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Abstract 
 

Cancer incidence rates are increasing world-wide including in the UK. An increase in cancer 

cases puts further pressure on pathology departments that are often already struggling to 

meet targets to diagnose cancers in a timely manner. Delays in diagnosis will cause the delay 

of treatment being provided and worse patient outcomes. Current diagnostic methods for 

cancer rely on cytological/histological staining of biopsies and a diagnosis is made in a 

subjective manner by a pathologist. These methods are time consuming and require great 

expertise. New diagnostic methods are needed to help relieve pressures on pathology 

departments. There is a consensus that vibrational spectroscopy techniques have the 

potential to be tools that could aid in cancer diagnostics. Despite an increasingly growing 

body of research demonstrating how vibrational spectroscopy methods could be utilised for 

clinical diagnostics there has been several barriers to the translation of such methods.  

The research in this thesis aims to investigate and demonstrate methodologies to utilise 

modes of infrared spectroscopy with glass substrates for lung and breast cancer diagnostics. 

One of the major barriers for the use of infrared spectroscopy in cancer diagnostics is the 

expense and difficulty of procurement of conventional substrates. This thesis aimed to 

investigate a methodology to use a glass coverslips substrate for the classification of lung 

and breast cancer cells using IR spectroscopy. Glass coverslips were used because of their 

affordability and accessibility, an important consideration for the translation of diagnostic 

methods.  

In vitro cancer cell lines and healthy tissue derived cell lines were used to model this 

research to test the feasibility of the proposed methods. This research first investigated a 

sample preparation method for cytology samples to be analysed with FTIR spectroscopy. The 
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next sections demonstrated the proposed method could be used to classify lung and breast 

cancer cells in-from non-malignant cells in-vitro using FTIR spectroscopy and a random forest 

classifier. The methodology was next used to demonstrate how FTIR spectroscopy could be 

used to identify individual lung cancer cells from leukocytes in mixed samples. This is the 

first time this has been demonstrated. Finally, related IR spectroscopy technique, O-PTIR 

spectroscopy, was investigated for how it could be used with glass slides for the 

classification of lung cancer cells from non-malignant cells. The research in this thesis has 

demonstrated that glass substrates are viable for the classification of lung and breast cancer 

cells with high accuracy using sample preparation methods that are commonplace in 

pathology laboratories for current diagnostic procedures.  

 



 

Chapter 1: Literature review 
 

The number of cancer cases in the UK are continuing to rise with a 12% incidence rate 

increase for all cancers in the UK from the 1990s to 2017 (Cancer Research UK, 2018). This 

ever-increasing incidence of cancer generates a greater workload for pathology departments 

and an increased turn around for key cancer diagnoses. A delay in diagnoses causes a delay 

in treatment and possible worsening of patients’ condition and survival and an increase in 

their stress and anxiety. An automated system that could identify abnormal cells in cytology 

samples for further investigation would be ideal for managing this increased workload. This 

could reduce the time pathologists would spend looking at samples to deem if they are 

positive or negative for cancer. Additionally, this kind of system could be used to also help in 

differentiating types of cancer to further improve diagnosis times.  

There is a strong body of research showing that Fourier Transform Infrared (FTIR) 

microspectroscopy has potential as a technique that could aid pathologists in their work 

investigating tissue/cytology samples from patients with cancer or suspected cancer. Despite 

the plethora of work carried out in research settings, FTIR microspectroscopy has yet to be 

translated to the clinical setting (Finlayson, Rinaldi and Baker, 2019). One of the main 

drawbacks has been the substrates that samples are placed on for FTIR microspectroscopy 

(CaF2, BaF2, ZnSe) as they are often expensive, costing up £50-60 per slide. This would make 

a diagnostic system based on FTIR microspectroscopy very expensive with the large number 

of samples that need to be studied in a clinical setting. The glass slides commonly used in 

pathology departments as a substrate for cytology samples obscures the fingerprint region 
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of the spectra because the glass absorbs IR radiation (carbohydrates, proteins, nucleic acids) 

(Bassan et al., 2014) (Pilling et al., 2017) (Rutter et al., 2018).  

Previous work by our group showed that thin soda lime glass coverslips of a thickness of 

0.12-0.17 mm could be used as a substrate and that the lipid bands and amide I and II bands 

were visible (Rutter et al., 2019). These coverslips allow for the study of bands in the 

fingerprint region down to 1350 cm-1 which cannot be seen on regular glass slides. It is 

believed that, due to the coverslips being thinner than the glass slides commonly used, less 

IR radiation is absorbed which allows the amide I and II peaks to be viewed. The current 

research which I am conducting aims to expand on this work. The research will use FTIR 

microspectroscopy to firstly differentiate between different lung cancer cells (A549, CALU-1), 

normal counterparts (NL20) and peripheral blood mononuclear cells (PBMC) placed upon the 

soda lime glass coverslips. This work will be another step towards translating FTIR 

spectroscopy to a system that could be utilised in a clinical setting. The work will make use of 

both benchtop spectrometers and synchrotron light based FTIR microspectroscopy. 

My main research question is: can soda lime glass coverslips be used as a substrate for FTIR 

microspectroscopy of lung and breast cancer cells to distinguish them from normal cells? 

Answering this question could move FTIR microspectroscopy a step closer to being used in a 

clinical setting as it would show that expensive CaF2, BaF2 and ZnSe substrates do not have 

to be used for transmission FTIR microspectroscopy studies to distinguish between the cells 

as outlined. This would reduce the cost of the technique and make it easier for pathologists 

to perform their routine test on the sample such as staining and immunohistochemistry as 

the coverslips can simply be stuck on to a glass slide to allow for the staining.  
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Lung cancer 
 

Lung Cancer incidence, burden, and mortality 

 

In the UK there are approximately 47,200 new lung cancer cases diagnosed per year. These 

lung cancer cases account for 13% of all UK cancer diagnoses a year (Cancer Research UK, 

2016). Lung cancer mortality rates have remained high for the last 40 years with 

approximately 35,600 lung cancer deaths a year in the UK, accounting for 21% of all UK 

cancer deaths. The situation is similar worldwide with lung cancer accounting for 27% of 

cancer deaths in the United states of America (USA) in 2015, and 20% within the EU in 2016 

(Malhotra et al., 2016). Lung cancer survival rates remain poor with 5 in 100 people diagnosed 

with lung cancer surviving beyond 10 years in the UK (Cancer Research UK, 2016), and this 

survival rate is lower still in less developed countries with poorer healthcare. Low survival 

rates can largely be attributed to the fact that most lung cancers are diagnosed once they 

are symptomatic in later stages of the disease which makes treatments with a curative 

intent difficult. 

Lung cancer risk factors 

 

Tobacco smoking is the largest cause of all histological types of lung cancer. Lung cancer 

cases have decreased in the UK by 8% in the last 20 years in most part due to a reduction of 

the number of smokers and a ban on smoking within enclosed public spaces. The risk among 

continuous smokers compared to that of non-smokers has been measured in the order of 

20-50-fold greater (Malhotra et al., 2016). This risk of lung cancer is reduced in ex-smokers 



3 
 

compared to continuous smokers however excess risk is still increased later in life compared 

to non-smokers. Passive smoking exposure is also a risk. The excess risk of non-smokers with 

a spouse who smokes is estimated to be in order of 20-30% (Asomaning et al., 2008).  

A family history of cancer has been found to be a significant risk factor for lung cancer. A 

major susceptibility locus for lung cancer has been mapped to chromosome 6q23-25 (Bailey-

Wilson et al., 2004). The fact that a large number of smokers do not develop lung cancer 

suggests that a genetic predisposition may contribute to the carcinogenesis of lung cancer.  

Age is an important risk factor for most types of cancer including lung cancers. 75% of lung 

cancer cases are diagnosed in people over 65 years of age (Cancer Research UK, 2016). The 

UK and much of the developed world are facing ageing populations which will contribute to 

an increase in the incidence of cancer cases.  

Other pulmonary conditions could increase the risk of developing lung cancer. It has been 

suggested that chronic obstructive pulmonary disease (COPD) could increase the risk of 

developing lung cancer independently of smoking (Turner et al., 2007). However, others 

have suggested that it is impossible to remove the residual effect of smoking from the 

potential risk of COPD (Powell et al., 2013). A relative risk of 1.8 (95% CI 1.3-1.3) was 

reported from a meta-analysis of twenty-two studies on asthma and lung cancer in never 

smokers (Santillan, Camargo and Colditz, 2003). A population-based case control study in 

Shanghai investigated the links between tuberculosis (TB) and lung cancer (Zheng et al., 

1987). The study found those with a history of TB within the last 20 years had a risk of lung 

cancer of 2.5-fold and there was a correlation between the location of TB lesions and 

tumours.  
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Occupational exposure to carcinogens provides a significant risk for lung cancer. One study 

estimated that 14.5% of lung cancer cases in the UK can be attributed to exposure to 

carcinogenic agents from occupations (Rushton et al., 2012). The most significant 

occupational carcinogenic agents are radon, asbestos, silica, heavy metals and polycyclic 

aromatic hydrocarbons. All forms of asbestos are carcinogenic to the human lung and is 

known to cause mesothelioma. Asbestos was widely used in the UK for building insulation 

prior to its ban in 2000. The use of asbestos is banned in 55 countries but is still an 

occupational hazard in those countries that still use asbestos. Silica is a material used in 

pottery making, ceramics and brick making that is also shown to be carcinogenic to the lungs 

and has demonstrated to have similar effects on the lung to asbestos (Steenland et al., 

2001). Radon is a radioactive material that emits ionising α-particles as products of decay, 

those that work in mining industries are at increased risk of radon exposure.  

 

Lung cancer types 

 

Lung cancer can be categorised into two main histological groups: small cell lung carcinoma 

(SCLC) that make up 15% of lung cancers and non-small cell carcinomas (NSCLC) which 

account for 85% of lung cancers (Ryan and Burke, 2017). NSCLC can be further 

subcategorised as squamous cell carcinoma (SqCC), adenocarcinoma and large cell 

carcinoma.  

Adenocarcinomas are the most common type of lung cancers, comprising 40% of all lung 

cancer cases. Adenocarcinomas are defined as an epithelial neoplasm with mucin production 

or pneumocyte immunohistochemical marker expression (Inamura, 2017). Adenocarcinomas 
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typically form a peripherally located mass with central fibrosis and pleural puckering. As of 

2015, the World Health Organisation (WHO) released a new classification that divides 

adenocarcinoma into adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma or 

invasive adenocarcinoma based on the extent of invasiveness. AIS is defined as an 

adenocarcinoma with a lepidic pattern and a diameter <3 cm. If the tumour diameter is >3 

cm it is defined as lepidic predominant adenocarcinoma. Minimally invasive carcinoma (MIA) 

is an adenocarcinoma with a diameter of <3 cm and invasion size of <5 mm. If there is the 

presence of lymphovascular invasion, pleural invasion or tumour necrosis, it excludes an MIA 

diagnosis even if both the tumour size and invasion size comply (Ryan and Burke, 2017). 

Invasive adenocarcinomas are further classified into five differentiation patterns: lepidic, 

papillary, acinar, micropapillary, and solid adenocarcinoma. Defining the classification of the 

adenocarcinoma is very important because it will affect the prognosis and treatment plan. 

SqCC represents around 25% of lung cancers. In the 2015 WHO classification SqCC was 

divided into keratinising, non-keratinising and basaloid SqCC. Prior to the 2015 classification, 

basaloid SqCC was classed as a large cell carcinoma, but it was recategorized based on newly 

identified SqCC markers from immunohistochemistry (Inamura, 2017).  

Neuroendocrine tumours are a new classification for lung tumours established in the 2015 

WHO classification. Three subtypes exist within the neuroendocrine classification: SCLC, 

large cell neuroendocrine carcinoma and carcinoid tumours. Neuroendocrine tumours are 

very aggressive and are correlated with a long history of smoking (Zappa and Mousa, 2016).  
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Lung cancer diagnosis 

 

One of the important factors for the prevention of disease progression and successful 

treatment of the disease is early detection and identifying the cancer before systemic 

invasion. If a patient is suspected of having lung cancer, they are sent for an evaluation using 

imaging techniques. The first stage of diagnosis is imaging the chest through x-ray, 

computerised tomography (CT), and positron emission tomography (PET) (Nasim, Sabath 

and Eapen, 2019). CT scans are the most used technique for the staging of tumours and to 

assess the success of treatment. The scans provide information on the tumour size, location 

and anatomical characteristics. CT scans have limitations detecting metastasis in normal 

sized lymph nodes and differentiating between tumour adhesion and infiltration. PET is used 

for the assessment of pulmonary nodules and metastases. CT and PET scans are used in 

conjunction if it is likely that metastases are present. The lungs can be difficult to image due 

to their large size and surface area. High resolution CT can identify lung nodules of less than 

1 cm in size, but it is not sensitive enough to identify bronchogenic invasive legions (Gohari 

and Haramati, 2004). Benign granulomas in the lung can mimic early and preinvasive lung 

cancer leading to false positive results. After imaging, the tumour type and stage must be 

confirmed through tissue diagnosis. This is done through sputum cytology, lymph node 

biopsy, fine needle aspiration and video assisted thoracoscopy. 

Small biopsy and cytology specimens are the primary methods of diagnosis for lung cancer. 

Sputum cytology can be used for the early detection of lung cancer. Sputum can be obtained 

through deep coughing and the application of saline mist (Ammanagi et al., 2012).  Sputum 

cytology is recommended for patients who cannot undergo more invasive methods. 
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However, the usefulness of sputum cytology is largely dependent on tumour cells’ location 

and the tumour size. Cytology can suffer from low cellularity and non-cancer cells within the 

suspension (Wardwell and Massion, 2005).  Subpleural tumours can be difficult to biopsy 

and come with a greater risk of pneumothorax, tearing the pleura and laceration of 

surrounding parenchyma (Gohari and Haramati, 2004).  

Biopsy and cytological samples are typically stained with haematoxylin and eosin (H&E). 

Haematoxylin is a basic dye that stains the cell nucleus purplish blue, and eosin is an acidic 

dye that stains structures including the extracellular matrix and cytoplasm pink and red. H&E 

staining provides contrast between structures to allow identification of tumours within a 

tissue sample. The morphology of the tumour cells in the tissue can be seen from the 

staining.  

Immunohistochemistry (IHC) is an important step of the diagnosis process. IHC is used to 

discriminate benign from malignant tumours, metastases from primary tumours and SCLC 

from NSCLC (Bubendorf et al., 2017). In the case of non-squamous NSCLC, IHC is followed by 

molecular characterisation as the sub-type will affect prognosis and treatment options. 

Mutations causing increased expression and presence of epidermal growth factor (EGFR) 

and anaplastic lymphoma kinase (ALK) are detected through molecular characterisation by 

sequencing and PCR. The results of molecular characterisation will inform the clinician if 

targeted therapies and/or immunotherapies can be used. 

Lung cancer diagnostic pathways still present with many problems including poor resolution, 

false positives and negatives and a lack of biochemical information. Histological and 

cytological diagnoses can be subjective in nature and rely on the pathologist. There is a risk 
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of multiple biopsies needed before diagnosis is made which can cause further suffering to 

patients.  

A major problem with current diagnostic methods for lung cancer diagnosis is the lack of 

early detection. The current diagnostic methods rely on imaging which can easily miss 

tumours in early stages when they are smaller in size, and patients are often not imaged 

until symptoms are apparent in later stages of disease. The requirement of tissue biopsies to 

make a diagnosis also makes it difficult to diagnose early-stage disease if it is detected 

because the small tumour can be difficult to access to obtain the biopsy. As there is risk 

involved from radiation during imaging and the invasive surgery required for biopsies there 

is currently no screening program for lung cancer in the UK and many other countries. More 

methods of diagnosis are needed to improve early detection of lung cancer to increase 

survival.  

 

Lung cancer treatment 

 

The treatment options for lung cancer largely depend on the stage of the cancer and the 

type. The TNM-based staging system is a commonly used system which describes the 

anatomical extent of the cancer and its severity (Lemjabbar-Alaoui et al., 2015). The T in the 

TNM system indicates the size and extent of the primary tumour, N is the extent of 

involvement of the regional lymph nodes and M is the presence or absence of distant 

metastatic spread. A number is given to each of these three categories to describe the 

extent of each.  Subsets are combined into stage groupings which indicate the severity of the 
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cancer. NSCLC has four stages (I-IV) with the lower the stage being the least severe. SCLC has 

two stages: limited and extensive. Full lung cancer TNM staging is shown in appendix 1. 

For the early stages (I-II) of the disease, the primary treatment is surgery if the tumour is 

resectable. Surgery provides the best long-term survival for the disease at this stage with a 

five-year survival rate of 60-80% for stage I NSCLC patients after resection of the tumour and 

30-50% for stage II. For patients unable to undergo surgery or with unresectable tumours, 

radiotherapy and chemotherapy are the recommended treatments. 

A majority of NSCLC patients are diagnosed in advanced stages (III-IV) of the disease. Stage III 

NSCLC is a heterogenous disease that varies from a resectable primary tumour with 

microscopic metastases to the lymph nodes to an unresectable bulky tumour with many 

nodal locations. The treatment approach is determined by the tumour location and whether 

it is resectable. Standard treatment for resectable tumours is surgery followed by adjuvant 

chemotherapy. For unresectable tumours treatment will include a combination of 

chemotherapy and radiotherapy, and more recently immunotherapy and targeted therapies. 

Stage IV NSCLC which accounts for 40% of new diagnoses is difficult to treat and has very 

low survival rate, treatment for grade IV NSCLC is often palliative treatment. The choice of 

treatment for grade IV NSCLC will depend on many factors including co-morbidities, 

histology and molecular genetic features of the cancer. Treatment for stage IV NSCLC 

includes radiotherapy, combination chemotherapy, targeted therapy and/or 

immunotherapy.  

Therapeutic progress in recent years can be mostly attributed to targeted therapies that 

target the specific molecular genetic mutations of the cancer. Patients who have a cancer 

that does not have an approved targeted therapy, the first line treatment is platinum-based 
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doublet therapy with or without bevacizumab. Erlotinib (Tarceva), gefitinib (Iressa) or 

afatinib (Giotrif) are targeted drugs that act on NSCLC with epidermal growth factor receptor 

(EGFR) mutations (Hirsch et al., 2017). In 2007 it was discovered that an oncogenic ALK gene 

rearrangement was present in some NSCLCs (Soda et al., 2007). The ALK rearrangement 

result from translocations or inversions on chromosome 2 that fuse to regions of exon 20 of 

the ALK gene. There have been several ALK targeted therapies developed since this 

discovery including crizotinib, ceritinib, and alectinib. For patients with EGFR or ALK positive 

NSCLC, targeted therapies form the backbone of treatment. The third target to be approved 

after EGFR and ALK was ROS1. ROS1 rearranged phenotypes have been described as a 

distinct molecular phenotype in 1-2% of NSCLC patients. ROS1 rearrangements causes fusion 

of ROS1 tyrosine kinase domain with partner genes, usually on another chromosome.  

Recent focus has been on immunotherapies. One such immunotherapy target is the 

programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1). PD-L1 is 

an inhibitory immune checkpoint molecule. Agents that target PD-L1/PD-1 have shown 

promising results in NSCLC treatment. Two antibodies that target PD-1; nivolumab and 

pembrolizumab while another two antibodies target PD-L1; atezolizumab and durvalumab, 

have been approved by the US Food and Drug Administration (FDA) and European Medicines 

Agency (EMA) for the treatment of NSCLC. Only about 20% of patients respond to these 

treatments as a monotherapy so it is important to identify the patients who will benefit 

most from this therapy (Hirsch et al., 2017).  
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Breast Cancer 

 

Breast Cancer incidence, burden, and mortality 

 

Breast cancer accounts for 15% of new cancers in the UK and is the most common cancer in 

women. Breast cancer incidence rates have increased by 18% since the early 1990s ( Cancer 

Research UK, 2018). While breast cancer mortality has decreased by a sixth in the UK in the 

last decade, it still accounts 7% of all cancer death. Breast cancer mortality rates is projected 

to continue to fall this next decade by 13%. This can be contributed to improvements in 

treatment from immunotherapies and the screening program diagnosing many cases in early 

stages.  

 

Breast cancer risk factors 

 

The most significant risk factor for breast cancer is sex with less than 1% of breast cancers 

occurring in men. Breast cells in women are vulnerable to increases in oestrogen and 

progesterone. A change in endogenous hormone levels can increase the risk of breast cancer 

in premenopausal and postmenopausal women. Men produce an insignificant amount of 

oestrogen along with less breast tissue so are at less risk of developing breast cancer 

(Łukasiewicz et al., 2021). Age is another significant risk factor for breast cancers. Most 

breast cancers are diagnosed after the age of 50. Aging populations in the UK and much of 

the developed world is a significant cause for the rising incidence of breast cancer in 
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developed nations. Family history of breast cancer presents as a significant risk factor with 

approximately 13-19% of patients reporting a first-degree familial relation with breast 

cancer. Mutations in the breast cancer gene 1 (BRCA1) and breast cancer gene 2 (BRCA2) 

tumour suppressor genes are involved in about 3% of breast cancers. Mutations of BRCA1 

and BRCA2 can be hereditary and are more common in some population groups such as 

those of Ashkenazi Jewish heritage (Petrucelli, Daly and Pal, 2022).  

Low physical activity and a high body mass index (BMI) have been linked to increase risk of 

breast cancer. Women above 50 years old with a high BMI are at a greater risk of breast 

cancer than those with a low BMI. Greater BMI has also been associated with more 

aggressive cancers with greater lymph node metastasis and greater tumour size (Łukasiewicz 

et al., 2021).  

Certain drugs have been shown to increase the risk of breast cancer. The use of hormonal 

replacement therapy (HRT) longer than 5-7 years can increase breast cancer risk. The 

prolonged use of HRT can cause overstimulation of oestrogen receptors on breast cells 

(Williams and Lin, 2013).  

 

Breast cancer types and development 

 

Invasive breast cancer presents in varying behaviour and morphology with WHO 

distinguishing 18 different histological breast cancer types (Vajpeyi, 2005). Invasive ductal 

carcinoma (IDC) is the most frequently diagnosed subgroup of breast cancer (75%) and is 

diagnosed when a tumour fails to be diagnosed into a histological subtype (Łukasiewicz et 



13 
 

al., 2021). The remaining 25% of invasive breast cancers are recognised as specific subtypes 

from their distinctive growth patterns and cytological features. Molecular classification of 

breast cancer is also important with subtypes based on the expression of receptors that 

determine treatment.  

Luminal breast cancers account for 70% of breast cancers in Western populations. They are 

oestrogen receptor (ER)-positive tumours. Most luminal breast cancers present as IDC but 

can be differentiated into invasive lobular, mucinous, invasive cribriform ad invasive 

micropapillary carcinomas. Molecular classifications of luminal tumours can be typed as 

luminal A or B subtypes. Luminal A tumours present with ER or progesterone receptor (PR) 

and have an absence of human epidermal growth factor receptor 2 (HER2). Luminal B 

tumours have a worse prognosis and present as ER positive, PR negative and HER2 positive. 

HER2-enriched breast cancers are characterised by high expression of HER2 and are negative 

for ER and PR. HER2 cancers grow more aggressively than luminal cancers, but management 

and treatment of these cancers has improved with immunotherapies against HER2. 

Triple negative breast cancers (TNBC) are characterised by being negative for the expression 

of ER, PR and HER2. BRCA1 mutations are a major contributing factor for the development of 

a majority if TNBC. TNBC are often aggressive and have a worse prognosis due to there not 

being available immunotherapies as for other breast cancers (Almansour, 2022).  

Claudin-low breast cancers are mostly ER, PR and HER2 negative and are characterised by 

low expression of genes related to cell adhesion including claudins, occluding and cadherins. 

Epithelial mesenchymal transition patterns are common in these tumours, and they exhibit 

stem-like gene expression (Pommier et al., 2020).  
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Breast cancer diagnosis 

 

The first stage of diagnosing breast cancer is through imaging of the breasts with ultrasound, 

mammography and/or MRI to test for presence, size, location and number of tumours. If 

there is suspicion of a tumour, a biopsy sample is taken of the potential tumour.  

There are three methods for taking a biopsy of a potential breast tumour, a fine needle 

aspirate (FNAC), core needle biopsy (CNB) or an open biopsy. FNAC uses a thin needle to 

take a sample of fluid and cells at the site of the suspicious lesion. FNAC has the benefit of 

being a fast and cost-effective procedure that has a high safety profile with little 

complications (Ohashi et al., 2016). However, FNAC can have high false negative rates and 

can often not provide enough tissue to produce a conclusive diagnosis. CNB involves using a 

larger needle to take a core biopsy of the tissue at the lesion site. CNB requires the use of 

local anaesthetic and is a more costly and invasive procedure than FNAC. The use of CNB has 

become more widely used because of its higher sensitivity, selectivity and accuracy relative 

to FNAC. But CNB is more expensive, and the processing of the tissue can be time consuming 

which can lead to a delay in a diagnosis which puts more stress on to patients as they wait 

for a result. Currently both biopsy methods are used for breast cancer diagnosis with no 

consensus on which method to use routinely.  

Once a biopsy is collected, a pathologist must firstly decide if it is cancerous or not. If the 

biopsy contains cancerous material, it must be staged and graded. This is done by staining 

the biopsy and examination under a microscope by a pathologist (Cardoso et al., 2019). 

Similar to the diagnosis of lung cancer, breast cancer is staged using TNM or a numerical 
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stage. The earliest stage of breast cancer is ductal carcinoma in situ which is a pre-invasive 

cancer where the cancer cells have not spread into any of the surrounding breast issue. 

Early-stage invasive breast cancer has spread into the surrounding breast tissue, but the 

tumour is small and remains in the breast and has not spread away from the breast tissue. 

Locally advanced breast cancer is when the cancer has spread from the breast to nearby 

lymph nodes or to the chest wall. Advanced breast cancer is when the cancer has 

metastasised to other areas of the body. The grading describes the morphology of the 

cancer in comparison to normal cells and tissue. Low grade cancers have similar morphology 

to normal breast cells and are well differentiated with the tissue of ductal cancers forming 

small tubules and lobular cancer forming cords. Low grade cancers are slow growing and 

have a good prognosis. In intermediate grade cancer, the cell morphology looks abnormal, 

and the tissue is moderately differentiated. The cancer is faster growing than early graded 

cancer and has a poorer prognosis. High grade cancer has very abnormal morphology and 

are poorly differentiated having few recognisable tissue structures present in normal tissue. 

High grade cancer grows aggressively and has a poor prognosis. Another important stage of 

diagnosis is identifying the presence of ER, PR and HER2 through immunohistochemistry 

(Hammond et al., 2010). The treatments used will be dependent on the presence or lack of 

these receptors.  

In the UK there is a breast cancer screening program for women over the age of 50. Women 

over 50 are invited every 3 years util the age of 70 to have a breast screening (Breast 

screening | Breast cancer | Cancer Research UK, 2018). Women are screened using a 

mammography to search for any lesions that may potentially be cancer. The aim of the 

screening programme is to find cancer at an early stage, so it is more easily treatable. If the 

mammography shows a potential abnormality, the patient is invited back for further 
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imaging. If the area is confirmed to be suspicious, a biopsy is taken for testing. Current 

evidence suggests the number of deaths by breast cancer is reduced by 1300 a year in the 

UK because of screening. However, there are risks of false positives, overdiagnosis and 

overtreatment from screening (Marmot et al., 2012). Many women have biopsies taken 

which are diagnosed as not being cancerous. This can cause stress and anxiety in patients, 

and they undergo unnecessary procedures. Overdiagnosis and overtreatment is when a DCIS 

that may not have ever posed a risk of progressing to an invasive stage is treated. As it is not 

possible to know if these pre-invasive or slow growing cancers will progress, they must be 

treated. This leads to treatments such as surgery, radiotherapy and chemotherapy that 

could have been unnecessary.  

 

Breast cancer treatment 

 

The primary treatment for breast cancer is surgery. There are two major types of surgery for 

removal of breast cancer, breast conserving surgery (BCS) and mastectomy (Łukasiewicz et 

al., 2021). BCS is the removal of the cancerous tissue while limiting removal of healthy 

breast tissue. Mastectomy is the removal of the entire breast. BCS is the preferred method 

in early stage and lower grade cancers because of less complications and a lower 

psychological burden (Chung et al., 2015). Mastectomy is used when the tumour is large and 

would be difficult to remove with BCS. It is also used when the cancer is very aggressive and 

would likely recur after the removal of the tumour.  

Chemotherapies can be used as a neoadjuvant or adjuvant. When selecting chemotherapy, it 

is important to tailor the therapy to the individual based on the characteristics of the cancer. 
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Neoadjuvant therapy is used for locally advanced tumours, to reduce the size of larger 

tumours to aid in BCS and for aggressive tumours where biological therapies (triple-negative) 

are not effective.  

Radiotherapy is typically used after surgery or chemotherapy to ensure complete 

destruction of cancerous cells and minimise cancer reoccurrence of the cancer (Jonathan 

Yang and Ho, 2013). Use of radiotherapy is also favourable for the treatment of unrescetable 

tumours and metastatic tumours to prevent further cancer growth.  

Targeted biological therapies have significantly improved the prognosis of HER2 positive 

breast cancer (Maximiano et al., 2016). The first drug of this kind and still current standard is 

trastuzumab. Biological therapies use recombinant antibodies to target the overexpressed 

HER2 on the cancer cells blocking the signalling of HER2. HER2 overexpression promotes the 

activation of multiple downstream pathways that encourage cancer growth and 

proliferation. Therefore, by stopping this action the use of biological therapies can also 

enhance the efficacy of chemotherapy.  

Hormonal therapy can be used against ER positive breast cancer. Hormonal therapy reduces 

oestrogen levels or prevents the cancer cells from being stimulated by oestrogen (Williams 

and Lin, 2013). Drugs that reduce oestrogen levels include aromatase inhibitors. ER 

stimulation can be prevented by blocking drugs called selective oestrogen receptor 

modulators or by ER degradation with selective oestrogen receptor degraders. Hormonal 

therapy is used to slow down growth and proliferation of the cancer and can be used in 

conjunction with chemotherapy. 
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Fourier transform infrared (FTIR) spectroscopy. 

 

FTIR spectroscopy 

 

FTIR is a vibrational spectroscopy technique that can be used to ascertain the chemical 

structure of a sample (Pallua et al., 2018). FTIR spectroscopy uses infrared (IR) radiation 

which, when passed through a sample, some radiation is absorbed, some radiation is 

transmitted, and some is reflected. The absorbed radiation causes vibrations of the covalent 

bonds in the molecules which can be detected as signal.  

Molecular species have different electronegative charges that generate a disproportional 

charge across molecules that result in dipoles (Cheeseman et al., 2019). The natural 

vibrations of molecules cause the distance between the negative charge centre of each 

atomic species in a specific bond to fluctuate, this generates an electric field and is known as 

resonance frequency. If the frequency of the IR radiation matches the resonance frequency, 

then IR radiation is absorbed. The absorbed radiation causes greater vibrations of the 

molecular bonds producing a measurable signal. The signal generates a spectral fingerprint 

unique to a molecule as the frequency of vibration is unique for each functional group. The 

modes of vibration in the molecular bonds include bending, scissoring, rocking and 

symmetric and asymmetric stretching (Figure 1). The IR spectra is plotted as absorbance as 

function of wavenumber. The number of vibrational modes a molecule has depends on the 

number of atoms in the molecule and the degrees of freedom in the molecule. In a simple 

non-linear molecule consisting of three atoms such as a water molecule there are 3 degrees 

of freedom which consist of the vibrational modes symmetrical stretching, asymmetrical 
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stretching, and symmetric bending. A non-linear simple molecule of 3 atoms such as CO2 has 

4 degrees of freedom consisting of the vibrational modes symmetrical stretching, 

asymmetrical stretching, symmetrical bending, and asymmetrical bending. The symmetrical 

bending mode is inactive for IR spectroscopy, producing no band because there is no change 

in the dipole moment.  

 

Figure 1 Modes of vibration in molecules from the absorbance of IR radiation.  

Most FTIR spectrometers consist of an IR light source, interferometer, sample compartment 

and a detector. The IR light source generates radiation that passes through the 

interferometer, through the sample and into the detector. The interferometer as shown in 

Figure 2, is core to the functioning of FTIR spectrometers. The interferometer consists of two 

perpendicular mirrors and a beam splitter. The beam splitter splits the IR beam into two 

beams which are recombined in the interferometer and conducted into the detector. The 

beam splitter transmits half the light and reflects the other half to produce the two beams.  

One of the mirrors is stationary while the other moveable. The reflected light and 
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transmitted light hit the stationary and moving mirror respectively. The beams are reflected 

by the mirrors and recombined at the beam splitter. If the path travelled by the beams is the 

same, it is called the zero-path difference. But when the moveable mirror moves away from 

the beam splitter, a difference in the length of the beams paths is created. The extra 

difference to the moving mirror is defined as the optical path difference (OPD). The 

interferogram is a function of time and the values outputted by this function make up the 

time domain. A Fourier transform is applied to the time domain to obtain a frequency 

domain which is deconvolved to produce a spectrum.  

 

Figure 2 Diagram of a Michelson interferometer.  
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FTIR spectroscopy IR light sources 

 

The most ubiquitous infrared source in benchtop FTIR instruments is a globar source 

(Hermes et al., 2018). Globar radiation sources consist of a silicon carbide rod. An electric 

current is passed through the rod, heating it up to 1300 °K. Due to the high temperatures 

produced, a cooling system is needed to prevent arcing, thus the globar is surrounded by a 

water jacket cooled by liquid nitrogen. The radiation source allows the emittance of 

continuous mid-IR radiation. Globar sources have a large spectral emission range but low 

spectral intensity due to the principle of black body radiation.  

Synchrotron light sources allow a superior signal-to-noise ratio and higher resolution spatial 

mapping of samples compared to globar sources. Synchrotron sources work on the principle 

based on the Bremsstrahlung effect. Whereby electrons are accelerated to relativistic speeds 

while the transverse part of their momentum is modulated by an array of magnets, resulting 

in the emission of electromagnetic radiation that spans a large range of wavelengths 

(Hermes et al., 2018). The electrons are accelerated by a linear accelerator (LINAC) to form a 

stream of electrons. The electron stream is accelerated by a series of particle accelerators in 

the booster ring until it becomes a stable beam in the storage ring. The rings contain a 

magnetic lattice used to curve the electrons between straight sections. As electrons follow 

the curved path, they emit electromagnetic radiation that is siphoned off into beam lines for 

specific uses such as IR radiation for FTIR spectroscopy. Figure 3 shows the general design of 

synchrotrons described here.  
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Synchrotron technology has shown rapid growth in its use since synchrotrons were first used 

in the 1950s. Synchrotrons are currently in their third generation with fourth generation 

synchrotrons on the horizon. Third generation synchrotrons have higher resolutions than 

earlier generations and have many straight sections for insertion devices. The insertion 

devices are magnetic arrays that bend the electrons at specific curvature radius to produce 

light at energy levels with specific characteristics for specific purposes (Huang, 2013). There 

are two main types of insertion devices, wigglers and undulators. Using wigglers, the 

objective is to apply an intense magnetic field locally to obtain energetic X-rays and repeat 

the oscillation several times in a longitudinal direction. The light produced at wigglers is a 

high energy and intense beam. With undulators the light that emerges at each wiggle 

interferes with light at other wiggles and produces an interference pattern in both the 

spatial and energy planes. The light generated is spatially very concentrated into a narrow 

cone and in several specific energies called harmonics. Undulators are used when extremely 

brilliant light is required and are used for FTIR experiments.  

This last decade has seen the development of quantum cascade lasers (QCL) as a reliable 

light source for IR spectroscopy. A QCL is a heterogenous diode laser where the IR radiation 

is generated by applying a voltage to the diode (Childs et al., 2015). The heterogenous 

nature of a QCL allows light to be emitted in a range of wavelengths in the mid and far IR 

region. The wavelengths emitted by the QCL can be selected by tuning in where the QCL is 

placed in an external cavity and a grating is tilted. The diode of the QCL is formed from 

distinct stacked semiconductor layers. QCL are becoming a more popular light source for IR 

spectroscopy due to their advantages of having excellent signal-to-noise ratios and having a 

quick acquisition time making them good for applications like chemical imaging. QCL have 

these advantages as it emits all its photons at approximately the same wavelength. This 
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allows for the full dynamic range of detectors to be utilised to detect signals at single 

wavelengths. This differs from traditional FTIR spectroscopy thermal sources where the 

photons are spread across a broad range of wavelengths. QCL sources By using the full 

dynamic range of the detector can use uncooled detectors such as deuterated alanine doped 

Tri-Glycine Sulphate (DTGS) detectors for microspectroscopy and imaging applications. An 

instrument with a traditional globar source used for FTIR microspectroscopy or FTIR imaging 

applications requires the use of a mercury cadmium telluride (MCT) detectors to achieve 

good signal to noise ratio. MCT detectors commonly must be cooled using liquid nitrogen 

which adds extra cost and must be re-filled during prolonged use which also takes time. The 

uncooled DGTS detectors can be used at room temperature.  

The light source of an instrument is an important consideration when using IR spectroscopy 

as they all have their advantages and disadvantages. Globar sources are good for obtaining 

the whole spectra and are widely available and the most affordable source. Synchrotrons 

provide much higher spatial resolution because of the high brilliance produced which allow 

for smaller aperture sizes to be used to gain the higher spatial resolution. However, a 

specialised synchrotron facility is required therefore accessibility can be a problem. QCL 

provides excellent signal to noise ratio and fast acquisition times but struggle when a broad 

spectral reading is required. The right light source should be chosen depending on the needs 

of what is being measured.  
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Figure 3 Diagram of the basic layout of a synchrotron. 

 

FTIR spectroscopy analysis of biological materials 

 

FTIR spectroscopy is used to analyse the chemical structure of materials. As such it can be 

utilised to analyse the biochemical structure of tissues and cells in a non-destructive 

manner. Biological samples are comprised of several key groups of biomolecules: proteins, 

lipids, nucleic acids and carbohydrates. Biomolecule will produce an IR spectrum based upon 

the bonds between the atoms that make up the molecule. A tissue or cell type will produce a 
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spectrum reflecting its biochemical make up, providing information on what types of 

biomolecules are present within the sample. The key groups of biomolecules can be 

identified by spectral bands at certain ranges of wavenumbers with an identifiable band 

structure (Baker et al., 2009). FTIR analysis of biological samples is conducted in the mid-IR 

range 400 cm-1 – 4000 cm-1 (25 µm – 2.5 µm). The bands between 3000-2800 cm-1 in the are 

produced by stretching vibrations of C-H in CH3 and CH2 groups in the acyl chains. The main 

contributor to these band is from the fatty acid chains of lipids also with some contribution 

from proteins.  Amide bands representing the protein fraction of the sample appear at 1700-

1310 cm-1 in three spectral bands: amide I, II and III (Diem, M. Romeo, et al., 2004). FTIR 

spectroscopy can provide information about the secondary structure of proteins in a sample, 

that is stretching vibrations of C=O bond represented by the amide I band and bending 

vibrations of N-H with stretching of C-H bond in the amide II band. The amide I band appears 

at 1700-1600 cm-1 with an intense peak at 1650 cm-1. Amide II band occurs at 1575-1480 cm-

1. At 1301-1229 cm-1 the amide III band appears because of intracellular proteins. Like amide 

I, the amide III band results from vibrations from C-N and N-H bonds. Broad bands are 

produced by at 3400-3380 cm-1 due to the O-H bond stretching vibrations and another band 

is produced at 2930-2900 cm-1 due to CH2 and C-H stretching. At lower ends of the mid-IR 

spectrum bands from carbohydrates can be seen at 1200-950 cm-1 from C-O, C-C stretching 

and C-OH bending and bands at 950-700 cm-1 from C-OH, C-CH, O-CH and C-H bending 

vibrations. Bands between 1250-1080 cm-1 correspond to vibrations from phosphate 

containing groups primarily from the backbone of nucleic acids.  
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Wavenumbers (cm-1) Macromolecules assignment Bond assignment 

4000-3100 Proteins -OH and -NH stretching mode, 
amide A band. 

3100-2800 Lipids & proteins -C-H symmetric and 
asymmetric stretching 
vibrations of CH2 and CH3. 

1735 Lipids Ester C=O stretching. 

1695-1615 Proteins C=O stretching. 

1550-1520 Proteins N-H bending. 

1500-920 Carbohydrates & nucleic acids Phosphate groups, CH3 

bending, C-O stretching. 

 

Table 1 Band allocations for FTIR spectra of biological materials. 

 

There are three main FTIR spectroscopy modalities used for the analysis of biological 

materials: transmission, attenuated total reflection (ATR) and transflection (Baker et al., 

2009). Each mode has inherent advantages and disadvantages, and mode selection is 

determined by the types of samples being measured. With transmission FTIR spectroscopy 

the IR radiation is passed through the sample and the transmitted radiation is measured. The 

spectra obtained from the transmission FTIR will be representative of the bulk of materials. 

 Using ATR FTIR spectroscopy, the IR beam is directed onto an optically dense crystal that 

generates an evanescent wave that extends beyond the crystal’s surface onto a sample in 

direct contact with the crystal (Figure 4). The evanescent wave will be attenuated where the 

sample absorbs IR radiation. The attenuated beam returns to the crystal where it exits at the 

opposite end of the crystal from where it entered and is directed to the detector. ATR FTIR 

spectroscopy typically measures 0.5-2 µm deep into a sample due to the intensity of the 

evanescent wave decaying exponentially with distance from the surface of the ATR crystal. 

Therefore, ATR FTIR measures the properties of the surface of the material and just below 

the surface unlike transmission FTIR where the bulk of the material is measured. The 
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evanescent wave occurs because of total internal reflection resulting from the differing 

refractive index of the ATR substrate and the sample. When the IR beam hits the surface 

between the ATR substrate and sample which are characterised by differing refractive 

indices at a certain angle of incidence the light is totally reflected. This angle of incidence is 

referred to as the critical angle. Snell’s law can be used to calculate the critical angle. Snell’s 

law states that the ratio of two refractive indices is equal to the inverse ratio of the angle of 

incidence and the angle of refraction. For the special case of no refraction, the angle of 

incidence becomes the so-called critical angle. 

There are three forms of reflectance FTIR spectroscopy; transfelction, diffuse reflectance and 

specular reflectance. Tranflection has been used in many studies for the analysis of biological 

materials whereas the two others are more common for analysing materials. In transflection 

mode, the sample is placed on a reflective substrate and measurements are generated from 

the IR beam travelling through the sample and being reflected by the substrate through the 

sample and, as such the bulk of the material will be measured. Another reflectance mode of 

FTIR spectroscopy is diffuse reflectance where a sample cup is filled with a mixture of a 

transparent matrix such as KBr and the sample. The IR light is scattered off particles within 

the sample in all directions and collected with mirrors to be directed to a detector. Diffuse 

reflectance is commonly used to analyse samples of a particulate nature. The third mode of 

reflectance is specular reflectance where the IR light is reflected off the sample surface. This 

method is used for analysing reflective materials. 
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Figure 4 Modes of FTIR spectroscopy commonly used for analysis of biological materials 

transmission, ATR and transflection. 
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FTIR micro-spectroscopy and imaging 
 

FTIR microspectroscopy and FTIR spectroscopy imagining are widely used applications of 

FTIR spectroscopy for the study of biological materials and research into its potential clinical 

applications. Spectrometers used for FTIR microspectroscopy are attached to a microscope. 

This allows the cells and tissues to be viewed under a microscope and the IR beam directed 

at certain cells and areas of tissue. An FTIR microscope can be used for FTIR imaging. 

Chemical information obtained by FTIR spectroscopy can be combined with the visual 

topographical images from the microscopy. This allows chemical distribution of biomolecules 

in cells and tissues to be viewed and false colour images based on the biomolecule content 

to be produced. With FTIR imaging biological samples can be digitally stained based on 

biomolecule distribution without altering or destroying the sample itself. FTIR imagining 

become more practical in the 1990s with the advent of Focal plane array (FPA) detectors. An 

FPA detector consists of an array of detectors that allow the capture of many spectra over 

an area at the same time. This makes FTIR imaging much quicker than when using a single 

element detector. The advancement of QCL IR sources in the last decade is further speeding 

up acquisition times of spectra for IR imagining.  

FTIR spectroscopy as a clinical tool for cancer  

 

FTIR spectroscopy has been investigated as clinical tool for several cancers including breast 

(Backhaus et al., 2010), colon (Khanmohammadi et al., 2011), prostate (Baker et al., 2009), 

ovarian (Paraskevaidi et al., 2018), oral (Menzies et al., 2014), bladder (Gok et al., 2016), skin 

(Kyriakidou et al., 2017) and lung cancers. The first research using FTIR spectroscopy to 

measure cancer was by Woernley in 1952. Research for FTIR spectroscopy as a clinical tool 
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for cancer has included its use for detection, diagnosis, response to treatment and follow-up 

after treatment demonstrating the possibilities for FTIR spectroscopy to be used as a tool in 

the clinic for the management of cancer from the initial stages of detection and for 

monitoring the success of treatment or potential relapses.  

Effective management and treatment of cancer requires accurate staging and grading of the 

cancer to best predict the behaviour of the disease, the most suitable treatments and the 

prognosis of the patient. Most cancers are graded using histology of biopsy samples which 

are often subjective, possibly leading to misdiagnosis along with being an invasive 

procedure. FTIR could be used to more accurately stage and grade cancer while being less 

invasive than current histological methods. One study employed ATR-FTIR spectroscopy 

coupled with variable selection methods, successive projection algorithm or genetic 

algorithm combined with linear discriminant analysis (LDA), in order to identify spectral 

biomarkers in blood plasma or serum samples for the diagnosis and staging of ovarian 

cancer by histological type and segregation based on age (Lima et al., 2015). In this study 

100% sensitivity and selectivity was achieved in the <60 years of age and >60 years of age 

categories in plasma blood using 42 wavenumbers by GA-LDA. This study demonstrates FTIR 

spectroscopy can be used to accurately stage ovarian cancer from biomarkers in blood 

serum and plasma samples thus reducing pain and risk to patients associated with a biopsy.  

Surgery is one of the most common treatments for solid tumours. To ensure that the tumour 

is completely removed during surgery some normal tissue is resected along with the tumour. 

It is important that resection margins are adequate to avoid under- or over-treatment. Too 

small of a resection and it may cause reoccurrence of the tumour while too large of a 

resection will result in prolonged recovery for the patient. Yao, Shi and Zhang used FTIR 
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spectroscopy coupled with an ATR optical fibre probe to assess the surgical resection 

margins for colorectal cancers (Yao, Shi and Zhang, 2014). Spectra of the colorectal tumours 

as well as mucosa 1, 2 and 5 cm from the tumour were measured. The spectra obtained 

from the tumour and the mucosa 1 cm away were different to the mucosa 2 and 5 cm away 

with the former site having a decrease in lipids and an increase of proteins and nucleic acids. 

This technology could be developed to allow real-time assessment of resection margins to 

avoid unnecessary removal of healthy tissue and ensure the tumour is completely removed 

thus reducing trauma from unnecessary removal of healthy tissue or from repeat surgeries 

following relapse. 

Monitoring of treatment is essential for the management of cancer and planning 

personalised medicine. While in recent years treatments for many cancers has improved 

thanks to targeted therapies and immunotherapies along with better understanding of the 

molecular genetic causes of cancer, recurrences still often occur. Follow-up post treatment is 

important for early detection of relapse and secondary tumours, to monitor potential side 

effects of treatment and to provide psychological and mental health support to the patient. 

FTIR spectroscopy could be used to detect a relapse or the efficacy of a treatment. Zelig et al 

used FTIR microspectroscopy to obtain spectra from peripheral blood mononuclear cells 

(PBMCs) isolated from childhood acute leukaemia patients as well as from patients with a 

high fever and healthy people as controls (Zelig et al., 2011). Leukaemia was found to be 

indicated in the spectra by reduced lipids and elevated DNA absorption. These markers 

diagnostic of leukaemia compared to the controls were used to monitor for biochemical 

changes in the PBMCs during chemotherapy. This demonstrates how FTIR 

microspectroscopy could be used as a pre-screening tool and for follow up of treatment for 

leukaemia.  



32 
 

 

FTIR spectroscopy as a clinical tool for lung cancer 

 

As discussed in a previous section lung cancer survival rate remains low much in part due to 

cases being diagnosed in late stages of disease. Therefore, it is of great importance that 

suspected cases of lung cancer are diagnosed in a timely and efficient manner. New methods 

to diagnose and monitor lung cancer that are quick and cost effective while reducing the 

increasing loads on pathology departments due to an ageing population are needed. Disease 

processes cause a biochemical change in cells and tissues often before morphological 

changes and symptoms can be seen. FTIR spectroscopy can be used to detect these 

biochemical changes. 

Wang, Wang and Huang were one of the first groups to investigate the use of FTIR 

spectroscopy as a diagnostic tool for lung cancers (Wang, Wang and Huang, 1997). Their 

study utilised FTIR spectroscopy in a transflection modality to distinguish normal cells, lung 

cancer cells and TB cells in pleural effusion. They found that the ratio of peak intensities at 

1030 cm-1 and 1080 cm-1 that represent glycogen and the phosphodiester bonds of nucleic 

acids respectively, were significantly increased in lung cancer cells compared to normal cells 

with a higher intensity in peaks in the noted regions. Yano et al  analysed human cancerous 

lung tissue using transmission FTIR microspectroscopy (Yano et al., 2000). The lung tissue 

sections were mounted to CaF2 windows which are commonly used as a substrate because 

of their low change in refractive index and have a transmission over 90% allowing most of 

the signal to reach the detector. Like Wang et al, Yano et al found an increase in nucleic acids 

and glycogen of cancerous samples compared to non-cancerous samples. Lewis et al used 
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ATR-FTIR spectroscopy combined with hierarchical cluster analysis (HCA) and principal 

component analysis (PCA) to analyse lung sputum cell pellets (Lewis et al., 2010). The 

sputum was obtained from a range of lung cancer patients including NSCLC and SCLC. 

Mirroring Wang et al and Yano et al, Lewis et al found there was increase in glycogen in 

cancer cells compared to healthy cells indicated by an increase in peak intensity at 1024 cm-1 

and 1049 cm-1.  

The three studies demonstrate the range of sample types that could possibly be used to 

diagnose or monitor lung cancer using FTIR spectroscopy, and all studies showed that 

cancerous samples were distinguishable from healthy samples. The sample type used is an 

important consideration as the protocol including the mode of FTIR spectroscopy and type of 

detector will be dependent on the type of sample. Therefore, for the clinical use FTIR 

spectroscopy the type of sample must be carefully considered. Sputum like the one used by 

Lewis et al is an attractive choice due to the minimal invasiveness in obtaining it. Obtaining 

the sample should ideally be minimally invasive for the patient and is especially important 

for detection, diagnosis and monitoring of lung cancer where most the patients are elderly 

and for who invasive procedures provide a significant risk. 

FTIR spectroscopy as a clinical tool for breast cancer 
 

There have been several studies investigating how FTIR spectroscopy could be used for the 

detection and diagnosis of breast cancer. These studies have included the study of a range of 

materials including tissue, cells and biofluids. Mostaço-Guidolin et al (Mostaço-Guidolin et al, 

2010) demonstrated the use of FTIR spectroscopy to characterise the ER+ cell line MCF7 and 

the ER- cell line SKBr3. They demonstrated differences in the bands  1087 cm−1 (DNA), 1397 

cm−1 (CH3), 1543 cm−1 (amide II), 1651 cm−1 (amide I), 2924 cm−1 (fatty acids) 
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demonstrating FTIR spectroscopy could be useful for distinguishing between ER+ and ER- 

breast cancers. Around the same time Rehman et al (Rehman et al 2010) demostratd the us 

of ATR FTIR spectroscopy to identify spectral differences in tissue samples from normal 

breast, invasive ductal carcinoma, and ductal carcinoma in situ. They found significant 

differences in the bands between different grades of tumour suggesting FTIR spectroscopy 

could be helpful for grading breast tumours. More recent research (Tomas et al, 2022) has 

combined the of FTIR spectroscopy with machine learning to classify breast tissue sections. 

Normal and malignant breast tissue was measured with ATR FTIR spectroscopy and a neural 

network was used for classification (Tomas et al, 2022). Souza et al (Souza et al, 2023) 

demonstrated the use of ATR-spectroscopy to discriminate molecular subtypes of breast 

cancer from plasma samples. An orthogonal partial least squares discriminant analysis model 

was used to perform the classification with 100% accuracy to classify luminal A, luminal B, 

HER2+, triple negative and healthy controls. While excellent classification was achieved, a 

major drawback is orthogonal partial least squares discriminant analysis does not allow new 

sample data to be added requiring a new model to be made to add new data. This is not an 

ideal classifier for translation of the method, other classifiers such as random forest, neural 

network and support vector, machine algorithms can provide good classification while 

allowing new data to be input. These studies demonstrate a range of applications for 

diagnosis and detection of breast cancer. Research in this thesis will investigate how FTIR 

spectroscopy can be used with glass substrates and preparation methods commonly used in 

pathology laboratories to demonstrate a methodology for the measurement of cytology 

samples that is more affordable and less disruptive to current workflows in pathology 

laboratories.  
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Challenges of bringing FTIR spectroscopy to the clinic 

 

Many studies have shown promising potential for the use of FTIR spectroscopy as a tool for 

analysing biological specimens and its use in the screening, diagnosis, management and 

monitoring of cancer. The challenge is to develop and translate these methods to routine 

clinical applications.  

Most of the studies pertaining FTIR spectroscopy for clinical applications have been 

performed on small sample sizes. Large scale clinical trials will be needed to prove the 

efficacy of FTIR spectroscopy as shown in the laboratory and to identify any barriers to 

implementation. For FTIR spectroscopy to be successful in clinical applications it must fit in 

with clinical workflows which can only be proved with large scale trials.  

Standardisation of sample collection, preparation and storage is needed to achieve 

experimental reproducibility within individual laboratories and between different 

laboratories. This would allow for results from different studies to be more easily compared. 

There is currently no standard preparation method of biological specimens for use in FTIR 

spectroscopy analysis. Standardised methods of sample collection, preparation and storage 

will be needed for FTIR spectroscopy to be used in the clinic. More research is needed in this 

area to find the optimum methods that will produce accurate results that can fit into clinical 

workflows. As shown in the previous sections, a range of biological specimens have been 

studied with FTIR spectroscopy including cells, tissues and biofluids. The spectroscopic study 

of each of these biological specimens has their own challenges.  

When analysing biofluids the specific biofluid will influence the sample collection, 

preparation, and storage. A challenge for the spectroscopic measurement of all biofluids is 
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their high-water content. Water absorbs light in the mid-IR region which can obscure 

information on biomarkers present in the sample therefore efforts must be taken to remove 

water from biofluids. Water’s absorption of IR light is what also makes FTIR spectroscopy 

unsuitable for the measurement of live cells and tissue. Biological materials must be dried 

and fixed to prevent inference from water. This limits the potential of FTIR spectroscopy for 

in-vivo measurements.  

Mie scattering can render spectra unreliable as features seen in the spectrum are due to the 

morphology of the structures rather than the biochemistry of the sample. Mie scattering 

causes a broad sinusoidal oscillation in the baselines of spectra. This results in the distortion 

of both band position and intensity. The spectra of single cells can also exhibit distortion of 

band shapes most likely a derivative like distortion on the high wavenumber side of the 

amide I band (Bassan et al., 2009).  

The hurdle for using FTIR spectroscopy to analyse cytological and histological samples in the 

clinic is implementing it into clinical workflows without causing disruption. The time taken 

for spectral acquisition is currently limiting FTIR spectroscopy applications in the clinic for 

the analysis of histological samples. Pathology departments analyse hundreds of tissue 

samples a day and as such a delay in throughput is detrimental. Single point mode analysis of 

tissue with single point detectors found in many benchtop spectrometers is intrinsically slow 

(Finlayson, Rinaldi and Baker, 2019). The emergence of FPA detectors allows for much 

quicker acquisition times. FPA detectors can collect thousands of spectra concurrently 

enabling a substantial reduction of acquisition time in comparison to single point detectors. 

However, the analysis of large tissue sections could still take several hours with a FPA 

detector. A possible solution to this is the use of tissue microarrays where multiple tissue 
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cores of submillimetre dimensions are placed onto single slides allowing the analysis of 

multiple tissue specimens at once (Kwak et al., 2011). These recent advances in FTIR 

spectroscopy could help to mitigate the challenge of lengthy acquisition times that would 

disrupt clinical workflows.  

Current cytological and histological investigations in pathology labs frequently use stains like 

haematoxylin and eosin staining (H&E) and Papanicolaou (Pap) stains, that can influence the 

spectral signatures obtained from FTIR spectroscopy. If FTIR spectroscopy is to be used in 

conjunction with current pathology methods to further characterise abnormal specimens, 

the stains could obscure spectral markers. Both H&E and Pap stains have shown to cause a 

disappearance of peaks in the lipid region at 2850 cm-1 and 2920 cm-1 in the cell lines CALU-1 

and NL20 (Pijanka et al., 2010). This was thought be due to the ethanol used in the staining 

procedures for both stains. The ethanol also removes phospholipids from cells which 

removes a peak at 1740 cm-1. H&E staining procedure caused an increase of peak intensity at 

1305 cm-1 associated with the amide-III band. The malignant CALU-1 cell line was still 

distinguishable from the non-malignant NL20 cells with FITR spectroscopy after the staining 

procedures and their alteration to the spectra. The effect of staining on the FTIR spectra 

must be considered on stained samples if the technique is to be used in the clinic.  

The cost of substrates for FITR spectroscopy must be considered especially in public 

healthcare systems like the National Health Service (NHS). The CaF2 and BaF2 slides 

commonly used for transmission FTIR spectroscopy can cost £60 per slide which would not 

be economically viable (Finlayson, Rinaldi and Baker, 2019). Glass slides typically used in 

pathology laboratories for cytology applications are not reliable for FTIR spectroscopy 

because the glass absorbs IR radiation therefore features of the spectra in the fingerprint 
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region are lost. Work at Keele University has investigated the used of thin soda-glass slides 

0.12-0.17 mm thick (Rutter et al., 2019). Using these slides the lipid, amide I and amide II 

regions of cells are identifiable and allowed the cell lines CALU-1, K562 and PBMCs to be 

distinguished from each other. Glass slides are affordable and easy to procure. If glass 

substrates can be used it would remove the prohibitive costs of CaF2 and BaF2 slides.  

Instruments from different manufacturers can produce distinct responses and spectral 

distortions. The differences caused by instrumentation should be considered when 

comparing results and must be accounted for in possible clinical applications. The 

environmental variations should be addressed using pre-processing algorithms to compare 

results from studies using different instruments therefore standardisation in sample 

preparation, data collection, data pre-processing and analysis are paramount. Currently 

there is little standardisation the field of clinical vibrational spectroscopy which makes 

comparison across studies difficult. Lack of standardisation is currently hampering 

translation of FTIR spectroscopy to the clinic. 

 

Other vibrational spectroscopy techniques 
 

O-PTIR spectroscopy 

 

O-PTIR spectroscopy is a relatively new technique compared to FTIR and Raman 

spectroscopy. Figure 5 below demonstrates the basic schematic of an O-PTIR spectrometer. 

O-PTIR spectroscopy combines the modalities of FTIR and Raman using a pump probe 

system (Kansiz and Prater, 2020). The pump is an IR QCL which is used to excite vibrational 
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modes in the samples. The pulsed QCL generates a local IR photothermal event. The 

photothermal response manifests through subtle thermal expansion and refractive index 

changes. This response is monitored by the optical probe which is typically a 532 nm laser. 

The changes in probe intensity as a function of IR wavelength tuning of the QCL are 

demodulated by a lock-in amplifier. The generated spectrum is an IR absorbance spectrum 

similar to that recorded by transmission FTIR spectroscopy. How the O-PTIR spectroscopy 

interacts with the substrates that the sample is placed on will differ to transmission FTIR 

spectroscopy because the IR beam is not travelling through the whole of the substrate. How 

O-PTIR spectroscopy interacts with alternative substrates such as glass in theory will be 

different to that of conventional FTIR spectroscopy. Since O-PTIR is a much newer technique 

there has been little research into how it interacts with different substrates.  An advantage 

of O-PTIR is its improved resolution in comparison to conventional FTIR spectroscopy. 

Traditionally the resolution of IR spectroscopy is limited by the wavelength of the IR beam to 

10-20 µm. The spatial resolution of O-PTIR is limited by the wavelength of the visible beam 

up to 0.5 µm. Some of the first research using O-PTIR spectroscopy to analyse biological 

materials was in 2020 to measure collagen from tendons and image amyloid aggregates in 

neurons (Bakir et al., 2020) (Klementieva et al., 2020). In 2021, O-PTIR was demonstrated to 

be able to measure the lipid bands and amide I and II bands of live cells in an aqueous 

environment from cancer cells lines (Spadea et al., 2021). The body of research investigating 

the potential for O-PTIR spectroscopy for use in cancer diagnostics is still small because of its 

recency as a technique. Bouzy et al has explored how O-PTIR combined with Raman imaging 

could be used to investigate the composition of microcalcifications in breast cancer. 

Microcalcifications are mostly benign, but some can be indication for precancerous lesions. 
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Better understanding of their composition through vibrational spectroscopy could help to 

inform which calcifications are indicative of cancer. 

 In this thesis it was investigated how O-PTIR performs for the classification of NSCLC cells 

from each other and from non-malignant lung cells on glass substrates which had not been 

investigated previously. The current limitations of O-PTIR are that the technique has a small 

user base and there is currently only a small amount of research utilising it. This is a barrier 

to using the technique for diagnostics because of a limited availability of instruments and 

people who know how to use the instruments and process and interpret the data.  

 

 

Figure 5 O-PTIR basic schematic. 
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Raman spectroscopy 

 

Raman spectroscopy is another vibrational spectroscopy technique that has also increasing 

research into its use for clinical diagnostics. Like FTIR spectroscopy, Raman spectroscopy can 

be used to gain information on the chemical structure of a sample in a label fee and non-

destructive manner. Raman spectroscopy uses a laser wavelength in the visible region of the 

electromagnetic spectrum to irradiate the sample and cause molecular vibrations. This 

results in the scattering of light when the sample is irradiated. When the scattering occurs, 

many of the scattering events is elastic scattering also known as Rayleigh scattering. Elastic 

scattering is where the energy of the molecule is unchanged after integration with photons. 

A small portion of the scattering, approximately from 1 in 10 million interactions with 

photons, inelastic scattering occurs which us also known as Raman scattering. When 

inelastic scattering occurs there is a transfer of energy between the molecule and the 

scattered photon. If the molecule is excited to a higher vibrational level from gaining energy 

from the photon, the photon in turn loses energy and its wavelength increases. This 

phenomenon is called Stokes Raman scattering. Anti-Stokes Raman scattering is the inverse 

where the molecule loses energy and the photon gains energy decreasing its wavelength. 

The majority of molecules are in the ground vibrational level therefore Stokes scatter is 

more likely to occur. Stokes scatter is most commonly more intense than anti-stokes and for 

this reason in conventional Raman spectroscopy Stokes Raman scatter is measured in Raman 

spectroscopy. The energy changes in the modes of scattering are demonstrated in figure 6 

below. Each peak on a Raman spectrum corresponds to a specific molecular bond vibration. 

The intensity of the spectrum is proportional to the concentration of the measured 

molecules and the scattering cross section of the molecules (Mulvaney and Keating, 2000).  
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Figure 6 Jablonski diagram showing the energy changes in scattering. 

 

Liquid Biopsies 
 

Liquid biopsies are the use of tumour derived materials in biofluids for the diagnosis, 

prognosis, and monitoring of cancers. There are various biofluids that could be used for 

liquid biopsy including blood, urine, saliva, cerebrospinal fluid, sputum, and pleural effusion. 

There is a range of tumour derived materials that are being researched for use in liquid 

biopsies including circulating tumour cells (CTCs), extracellular vesicles (EVs), circulating 

tumour DNA (ctDNA) circulating tumour RNA (ctRNA) and tumour educated cells (Lone et al., 

2022). This section will overview the potential of the tumour derived materials found in 

biofluids and the current limitations that have so far prevented the use of liquid biopsies 

being utilised in healthcare. 
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As discussed in earlier sections of this chapter, the current gold standard for the diagnosis of 

solid cancers like lung and breast cancer requires the use of tissue biopsies from the tumour 

site. Tissue biopsies are invasive for the patient and are associated with several limitations 

including patient risk during surgery, cost, sample preparation, and the large amount of 

expertise required. The use of liquid biopsies would allow for less invasive diagnostic 

methods that would not require surgical procedures to obtain tumour material. Liquid 

biopsies could be used for more regular sampling and monitoring of cancer that would not 

be possible using solid tissue biopsies.  

ctDNA is cancer originated DNA that is circulating cell-fee. ctDNA can be short nucleosome 

associated fragments 80-200 bp in size or much longer fragments >10 kb in size 

encapsulated in EVs (Ma et al., 2015). There are various mechanisms that introduce ctDNA 

into circulation including necrosis, apoptosis, cell lysis and release of DNA by the tumour 

itself. Proof of ctDNA being suitable as a biomarker was demonstrated with the identification 

of KRAS gene mutations in ctDNA found in the blood of pancreatic cancer patients. 

Qualitative and quantitative information can both be gained from ctDNA. Qualitive 

information on tumour mutations can be obtained as shown for KRAS and EGFR mutations. 

As a quantitative measure, ctDNA can be used to indicate tumour bulk. ctDNA has a short 

half-life of about 2.5 h, therefore, the amount of ctDNA can give a real time measurement. 

Currently, to analyse ctDNA, PCR or next generation sequencing (NGS) are used. The biggest 

limitation for the use of ctDNA is low detection sensitivity in early stages of cancer with 

ctDNA often accounting for <0.01% of total circulating DNA. The analysis of ctDNA can be 

time consuming and expensive because ctDNA first needs to be purified from the blood and 

from other circulating DNA. The reagents for PCR and NGS are expensive and require 

expertise to perform them.  
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Circulating tumour cells (CTCs) are cancer cells that have detached from the tumour and 

entered the peripheral blood circulation (Sundling and Lowe, 2019). They are thought to be a 

driver of metastasis as CTCs or clusters of CTCs can migrate to other areas of the body 

through the circulation and multiply to form secondary tumours. CTCs can be generated 

from primary or secondary tumours from active intravasation or from passive shedding. 

CTCs can provide a wealth of information on the tumour it originated from as they contain 

the whole of the DNA and RNA of the cancer cell while also containing the other 

biomolecules such as lipids, proteins and carbohydrates. CTCs have the potential to be used 

for diagnosis, prognosis, treatment monitoring and drug discovery. Ex vivo culture of CTCs is 

valuable for translational research as they can be used to test potential therapies or 

understand the biology of different mutations. Culture of CTCs could also be used for 

personalisation of treatment by testing the sensitivity and efficacy of different drugs. It could 

also be used to monitor the development of drug resistance with cultures grown at different 

time points. The number of CTCs can be a prognostic indicator with evidence showing a 

greater number of CTCs being linked to worse outcomes (Matikas et al., 2022). CTC number 

can also be useful for monitoring treatment, if the number of CTCs is not reducing or rising, 

it would suggest that the treatment may not be working and the adjustments to the 

treatment plan might be needed. Like ctDNA, CTCs can be used to identify mutations to 

genetically type the cancer helping to produce a treatment plan. CTCs have the advantage 

over ctDNA that it contains the whole of the DNA unlike ctDNA which is often in fragments, 

many of which may not provide much diagnostic value. While CTCs do contain proteins for 

transcriptome analysis, the field of single cell protein is premature, and it is difficult to gain 

sufficient protein material from single cells (Habli et al., 2020). Current limitations for the 

use of CTCs are the difficulty in isolating them from the blood as they are in small number 
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compared to the large number of blood cells. This is because most CTCs do not survive for 

long due to them being cleared by the immune system or being destroyed by the mechanical 

forces in the blood microenvironment. Isolation techniques for CTCs can be put into two 

broad groups, separation based upon physical properties or on biological properties. 

Currently with all the isolation techniques there is contamination from non-CTCs after 

isolation so identification methods of CTCs must also be developed. CellSearch is the only 

CTC isolation and detection method that has gained regulatory approval, being approved by 

the FDA in 2004. Despite CellSearch being available for almost two decades it has had very 

little adoption by the medical community because of its complexity, difficulty to use and high 

cost (Andree, van Dalum and Terstappen, 2016). CellSearch utilises antibodies against 

epithelial markers on CTC, but these markers are often down regulated after EMT, therefore 

many CTC can be missed.  

Extracellular vesicles (EVs) are lipid membrane bound vesicles secreted by cells to mediate 

intercellular communication. They are secreted by all cell types and can be found in almost 

all biofluids. EVs are separated into two broad categories, exosomes and microvesicles, 

based on their content, biogenesis and secretory pathways. EVs contain both DNA and RNA 

material so like ctDNA and CTCs, they can be used to investigate mutations in the cancer. 

KRAS and TP53 mutations have been detected in exosomes from the serum of pancreatic 

cancer patients (Liu et al., 2021a). Again, like ctDNA and CTCs, EVs can provide a quantitative 

measure of the severity of the disease through the number of EVs originating from the 

cancer. There is evidence of there being a greater number of exosomes in breast cancer and 

pancreatic cancer patients. EVs also contain proteins and there is evidence that an increase 

in EVs showing cancer related membrane proteins could be indicative of the presence of 

cancer. The current biggest limitation for the use of EVs is the lack of standardisation and 
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reproducibility in isolation methods. Like the isolation of CTCs, EV isolation uses physical or 

biological methods (Liu et al., 2021b). EVs can be fragile and current isolation methods can 

damage and destroy some of the EVs during the process. In the field, there is a lack of 

standardisation in defining EVs including both the nomenclature and definition of categories 

of EVs. The current gold standard for EV isolation is the ultracentrifugation. EV isolation is 

often expensive and obtaining pure yields is difficult with often a compromise between 

purity and yield.  

ctRNA is cell free RNA in circulation originating from cancer cells. On its own, circulating RNA 

is unstable with a half of about 15 seconds (Lone et al., 2022). The stability of circulating RNA 

is improved by association proteins, proteolipid complexes and EVs. As with the other 

tumour derived materials, ctRNA can provide both qualitative and quantitative information. 

Most classes of RNA have been found in circulation with the most suitable classes of RNA for 

diagnostics being messenger RNA (mRNA), long non-coding RNA (ncRNA) and micro-RNA 

(miRNA) (Alba-Bernal et al., 2020). RNA is analysed with PCR techniques such as QRT-PCR or 

dPCR for single RNA or small panels. Larger panels can be analysed with RNA sequencing. 

Similar to ctDNA, ctRNA can be used to identify important mutations that relate to 

treatments and cancer typing such as KRAS and EGFR. Cancer related gene fusions are 

another potential biomarker of ctRNA. Many lung cancer related gene fusions have been 

identified in circulating mRNA. The biggest limitation to the use of ctRNA is their instability 

that makes analysis time sensitive. Careful sample preparation and treatment is needed for 

the extraction of ctRNAs as lysing agents and anti-clotting agents could damage the RNA.  

Tumour educated platelets (TEP) are the most recent material to be considered as a 

biomarker in liquid biopsies. Platelets are anucleate cells in the blood that are integral for 
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haemostasis helping to prevent and control bleeding by the formation of thrombotic clots. 

While platelets do not contain a nucleus and DNA, they do contain RNA and proteins and can 

transcribe the RNA to form new proteins. Platelets can react to stimuli by releasing RNA and 

protein signalling complexes packaged in microparticles. Platelet derived microparticles 

account for >70% of EVs in the peripheral blood. TEPs are platelets that have taken in RNA 

content from cancer derived microparticles (In ’T Veld and Wurdinger, 2019). TEPs have 

been shown to have a role in metastasis and drug resistance. CTCs are often found 

surrounded by TEPs providing protection from the immune system. An advantage of TEPs is 

their abundance compared to other tumour related materials in circulation, and the isolation 

of platelets is much easier. Best et al used RNA sequencing to characterise TEPs from RNA 

profiles in cancer patients from a panel of six different cancers and healthy controls (Best et 

al., 2015). They distinguished cancer patients from healthy control with 96% accuracy and 

determined the location of the cancer with 71% accuracy. Currently there are still a lot 

questions on how TEPs interact with cancer cells and what effects they have on each other, 

but also, what effect TEPs may have on other cells.  

The main limitation for the different tumour related materials found in circulation is their 

isolation and identification. Isolating the small amounts of these materials from normal 

blood cells and non-cancer nucleic acids while maintaining high yields and purity is a difficult 

task. Along with isolation methods, identification methods must be developed that can 

identify the tumour related materials from other materials as even after isolation there is 

likely to be contamination of non-cancerous materials. As much of the methods and 

technology being tested in this field are relatively new, there is currently very little 

standardisation. More standardisation to approaches will be needed before liquid biopsy 

platforms can become common place.  
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FTIR spectroscopy could be a useful tool for the analysis of biofluid for liquid biopsy 

diagnosis of cancer. A growing number of studies have investigated FTIR spectroscopy 

modalities for the measurement of a range of biofluids and components within them 

including blood, urine saliva and pleural fluid. To measure biofluids with FTIR spectroscopy 

the samples must be dried first because absorbance by water interferes with bands in the 

spectra therefore some processing is required of the sample before analysis.  

There has been considerable interest in the use of blood serum for cancer diagnosis using 

FTIR spectroscopy. Some of the leading research in this has been by the company Dxcover 

who developed a disposable silicon slide for measurement of serum samples with ATR-FTIR 

spectroscopy. In a clinical study Dxcover investigated the diagnosis of brain cancers from 

serum (Brennan et al, 2021) training their classification algorithm on 724 retrospective 

patients and testing on a 385-patient cohort. The results of their classification were 

compared to CT scans. Their results showed good sensitivity and specificity of 81% and 80% 

respectively. Liquid biopsy has good potential for cancers such as brain cancers where a 

tissue biopsy cannot easily be obtained without significant risk to the patient. The use of 

disposable substrates for ATR FTIR spectroscopy such as the substrate produced by discover 

reduces the risk of sample contamination and damage from placing the sample on a 

reusable ATR crystal. Another group (Yang et al, 2021) investigated ATR FTIR spectroscopy 

measurements of serum for lung cancer diagnosis with a cohort of 92 lung cancer patients 

and 155 healthy people. They dried the serum on a glass slide then removed the dried spot 

from the slide to place on the ATR crystal. They reported a sensitivity and specificity of 80% 

and 91.89% using a partial least squares discriminant analysis. These are a couple examples 

of many groups that are investigating serum analysis with FTIR spectroscopy for cancer 

diagnosis. For the diagnosis of lung cancer sputum liquid biopsy with FTIR spectroscopy has 
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also been researched (Lewis et al, 2010) where it was found that there were spectral 

differences in bands relating to protein and nucleic acid content in the spectra of sputum in 

lung cancer patients and healthy controls. Other biofluids that have shown evidence of 

diagnostic potential for cancer include urine for bladder cancer (Ollesch et al, 2014), bile for 

biliary cancers (Untereiner et al, 2014) and saliva for head and neck cancers (Falamas et al, 

2021).  

Despite the growing body of research demonstrating the use of FTIR spectroscopy for liquid 

biopsy cancer diagnostics the use of FTIR spectroscopy to identify CTCs and other tumour 

related materials is unexplored. FTIR spectroscopy could be used to identify CTCs because 

the biochemistry of the CTCs is largely different to the surrounding blood cells. FTIR 

spectroscopy would not rely on labels like current methods of CTC identification. In this 

thesis the feasibility of using FTIR spectroscopy for CTC identification was investigated.  

Objectives 
 

The Objectives of this thesis are: 

1. Develop a methodology for the preparation of cells on glass coverslips for FTIR 

microspectroscopy analysis. 

2. Investigate if lung cancer cells can be classified from non-malignant lung cells 

prepared on glass substrate using FTIR spectroscopy and machine learning. 

3. Investigate if different types of lung cancer cells can be classified from each other 

prepared on glass substrate using FTIR spectroscopy and machine learning. 

4. Investigate if breast cancer cells can be classified from non-malignant breast cells 

prepared on glass substrate using FTIR spectroscopy and machine learning. 
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5. Investigate if different types of breast cancer cells can be classified from each other 

prepared on glass substrate using FTIR spectroscopy and machine learning. 

6. Investigate if individual lung cancer cells can be identified from blood cells in a mixed 

sample using FTIR spectra. 

7. Investigate the spectra obtained from using O-PTIR spectroscopy to measure cells on 

a glass slide substrate and if these spectra can be used for classification of the cells. 
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Chapter 2: Materials and methods 
 

Cell culture methods 

 

Cells 

The research conducted or this thesis used these following cell lines.  

Breast: 

BT-549 is a triple-negative invasive ductal carcinoma line derived from a tumour of a 72-

year-old female that had metastasised to 3 of 7 regional lymph nodes. It is representative of 

an invasive breast cancer.  

MCF-7 is an ER+ breast adenocarcinoma derived from a 69-year-old female and is a non-

invasive breast cancer cell line. 

MCF-10A is a non-tumorigenic breast epithelial cell line that was derived from a 36-year-old 

female and is used to model non-cancerous breast cells. 

These cell lines were kindly gifted by Dr Gianpiero di Leva, Keele University. 

Lung: 

A549 is a human lung adenocarcinoma cell line. The line was derived from an epithelial lung 

tumour of a 58-year-old Caucasian male. The A549 cell line was purchased from the 

European Collection of Cell Cultures, Salisbury United Kingdom (UK). 
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CALU-1 is a squamous lung carcinoma cell line. The CALU-1 cell line was derived from a 47-

year-old Caucasian male with epidermoid cancer in the lung. The cell line was purchased 

from the European Collection of Cell Cultures, Salisbury UK.  

NL20 is a non-malignant cell line consisting of immortalised human bronchial cells derived 

from a 20-year-old Caucasian female. The NL20 cell line was established through the 

transfection of the replication-defective SV40 large T plasmid, p129. The line was purchased 

from the American Collection of Cell Culture. NL20 is used to model non-cancerous lung 

cells. 

 

Culture conditions 

 

A549, CALU-1 and MCF7 were cultured in Dulbecco’s modified eagle’s medium (DMEM) with 

4.5 g/L glucose and supplemented with 10% foetal bovine serum (FBS), 1% antibiotic (100x), 

1% L-glutamine (200 nM), 1% HEPES buffer solution (1M), 1% non-essential amino acids 

(100x) and 5% sodium pyruvate (100 nM). Cells were seeded into T75 flasks and media was 

changed every 2-3 days. A549, CALU-1 and MCF7 were passaged by removing culture media 

and adding 4 ml trypsin then incubated for 5 minutes. After incubation, the trypsin was 

neutralised by adding 8 ml culture medium. Cells were collected and spun at 1200 rpm for 5 

minutes. The supernatant was discarded, and the cell pellet was resuspended in fresh 

medium. Cell viability was determined by trypan blue exclusion method. Cells were split and 

seeded into new T75 flasks; this was done every 7 days. 
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BT-549 was cultured in Roswell Park Memorial Institute (RPMI) media supplemented with 

10% FBS, 1% antibiotic (100x), 1% L-glutamine (200 nM), 1% HEPES buffer solution (1 M), 1% 

non-essential amino acids (100x) and 1% sodium pyruvate (100 nM). BT-549 was grown as 

an adherent culture. BT-549 cells were passaged by removing culture medium, adding 4 ml 

trypsin and incubated for 5 minutes. After incubation, the trypsin was neutralised by adding 

8 ml culture medium. Cells were collected and spun at 1200 rpm for 5 minutes. The 

supernatant was discarded, and the cell pellet was resuspended in fresh medium. Cell 

viability was determined by trypan blue exclusion method. Cells were split and seeded into 

new T75 flasks; this was done every 7 days.  

NL20 cells were cultured in Ham’s 12 culture media supplemented with FBS (4%), NaHCO3 

(1.5 Gr/L), glucose (2.7 Gr/L), L-Glutamine (2mM, 1%), non-essential amino acids (0.1 mM, 

1%), antibiotics (1%), insulin (5 µg/ml), EGF (10ng/ml), hydrocortisone (0.5 ng/ml).  Media 

was changed every 3-4 days. Cells were passed every 5-6 days.  

MCF10A cells were cultured in mammary epithelial cell growth basal medium (MEBM) 

supplemented with the Lonza SinglequotTM kit containing bovine pituitary extract (BPE) 2.00 

ml, human epidermal growth factor (hEGF) 0.50 ml, Insulin 0.50 ml, Hydrocortisone 0.50 ml 

and gentamicin sulphate-amphotericin (GA-1000) 0.50 ml. All cells were grown as an 

adherent culture in T-75 flasks and incubated at 37 °C at 5% CO2. Media was changed every 

2-3 days and cells were split once a week or before reaching confluency. 

The NL20 and MCF10A cells were detached from flasks by incubation with a dissociation 

solution consisting of 100 ml HBSS, 5.3 ml FBS, 21 mg EDTA. The NL20/MCF10A were 

incubated 4 minutes with the dissociation solution in the incubator. Culture medium was 

then used to neutralise the solution. Cells were collected and spun at 1200 rpm for 5 
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minutes. The supernatant was discarded, and the cell pellet was resuspended in fresh 

medium. Cell viability was determined by trypan blue exclusion method. 

All cells were incubated at 37 °C and 5% CO2. All cells were routinely tested for presence of 

mycoplasma.  

 

Survival assays 

 

Cell viability was determined using the trypan blue assay. 0.4% trypan blue solution was 

added 1:1 to the cell suspension and mixed thoroughly. The stained suspension was loaded 

on to a haemocytometer. Non-viable cells take up the trypan blue solution and appear blue 

when viewed under the microscope while viable cells will be unstained.  

 

Sample preparation 

 

Two methods of sample preparation were carried out to place cells on to the slides, cytospin 

and smear. Cells were collected from the flasks as described in culture conditions above 

using trypsin or dissociation media. Pelleted cells were resuspended in 0.9% NaCl and cell 

concentration was brought to 106 cells/ml. 20 µl of the cell solution was pipetted into the 

cytospin funnel. The cells were spun for 1 minute at 900 rpm which deposited them onto the 

soda lime glass coverslips (24 x 50 mm x 0.13–0.17 mm thickness, GalvOptics, UK) or glass 

slides (1 mm thickness, ThermoFisher). The cells were deposited in a circular area 1 cm in 

diameter. The cells were then fixed with 4% buffered paraformaldehyde (PFA) or methanol. 
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For the smears, 20 µl of a cell concentration of 106 cells/ml in 0.9% NaCl were placed on the 

edges of a GalvOptics coverslip or a glass slide. A second coverslip was placed on the cell 

solution and used to spread it over the length of the substrate. 

Two fixatives were used, 4% PFA in 0.9% NaCl, or methanol. 100 µl of 4% PFA was pipetted 

on to the samples and incubated for 15 minutes at room temperature. After incubation, 

excess PFA was removed by washing once with 0.9% NaCl and three times with distilled 

water. For fixation with methanol, samples were placed in cold methanol for 2 minutes, then 

allowed to dry. Washings were not carried out with methanol fixation as it is a volatile 

compound that evaporates from the sample. 

To investigate if cancer cells can be classified from blood cells in a mixed sample, samples of 

doped blood were made. This was to replicate CTCs in blood and to assess if FTIR 

spectroscopy is viable as a diagnostic tool for CTCs. Blood was doped with CALU-1 or A549 

cells at 100,000 lung cancer cells per 1 ml blood. This is a much higher number of cancer cells 

than would be found circulating in the blood of cancer patients, but it was done so there was 

plenty of cancer cells in the samples to measure. Once the blood was doped with the cancer 

cells, the red blood cells were removed from the blood by lysis with an ammonium chloride 

potassium (ACK) lysing buffer (Thermo Fisher Scientific).  10ml of ACK lysing buffer was 

added per 1ml of whole  blood and was incubated for 5 minutes at room temperature. After 

the incubation time with ACK lysing buffer the blood was centrifuged for 5 minutes at 300 x 

g. The supernatant was removed, and the pellet resuspended in 5 ml saline (0.9%). The 

pellet contained leukocytes and the doped cancer cells. The remaining cells were centrifuged 

again at 300 x g for 5 minutes at room temperature. The supernatant was removed, and the 

pellet resuspended using 0.5 ml saline. Samples of these cells were immediately prepared 
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using a 35 µl of the cell solution in a cytospin at 900 rpm for 1 minute on to glass coverslips. 

The cells were immediately fixed on the coverslip with 100 µl 4% PFA incubated for 15 

minutes at room temperature. After incubation the excess PFA was poured off and to 

remove any remaining PFA, the slips were washed once with saline and thrice with deionized 

water.   

All cell lines used to produce samples were harvested from flasks after two weeks of culture 

for each experimental repeat. Cells were harvested during growth phase at around 70% 

confluency in the flask. Samples were prepared in at least triplicate in three independent 

experiments for the research in each chapter. Cells were collected by detaching from flask 

using trypsin or dissociation media and resuspended as described for each cell lie the cell 

culture section of this chapter. Once counted by trypan blue exclusion method, the cell 

number needed to produce samples were placed into a 15 ml tube and diluted with saline to 

the required concentration of 1 x 106 cells per ml for the samples of a single cell line.  

 

 

FTIR microspectroscopy 

 

FTIR spectra in the mid-IR range were obtained at the benchtop using a Thermo Fisher 

Nicolet iN10(MX) spectrometer at Loughborough University, UK. The spectrometer was 

fitted with a mercury cadmium telluride (MCT) detector and cooled with liquid nitrogen. 

Spectra were collected at 4 cm-1 resolution with 256 co-added scans per cell using an 

aperture size of 15 x 15 µm centred on the centre of the cell.  The time taken to collect a 
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spectrum of a cell was 90 seconds. Background measurements were made under the same 

conditions on an area of the slide without any cells. The instrument was operated in 

transmission mode. 

 

Figure 7 Nicolet iN10 spectrometer at Loughborough university. 

The same Nicolet iN10(MX) spectrometer was used to take larger map measurements for 

research on classification of lung cancer cells from leukocytes in a doped blood sample. The 

spectra were collected at 4 cm-1 resolution with 256 co-scans per cell using an aperture size 

of 15 x 15 µm. Spectra were taken in 10 µm steps in both the x and y planes. The instrument 

was operated in transmission mode. 

Measurements at the ALBA synchrotron MIRAS beamline were recorded using a Bruker 

Vertex 70 spectrometer with a Hyperion 3000 microscope attached. The spectrometer was 

fitted with an MCT detector cooled with liquid nitrogen. Spectra were collected at 4 cm-1 

resolution with 256 co-scans per cell using an aperture size of 15 x 15 µm centred on the cell 

nucleus.  The time taken to collect a spectrum of a cell was around 90 seconds. Background 

measurements were taken after every 10 measurements on a clear section of the glass 

substrate. The instrument was operated in transmission mode. 



58 
 

The wider aperture of 15 x 15 µm was used to measure spectral information from all regions 

of the cell including the cytoplasm and cell membrane. The cancer cells used have an 

average diameter of 20 µm and the leukocytes have an average diameter of 10 µm therefore 

when taking measurements information is collected from the different cellular structures.  

 

Figure 8 Bruker Vertex 70 spectrometer with Hyperion 3000 microscope at MIRAS beamline 

in ALBA synchrotron. 

Each spectrum measured was from a different individual cell. For the research in each 

chapter spectra were measured equally from each repeat across the three experiments. This 

was to ensure that variation within the cell populations and variation withing measurement 

conditions were accounted for.  

O-PTIR spectroscopy 
 

For the research using O-PTIR spectroscopy measurements of A549 and CALU-1 lung cancer 

cells were taken using a mIRage O-PTIR micro-spectrometer from Photothermal 

spectroscopy Corp. The spectrometer used a dual range QCL IR pump beam covering the 
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spectral ranges of 3000-2700 cm-1 and 1800-914 cm-1. The QCL operated at 100 KHz pulse 

rate and 100% power at 2.5% duty cycle. The probe beam was an optical 532 nm laser 

operated at 28% power. The spectrometer was fitted with a room temperature silicon 

photodiode detector to record the reflected optical beam intensity. Spectra were collected 

at a resolution of 6 cm-1 with a single scan per replicate spectrum. A single spectrum took 

approximately 1 second to scan. Spectra were collected in reflection mode, but the output 

spectra are transmission like IR spectra because of the pump-probe system of O-PTIR 

spectroscopy. Background spectra were collected off a clean Kevley Low-E slide once per 

day. The system was purged with dry nitrogen gas to minimise water vapour. For each 

individual cell measured nine spectra were recorded across the cell and these nine spectra 

were averaged to produce the spectra for each cell. 50 A549 and 50 CALU-1 cells were 

measured in this manner. The O-PTIR spectroscopy measurements were obtained by Dr. 

Mustafa Kansiz at Photothermal Spectroscopy Corp. While it is not used for this study, it is 

important to note that the O-PTIR instrument is capable of concurrently recording both IR 

and Raman spectra at the same spatial resolution. 

 

 

 

Data pre-processing 

 

Pre-processing is important to reduce uncontrollable variables affecting spectral 

measurements. This is of greater importance when analysing biological materials that 

inherently have variation. Environmental conditions such as temperature, humidity and 
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instrument drift can all have impacts on spectral quality, reproducibility and repeatability. 

Pre-processing is a vital step in spectral analysis to remove the unwanted variance. Spectral 

pre-processing also aids in interpretability by both humans and machines when trying to 

gain information from the spectra. The performance of classifiers can be largely affected by 

the treatment and processing of the data. The reduction of unwanted variability allows 

classification models to focus on relevant information in the spectra.  

All spectra were cropped to the area of interest to be analysed. The region of the spectra 

below 1350 cm-1 was removed because the glass substrates used absorb the IR radiation 

interfering with this region. The areas analysed include 3500-2700 cm-1 which contains peaks 

corresponding to CH2 symmetric and asymmetric stretching of lipid groups and the amide A 

peak which comes from the N-H stretching of the amide bonds in proteins. The region 

between 1800-1350 cm-1 is an area of the fingerprint region which includes amide I and II 

which result from the C=O stretching and C-N stretching vibrations of the peptide bonds in 

proteins, respectively. The spectra collected from using glass substrates therefore provided 

information on the protein and lipid content of the analysed cells.  

A Savitzky-Golay filter was used to remove noise from the spectra. Savitzky-Golay filters are 

commonly used for the pre-processing of FTIR spectra because they filter out less high 

frequency noise than some other smoothing filters. It is important that the Savitzky-Golay 

filter is not overused, and important features are removed. PCA denoising was another pre-

processor used to reduce noise in spectra. PCA denoising functions by performing a matrix 

decomposition of the dataset.  

Normalisation is used in pre-processing to scale spectra within a similar range. It is used to 

remove variation caused by optical path length differences which can be caused by variation 
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in sample thickness. Two methods of normalisation were used in this research standard 

normal variate (SNV) and Extended Multiplicative Signal Correction (EMSC). SNV 

normalisation begins by mean centring the spectra and then divides the mean centred 

spectra by the standard deviation over the spectral intensities.  

EMSC is a model based pre-processing technique. It is a technique used with vibrational 

spectroscopy data to correct for additive baseline effects, multiplicative scaling effects, and 

interference effects (Afseth et al 2012). In this work it was used to correct for variation in 

sample thickness and environmental variables such as water vapour and carbon dioxide. The 

EMSC model can be described by Equation 1 below. 

 

Equation 1 EMSC model. 

 

Where Zapp is a measured spectrum, Zref is a reference spectrum, b is a multiplicative 

parameter, c, d, e are constant, linear and quadratic parameters respectively, ε is a residual 

term, 𝜈 are spectral wavenumbers (Tafintseva et al 2019). The reference spectra used were 

the average spectra of the training datasets used for each classification. The affects of EMSC 

on spectra are demonstrated below in figure 9 where the baselines of the spectra are shown 

to be normalised and corrected to allow for a better comparison of the spectra from 

different cell types.  
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Data analysis 

 

Once the spectral data was pre-processed, it could then be analysed. The first step of 

analysing the spectral data was visual inspection of spectra picking out the visually 

identifiable changes in band intensity, shape and position of the average spectra of the cells 

A B 

C D 

Figure 9 Effect of pre-processing on spectra. A) Raw spectra B) Spectra with denoising applied 

(PCA denoising and Savitzky-Golay filter) C) Spectra with EMSC applied D) Spectra with de-

noising and EMSC applied. 
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being compared. Average spectra were the average of all the individual spectra collected 

from individual cells. The spectra collected were balanced across the biological and technical 

replicates.  

Principal component analysis (PCA) was used to visualise spectral datasets and aid in 

identifying where spectral differences are in the spectra through the loading plots of the 

PCA. The PCA scores were produced using the Quasar software. PCA is an unsupervised 

learning method used for dimension reduction of data to reduce the dimensions of datasets 

with a large number of variables. FTIR spectroscopy data is highly dimensional data with 

each wavenumber representing a different variable. PCA can be used to transform a dataset 

reducing the number of variables that still retains most of the information of the original 

data. PCA reduces the dimensions of data by projecting by geometrically projecting into onto 

a lower dimension space called principal component (PCs). The first PC contains the most 

variance and is chosen by minimizing the total distance between data and their projection 

on the PC. The second PC and subsequent PCs are chosen in similarly but with each PC being 

uncorrelated with the previous PCs. The projection of PC1 is uncorrelated with projection 

onto PC2 therefore the PCs are geometrically orthogonal. The maximum number of PCs is 

the smallest of either the number of features in the dataset or the number of samples. PCs 

are defined as a linear combination of the original variables in the data. The coefficients are 

stored in a loading matrix which can be interpreted as a rotation matrix that rotates the data 

so that the projection with the greatest variance is placed on the first axis. For vibrational 

spectroscopy studies PCA is often used to help visualize the data with each point on the PCA 

score plot representing a different spectral reading. This allows the PCA score plot to be 

used to help visualize differences within different categories and groupings can help to 

identify how closely related different spectra are. 
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On some datasets the components from the PCA scores were tested for normality by using a 

Levene’s test of normality. For the normally distributed data, the components were 

compared with Student’s t-test to assess if there were significant difference in the data 

between different cells. For non-normally distributed data the non-parametric equivalent, 

the Kruskal-Wallis test was used.  

For classification tasks, a machine learning based random forest (RF) classifier was used to 

test if different cells could be classified from each other using the spectral data collected. 

The Quasar software was used to perform the classification.  RF is an ensemble classifier 

using many decision trees to come to a consensus. The random nature of a RF comes from 

the feature selection in each individual decision tree being random. Each decision tree starts 

with a root node which is the selected feature with the highest information gain, branches 

then split off from this node until a decision is made. A single decision tree is often prone to 

overfitting but by using many trees with random subsets of features, a RF avoids overfitting. 

The most important parameters to be considered are the number of decision trees, the 

depth of each decision tree, and the maximum number of features considered at each split 

in a tree. The parameters were adjusted for the different datasets and the classifier was 

applied based upon which parameters provided the best output for the given dataset.  

The RF classifier was used to produce hyperspectral maps for the classification of cancer cells 

within blood. The RF classifier was used to assign a colour to 10 µm tiles using the spectral 

data. From this, it was compared to the images of the cells to determine if FTIR spectroscopy 

could be used to identify single cancer cells within blood. The RF classifier was trained using 

a training set of known spectra of A549 or CALU-1, leukocytes and background 

measurements. Before classification, each tile of the map was annotated based on the visual 
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images. This allowed measurement of how well the RF classifier performed at identifying 

what areas of the map contained leukocytes, cancer cells or background.  

The performance of the classification by the RF classifiers was measured using the area 

under the curve (AUC), classification accuracy, precision, recall and F1. AUC is the area under 

the receiver operator curve. The higher the AUC, the better a model is at predicting classes. 

Classification accuracy is the proportion of correctly identified instances. Precision is the 

proportion of true positives among the instances classified as positive. Recall (sensitivity) is 

the proportion of true positives amongst all the positive instances in the data. F1 is the 

weighted harmonic mean of precision and recall. Precision and recall can be described by 

Equations 2 and 3 respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Equation 2 Precision. 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Equation 3 Recall. 

 

Staining 

To confirm the identity of cancer cells within samples of blood doped with cancer cells, a 

Giemsa stain was used. Giemsa stain is a Romanowsky type stain commonly used in 

pathology laboratories for the routine examination of blood films. It is a differential stain 

containing a mixture of dyes including azure blue, methylene blue, and eosin dye. Azure blue 
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and eosin are acidic dyes that stain the cytoplasm and granules in cells. Methylene blue is a 

basic dye that stains acidic components of the cell including the nucleus. The Giemsa stain 

was produced from a stock Giemsa solution (Atom Scientific) that contained Giemsa powder, 

glycerol and methanol. The stock stain was diluted to a working stain with a Gurr buffer 

which is pH 6.8 phosphate buffer. The buffer was produced using buffer tablets (Thermo 

Scientific). The working stain was made using a dilution of 1:40 Giemsa stock solution:Gurr 

buffer. 2-3 drops of the Giemsa stain were applied to the sample covering the whole sample 

area. The sample was incubated for 45 minutes at room temperature. After incubation, the 

excess stain was poured of the sample slips. Any remaining excess stain was washed off 

using the Gurr buffer. Once stained the cancer cells in the doped blood samples could be 

visually confirmed under a microscope due to the difference in size of the cancer cells when 

compared to the surrounding leukocytes.  
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Chapter 3- Optimisation of sample preparation on glass substrates for 

FTIR microspectroscopy characterisation of lung cancer cell lines. 
 

Introduction 
 

 The numbers of cancer cases in the UK are continuing to rise with a 12% incidence rate 

increase for all cancers in the UK from the 1990s to 2017 (Cancer Research UK, 2017). This 

ever-increasing incidence of cancer generates a greater workload for pathology departments 

and an increased turn around for key cancer diagnoses. A delay in diagnoses causes a delay 

in treatment, a worsening in patients’ condition and an increase in their stress and anxiety. A 

four-week delay to treatment could lead to an increased 6-8% chance of a patient dying. A 

system that could identify abnormal cells in cytology samples for further investigation more 

efficiently is needed to manage the massive workload of pathology laboratories. Such a 

system should reduce the time pathologists would spend looking at samples to deem if they 

are positive or negative for cancer and get results to patients quicker.  

Fourier Transform Infrared (FTIR) microspectroscopy has potential as a technique to aid 

pathologists in their work investigating tissue/cytology samples from patients with cancer or 

suspected cancer (Finlayson et al., 2019). FTIR microspectroscopy produces provides 

information on the biochemistry of the cells which can be used to distinguish normal cells 

from abnormal cells and different cancers. Despite the plethora of work carried out 

demonstrating its potential, FTIR microspectroscopy has yet to be translated to the clinical 

setting (Finlayson et al., 2019). One of the major drawbacks has been the substrates that 

samples are placed on for transmission FTIR microspectroscopy (CaF2, BaF2, ZnSe) as they are 

often expensive, costing up £50-60 per slide. This would make a diagnostic system based on 
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FTIR microspectroscopy very expensive considering the large number of samples that need 

to be produced in a clinical setting. The glass slides commonly used in pathology 

departments as a substrate for cytology samples obscures the fingerprint region (Rutter et 

al., 2018) (Pilling et al., 2017) (Bassan et al., 2014) of the IR spectra because the glass 

absorbs IR radiation. The spectrum is obscured below 2000 cm-1 removing information on 

the protein, nucleic acid and carbohydrate content of the cells. This has caused glass not to 

be considered an appropriate substrate for use with FTIR spectroscopy. 

Previous research has shown soda lime glass coverslips of a thickness of 0.12-0.17 mm could 

be used as a substrate and retain the higher wavenumber bands that correspond to 

vibrations from fatty acid chains in lipids (3000-2800 cm-1) and the band amide A (3100-3500 

cm-1) corresponding to NH vibrations in proteins. These thinner coverslips allow for the study 

of bands down to 1350 cm-1 which cannot be seen on regular glass slides (Rutter et al., 

2019). This allows information on both lipids and proteins to be gained while using a more 

affordable and accessible substrate. However, the amide III (1350-1200 cm-1) and bands 

corresponding to carbohydrates and nucleic acids below 1350 cm-1 in the fingerprint region 

are lost. It is believed that due to the coverslips being thinner than the glass slides which are 

about 1 mm thick, less IR radiation is absorbed by the substrate which allows the amide I 

and II peaks to be viewed. The research in this chapter aims to expand on this work 

demonstrating a methodology to use glass coverslips for FTIR spectroscopy analysis of lung 

cancer cells. The research used FTIR microspectroscopy to differentiate between two 

different lung cancer cells (A549, CALU-1), placed upon the soda lime glass coverslips. This 

work aims to take another step towards translating FTIR spectroscopy to a system that could 

be utilised in a clinical setting.  
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The closer sample preparation is to methods commonly used in clinical settings for current 

cytological analysis, the easier an FTIR spectroscopy diagnostic method will be to translate to 

the pathology laboratories. Diverse cytological preparation methods with different fixation 

methods are used in pathology laboratories. Two sample preparation techniques used in 

hospitals worldwide to prepare cytology samples are smears and cytospins. Cytology 

samples for lung cancer produced from bronchio–alveolar lavage or pleural fluid are usually 

prepared as cytospins (Nalwa et al., 2018). Fine needle aspirations and blood samples are 

commonly prepared as smears (Kshatriya & Santwani, 2016). Smears preserve the 

morphological features of cells but can have uneven distribution of cells and inadequate 

cellularity. Smear quality is dependent on the practitioner. Cytospins provide good cellularity 

which can increase diagnostic potential and are less dependent on the practitioner to ensure 

a good quality sample but some of the morphological features are lost.  These two methods 

were chosen to prepare the samples on to the glass coverslip substrate to identify the best 

preparation for FTIR spectroscopy analysis. Using widely used preparation methods would 

make it much more likely that the test could fit within current clinical workflows. 

Additionally, two fixation methods commonly used for cytology were tested. The two 

fixation methods of 4% PFA and methanol were chosen. Methanol is a quick and simple 

method of fixation, but alcohols can affect the lipid content of cells (Brown et al., 2012). PFA 

can take longer to fix a sample but does not affect the lipid content as much as methanol.  

The basis of the work in this chapter was to find out which preparation method (cytospin or 

smear) and fixative (4% PFA or methanol) using glass coverslips as substrates is best for 

analysis of lung cancer cells in terms of usability with FTIR microspectroscopy and spectral 

quality.  
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Aims 

1. Determine if cytospins or smears are the better method of preparation for FITR 

microspectroscopy of cytology samples on glass coverslips. 

2. Determine between methanol or 4% paraformaldehyde as the best method of 

fixation for FTIR microspectroscopy of cytology samples on glass coverslips. 

3. Investigate if FTIR microspectroscopy can be used to distinguish between lung cancer 

cells (A549, CALU-1). 

 

Methods 

 

Cell Culture 

Two NSCLC cell lines were used for these experiments, A549 (adenocarcinoma) and CALU-1 

(SqCC). Refer to the cell culture section of chapter 2 for culture details. 

 

Sample preparation 

 

A549 and CALU-1 cells were brought to a concentration of 1x 106/ml. Cytospin or smear 

methods were used to apply the cells to Galvoptics glass coverslips. To prepare the cytospin, 

a glass slide was first placed in the cytospin clip, and the coverslip was then placed on top of 

the slide, the paper filter and funnel were then placed on top of the coverslip. For the 

cytospin, 20 μl of the cell suspension was added to the bottom of each funnel and spun at 

900 rpm for 1 minute. The cells were immediately fixed with 4% PFA or methanol. For the 

preparations of smears 20 μl of the cell suspension was pipetted on to the coverslip. Another 
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coverslip was used to spread the droplet across the coverslip. The smear samples were 

allowed to air dry before fixation to prevent the cells from being washed off during fixation 

in 4% PFA or methanol. 

To fix the samples with 4% PFA, 100 μl of PFA was applied to the sample and incubated for 

15 minutes. After incubation, the samples were washed with 200 μl of 0.9% saline once and 

200 μl of water thrice. After the washings, the samples were air dried. To fix with methanol, 

the samples were submerged in methanol for 2 minutes. After 2 minutes, the samples were 

removed from the methanol and air dried to allow excess methanol to evaporate off.  

All cells used to produce samples were harvested from flasks after two weeks of growth post 

thawing. Cells were harvested during growth phase at around 70% confluency in the flask. 

Samples were prepared in at triplicate in three independent experiments. 

 

FTIR microspectroscopy 

 

100 spectra of each cell line for each method of preparation and fixation were collected. 

Each spectrum was measured from a different individual cell with the measurement centred 

on the middle of the cell. A Nicolet iN10 benchtop spectrometer was used to collect the 

spectra. The spectrometer used a globar IR source and a MCT detector cooled with liquid 

nitrogen.  Spectra were collected at 4 cm-1 resolution with 256 co-added scans per cell using 

an aperture size of 15 x 15 µm centred on the centre of the cell. Measurements were taken 

equally from across samples from the three independent experiments.  
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Pre-processing and data analysis 

 

The spectra were cropped to the areas of interest, 3100-2700 cm-1 and 1800-1350 cm-1. 

3100-2700 cm-1 contains bands mainly from the vibrations of C-H groups in the hydrocarbon 

chains of lipids. 1800-1350 cm-1 contains the amide I band at 1695-1615 cm-1 resulting from 

the stretching of C=O in the amide bonds of proteins and the amide II band at 1550-1520 cm-

1 resulting from the bending of N-H bonds in the amide bond. A Savizky-Golay filter with a 

window size of 15 and polynomial of 2 was used to de-noise the spectra. SNV was used to 

normalise the spectra. Normalisation is applied to remove baseline defects than can be 

caused by variations in sample thickness. The average spectra for each preparation condition 

were generated by averaging the 100 spectra collected of each cell line for each condition.  

Data analysis was carried out in the Unscrambler X software. PCA plots of the spectra were 

generated to allow for comparison of the spectra of the two cell lines and preparation 

conditions. A Levene’s test of normality was used to test if the data was normally 

distributed. A Kruskall-Wallis test was used for the non-normally distributed data and a 

Students’ t-test for the normally distributed data. Both were performed on the PC data to 

test if the two cell lines and the preparation conditions were significantly different. 

 

 

Results 
 

The cytospin produced samples with a uniform distribution of cells with the cells grouped in 

one circular area on the coverslip. The smear produced a non-uniform distribution of cells 
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across a large area of the coverslip. The cells on a smear were spread across the coverslip in 

small groups. These patterns of distribution made collecting 100 spectra from different cells 

take much longer for the smear samples than the cytospin samples. Furthermore, smears 

must be dried prior to fixing to minimise loss of cells from the coverslip during fixation and 

washing. The cytospins can be fixed as soon as they are prepared because the cells are 

strongly attached to the coverslip. This drying step in the preparation of smears can cause 

biochemical changes in the cells which will affect the FITR spectra of cells.  

Methanol was tested as a fixative because it only needs 2 minutes for fixation and no 

washing steps because the methanol evaporates due to its volatility. Compared to PFA which 

can take up to 20 minutes with incubation and washing. The time saved using methanol 

fixation is advantageous if many samples must be produced. The methanol fixation however 

stripped lipids from the cells shown in the spectra of figures 10 and 12 by a decrease in the 

size of the peaks and a flattening in their shape at 2850 cm-1 and 2920 cm-1.  

Figures 11 and 13 show the amide I and II bands in the region 1800-1350 cm-1 for A549 and 

CALU-1 cell lines prepared using smear and cytospin respectively. The spectra demonstrate 

that amide I and II can be identified in both cell lines on the glass coverslips when fixed with 

PFA or methanol. Both fixative agents retain these bands to provide information on the 

protein content of cells. However, a difference in the shape of the bands can be seen in the 

cytospins and smears. This difference is most noticeable in the CALU-1 spectra where the 

amide I and amide II bands have a flatter peak than the in cells prepared by smear compared 

to the cytospin preparation. This infers a change in the protein content caused by the 

preparation method. 
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Figure 10 Average spectra from 100 cells of A549 and CALU-1 cells for the region 3100-2700 

cm-1 prepared on glass coverslips as a smear. Cells were fixed with 4% PFA or methanol. 

Spectra offset for clarity.  
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Figure 11 Average spectra from 100 cells of A549 and CALU-1 cells for the region 1800-1350 

cm-1 prepared on glass coverslips as a smear. Cells were fixed with 4% PFA or methanol. 

Spectra offset for clarity 
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Figure 12 Average spectra from 100 cells of A549 and CALU-1 cells for the region 3100-2700 

cm-1 prepared on glass coverslips as a cytospin. Cells were fixed with 4% PFA or methanol. 

Spectra offset for clarity 
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Figure 13 Average spectra from 100 cells of A549 and CALU-1 cells for the region 1800-1350 

cm-1 prepared on glass coverslips as a cytospin. Cells were fixed with 4% PFA or methanol. 

Spectra offset for clarity. 

 

The next step was to analyse the data with PCA to assess the differences between spectra of 

different preparation conditions and between A549 and CALU-1. Figures 14 and 16 below 

shows the PCA scores and loadings for the 3100-2700 cm-1 region of A549 and CALU-1 

prepared by cytospin and fixed with PFA and methanol on glass coverslips. The PCA plot 

shows that there is a clear grouping and separation of cells prepared with the different 

fixatives thus a difference in the spectra of cells fixed with methanol or PFA. As expected 

from the mean spectra there is a clear difference from the fixative of choice on the lipid 

region (Figures 12 and 14) of the cells. Despite the loss of lipid content with methanol there 

was separation of A549 and CALU-1 on the PCA scores for smear and cytospin preparation 
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for both fixation methods. It is not identifiable if the separation in the lipid region with 

methanol fixation is from actual difference in the lipid content of the cells or differences in 

what lipids the methanol removed from the cells. Separation between the cells from the 

fixative used can also be seen for both preparation methods in the region 1800-1350 cm-1 

(Figures 15 and 17). Separation of A549 and CALU-1 was clearer in the cytospin PCA score of 

1800-1350 cm-1 than for the smear. Statistical analysis of a PCA comparing cytospin versus 

smear sample preparation showed statistically significant differences between these two 

types of samples regardless of type of fixation or cell line for PC1 for both regions (Table 2). 

 

 

Figure 14 PCA score (a) for A549 (triangles) and CALU-1 (squares) cells prepared using 

cytospin and fixing them with methanol (open triangles and open squares) or PFA (filled 

triangles and filled squares) for the 3100-2700 cm-1 region and the corresponding PC loadings 

(b). 
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Figure 15 PCA score (a) for A549 (triangles) and CALU-1 (squares) cells prepared using 

cytospin and fixing them with methanol (open triangles and open squares) or PFA (filled 

triangles and filled squares) for the 1800-1350 cm-1 region and the corresponding PC loadings 

(b). 

 

Figure 16 PCA score (a) for A549 (triangles) and CALU-1 (squares) cells prepared using smear 

and fixing them with methanol (open triangles and open squares) or PFA (filled triangles and 

filled squares) for the 3100-2700 cm-1 region and the corresponding PC loadings (b). 
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Figure 17 PCA score (a) for A549 (triangles) and CALU-1 (squares) cells prepared using 

cytospin and fixing them with methanol (open triangles and open squares) or PFA (filled 

triangles and filled squares) for the 1800-1350 cm-1 region and the corresponding PC loadings 

(b). 
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Table 2 Statistical significance between different types of sample preparation (cytospin 

versus smear) based on types of fixative (PFA, methanol) and cell type (A549, CALU-1). 

Statistically significant values in bold. 

 

The statistical analysis of the PCAs in Figures 14 to 17 is shown in Table 3 comparing fixation 

with PFA or methanol. Statistically significant differences can be seen between these two 

types of fixative regardless of cell line and whether samples have been prepared as cytospins 

or smears. In order to assess whether the differences were not just due to sample 

preparation but also to biochemical differences between these two cell lines, statistical 

analysis from the principal components comparing A549 cell line (lung adenocarcinoma) and 

CALU-1 (lung epidermoid carcinoma) was carried out. Again, the statistical analysis in Table 4 

is based on the PCAs as shown in Figures 14 to 17. Statistically significant differences 

between these two types of cell lines in both regions for PC1. These differences are present 

regardless of the preparation or fixation method. For PC2, the differences were statistically 

significant for samples prepared as cytospins and fixed either with PFA or methanol (Table 
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3). This is the first time that different types of lung cancer cell types have been separated 

with FTIR microspectroscopy using glass coverslips as substrates. 

 

Table 3 Statistical significance between different types of fixative (PFA versus methanol) 

based on sample preparation (cytospin, smear) and cell type (A549, CALU-1). Statistically 

significant values in bold. 

 

Table 4 Statistical significance between the different cell types (A549 versus CALU-1) based 

on sample preparation (cytospin, smear) and fixative (PFA, methanol). Statistically significant 

values in bold. 
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Discussion 

 

For new methods and techniques to be introduced into clinical laboratories, it is important 

that these methods do not disrupt current workflows and standard procedures used. For 

FTIR spectroscopy to be successfully used in the clinical laboratory, sample preparation is the 

crucial first step. Sample preparation should be standard across laboratories and fit with 

current workflows. Ideally, preparation methods for FTIR spectroscopy should use 

techniques already established in pathology laboratories. The sample preparation must 

reach a balance though of not altering the biochemistry of cell and tissue samples while 

fitting in with clinical practices. 

Two preparation methods commonly used in histopathology laboratories are smears and 

cytospins (Strimpakos et al., 2014). The smear requires no special equipment to prepare 

therefore it can be performed at anytime and anywhere because it does not require an 

instrument like the cytospin. This could be an important factor to consider for countries with 

less developed health infrastructure where smaller hospitals may not be able equipped with 

the cytospin machine or only have a small number. However, the fact that samples prepared 

with a smear require time to dry before applying the fixative to avoid washing off the cells 

from the substrate may alter the biochemistry of the cell and adds time to the preparation. 

Air drying could cause delocalisation of biomolecules as a result of large surface tension 

forces associated with the water air interface (Baker et al., 2009). The cytospin method of 

preparation is more consistent in quality as it uses a cytospin machine to apply the cells to 

the substrate whereas the smear’s quality is dependent on the technician. This makes the 
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cytospin more reliable and repeatable across samples. The cytospin method maintains a 

more consistent quality in the biochemistry and spectral quality as well as the cellularity of 

the samples. The samples prepared using the cytospin are quicker to analyse with FTIR 

microspectroscopy as the cells are concentrated into a single area on the substrate. The cells 

on a smear are spread across the substrate so time is taken to find the small, spread groups 

of cells. I found this to be particularly time consuming when analysing 100 cells for each 

sample. The smears took significantly longer to collect 100 spectra. The cytospin preparation 

would allow for multiple cells to be analysed quickly and easily saving time and allowing for 

more confidence in the result because more cells can be measured. 

Fixation of cells is a vital step of preparation of cell samples for FTIR spectroscopy analysis. 

Unfixed cells have a high-water content, the water absorbs IR radiation and obscures 

information of biomolecules in the cells making analysis difficult. Removal of cells from 

growth media and air drying can change the osmotic pressure within the cells resulting in 

shrinking or swelling of cells. Swelling can result in membrane rupture and the leaching of 

intracellular components. Also, the drying of living cells can initiate autolytic processes. 

Lysosomes release enzymes that cause denaturing of proteins and dephosphorylation of 

mononucleotides, phospholipids and proteins. The effects of autolysis from inappropriate 

preparation of cellular samples will obscure the information that can be gained from cells 

with FTIR spectroscopy analysis. Fixation quenches the autolysis process and minimises the 

leaching of biomolecules. Therefore, finding a fixation process that retains the biochemical 

information of the cells while not disrupting workflows is of great importance for FTIR 

spectroscopy to be translated to clinical use.  
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4% PFA and methanol were tested because they are two fixative agents commonly used in 

pathology laboratories. Fixation of samples with methanol is simple and quick requiring the 

placement of the sample in methanol for two minutes. PFA fixation is much more time-

consuming requiring 15-20 minutes for fixation then washes with saline and water. 

However, as methanol is an alcohol it removes some of the lipids from the cells as 

demonstrated in Figures 10 and 12 which demonstrated decreased intensities and removal 

of band features in the lipid regions of both A549 and CALU-1 cells in both the cytospin and 

smear preparation methods. Whereas the lipid band features were still present after fixation 

with PFA. Fixation with PFA was decided to be the preferred method of fixation of the two 

methods tested as it retains more information from the lipid content of the cells. Both the 

methanol and the PFA maintained the band features of the amide I and II. As such if the 

interest of a study or clinical evaluation is in the amide bands methanol fixation has the 

advantage of being faster than PFA. Otherwise, PFA would be a more suitable fixative for 

FTIR spectroscopy studies as it retains more of the cell’s biochemical features. This is 

especially important if using a glass substrate where information of nucleic acids and 

carbohydrates is already lost. Research by Meade et al compared live cells to three fixative 

methods for Raman spectroscopy (Meade et al., 2010), a technique like FITR spectroscopy 

that measures the biochemical content.  The study looked at PFA and methanol as fixatives 

as well as Carnoy’s fixative (60% absolute ethanol, 30% chloroform, 10% glacial acetic acid). 

They found that all three fixative agents affected the vibrational modes of lipid, protein, 

nucleic acid and carbohydrate moieties compared to live cells. But found that PFA produced 

the spectrum most like that of live cells, agreeing with my work that PFA would be the more 

appropriate fixative for vibrational spectroscopy of cells. They also found that methanol and 

Carnoy’s fixative also altered the nucleic acid spectral contributions significantly even though 
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they were fixatives recommended for nucleic acid study. This is further evidence for caution 

to be taken if methanol is to be used as a fixative in vibrational spectroscopic analysis.  

This research utilised lung cancer cell lines to demonstrate the feasibility of the sample 

preparation methods to collect FTIR spectra of NSCLC samples prepared on a glass coverslip 

substrate. The sample preparation methodology proposed in this chapter is to create a 

method to allow measurement of cytology samples with FTIR microspectroscopy that will 

cause minimal disruption to clinical workflows while also being accessible. For the 

translation of this methodology cytological samples would have to be obtained from the 

lungs. Currently there are a few techniques of lung cancer cytology, but they can often 

produce a false negative diagnosis due to low cell number and difficulty distinguishing the 

morphology. This is where FTIR microspectroscopy could be used to help identify lung cancer 

cells when the morphology is not sufficient as it provides biochemical information while 

allowing staining for morphological analysis. While cytological techniques are currently less 

accurate for lung cancer diagnosis than tissue biopsies, they are however less invasive and 

carry less risk to a patient. Techniques used for cytological evaluation of lung cancer include 

induced sputum, thoracentesis, bronchioalveolar lavage, bronchial brushing, bronchial 

washing and fine needle aspiration. Wang et al previously demonstrated the use of FTIR 

spectroscopy for the analysis of lung cancer cytology from pleural fluid. That study 

demonstrated that there could be a difference found in the fingerprint region of the spectra 

from normal lung cells and the spectra from lung cancer cells. Despite this research showing 

that FTIR spectroscopy could be a useful diagnostic tool for lung cancer cytology over 25 

years ago and a growing body of research, there has been little translation of FTIR 

spectroscopy from research settings to clinical diagnostics. One of the reasons for this is that 

much of the research uses methods that could be disruptive to current diagnostic workflows. 
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The methodology proposed in this chapter aims to address this problem by utilising sample 

preparation methods and materials that are used across pathology labs already to prepare 

samples for diagnosis.  

 

Conclusions  
 

The preparation of cytology samples on glass coverslips using a cytospin and PFA fixation is 

what I would advocate for FTIR spectroscopy analysis in a clinical laboratory setting. Ideally 

this sample preparation could form part of a methodology for the use of FTIR spectroscopy 

for cytological cancer diagnosis. Such a system would first identify abnormal samples, 

separating them from samples deemed non-pathological based on the biochemical 

properties of the cells. The preparation method proposed would allow for many cells to be 

measured easily and quickly while maintaining the integrity of the protein and lipid cellular 

content. The glass substrates would make use of FTIR spectroscopy on large scales for 

diagnostics affordable and accessible. Additionally, the use of glass with the proposed 

sample preparation would allow further testing with the standard cytological staining and 

immunohistochemistry tests. The FTIR spectroscopy experiments carried out in the rest of 

this thesis use the cytospin and PFA preparation proposed in this chapter. 
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Chapter 4: FTIR Spectroscopy Combined with Machine Learning 

classification of lung cancer cells from non-malignant lung cells on a 

glass substrate.  
 

Introduction 

 

For FTIR spectroscopy to become commonplace in clinical diagnosis of cancer it must be 

affordable and minimally disruptive to current practice. The previous chapter outlined a 

sample preparation method to use FTIR spectroscopy with glass coverslips for the analysis of 

lung cancer cells. As discussed in the previous chapter, the cytospin was selected because it 

produced reproducible samples with good cellularity that allowed for quick analysis of many 

cells while maintaining good spectral quality. Fixation with 4% PFA maintained the spectral 

information because it retained protein and lipid content, as such, was used to prepare 

samples for this research. The ideal use of FTIR spectroscopy in a clinical setting would be in 

an automated system which would allow for efficient objective diagnosis with need for little 

hands-on time for the pathologists. The system would need to be able to separate lung 

cancer from non-cancerous samples. The time saved by triaging the samples would help to 

reduce the large caseload pathologists have to lead to more timely diagnosis and treatment. 

This would require the use of machine learning classifiers to classify cancerous samples from 

non-cancerous samples using the information on the biochemical content of the cells 

contained in the spectra. 

As shown in chapter 3 using a glass coverslip substrate, FTIR spectroscopy can be used to 

distinguish two different types of NSCLC cells. The next step was to investigate if lung cancer 
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cells can be classified from non-malignant lung cells with FTIR microspectroscopy. To see 

how well the cancer cells could be classified from non-malignant cells, spectra collected from 

two lung cancer lines (A549, CALU-1) and a non-malignant lung line (NL20) were fed into a 

random forest (RF) classification model, a form of machine learning. Machine learning is a 

subset of artificial intelligence (AI) that uses algorithms to build a model based upon sample 

data commonly referred to as training data (Kotsiantis et al., 2014) . These models can be used 

to make predictions or decisions without a programme explicitly instructing the decision. 

Machine learning in recent years has been utilised with spectroscopy data including FTIR 

spectroscopy to classify and categorise samples based upon trained classification models. 

Machine learning models are valuable tools that could potentially be used within an 

automated FTIR spectroscopy system for the diagnosis of lung cancer. Once trained a model 

could decide on an unknown sample and help to classify it as a normal sample or an 

abnormal cancerous sample. 

If reliable classification of cancerous lung cells from lung cells from a non-cancerous tissue 

can be achieved using spectral data collected from samples prepared on glass substrates, it 

will be a step closer to demonstrating how such a methodology could be utilised to examine 

cytology samples.  

 

Aims 

 

1. To investigate if using FTIR spectroscopy lung cancer cells can be classified from non-

malignant lung cells using a glass coverslip substrate with the proposed sample 

preparation method. 
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2. To investigate if using FTIR spectroscopy two different NSCLC cells can be classified 

from each other with a RF classifier using a glass coverslip substrate with the 

proposed sample preparation method. 

 

Methods 

 

Cell culture 

Three cell line were used for the experiments in this chapter, NL20, A549 and CALU-1. NL20 

is a non-malignant lung cell line derived from non-cancerous tissue while A549 and CALU-1 

are NSCLC cell lines. Refer to the cell culture section in the chapter 2 for a detailed 

methodology of the culture conditions.  

Sample preparation 

 

Cells were collected from the flasks by trypsinisation and centrifugation. Cells were 

resuspended in 0.9% normal saline and brought to a concentration of 1 million cells per 1 ml. 

Cells were applied to the glass coverslips by cytospin ran at 900 rpm for 1 minute using 20 µl 

of the cell solution. The samples were immediately fixed using 4% paraformaldehyde (PFA) 

and incubated for 15 minutes. After fixation excess PFA was washed off with one wash of 

0.9% normal saline and three washes with deionised water. Samples of the three cell lines 

were made in three different experiments and four samples coverslips of each cell line was 

produced per experiment. 
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FTIR spectroscopy 

 

The samples were measured using transmission FTIR spectroscopy on a Bruker Vertex 

spectrometer with a synchrotron light source attached to a Hyperion 3000 microscope. 

Measurements were taken from the centre of each cell. An aperture size of 15x15 µm was 

used and 256 co-added scans of each cell were taken. The background was measured on a 

clear section of the glass slip without any cells. A background measurement was taken 

before each cell measurement. 150 cells of each cell line were measured with 50 cells from 

each of the experiments measured from cells across the four samples from each experiment. 

Each spectrum recorded was from a different individual cell. 

 

Pre-processing and data analysis 

 

The first step of pre-processing the spectra was to remove the portion of spectra obscured 

by the glass <1350 cm-1. Spectra were cropped to the regions 3500-1350 cm-1, 3500-2700 

cm-1 and 1800-1350 cm-1. Noise was removed from the spectra with PCA denoising set to 10 

principal components and a Savitzky-Golay filter with a window size of 5 and a polynomial of 

2. Extended multiplicative signal correction (EMSC) was applied to the spectra for baseline 

correction and normalisation. EMSC also aids in the removal of scattering effects from the 

spectra, inference from variation in sample thickness, water vapour and carbon dioxide. The 

150 spectra recorded of each cell line were averaged to produce the average spectra. The 

second derivative spectra were generated by applying a second derivative to the spectra in 
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the Savitzky-Golay processor. The PCA denoising was increased to 12 principal components 

and window size of the Savitzky-Golay filter increased to 17 to reduce the noise introduced 

from the second derivative. All the pre-processing steps were performed using the software, 

Quasar.  

Classification was performed using a random forest classifier. The spectra were split 

randomly 70:30 into a training set and testing set. The RF classifier contained 200 decision 

trees, the square root of the number of attributes was set for the number of attributes split 

at each node and no pruning was applied to the tree size. The results of the classification 

were assessed by the classification accuracy, F1, precision and recall and through the 

confusion matrices. The data analysis was performed using Quasar software.  

Results 

 

As demonstrated in the previous chapters and previous studies the spectra produced from 

using a glass coverslip substrate produces useable spectral data up to 1350 cm-1 which 

includes peaks providing information on the lipids and proteins of the measured cells. Figure 

18 shows the average spectra of A549, CALU-1 and NL20 (3500-1350 cm-1). From inspection 

of the average spectra there were differences in the absorbance, peak shape and position. 

Both A549 and CALU-1 spectra had a higher absorbance in the amide I and amide II peaks 

than the NL20 (Figure 20). The position of the amide I peak of A549 and CALU-1 were shifted 

to 1553 cm-1 whereas the amide I peak of NL20 was at 1551 cm-1. The A549 and CALU-1 

spectra also had a higher absorbance in the peaks at 2922 cm-1 and 2852 cm-1 these peaks 

are from the CH2 symmetrical and asymmetrical stretching modes mostly from CH2 groups in 

the lipid fatty acid chains (Figure 19). The 2922 cm-1 peak was shifted compared to the peak 
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for NL20 where it was positioned at 2925 cm-1. The differences in these peaks showed that 

there are biochemical differences in the lung cancer derived cells (A549 and CALU-1) and 

NL20 derived from normal lung tissue.  

The second derivative spectra in Figures 21-23 resolved further differences between the cell 

lines. NL20 had a lower absorbance at the peak positions of 2865 cm-1, 2903 cm-1 and 1674 

cm-1 and a higher absorbance at 2987 cm-1 and 2889 cm-1 than A549 and CALU-1. These 

differences in intensity infer biochemical differences in the lipids and proteins of the cancer 

cells from the NL20 cells.  

 

Figure 18 Average spectra from 150 cells of each cell line A549, CALU-1 and NL20 in the 

region 3500-1350 cm-1. Each of the spectra contributing to the average spectra was from a 

different individual cell.  
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Figure 19 Average spectra from 150 cells of each cell line A549, CALU-1 and NL20 in the 

region 3500-2700 cm-1. Each of the spectra contributing to the average spectra was from a 

different individual cell. This region of the spectra contains the amide A band, CH3 

symmetrical stretching and CH2 symmetrical and asymmetrical stretching bands.  
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Figure 20 Average spectra from 150 cells of A549, CALU-1 and NL20 in the region 1800-1350 

cm-1. 
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Figure 21 Average 2nd derivative from 150 spectra of A549, CALU-1 and NL20 in the region 

3500-1350 cm-1. 
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Figure 22 Average 2nd derivative spectra from 150 spectra of A549, CALU-1 and NL20 in the 

region 3500-2700 cm-1. 
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Figure 23 Average 2nd derivative spectra from 150 spectra of A549, CALU-1 and NL20 in the 

region 1800-1350 cm-1. 

 

To assess if FTIR spectroscopy using a glass substrate with could be utilised as a diagnostic 

tool for lung cancer, a RF classifier was used to test if the spectral data could be used to 

classify the lung cancer cells from NL20. Table 5 below shows the results of the RF 

classification of the cells using the spectra performed of all three cell lines together. Tables 

6-8 show the classification of cells in a pairwise manner. For all groups the 2nd derivative 

spectra produced a better classification than the normal spectra improving on accuracy, 

precision and recall. The 3500-2700 cm-1 region provided a better classification than the 

1800-1350 cm-1 region for the three cell lines together and the pairs apart from the pair of 

A549 and NL20, where the two regions performed equally. Using the larger region 3500-

1350 cm-1 improved the classification over the smaller spectral regions for the classification 
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of all three cells together and for the A549 and NL20 pair but not the other two pairs for the 

classification of CALU-1 from A549 or NL20. Overall classification using the region 3500-2700 

cm-1 performed the most consistently of the three regions tested.  

Spectral region 

(cm-1) 

AUC Classification 

accuracy 

F1 Precision Recall 

3500-1350  0.859 0.718 0.714 0.723 0.718 

3500-1350 2nd 

derivative 

0.960 0.885 0.884 0.888 0.885 

3500-2700 0.899 0.724 0.721 0.724 0.724 

3500-2700 2nd 

derivative 

0.955 0.851 0.852 0.856 0.851 

1800-1350 0.839 0.684 0.680 0.684 0.684 

1800-1350 2nd 

derivative 

0.888 0.718 0.716 0.718 0.718 

Table 5 Random forest classification results of A549, CALU-1 and NL20 spectra. 
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Spectral region 

(cm-1) 

AUC Classification 

accuracy 

F1 Precision Recall 

3500-1350  0.914 0.825 0.823 0.827 0.825 

3500-1350 2nd 

derivative 

0.994 0.933 0.933 0.941 0.933 

3500-2700 0.923 0.817 0.814 0.823 0.817 

3500-2700 2nd 

derivative 

0.969 0.917 0.916 0.923 0.917 

1800-1350 0.918 0.842 0.841 0.842 0.842 

1800-1350 2nd 

derivative 

0.970 0.917 0.917 0.917 0.917 

Table 6 Random forest classification results of A549 and NL20 spectra. 
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Spectral region 

(cm-1) 

AUC Classification 

accuracy 

F1 Precision Recall 

3500-1350  0.909 0.846 0.845 0.850 0.846 

3500-1350 2nd 

derivative 

0.972 0.942 0.942 0.943 0.942 

3500-2700 0.995 0.952 0.952 0.953 0.952 

3500-2700 2nd 

derivative 

0.994 0.962 0.962 0.962 0.962 

1800-1350 0.886 0.827 0.827 0.828 0.827 

1800-1350 2nd 

derivative 

0.938 0.817 0.817 0.817 0.817 

Table 7 Random forest classification results of CALU-1 and NL20 spectra. 
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Spectral region 

(cm-1) 

AUC Classification 

accuracy 

F1 Precision Recall 

3500-1350  0.792 0.707 0.704 0.707 0.707 

3500-1350 2nd 

derivative 

0.962 0.894 0.894 0.896 0.894 

3500-2700 0.844 0.732 0.730 0.731 0.732 

3500-2700 2nd 

derivative 

0.962 0.902 0.902 0.904 0.902 

1800-1350 0.723 0.618 0.615 0.615 0.618 

1800-1350 2nd 

derivative 

0.832 0.748 0.745 0.750 0.748 

Table 8 Random forest classification results of A549 and CALU-1 spectra. 

 

Below Figure 24 shows the confusion matrices for the RF classification of the three cell lines 

together (Table 5) using the 2nd derivative spectra. The confusion matrix for classification 

using the region 3500-1350 cm-1, shows that the classifier performed well for the 

classification of A549 and NL20 classifying ≥90% of the both cells in the test set correctly. 

Where the classifier struggled using this region was in the classification of CALU-1 in which it 

misclassified 19.6% of CALU-1 as A549 and 3.9% as NL20. The classification using the region 

3500-2700 cm-1 performed worse than using 3500-1350 m-1 for the classification of A549 

and NL20 but still performed well correctly classifying 87.7% and 86% of A549 and NL20 cells 

respectively. However, the region 3500-2700 cm-1 performed best for the classification of 
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CALU-1 correctly classifying 82.4% of the cells with no misclassifications as NL20 and 17.6% 

misclassified as A549. The region 1800-1350 cm-1 performed worse than the other regions 

for the classification of all three cells. The classification of CALU-1 was also the worst 

performing as with the other regions, only classifying 64.7% of CALU-1 correctly. The 

confusion matrices demonstrate that where the classifier was producing the most 

misclassifications across the three regions was wrongly classifying CALU-1 as A549.  

 

Figure 24 Confusion matrices of RF classification of A549, CALU-1 and NL20 using 2nd 

derivative FTIR spectra. Left: spectral region 3500-1350 cm-1, middle: spectral region 3500-

2700 cm-1, right: spectral region 1800-1350 cm-1. 

 

Figure 25 below, shows the confusion matrices for the classification of A549 and NL20 using 

the three regions of the 2nd derivative spectra. All three selected regions of the spectra 

provided good classifications of A549 and NL20. Using the regions 3500-1350 cm-1 and 3500-

2700 cm-1 classified A549 cells with higher accuracy than using 1800-1350 cm-1. However, 

1800-1350 cm-1 classified NL20 with more accuracy. Figure 24 shows the confusion matrices 

for the classification of the pair CALU-1 and NL20. As was also demonstrated with the 

classification of all three cells (Figure 24), the region 3500-2700 cm-1 produced the most 

accurate classification of CALU-1 and NL20 from and the worst performance was when using 

the region 1800-1350 cm-1. Using 3500-1350 cm-1 the classification of CALU-1 performed as 
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well as with 3500-2700 cm-1 but misclassified more NL20 cells. Figure 25 shows the confusion 

matrices of the classification for the pair A549 and CALU-1. Again, the classifier struggled to 

more to classify CALU-1 than A549 using all three regions.  

 

 

Figure 25 Confusion matrices of RF classification of A549 and NL20 using 2nd derivative FTIR 

spectra. Left: spectral region 3500-1350 cm-1, middle: spectral region 3500-2700 cm-1, right: 

spectral region 1800-1350 cm-1. 

 

 

 

Figure 26 Confusion matrices of RF classification of CALU-1 and NL20 using 2nd derivative 

FTIR spectra. Left: spectral region 3500-1350 cm-1, middle: spectral region 3500-2700 cm-1, 

right: spectral region 1800-1350 cm-1. 
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Figure 27 Confusion matrices of RF classification of A549 and CALU-1 using 2nd derivative 

FTIR spectra. Left: spectral region 3500-1350 cm-1, middle: spectral region 3500-2700 cm-1, 

right: spectral region 1800-1350 cm-1. 

 

Discussion 
 

For FTIR spectroscopy to make the transition from research laboratories to clinical pathology 

laboratories for cancer diagnostics the substrates used must be made more cost-effective. 

The current commonly used substrates such as calcium fluoride and barium fluoride slides 

cost up to £50-60 per single slide which would make the use of FTIR spectroscopy for 

diagnostics prohibitively expensive. Alternative substrates must be investigated and 

assessed for FTIR spectroscopy to make the transition. Glass could be an alternative 

substrate that would reduce the cost of using FTIR spectroscopy while also being a 

commonplace material available in every pathology laboratory that pathologists and 

biomedical scientists are accustomed to working with. While there would be a compromise 

with using glass from the loss of some spectral information, there should be enough 

information retained on the lipids and proteins of the cells in the samples to classify cancer 

cells from normal cells.  

The mean spectra showed a higher absorbance in the bands at 2920-2850 cm-1 in the cancer 

cells than the normal tissue derived NL20. The peaks at 2920 cm-1 and 2850 cm-1 
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corresponds to the stretching of CH2  groups in the methylene chains of cell membrane 

lipids. The peak at 2870 cm-1 corresponds to the stretching of CH3 groups mostly within lipid 

fatty acid chains. A possible reason for the increase in intensity of the lipid related bands in 

the cancer cells spectra could be due to an increase in synthesis of lipids with long aliphatic 

chains. In cancer cells, there is a change in lipid metabolism to increased de-novo lipogenesis 

(DNL) of lipids while normal cells receive most of their lipids from circulating lipids (Merino 

Salvador et al., 2017). Many cancers adopt an alternative metabolic pathway for fatty acid 

synthesis. Cancer cells will rely on glutamate or acetate as substrates for fatty acid synthesis. 

One of the main pathways for fatty acid synthesis for cancer is through isocitrate 

dehydrogenase-1 dependent pathway in which the reductive carboxylation of glutamine 

derived α-ketoglutarate is used to synthesise acetyl-CoA (Beloribi-Djefaflia S, Vasseur S, 

2016). The increased DNL is often used in cancer to fuel membrane biogenesis which 

contributes to cell proliferation and maintenance of a malignant phenotype. 

Polyunsaturated fatty acid synthesis is limited by DNL in mammalian cells which therefore 

results in more saturated or mono-unsaturated lipids in cancer cells. The saturated lipids 

pack more densely than unsaturated lipids thus changing the membrane characteristics of 

cancer cells. There is evidence of NSCLC differentially expressing 91 phospholipid species 

than in normal tissues (Marien et al., 2015).  FTIR spectroscopy detects overall biochemical 

differences in the cells and these large-scale changes in lipid content will result in the 

spectral differences seen in the cancer cells. 

While using glass coverslips cuts off the spectra at 1350 cm-1 which removes information 

from nucleic acids and carbohydrates in the fingerprint region, the amide I and II bands can 

still be viewed unlike when thicker glass slides. The amide I and II bands provide information 

on the protein content of the cells. Both cancer cells had a higher absorbance in the amide I 
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and II bands than NL20. The higher absorbance infers the cancer cells had a higher protein 

content than NL20. The amide I region is a sensitive region arising from stretching vibrations 

in C=O. Amide II arises from stretching vibrations in the C-N bond and bending vibration of 

the N-H bond in amide bond. Proteins are the main effector machinery in cells and there is a 

large change in what proteins are produced, the amounts of proteins and the structure of 

proteins in cancer cells compared to healthy cells resulting in spectral changes in IR spectra.  

The metrics from the RF classification demonstrate that is possible to classify 

adenocarcinoma and SqCC lung cancer cells from non-malignant cells using FTIR 

spectroscopy data with good classification accuracy, precision, and recall. Using the 2nd 

derivative spectra further boosted the performance of the classifier. Spectral differences are 

more pronounced in the 2nd derivative spectra which is likely the cause of the stronger 

classification using 2nd derivative spectra. These spectral differences reflect the biochemical 

differences in the proteins and lipids of the cells. Also demonstrated was that classification 

of the two types of NSLC cells can be achieved. The ability to classify different types of 

cancer further enhances the utility FTIR spectroscopy would have in cancer diagnostics. FTIR 

spectroscopy could not only be used to triage normal samples from abnormal samples but 

also help to inform the decision making of the pathologist when typing a cancer. This would 

be particularly useful in cases where the morphology from a biopsy is unclear causing 

difficulty in coming to a diagnosis.  

As was shown in the confusion matrices (Figure 24) the classifier performed well in the 

classification of the cancerous cells and the non-malignant NL20 from each other. Using the 

3500-1350 cm-1 region which performed best for classifying all three cells together less than 

10% of the cancer cells were misclassified as NL20 and only 10% of NL20 were misclassified 
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as cancer cells. This demonstrated that the methodology performs well in separating 

cancerous samples from non-cancerous samples. Where the classifier struggled was 

classifying the different cancerous cells from each other when classifying the three cell lines 

together. However, when the classification of the cancer cells was done as a pair there was a 

more accurate classification. This suggests that the methodology should first be used to 

separate cancer from non-cancer and then in a separate step could be used to aid in the 

typing of NSLC.  

A549 and CALU-1 are representative of two different types of NSCLC, adenocarcinoma and 

SqCC respectively. With advances in personalised therapy for lung cancer knowing the type 

of lung cancer has become more important (Wang, Herbst and Boshoff, 2021). In the past 

these two cancer types have been largely treated similarly but now with more 

understanding of the differing biological signatures (Relli et al., 2019) there are clear clinical 

implications in terms of treatment and prognosis (Kawase et al., 2012). Therefore, the typing 

of NSCLC is becoming a more important diagnostic step because the personalised treatment 

plan will differ due to distinct gene expression and signalling pathways (Tian, 2017). For 

example, there adenocarcinoma has been seen to have better survival rates for the use of 

gemcitabine-platinum and taxane-platinum regimens together (Weiss et al., 2007). Whereas 

SqCC treatment could benefit more from cisplatin plus etoposide treatment. These factors 

further demonstrate how a FTIR spectroscopy platform that can classify types of NSLC 

cancers as demonstrated by the classification of A549 and CALU-1 could be of benefit. 

Adenocarcinoma and SqCC combined account for 85% of lung cancer cases. A majority of 

typing of lung cancers would be between these two types. If FTIR spectroscopy could 

quicken the typing stage, the diagnostic process would be improved for both clinician and 

patients. 
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The difference in classification performance from using the different spectral regions 

demonstrated how when using FTIR spectra for the classification of cells it is important to 

consider which regions of the spectra are being used. Which regions of the spectra are being 

used for the classification should influence the sample preparation. The region 3500-2700 

cm-1 provided the best overall performance. The 4% PFA fixative retains the lipids in the cells 

unlike the methanol fixation in chapter 3. If methanol or other alcohol-based fixatives are 

used the lipid content of the cells can be lost. The sample preparation methodology used 

allowed for the use of the bands from the lipid content to produce a good classification. The 

cytospin as mentioned in chapter 3, again produced good cellularity to allow for efficient 

measurements of cells and consistent sample quality.  

Ultimately the ideal use of FTIR spectroscopy for the clinical diagnosis of cancer would be in 

an automated system that can separate cancer from non-cancer in a robust manner with a 

sensitivity and specificity that is superior to current diagnostic methods. It was 

demonstrated that the whole fingerprint region is not necessary for a robust classification. 

The smaller regions of the spectra used can provide a robust classification. The lipid and 

amide A region of the spectra provided the best classification overall across classification of 

different pairs and the group of cell lines. If lung cancer can be classified from non-cancer 

only using the 3500-2700 cm-1 region of the spectra, standard 1 mm glass slides could be a 

viable substrate for diagnostic purposes because the spectra above 2000 cm-1 is not 

obscured by the thicker glass (Rutter et al., 2018). Using glass slides would reduce the 

disruption caused by implementing FTIR spectroscopy diagnostics into current workflows in 

pathology laboratories because glass slides are currently used for histological diagnostic 

techniques.  While the use of the lipid bands for classification causes no problems for 

unstained samples it would not be applicable to stained samples as staining removes lipid 
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content from cells due to the alcohols in the dyes. Cells would have to be measured prior to 

any staining for the lipid content to be used for classification. However, if coverslips are used 

as a substrate, stained samples could be classified using the amide I and II bands. While the 

amide region provided a worse classification than the lipid bands, it still provided a good 

classification when A549 or CALU-1 was classified from NL20 as pairs. Furthermore, after 

spectroscopy measurements are taken the coverslip can be mounted to a glass slide for 

easier handling if staining of the sample is required to allowing the methodology to be easily 

fit into current diagnostic methodology. 

 

Conclusions 
 

NSCLC can be classified from non-malignant lung cells using a RF classifier with FTIR 

spectroscopy data. This was possible using glass coverslips as a substrate. The spectral 

region 3500-2700 cm-1 provided a better overall classification of A549, CALU-1 and NL20 

from each other than the region 1800-1350 cm-1. Use of the 2nd derivative spectra further 

improved the performance of the classifier. Using the 2nd derivative of both regions of 3500-

2700 cm-1 and 1800-1350 cm-1 gave the best classification of all cell lines together and the 

A549 and NL20 as a pair. For classification of the pairs CALU-1 and NL20, and A549 and Calu-

1 the 2nd derivative of the region 3500-2700 cm-1 gave the best classification. This research 

demonstrated that the sample preparation methodology proposed in chapter 3 using a 

cytospin and PFA fixation with a glass coverslip substrate is applicable for classification tasks 

of lung cancer cells using FTIR spectroscopy.  
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Chapter 5: Classification of breast cancer cells from non-cancer breast 

cells on a glass substrate using FTIR microspectroscopy with machine 

learning. 
 

Introduction 
 

In the previous chapters, I have investigated the use of FTIR spectroscopy with glass 

substrates to classify lung cancer cells from non-malignant lung cells using the sample 

preparation methodology outlined in chapter 3. This chapter will continue this research by 

investigating if the same methodology of FTIR microspectroscopy with a RF classifier can 

classify breast cancer cells and non-cancerous breast cells using a benchtop spectrometer. It 

is important to assess if the methodology works for other solid cancers to fully assess its 

viability. This work was performed using a Thermo Nicolet iN10 benchtop spectrometer with 

a globar light source. It was important to show how the methods perform using a benchtop 

spectrometer as this is what will be available to most laboratories. Breast cancer was chosen 

to be investigated as it is the most common cancer in the UK accounting for 15% of recorded 

cancer cases (Breast cancer statistics, Cancer Research UK, 2017). Being able to reduce the 

time taken for diagnosis of breast cancer would greatly help relieve pressure on pathology 

laboratories and improve patient outcomes through quicker diagnoses.  

Current diagnosis of breast cancers relies upon the use of imaging modalities and 

histological imaging of biopsy samples (Cardoso et al., 2019). The presence of breast cancers is 

initially detected using imaging modalities, mainly mammography. A mammography is the 

application of a low dose of x-rays to image the position and size of a cancer which can give 
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indication to stage and invasiveness of the tumour. When a potential tumour is found, a 

biopsy sample is taken. The biopsy sample is prepared for histological diagnosis by fixation, 

cutting and staining. Histological methods of diagnosis require a trained pathologist to assess 

if the biopsy is indicative of cancer by comparing the cell morphology and tissue 

differentiation to normal cells and tissue. This method of diagnosis can be subjective and 

often require multiple pathologists if a case is difficult to distinguish. The use of FTIR 

spectroscopy would help to provide on objective measurement of whether the sample is 

cancerous or not and rely less on subjective assessments (Su and Lee, 2020). This proposed 

system would use FTIR Spectroscopy on the biopsy sample after mammography and before 

histological analysis. Being able to separate what is cancer and not cancer with FTIR 

spectroscopy would reduce the number of histological investigations on needed saving time 

for pathologists and allow for more focus upon the cancerous samples and get to a diagnosis 

quicker. Once the presence of the cancer has been confirmed the next steps of diagnosis can 

be carried out including staging and determining the type of breast cancer.  

In the UK there is a breast cancer screening offered to women between the ages of 50 and 

70 years of age using mammography to screen for the presence of cancer (Breast screening 

for Breast cancer, Cancer Research UK, 2018). Screening helps to identify breast cancer in 

the early stages which is vital for providing a patient the best treatment and chances of 

survival. However, with screening there are many cases of false positives and overdiagnosis 

where non-cancerous and benign legions might be identified as cancer (Marmot et al., 

2012). FTIR spectroscopy could be used to filter out these cases where screening has caught 

non-cancerous or benign legions that do not require any further action at the current time. It 

was important, that the proposed methodology was tested if it could classify a non-invasive 
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cancer from an invasive cancer because it would allow pathologists to further allocate time 

and resources to the most urgent cases where the cancer has become invasive.  

Any newly proposed diagnostic methods for breast cancer should work in conjunction with 

current methods to identify the key markers on the cancer because they are critical for 

deciding the best treatment plan. There are three main targets in the molecular testing of 

breast cancer, the oestrogen receptor alpha (ER), the progesterone receptor (PR) and 

epidermal growth factor 2 (ERBB2/HER2) (Hammond et al., 2010). Approximately 70% of 

invasive breast cancers express ER. Expression of ERα and PR is closely linked, and PR 

expression is a marker of ERα signalling. HER2 is overexpressed in in approximately 20% of 

invasive breast cancers. Patients with HER2+ cancer can benefit from immunotherapy such 

as trastuzumab and pertuzumab and treatment from small molecule tyrosine kinase 

inhibitors (Maximiano et al., 2016). Approximately 15% of breast cancers are triple negative 

meaning they do not express any three of these molecular markers. Triple negative breast 

cancer patients have a high rate of relapse in the first 3 to 5 years post treatment. These key 

markers are identified through immunohistochemistry. FTIR spectroscopy used with glass 

substrates can be fit into current workflows of immunohistology for marker identification. 

The label free and non-destructive nature maintains sample integrity for further analysis 

such as immunohistochemistry and the glass substrate allow microscopy to be performed.  

The staging of breast cancers is an important step with the cancer being more easily treated 

in early stages, demonstrated by only 25% of patients surviving more than 5 years after 

diagnosis of stage 4 cancer while 98% of patients survive more than 5 years after diagnosis 

of stage 1 cancer (Breast cancer statistics, Cancer Research UK, 2017). The stage of the 

cancer is vital for determining the appropriate treatment plan. Therefore, it was important 
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to test if the proposed methodology using FTIR spectroscopy can aid in the staging of breast 

cancers by being able to classify between an invasive and a non-invasive breast cancer.  

In this study two cancer breast cell lines and a normal breast cell line prepared on glass 

substrates were measured with FTIR spectroscopy. A RF classifier was used to test if the cells 

could be classified from each other using the FTIR spectra. The three cell lines represent 

different stages of breast cancer. MCF10A is derived from non-cancerous breast epithelium, 

MCF7 is a non-invasive ductal carcinoma line and BT549 is an invasive ductal carcinoma line. 

After demonstrating that this methodology can be used for classifying lung cancer from non-

malignant lung cells and different types of NSCLC, it was important to test if the 

methodology can be used with other types of solid tumours and if it can be used to aid in 

distinguishing non-invasive cancers from invasive cancers.    

 

Aims 

1. Assess how well breast cancer cells can be classified from non-cancer derived breast 

cells on a glass substrate using benchtop FTIR spectroscopy and a RF classifier. 

2. Investigate if non-invasive breast cancer cells can be classified from invasive breast 

cancer cells on a glass substrate using benchtop FTIR spectroscopy and a RF classifier. 

3. Investigate which region of the spectra provides the best classification of the cells. 
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Methods 
 

Cells 

 

The breast cancer cell lines BT549 and MCF7 and the normal breast cell line MCF10A were 

used for the experiment. BT549 is derived from an invasive ductal carcinoma. MCF7 is 

derived from a metastatic breast adenocarcinoma. MCF10A is derived from non-cancerous 

breast epithelial cells. For a detailed methodology on the culture of the cells refer to the 

relevant section in chapter 2.  

Sample preparation 

 

Cells were collected from the flasks and resuspended in 0.9% normal saline and brought to a 

concentration of 1x106 per 1 ml. Cells were applied to the glass coverslips by cytospin ran at 

900 rpm for 1 minute using 20 µl of the cell solution. The samples were immediately fixed 

using 4% PFA and incubated for 15 minutes. After fixation, excess PFA was washed off with 

one wash of 0.9% normal saline and three washes with deionised water. Samples were 

prepared in three individual experiments with four samples of each cell line being produced 

each experiment. The cells from all three cell lines were collected after two weeks of culture.  

 

 

FTIR spectroscopy 
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The samples were measured using transmission FTIR spectroscopy on a Thermo Fisher 

Nicolet iN10(mx) spectrometer with a globar light source. An aperture size of 15 x 15 µm was 

used and 256 co-added scans were taken per spectrum. The background was taken of clear 

section of the glass coverslip without any cells before each cell measurement. 

Measurements were taken from the centre of each cell. 100 spectra from each cell line were 

recorded with each spectrum being from a different individual cell. The measurements were 

taken equally across the three experiments and across the replicates from each experiment. 

 

Pre-processing and data analysis 

 

The spectra were pre-processed by first cropping the spectra removing the region below 

1350 cm-1 which was obscured by the glass. The spectra were cropped to three regions for 

analysis 3500-1350 cm-1, 3500-2700 cm-1 and 1800-1350 cm-1. PCA denoising using 10 

components and a Savizky-Golay filter with a window size of 5 and polynomial of 2 was used 

to reduce noise in the spectra. EMSC using the average spectra of the cells as a reference 

was used to normalise the spectra and correct the baseline for any defects caused by 

variation in sample thicknes. Average spectra were produced from 100 spectra of individual 

cells from each cell line.  

2nd derivative spectra were produced by adding a 2nd derivative with the Savitzky-Golay 

filter. The PCA denoising was changed to 12 components and the window size of the 

Savitzky-Golay filter changed to 21 to remove noise added by the 2nd derivative. 
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The spectra were split 70:30 into a training and testing set respectively. A RF classifier was 

used to test if the three cell lines could be classified to assess how well invasive breast 

cancer, non-invasive breast cancer and non-cancerous breast cells could be classified from 

each other using FTIR spectroscopy data measured using a glass coverslip substrate. 
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Results 

 

The aim of this investigation was to test if breast cancer cells can be classified from benign 

breast cells and non-invasive cancer cells from invasive cancer cells using FTIR spectroscopy 

with a glass substrate. Visual inspection of the average spectra shown in Figures 28-30 of the 

three cell lines showed that there are biochemical differences between the cells. There was 

a difference between the three cell lines in the absorbance and shape of lipid bands and 

amide A (3500-2700 cm-1) and the amide I and II bands (1800-1350 cm-1). The invasive BT549 

cells had more prominent peaks in the lipid bands which infers a greater amount of lipids in 

the cells compared to MCF7 and MCF10A. All three cell lines had a different absorbance at 

the amide I peak with BT549 having the lowest absorption and MCF7 having the highest. The 

shape of the amide II band for BT549 spectrum had a different shape to the other two cell 

lines spectra with the BT549 having a sharper point at the peak and having a less 

pronounced shoulder at 1521 cm-1. The amide II band of MCF7 was shifted two 

wavenumbers from that of BT549 and MCF10A. The BT549 spectrum the highest absorbance 

in amide II, followed by MCF7 and MCF10A had the lowest absorbance. The absorbance of 

BT549 is lower in the amide A band than MCF7 and MCF10A and the peak is shifted four 

wavenumbers. These differences in the amide peaks infer differences across the three cells 

in their protein content.  
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Figure 28 Average FTIR spectra from 100 spectra of BT549, MCF7 and MCF10A in the region 

3500-1350 cm-1. 
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Figure 29 Average FTIR spectra from 100 spectra of BT549, MCF7 and MCF10A in the region 

3500-2700 cm-1. 
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Figure 30 Average FTIR spectra from 100 spectra of BT549, MCF7 and MCF10A in the region 

1800-1350 cm-1. 

 

A RF classifier was chosen to test the classification because RF works well with data that has 

many features and multiple classes such as this spectral dataset where each wavenumber is 

its own feature. Table 9 shows the performance of the RF classification. Classifications were 

done using the three d spectral regions to test if there is an optimum region of the spectrum 

to use for classifications. The regions used were the whole spectrum (3500-1350 cm-1), the 

amide I and II peaks together (1800-1350 cm-1) and the lipid peaks and amide A together 

(3500-2700 cm-1). The region3500-1350 cm-1 and 3500-2700 cm-1 both performed similarly 

well with the classifier both with an F1 score of 0.901. The region 1800-1350 cm-1 also 

performed well with a F1 score of 0.862 albeit lower than the other two regions tested.  
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Region (cm-1) AUC Classification 

accuracy 

F1 Precision Recall 

3500-1350 0.970 0.901 0.901 0.901 0.901 

1800-1350 0.952 0.864 0.862 0.863 0.864 

3500-2700 0.987 0.901 0.901 0.906 0.901 

Table 9 Random forest classification result of BT549, MCF7 and MCF10A spectra. 

 

Table 10 lists the 10 features with the most importance for the RF classifier in each spectral 

region used. The feature importance informs which features in the data were most 

predictive of the target variable. FTIR spectra have a large number of features with each 

wavenumber being a feature therefore narrowing which wavenumbers are the most useful 

for classifying the cells. The ten highest ranked features in the regions 3500-1350 cm-1 and 

3500-2700 cm-1 were within the amide A band. This is likely why the classification performed 

similarly using those two regions of the spectra because the RF gave the most importance to 

features in the amide A band. As can be seen in Figures 28 and 29 there are differences in 

absorbance in the amide A band between the three cell lines especially with the less 

prominent peak of MCF7. The ten most important features for the RF classification using 

1800-1350 cm-1 were mostly within the amide II band between 1479-1484 cm-1. As noted 

above there were noticeable differences in the shape, absorbance, and position in the 

average spectra of the three cell lines in amide II.  
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Table 10 Ten most important features for the random forest classification. 

 

Figures 31-33 are the confusion matrices of the RF classification using the three selected 

spectral regions. The confusion matrices show the percentage of the cells correctly and 

incorrectly classified. The RF classifier performed best for the classification of BT549 where 

95.7% of BT549 cells were correctly classified with all three regions used. The remaining 

4.3% of the BT549 cells were misclassified as MCF10A when the regions 3500-1350 cm-1 and 

3500-2700 cm-1 were used and using 1800-1350 cm-1 BT549 was misclassified as MCF7. The 

3500-1350 cm-1 3500-2700 cm-1 1800-1350 cm-1 

3122 3322 1482 

3230 3320 1477 

3066 3417 1450 

3137 3442 1475 

3060 3303 1481 

3085 3050 1484 

3232 3305 1799 

3276 3048 1479 

3120 3411 1793 

3126 3311 1587 
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correct classification of MCF7 and MCF10A was less consistent. The region 3500-2700 cm-1 

provided the best classification of MCF7 with 93.1% of cells correctly classified and the 

region 1800-1350 provided the worst with 75.9% of cells correctly classified. 86.2% of 

MCF10A cells were correctly classified using 3500-2700 cm-1 and 1800-1350 cm-1 and 79.3% 

were correctly classified using 3500-2700 cm-1. The misclassifications of MCF10A using 3500-

1350 cm-1 and 1800-1350 cm-1 (3.4%) were of BT549 and the remaining misclassifications 

were MCF7. While all the misclassifications of MCF10A were MCF7 using 3500-2700 cm-1.  

 

 

Figure 31 Confusion matrix of random forest classification of BT549, MCF7 and BT549 using 

FTIR spectra in the region 3500-1350 cm-1. 
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Figure 32 Confusion matrix of random forest classification of BT549, MCF7 and BT549 using 

FTIR spectra in the region 3500-2700 cm-1. 

 

 

Figure 33 Confusion matrix of random forest classification of BT549, MCF7 and BT549 using 

FTIR spectra in the region 1800-1350 cm-1. 

 

Using the 2nd derivative spectra (Figures 34-36) improved the classification after increasing 

the components in the PCA denoising to 12 and the window size of the Savitzky-Golay filter 

to 21 to account for the noise introduced by the 2nd derivative. The classification metrics 

using the 2nd derivative spectra are shown in Table 11 below. The 2nd derivative spectra can 

resolve differences in the bands that are not clear in the normal spectra. There were 
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differences in all the major bands shape, position and absorbance as shown in the average 

2nd derivative spectra of BT549, MCF7 and MCF10A. In the region 3500-2700 cm-1 there is a 

difference in the absorbance of all three cells at the peak 3236 cm-1. BT549 has a 

considerably lower absorbance and less pronounced peak at this position. The 3236 cm-1 

corresponds to the amide A peak from the N-H stretching vibration in the peptide bonds of 

proteins. The MCF7 has a higher absorbance showing a more pronounced peak than the 

other cells at 2988 cm-1. The 2988 cm-1 peak is not prominent in the normal spectra this 

demonstrates how the 2nd derivative can reveal more differences within the spectra. The 

2900 cm-1 is also prominent in the 2nd derivative spectra but not the normal spectra. The 

BT549 cells had the highest absorbance at this peak and was shifted to 2898 cm-1. The MCF7 

had the lowest absorbance, and the peak was split. MCF10A had a higher absorbance than 

MCF7 but lower than BT549. The shoulder at 2872 cm-1 is much more prominent in the 

BT549 spectrum than the MCF7 and MCF10A spectra. At 2832 cm-1 BT549 again has a higher 

absorbance than MCF7 and MCF10A. These peaks at 2900-2832 cm-1 are from CH2 stretching 

vibrations of lipids and proteins. In the 1800-1350 cm-1 there is a large shift of MCF7 at 1713 

cm-1 where BT549 and MCF10A have the peak positioned at 1703 cm-1. The peak forms part 

of the amide I peak and a shift in peak position could suggest a change in protein secondary 

structures. At 1620 cm-1 differences were in this peak that is also part of amide I. The BT549 

peak is shifted 1618 cm-1 and has a lower absorbance and the MCF10A absorbance is lower 

than the MCF7. The differences in the amide I peaks suggest different overall protein 

compositions in the cells. Spectral differences could be seen in the peaks from 1585-1485 

cm-1 however there is a considerable amount of noise introduced from the 2nd derivative, so 

it is difficult to interpret if the spectral differences were from biochemical differences in the 

cells or caused by noise.  
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Figure 34 Average 2nd derivative FTIR spectra from 100 of BT549, MCF7 and MCF10A in the 

region 3500-1350 cm-1. 

 

Figure 35 Average 2nd derivative FTIR spectra from 100 spectra of BT549, MCF7 and MCF10A 

in the region 3500-2700 cm-1. 
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Figure 36 Average 2nd derivative FTIR spectra from 100 spectra of BT549, MCF7 and MCF10A 

in the region 1800-1350 cm-1. 

 

Table 11 and Figures 37-39 below show the results of the random forest classification of 

BT549, MCF7 and MCF10A using the 2nd derivative spectra. There was an overall 

improvement in the classification performance shown by an improvement in all the metrics 

in Table 11 in comparison to the classification with the normal spectra in Table 9. 3500-1350 

cm-1 gave the best overall classification followed by 3500-2700 cm-1 and 1800-1350 cm-1. The 

classification of MCF7 and MCF10A was improved using the 2nd derivative spectra over the 

normal spectra using the region 3500-1350 cm-1. The classification of MCF7 had the biggest 

improvement in the region 3500-1350 cm-1 with 93.1% of the cells correctly classified 

compared to 86.2% using the normal spectra 96.6% and 79.3% of MCF7 were correctly 

identified using 3500-2700 cm-1 and 1800-1350 cm-1. The classification of MCF10A with 2nd 

derivative spectra improved for 3500-2700 cm-1 and 1800-1350 cm-1 at 96.6% correctly 

classified but did not improve for 3500-2700 cm-1. All the misclassifications of MCF10 were 
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classified as MCF7 when the 2nd derivative spectra were used. 95.7% of BT549 cells correctly 

classified using the regions 3500-2700 cm-1 and 1800-1350 cm-1, this was the same amount 

as the normal spectra. The classification of BT549 worsened using the 2nd derivative of 3500-

1350 cm-1 with 91.3% of the cells correctly classified. All the BT549 misclassifications using 

2nd derivative spectra were attributed to MCF7.  

Region (cm-1) AUC Classification 

accuracy 

F1 Precision Recall 

3500-1350 0.982 0.938 0.939 0.940 0.938 

1800-1350 0.970 0.901 0.899 0.903 0.901 

3500-2700 0.990 0.926 0.926 0.932 0.926 

Table 11 Random forest classification results for classification of BT549, MCF7 and MCF10A 

using 2nd derivative FTIR spectra. 

 

Figure 37 Confusion matrix of random forest classification of BT549, MCF7 and MCF10A 

using 2nd derivative FTIR spectra in the region 3500-1350 cm-1. 
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Figure 38 Confusion matrix of random forest classification of BT549, MCF7 and MCF10A 

using 2nd derivative FTIR spectra in the region 3500-2700 cm-1. 

 

Figure 39 Confusion matrix of random forest classification of BT549, MCF7 and MCF10A 

using 2nd derivative FTIR spectra in the region 1800-1350 cm-1. 

 

Discussion 
 

The previous chapter demonstrated that two different NSCLC cells could be classified from 

healthy tissue derived NL20 cells using a RF classifier and FTIR spectroscopy. This chapter 

aimed to demonstrate the same methods could be used for the classification of other solid 

tumours in this case breast cancer. While the classification of A549 and CALU-1 from NL20 
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used a synchrotron-based spectrometer it was important to demonstrate in this chapter that 

a benchtop spectrometer can also provide high quality spectra for the classification of cancer 

cells from non-cancer cells. While the spectra measured using the benchtop spectrometer 

had more noise, they were still of good quality with clearly defined bands. The bands within 

the average spectra of BT549, MCF7 and MCF10A demonstrated spectral differences that 

indicated differences in both the proteins and lipids of the cells. This is expected as there are 

significant changes in the protein and lipid content of breast cancer from normal cells and 

from non-invasive to invasive cancer.  

All selected spectral regions 1800-1350 cm-1, 3500-2700 cm-1 and 3500-1350 cm-1, provided 

good classification of BT549, MCF7 and MCF10A with classification accuracy above 85%. 

Although, the 3500-2700 cm-1 region provided the best classification overall. This region was 

also the best performing region for the classification of the lung cancer cells and NL20 

followed by 3500-1350 cm-1 and 1800-1350 cm-1 when using the normal spectra. The 

classification of lung cancer cells from non-malignant lung cells and classification of breast 

cancer cells from non-malignant breast cells both performed best when using the higher 

wavenumber region 3500-2700 cm-1. This region of the spectra contains information on both 

the lipids and protein content of the cells which could be why it results in a better 

classification than the 1800-1350 cm-1 where the bands are from vibrations in just the 

proteins. 3500-2700 cm-1 giving the best classification for both breast and lung cancer means 

the same methodology can be used for the two different cancers. Having a shared 

methodology that is used across different cancers would allow for an easier translation of 

FTIR spectroscopy to clinical diagnostics because it would simplify the process. Glass as a 

substrate is viable for both breast and lung cancer because 3500-2700 cm-1 is not affected 

using glass.  
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As with the lung cancer cell classification, the 2nd derivative spectra gave a better 

performance for the breast cancer classification than the spectra with no derivatives applied. 

The 2nd derivative spectra resolve broad bands into individual bands and resolves lower 

frequency areas of the spectra into higher frequency peaks. The bands resolved by the 2nd 

derivative all had differences in the three breast cell lines. These differences likely resulted in 

the better classification than the raw spectra where the differences in the bands are less 

pronounced. Using the 2nd derivative spectra, the region 3500-1350 cm-1 provided the best 

classification, correctly classifying >90% of BT549, MCF7 and MCF10A. For the classification 

of the lung cells, this region also gave the best classification when classifying the three cell 

lines together. None of the invasive breast cancer cells (BT549) and only 6.9% of the non-

invasive breast cancer cells (MCF7) were misclassified as MCF10A. Only 3.4% of MCF10A 

were misclassified as non-invasive cancer cells. The results of this classification demonstrate 

that this methodology with the 2nd derivative spectra has the potential for separating 

cancerous samples from non-cancerous samples for both non-invasive and invasive breast 

cancer. Also demonstrated is the methodology can be used to separate the non-invasive 

cancers from invasive cancers. The methodology demonstrated the feasibility to be further 

developed to be used in a clinical setting. To further develop this methodology would 

require the use of primary cells from patients and testing on larger datasets. The 

methodology has shown that it could be developed to help triage cancer cases from non-

cancerous cases and then further triage invasive cancer from non-invasive cancer. Triage 

into these categories would allow the most urgent invasive cases to be escalated further to 

the next steps in the diagnostic pathway for staging and typing to allow treatment plans to 

be made.  
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The increased noise introduced by using a 2nd derivative must be considered when applying 

it during pre-processing. The parameters of denoising methods must be increased in the pre-

processing phase to produce a readable spectrum. This can complicate the preparation of 

the data because denoising must be balanced so the unwanted noise is removed but the 

important features are not removed. The spectra of the breast cell lines were collected using 

a benchtop spectrometer which has a lower resolution than the synchrotron light source 

used to collect the lung cell lines’ spectra in chapter 4. The lower resolution of the benchtop 

spectrometer is noticeable in the noisier 2nd derivative spectra of the breast cell lines in 

comparison to the 2nd derivative spectra of the lung cell lines.  Some of the differences seen 

in the 2nd derivative spectra of the breast could be because of noise and not from the 

biochemical differences in the cells. For this reason, when using a benchtop spectrometer, 

the noise introduced into spectra with a derivative applied could hinder classification if there 

is a lot of noise in the raw spectra. In such a case not using the 2nd derivative could be the 

better choice as it still provides a good classification while being more easily interpretable 

with less ambiguity of what is causing the differences seen in the spectral bands. In a 

situation where the raw spectra collected contain a considerable amount of noise using the 

2nd derivative spectra is not advisable because the classifier could mistake the noise for 

features. The spectra acquired for this research were of high quality and the 2nd derivative 

spectra could still be used.  

Using FTIR spectroscopy in the manner I have proposed to separate cancerous samples from 

non-cancerous samples the method must have a low rate of false positives as demonstrated 

by the good precision and recall from the classifications. A classification with many false 

positives would not provide much benefit as a new diagnostic technique because it would 

not aid the pathologists by separating the cancerous and non-cancerous samples. False 
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positives are especially a concern for breast cancer diagnosis because of the screening 

program that will produce more false positives and overdiagnoses. Time and resources are 

put into further testing of falsely diagnosed samples, taking it away from true positive cases 

of cancer. It is estimated for each breast cancer death prevented by screening, three cases 

are over diagnosed (Marmot et al., 2012). In England in the year 2016-2017, 70,000 women 

received a false positive screening result. Overdiagnosis can cause undue stress for patients 

while awaiting the results of diagnostic testing and in some cases results in unnecessary 

further testing and treatments. FTIR spectroscopy would be most beneficial at the stage of 

breast cancer diagnosis after there is a possible cancerous body found during screening, but 

it is uncertain if it is cancer. The FTIR spectroscopy diagnostic methods combined with the RF 

classifier could be used to aid in identification of the cancerous samples from non-cancerous 

samples and reduce the number of false positive to reduce overdiagnoses. The use of the 

glass substrates and preparation methods already used in pathology laboratories allows FITR 

spectroscopy to be used in conjunction with current diagnostic techniques. FTIR 

spectroscopy diagnostic techniques should not replace the current diagnostic methods 

because morphological features and the presence of ER, PR and HER2 are still vital for 

making a full diagnosis. An FTIR spectroscopy measurement can be taken prior to the 

cytological or immunohistochemistry staining of samples. In cases where the pathologist is 

unsure of the identity of a sample, analysis with spectroscopy and machine learning 

classification can provide more information to allow decisions to be less subjective.  

FTIR spectroscopy on glass substrates could be particularly useful for the helping to diagnose 

breast cancer from fine needle aspirate cytology (FNAC). FNAC uses a very thin needle 

connected to a vacuumed syringe to aspirate a small amount of tissue and cells from a 

suspicious lesion. The diagnosis from a FNAC can be difficult particularly for borderline 
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breast lesions with the sensitivity and specificity values varying by a large amount often 

because of the small amount of cell and tissue retrieved. Typing and grading the tumour can 

be difficult from histopathological diagnostic techniques and diagnostic accuracy depends on 

the experience of the pathologist. A sometimes-high rate of false negatives from sampling 

errors or interpretation errors has put the value of FNAC in doubt among some clinicians 

(Mitra and Dey, 2016). Despite this FNAC is still used to obtain biopsies because of its 

efficiency, affordability, and safety profile. FNAC does not require the use of local 

anaesthetic or radiological assistance therefore harm to the patient is minimal. Core needle 

biopsy (CNB) uses a larger needle to remove a core of tissue from a suspicious site in the 

breast. CNB has become the preferred method among many clinicians because it provides 

higher diagnostic accuracy as a larger amount of tissue is provided giving a better picture of 

the site when using current diagnostic methods (Mitra and Dey, 2016). Interpretation of 

these biopsies is easier resulting in fewer false negatives. However, CNB is more invasive for 

the patient using a larger needle and removes more tissue. Local anaesthetic and 

radiological assistance are required for CNB procedures unlike FNAC. This is more painful for 

the patient, takes longer and is more expensive than FNAC. Another risk with the use of CNB 

with smaller lesions is that it could break up the lesions which makes further sampling and 

excision difficult.  The use of FTIR spectroscopy could help to obtain improved diagnostic 

accuracy from FNAC biopsies and provide more diagnostic value. The initial diagnosis for the 

presence of cancer can be made from the biochemical properties of the cells in the sample 

and rely less on the interpretation of morphology. More information could be gained from 

FNAC in cases where the morphology is poor and difficult to interpret. Improving the 

diagnostic value of FNAC would be beneficial to patients because it is less invasive and has 

less risk than CNB. Many women tested for breast cancer after screening do not have cancer 
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and many undergo unneeded procedures to obtain biopsies. The screening process would be 

improved if the invasiveness of the procedure can be reduced while diagnostic value is 

maintained.  

Research by Lasalvia et al also compared the FTIR spectra of MCF7 and MCF10A on glass 

substrates. They found that the average spectrum of MCF7 had a lower absorbance than 

MCF10A in the lipid bands (Lasalvia, Capozzi and Perna, 2021). I found a similar result in the 

average spectra of MCF7 and MCF10A shown in Figure 8 with a lower absorbance in the lipid 

bands of MCF7 than MCF10A at 2926 cm-1. The FTIR spectrum is influenced by the pre-

processing used which creates difficulty in direct comparisons between studies where 

different pre-processing is used. Lasalvia et al used SNV as a normalisation step while I used 

EMSC. Both are acceptable methods of normalising FTIR spectra, I selected EMSC for this 

study because it produced a better classification of the cells than SNV. The wide range of 

pre-processing used in clinical FTIR spectroscopy studies makes it difficult to directly 

compare different studies on the same subject. There is currently no agreed upon standard 

or optimal pre-processing method in the field of clinical FTIR spectroscopy. This is another 

hurdle in the translation of FTIR spectroscopy to a clinical application. If FTIR spectroscopy is 

to be used for diagnostics there must be a standard method of processing the spectroscopy 

data collected across pathology laboratories and hospitals. There are many variables to 

account for when applying pre-processing steps including choosing which pre-processing 

steps to apply, what order to apply the steps and which method to choose for each step. 

Each of these variables will affect the spectra and classification. The number of variables 

involved and there being no one correct method of pre-processing makes coming to a 

consensus on the optimum pre-processing methods a difficult task. Coming to a consensus 
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on how and how much data should be processed is a discussion that needs to take place 

within the field. 

For FTIR spectroscopy to be used reliably in an automated manner for clinical diagnosis a 

large sample size of spectra must be collected for each type of cancer to get the best 

representation of the spectra of the cancer, find the best areas of the spectra for 

classification and train the classification algorithms to be precise and reliable. This is 

currently a hurdle in the field of diagnostic FTIR spectroscopy as there are few large-scale 

studies of patient samples. There will need to be large scale collaborations between 

academic researchers, healthcare providers and industry to conduct large scale data 

collection before FTIR spectroscopy could be used reliably in an automated manner for 

diagnosis of cancer. For this to happen there also needs to be more consensus in the field on 

the protocols used including how samples are prepared, the FTIR spectroscopy modality 

(transmission, ATR, transflection) used, substrates and pre-processing of spectra and data 

analysis.  

Conclusions 
 

The research in this chapter has demonstrated that the methodology can also be used for 

the classification of breast cancer cells from non-cancerous breast cells. Also demonstrated 

was that invasive and non-invasive breast cancer cells can be classified from each other. Like 

the classification of lung cancer cells, the 2nd derivative spectra produced a better 

classification than the spectra with no derivatives applied. The 3500-1350 cm-1 and 3500-

2700 cm-1 produced better classifications for both lung and breast cancer cells than the 

region 1800-1350 cm-1. It was demonstrated that FTIR spectroscopy with cells placed on a 
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substrate of glass coverslips could feasibly be used for the classification of breast cancer cells 

to aid in diagnosis.  
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Chapter 6: The use of FTIR spectroscopy to identify individual cancer 

cells from leukocytes in mixed samples.  
 

Introduction 
 

There has long been an interest in the use of liquid biopsies for cancer diagnosis and 

prognosis. Analysis of tissue biopsies is the current gold standard for diagnosis of solid 

cancers including lung cancer. Retrieval of tissue biopsies is an invasive method usually 

requiring a surgical procedure that can cause pain and distress to patients. Reliance on tissue 

biopsies prevents repeated sampling of the cancer and a poor-quality biopsy can make 

diagnosis difficult. Liquid biopsies utilise biofluids and their components for diagnostics. 

Liquid biopsies are less invasive and allow for more frequent testing and monitoring with 

less pain and distress to patients. Blood and its components have had the largest amount of 

research devoted to it for liquid biopsy diagnosis because it is easily accessible and contains 

a wealth of information. Blood contains several tumour related materials that could be used 

as biomarkers including cell-free DNA (cfDNA), circulating tumour DNA (ctDNA), extracellular 

vesicles (EVs), mRNA (messenger RNA), miRNA (microRNA), circulating tumour cells (CTCs) 

and tumour educated platelets (Lone et al., 2022).  

The focus of this research was how FTIR spectroscopy could be used for the identification of 

CTCs.  CTCs are cells that have detached from primary or secondary tumours and travelled 

away from the site of the tumour in the blood (Yang et al., 2019). The migration and seeding 

of CTCs and CTC clusters is thought to cause the growth of metastases. The identification of 

CTCs in peripheral blood could be a valuable tool for the diagnosis and prognosis of cancers 

in a non-invasive manner. The current difficulty in the use of CTCs is their low number in the 
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blood due to most CTCs perishing from mechanical stresses and attacks from the immune 

system. The number of individual CTCs in blood number in range from 1 to >50 CTCs per 7.5 

ml of blood (Syrigos et al., 2018). Clusters of CTCs known as circulating tumour micro emboli 

contain at least 2 CTCs with some containing up to 50 CTCs. CTCs are often found associated 

with other cells such as leukocytes, cancer associated fibroblasts, endothelial cells, and 

platelets. Currently, only one method of CTC identification called CellSearch has gained FDA 

approval. The CellSearch has been available since 2004 but has had little use and acceptance 

in the clinical field for cancer diagnostics due to being complex, difficult to use and expensive 

(Andree et al., 2016).  

With the current difficulty in identification of CTCs several methodologies have been 

developed and proposed. These methods can be broadly separated into two categories: 1. 

Label dependent where CTCs are identified based on expression of surface antigens. 2. Label 

independent where CTCs are identified based on physical properties such as size, density, 

deformability or dielectric properties (Sundling & Lowe, 2019). Methods of positive CTC 

selection using surface antigens as is used for CellSearch, have the disadvantage that 

selected antigens may not be expressed on the CTCs as antigen expression can vary greatly 

between not just different cancers but also within tumour subtypes within a tumour. A 

selection of different antibodies may be required for CTC identification which can quickly 

become complex and expensive. Matters are further complicated by the epithelial-

mesenchymal-transition (EMT). EMT is dedifferentiation process in which epithelial cells gain 

mesenchymal traits that confer stem like properties to aid in migration (Kalluri & Weinberg, 

2009). The loss of epithelial markers makes using antibodies against epithelial antigens often 

unsuccessful for CTC identification. There is still a lack of a robust methodology for CTC 

identification in peripheral blood. An ideal method of CTC identification would be able to 
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identify CTCs of all types of tumours, be fast, not too complex, and have a high throughput 

while minimally disturbing current cancer management pathways.  

FTIR spectroscopy could be a technique that has the qualities to form part of a methodology 

for CTC identification. It can identify cells by their biochemical properties and as the previous 

chapters have demonstrated and multiple other studies, it has potential as a diagnostic tool 

for cancer. As it is label free it does not depend on antibody antigen interactions like the 

CellSearch which makes FTIR spectroscopy less complex, expensive and it does not require 

the same level of expertise to use. As the biochemical properties of CTCs are very different 

to the surrounding blood cells, it should facilitate the recognition of CTCs in blood.  

This research investigated if individual lung cancer cells can be distinguished from leukocytes 

on a glass substrate using FTIR spectroscopy. This was investigated using whole peripheral 

blood doped with lung cancer cells. This was a feasibility study to test how FTIR spectroscopy 

could be used for CTC identification. To the best of my knowledge, this was the first time 

FTIR spectroscopy was tested for use as method of CTC identification in blood samples 

placed on glass substrates. There has been little research around using vibrational 

spectroscopy for the identification of CTCs in peripheral blood. 

 

Aims 

1. Assess if A549 and CALU-1 lung cancer cells can be distinguished from leukocytes on 

glass substrates using FTIR spectroscopy. 

2. Using RF with spectral data, assess if A549 and CALU-1 cells can be identified in 

samples of mixed cancer cell and leukocytes populations on glass substrates. 
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Materials and Methods 

 

Cells 

 

The following cell lines were used for this research: A549 (European Collection of Cell 

Cultures – ECACC) lung adenocarcinoma, CALU-1 (ECACC) lung squamous cell carcinoma. For 

detailed cell culture methodology please refer to the relevant section of chapter 2.  

Human peripheral blood was obtained through venepuncture of healthy volunteers. The 

research had ethical approval by the Keele University FMHS Faculty Research Ethics 

Committee (MH-210190). 4 ml of blood was taken per volunteer and collected in EDTA 

containing tubes. The blood was taken immediately to the laboratory to be processed into 

samples.  

Sample preparation 

 

Cancer cells were removed from culture flasks as described above. Following centrifugation 

at 1200 rpm for 5 minutes, cells were resuspended in 0.9% saline. 50,000 cancer cells were 

pipetted into 1 ml of whole blood. A higher concentration of cancer cells than would be 

found physiologically was used to obtain samples with enough individual cancer cells to 

allow to collect enough data for a robust training and testing dataset for testing of the 

methodology and classification of the cancer cells from blood cells, and at the same time, 

not to obtain groups of cancer cells together in the final samples as the aim was to study 

individual cancer cells. The methodology was adapted to study single cancer cells in blood as 

the clinical application would to identify individual cancer cells. After the cancer cells were 
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added to the whole blood, red blood cells were removed by incubating the blood with 

Ammonium-Chloride-Potassium (ACK) lysing buffer (Thermo Fisher Scientific) for 5 minutes 

at room temperature at a concentration of 10 ml ACK buffer per 1 ml of blood. The blood 

was then centrifuged at 300 x g for 5 minutes at room temperature. The supernatant was 

disposed removing most of the red blood cells. The pellet containing leukocytes and cancer 

cells was resuspended with 5 ml of cold 0.9% saline. The remaining cells were centrifuged 

again at 300 x g for 5 minutes. The supernatant was removed, and the pellet was 

resuspended in 0.5 ml of 0.9% saline. The resuspended mixture of leukocytes and cancer 

cells were immediately used to prepare samples on glass coverslips with a cytospin. 

The red cell depleted doped blood was deposited on glass coverslips using a cytospin at 900 

rpm for 1 minute. The deposited cells were immediately fixed by incubating at room 

temperature for 15 minutes with 100 µl of 4% PFA. After fixation excess PFA was poured of 

the slips into a disposal container and then washed once with 0.9% saline and thrice with 

dH20 to ensure all the PFA was removed. Samples were air dried to remove excess moisture 

for each cell line, 3 independent experiments were prepared, and for each independent 

experiment, 6 samples were prepared. Thus, 18 samples were prepared for each cell line. 

Each independent experiment corresponded to cells at different passage number.  

 

FTIR Spectroscopy 

 

FTIR spectra were obtained using a Thermo Nicolet iN10(MX) spectrometer. Developing this 

methodology into a clinical application will entail mapping areas of blood samples containing 

suspected CTCs. Thus, IR spectra of individual cancer cells were obtained by mapping an area 
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containing individual cancer cells or leukocytes. The maps were collected using an aperture 

of 15 x 15 µm. Spectra were measured with a 10 µm step size in the X axis and Y axis. This 

method would ensure that at least one 15x 15 µm aperture size spectrum will include only 

cancer cell. The size of each individual cancer cell for both cell lines is 20-30 µm diameter 

after the cytospin. These cancer cell lines were chosen to allow visual identification of the 

cancer cells for the purposes of the experiment. Individual spectra of cancer cells and 

leukocytes were also collected to build a training dataset. Spectra were collected at 4 cm-1 

resolution, with 256 co-added scans. Background measurements were obtained under the 

same conditions from areas of coverslip without a biological sample. 

 

Staining 

 

To confirm the identity of the cancer cells in the prepared samples, a Giemsa stain was used. 

Giemsa stain is a differential stain containing a mixture of azure blue, methylene blue and 

eosin dye. Pathology laboratories commonly use Giemsa staining for blood work such as 

leukaemia and malaria diagnosis. A staining solution was prepared by diluting a stock 

Giemsa solution (Atom Scientific) (methanol <25%, glycerol <25%, ethylene glycol <25% and 

Giemsa powder) at a ratio of 1:40 with a Gurr buffer (Giemsa solution: Gurr buffer) (Thermo 

Fisher Scientific). The Gurr buffer was produced by adding the Gurr buffer tablet to 100 ml of 

distilled water as per the manufacturer instructions to produce a pH 6.8 phosphate buffer. 

The sample was covered with the Giemsa solution and incubated at room temperature for 

45 minutes. The excess staining solution was then poured off the sample slips and remaining 
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excess stain was washed off with the buffer. Samples were air dried. The stained samples 

were imaged with microscopy to confirm the identity of the measured cancer cells.  

 

Pre-processing and data analysis 

 

Spectra were cropped to the regions 3500-1350 cm-1, 3500-2700 cm-1 and 1800-1350 cm-1. 

The spectra were denoised with PCA denoising with 10 components and a Savitzky-Golay 

filter with a window size of 5 and polynomial of 2. EMSC was used to normalise the spectra 

and remove any baseline defects. The average spectra of the training set were used as a 

reference for the EMSC. The pre-processing was carried out using the Quasar software. 

The spectra in the maps were annotated as A549/CALU-1, leukocytes, or background. 

Annotations were done using the stained and non-stained images of the mapped area. The 

larger size of the A549 and CALU-1 cells allowed them to be visually identified. Larger cancer 

cell lines were chosen for this study so it could be assessed if the cancer cells are being 

correctly identified within the maps by the classifier.  

A RF classifier was used to classify each 10 µm tile based on spectral data. The RF classifier 

contained 200 decision trees. A further increase in the number of trees did not significantly 

improve the classification. The classifier was trained using a training data set consisting of 

spectra from A549/CALU-1, leukocytes, and background measurements. The number of 

spectra of cancer cells and leukocytes in the training set was balanced to 300 of each. The 

maps that comprised the test data were different maps used for training. 
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Each tile in the maps were coloured by the classifier based on the probability of the tile 

containing spectrum from A549/CALU-1. The tiles were coloured on a colour scale from 

yellow being of high probability (>0.9) to dark blue being low probability (<0.2), the colour 

scale is shown in the Figure 40 below. Output from the RF classifier including the AUC, CA, 

F1, precision and recall which was measured against if the spectra were correctly classified 

against the annotations.  

 

Figure 40 Colour scale for random forest classification of maps. 

 

Results 
 

The first step was to obtain FTIR spectra from individual cancer cells in both cell lines and 

clusters of leukocytes. The spectra were obtained from the sample prior to staining. Despite 

the lack of staining, cancer cells were easy to identify due to their larger size in comparison 
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to leukocytes. All samples were stained with a Giemsa stain to confirm the identity of the 

cancer cells. Figures 41 and 42 demonstrates the larger morphology of the cancer cells in 

comparison to leukocytes and darker purple colour from the stain. All the cells thought to be 

cancer cells prior to staining were confirmed as cancer cells following saining. Figures 43-47 

shows the average FTIR spectra of the leukocytes compared to A549 and CALU-1. The amide 

I, amide II and amide A bands were less intense in the leukocyte spectrum than the A549 and 

CALU-1 spectrum which infers greater protein content in the cancer cells. The amide I of the 

leukocyte spectrum is also shifted to 1650 cm-1 compared to A549 and CALU-1 positioned at 

1653 cm-1. In the region 2800-3000 cm-1 stretching vibrations of from CH2 and CH3 groups in 

lipids were of a higher intensity in the leukocyte spectrum in the bands at 2922 cm-1 and 

2851 cm-1 while at 2956 cm-1 has a lower intensity. Both the A549 and CALU-1 average 

spectra show similar differences to the average leukocyte spectrum.  

 

Figure 41  Image of a stained and unstained mapped area containing A549 cells and 

leukocytes. The arrows point to an A549 cell. The A549 cells can be identified from their 

larger size and deep purple colour in the stained image.  
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Figure 42 Image of a stained and unstained mapped area containing CALU-1 cells and 

leukocytes. The arrows point to a CALU-1 cell. The CALU-1 cells can be identified from their 

larger size and deep purple colour in the stained image. 

 

 

Figure 43 Average spectra of A549 cells and leukocytes in the region 3500-1350 cm-1. 
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Figure 44 Average spectra of CALU-1 cells and leukocytes in the region 3500-1350 cm-1. 

 

Figure 45 Average spectra of A549 cells and leukocytes I the region 1800-1350 cm-1. 
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Figure 46 Average spectra of CALU-1 cells and leukocytes in the region 1800-1350 cm-1. 

 

 

Figure 47 Average spectra of A549 cells and leukocytes in the region 3500-2700 cm-1. 
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Figure 48 Average spectra of CALU-1 cells and leukocytes in the region 3500-2700 cm-1. 

 

The application of FTIR spectroscopy for cancer cell identification in liquid biopsies will entail 

using a machine learning to classify cells by their FTIR spectra which show the biochemical 

differences between cells. A RF classifier was chosen for this research because it handles 

data with many features well and is less prone to overfitting. 8 maps containing A549 

(Figures 49-56) and 8 containing CALU-1 were classified (Figures 57-64). In all 16 maps, areas 

containing cancer cells were identified by the RF classifier. The tiles on the maps coloured 

yellow and green were given a high probability of the spectra being from a cancer cell while 

blue tiles had a low probability. Comparing the coloured maps to the visual images, the areas 

coloured as likely containing cancer correlated to the location of the cancer cells. Using the 

spectral region 3500-2700 cm-1 the maps were coloured more accurately with less tiles 

falsely coloured to contain spectra from cancer cells. Using the regions 3500-1350 cm-1 and 
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1800-1350 cm-1, the classifier also identified the cancer cells but had more tiles misclassified 

as likely containing cancer cells in locations with no cancer cells. Comparing the misclassified 

tiles to images of the maps, the tiles misclassified as cancer not near a cancer cell largely 

correspond to areas where there are large numbers of leukocytes clumped together. The 

misclassifications of tiles in the areas close to the cancer cells were because of the aperture 

used. The tiles were 10 µm and the aperture size was 15 µm therefore tiles adjacent to the 

cancer cells contained spectral measurements from the cancer cells.  
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Figure 49 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 

20 µm 
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Figure 50 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 

 

 

20 µm 
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Figure 51 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 52 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 53 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 54 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 55 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 56 False colour maps coloured by RF classifier based on probability of A549 cell in each 

tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 57 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 58 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 

 

 

Figure 59 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 
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using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 

 

Figure 60 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 

 



164 
 

 

Figure 61 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 62 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 
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Figure 63 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 

using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 

 

 

Figure 64 False colour maps coloured by RF classifier based on probability of CALU-1 cell in 

each tile. Top left: Microscope image of mapped area. Top right: Hyperspectral map coloured 
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using FTIR spectra region 3500-1750 cm-1. Bottom left: Hyperspectral map coloured using 

FTIR spectra region 1800-1350 cm-1. Bottom right: Hyperspectral map coloured using FTIR 

spectra region 3500-1350 cm-1. 

Table 12 below provides the average classification results from the maps using the best 

classification result from each map. These classification results were calculated from the 

classification of each tile in the maps by the RF classifier compared to the annotations of 

each tile. Each tile was annotated based on the visual. The maps containing A549 cells had a 

stronger average classification result than the CALU-1. As mentioned above, the 

misclassification of areas having cancer cells were often in areas densely populated by 

leukocytes or close to the edge of the cancer cells. Many misclassifications were from 

leukocytes as background and vice versa. These misclassifications often occurred at the edge 

of leucokcytes where the spectral signal was weak, so it was misclassified as background or 

where there were no cells present but there was a spectral signal from nearby cells due to 

the aperture size used. Overall, the results indicated that FTIR spectroscopy used with a glass 

substrate is a capable tool for identification of individual lung cancer cells in blood. 

 

Cell line AUC Classification 

accuracy 

F1 Precision Recall 

A549 0.885 0.774 0.788 0.820 0.768 

CALU-1 0.897 0.727 0.735 0.804 0.718 

Table 12 Average classification results from classification of cancer cell and leukocyte maps 

using the best classification for each map. 
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Discussion 
 

Over recent years the management of cancer has been moving towards a more personalised 

treatment system (Hoeben et al., 2021). The appearance of new immunotherapies, targeted 

therapies and better tumour subtyping through genetic testing is tailoring the treatment of 

cancer to each individual patient and tumour. Liquid biopsies have the potential to enhance 

personalised cancer management by allowing more frequent testing and monitoring of the 

disease in a non-invasive manner. In the case of CTC identification, it could provide more 

diagnoses at early stages of the disease and characterisation of the cancer with less need for 

invasive surgeries (Yang et al., 2019). CTC dissemination is thought to start in early stages of 

cancer progression and if these cells can be identified it could allow diagnosis of cancer 

earlier than would be detected with imaging and biopsies of the tumour. Early diagnosis of 

lung cancer is currently difficult with <30% of cases being diagnosed in stage I or II of the 

disease. This is one of the key reasons why lung cancer survival remains low with only 

around 16% of patients surviving their disease for 5 years (Cancer Research UK, 2018). 

Another advantage of liquid biopsies is that they allow more frequent monitoring of the 

cancer than is possible from biopsies of the tumour. A liquid biopsy from blood only requires 

a blood and not an operation. A difficulty of current biopsy methods is a poor-quality biopsy 

can make diagnosis difficult and another biopsy is not always possible because the tumour is 

difficult to access. The continued presence of CTCs post-treatment could indicate that the 

cancer has not been fully eradicated. The biggest challenge in using CTC for diagnostics thus 

far is their scarcity which makes their isolation and identification difficult. The only CTC 
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identification method currently approved for clinical use is CellSearch which identifies CTCs 

through epithelial markers. Despite the CellSearch being available since 2004 there is no 

widespread use of CTC cancer diagnosis. New methods of CTC identification that are needed 

that are simple and inexpensive to use CTCs for cancer diagnostics. A reason it has not been 

widely used is that it is unable to detect CTCs that express EpCAM which is further 

complicated by the EMT downregulating epithelial marker expression. For CTC identification 

to become more widely used for cancer diagnostics, new methods are needed that are 

ideally label free, accessible, and affordable. FTIR spectroscopy is a technique yet to be 

investigated in the literature for its potential to aid in CTC identification. This research is 

some of the first to test the feasibility of using FTIR spectroscopy to identify lung cancer cells 

in blood. As discussed previously in this thesis FTIR spectroscopy is an attractive option 

because of its label-free and non-destructive nature while being relatively simple to use.  

It is clear the biochemical profile of CTCs in both their epithelial and mesenchymal phase will 

be very different to that of blood cells. It can be hypothesised that exploiting these 

biochemical differences would lead to systems that could identify CTCs. Most research in the 

area of FTIR spectroscopy for cancer diagnostics has been aimed at differentiating cancerous 

cells or tissues from their non-malignant counterparts. In some instances, the malignant cells 

or tissues can be quite like their non-malignant counterparts. Shown in previous chapters of 

this thesis is the classification of different types of lung and breast cancer cells from each 

other. Whereas there is very little similarities between blood cells and CTCs. Most liquid 

biopsy research thus far utilising FTIR spectroscopy has focused on measuring the biofluid 

itself for chemical changes such as the serum, urine, or saliva. There is currently no literature 

at the time of writing as far I am aware of the use of FTIR spectroscopy for CTC identification.  
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The average spectra of lung cancer cells and leukocytes demonstrated the biochemical 

differences that make the basis of using FTIR spectroscopy for CTC identification. CTCs 

originate from solid tumours and often from epithelial cells which have a different function 

to the blood cells, therefore, the phenotype and biochemistry will be markedly different. The 

spectra indicated differences in both the proteins and lipid content of the cancer cells and 

the leukocytes. These differences were shown by the absorbances across all the bands, 

differing band position (amide I) and shape (amide II). With these biochemical differences 

cancer cells could be identified from blood cells without the need for specific cell markers. 

The EMT transition provides difficulties in using epithelial markers for CTC identification 

because their expression is often reduced (Andree et al., 2016). This is drawback of currently 

approved CTC identification method that label CTCs with a fluorescent tag conjugated to 

antibodies to attach to EpCAM on the CTCs.  Therefore, to identify CTCs by surface markers 

multiple markers must be targeted which becomes a complex process to ensure no off-

target attachment. Selecting the markers to target is difficult for the initial diagnosis because 

it is not known which surface antigens the CTC express and can cause the CTCs going 

undetected if marker selection is flawed.  

This study demonstrates FTIR spectroscopy can be used to identify lung cancer cells from 

leukocytes in a mixed sample placed upon a glass substrate. This was possible using both the 

region 1800-1350 cm-1 with the amide I and amide II bands and the 3500-2700 cm-1 region 

containing bands from the CH2 stretching in lipids and amide A. The 3500-2700 cm-1 region 

provided a better identification of the cancer cells in most of the maps for A549 and CALU-1 

with less tiles coloured wrongly by the RF classifier as containing cancer cells. In all 16 maps 

the lung cancer cells could be identified including multiple cancer cells in some maps. The 

average precision for the classification of the maps was >80% for both A549 and CALU-1. The 
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high precision demonstrates the classifier was able to identify a majority of the tiles that 

contained a cancer cell. Only a small number of maps were tested and only with two NSCLC 

cell lines. Measurements and training of the classifier for each type of cancer would need to 

be before the methodology can be applied to different cancers. The false colour maps 

utilising different spectral regions can be produced simultaneously to provide a compiled 

view of classifications from using different regions. This is helpful because different types of 

cancer may be classified better using a different spectral region than the cells measured for 

this research.  

Many of the tiles misclassified as cancer were in areas densely populated by leukocytes. If 

this methodology was to be developed further, the cancer cells would first have to be 

isolated due to their low number compared to blood cells. This would also help reduce the 

misclassifications from densely packed areas of leukocytes. There have been many different 

methods of CTC isolation suggested which can be broadly separated into biological methods 

and physical methods. Biological methods rely on the use of antibodies binding to antigens 

on the cells (Bankó et al., 2019). These antibodies can be conjugated to a magnetic bead. 

Beads attached to cells are retained when a magnetic field is applied while the other cells 

are allowed to flow through into a collection receptacle. If using biological isolation with FTIR 

spectroscopy for CTC identification, negative selection by depletion of blood cells may be the 

best option. Positive selection as discussed can be difficult due to the EMT and tumour 

subpopulations not containing the target antigen. While positive selection can produce a 

purer yield of CTCs many can be lost. The lost CTCs could be of diagnostic relevance for 

typing the tumour and deciding a treatment plan. More blood cells will be present after 

negative selection but as demonstrated, the cancer cells can be identified in samples 

surrounded by leukocytes because of the biochemical and morphological differences. 
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Leukocytes can be depleted by targeting CD45 which is not present on CTCs from solid 

tumours. The depletion of the leukocytes would help to reduce the misclassifications’ as 

densely populated areas are reduced. Leukocyte dense areas are misclassified because of 

the higher absorbance from multiple cells causing the classifier to mistake the area of 

containing cancer cells which have a higher average absorbance than leukocytes. Physical 

methods separate cells based on size, density, and deformability. The use microfluidic 

devices that are fabricated to capture CTCs based on their physical properties differing from 

blood cells is an area with growing research (Tan et al 2009) (Payne et al 2021). The main 

limitation of physical isolation methods is they cannot isolate CTCs with similar physical 

properties to the blood cells such as small cell lung cancer or small cell prostate cancer. 

Generally physical isolation methods lack specificity and have poor purity. Future work to 

develop CTC identification with FTIR spectroscopy will have to test it with isolation methods. 

The use of the glass substrate allows for further characterisation of the cancer cells after 

identification with FTIR spectroscopy. The current standard pathology techniques such as 

staining, or immunohistochemistry can be used because the FTIR spectroscopy is label free 

and non-destructive. This was demonstrated by the Giemsa stain of the samples to confirm 

the identity of the cancer cells. Further characterisation of the cells is important to confirm 

tumour type and subtypes and the presence of surface receptors important for selecting the 

best treatment plan.  

This is some of the first research to investigate how FTIR spectroscopy could be used for CTC 

identification. There is a larger body of research for the use of FTIR spectroscopy for other 

liquid biopsy methods, to diagnose cancer using the blood serum (Baker et al., 2022). These 

methods do not use any specific tumour material like CTCs but use the chemical changes in 
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the serum itself. The advantage of using FTIR spectroscopy with liquid biopsies of blood is 

that both the CTCs and serum could be analysed using the same instrument and blood 

sample. Liquid biopsy analysis with FTIR spectroscopy could be used together to provide the 

clinicians with a wider range of information without the need for invasive surgeries. While 

the study of serum requires less sample preparation than CTC analysis, it does not allow for 

further analysis of tumour related materials. It is also not fully known how or what changes 

different cancers make to the serum and the biological changes involved that cause the 

spectral differences in the serum of cancer patients and healthy patients and what changes 

different cancers cause. Other diseases could also cause changes to the biochemistry of the 

serum and in result the FTIR spectra changing compared to serum from a healthy patient. A 

majority of cancer patients are elderly with co-morbidities which could contribute to 

changes in serum spectra. A combined approach using both serum measurements and CTC 

measurements could make use of the benefits of both. The serum measurements could 

provide a more global overview and fast initial information on the presence of cancer while 

the CTC analysis would provide more specific information on the nature of the cancer. As 

shown in previous chapters different types of cancer can be classified from the spectra of 

cancer cells. The identification of the CTCs would allow the further analysis with 

immunohistochemistry and genetic profiling to fully characterise the cancer.  

 While there is no literature for the use of FTIR spectroscopy for CTC identification there has 

been research on the use of Raman spectroscopy, another vibrational technique that can 

also measure biochemical differences in the cells. Kaminska et al used surfaced enhanced 

Raman spectroscopy (SERS) to distinguish HeLa cell and a prostate cancer cell line from 

leukocytes (Kamińska et al., 2019). They used PCA scores to demonstrate how the cells could 

be distinguished using the spectroscopy but did not employ any methods of classification. 
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For diagnostic use of spectroscopy for CTC identification classification will have to be used 

with classifiers such as RF. They combined the SERS with an isolation method using a 

microfabricated membrane to filter the larger cancer cells from the leukocytes. Physical 

isolation methods can be used to isolate many types of cancer cells from leukocytes because 

of the larger size of cancer cells. Size based isolation would not be applicable to small cell 

carcinomas where the cancer cells are not larger than the leukocytes. Wu et al also used 

SERS to identify HeLa cells and the liver cancer line HepG2 (Wu et al., 2015). They used a 

gold nanoparticle bio-probe conjugated to a folic acid ligand that is recognised by the cancer 

cells because of overexpressed folate receptor alpha. The nanoparticles enhance the signal 

from the attached cancer cells with the signal increasing with the number of cancer cells. 

This use of SERS shows its potential for prognostic use because CTC numbers have been 

shown to have prognostic value. However, the method can only be used for cancer cells that 

over express folate receptor alpha and does not prepare and isolate cells for further analysis. 

This other research demonstrates how vibrational spectroscopy can be utilised in differing 

ways for CTC detection. These methods do not allow as easily further analysis of the CTCs 

because the substrates used to achieve the surface enhancement such as the 

microfabricated membrane and conjugated gold nanoparticles are not widely available and 

simple to manufacture substrates which could make adoption of the SERS techniques 

difficult on a widespread scale across large healthcare systems.  

 

Conclusions 
 

This work was a proof of concept to demonstrate that FTIR imaging can be used to identify 

lung cancer cells of lung adenocarcinoma and squamous cell carcinoma from leukocytes. The 
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model shows how individual cancer cells can be identified from leukocytes with a RF 

classifier based on the spectral data measuring biochemical differences in the cells. This was 

shown to be possible using a glass substrate. The choice of substrate allowed for Giemsa 

staining of the samples as would be used for current diagnostic methods for blood samples. 

Now it has been shown to be possible to identify cancer cells from blood on glass substrates 

with FTIR spectroscopy, future stages of this research will look to test methods to improve 

the classification of CTCs using FTIR spectra by isolating the cancer cells. This research is a 

first step in creating a methodology for the use of FTIR spectroscopy to detect CTCs.  
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Chapter 7: Optical Photothermal Infrared Spectroscopy to study lung 

cancer on glass substrates.  
 

Introduction 
 

In previous chapters I demonstrated how FTIR spectroscopy can be used to classify lung 

cancer and breast cancer cells from non-malignant lung and breast cells on glass substrates. 

In this chapter, I investigated another IR spectroscopy technique similar to FTIR spectroscopy 

called Optical photothermal infrared (O-PTIR) spectroscopy. O-PTIR spectroscopy is a 

recently developed technique that combines the functionalities of traditional FTIR and 

Raman spectroscopy. It is important to be aware of new developments in IR spectroscopy 

technology and how they could be utilised to aid in cancer diagnostics. This chapter 

investigates how O-PTIR combined with machine learning performs to classify lung cancer 

cells from non-malignant lung cells placed on glass slides. 

 O-PTIR spectroscopy uses a pump probe setup where the pump is a tuneable pulsed IR light 

source provided by a quantum cascade laser (QCL) and the probe is a short wavelength 

optical laser (Kansiz and Prater, 2020). The QCL is directed onto the sample and tuned to 

wavelengths across its range that corresponds to vibrational modes of the sample. As the IR 

radiation is absorbed local modulated heating of the sample occurs which causes subtle 

thermal expansion and refractive index changes. This is called the photothermal response. 

The optical probe and the QCL laser are made collinear, and the optical probe monitors the 

photothermal response. The changes in reflected optical probe beam intensity is monitored 

and demodulated through a lock-in amplifier to generate an IR absorbance spectrum. This 

technique enables submicron far-filed IR spectroscopy in reflection mode while generating 
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transmission like spectral quality. An advantage of O-PTIR spectroscopy in comparison to 

conventional FTIR spectroscopy is the higher spatial resolution of O-PTIR spectroscopy. 

Spatial resolution is determined by the Rayleigh criterion, spatial resolution = 0.61 

wavelengths/numerical aperture of microscope objective.  The higher spatial resolution of 

O-PTIR is because the spatial resolution is determined by the shorter wavelength optical 

beam and not the IR beam from conventional FTIR spectrometers (Paulus et al., 2021). As O-

PTIR spectroscopy produces an IR spectrum through the pump-probe system, how it 

interacts with the substrate is different to transmission FTIR spectroscopy. Therefore, I was 

interested to investigate how the glass substrate affects the spectra produced from O-PTIR 

spectroscopy.  

In the previous chapters glass coverslips were used as a substrate for classification of cancer 

cells with FTIR spectroscopy. The coverslips could be used to collect good quality spectra up 

to 1350 cm-1 (Dowling et al., 2020) (Rutter et al., 2019). However, coverslips are fragile and 

can be difficult to handle. There is the risk of ruining the samples through breakage of the 

coverslips especially if multiple analyses (spectroscopy, staining) are being conducted.  Glass 

slides (1mm thick) are easier to handle and much more difficult to break than coverslips but 

with standard FTIR spectroscopy only allow spectral measurements up to 2000 cm-1 (Pilling 

et al., 2017). O-PTIR interacts differently with the substrate because the IR beam is not 

travelling through the whole of the sample and substrate as is the case for transmission FTIR 

spectroscopy. O-PTIR might offer the possibility to obtain good quality spectra to a lower 

wavenumber than 2000 cm-1 using glass slide substrates.  

In this study O-PTIR was used to study the non-tumorigenic lung cell line NL20 and the two 

lung cancer cell lines A549 and CALU-1 placed on standard 1 mm thick microscope slides. 
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The cells were prepared as cytospins on the slides as was done for the FTIR spectroscopy 

experiments. The study aimed to assess whether O-PTIR spectroscopy could identify spectral 

differences between the three cell lines using the glass slides as a substrate. Combined with 

the use of O-PTIR was the machine learning method RF to classify the cells using the spectral 

data. To the best of my knowledge this study was the first to investigate the feasibility of O-

PTIR as a diagnostic tool for lung cancers using a glass substrate. Due to its use of an optical 

probe how the technique interacts with glass substrates is different than FTIR spectroscopy 

therefore it was important to assess how O-PTIR spectroscopy interacts with a glass 

substrate and how much information can be gained from the spectra.  

 

Aims 
1. To assess how much spectral information can be gained from cells placed on a glass 

substrate using O-PTIR spectroscopy. 

2. To assess if O-PTIR spectroscopy with a RF classifier could be used classify the normal 

lung tissue derived NL20 cell line from cancer cell lines A549 and CALU-1 prepared on 

a glass slide substrate.  
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Methods 
 

Cells 
 

For the research conduced in this chapter the cell line NL20, A549 and CALU-1 were. NL20 is 

derived from non-cancerous lung tissue while A549 and CALU-1 are derived from NSCLC. For 

detailed methodology on the culture of the cells refer to the relevant section in chapter 2.  

 

Sample preparation 
 

Cells were removed from the flasks as described above and resuspended in 0.9% saline at a 

concentration of 1 x 106 cells per 1 ml. 20 µl of the cell solution was applied to the glass 

slides by cytospin running at 900 rpm for 1 minute. The cells were immediately fixed by 

pipetting 100 µl of 4% PFA on to the sample area and incubating for 15 minutes. After the 

incubation period the excess PFA was poured off and the samples were washed once with 

saline and thrice with deionised water.  

 

O-PTIR Spectroscopy 

 

A mIRage O-PTIR micro-spectrometer from Photothermal Spectroscopy Corp. was used for 

this study. The IR pump beam was a dual range QCL covering the wavenumber ranges 3000-

2700 cm-1 and 1800-914 cm-1. The QCL operated at 100 KHz pulse rate and 100% power at 

2.5% duty cycle. The optical probe beam was a 532 nm laser operated at 28% power. The 

spectrometer was fitted with a room temperature silicon photodiode detector to record the 

reflected optical beam intensity. Spectra were collected at a spectral resolution of 6 cm-1 



180 
 

with a single scan per replicate spectra. Single spectra took 1 second to scan. Spectra were 

collected in reflection mode, but the output spectra are transmission like IR spectra because 

of the pump probe system. Background QCL spectra were collected once per day off a clean 

Kevley Low-E slide. The system was purged with dry nitrogen gas to minimise the inference 

from water vapour. Nine spectra were recorded for each individual cell measured to produce 

an average spectrum for each cell. 50 cells from each cell line were measured. 

Measurements were centred on the cell centre to gain spectral information from the whole 

of the cell. The spectra were obtained by Dr M. Kansiz at Photothermal Spectroscopy Corp. 

 

Pre-processing and data analysis 

 

A Savitzky-Golay filter was applied to the spectra to reduce noise with a window size of 11 

and a polynomial of 2. EMSC was used to normalise the spectra and remove baseline defects 

caused by changes in sample thickness. The average spectra were used as a reference for the 

EMSC. The average spectra for A549, CALU-1 and NL20 were produced by averaging the 

spectra average spectra of each measured cell from 50 cells of each cell line. The spectra 

were cropped to the regions 3000-2800 cm-1, 1780-900 cm-1, 1780-1300 cm-1 and the 

combined spectral regions of 1780-900 cm-1 & 3000-2800 cm-1 and 1780-1300 cm-1 & 3000-

2800 cm-1. 2nd derivative spectra were generated by applying a second derivative in the 

Savitzky-Golay filter.  

The cells were classified using the spectral data with a RF classifier containing 200 trees. 66% 

of the data was split into a training set and the remaining data was used as a test set using 

random sampling. The results of the classification were assessed by the AUC, CA, precision, 

recall and the confusion matrices.  
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Results 
 

The O-PTIR spectroscopy was first assessed for how much spectral information can be 

gained from cells placed on a standard glass slide (1 mm thickness). Figure 65 shows the 

mean O-PTIR spectra in the region 1800-900 cm-1 for A549, CALU-1 and NL20 from 50 cells of 

each line. For all three cell lines the spectra showed information up to 900 cm-1. But below 

1350 cm-1 individual bands cannot be seen and is dominated by a single large band. As O-

PTIR is a newer method of vibrational spectroscopy and little work has been done with using 

a glass substrate it is unclear how it interreacted with the glass to form the large single band 

below 1350 cm-1. The region 1800-1350 cm-1 contained the amide I, II and III bands that arise 

from vibrations of the functional groups in the amide bonds of proteins. Figure 66 shows the 

mean spectra 3000-2800 cm-1. This region contained peaks corresponding to CH2 symmetric 

and asymmetric stretching vibrations mostly from the fatty acid chains in lipids.  O-PTIR uses 

a QCL which measures spectra quickly in high quality in narrow ranges but cannot measure a 

broad spectrum covering the whole range at once like conventional FTIR spectroscopy. A 

dual chip QCL was used to allow both regions to be measured. Spectral differences can be 

seen across the three spectra in both regions measured. CALU-1 had a much higher 

absorbance in the amide I and amide III bands than A549 and NL20. In the amide II band 

A549 had the highest absorbance and had a higher absorbance in amide I and amide III than 

NL20. A549 had a higher absorbance than the other cells in the 2930 cm-1 and 2860 cm-1 

bands and lower absorbance at 2960 cm-1. In the 2nd derivative spectra in Figures 65 and 66 

further spectral differences were resolved. There were spectral differences in most of the 2nd 

derivative bands. The 2nd derivative spectra at 1300-900 cm-1 had a lot of noise causing it to 
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be uninterpretable. The noise is caused by the glass substrate absorbing a portion of the IR 

radiation. 

 

Figure 65 Average spectra in region 1780-900 cm-1 of A549, CALU-1 and NL20 from 50 cells of 

each cell line. 
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Figure 66 Average spectra in region 3000-2800 cm-1 of A549, CALU-1 and NL20 from 50 cells 

of each cell line. 
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Figure 67 Average 2nd derivative spectra in region 1780-900 cm-1 of A549, CALU-1 and NL20 

from 50 cells of each cell line. 

 

 

Figure 68 Average 2nd derivative spectra in region 3000-2800 cm-1 of A549, CALU-1 and NL20 

from 50 cells of each cell line. 
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Figures 69-71 shows PCA score plots of the spectra from the cells for all three cell lines. The 

plot used the regions of the spectra 3000-2800 cm-1, 1780-1300 cm-1 and the two regions 

combined. The CALU-1 cells had a clear separation from the A549 and NL20 cells in all three 

PCA. There was overlap between A549 and NL20 there was some separation of the two cells 

line that in the PCA for 3000-2800 cm-1.  The loading plots for the PCA showed strong 

positive features at 2926 and 2854 cm-1 which arise from CH and CH2 stretching vibrations 

mostly from lipids fatty acid chains.  
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Figure 69 PCA score of A549, CALU-1 and NL20 spectra in region 1780-1300 cm-1. PC1 = 80%, 

PC2 = 10%. 



187 
 

 

 

Figure 70 Top: PCA score of A549, CALU-1 and NL20 spectra in region 3000-2700 cm-1. PC1 = 

83%, PC2 = 13%. Bottom: loading plot of PC1 and PC2. 
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Figure 71 Top: PCA score of A549, CALU-1 and NL20 spectra in region 3000-2700 cm-1 and 

1780-1300 cm1- combined. PC1 = 63%, PC2 = 19%.  

 

A RF classifier was used to classify the three cell lines using IR spectra.  Classifications were 

performed using the spectral region 1780-1300 cm-1 and 3000-2700 cm-1 individually and 

combined. Classifications were also tested including the band at 1300-900 cm-1. Table 13 

below shows the classification metrics for the RF classifications with the different spectral 

regions. From these metrics it showed that the inclusion of the 1300-900 cm-1 band did not 

improve the classification. The classification using the region 1780-1300 cm-1 provided the 

best classification with an F1 score of 0.962. The 3000-2700 cm-1 region and combined 

regions also performed well with F1 scores of 0.940 and 0.948 respectively. RF classification 

using the 2nd derivative spectra was also tested. The classification metrics using the 2nd 

derivative spectra are shown in Table 14. The use of the 2nd derivative spectra improved the 

classification using the region 3000-2700 cm-1 and the combined regions with F1 scores of 
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0.955 and 0.963. The classification metrics using the 2nd derivative of the region 1780-1300 

cm-1 did not improve from the use of the normal spectra with all the metrics remaining the 

same. The confusion matrices below (Figures 72 and 73) show the percentages of how the 

cells were classified and misclassified. The classifications with the raw spectra and 2nd 

derivative spectra using the region 1780-1300 cm-1 and regions combined classified 100% of 

CALU-1 cells correctly. Using the 3000-2700 cm-1 region of the normal spectra, 97.8% of 

CALU-1 was correctly classified, the small number of misclassifications were attributed to 

1.5% A549 and 0.6% NL20. Using the 2nd derivative spectra 0.2% of CALU-1 was misclassified 

as A549. All instances where A549 was misclassified, it was as NL20 and all the 

misclassifications of NL20 was as A549. This corresponds to the PCA score plot where there 

is overlap between the A549 and NL20 clusters and the CALU-1 cluster is separated. The 

confusion matrices of the classifications including the 1300-900 cm-1 band (Figure 73) 

showed that its inclusion worsened the classification of A549 and NL20 cells.  
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Table 13 Classification results of RF classification of A549, CALU-1 AND NL20 using O-PTIR 

spectra. 

Spectral 

region (cm-1) 

AUC Classification 

accuracy 

F1 Precision Recall 

3000-2700 0.990 0.940 0.940 0.941 0.940 

1780-900 0.984 0.918 0.918 0.919 0.918 

1780-1300 0.997 0.962 0.962 0.962 0.962 

1780-900 & 

3000-2700 

0.985 0.920 0.919 0.919 0.920 

1780-1300 & 

3000-2700 

0.992 0.952 0.952 0.953 0.952 
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Figure 72 Confusion matrices for RF classification of A549, CALU-1 and NL20 using O-PTIR 

spectra. Left: 3000-2700 cm-1, middle: 1780-1300 cm-1, right: 3000-2700 cm-1 and 1780-1300 

cm-1 combined.  

 

 

Figure 73 Confusion matrices for RF classification of A549, CALU-1 and NL20 using O-PTIR 

spectra. Right: 1780-900 cm-1, left: 1780-900 & 3000-2800 cm-1. 
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Spectral 

region (cm-1) 

AUC Classification 

accuracy 

F1 Precision Recall 

1780-1300 0.996 0.962 0.962 0.962 0.962 

3000-2700 0.993 0.954 0.954 0.955 0.954 

3000-2700 & 

1780-1300 

0.997 0.968 0.968 0.968 0.968 

Table 14 Classification results of RF classification of A549, CALU-1 AND NL20 using 2nd 

derivative O-PTIR spectra. 

 

Figure 74 below shows the confusion matrices from the classification of A549, CALU-1 and 

NL20 using the 2nd derivative O-PTIR spectra. The confusion matrix from the classification 

using 3000-2700 cm-1 showed that using the 2nd derivative improved the classification of all 

three cell lines. For the classification with the combined region using the 2nd derivative 

spectra there was an improvement on the classification of both A549 and NL20. 
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Figure 74 Confusion matrices for RF classification of A549, CALU-1 and NL20 using 2nd 

derivative O-PTIR spectra. Left: 3000-2700 cm-1, middle: 1780-1300 cm-1, right: 3000-2700 

cm-1 and 1780-1300 cm-1 combined. 

 

Table 15 shows the ten features given the most importance by the RF classifier for the 

regions 3000-2700 cm-1, 1780-1300 cm-1 and the two combined. For the 3000-2700 cm-1 

there are features across all the bands within the ten features. Similarly in the region 1780-

1300 cm-1 there are features across the three bands amide I, II and III in the ten most 

important features. When the regions combined were used, features were included from 

both regions but with a majority of the features from the amide bands. This demonstrated 

that the RF classifier utilised features from across the spectra to perform the classifications. 

Table 16 show the features given the most importance by the classifier when the 2nd 

derivative spectra were used. The classifier gave importance to features across different 

bands in the 2nd derivative spectra as with the normal spectra. For the classification with the 

combined spectral regions, the majority of the ten features were also in the amide bands. 
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3000-2700 cm-1 1780-1300 cm-1 3000-2700 cm-1 & 1780-

1300 cm-1 

2940 1720 2844 

2982 1628 2842 

2864 1722 1628 

2938 1576 1492 

2832 1572 2846 

2834 1626 1506 

2866 1410 1594 

2826 1622 1424 

2944 1574 1502 

2942 1364 1382 

Table 15 Ten features given most importance by RF classifier used for classification of A549, 

CALU-1 and NL20 using O-PTIR spectra.  
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IR spectra were measured using three different instruments across the chapters in this thesis 

including a benchtop globar source spectrometer, a synchrotron source spectrometer and an 

O-PTIR spectrometer. Below figures 75 and 76 show 50 spectra of A549 de-noising pre-

processing measured using each of the three instruments to demonstrate the similarities 

and differences between the spectra produced by the three instruments. The bands in both 

regions are clear and defined across the three instruments and as demonstrated across the 

thesis can be used for classification of cancer cell lines from healthy tissue derived cell lines 

3000-2700 cm-1 1780-1300 cm-1 3000-2700 cm-1 & 1780-

1300 cm-1 

2800 1578 2936 

2804 1302 1302 

2802 1594 1352 

2916 1718 1590 

2864 1582 1436 

2818 1560 1602 

2936 1442 2862 

2918 1436 1696 

2820 1724 1582 

2830 1588 1438 

Table 16 Ten features given most importance by RF classifier used for classification of A549, 

CALU-1 and NL20 using 2nd derivative O-PTIR spectra. 



196 
 

and the cancer cell lines from each other. The SNR varied across the three instruments. The 

spectra measured with the globar source showed the most noise, followed by the 

synchrotron source and the O-PTIR with a QCL IR source showed the least noise in the 

spectra measured.  
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Figure 75 A549 IR spectra in the region 1350-1750 cm-1. A) 50 spectra from benchtop a 

spectrometer with a globar IR source. B) 50 spectra from a spectrometer with a synchrotron 

IR source. C) 50 spectra from an O-PTIR spectrometer with a QCL IR source.  
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Figure 76 A549 IR spectra in the region 2700-3000 cm-1. A) 50 spectra from benchtop a 

spectrometer with a globar IR source. B) 50 spectra from a spectrometer with a synchrotron 

IR source. C) 50 spectra from an O-PTIR spectrometer with a QCL IR source. 
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Discussion 
 

It was important to assess the bounds of the newer technology of O-PTIR spectroscopy for 

measuring cells on glass slides because there has been little research with how it interacts 

with substrates including glass. O-PTIR spectroscopy allowed for spectral information to be 

gained up 900 cm-1 but individual bands could be only resolved up to 1350 cm-1. This allows 

more of the spectra to be viewed than conventional FTIR spectroscopy when using a glass 

slide of 1 mm thickness which has a cut off from 2000 cm-1 in the spectra for what can be 

resolved (Rutter et al., 2018). Interestingly it is the same cut off point for O-PTIR 

spectroscopy when FTIR spectroscopy is used with thinner glass coverslips. O-PTIR 

spectroscopy enables the use of thicker more durable glass slides to gain the same 

information as FTIR spectroscopy when a glass coverslip is used. The glass slides are easier to 

handle because of their durability compared to fragile coverslips and equipment such as 

microscope stages are made to fit glass slides. The individual bands could not be seen in the 

fingerprint region between 1400-900 cm-1 but there was a broad band that varied in shape in 

all three cell lines. This region in conventional FTIR spectroscopy with a glass substrate is 

unresolvable noise because of absorption of IR radiation by the glass.  It is uncertain if this 

single band has any value regarding the biochemical profile of the cells. In an IR spectrum on 

a non-glass substrate this region would contain smaller bands that occur from vibrations in 

the functional groups of nucleic acids and carbohydrates (Diem, Melissa Romeo, et al., 

2004). The differences in cell thickness could be a reason for the variability seen in the band. 

If the glass contribution could be subtracted from the spectra more information could be 

gained from the fingerprint region, this could be an area for future research. Other studies 

that have analysed tissue sections of > 5 µm in thickness on glass substrates with O-PTIR 
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spectroscopy (Bakir et al., 2020). The spectra they obtained did not have glass contributions 

because the light source did not penetrate through the whole of the tissue to the substrate. 

This demonstrates sample thickness is an important factor to consider when using O-PTIR 

spectroscopy with glass substrates. The insensitivity to glass O-PTIR spectroscopy has when 

compared to FTIR spectroscopy is enabled by the reflection geometry of the technique. The 

IR beam hits the sample where it is attenuated and generates a photothermal effect which is 

detected by the visible beam probe. The probe detects the IR photothermal effect in 

reflection mode therefore it is not transmitted through the whole glass substrate as is the 

case for transmission FTIR spectroscopy so there is less interference from the glass. The 

ability to gain spectral information on both lipids and proteins while using standard glass 

slides gives O-PTIR promising potential for use in cancer diagnostics. While the spectra were 

collected in a reflection mode with the visible light probe, the resultant spectra are more like 

spectra from transmission FTIR spectroscopy without the scattering artefacts and distortions 

that are common with transflection FTIR spectroscopy.  

The spectra produced from O-PTIR spectroscopy were of high-quality spectra with little 

noise. The spectrometer used is a benchtop spectrometer. The high resolution and short 

measurement time was obtainable from the benchtop instrument due to the use of a QCL IR 

source which has submicron resolution. To achieve high resolution from a benchtop 

instrument is an important factor to consider for the translation of vibrational spectroscopy 

techniques to clinical diagnostics because it is benchtop spectrometers that will be used. An 

important consideration when using QCL IR sources is they do not measure a broad range 

and cannot capture the whole spectra as other light sources. The use of a dual chip QCL 

allowed collection of both the higher and lower wavenumber regions presented in the 

spectra. However, spectral measurements above 3000 cm-1 which contain the amide A band 
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were not captured. Despite missing the amide A band an excellent classification of the cells 

was achieved with high accuracy, precision and recall.  

The RF classifier performed well using the O-PTIR spectra to classify A549, CALU-1 and NL20. 

The band in the fingerprint region of 1300-900 cm-1 did not improve the classification results. 

This suggests that this band does not offer useful information on the biochemical properties 

of the cells despite the differences in the band between the cell lines. Therefore, I think that 

this band is not used for the classification of cells when using O-PTIR spectroscopy with a 

glass substrate. The region that provided the best classification using the raw spectra was 

1780-1300 cm-1 which contains bands that correspond to vibrations in the amide bonds of 

proteins (Diem, Melissa Romeo, et al., 2004). The protein content of cancer will differ greatly 

from non-cancerous cells and that of different cancers because the mutations that result in 

cancers will change the protein expression. The lipid bands of the region 3000-2700 cm-1 and 

the two regions combined also provided a good classification of the cells, but the amide 

bands classification produced the best performance. Combining the bands improved the 

classification from just using the lipid bands but was not superior to the amide bands alone.  

The loading plot for the PCs shown in Figure 70 demonstrated strong positive peaks at 2926 

cm-1 and 2854 cm-1 in the lipid region representing symmetrical stretching and asymmetrical 

stretching respectively in CH2 (Baker et al., 2014). A difference in lipid region between the 

same cell lines around 2850 cm-1 was also shown in spectra acquired using FTIR spectroscopy 

on the same cell lines in chapter 4. Both techniques picked up that there were differences in 

the lipid content of the three cell lines. The CALU-1 and A549 cells had a higher absorbance 

in the amide I band than NL20 which was also the case in the FTIR spectra of the same cell 

lines but the band for CALU-1 had a larger difference in absorbance to the other cell lines in 
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the O-PTIR spectra. A549 has a higher absorbance in both O-PTIR and FTIR spectra than NL20 

but CALU-1 has a lower absorbance than NL20 in the O-PTIR spectra and a higher 

absorbance in the FTIR spectra. These results may indicate that the two techniques can have 

different spectral signals. The classification using FTIR spectra (chapter 4) struggled to 

classify CALU-1 from A549 but using O-PTIR spectra improved the CALU-1 classification 

considerably while also improving the classification of NL20. The classification of A549 

provided a similar percentage of correctly identified cells. Using the 2nd derivative spectra 

improved the classification performance when using the region 3000-2700 cm-1 and the 

combined regions. This is consistent with the classification of cells in chapter 4 and 5 where 

the 2nd derivative of the FTIR spectra also improved the performance. While using the 2nd 

derivative of the 3000-2700 cm-1 improved the performance, the region 1780-1300 cm-1 still 

provided the strongest performance. However, using the 2nd derivative of the regions 

combined improved the classification over only using 1780-1300 cm-1. The improvements in 

the classification from using the 2nd derivative were only small improving the classification of 

the individual cell lines by <5%. As the classification performance was already high it would 

be difficult to improve classification much further. The difference in performance between 

the regions used was also small only differing by small percentages. The classification using 

the amide bands of the O-PTIR spectra provided a better classification of A549, CALU-1 and 

NL20 than the FTIR spectra using the same bands.  

While Raman measurements were not taken for this experiment the Mirage O-PTIR 

instrument can measure simultaneous Raman and IR spectra (Spadea et al., 2021). Having 

access to both types of spectra could be useful as they provide different but complementary 

biochemical information. For this experiment however the focus was on the quality of IR 

spectra available from cytological samples on glass and its comparison to FTIR spectra from 
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traditional sources as shown in other chapters. The IR spectra provided have been shown to 

produce a good classification themselves without the need for additional features from 

Raman spectroscopy. The use of two types of spectroscopies would have the drawback of 

making the analysis more complex requiring more data processing needed for two different 

types of spectra. For clinical translation the extra complexity needed for the data processing 

and analysis could be a hinderance as it would increase the time taken to analyse the sample 

and would require knowledge of both techniques. The IR spectra alone provided excellent 

classification of the cells and therefore in this case the use of Raman was not needed. 

Figures 75 and 76 showed spectra from the three IR sources used across this thesis including 

globar, synchrotron and QCL. The spectra from the globar and synchtotron sources produced 

more noise than the spectra from the QCL source. The QCL was also much faster in 

measuring spectra taking seconds to measure a spectrum while the other two sources took 

between 60-90 seconds to record a spectrum. The high SNR and speed of measurement is an 

advantage of QCL sources. The speed of measurement would especially be an advantage for 

clinical translation allowing more samples to be measured which could help the pathologist 

in triaging which patients samples need further investigation. The current disadvantages of 

QCL source spectrometers is that they are currently more expensive to buy because it is a 

newer technology and it has to be considered that they can only measure in a limited range 

of wavenumbers.  

One of the current problems for the translation of O-PTIR is that there is only one available 

instrument in production for the technique which is the Mirage O-PTIR spectrometer. This 

currently poses the difficulty of there being a lack of capacity for wide scale use of the 

technique. As O-PTIR has only been recently developed there is a wide scope of research to 
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find and develop the best ways of utilising this technology. From this experiment it has been 

shown that it is possible to be used with glass substrates for classification of lung cancer cells 

from non-malignant lung cells. O-PTIR spectroscopy can use thicker glass than transmission 

FTIR spectroscopy to obtain IR spectra in the same regions.  

 

Conclusions 
 

Using O-PTIR spectroscopy allows high quality IR spectra of cells to be measured on glass 

slides down to 1300 cm-1 because it has less interaction with the substrate. With O-PTIR 

spectroscopy the lung cancer cells could be classified from each other and NL20 with a high 

classification accuracy, precision and recall that was higher than with FTIR spectroscopy. The 

classification of the SqCC CALU-1 had the largest improvement using O-PTIR spectroscopy. 

Currently the biggest drawback of O-PTIR spectroscopy is that there is a small userbase with 

only a small number of instruments available.  

 

 

 

 

 
 

 
 

 

 



205 
 

Chapter 8: Discussion and future work. 
 

There is demand in cancer diagnostics for diagnostic tools that can complement and support 

current diagnostic techniques to improve the management of cancer. The increasing 

incidence of cancer in developed nations is putting further pressure on pathology 

departments. In the NHS, there is a target that 93% of patients should have an appointment 

with a cancer specialist two weeks after GP referral. In 2022 48% of NHS trusts in England 

failed to meet this target every month (NHS Statistics, Provider-Based Cancer Waiting Times 

for December 2022 – 23, 2023). This crisis in cancer management within the English NHS 

demonstrates the need for diagnostic methods that improve turnaround time to meet the 

two-week referral target to ensure patients are treated in a timely manner. The two cancers 

focused on for this research were lung and breast cancer. Lung cancer is largely diagnosed at 

later stages of disease which is linked to poor survival. Novel diagnostic techniques are 

needed for earlier lung cancer diagnoses to improve treatment options and survival. Breast 

cancer diagnosis has a problem of overdiagnosis from the screening program and accounts 

for a large number of cancer cases being diagnosed. Novel tools that help to diagnose cancer 

in an objective manner to accurately identify cancerous samples from non-cancerous 

samples would help to improve management of cancer cases. This thesis aimed to 

investigate methodologies for the use of IR spectroscopy with glass substrates for the 

classification of lung and breast cancers. IR spectroscopy allows classification of cancer and 

non-cancerous cells from their biochemical makeup. If IR spectroscopy techniques can be 

translated to clinical use, they could be a useful tool for cancer management. The research in 

this thesis aimed to bring research in the area of IR spectroscopy for cancer diagnostics by 
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showing how glass substrates can be used which would reduce the cost of the method and 

allow it to fit more easily within current practices in pathology laboratories.  

The first experimental chapter (chapter 3) focused on finding a methodology to prepare 

samples of cells on glass substrates. If FTIR spectroscopy is to be adopted for cancer 

diagnostics within clinical settings it must be minimally disruptive. The aim of the research 

was to test smear and cytospin as preparation methods for FTIR spectroscopy analysis of 

cells on glass coverslips. Also evaluated were two methods of fixation methanol or 4% PFA. 

These preparation and fixation methods are all commonly used to prepare cytological 

samples for current diagnostics therefore their use for FTIR spectroscopy analysis would 

have negligible disruption on current workflows.  

Both preparation methods could be used to produce samples quickly and both produce high 

quality spectra. The cytospin method was found to allow for measurement of the cells more 

easily because the cells are deposited in a smaller area than the smear which spreads the 

cells across a large area. The cells being concentrated in a smaller area when prepared as a 

cytospin meant there was less time finding cells on the coverslip and reduced measurement 

time. The quality of a smear is more variable on the experience of the practitioner therefore 

cytospins provide more consistent quality of samples that are easily reproducible. The 

cytospin required a centrifuge to produce the samples while the smear did not need any 

specialised equipment. For pathology laboratories in hospitals in developed areas of the 

world this is not a problem because they will already be well equipped with the equipment 

needed to produce cytospins. However, in areas that are remote and have less developed 

health infrastructure, the smear could still be used if the equipment for cytospin preparation 

is not available.  
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4% PFA was found to be the preferred method for FTIR spectroscopy analysis on the glass 

substrates because it maintained the integrity of the lipid and protein components of the 

cells. The lipids and proteins are the only biochemical groups which can be measured using a 

glass substrate because most of the fingerprint region is lost from absorption of IR radiation 

by the glass. Therefore, it is important to reduce any further loss of information. The 

methanol fixation while fixing the sample faster removed lipid content from cells because it 

is an alcohol. The conclusion of this research was that cytospin with 4% PFA fixation was the 

most appropriate method to prepare cells on glass for FTIR spectroscopy measurement and 

analysis.  

Future work would evaluate the proposed preparation method at a larger scale within 

pathology laboratories. It cannot be truly known how the method fits into current workflows 

until it is tested with a large number of samples in the intended environment. Ideally it 

should cause minimal disruptions because the methods are currently for sample preparation 

for other diagnostic techniques.  

Chapter 4 aimed to investigate if the methodology for sample preparation developed in 

chapter 3 could be used for the classification of NSCLC cells from non-malignant lung cells. 

The adenocarcinoma cell line A549, SqCC cell line CALU-1 and the non-malignant lung cell 

line NL20 were classified from FTIR spectra using a RF classifier. The RF classifier was 

selected because it handles data with many features well and is less prone to overfitting. 

Previously, there has been little research using FTIR spectroscopy with samples prepared on 

glass coverslip substrates to classify single lung cancer cells from non-malignant lung cells. 

The results showed that A549 and CALU-1 could be classified with high accuracy, precision, 

and recall from NL20. The region 3500-2700 cm-1 containing the amide A band and lipid 
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bands was demonstrated to provide a better classification than the region 1800-1350 cm-1. 

The classification was further improved by using the 2nd derivative spectra. The methodology 

also allowed classification of A549 and CALU-1 from each other. These results show that the 

methodology has potential to separate cancerous samples from non-cancerous samples and 

help to inform the typing of NSCLC.  

This work used cell lines to test the feasibility of the proposed methodology. Future work 

will test the methods with non-cancerous lung cells and lung cancer cells from patients. It 

would have to expand the research to test different types and subtypes of lung cancer to 

assess how well the methodology performs with different types of lung cancer. It will also be 

important in future work to test the methodology with different stages of lung cancer to 

assess if it can be used for the diagnosis of early stages of lung cancer. Lung cancer has poor 

survival in later stages, if FTIR spectroscopy could be used in earlier diagnosis of lung cancer 

it would improve the management of lung cancer. 

Chapter 5 aimed to expand the methodology to assess if it could be applied to multiple 

cancers by testing it with breast cancer. The invasive ductal carcinoma cell line BT549, non-

invasive ductal carcinoma line MCF7 and healthy breast tissue derived line MCF10A were 

used for this research. The results demonstrated that the methodology could be used for the 

classification of breast cancer cells from non-malignant breast cells. Also demonstrated was 

the classification of invasive breast cancer cells from non-invasive breast cancer cells. The 

region 3500-2700 cm-1 provided a better classification than 1800-1350 cm-1 of the breast 

cancer cells like was also demonstrated for lung cancer cells. The spectra used in chapter 5 

were collected using a benchtop spectrometer with a globar IR source while the spectra 

used in chapter 4 were collected using a spectrometer with a synchrotron IR source. It was 
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demonstrated that the methodology is applicable with both synchrotron and benchtop 

spectrometers.  

To expand this research in the future as with the lung cancer, breast cancer cells and breast 

cells from patients would have to be measured using the methodology. The research 

showed the methodology can be applied to multiple types of cancer therefore future work 

would continue to test the methodology with other solid cancers.  

Chapter 6 aimed to assess the feasibility for a methodology of using FTIR spectroscopy with 

glass substrates for CTC identification. To the best of my knowledge there has been no 

research published previously investigating FTIR spectroscopy for CTC detection. Blood was 

doped with the lung cancer cell lines A549 or CALU-1. Areas of the samples containing 

cancer cells and leukocytes were measured with FTIR spectroscopy. A RF classifier was 

trained using spectra from A549 or CALU-1 cells and leukocytes. The maps were colored by 

the RF classier based on the probability of each tile to contain spectra from a lung cancer 

cell. The colored maps demonstrate that the A549 and CALU-1 cells could be accurately 

identified from the leukocytes. The identity of the cancer cells was further confirmed by a 

Giemsa stain which demonstrated how the FTIR spectroscopy can be used in conjunction 

with current cytological techniques.  

This research has demonstrated the feasibility of identifying cancer cells in blood. Future 

work must test it with CTCs from patients. In theory this method should work with actual 

CTCs because they, like the cancer cells from the cell lines, will have a hugely different 

biochemistry from blood cells. Another major step for future work will be testing the 

methodology with isolation techniques. In order to generate enough areas containing cancer 

cells in the samples to produce enough measurements for a robust training dataset many 



210 
 

more cancer cells were added to the blood than would be found in the blood of a patient. 

There are very few CTCs in blood relative to the blood cells with numbers estimated being 

between 1 and 50 per 7.5 ml, therefore, an isolation step will be needed to enrich the CTCs. 

There are many different isolation methods that have been researched, therefore multiple 

methods would have to be tested to find which isolation method would work best in 

conjunction with the FTIR spectroscopy identification. Future research should also 

investigate measuring spectra using an instrument fitted with an FPA detector to improve 

the measurement speed. The use of single point measurements make obtaining the maps 

time consuming as each spectrum took around 90 seconds to collect. An FPA detector would 

allow imagining of the whole sample area produced from a cytospin but with the MCT 

detector it was limited to measuring small area because of the time it takes to collect the 

measurements.  

Chapter 7 investigated the use of O-PTIR for the classification of A549 and CALU-1 cells from 

NL20 on 1 mm thick glass slides. The first aim of the chapter was to assess what spectral 

measurements of cells could be gained using O-PTIR with a glass slide substrate. It was found 

that with O-PTIR spectroscopy, spectra of cells can be recorded up to 1350 cm-1 on glass 

slides. When using conventional FTIR spectroscopy with glass slides the spectra is cut off at 

2000 cm-1. This is an advantage for O-PTIR spectroscopy because of the ease of handling the 

glass slides in comparison to the coverslips. The second aim was to investigate if the O-PTIR 

spectra were useful for the classification of A549, CALU-1 and NL20. The RF classifier using 

the O-PTIR spectra classified the cells with high accuracy and had better classification of the 

cells than with the FTIR spectra used in chapter 4 for the classification of the same cell lines. 

The biggest current disadvantage of O-PTIR is that there is a small userbase of the technique 

because only recently it has been developed. There are a limited availability of instruments 



211 
 

and people who know how to use them, which would be a problem if every pathology 

laboratory required use of such an instrument.  

Future work expanding on the research from chapter 7 would use O-PTIR spectroscopy to 

analyse cytology samples from patients adapting the methodology shown here. This 

methodology can be expanded to measure other types of cancer. Another area of future 

work is to see if the glass contribution can be subtracted from the fingerprint region 1300-

900 cm-1 and whether this would provide biochemical information in the resulting bands on 

nucleic acids and carbohydrates.  

All the research conducted in this thesis used cell lines which is a limitation of this research. 

Cell lines do not have the heterogeneity that cells obtained from patients would. They can 

be variation in the same type of tumour across patients and across stages of the disease. 

Even within a single tumour there can be intra-tumour heterogeneity. The research in this 

thesis was to demonstrate the feasibility of the proposed methods. For translation of the 

methods the future stages of research will need to use cancer cells obtained from patients 

from a range of subtypes and stages of the disease. A difficulty in progressing the research to 

patient samples will be collecting enough samples of the different types and stages of the 

cancers to generate robust training data. It may be possible to use cell lines as training data 

for initial identification of cancer cells in cytology samples, but it would not suffice for 

specific classification of type and stage.  

To conclude, this thesis has addressed the aims set out in each chapter. The research 

demonstrated the feasibility of preparing cytology samples on glass using a cytospin and PFA 

fixation for measurement by FTIR spectroscopy. The proposed methodology should be 

minimally disruptive to current pathology laboratory workflows using the suggested 
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preparation methods, and a substrate that is widely available and affordable. The spectra 

collected from the methods were of high quality and allowed classification of cancer cells 

from non-malignant cells with high accuracy using a RF classifier. Additionally, the methods 

have shown potential in classifying different types of lung and breast cancers from each 

other. Also presented was a novel methodology for the identification of cancer cells in blood 

with FTIR microspectroscopy that showed the feasibility of FTIR spectroscopy as a tool for 

CTC analysis. The proposed methodologies can be used in conjunction with current 

diagnostic methods because of the label-free non-destructive nature of FTIR spectroscopy 

combined with the use of a glass substrate.  

 

 

 

Appendices 
 

Appendix 1. TNM classification of lung cancer 
 

The TNM staging system is used to define the extent of the cancer and provide a prognosis 

to guide treatment. There are three components to TNM staging: the extent and features of 

the primary tumour (T), lymph node involvement (N) and extent of metastasis (M).  

Primary tumour (T) 

Category Descriptor  

Tx Tumour that is proven histopathologically 
but cannot be assessed using imagining 
modalities.  

T0 No evidence of a primary tumour 

Tis Carcinoma in situ  

T1 Size: <3 cm, local invasion: none, location: 
in or distal to the lobar bronchus. 

T2 Any of the following: 
Size: >3 cm but <5 cm, local invasion: 
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visceral pleura, airway location: invasion of 
the main bronchus or presence of 
atelectasis or obstructive. 

T3 Any of the following: 
Size: >5 cm but <7 cm, local invasion: direct 
invasion of the chest wall, parietal pleura, 
phrenic nerve, parietal pericardium. 
Separate tumour nodule(s) in the same lobe 
of the primary tumour. 

T4 Any of the following: 
Size: >7 cm, airway location: invasion of the 
carina or trachea, local invasion: diaphragm, 
mediastinum, heart, great vessels, 
recurrent laryngeal nerve, oesophagus or 
vertebral body. Separate tumour nodule(s) 
in an ipsilateral lobe of the primary tumour. 

 

 

 

 

 

Lymph nodes (N) 

Category Definition 

Nx Regional lymph nodes cannot be evaluated. 

N0 No regional lymph nodes involved. 

N1 Involvement of ipsilateral parabronchial 
and/or ipsilateral hila lymph nodes.  

N2 Involvement of the ipsilateral mediastinal 
and/or subcarinal lymph nodes. 

N3 Involvement of any following lymph nodes: 
contralateral mediastinal, contralateral 
hilar, ipsilateral or contralateral scalene or 
supraclavicular nodes.  

 

Distant metastasis (M) 

Category Definition 

M0 No distant metastasis.  

M1 Presence of distant metastasis. 
Subdivisions: 
M1a: separate tumour nodule(s) in a 
contralateral lobe to that of primary 
tumours. 
M1b: single extra-thoracic metastasis. 
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M1c: multiple extra-thoracic metastasis to 
one or more organs.  

 

Stage group 

Stage TNM categories 

Occult carcinoma  (TxN0M0) 

Stage 0 (TisN0M0) 

Stage IA1 (T1aN0M0) (T1(mi)N0M0) 

Stage IA2 (T1bN0M0) 

Stage IA3 (T1cN0M0) 

Stage IB (T2aN0M0) 

Stage IIA (T2bN0M0) 

Stage IIB (T (1–2)N1M0) (T3N0M0) 

Stage IIIA (T(1–2)N2M0) (T3N1M0) (T4N(0–1)M0) 

Stage IIIB (T(1–2)N3M0) (T(3–4)N2M0) 

Stage IIIC (T(3–4)N3M0) 

Stage IVA (Any T, Any N, M1a,b) 

Stage IVB (Any T, Any N, M1c) 
 

 

 
 

Appendix 2. TNM staging of breast cancer. 
 

Primary tumour (T) 

Category Descriptor  

Tx The primary tumour cannot be evaluated. 

T0 No evidence of a primary tumour. 

Tis Carcinoma in situ: DCIS or Paget’s 

T1 Size: ≤2 cm 
4 substages based on tumour size: 
T1mi: ≤ 1mm 
T1a: >1 mm but ≤5 mm 
T1b: >5mm but ≤1 cm 
T1c: >1 cm but ≤2 cm 

T2 Size: >2 cm but <5 cm 

T3 Size: >5 cm 

T4 Any of the following: 
T4a: tumour has grown into the chest wall. 
T4b: tumour has grown into the skin. 
T4c: tumour has grown into the chest wall 
and skin. 
T4d: inflammatory breast cancer. 
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Lymph nodes (N) 

Category Definition 

Nx Regional lymph nodes cannot be evaluated. 

N0 No regional lymph nodes involved or areas 
of cancer smaller than 0.2 mm in lymph 
nodes. 

N1 Presence of cancer in 1-3 axillary lymph 
nodes and/or mammary lymph nodes. 
Cancer in the lymph node is >0.2 mm but ≤2 
mm.  

N2 Presence of cancer in 4-9 axillary lymph 
nodes or it has spread to internal mammary 
lymph nodes but not the axillary lymph 
nodes.  

N3 Presence of cancer in ≥10 axillary lymph 
nodes and/or presence under the clavicle or 
collarbone. Cancer may have also spread to 
the internal mammary lymph nodes.  

 

 

 

Distant metastasis (M) 

Category Definition 

MX Distant spread cannot be evaluated. 

M0 No distant metastasis.  

M1 Presence of distant metastasis in another 
part of the body. 
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Appendix 3. Publications 
 

First author 

 

Dowling, Lewis M., et al. “Optimization of Sample Preparation Using Glass Slides for Spectral 

Pathology.” Applied Spectroscopy, vol. 75, no. 3, SAGE Publications Inc., Mar. 2021, pp. 343–

50, doi:10.1177/0003702820945748. 
 

Contributing author 
 

Kansiz, Mustafa, et al. “Optical Photothermal Infrared Microspectroscopy Discriminates for 

the First Time Different Types of Lung Cells on Histopathology Glass Slides.”  

Analytical Chemistry, vol. 93, no. 32, American Chemical Society, Aug. 2021, pp. 11081–88, 

doi:10.1021/ACS.ANALCHEM.1C00309. 

 

Xie, B., Njoroge, W., Dowling, L. M., Sulé-Suso, J., Cinque, G., & Yang, Y. (2022). Detection of 

lipid efflux from foam cell models using a label-free infrared method. The Analyst, 147(23). 

https://doi.org/10.1039/D2AN01041K 
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requirements for studies with a favourable opinion including:  

• Notifying the relevant FREC of substantial amendments to an approved study 
• Notifying the relevant FREC of issues which may have an impact upon ethical opinion 

of the study 
• Progress reports 
• Notifying the relevant FREC of the end of the study 

 
 
Documents reviewed 
The documents reviewed were: 
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Document  Version  Date 

All documents submitted with MH-210190 including revisions   

 

Yours sincerely, 

 

Dr Gary Moss 

Chair  
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