objects, as compared to human
observation. In Figure 6, all of the 4 models detected all the
litters in the testing image.

The visual comparison results presented above demonstrate
the effectiveness of each of the four sub-versions of YOLO-V5
in litter detection. When the UAV’s flight height is relatively
low or the litter size is large, all four models exhibit excellent
detection performance (as seen in Figure 6). Regardless of
the litter subtype (e.g., bottles, paper, bags, boxes, etc.), litter
objects are consistently detected, particularly when common
objects used in training (e.g., plastic bottles) and well-defined
objects with distinct shapes are involved, especially during
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(a) YOLO-V5s

(b) YOLO-V5m

(c) YOLO-V5l

(d) YOLO-V5x

Fig. 4. The results of litter detection in drone imagery using the YOLO-V5s,
YOLO-V5m, YOLO-V5l, and YOLO-V5x

high-altitude drone flights.
Figure 7 showcases an image example that highlights the

impact of employing the YOLO-V5x-based litter detection
model. The image, captured from a drone at a significant
altitude, contains several very small litter objects on the top
right side, which are not detected due to their size. The YOLO-
V5x model outperforms in detecting the smallest litter objects,
and our analysis suggests that further improvements can be
achieved by augmenting the training data with a larger number
of very small litter objects. However, it is worth noting that

(a) YOLO-V5s (b) YOLO-V5m

(c) YOLO-V5l (d) YOLO-V5x

Fig. 5. The results of litter detection in drone imagery using the YOLO-V5s,
YOLO-V5m, YOLO-V5l, and YOLO-V5x

(a) YOLO-V5s (b) YOLO-V5m

(c) YOLO-V5l (d) YOLO-V5x

Fig. 6. The results of litter detection in drone imagery using the YOLO-V5s,
YOLO-V5m, YOLO-V5l, and YOLO-V5x

shallower YOLO-V5 models, such as ’s’, may result in false
positives, wherein very small non-litter objects are detected
as litter. To accurately differentiate between very small litter
and non-litter objects, the model’s depth should be sufficient
to perform detailed feature analysis. Additionally, in tested
example images, YOLO-V5l demonstrates slightly superior
performance compared to YOLO-V5x. This can be attributed
to the need for a larger dataset to train the deeper YOLO-V5x
network, enabling more accurate detection.

C. Discussion – Single-Class Litter Detector Performance

According to the review of literature we conducted, this is
the first attempt carried out in literature to identify litter in
drone captured footage using the latest advancements in Deep
Neural Network architectures. We have shown that single-
class litter detection models based on YOLO-V5 sub-versions,
result in mean average precision values of above 71.5% and
precision values over 76%. This is a promising step toward
real-time detection of litter using aerial image data, despite the
small sample size of training images employed in the training
of the DNN architectures, in the proposed research. Further
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Fig. 7. Detecting very small objects of litter using YOLO-V5x based model

investigation of the resulting models’ training times indicated
higher training times of the models generated from the more
complex and deeper networks (i.e., YOLO-V5, x and l sub-
versions) were mainly due to the limitations of the processing
power of the computational hardware used in this research.
The training and testing times could be considerably reduced
by using faster computer hardware.

In the experiments conducted we only investigated a single-
class litter detector in which all objects of litter, e.g., regardless
of whether they are bottles, cans, paper, boxes, or any other
common objects of litter typically left behind after human
consumption, was labelled as a single type of object, ‘litter’.
Our detailed investigations revealed that it is important still to
have a sub-class balance, i.e., similar number of different types
of litter objects being used in training, despite the fact that all
litter types are classed as one type, for testing accuracy for
all sub-types to be similar. For example, in our training data
the least amount of litter was ‘drink cans’ and such objects
had the highest chances of being missed or mis-classified.
Therefore, within the training process, we attempted to balance
the amount of different sub-types of litter as the available
sample data on some sub-types of litter (such cans) was
relatively scarce, e.g., drink cans. Our investigations revealed
that the models’ performance will be better if we collected
sufficient data for all sub-types of litter, e.g., 2000 samples of
each sub-type.

As recommendations for the future improvement of per-
formance of models, in particular that of the models created
from the deeper DNN architectures such as YOLO-V5 x and
l, it is recommended that more UAV data to be captured
at very different altitudes of drone flights, i.e., capturing at
altitudes resulting in visibly distinct litter types in addition
to capturing images at altitudes where the litter types are
indistinguishable. Such data, when used in training results in
better generalization of models in litter detection. Despite the
limitations of data available for training, we have demonstrated
the superior capability of the models based on the most popular
DNN architectures in litter detection.

In the investigation conducted in this section and the results
presented, the use of training and test data was limited to
desert regions of natural habitats, where litter had been left

Fig. 8. Test results of single-class litter detection models in desert camp-sites

Fig. 9. Test results of single-class litter detection models in desert camp-sites

behind by visitors to the DDCR desert conservation areas.
The scenes/images rarely consisted of any human-made or
non-natural objects. This led to our curiosity to determine the
potential capability of the developed models to detect litter in
areas that is usually occupied by humans, such as camp sites.
In this section we present the results of our investigation and
a resulting alteration to our litter detection approach to enable
more accurate detection of litter in such regions.

We only use the best performing litter detection based on
the YOLO-V5L sub-version (71.5% mAP value) for single-
class litter detection in camp sites of the DDCR desert regions.
Representative sample of results that are illustrated in Figures
8 and 9, clearly show that the single-class litter detection
model detects many human-made objects (such as cars and
freezers), as litter. Not all human-made objects are detected
as litter. Most false positives are of a distinct colour (not
relevant to typical colours present in natural desert regions)
or shape (e.g., those with straight line edges). Although one
could argue that the scene in Figure 8 has some objects that
can be defined as litter, the scene in image 10 does not have
any objects that can be defined as litter. It is noted that
human-made objects that is left around in a non-organized
manner, in a locality that they are no generally expected,
could be contextually defined as litter, typically. An attempt
to detect individual objects of litter, without considering the
context in which they appear within a scene, has limitations.
However, our current research efforts are limited to identifying
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litter based on single object detection. The fact that ‘litter’
objects are not natural objects and are human-made, make
the challenge further complex. Therefore, it is important that
we differentiate litter objects that a human would define as
litter (based on a visual context analysis) from man-made, but
non-litter objects (human visual judgment based on context).
It is noted that both object types are human-made and the
single class litter detection approach we adopted in section
4 will therefore fail to differentiate the two types of objects.
Further it is noted that as we trained our single-class litter
detector only on natural images, the background of labelled
litter objects used in training and validation, only consists of
natural objects. Therefore, when we apply the resulting object
detectors on campsites any non-natural or man-made objects,
which we might not define as litter, is still more likely to
be classified as litter, than being classified as a part of the
scene background. This is a further reason behind the failure
of the single-class litter detector, when applied in camp-site
images. Nevertheless, we demonstrated that the single-class
approach to litter detection is an ideal and simple solution to
litter detection in nature reserves such as most of the land area
managed/conserved by the DDCR.

V. CONCLUSION

In this study, we suggest employing the most recent YOLO-
Version to find litter in UAV photographs taken over the United
Arab Emirates (YOLO-V5). All YOLO-V5 networks have a
detection precision of over 76%, according to the findings of
the experiments described in this article. The performance of
the YOLO-V5l in terms of litter detection is the best, with a
rate of over 71.5%(mAP@0.5IoU). When images are blurry,
overlapping, or obscured by different backgrounds, YOLO-
V5x outperforms the other YOLO-V5 networks at spotting
many litters. Over 5000 litter samples were used during
training, and over 913 photographs total were used in this
study. The detection performance will enhance even more if
this number is raised to 10,000 or higher since the models will
be able to generalise previously unobserved data. Furthermore,
this approach offers new inspiration and challenges for object
classification with strong subjectivity, and has the potential to
enhance the accuracy and efficiency of object detection in a
variety of real-world applications. The results of this study,
despite the limits of the data set, open the door for the real-
time detection of litter via aerial surveillance, aiding in the
preservation of the environment and desert in the UAE.
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