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Abstract

The present knowledge of stellar evolution is still limited today by large uncer-

tainties that derive from the complex multi-dimensional processes occurring

in stars. Among them, the turbulent motions of the stellar fluid control the

size and evolution of convective zones, deeply affecting the structure and evo-

lution of the star. The weaknesses of the current theories include determining

the extent of the convective regions, the amount of mixing at the convective

boundaries, and the exact evolution and death of convection.

Convection and its effects are normally included in one-dimensional stellar evo-

lution models by means of simplifying prescriptions, that need to be calibrated

from observations or numerical simulations to correctly represent the stellar

physics. Hydrodynamic models of stars can improve these prescriptions by

studying realistic multi-D processes in great detail, but only for a short time

range compared to the entire stellar evolution.

In this thesis, I present the results from three new sets of 3D hydrodynamic sim-

ulations, each exploring a different stellar environment, with the aim of study-

ing turbulent motions and nucleosynthesis in convective regions of evolved

massive stars. The analysis has been performed by studying both the dynam-

ics of the fluid and the evolution of the chemical abundances. The results

show that late convective phases of massive stars present very strong bound-

ary mixing, but the overshooting prescription calibrated from the new 3D data

displays a new-found convergence towards 1D models results. The analysis of

the abundances and their evolution shows the production and consumption by

nuclear reactions, in addition to the transport of species and their dispersion

across the layers.

These conclusions help answer some open questions in stellar evolution the-

ory, and they can have an important impact on our understanding of stellar

structure and evolution.
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1 Introduction

The term “massive stars” is typically used to refer to stars with mass larger

than ∼ 8 M⊙ (Smartt et al., 2009). These objects are of great interest for as-

trophysics, since their large luminosity makes them easy to observe, and they

host or take part in a wide range of astrophysical processes, such as nuclear

burning and nucleosynthesis, supernova explosions, black hole formation, in-

teraction with other stars and planetary systems.

Therefore, it is crucial that we have a precise understanding and reliable pre-

dictions of how massive stars form, evolve and die. Unfortunately, at the

moment our knowledge of the physics of massive stars is undermined by a lack

of both individual and comprehensive understanding of the many phenomena

that take place in stellar interiors. This ignorance results in severe limitations

on the predictive power of the stellar evolutionary models.

In this chapter, I will summarize the properties and evolutionary history of

massive stars, including their final fate. I will also introduce the topic of con-

vection in massive stars, and the way observations can help improve theoretical

research.

1.1 Massive stars and their evolution

Stars are self-gravitating masses of gas: their own gravitational force holds

themselves together. Specifically, gravity tends to compress the star, while the

force arising from the pressure gradient opposes this compression (see Phillips,

1994). During the formation phase of a star, a mass of gas, mostly molecular

hydrogen, is collapsing under its own gravity. The virial theorem relates the

potential and kinetic energy of a system of particles, and it states that when

the system is contracting half of its gravitational potential is converted into

the kinetic energy of its individual components, while the other half is radiated
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away. This causes the hydrogen molecules to gain kinetic energy and therefore

increase their temperature, until they are dissociated into hydrogen atoms and

later into ions, and when the temperature exceeds 107 K nuclear hydrogen-

burning is enabled in the stellar core, converting hydrogen into helium. The

burning becomes possible because the high energy of the nuclei allow them

to overcome the repulsive electromagnetic barrier between each other, thanks

to the quantum-mechanical tunnelling effect. The thermonuclear fusion that

converts hydrogen into helium releases enough energy to oppose the gravita-

tional force and the collapse halts. The star is now in hydrostatic equilibrium,

in a phase known as “zero age main sequence” or ZAMS. I show in Fig. 1.1

the stellar evolution in a Hertzsprung-Russell diagram of stars with different

initial mass from the non-rotating, solar-metallicity models of Ekström et al.

(2012): the starting point of these tracks represents the ZAMS.

All stars spend most of their life burning hydrogen during the main sequence

phase. The amount of time it takes them to complete their nuclear burning, i.e.

their lifetime, is determined primarily by their mass (see e.g. Ekström et al.,

2012). Massive stars contain more hydrogen than low-mass stars, but they

also burn it much faster, therefore their lives are shorter (in fact, the stellar

luminosity scales approximately as L ∼ M3, Phillips, 1994). This is because

more massive stars reach higher temperatures in their core and the nuclear

rates for hydrogen burning are strongly temperature dependent: ∼ T 4 for

low-mass stars and ∼ T 18 for intermediate and massive stars (Phillips, 1994).

Indicatively, non-rotating stars of 1 M⊙ live for 10 Gyr, 10 M⊙ for 20 Myr,

100 M⊙ for 3 Myr (Maeder & Meynet, 1989).

The fate of the star after the main-sequence phase also depends on the stel-

lar mass. The larger the mass, the more advanced burning stages the star can

undergo. When stars exhaust hydrogen in their core, which is now mostly com-

posed of helium, the energy released from the nuclear reactions cannot balance

the gravitational collapse of the star any longer, so the star begins contracting

and it leaves the main sequence (see Salaris & Cassisi, 2005). While the in-
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Figure 1.1: Hertzsprung-Russell diagram for stellar models with different initial
mass, zero rotation and solar metallicity. Adapted from Ekström et al. (2012).



4

ner layers are contracting, the temperature of the hydrogen shell immediately

above the helium core starts increasing, and therefore nuclear reactions occur

again. This release of energy heats the outer layers of the star and determines

their expansion, increasing the luminosity but decreasing the surface temper-

ature of the star. The star then enters the red-giant phase. If the stellar mass

is smaller than 0.5 M⊙ this is the end of its life: its outer envelope is expelled

and it ends its life as a helium white dwarf. However, the lifetime of such small

stars is expected to be longer than the age of the Universe, therefore probably

no star has reached this phase yet.

If the stellar mass is larger than 0.5 M⊙, the central temperature keeps rising

until at 108 K helium is ignited in the core, with helium converted into carbon

and oxygen. If the mass is < 2 M⊙ the ignition takes place explosively in the

degenerate core, and this is known as a “helium flash”, with the possibility of

an off-centre ignition (see e.g. Mocák et al., 2010). Otherwise, for more massive

stars the core is not degenerate so the helium ignition does not exhibit a flash.

Now the nuclear energy released in the core counterbalances the gravitational

pressure once more, so the star is again in a stable phase burning helium in

its core and hydrogen in a thin shell surrounding the core. When this phase is

over, the star is left with a carbon-oxygen core. IfM ≲ 8 M⊙, the star does not

reach a temperature sufficient to ignite carbon in the core, so the last burning

phase is a double-shell burning phase that takes place in a helium and a hy-

drogen shell above the core. This is known as the “asymptotic-giant-branch”

(AGB) phase. Finally, the star dies as a carbon-oxygen white dwarf, expelling

its envelope as a planetary nebula, and enriching the interstellar medium with

freshly-synthesized elements.

On the other hand, if the star is massive (M ≳ 8 M⊙), after the helium-

burning phase the core temperature approaches 5 × 108 K and triggers the

following burning phase, carbon burning. As the evolution proceeds, neutrino

losses start replacing radiation as the main energy transport mechanism, be-

coming dominant for T > 5 × 108 K (Arnett, 1996) i.e. since carbon ignition
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Figure 1.2: “Onion-ring” structure of a pre-supernova star: on the left, a repre-
sentation of the entire star; on the right, the shell-burning regions surrounding
the inert iron core, a volume contained entirely within the core shown on the
left. Figure taken from Shu (1982).

(see Limongi et al., 2000), determining an acceleration in the stellar evolution.

Stars above 8 M⊙ evolve following all the advanced burning stages after carbon

burning, including neon burning (T > 109 K), oxygen burning (T > 2 × 109

K) and silicon burning (T > 3 × 109 K) (see Salaris & Cassisi, 2005). This

evolution is so rapid that the outer layers do not have time to adjust to the

changes in the stellar interiors. Therefore, it is extremely difficult to constrain

these phases with observations. At this point, the star presents the typical

“onion-ring” structure, where the core is surrounded by concentric shells of

different chemical composition, that can host different shell-burning stages.

This is shown in Fig. 1.2, where the shell-burning structure of a massive star

is schematically represented; it is important to note the actual dimensions of

the core and the shells compared to the rest of the star, which consists mostly

of an inert hydrogen envelope.

At the end of silicon burning, the star achieves the so-called “nuclear statisti-
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Table 1.1: The nuclear burning stages of a 25 M⊙ star and relevant proper-
ties: nuclear burning time-scale, central temperature and density, main ashes.
Adapted from Phillips (1994), who takes the data from Rolfs & Rodney (1988).

Stage Time-scale Temperature Density Products
(K) (kg m−3)

Hydrogen burning 7 Myr 6.0× 107 5× 104 Helium
Helium burning 0.5 Myr 2.3× 108 7× 105 Carbon, oxygen, neon
Carbon burning 600 yr 9.3× 108 2× 108 Neon, sodium, magnesium
Neon burning 1 yr 1.7× 109 4× 109 Oxygen, magnesium, silicon

Oxygen burning 6 months 2.3× 109 1× 1010 Magnesium to sulphur
Silicon burning 1 day 4.1× 109 3× 1010 Iron-peak elements

cal equilibrium” (NSE), when all nuclear reactions are perfectly balanced with

their inverses, without generating any net product (a small flow can still occur

but it is much smaller than either the forward or reverse rate, see Weaver,

Zimmerman & Woosley, 1978). The NSE marks the end of the evolution of a

massive star, followed only by its conclusive fate. I summarize in Table 1.1 the

burning stages of a massive star alongside their most important properties.

1.2 The fate of massive stars

I mentioned that stars with M ≲ 8 M⊙ end their lives as white dwarfs af-

ter their nuclear burning phases. The fate of more massive stars is different.

Silicon burning produces elements up to the iron peak as ashes, resulting in

the formation of an iron core. These elements cannot undergo further nuclear

burning, because they have the largest binding energy per nucleon among all

elements (Fewell, 1995), as shown in Fig. 1.3. This means that the nuclear fu-

sion of the iron-peak elements requires more energy than that released (except

for neutron capture processes, which are not energetic enough to support the
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star), making it impracticable and marking this as the endpoint of stellar nu-

clear burning. Initially, the iron core can sustain the star thanks to the pressure

coming from the gas of degenerate electrons, a state of matter characterized

by such high density that the greatest contribution to its pressure is given by

the Pauli exclusion principle. However, as the iron core mass grows larger,

the degenerate electron gas becomes increasingly relativistic, until it reaches

the ultrarelativistic limit and cannot sustain the core any longer. This hap-

pens when the core mass reaches the “Chandrasekhar limit” (Chandrasekhar,

1931), calculated by equating the pressure from the relativistic degenerate elec-

tron gas to the one from the gravitational potential in hydrostatic equilibrium

state, and obtaining MCh = 5.73 µ−2
e M⊙ (Chandrasekhar, 1935), where µe

is the mean molecular weight per electron. In case of an iron core, made of

heavy nuclei with approximately two nucleons per electron, µe = 2 and there-

fore MCh = 1.4 M⊙. Beyond this limit, the iron core starts collapsing and

other physical processes take over.

The extremely high temperatures reached in the collapsing core (T > 7× 109

K) trigger the photodisintegration of the iron nuclei into α-particles, and the

latter into free neutrons and protons (see Phillips, 1994), according to:

γ +56 Fe → 13 4He + 4n (1.1)

γ +4 He → 2p+ 2n (1.2)

The extreme density in the core (ϱ ∼ 109 g cm−3) also compresses the proton-

electron gas in the core and enables the conversion of protons into neutrons

(“neutronization”) according to electron capture:

e− + p → n+ νe (1.3)

The net effect is that the iron core is converted into a non-degenerate gas

of neutrons, which becomes degenerate as density increases. The free neu-

trons do not decay into protons as it happens in normal conditions, because
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the high density and low kinetic energy of the gas prevent the release of free

electrons. Both photodisintegration and neutronization are endothermic pro-

cesses, the former absorbing kinetic energy to unbind nuclei and the latter

releasing neutrinos that carry away the kinetic energy. This reduces the pres-

sure and accelerates the gravitational collapse of the stellar core (see Weaver

et al., 1978; Langanke et al., 2003).

When density gets larger than 1014 g cm−3, a value comparable with the nu-

clear density, the neutron gas becomes incompressible due to the repulsive

component of the strong interaction at short distances, and the core collapse

halts (see Arnett, 1996). The fate of the core now depends on its mass: if

this is smaller than the limit of stability for a degenerate neutron gas, the core

ends its life as a neutron star, whose structure can be seen as an enormous

nucleus of neutrons; otherwise, the collapse continues and the core, subject to

extreme pressure, collapses into a black hole. This limit of stability between

neutron stars and black holes, known as the “Oppenheimer-Volkoff mass” (Op-

penheimer & Volkoff, 1939), ranges between 1 - 3 M⊙, but is very difficult to

constrain due to uncertainties in the neutron-gas equation of state at such high

density.

I have described so far the fate of the massive-star core, but we shall now see

what happens to the rest of the stellar structure. While the core is collapsing,

the external layers are contracting as well. But when core collapse halts, these

layers impact with the incompressible matter and this produces a shockwave

(Colgate et al., 1961; Bethe et al., 1979). In the past, it has been thought that

this “core-bounce” mechanism would be sufficient to eject the entire stellar

envelope, in a so-called “prompt explosion” scenario that would result in the

production of type-II supernovae. However, today we know it is difficult to

achieve a successful explosion with such mechanism, because the energy of the

shockwave is largely dissipated by the photodisintegration of material through

the infalling layers and the emission of neutrinos (Myra & Bludman, 1989;

Bethe, 1990).
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For these reasons, alternative processes have been suggested in order to ex-

plain how core-collapse supernovae are produced. Colgate & White (1966)

introduced the “neutrino-powered” explosion mechanism, which is commonly

recognised today as one of the most important sources of energy for super-

nova explosions. Due to the high density of the collapsing core ϱ ∼ 1014 g

cm−3, the neutrinos generated by the neutronization have a mean free path

much smaller than the core radius, so scattering processes are very frequent

and neutrinos are trapped inside a “neutrinosphere”, up to the point where

ϱ ∼ 1011 g cm−3 and the interaction with matter becomes negligible, allow-

ing them to finally escape the star. This extremely energetic neutrinosphere

is able to revive the shockwave, and even a small fraction of its energy can

sustain the explosive event of a core-collapse supernova. However, the details

of how these processes actually occur in stars are still largely unknown, due to

uncertainties associated with the interplay between neutrinos, convection, the

explosion mechanisms and other physical processes (Liebendörfer et al., 2001;

Woosley & Janka, 2005; O’Connor & Ott, 2011). Numerical simulations of

supernova explosions are currently contributing to shed light on these aspects

(Lentz et al., 2015; Janka, Melson & Summa, 2016; Burrows & Vartanyan,

2021).

Finally, it is also possible that sometimes these mechanisms are not successful

and an explosion does not take place. In these cases, the core mass continues

accreting until the Oppenheimer-Volkoff limit is exceeded and the entire star

collapses into a black hole.

1.3 Stellar convection

There is a large number of multi-dimensional processes that shape the life of

massive stars; these include rotation, magnetic fields, mass loss, and convec-

tion. Among these mechanisms, the primary focus of my work is on stellar
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convection.

During most of the stellar lifetime, energy is produced in the core due to

nuclear reactions, then it is transported across the star and finally released

through the surface in the form of radiation. It is interesting to consider how

this energy is transported. Two processes are responsible for energy transport

in stars: radiative diffusion and convection (see Kippenhahn et al., 2012). The

third fundamental mode of heat transfer, i.e. thermal conduction, is very inef-

ficient during stellar evolution; however, it can play an important role in other

high-density stellar environments, such as the degenerate gas of electrons in a

white dwarf, or conduction in planets.

Which energy transport mechanisms dominates in a stellar region depends on

the properties of the fluid stratification. Convection can only occur in the pres-

ence of a force field and a strongly stratified medium. In stars, the force field

is provided by gravity, while the temperature gradient indicates the strength

of the stratification. For these reasons, the structure of a star is dependent

on its mass. During the main sequence, low-mass stars (like the Sun) have

radiative cores and convective envelopes, while more massive stars (M ≳ 1.3

M⊙) have convective cores and radiative envelopes (see Clarke & Carswell,

2007). This is because, even though all stars burn hydrogen in the core during

the main sequence, the burning takes place through the proton-proton (pp)

chains in low-mass stars and via the carbon-nitrogen-oxygen (CNO) cycle in

intermediate and massive stars. As mentioned in Sec. 1.1 (see also Phillips,

1994), the pp chains have a temperature dependence of ∼ T 4, while the CNO

cycle depends on ∼ T 18: this means that the latter generates a very steep

temperature gradient in the core. On the other hand, in low-mass-star en-

velopes it is the partially ionised regions associated with large opacities that

produce the steep temperature gradients required to trigger convection. It is

also possible to have fully convective stars, in the case of very low mass stars

with M < 0.35 M⊙ (Chabrier & Baraffe, 1997; Browning, 2008), or pre-MS

stars with mass no larger than 3 M⊙, corresponding to the Hayashi line in the
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58 EQUATIONS OF STELLAR STRUCTURE

laboratory experiments (that cannot, however, reproduce the conditions typical of
stellar interiors) the mixing length theory provides a reasonable qualitative picture
of the convective energy transport in stars. By using this simple model we can now
determine a local criterion for the onset of convection following the derivation in
[113]. ‘Local’ means that the criterion can be applied on a layer-by-layer basis to
check its stability, and involves only physical and chemical quantities evaluated at
the layer itself. This is very practical, because in this way there is no need to account
for the behaviour of other parts of the star. In realistic cases convective motions are
not only dependent on the local conditions but, in principle, have to be coupled to the
neighbouring layers. We will see later in this section that the lack of ‘non-locality’
in the convection treatment of stellar interiors causes some relevant uncertainties.

Let us consider a bubble of gas inside a star, at rest at a distance r from the
centre. The bubble will have a pressure P0, temperature T0, density �0 and molecular
weight �0 equal to those of the environment, supposed to be in radiative equilibrium
(in this section ‘radiative’ actually means ‘radiative plus conductive’) as depicted in
Figure 3.1. If the random motions displace the bubble by a small amount �r away
from the equilibrium position, the equation of motion for an element of unit volume
can be written as (assuming the viscosity is negligible)

�
d2�r

dt2
=−g��

where �� is the density difference �bubble − �surr between the bubble (supposed to
have constant density) and the surroundings, and g is the local acceleration of gravity.
One reasonable assumption made in this derivation is that the motion of the bubble is
fast enough so that all time derivatives of the mean stellar properties are equal to zero.

BUBBLE SURROUNDINGS

µ0

P0
ρ0

µ0

P0
ρ0

µsurr

Psurr
ρsurr

µbubble

Pbubble
ρbubble

gravity

r

r + ∆r

Figure 3.1 Illustration of the physical scenario for the onset of convection
Figure 1.4: Schematic representation of the physical mechanism for the gener-
ation of a convective instability. Figure taken from Salaris & Cassisi (2005).

Hertzsprung-Russell diagram (Hayashi, 1961).

We shall now see how a convective instability develops and propagates in a

stellar medium (see also Clarke & Carswell, 2007). Let us consider a fluid ele-

ment from a stratification at hydrostatic equilibrium with a radial temperature

gradient and under a uniform gravitational field. This situation is illustrated

in Fig. 1.4. If the fluid element, whose density ϱ0 and pressure P0 are the

same as its surroundings, is displaced upwards by a small distance ∆r due

to random fluctuations, it would have to change its own density ϱbubble to be

in pressure equilibrium with the surrounding environment (Pbubble = Psurr).

Since the moving element would generally not have had time to exchange heat

with the surroundings, we can assume that the process is adiabatic. The new

density of the fluid element can be either larger or smaller than the one in the

new surroundings. In the first case, the element would sink back to its initial
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position and the system would be stable against convection. But in the second

case, the element would be buoyant and keep rising upwards, so the system

is convectively unstable. The element would keep travelling until radiative

transport becomes dominant, therefore it cools and is not accelerated upwards

any more. This does not imply that the element immediately halts its motion,

as we shall later see. Obviously, the same happens if the fluid element is dis-

placed downwards from its original position instead: in this case, a convective

instability is triggered if it has larger density than the surroundings.

1.4 Observational constraints

Observational measurements infer quantities derived from the stellar surface.

Therefore, it is not trivial to investigate physical processes happening in deep

stellar interiors, especially for late phases when the evolution is so rapid that

the external layers do not have time to react to the internal changes. The

most approachable way of relating theory and observations is through stellar

models, where the theoretical knowledge is applied to specific situations and

environments. Stellar models follow the evolution of the entire star computing

key quantities from the core to the surface, thus producing predictions that

can be constrained from observations. As an example, the width of the main

sequence for difference mass ranges (Castro et al., 2014) can be used to cal-

ibrate the amount of mixing in the convective core (Scott et al., 2021). The

chemical abundances measured from stellar atmospheres and in the interstellar

medium can also provide constraints to stellar models through galactic chem-

ical evolution studies (Matteucci, 2012; Cescutti et al., 2013; Rizzuti et al.,

2019, 2021). Furthermore, observations of supernova light curves, neutrino

and γ-ray detections (Woosley & Bloom, 2006) can help understand the stel-

lar structure before the collapse, employing supernova numerical simulations

(Müller, 2020).
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Recently, information on the inner structure of stars can also be derived from

asteroseismic measurements.

1.4.1 Asteroseismology

Asteroseismology is the study and interpretation of stellar pulsations in light

curves. This is a powerful tool that can be used to investigate the inner stel-

lar structure. Different types of pulsations can occur in a star, depending

on the force that restores the equilibrium: gravity modes (g-modes), pressure

modes (p-modes), inertial modes, mixed modes (see Aerts et al., 2019). While

p-modes have high frequency and probe regions of space close to the surface,

low-frequency g-modes can travel long distances through the radiative medium,

probing the deep near-core regions of intermediate and massive stars. Addi-

tionally, pulsating stars can have very different properties and nature: from

low-mass γ Doradus and δ Scuti variables, to more massive slowly-pulsating

B-type (3 - 8 M⊙) and β Cephei (up to 25 M⊙) stars (see Bowman, 2020).

Recently, it has been suggested (Bowman et al., 2019a, 2019b) that nearly all

OB-type stars pulsate with low-frequency due to stochastic variability.

In Fig. 1.5, I show as an example the asteroseismic analysis presented in the

review of Bowman (2020). The figure describes how it is possible to constrain

the interior rotation of a star through gravity modes. The plot on the left

presents the light curve of a slowly pulsating star; by computing the ampli-

tude spectrum and fitting the period spacing that decreases with increasing

period due to the effects of the Coriolis force (plots on the right), it is pos-

sible to measure the rotation rate near the core (see Bowman, 2020 for more

details).

More generally, in order to reproduce the observed stellar pulsations, theoret-

ical models of the pulsating star need to be computed. First, the structure of

the star is predicted using a 1D stellar evolution model. Then, the pulsation

modes are numerically computed with an oscillation code (e.g. GYRE, Townsend



15

 1 

 

light curve 

gravity-mode 
period spacing pattern 

Rotation fit 

Figure 1.5: Methodology for asteroseismic analysis: light curve of a pulsating
star (left panel), amplitude spectrum (right, top) and period spacing (right,
bottom). Figure taken from Bowman (2020).

& Teitler, 2013). To estimate the stellar parameters, a grid of 1D models can

be produced and compared to the observed pulsations until the best fit is found

(e.g. Pedersen et al., 2021). The situation is further complicated by the effects

of rotation and magnetic fields on the internal waves. The role of the theoret-

ical studies of stellar evolution in this framework is to improve the 1D models

used for asteroseismology, to test the different prescriptions, and to guide the

choice of realistic stellar parameters.
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2 Theory of convection

In the previous chapter, I presented an overview of the general concepts nec-

essary to appreciate the work of this thesis and place it within the appropriate

context. Overall, my work is largely based on the modelling and analysis of

convective motions in stellar interiors. It is therefore essential now to review

the theory of convection in more detail in order to gain a better understanding

of the results presented later.

In this chapter, I show how it is possible to model convective instabilities

in stellar environments, with particular attention to their implementation in

stellar evolutionary models and the possibility of including additional mixing

processes near the convective boundaries.

2.1 A simple treatment of convection

I briefly introduced in Sec. 1.3 the topic of convection in stellar interiors. It is

worth now examining the question in a more rigorous way. There is a number

of textbooks that describe the approaches and derivations in detail (Salaris

& Cassisi, 2005; Kippenhahn et al., 2012). Let us go back to the case of a

buoyant fluid element in a steep stratification. We shall now try to solve the

equation of motion for an element that was displaced from its original position

of equilibrium. Intuitively, we will have to take into account the contributions

from the quantities that vary across the stratification, which are temperature

T , density ϱ, pressure P , and the chemical composition, all expressed as a

function of the stellar radius r. This requires to solve five independent equa-

tions including these variables; they later reduce to four equations thanks to

the assumption of pressure balance.

To track the chemical composition, the mean molecular weight µ is normally
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used, which can be defined as:

µ =

(∑

i

xi (1 + Zi)

Ai

)−1

(2.1)

where xi, Zi and Ai are the mass fraction, atomic number and mass number

of a species i, respectively.

We have already seen that as a result of a small displacement ∆r the fluid

element would quickly adjust its pressure to remain in pressure balance with

the surroundings, thus a difference of density would arise between the element

(e) and the surroundings (s). We can write these two conditions as:

∆P := Pe − Ps = 0

∆ϱ := ϱe − ϱs ̸= 0
(2.2)

The first equation of our system is the equation of motion for an element of unit

volume under a small displacement ∆r, given the contribution from gravity

and the Archimedean force:

ϱ
d2∆r

dt2
= −gϱe + gϱs = −g∆ϱ (2.3)

The second equation we use involves the chemical composition, under the

assumption that the element does not change its composition but the stratifi-

cation does:

∆µ := µe − µs =

ïÅ
dµ

dr

ã
e

−
Å
dµ

dr

ã
s

ò
∆r = −dµ

dr
∆r (2.4)

where by µ we indicate now the composition of the surroundings. If we differ-

entiate with respect to time and introducing the following definitions for the

gradient notation and the pressure scale height:

∇µ :=
d ln (µ)

d ln (P )
; HP := − dr

d ln(P )
(2.5)

we obtain:

d∆µ

dt
= −dµ

dr

d∆r

dt
= −µ∇µ

d ln(P )

dr

d∆r

dt
=

µ

HP

∇µ
d∆r

dt
(2.6)
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For the next equation we consider the temperature difference, and assuming

that the element is adiabatic, so ignoring any heat loss, we can write:

∆T := Te − Ts =

ïÅ
dT

dr

ã
e

−
Å
dT

dr

ã
s

ò
∆r (2.7)

whose time derivative is, using again the gradient notation ∇ :=
d ln (T )

d ln (P )
and

indicating ∇ad as the element and ∇ as the surroundings:

d∆T

dt
= T (∇ad −∇)

d ln(P )

dr

d∆r

dt
= − T

HP

(∇ad −∇)
d∆r

dt
(2.8)

Finally, the last equation that closes our system is the gas equation of state,

that we can write in the general form ϱ = ϱ(P, T, µ) and use it to obtain the

differential form:

∆ϱ =

Å
∂ϱ

∂P

ã
T, µ

∆P +

Å
∂ϱ

∂T

ã
P, µ

∆T +

Å
∂ϱ

∂µ

ã
P, T

∆µ (2.9)

from which we derive, keeping in mind that ∆P = 0 in our case:

∆ϱ

ϱ
= α

∆P

P
− δ

∆T

T
+ φ

∆µ

µ
= −δ

∆T

T
+ φ

∆µ

µ
(2.10)

having defined the three partial derivatives α, δ, φ:

α :=

Å
∂ ln (ϱ)

∂ ln (P )

ã
T, µ

; δ := −
Å
∂ ln (ϱ)

∂ ln (T )

ã
P, µ

; φ :=

Å
∂ ln (ϱ)

∂ ln (µ)

ã
P, T

(2.11)

We have now all the equations necessary to solve the motion of our fluid

element. From (2.3), (2.6), (2.8) and (2.10) we have a system of second order

differential equations:





ϱ
d2∆r

dt2
+ g∆ϱ = 0

d∆µ

dt
− µ

HP

∇µ
d∆r

dt
= 0

d∆T

dt
+

T

HP

(∇ad −∇)
d∆r

dt
= 0

∆ϱ

ϱ
+ δ

∆T

T
− φ

∆µ

µ
= 0

(2.12)
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We want now to solve the equations of motion assuming that the fluid element

is stable against convection. This means that the displaced element will be

oscillating around the position of equilibrium. We can solve this assuming an

oscillating solution of the type ∆x = Ax eiNt for each x ∈ (T, ϱ, µ, r), where

Ax is the amplitude of the oscillation and N its frequency.

The coefficient matrix associated with the system (2.12) is therefore:



0 g 0 −ϱN2

0 0 iN −i
µ

HP

∇µN

iN 0 0 i
T

HP

(∇ad −∇)N

δ

T

1

ϱ
−φ

µ
0




(2.13)

whose determinant we set equal to zero in order to solve the system:

−g

ï
−N2 (∇ad −∇)

δ

HP

−N2 ∇µ
φ

HP

ò
−N4 = 0 (2.14)

and rearranging we obtain:

N2 =
g · δ
HP

(
∇ad −∇+

φ

δ
∇µ

)
(2.15)

This equation represents the condition for stability of a displaced fluid element;

N is commonly known as the “Brunt-Väisälä frequency”. If N2 > 0, then N

is real and the element keeps oscillating around its original position, according

to the solution ∆r = Ar e
i|N |t. But if N2 < 0, N would be imaginary, therefore

∆r = Ar e
|N |t and the element will move exponentially away from its original

position, giving rise to a convective instability (for more details about the

derivation, see Salaris & Cassisi, 2005).

Thanks to this simple treatment, we can formally express the condition for

stability against convection, assuming that the surroundings are dominated

by radiative transport:

∇ad +
φ

δ
∇µ > ∇rad (2.16)

which is known as the “Ledoux criterion” (Ledoux, 1947). In case of a

chemically homogeneous stratification (∇µ = 0), the criterion simplifies to the
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“Schwarzschild criterion” (Schwarzschild, 1958):

∇ad > ∇rad (2.17)

for a dynamically stable stratification.

This simple treatment represents a simplification that does not take into ac-

count all the physical phenomena involved in generating convection. Whether

a stratification is convectively unstable or not depends on the relative impor-

tance of the buoyancy driving and the stabilizing effect of viscous and thermal

diffusion. One way of taking these effects into account is to compute the

so-called “Rayleigh number” (or Ra) for the stratification. Ra is defined as

the ratio between the diffusive and convective thermal transport time-scales

in a fluid, and its value represents the flow regime: above a critical Ra, the

fluid is unstable to convection. The threshold is commonly placed around

103 (Chandrasekhar, 1961). In stellar interiors, the Rayleigh number ranges

around 1015 - 1025 (see Jermyn et al., 2022).

Overall, the formalism described in this section, developed in the mid-twentieth

century, represented at the time a real turning point for modelling the stel-

lar evolution: once the profile of the stratification is known, i.e. the variables

P, T, ϱ, µ as function of the radius, the criteria above automatically say whether

the layers become convective or not. This is a very powerful way of modelling

convection within a simplified framework such as 1D stellar modelling. In the

following section, we shall see how this is implemented.

2.1.1 1D implementation: the mixing length theory

I described in the previous section how it is possible to determine if a stratifica-

tion is convectively unstable thanks to the Ledoux and Schwarzschild criteria

(i.e. ∇ad < ∇rad). The critical assumption behind them is that the element is

purely adiabatic, and the surroundings purely radiative, but of course this is

not the case in real stars. The fluid elements actually undergo some cooling,



21

thus changing both their temperature and the stratification. In this perspec-

tive, the situation in a convective environment is more accurately:

∇ad < ∇e < ∇s < ∇rad

where the temperature gradients of the element and the surroundings are inter-

mediate between the adiabatic and the radiative ones (see Kippenhahn et al.,

2012). Therefore, the question of how to compute the correct temperature

gradients arises. This problem is normally approached employing the so-called

“mixing-length theory” (Böhm-Vitense, 1958), that provides a simple formal-

ism for the local treatment of convection, with the possibility of computing

the temperature gradients along the stellar radius at any time.

∇ad and ∇rad can be both expressed analytically (see Kippenhahn et al., 2012).

Starting from the usual thermodynamic relations, one can show that for con-

stant entropy and assuming fixed chemical composition, the temperature gra-

dient is

∇ad =
P δ

Tϱ cP
(2.18)

where cP is the specific heat capacity at constant pressure. On the other hand,

if radiative transport is treated as a diffusive process, and assuming hydrostatic

equilibrium, the temperature gradient can be expressed as:

∇rad =
3

16πa cG

κLP

M T 4
(2.19)

where κ is the mean absorption coefficient (also known as opacity), L the lu-

minosity at that radius, a the radiation density constant, c the speed of light,

G the gravitational constant, and M the mass contained within the radius.

The mixing-length theory is based on the assumption that fluid elements are

transported by convective motions over a certain distance ℓm (the mixing

length), before they mix again with the surroundings and dissolve. Thanks

to this assumption, it is possible to derive a set of equations that can be used

to compute the correct temperature gradient for the surroundings ∇, for the
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element ∇e, the average velocity of the element v and other quantities, assum-

ing that P, T, ϱ,∇ad,∇rad, cP, g are known.

I refer to Kippenhahn et al. (2012) for a rigorous derivation of the equations

and their solution. It is worth presenting here the results. The following is a

cubic equation in ξ with one real solution, that allows to compute ∇ given the

following definitions for ξ, U,W :

(ξ − U)3 +
8

9
U
(
ξ2 − U2 −W

)
= 0

ξ2 := ∇−∇ad + U2; U :=
3acT 3

cPϱ2κℓ2m

 
8HP

gδ
; W := ∇rad −∇ad

(2.20)

Once ∇ is found, it can be used to derive also ∇e from the equation:

(∇−∇e)
3/2 =

8

9
U (∇rad −∇) (2.21)

and with ∇ and ∇e known, the velocity of the element can be derived:

v2 = gδ (∇−∇e)
ℓ2m
8HP

(2.22)

The mixing-length theory is an exceptional method in its simplicity, perfect

for stellar-structure computations. However, its biggest limitation is the un-

certainty on the parameter ℓm, which is not an output of the theory but it

needs to be fixed by hand. It is usually expressed as a fraction of the local

pressure scale height ℓm = αmHP with αm assumed constant and calibrated to

observations through stellar models. Indicatively, values for αm span between

1.5 - 2.0 (Arnett et al., 2018; Ekström et al., 2012; Ludwig et al., 1999; Schaller

et al., 1992). Additionally, the mixing-length theory still requires to know the

extent of the convective zone, which is obtained from the Schwarzschild or

Ledoux criterion, and when convection begins and ends.

2.2 Convective boundary mixing

The treatment of convection described in Sec. 2.1 allows us to determine the

extent of convective regions in stars. In particular, the Schwarzschild and
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Ledoux criteria are used to define the location of the convective boundaries.

However, this simplified approach does not take into account the additional

mixing effects that occur close to the convective boundaries. These effects, that

can have different features depending on the regime (see Zahn, 1991; Viallet

et al., 2015), are usually grouped under the name of “convective boundary

mixing” (CBM). CBM cannot be neglected in stellar modelling because it

affects the size of the convective regions, and this can have a critical effect on

the evolution of the star, such as the predictions on its lifetime (Kaiser et al.,

2020). Thus, it is important to include CBM in 1D stellar models as well as

to study its features with multi-D numerical simulations.

2.2.1 1D modelling and overshooting

Historically, convective boundary mixing has been introduced in 1D stellar

models to make up for an important deficiency in the theory of convection

(e.g. Shaviv & Salpeter, 1973; Maeder, 1975). Stellar evolutionary models em-

ploy the Schwarzschild or Ledoux criterion to define the convective boundary

location, i.e. where ∇rad = ∇ad or ∇rad = ∇ad +
φ

δ
∇µ respectively. However,

the boundaries defined in such a way are used to separate regions of the star

where the convective velocity, v, is v > 0 from where it is v = 0, without

accounting for the fact that the fluid elements need to be decelerated before

their velocity is null (see e.g. Renzini, 1987). In other words, the element is

accelerated in the convective region by the buoyancy force until it reaches the

boundary, then the acceleration suddenly changes sign but the element can

keep travelling into the external stable layers under its own inertia, carrying

momentum and chemical species as it moves. Clearly, the theory of convection

needs to be improved in order to account for such effect.

First of all, a word on the terminology. Often in the literature, the terms

“overshooting”, “penetration”, and “convective boundary mixing” are used

as synonyms, potentially generating confusion. Zahn (1991) pointed out that
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“overshooting” should be used for an inefficient penetration, that can still

transport chemicals and momentum but does not alter the temperature gra-

dient of the stable region, while “penetrative convection” should be used for

when convection is strong and can induce changes in the subadiabatic strati-

fication of the stable region, i.e. transporting efficiently also entropy. In this

work, I use “convective boundary mixing” as an umbrella term to refer to all

prescriptions that provide an extension of the region affected by mixing of

chemicals and momentum beyond the convective boundary. The question of

whether the temperature gradient of the stable region should be modified in

each prescription or not, although crucial, is complex and still object of debate

today.

Some of the earliest studies on the issue by Roxburgh (1978, 1989) showed that

it is possible to constrain the maximum size of a convective region by simple

analytical considerations. Assuming a time-independent (stationary) convec-

tion, and integrating the equations of motions for a fluid over the volume of

the convective region, the following integral constraint can be derived:
∫

V

(
F r − Γr

) 1

T 2
0

dT0

dr
dV =

∫

V

Φ0

T0

dV ≥ 0 (2.23)

where Fr is the radial radiative flux, Γr is the radial energy flux from nuclear

sources, T is the temperature, and Φ is the viscous dissipation rate. The sub-

script 0 represents the mean part of a variable, while the overline represents

the average done over turbulent fluctuations: by construction, q = q0 for a

variable q. The integral constraint comes from the fact that the right hand

side of (2.23) is necessarily positive. Taking zero as a lower bound, the in-

tegral must have both positive and negative contributions. Since generally

dT0/dr < 0, this requires that the convective zone includes both regions where

F r < Γr, which is the usual nearly-adiabatic stratification predicted by the

mixing length theory, but also where F r > Γr: this means that convection

extends further into the stable region. In this way, Roxburgh (1978) obtains

the maximum size for a convective region. For a more modern discussion, see
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e.g. Anders & Pedersen (2023).

In the following years, researchers started developing various prescriptions for

implementing CBM in 1D stellar models. First proposed, and still largely used

today, is the “step overshoot” prescription (Zahn, 1991): beyond the convec-

tive boundary, the convective region is extended by a fraction of the pressure

scale height dov = αovHP. The temperature gradient of the “overshooting” re-

gion is assumed to be adiabatic, like in the convective region: in this way, both

the convective and the overshooting regions are part of the same turbulent en-

vironment, and a new convective boundary is defined. However, this simple

approach has the same problem as the mixing-length theory: the free param-

eter αov needs to be calibrated. Early works (Schaller et al., 1992; Stothers

& Chin, 1992) suggested values for αov in the range 0.1 - 0.2; however, more

recent studies have proposed a dependence of αov on the stellar mass (Claret

& Torres, 2016; Scott et al., 2021), and recent asteroseismic measurements of

αov indicate that these values might be underestimated in stellar models (see

Bowman, 2020).

A different prescription that has been suggested for CBM comes from the

study of Freytag et al. (1996). Based on 2D hydrodynamic simulations of

different stellar environments, they noticed that convective velocities extend

well beyond the convective boundary and decay exponentially with the ra-

dius; thus, a finite overshoot distance is inaccurate for modelling CBM. This

led to the suggestion of treating CBM as a diffusive process, introducing the

exponentially-decaying diffusion coefficient:

Dov(z) = tcv
2
rms(z) = tcv

2
0 exp

Å −2z

fovHP,0

ã
(2.24)

where z is the distance from the convective boundary, determined using e.g.

the Schwarzschild criterion, tc the convective time-scale, vrms the root-mean-

square velocity as function of z, v0 the velocity inside the convective zone, and

HP,0 the pressure scale height at the boundary location. Usually, for stellar

modelling the factor tcv
2
0 is replaced by D0, which is the diffusion coefficient in-
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side the convective zone near the boundary location, given by the MLT. Once

again, fov is a parameter that needs calibration. Stellar modelling studies

(Herwig, 2000; Jones et al., 2015) suggest values between 0.01 - 0.02 to match

the results of stellar models that use the step-overshoot prescription, although

just like for αov a mass dependence and larger values are likely.

It is worth mentioning also a modified approach derived from the one just

described, which is often called “double-f” because it assumes two separate

exponential decays with different slopes, the first one representing the shear

mixing below the convective boundary, and the second the shallower decay of

mixing efficiency outside the boundary. This approach has been introduced by

Herwig et al. (2007) and further tested by Battino et al. (2016).

Further approaches for studying convection and CBM processes in stars include

“double-diffusive convection”, for when the fluid stratification depends on two

components with different rates of diffusion (Garaud, 2018); a dependence of

the overshooting distance on the luminosity and extent of the convective zone

(Baraffe et al., 2023); alternative diffusion coefficients (Baraffe et al., 2017);

effects of stellar rotation on overshoot (Browning et al., 2004; Rogers et al.,

2013).

Despite the extensive studies, many uncertainties remain on how to correctly

implement CBM in 1D evolutionary codes. The problem comes from the dis-

agreement on CBM prescriptions between theoretical studies, 1D models, hy-

drodynamic simulations, and observations. Further studying is necessary to

shed more light on the question, and multi-D modelling of the fluid dynamics

can play a major role in this context.

2.2.2 Multi-D simulations and entrainment

Ever since the advancements in computing resources allowed it, multi-D simu-

lations of stellar environments have been investigating the question of convec-

tive boundary mixing. The details and limitations of this methodology will be
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discussed in the following chapter, but the critical advantage of this approach

is that it is not necessary to assume any prescription for CBM as the ones

discussed above for 1D stellar models, because the fluid motions are followed

explicitly. Instead, it is possible to use results coming from hydrodynamic

simulations to improve the prescriptions, calibrate the free parameters, and

possibly suggest new implementations.

Some of the first works in this direction include Hurlburt et al. (1994), Singh

et al. (1995) and Brummell et al. (2002), who ran multi-D simulations of con-

vection in stellar-type layers in order to study penetration and overshooting in

the stable stratification, basing only on local properties of the convective zone.

Their work showed that the extent of the CBM region is inversely proportional

to the relative stability, or “stiffness”, of the convective boundary, defined from

the polytropic indices of the fluids.

This research has been further advanced by the aforementioned Freytag et al.

(1996), and more recently by Meakin & Arnett (2007), who suggested a new

prescription for CBM based on 3D hydrodynamic simulations. This approach

was rather different from what had been used before, because it is based on

the assumption, supported by the numerical simulations, that the location of

the convective boundary is expected to move further into the radiative region

as time passes. This happens because stable material is transported into the

convective zone through the boundary due to shear mixing. The net effect

is that more fluid becomes convective, and the convective region grows with

time.

In order to parametrize this effect, Meakin & Arnett (2007) employed the

so-called “entrainment law”, originally developed for geophysical studies (Fer-

nando, 1991). The law relates the entrainment rate E to the physical properties

of the boundary:

E =
ve
vc

= A Ri−n
B (2.25)
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where ve is the entrainment velocity, i.e. the speed at which the boundary

moves under entrainment, vc the convective velocity, RiB the bulk Richardson

number, and A, n are free parameters. The dimensionless bulk Richardson

number, defined as the ratio between buoyancy stabilization and shear kinetic

energy, can be expressed as

RiB =
ℓ ∆b

v2c
; ∆b =

∫ r2

r1

N2dr (2.26)

with ℓ the length scale of turbulent motions, ∆b the buoyancy jump, N the

Brunt-Väisälä frequency, r1 and r2 two radii that encompass the boundary lo-

cation. A common choice is r1 = rb − ℓ/2 and r2 = rb + ℓ/2 with rb being the

boundary location, so that the integration length of N2 around rb is exactly

ℓ. There is no strict definition for ℓ, so it is usually taken to be large enough

to include completely the peak in N2 during the integration, as we shall later

see. RiB, that depends on both local (ℓ, rb, N) and non-local (vc) properties,

can be also seen as a measure of the “stiffness” of the boundary, since it as-

sumes larger values for boundaries that are more difficult to penetrate. For

these reasons, the dependence of CBM on the bulk Richardson number is more

important than the one on other numbers introduced to categorize convection

(e.g. the Reynolds number, the Rayleigh number), which are based on large-

scale properties of the convective region and often fail to represent the physics

at the interface between different layers.

The entrainment law can be used in 1D stellar models to predict the location

of the convective boundary and how it moves with time. So far in the liter-

ature, only two works have included the entrainment law in stellar modelling

(Staritsin, 2013; Scott et al., 2021). Of course, similarly to the other prescrip-

tions, the important question is what values to use for the free parameters.

It is possible to calibrate A and n through 1D evolutionary simulations, fine-

tuning the parameters by comparing results to observations, as well as from

multi-D hydrodynamic simulations, measuring the properties of the fluid and

estimating the parameters in the law.
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In the first case, both Staritsin (2013) and Scott et al. (2021) fix n = 1 accord-

ing to what was found by Fernando (1991), and estimate A using asterosismic

measurements and the observed main sequence width. Staritsin (2013) finds

A = 4.05 - 4.43 × 10−4 for models of 24 and 16 M⊙ respectively, while Scott

et al. (2021) find A = 2× 10−4 for a range of models 8 - 32 M⊙. On the other

hand, the entrainment law parameters have been estimated also from hydro-

dynamic simulations, such as Meakin & Arnett (2007), Cristini et al. (2019).

I report here in Fig. 2.1 the summary plot of the entrainment law estimations

from Cristini et al. (2019). The value of n starts deviating from 1, but most

importantly A is estimated between 0.03 - 0.05, which is two orders of magni-

tude larger than what is expected from 1D stellar modelling calibrations. So

far in the literature, hydrodynamic simulations have always found estimates

for A much larger than the values assumed in 1D models. The reason for this

disagreement is still obscure. The prevailing idea is that CBM in 1D stellar

models is currently underestimated, so when the same configuration is studied

with hydrodynamic simulations the layers react by rapidly entraining material

as a form of compensation. However, theoretical and numerical difficulties in

computing 1D and multi-D simulations make this point extremely difficult not

only to prove, but even to explore in more detail. The best approach to the

question is to improve both 1D and multi-D models by adjusting one accord-

ing to the predictions of the other, until after a certain number of iterations a

convergence of results is reached. This is exactly what has been done for the

simulations presented in Chapter 5.

Finally, it must be noted that there is still no universal agreement about the

role of entrainment as a CBM mechanism in the different phases of stellar evo-

lution. This comes from the opposite views of CBM as either a quasi-steady

state of the stratification, typical of the traditional prescriptions, or a dynam-

ical process, described by the entrainment law that predicts a migration of the

boundary over time. The disagreement originates from the fact that multi-D

hydrodynamic simulations measure very large entrainment rates in stars, often
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Figure 2.1: Entrainment rate versus bulk Richardson number in log scale, mea-
surements from hydrodynamic simulations and respective linear regressions:
Meakin & Arnett (2007) (black points, dashed line), Cristini et al. (2019)
(coloured points, solid line). Figure taken from Cristini et al. (2019).



31

predicting the engulfment of a large part of the star in a short time. This issue

calls for a mechanism that stops the entrainment of additional material after

a certain time, whether by reaching a new thermal equilibrium that is statis-

tically constant in time (see Andrassy et al., 2023), or by a rapid extinction

of fuel and death of convection more typical of the late burning phases (see

Rizzuti et al., 2023). In the following section, I will present how it is possible to

distinguish between CBM prescriptions based on the different environments.

2.2.3 Choosing the appropriate CBM prescription

We have seen that prescriptions for reproducing CBM in 1D stellar models are

many and diverse. One may then wonder in which context it is more correct

to apply one rather than another. The question is complex and still an object

of discussion, but fortunately some studies have approached the problem. I

already mentioned a first distinction done by Zahn (1991), at least in the ter-

minology. A more rigorous work has been done by Viallet et al. (2015), who

distinguish three different regimes of CBM based on the Péclet number Pe,

defined as the ratio of radiative over advective time-scale for heat transport.

The three regimes are the following. When Pe < 1, the environment is dom-

inated by radiative diffusion, which has a shorter time-scale therefore is more

efficient, so we are in a “diffusion-dominated regime”, where only chemicals

can be mixed. It is reasonable to treat this mixing with the diffusive approach

of Freytag et al. (1996). This is applicable to stellar surface convection, where

radiative effects are important.

On the opposite, when Pe > 1 radiative effects are negligible, so the mixing can

be considered adiabatic. This results in strong CBM that mixes both composi-

tion and entropy, and cannot be slowed down or stopped by radiative cooling:

this is the “entrainment regime”, and it is appropriate to employ here the en-

trainment law. This regime takes place in late burning phases of massive stars,

where neutrino loss is the dominant cooling mechanism and radiative diffusion
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(i.e. photon cooling) can be ignored.

Finally, the third regime is intermediate between the previous two, a transition

Pe ∼ 1 where radiative diffusion is still important but not always dominant.

Consequently, the structure of the boundary is also split in two parts: an in-

ner adiabatic one that can be described by step overshoot, plus an outer one

more dominated by radiation where diffusive mixing can be used. This picture,

that Viallet et al. (2015) call “penetrative regime”, describes the situation of

burning phases in deep stellar interiors where photons dominate the cooling,

such as the main-sequence core burning. The Viallet et al. (2015) suggestions

for CBM prescriptions may not describe all regimes accurately, but they are

useful for providing an idea of what the relevant parametrization may be for

different situations.

Finally, it is worth mentioning here that when convective burning takes place

in shells above the core, during late-phase stellar evolution, two convective

boundaries are present, an upper and a lower one. Therefore, it is important

to remember that CBM is expected to occur at both boundaries, thus requir-

ing to apply CBM prescriptions to both. Recent hydrodynamic simulations

are starting to shed more light on this situation, which is sometimes referred

to as “undershooting”, confirming that CBM occurs and is important at both

convective boundaries, and that the lower one usually moves ∼ 5 - 10 times

slower than the upper one, due to its larger stiffness (see Cristini et al., 2019;

Rizzuti et al., 2022).
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3 Methodologies

Recent advances in computing resources have enabled the production of in-

creasingly detailed and accurate stellar simulations. This results, on the one

hand, in large grids of 1D models that explore a range of stars with different

properties (mass, metallicity, rotation, binarity), and on the other hand in

highly-detailed simulations of the fluid dynamics in stellar interiors.

In this chapter, I will present the software tools that I employed in my work

for modelling convection and nucleosynthesis in stars. I will describe the com-

putational software used for stellar modelling and fluid dynamics, including a

description of the possible options that can be employed in order to simulate

the most realistic stellar environments.

3.1 Stellar modelling: 1D versus multi-D

It is possible to approach stellar modelling in two radically different ways:

one-dimensional (1D) and multi-dimensional (multi-D). 1D stellar models rely

on the assumption of spherical symmetry, so the simulations follow the evolu-

tion of variables that are only a function of the radius. This approximation,

although it simplifies the complex multi-dimensional physical processes of the

star, makes the computation extremely efficient, so most 1D stellar codes are

able to follow the evolution of the entire star, centre to surface, for most of its

life, from the ZAMS to the final phases just before its death.

Modelling the stellar evolution consists of computing how some key variables,

functions of the mass coordinate m, evolve with time: radius r, density ϱ,

pressure P , temperature T , luminosity l, and mass fraction Xi for all species

i = 1, . . . , I involved in nuclear reactions. In order to solve this problem, a

set of 5 + I equations is required, one per variables. The equations are (see
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Kippenhahn et al., 2012):



∂r

∂m
=

1

4πr2ϱ
mass continuity

∂P

∂m
= − Gm

4πr4
− ∂2r

∂t2
1

4πr2
pressure balance

∂l

∂m
= εn − εν − cP

∂T

∂t
+

δ

ϱ

∂P

∂t
energy conservation

∂T

∂m
= − GmT

4πr4P
∇ energy transport

ϱ = ϱ (P, T,Xi) equation of state

dXi

dt
=

∂Xi

∂t
+

∂

∂m

Å
D′ ∂Xi

∂m

ã
nuclear species, i ∈ [1, I]

(3.1)

where εn is the nuclear energy release rate, εν the neutrino loss rate, ∇ the

temperature gradient defined as ∇ := d ln (T )/d ln (P ), and D′ the diffusion

coefficient. For completeness, it is worth mentioning that also εn, εν and other

quantities in (3.1) are function of P, T,Xi, but their values are known and

tabulated.

The nuclear species equation in (3.1) describes the time evolution of the abun-

dances, which depends both on the nuclear reactions (first term on the right-

hand side) and on the various transport processes (second term). More exten-

sively, the equation can be written as:

dXi

dt
=

mi

ϱ

(∑

j

Rj,i −
∑

k

Ri,k

)
+

∂

∂m

ï(
4πr2ϱ

)2
Dtot

∂Xi

∂m

ò
(3.2)

with mi the species mass, Ra,b the rate of the reaction that transforms species

a → b, and Dtot the total diffusion coefficient. The first term on the right-hand

side of (3.2) represents the production and destruction of species from nuclear

reactions. The second term expresses the transport of species in spherical co-

ordinates (see Eggenberger et al., 2008), and the diffusion coefficient Dtot can

include contributions from e.g. convection, shear mixing, meridional circula-

tion.
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The set of equations in (3.1) can be further simplified. If we assume that the

stellar evolution is slow ∂2r/∂t2 ∼ 0, as normally happens in stars, the pressure

balance equation in (3.1) reduces to the hydrostatic equilibrium equation

∂P

∂m
= − Gm

4πr4
(3.3)

Likewise, in some cases the energy variations are also slow, as during stel-

lar burning phases, so the time derivatives can be neglected and the energy

conservation equation becomes

∂l

∂m
= εn − εν (3.4)

In this case, we talk of a system in complete equilibrium, both mechanical

and thermal. It is important to note that under these assumptions the only

time-dependent equations in (3.1) are the nuclear burning ones.

The set of equations is now solved in the following way. First, the boundary

conditions for the system are imposed; in a simplified case for example, we

have in the centre and at the surface of a star with total mass M , radius R

and luminosity L:®
m = 0 → r = 0; l = 0

m = M → r = R; l = L; ϱ = P = T = 0;
(3.5)

As I said, in case of complete equilibrium the only equations in (3.1) with

a time dependence are the nuclear burning ones; therefore, during the com-

putation they are solved separately, with an “equations-split” approach (see

Kippenhahn et al., 2012). At each time-step, the chemical composition Xi

is updated thanks to the nuclear burning equations, and then the remaining

structure equations are solved to find r, ϱ, P, T, l, which determine the stellar

structure.

Stellar evolution modelling has drastically changed with the advent of comput-

ing facilities. Since Henyey et al. (1959) up until today, electronic computers

have allowed to solve the stellar structure system (3.1) rapidly and efficiently.
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The variables are discretized on a one-dimensional, non-uniform grid that al-

lows to introduce higher resolution where the variables change abruptly; the

grid itself may vary over time to increase or decrease the resolution as needed.

These techniques made it possible to create many numerical codes for follow-

ing the stellar evolution, much more complex than what I have described in

this section, including the most updated stellar physics and allowing to inves-

tigate the evolution of stars with a range of different masses and properties

(e.g. Heger & Woosley, 2002; Paxton et al., 2011; Ekström et al., 2012).

At the other end of the spectrum, we have stellar modelling with multi-D sim-

ulations (2D or 3D). This approach is radically different from the 1D stellar

modelling just described. Relaxing the assumption of spherical symmetry, it is

possible to simulate multi-dimensional processes in stellar interiors (e.g. con-

vection, rotation, magnetic fields) without any need for prescription as in the

1D case, but explicitly witnessing these phenomena occurring naturally in the

simulations. However, the higher dimensionality makes the code much more

expensive to run, requiring a detailed grid to resolve the fluid scale, but most

importantly very small time-steps in order to follow the fluid motions. For

these reasons, multi-D models can only reproduce small sections of a star for

a small fraction of its burning time-scales. But in return, they can achieve

an incredible degree of detail and realism that is useful for testing our un-

derstanding of the physical processes that characterize stellar interiors, and

possibly extract theoretical knowledge and prescriptions to improve the 1D

models.

Both 1D and multi-D stellar models present advantages and limitations. The

most effective way for making progress in stellar evolution studies is to develop

synergies between the two. Indeed, one approach is intrinsically linked to the

other: multi-D simulations need to assume initial conditions from 1D models,

which are more general, while 1D models can be improved from the results of

multi-D simulations, which are far more detailed.
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3.2 Fluid dynamics and Navier-Stokes equa-

tions

Multi-dimensional stellar codes are designed to model the time evolution of

the dynamics of a stellar fluid, usually in a convective environment. This is

done by solving the equations of motion for the fluid elements using numerical

methods. We shall see now what the relevant equations are, and how they are

derived (see Landau & Lifshitz, 1987 for more details).

First, the equation of motion for a fluid element is given by the force balancing,

in this case the pressure gradient and the gravitational force:

ϱ
dv

dt
= −∇P + ϱ g (3.6)

and since the differential expression for dv is:

dv =
∂v

∂t
dt+

∂v

∂x
dx+

∂v

∂y
dy +

∂v

∂z
dz =

∂v

∂t
dt+ (dr ·∇)v (3.7)

therefore (3.6) becomes:

ϱ

Å
∂v

∂t
+ (v ·∇)v

ã
= −∇P + ϱ g (3.8)

This is known as the “Euler’s equation”, which describes the motion of a fluid

assuming no heat exchange between its parts (adiabatic motion). However,

this equation does not take into account the energy dissipation that comes

from the internal viscosity of the fluid. To include this contribution, I first

express (3.8) employing the Einstein notation1:

ϱ

Å
∂vi
∂t

+ vj
∂vi
∂xj

ã
= −∂P

∂xi

+ ϱ gi (3.9)

1 The Einstein notation implies a summation over dummy indices (i.e. indices that appear
only on one side of an equation) but not over free indices (i.e. indices that appear on both
sides of an equation); here the indices i, j, k range over the set {x, y, z}.
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One can rearrange this equation to be expressed in the form (see Landau &

Lifshitz, 1987):

∂ϱvi
∂t

= −∂Πij

∂xj

+ ϱ gi ; Πij := Pδij + ϱ vivj (3.10)

where Πij is the “momentum flux density tensor”, that represents the reversible

transfer of momentum between different points in space due to mechanical

transport and pressure force. If we consider that viscosity contributes to the

fluid motion with an irreversible transfer of momentum from points with larger

velocity to ones with smaller velocity, then we can correct the momentum flux

density tensor to account for viscosity by adding a term σ′
ij that represents the

irreversible viscous transfer of momentum (see Landau & Lifshitz, 1987):

Πij → Πij − σ′
ij = Pδij + ϱ vivj − σ′

ij (3.11)

This correction can be implemented in equations (3.10) and therefore in (3.9),

producing:

ϱ

Å
∂vi
∂t

+ vj
∂vi
∂xj

ã
= −∂P

∂xi

+
∂σ′

ij

∂xj

+ ϱ gi (3.12)

The term σ′
ij is called the “viscous stress tensor”, and it can be expressed in a

general way imposing that σ′
ij satisfies certain conditions:

− friction occurs if and only if the fluid has different velocities in different

points of space: σ′
ij depends on and only on space derivatives of the

velocity;

− friction does not occur for rigid body rotation: σ′
ij has only terms of

the kind ∂vk/∂xk and ∂vi/∂xj+∂vj/∂xi, because they vanish for fixed

angular velocity ω (since v = ω × r).

Under these assumptions, the viscous stress tensor assumes the form:

σ′
ij = η

Å
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij

∂vk
∂xk

ã
+ ζδij

∂vk
∂xk

(3.13)
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written in this way so that the terms between the brackets are equal to zero

over tensor contraction of σ′
ij, i.e. when computing the trace σ′

ii. The quantities

η and ζ, known as the first and second “coefficients of viscosity”, are scalars

if we assume that the fluid is isotropic, and it is possible to show they are

always positive due to energy dissipation and entropy increase (see Landau &

Lifshitz, 1987). We can then replace this definition into (3.12) to obtain the

general equation of motion for a viscous fluid:

ϱ

Å
∂vi
∂t

+ vj
∂vi
∂xj

ã
=− ∂P

∂xi

+
∂

∂xj

ï
η

Å
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij

∂vk
∂xk

ãò
+

+
∂

∂xi

Å
ζ
∂vk
∂xk

ã
+ ϱ gi

(3.14)

This equation can be simplified assuming that η, ζ do not vary significantly

throughout the fluid, so they can be extracted from the space derivatives:

ϱ

Å
∂vi
∂t

+ vj
∂vi
∂xj

ã
= −∂P

∂xi

+ η
∂2vi
∂x2

j

+

Å
1

3
η + ζ

ã
∂2vj

∂xi∂xj

+ ϱ gi (3.15)

This can also be written employing the usual vector notation:

ϱ

Å
∂v

∂t
+ (v ·∇)v

ã
= −∇P + η∇2v +

Å
1

3
η + ζ

ã
∇ (∇ · v) + ϱ g (3.16)

The three equations described by (3.16) are called the “Navier-Stokes equa-

tions”, and they represent the equations of motion for a compressible viscous

fluid. The equations simplify if the fluid can be approximated to be incom-

pressible, since applying the condition for flow incompressibility ∇ · v = 0 we

obtain:

ϱ

Å
∂v

∂t
+ (v ·∇)v

ã
= −∇P + η∇2v + ϱ g (3.17)

which makes the problem simpler to solve and applies to most cases in geo-

physics, since usually a viscous fluid is also incompressible. This is not nec-

essarily true in stellar physics, where the fluid can be both viscous and com-

pressible, therefore stellar hydrodynamic codes are normally either fully com-

pressible, i.e. they solve the Navier-Stokes equations in the form of (3.16), or

they rely on intermediate approximations such as the anelastic approximation,
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which derives new equations assuming small variations in the thermodynamic

quantities compared to the mean state (see e.g. Clune et al., 1999).

The Navier-Stokes equations do not have any known analytical solution (the

existence of a solution is one of today’s most important unsolved problems in

Physics), therefore they must be solved numerically on a discretized grid. This

is the standard approach for modelling the turbulent flow in stellar multi-D

simulations, as I shall describe in the following sections.

Finally, the total energy of the fluid must be conserved at all times, therefore

the energy variation in time must be zero. This is described by an energy con-

servation equation, which in Euler’s formalism assumes the form (see Landau

& Lifshitz, 1987):

∂

∂t
(ϱE) +∇ · [v (ϱE + P )] = ϱv · g (3.18)

where E is the total specific energy, sum of the kinetic and internal energy, and

the term on the right-hand side of the equation comes from the gravitational

potential. In case there is additional generation or dispersion of energy, extra

terms can be included on the right-hand side of the equation, as it happens in

stars with nuclear energy generation and radiation or neutrino losses (see in

the following sections).

3.3 Computational approach to fluid dynam-

ics

As we just saw, the general approach for solving a problem of fluid dynamics

consists of discretizing the fluid variables on a finite grid and computationally

solving the Navier-Stokes equations to follow the fluid motions over time. The

main difference between the specific implementations lies in the way the prob-

lem of having a range of fluid scales is handled. Indeed, turbulent motions

in a fluid occur on a variety of spatial scales, from the largest ones (“integral
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scales”) that contribute to most of the kinetic energy of the fluid, to the small-

est ones (“dissipative scales”) where viscous effects dissipate the kinetic energy

into heat and break down the turbulent flow. These scales can be significantly

distant from each other, especially for astrophysical fluids. Thus, the problem

of including all these different scales within the same simulation arises.

The simplest approach to computational fluid dynamics would be to build a

mesh grid which is fine enough to resolve the dissipative scale, but also with a

domain large enough to cover the integral scale. This method, known as the

direct numerical simulation (DNS), can be considered the most accurate since

it reproduces all the principal fluid scales, but this makes it also extremely

expensive in terms of computing power. For typical stellar interiors, the dissi-

pative scale is about ∼ 1 cm, while the integral scale can be as big as ∼ 109

cm. This difference of about nine orders of magnitude in spatial scale makes

it practically impossible to simulate stellar interiors with DNS.

To overcome this problem, an alternative method has been developed, in which

the large integral scales are still included in the domain, but the smallest scales

are excluded by having a less refined grid. This framework is called the large

eddy simulation (LES), and it finally makes the computations for stellar fluid

dynamics affordable. Obviously, the effects of viscosity on the fluid still need

to be taken into account. The LES method is based on the finding by Kol-

mogorov (1941) that the energy dissipation rate is independent of the scale

and of the type of dissipative process, in a scenario known as “turbulent cas-

cade”, where kinetic energy is transferred down from larger to smaller scales.

Therefore, excluding the smallest scales from the simulations by employing a

coarser grid does not affect the behaviour of the fluid at larger scales, as long

as the dissipation below the grid (the “sub-grid” scale) is still reproduced in

some way.

This can be implemented in different ways, depending on the code. One pos-

sibility is to include a term in the governing equations that mimics the dis-

sipation at the sub-grid scale; in this case, we talk of an “explicit LES”. For
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example, a term of artificial viscosity can be added to the equations of motion

(see Garnier et al., 2009). Alternatively, it is possible to avoid adding any

extra term of dissipation to the equations, but rather rely on the “numerical

dissipation” of the computation, i.e. the difference between the expected exact

solutions of the Navier-Stokes equations and the actual approximated solu-

tions on the numerical grid, a difference that comes from the solving scheme

and the truncation error. This method is called “implicit LES” or “ILES”,

and its specifics and applicability strictly depend on the numerical algorithm

used to solve the equations. For example, spectral methods solve differential

equations by using series expansions for the solutions; by construction, they

have no numerical dissipation, therefore they must include an explicit term for

viscosity. The accuracy of ILES methods is guaranteed by the fact that the

numerical errors in the computation are larger than the corrections introduced

to mimic sub-grid dissipation (see Ghosal, 1996). However, when using the

ILES method one must be very careful and make sure that the principle of

energy conservation is always respected. Therefore, the code must be designed

in such a way that the internal energy of the fluid is progressively increased to

mimic the effects of viscosity at the dissipative scale.

The ILES approach represents a powerful way of reducing the computational

cost for modelling fluid dynamics, and it made possible throughout the years

to develop and run complex hydrodynamic simulations that follow the fluid

motions in stellar environments. In the following sections, we shall see in more

detail how these hydrodynamic simulations are prepared and run.

Finally, the fluid dynamics equations are solved on a discretized grid. In ad-

dition to the solving schemes, which can be many and diverse, the question

of reconstruction processes for interpolating values on the walls and centre

of cells also arises. Without getting into too much detail, it is worth men-

tioning here the existence of finite-volume methods for representing partial

differential equations on a discretized grid (see LeVeque, 2002), the Godunov

method (Godunov & Bohachevsky, 1959) for solving partial differential equa-
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tions with first-order accuracy, and its higher-order equivalent the piecewise

parabolic method (PPM, Colella & Woodward, 1984), a reconstruction scheme

with third-order accuracy. PPM is at the base of many cutting-edge hydrody-

namical codes, including the one used to produce the simulations presented in

this thesis.

3.4 Multi-D hydrodynamic simulations

Today, there are a wide range of hydrodynamical codes specifically designed

for simulating stellar convection. Some of them, within the context of deep-

interior convective burning, are e.g. FLASH (Fryxell et al., 2000), MUSIC (Vial-

let et al., 2016), PPMSTAR (Woodward et al., 2014), SLH (Miczek, 2013) and

PROMPI (Meakin & Arnett, 2007), which is the one I employed for the present

study. These codes can investigate similar scenarios, and their predictions are

in excellent agreement between each other, as recently proven in the code-

comparison paper of Andrassy et al. (2022). A different approach are codes

based of spectral schemes, i.e. solving the equations of motions through a spec-

tral decomposition of the solutions, such as ASH (Clune et al., 1999), Dedalus

(Burns et al., 2020), MagIC (Christensen et al., 2001), and Rayleigh (Feather-

stone & Hindman, 2016). Regardless of the solving scheme, within each code

there is a range of options that can be selected to ensure the most realistic

environment for modelling a specific stellar scenario. These choices can involve

the numerical grid and domain, the geometry, boundary conditions, physical

processes, etc.

In this section, I will give a general summary of the most important options

and procedures that are normally undertaken when setting up a hydrodynamic

code for reproducing a particular stellar environment.
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3.4.1 Initial conditions

As I mentioned earlier, hydrodynamic simulations of stars cannot reproduce

large fractions of the stellar lifetimes, as it is normally done with 1D evolu-

tionary models. For this reason, multi-D stellar models have to start their

computation from initial conditions assumed independently. This is generally

done by using data coming from a 1D stellar simulation that has followed

the evolution of an entire star for most of its life. The hydrodynamic model

focuses only on a section of the star where convection occurs, e.g. the main-

sequence core, the envelope, or the late-phase burning cores and shells. Then,

the multi-D simulation follows the evolution of the section in great detail, but

for a limited time-scale, usually long compared to the convective motions but

shorter than the evolutionary time-scale.

Nevertheless, the question of translating these conditions from the 1D to the

multi-D models is not trivial, and can present some issues. Usually, key quan-

tities like density, pressure, temperature, entropy, mass and chemical compo-

sition, expressed as function of the radius on the 1D grid, are remapped on a

2- or 3-dimensional grid. Since all points at the same radius would also have

the exact same value for all these variables, it is necessary to introduce some

small perturbations in order to break the symmetry and seed the convective

instabilities. These perturbations can be defined in different ways, usually as

sinusoidal functions, but their shape does not normally have any impact on

the evolution of the simulations, since they merely serve as seeds and are soon

washed away by the turbulent motions, which have a chaotic nature. After

triggering the perturbations, there is usually a transient phase when turbulence

propagates and fills the region predicted to be convective by the 1D model;

afterwards, the simulation enters a quasi-steady state.

Second, initial conditions are known to be in hydrostatic equilibrium in the

1D model, according to the assumptions I described in Sec. 3.1, but the sit-

uation might be different in the hydrodynamic model, for example because a
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different equation of state is used for the gas. Thus, it is always good prac-

tice to recompute the hydrostatic equilibrium in the new hydrodynamic model

before starting the simulation, and this can be done by re-calculating one of

the thermodynamic variables from the others using the new equation of state

employed in the code. Ignoring this step could result in artefacts during the

initial transient of the simulation, such as strong expansion or contraction of

the layers, that might alter the consequent evolution.

Finally, it is important to keep in mind that the evolution of the hydrody-

namic simulations is dependent on the initial stratification assumed from the

1D model. Therefore, possible inaccuracies in the 1D model necessarily prop-

agate also in the multi-D simulations. One example already mentioned in

Sec. 2.2.2 is the fact that hydrodynamic simulations of convective regions with

CBM prescriptions always appear to be out of equilibrium, predicting quite

large entrainment rates; this can be traced back to the incorrect implemen-

tation of CBM in 1D models, which may be underestimated and cause this

strong reaction in the multi-D simulations, that do not need to assume such

prescriptions to reproduce the CBM.

3.4.2 Computational domain, grid and geometry

When it comes to choosing a domain configuration for hydrodynamic simula-

tions, there are generally two possible approaches. In what is commonly know

as the “box-in-a-star” setup, the domain (the “box”) is fully enclosed in the

star, so only a small part of the star is simulated (see Arnett & Meakin, 2016

for examples and more details). This option is simple and allows to attain

higher local resolution, but it is also very limited spatially. On the other hand,

the “star-in-a-box” approach involves a domain that is built to completely en-

close a larger part of the star, for example the core or an entire shell (see e.g.

Herwig et al., 2014), but the local resolution inevitably decreases. The choice

of a particular configuration clearly depends on the problem to solve and on
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the available resources.

In theory, both configurations can support a grid with either a Cartesian or

a spherical coordinate system, but again the choice varies from case to case.

Both options present benefits and disadvantages. A grid in Cartesian coordi-

nates is simple and does not contain any singularity, but it also does not reflect

the spherical symmetry of the problem. This might generate some artificial ef-

fects of grid-alignment that can influence the results, as found e.g. in Andrassy

et al. (2020) where a strong ℓ = 3 mode is present in the simulations, aligned

with the diagonals of the cubic domain. Additionally, a Cartesian grid cannot

follow multiple spatial scales at the same time, so in some cases an adaptive

mesh is used, e.g. in Fryxell et al. (2000); note that the same can be done with

a spherical grid. Generally, employing a Cartesian grid is most useful when

modelling the stellar core (see e.g. the recent Herwig et al., 2023), to avoid

the singularity in the centre of the sphere, and for simulations of shell sections

with an angular size small enough that the plane-parallel approximation can

be used (e.g. Cristini et al., 2017).

On the other hand, it is possible to employ a grid in spherical coordinates

(radius r, polar angle θ, azimuthal angle φ), which is geometrically more ac-

curate for stellar problems. The major issue of this choice is the presence of

coordinate singularities at the origin and along the polar axis of the sphere.

These singularities represent points in space where the physical size of the cells

rapidly decreases. This has a strong effect on how the simulation time-step ∆t

is calculated in the models, which is done according to the Courant-Friedrichs-

Lewy condition (Courant et al., 1928) applied to each cell of the domain:

∆t ≤ Cmax

∑

i

∆xi

vi
(3.19)

where i are the spatial variables, ∆xi is the width of the cell, vi is the fluid

velocity across the cell, and Cmax is the maximum Courant number, chosen to

be typically ≤ 1 (Cmax is fixed to 0.8 in PROMPI). This condition, introduced

to ensure convergence and avoid loss of information during the computation,
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a) b) c)

Fig. 2 Alternative spherical grids that avoid the tight time step constraint at the axis of standard spher-
ical polar grids: a) Grid with mesh coarsening in the j-direction only. Only an octant of the entire grid
is shown. b) Dendritic grid with coarsening in the q - and j-direction Image reproduced with permis-
sion from (Skinner et al. 2019), copyright by AAS. c) Overset Yin-Yang grid (Kageyama and Sato 2004;
Wongwathanarat et al. 2010a) with two overlapping spherical polar patches in yellow and cyan.

accelerated frame comoving with the PNS) that the assumption of an immobile PNS
does not gravely affect the dynamics in the supernova interior and the PNS kick in
particular.

Even with a 1D treatment for the innermost grid zones, one is still left with a se-
vere time-step constraint at the grid axis in 3D. A number of alternatives to spherical
polar grids with uniform spacing in latitude q and longitude j can help to remedy
this. The simplest workaround is to adopt uniform spacing in µ = cosq instead of
q . In this case, one has sinq = (2Nq � 1)1/2/Nq ⇡

p
2N�1/2

q in the zones adjacent
to the axis for Nq zones in latitude instead of sinq ⇡ N�1

q /2, so the time step limit

scales as D t µ
p

2N�1/2
q N�1

f instead of D t µ N�1
q N�1

f /2, where Nj is the number of
zones in longitude. Alternatively, one can selectively increase the q -grid spacing in
the zones close to the axis. However, the time step constraint at the axis is still more
restrictive than at the equator in this approach, and the aspect ratio of the grid cells
becomes extreme near the pole, which can create problems with numerical stability
and accuracy.

One approach to fully cure the time step problem, which was first proposed for
simulations of compact objects by Cerdá-Durán (2009), consists in abandoning the
logically Cartesian grid in r, q , and j and selectively coarsening the grid spacing in j
(and possibly q ) near the axis (and optionally at small r) as illustrated in Fig. 2. Such
a mesh coarsening scheme has been included in the COCONUT-FMT code (Müller
2015) with coarsening in the j-direction, and as a “dendritic grid” with coarsen-
ing in the q - and j-direction in the FORNAX code (Skinner et al. 2019) and the
3DnSNe code (Nakamura et al. 2019). Mesh coarsening can be implemented follow-
ing standard AMR practice by prolongating from the coarser grids to the finer grids
in the reconstruction step. Alternatively, one can continue using the hydro solver on
a fine uniform grid in q and j , and average the solution over coarse “supercells”
after each time step, followed by a conservative prolongation or “pre-reconstruction”

Figure 3.1: Three possible solutions to the spherical-grid singularity problem:
a) coarsening the mesh in the φ-coordinate; b) “dendritic” grid, coarsening
in both the θ- and φ-coordinates; c) “Yin-Yang” overset grid of Kageyama &
Sato (2004). Figure taken from Müller (2020).

needs to be satisfied for every cell in the domain, so the simulation time-step

is actually constrained by the cell with the smallest ∆x/v ratio. It is therefore

evident that ∆t becomes very short in the presence of singularities, which have

very small ∆x, slowing down the entire simulation.

In order to avoid this problem, researchers have suggested variations on the

classic spherical grid that attempt to avoid or minimize the singularities. Some

examples are illustrated in Fig. 3.1, taken from the review of Müller (2020),

to which I refer for further details. One possible workaround is to artificially

coarsen the mesh close to the singularities, in such a way as to produce cells

with a similar size across the entire domain. This can be done either only for

coordinate φ (Fig. 3.1, a) as in Müller (2015), or for both coordinates θ and

φ (Fig. 3.1, b), producing the so-called “dendritic grid” used e.g. in Skinner

et al. (2019). A third possibility is to assemble a new mesh from two or more

patches, so that the entire spherical surface is covered but the singularities

are completely avoided. An emblematic example is the “Yin-Yang” grid of

Kageyama & Sato (2004) (Fig. 3.1, c), employed for hydrodynamic simulations

by Wongwathanarat et al. (2010). The region of space that comes from the
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overlap of the two patches is resolved through interpolation.

3.4.3 Boundary conditions

The question of choosing the appropriate boundary conditions for the sim-

ulation domain is a delicate one, and depends on the specific configuration.

A popular choice is the “hydrostatic boundary conditions”, in which a num-

ber of fictitious “ghost cells” are built outside the physical domain. In these

cells some variables such as composition and entropy are held constant, while

others like pressure and density are recomputed according to the hydrostatic

equation. This ensures that the material close to the boundary remains in

hydrostatic equilibrium. Additionally, if the normal component of the velocity

is set to zero, we also have “wall boundary conditions”, because no flow is

allowed to pass through the boundary. A different possibility is having “re-

flecting boundary conditions”, when instead the sign of the normal component

of the velocity at the boundary is reversed. In this case, the incoming waves

are reflected by the boundary as if impacting an impenetrable barrier. Fi-

nally, choosing “periodic boundary conditions” the properties of the fluid at

one boundary are required to be equal to the ones at the opposite boundary.

The choice of which conditions to implement for each boundary can affect

the physical behaviour of the simulation and it carries the risk of generating

artefacts, such as the amplification of waves. Sensible choices for box-in-a-

star domains are wall or reflective boundary conditions at the top and bottom

boundaries of the domain, to ensure no radial flow, and periodic boundary

conditions at the lateral walls, to mimic the presence of a larger environment

beyond the domain. This is applicable to both Cartesian and spherical geom-

etry.

For star-in-a-box setups, the situation can be more complicated, depending on

the geometry. In spherical coordinates, it is straightforward to apply wall or

reflective boundary conditions at the outermost (and potentially also at the



49

innermost) radius. But if the coordinates are Cartesian, it is not trivial which

boundary conditions to choose considering that the star has a spherical struc-

ture within a cubic domain. A simple approach is to apply wall or reflective

boundary conditions directly to the faces of the cube, if they are far enough

from the region of interest. Otherwise, it is more difficult but also more ac-

curate to fix the boundary conditions on a fictitious sphere built inside the

domain, which would be containing the region of interest (e.g. Andrassy et al.,

2020; Herwig et al., 2023).

Finally, it is worth mentioning that an issue arises also when boundary condi-

tions are implemented close to coordinate singularities, i.e. the polar axis and

origin in spherical coordinates. Indeed, the combination of grid singularities

and improper boundary conditions can easily generate artefacts. Convention-

ally, reflective boundary conditions are imposed to such boundaries, to make

sure that velocities do not grow uncontrollably, but in some cases it also be-

comes necessary to impose null velocity in the neighbouring cells. The ques-

tion is indeed rather complex, so I refer to the detailed review of Müller (2020)

where the interested reader can find more information.

3.4.4 Gravity

The gravitational field of a system depends on the mass distribution of its con-

stituents. We have seen that, through the Navier-Stokes equations (3.16), the

fluid motions depend on a gravitational acceleration term, which thus needs

to be taken into account during the hydrodynamical computations. However,

keeping track of the changes in gravity requires to include an additional equa-

tion into the system, which is not computationally convenient. Said equation

is the Poisson’s equation, which states:

∇2Φ = 4πGϱ (3.20)
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where Φ is the gravitational potential and can be used to derive the gravita-

tional field g = −∇Φ. This equation is normally solved through multipole

expansion of the Green function, with 10 - 20 multipoles (Müller & Stein-

metz, 1995). However, the computation can be largely simplified using only a

monopole, i.e. assuming that gravity within a sphere of radius r comes from

a central point mass and ignoring any non-radial fluctuation; this leads to the

usual Newton’s law:

Φ(r) = −GM

r
; g = −GM

r2
r̂ (3.21)

This is easy to solve in a hydrodynamical code, and still relatively accurate

since non-radial fluctuations of density are normally rather small.

A further simplification, largely used in hydrodynamic simulations for non-

explosive phases, is to hold the gravitational source term constant in time. In

this way, gravity is fixed at the beginning of the simulation, usually from the

mass distribution assumed from the 1D model, and it is not necessary to solve

a gravity equation during the simulation, saving precious computing resources.

The major limitation of this method is that, having fixed the gravity, neither

contraction nor expansion of the layers is allowed. This is a very reasonable

assumption for most stellar simulations, which reproduce hydrostatic phases

of the stellar evolution with a time-scale that is normally much shorter than

the evolutionary time-scale.

Assuming time-independent gravity and hydrostatic equilibrium, the fluid

stratification is expected to be preserved over time according to ∇P = −ϱ g.

In reality, the numerical computation might not automatically cancel these

terms, giving rise to non-zero extra flows. This problem is normally tackled

through the so-called “well-balancing schemes” (Berberich et al., 2021). The

choice and implementation of these schemes inextricably depends on the spe-

cific numerical method employed in the code (see Müller, 2020 and Edelmann

et al., 2021 for more details). Generally, these methods allow to significantly

reduce the numerical errors, guaranteeing the stratification to be preserved
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over long time-scales.

3.4.5 Nuclear burning

Stellar hydrodynamic codes require a source of energy to transfer heat to the

fluid and enable convective motions. The question of fuelling convection can

be approached in different ways. One of the simplest solutions is to have time-

independent “heating profiles” (e.g. in Jones et al., 2017), which can reproduce

the energy generation profile of the 1D model, or simply concentrate the energy

release in certain parts of the domain. As it happens when we fix the gravity,

fixed heating profiles do not allow the stratification to change over time, but

as I said this is not a problem for simulating the hydrostatic phases. However,

this approach also does not allow to follow the evolution of the chemical species

and model nucleosynthesis.

The more realistic approach, although more expensive, in the presence of a

nuclear burning environment is to include an explicit nuclear burning routine

in the simulations. This allows to reproduce nuclear energy generation across

the simulation and keep track of how the chemical composition evolves over

time. Differently from 1D models, only a small selection of isotopes can be

included into the hydrodynamic models, due to the additional computing cost

for running this nuclear subroutine. Therefore, the selection must be done

carefully to ensure the presence of all the isotopes involved in the reactions

that dominate the energy release. This of course depends on the burning

phase that the simulations intend to reproduce.

Since for this work I am interested in massive stars and late burning phases,

I will summarize here the energy-releasing reactions that occur during the

more advanced burning stages, based on the studies of Arnett & Thielemann

(1985) and Thielemann & Arnett (1985). As mentioned in the Introduction,

helium burning is a three-body reaction (“triple alpha”) that first converts

two α-particles into the unstable 8Be, and then before 8Be has time to decay
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an additional α is captured, producing the final product 12C thanks to the

presence of a resonant state of 12C (the “Hoyle state”, Hoyle, 1954), which

greatly increases the probability of the reaction. In this same environment,

rich in α-particles, it can also happen that α are captured by 12C generating

16O, and consequently captured also by 16O generating 20Ne. This chain can

be summarized as:

4He(2α, γ)12C(α, γ)16O(α, γ)20Ne (3.22)

The helium-burning environment is also ideal for the production of free neu-

trons, which are important for the slow neutron-capture process (or “s-process”),

responsible for the production of many elements beyond the iron peak. The

neutron-source reaction in massive stars is 22Ne(α, n)25Mg, that can take place

during helium burning thanks to the significant abundance of free α-particles.

Specifically, the presence of 22Ne is dependent on the abundance of 14N from

which it originates according to the α-captures:

14N(α, γ)18F(β+, ν)18O(α, γ)22Ne (3.23)

In turn, 14N comes from the preceding CNO burning phase, for which the

slowest reaction (the bottleneck) is 14N(p, γ)15O, therefore 14N is the most

abundant residue.

The alternative neutron-source reaction 13C(α, n)16O takes place instead in

low-mass AGB stars, and is based on the production of 13C via the nuclear

chain:

12C(p, γ)13N(β+, ν)13C (3.24)

which requires free protons in a He- and C-rich environment. A promising site

for this process is the formation of a 13C pocket during and immediately after

the “third dredge-up” in AGB stars, where free protons can diffuse from the

H-rich envelope to the He- and C-rich shell underneath. Numerical simulations

seem to confirm the viability of this scenario (Straniero et al., 1997; Cristallo
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et al., 2009; Battino et al., 2016), although a complete understanding of this

process, in particular the ingestion of the correct amount of protons, is still

missing (see Herwig et al., 2011, 2014).

However, since it is already challenging to follow the neutron-capture mecha-

nism in 1D models, given the large amount of isotopes involved, hydrodynamic

simulations are not currently able to take into account such extensive and com-

plex processes with their limited nuclear networks.

During the carbon burning, two 12C nuclei are fused to produce 24Mg in a

highly-excited unstable state, that soon decays into 20Ne or 23Na, according

to:

12C

(
12C,

α

p

) 20Ne

23Na
(3.25)

Following these reactions, the newly formed 23Na interacts with the free pro-

tons, producing:

23Na

(
p,

α

γ

) 20Ne

24Mg
(3.26)

so that by the end of the carbon burning little sodium remains, and the ashes

are mostly composed of neon.

Even higher temperatures trigger the photodisintegration of neon, which is

more fragile than oxygen despite being heavier:

20Ne(γ, α)16O (3.27)

This is not nuclear fusion, since photodisintegration is an endothermic reaction,

but the production of free α-particles triggers a set of consequent reactions that

make the entire process exothermic:

20Ne(α, γ)24Mg(α, γ)28Si (3.28)

so that neon burning leaves behind a composition consisting mostly of 16O,

24Mg and 28Si.

For oxygen burning, two 16O nuclei combine to produce an unstable 32S, that
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can decay in different combinations, the most important ones being:

16O

(
16O,

α

p

) 28Si

31P
(3.29)

Secondary is the reaction 16O(16O, n)31S(β+, ν)31P producing 31S that soon

decays to phosphorus. Phosphorus is also involved in 31P(p, α)28Si(α, γ)32S.

By the end of oxygen burning, the composition is mostly made of 28Si and 32S.

If we consider the burning reactions that I summarized here, it is straight-

forward to see that it is possible to build a nuclear network that covers the

energy generation of every phase from helium to oxygen burning making use

of eleven isotopes: n, p, 4He, 12C, 16O, 20Ne, 23Na, 24Mg, 28Si, 31P, 32S. This

is an important point to consider, since a burning routine including these iso-

topes would enable hydrodynamic simulations to explicitly reproduce nuclear

burning and energy generation for most stellar burning phases.

Finally, for the last hydrostatic burning phase of massive stars, the silicon

burning, things are complicated by the large number and variety of isotopes

and reactions involved, therefore it is difficult to build a simple burning routine

to include in hydrodynamic simulations. With a simplification, we can say that

during silicon burning part of the silicon and other elements photodisintegrate,

releasing free α-particles:

28Si(γ, α)24Mg(γ, α)20Ne(γ, α)16O(γ, α)12C(γ, 2α)α (3.30)

with a consequent α-capture chain that produces heavier elements up to the

iron peak:

28Si(α, γ)32S(α, γ)36Ar(α, γ)40Ca(α, γ)44Ti(α, γ)48Cr(α, γ)52Fe(α, γ)56Ni

(3.31)

This happens in addition to the production of other important nuclei such

as 27Al, 30Si, 34S, 35Cl, 38Ar, 49K, 42Ca, 48Ti, 52Cr and much more. The sili-

con burning is challenging to model also because of the consequent advent of

the nuclear statistical equilibrium, as mentioned in Sec 1.1, and the presence
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of quasi-equilibrium groups before that, making the computation even more

difficult (see Thielemann & Arnett, 1985, for further details). One emblem-

atic example is the 25-isotope network used in hydrodynamic simulations by

Meakin & Arnett (2007) and Mocák et al. (2018).

3.5 The PROMPI code

PROmetheus MPI (PROMPI, Meakin & Arnett, 2007) is a multi-dimensional hy-

drodynamic code specifically designed to model turbulent motions in stellar

interiors. It is based on the PROMETHEUS code by Fryxell et al. (1989), but it

has been improved by Meakin & Arnett (2007) for parallel computing through

domain decomposition with the Message Passing Interface (MPI) libraries,

hence the name. The code represents an Eulerian implementation of the nu-

merical scheme called “piecewise parabolic method”, introduced by Colella &

Woodward (1984), which employs a Riemann solver for a gas with a general

equation of state (Colella & Glaz, 1985).

PROMPI is implemented to solve a set of equations that determine the motion

of the fluid over time. The key variables that are traced across the grid are

density ϱ, pressure P , temperature T , velocity v (which is made of 2 or 3 com-

ponents), total specific energy E = EK + EI composed of kinetic and internal

energy, and chemical composition represented by the mass fraction Xi for a

number of species i = 1, ..., I. This set of 5 + I variables is solved through a

system of 5 + I equations:
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



Dϱ

Dt
= −ϱ∇· v mass conservation

Dv

Dt
= −1

ϱ
∇P + g momentum conservation

E =
1

2
v2 + EI (T, ϱ,Xi) energy definition

DE

Dt
= −1

ϱ
∇· (Pv) + v · g + εn − εν energy conservation

P = P (T, ϱ,Xi) equation of state

DXi

Dt
=

mi

ϱ

(∑

j

Rj,i −
∑

k

Ri,k

)
nuclear burning, i ∈ [1, I]

(3.32)

where I used the total derivative notation
D

Dt
:=

∂

∂t
+ v ·∇, which describes

the temporal change of a quantity under the velocity field v. As before, εn is

the nuclear energy release rate, εν the neutrino loss rate, mi the species mass,

and Ra,b the rate of the reaction that transforms species a → b.

We have already seen these equations. Many of them are simply the multi-

dimensional generalization of the stellar equations we found in (3.1), with the

space and time derivatives replaced by the total derivative. For example, in the

nuclear burning equation the advection term is included in the total derivative,

so it does not appear on the right-hand side. The equation of momentum

conservation is the Euler’s equation we have seen in (3.8), i.e. the Navier-Stokes

equation (3.16) with no viscosity. We can neglect viscosity here since PROMPI

follows the ILES framework, as described in Sec. 3.3. Another requirement of

the ILES framework is that energy conservation must be imposed, as viscosity

progressively converts kinetic into internal energy (see Sec. 3.3). This is done

in PROMPI in the following way. From (3.32), the total energy consists of the

sum of the specific kinetic and specific internal energy. At each time-step, the

kinetic energy is recomputed from the velocity magnitude, while the internal

energy is obtained subtracting the kinetic from the total energy at the previous
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time-step; then, the internal energy is updated with the contributions from

nuclear sources and neutrino losses. These steps ensure that the total energy

is always exactly the sum of the kinetic and internal energy, so any variation

in kinetic energy is promptly included into EI.

Additionally, PROMPI can include an extra term −1

ϱ
∇ · F r inside the energy

conservation equation to represent radiative dissipation, with the radiative flux

F r = −κ∇T and the opacity κ, but this is not needed for the late burning

phases I am modelling here, in which the cooling is dominated by neutrino

diffusion (εν) instead. PROMPI can also include a time-dependent gravitational

field, as I described in Sec. 3.4.4; in this case g is also a variable, and the

additional equation for its computation is:

g = − GM(r)

r2
r̂ ; M(r) =

∫ r

0

ϱ̄(x) 4πx2 dx (3.33)

where we assume spherical symmetry for the mass distribution M(r), therefore

we integrate the average density ϱ̄(r) which depends solely on the radius,

ignoring any non-radial fluctuations.

The PROMPI code has been successfully used over the years to investigate a

variety of convective stellar environments. I will recall here the notable works

conducted with PROMPI on modelling the hydrogen-core burning (Meakin &

Arnett, 2007), carbon-shell burning (Cristini et al., 2017, 2019), oxygen-shell

burning (Meakin & Arnett, 2007; Arnett et al., 2009; Viallet et al., 2013),

shell merging (Mocák et al., 2018) and convective envelope of a red giant star

(Viallet et al., 2013).

3.5.1 Problem setup options

Among the many configuration options implemented in the PROMPI code, I

shall describe here briefly the ones selected for the hydrodynamic simulations

I present in this work. All models have a box-in-a-star design, therefore they

present periodic boundary conditions at the lateral faces of the box, and reflec-
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tive ones for the top and bottom bases. Both Cartesian and spherical systems

of coordinates have been used, and since our domains are distant from the

centre and polar axis of the star, the grid does not have any problem with

singularities. Furthermore, when Cartesian coordinates were employed the

gravitational field has been fixed as a constant profile, but with spherical coor-

dinates the gravity has been recomputed at every time-step from the density

distribution, therefore allowing for contraction or expansion of the layers.

Concerning the nuclear burning routines, for the neon-shell plane-parallel simu-

lations of Chapter 4 a simple network of 5 isotopes has been used (see Sec. 4.1.1

for the details), but for the neon-shell spherical simulations and the shell-

merging simulations of Chapter 5 and 6 the 11-isotope network presented in

Sec. 3.4.5 has been used. As I described there, this network allows to reproduce

the energy generation in all the late phases before silicon burning, which is par-

ticularly useful when having multiple burnings within the same simulation, as

in the case of Chapter 6. The nuclear reaction rates have been assumed from

the most recent library of the JINA REACLIB database2 (Cyburt et al., 2010).

Regarding the equation of state used to describe the gas in the simulations, the

“Helmholtz” equation of state has been employed (Timmes & Arnett, 1999;

Timmes & Swesty, 2000). It assumes an ideal gas of ions, a Planck distribution

of the photon energies, and an electron-positron gas with arbitrary degrees of

relativity and degeneracy. The equation takes in temperature, density and

chemical composition as input, and returns pressure, internal energy, entropy

and several other quantities. Cooling by neutrino losses is a by-product of a

number of reactions (pair creation, plasma reactions, bremsstrahlung, recom-

bination); it is taken into account employing the analytical formula of Beaudet

et al. (1967).

2 https://reaclib.jinaweb.org

https://reaclib.jinaweb.org
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3.5.2 Mean-field analysis

The output of a multi-D simulation are normally large datafiles, saved at regu-

lar time intervals, that store a certain number of variables for every cell of the

grid. These files can be very large and occupy a significant amount of storage

memory, up to tens of terabytes. This creates not only a problem of data stor-

age, but also of data analysis, since it can be expensive and time-consuming

to import and analyse these large datasets. Generally, an important part of

the data analysis of multi-D simulations is done through space and time aver-

aging, which requires first to import the data from the multi-D datafiles and

then perform the averaging.

A useful feature of the PROMPI code is the possibility of performing a data av-

eraging already on the fly, while the simulation is running. Angularly averaged

variables as function of the radius are saved in dedicated datafiles while the

code is still running, and they can be between 100 - 1000 times smaller com-

pared to the full-size datafiles. This method not only has the effect of making

the storage and analysis of the files much easier, but it also allows to save in-

formation that otherwise would be lost. Indeed, all datafiles are saved after a

certain time interval, but the mean-field time averaging in PROMPI includes all

the averages after each time-step; therefore, the 1D-averaged datafiles include

information from all the intermediate time-steps that is not saved when the

datafiles are produced.

For performing a mean-field statistical analysis, PROMPI makes use of the so-

called “Reynolds-Averaged Navier-Stokes” (RANS) framework. This has been

implemented in PROMPI by Mocák et al. (2014) and first employed for simu-

lation analysis in Mocák et al. (2018). The RANS framework is based on the

combination of two types of averaging, a time averaging and a horizontal or

angular averaging, depending on the coordinate system. For a quantity q that

varies with position r and time t, we can define the Reynolds average at radius
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r as:

q(r) =
1

T∆S

∫ T

0

∫

∆S

q(r, t) dt dS (3.34)

having performed both a time averaging over the time window T , and a hori-

zontal/angular average over ∆S, which is either the surface of the horizontal

plane or the solid angle of the shell. The surface elements for Cartesian coordi-

nates are dS = dx dy, while the solid angle elements for spherical coordinates

are dS = sin θ dθ dφ.

Another type of averaging, the Favre average, is defined as

q̃ =
ϱq

ϱ
(3.35)

which represents a density-weighted Reynolds average. Therefore, using these

definitions it is possible to perform the mean-field analysis by decomposing the

variables into their Reynolds or Favre mean and fluctuations, according to:

q = q + q′ ; q = q̃ + q′′ (3.36)

where q, q̃ are the means and q′, q′′ the fluctuations of a quantity q (see Mocák

et al., 2014, 2018 for additional details). The general properties of the mean

also apply here: a+ b = a + b, ab ̸= ab and similarly for the Favre average.

Therefore, taking the Reynolds and Favre averages of (3.36) respectively gives:

q = q + q′ = q + q′ ; q̃ =‡̃+ q′′q = q̃ + ‹q′′ (3.37)

therefore q′ = 0 and ‹q′′ = 0 by construction, as expected for fluctuations.

To show the effectiveness of this formalism, I will give here a meaningful ex-

ample. In the RANS equations, the turbulent flux fq of a quantity q in an

environment with density ϱ and velocity v is given by fq = ϱfiq′′v′′. To calcu-

late this flux directly from the means of the quantities ϱ, q, v, we can expand

this definition using the properties described above:

fq = ϱfiq′′v′′ = ϱ Â�(q − q̃)(v − ṽ) = ϱ ( q̃ v − q̃ ṽ − ˜̃vq + q̃ ṽ ) =

= ϱ ( q̃ v − q̃ ṽ − q̃ ṽ + q̃ ṽ ) = ϱ ( q̃ v − q̃ ṽ ) = ϱqv − ϱq ϱv/ϱ
(3.38)
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In this way, we are able to express the turbulent flux in terms of Reynolds

averages, which are the ones that PROMPI computes and saves on the fly during

its mean-field analysis. I will make use of this result in the following chapters,

when I will compute the turbulent fluxes in the simulations.

Thanks to the RANS framework and its implementation in PROMPI, I was

able to run part of the analysis directly on the 1D-averaged radial profiles

of the simulations, without having to perform any laborious post-processing

averaging on the large 3D datafiles. In this thesis, the plots that include radial

profiles have been obtained with this RANS framework analysis, making use

of the dedicated open-source code RANSX3.

3 https://github.com/mmicromegas/ransX

https://github.com/mmicromegas/ransX
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4 Entrainment in 3D simulations of a
neon-burning shell

4.1 Motivations and overview

As I described in Chapter 3, hydrodynamic simulations of stellar convection

can be computationally very expensive since turbulence occurs over very short

time-scales compared to the stellar evolutionary time-scales, especially for the

early burning phases, so it is hard to simulate a significant fraction of a burning

stage in 3D. This is because the time-steps of the simulations are limited by

the CFL condition (see Sec. 3.4.2), therefore by the sound speed in the fluid.

The Mach number, which is the convective flow speed over sound speed in the

fluid, strongly depends on the evolutionary phase, being as small as 10−4 for

the main-sequence core burning and reaching values up to 10−1 for the final

burning phases (e.g. Yoshida et al., 2021). Therefore, the modelling approach

must be different depending on the phase and environment studied, especially

since low-Mach-number flows are expensive and difficult to model for most

solving schemes (see e.g. Miczek, 2013; Leidi et al., 2022). While it is still

possible to reproduce the late oxygen and silicon convective phases for short

time-scales without altering the initial conditions (Couch & Ott, 2015; Müller

et al., 2017; Yoshida et al., 2019), for the earlier phases the common approach

is to artificially increase the convective velocities by boosting the energy re-

lease, which is also called “luminosity boosting”. This procedure alters the

fluid velocity in the simulations, that is expected to follow the scaling v ∝ L1/3

according to Biermann (1932) and Kolmogorov (1941), and it introduces im-

portant differences from the 1D stellar model assumed for initial conditions.

Since the luminosity boosting is the only way to make most hydrodynamic

simulations of stellar convection possible and affordable to run, it is always

worth investigating whether this modification only affects the velocity magni-
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tude and therefore the simulation time-scale, or if additional effects arise in

the fluid physics.

The neon-burning phase is a good compromise in this sense: it is not as ex-

treme as the oxygen or silicon burning, which are highly dynamical and might

show some differences from the previous hydrostatic phases; but it is still vig-

orous enough to have a short lifetime and a rapid evolution, making it possible

to reproduce it with hydrodynamic models, assuming that enough computing

resources are allocated. Simulating a burning shell rather than a burning core

presents some advantages, because shells are often more dynamical environ-

ments, have shorter lifetimes, and present two convective boundaries that can

be studied, an upper and a lower one, for the price of one simulation. In par-

ticular, neon-burning regions are relatively small, with a typical spatial extent

of ∼ 108 - 109 cm, and a lifetime of weeks to months. Of course, the possibility

of modelling a neon-burning shell in multi-D depends on the 1D stellar model

used for initial conditions: does a convective neon shell form at all? Is it stable

enough that its turbulent motions can be studied? Does it live for long enough

to witness convective boundary mixing?

For this study, I have analysed a set of simulations of a neon-burning shell in

a 15 M⊙ star; the results of this analysis have been published in Rizzuti et al.

(2022). Specifically, the bulk of the simulations has been run by collaborators

employing a 3D hydrodynamic model, while I was entirely responsible for the

analysis and publication of the results. The simulations have been started from

the same initial conditions but test different resolutions and boosting factors,

to study the dependence of the results on these assumptions. From the results

of these simulations, I studied the development and evolution of convection,

with particular attention to convective boundary mixing and entrainment of

stable material into the convective zone.



64

4.1.1 Setup of the simulations

All hydrodynamic simulations have been started from the same initial condi-

tions, which were assumed from a stellar evolution model of a 15 M⊙ star at

solar metallicity (Z = 0.014), run with the GENEC code (Eggenberger et al.

2008) from the zero-age main sequence to the start of silicon burning with the

options described in Ekström et al. (2012). Among these, it is worth mention-

ing that the Schwarzschild criterion was used to predict the convective bound-

ary location, and penetrative overshoot was included only for core-hydrogen

and core-helium burning phases with αov = 0.1, as I described in Sec 2.2.1. For

carbon-burning and afterwards, an α-chain network was used (Hirschi et al.,

2004).

The time-evolution diagram of the stellar model is presented in Fig. 4.1. The

neon shell used as initial conditions to start the 3D simulations is indicated by

the red arrow, and also shown in more detail in Fig. 4.2. We can see from the

isomass contours of this figure that the neon shell does not undergo any signif-

icant contraction or expansion during its evolution. Additionally, the physical

time of the 3D simulations is always less than one hour, much shorter than the

evolutionary time-scale of this shell. The radial profiles of some key variables

(temperature, density, nuclear energy and neutrino loss rates) are plotted in

Fig. 4.3; in particular, it is possible to see the temperature inversion at the

bottom of the convective zone (r ∼ 3.55× 108 cm) caused by the fact that the

neutrino energy loss is larger than the nuclear energy generation in the core

after core-oxygen burning.

From the 1D GENEC model, the key variables density, pressure, tempera-

ture, entropy, mass, and chemical composition have been remapped on a tri-

dimensional Cartesian grid, after having recomputed the hydrostatic equilib-

rium according to the Timmes equation of state used in PROMPI. Specifically,

the equation of state is used to calculate the entropy, that is missing from

the GENEC model, and to recalculate the temperature from the other ther-
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Figure 4.1: Structure evolution diagram of the input model, a 15 M⊙ 1D GENEC

model: horizontal axis is the time left until the predicted collapse of the star
in log scale; vertical axis is the mass coordinate; black lines are radial contours
with numbers indicating log10(r) in cm; shaded areas are convective regions
with Mach number in colour scale. The red arrow points to the neon shell
simulated in 3D. Figure taken from Rizzuti et al. (2022).
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Figure 4.2: Zoom-in of the neon shell from the 1D GENEC model: horizontal
axis is the time from the start of the 3D simulations; vertical axis is the radius
in units of 108 cm; black lines are isomass contours for Mr = 0.9, 1.0, 1.1, 1.2
M⊙; shaded areas are convective regions with Mach number in colour scale.
The vertical red bar is the radial extent of the 3D simulations. Figure taken
from Rizzuti et al. (2022).
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solid black line), density (ϱ, red dashed line), nuclear energy generation rate
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line). Figure taken from Rizzuti et al. (2022).



68

modynamic variables, in addition to calculating some partial derivatives used

below. Then, the density profile is integrated radially onto the new 3D grid,

starting from the bottom of the domain, by using the equation:

dϱ

dr
=

∂ϱ

∂s

ds

dr
+

∂ϱ

∂P

dP

dr
+

∂ϱ

∂A

dA

dr
+

∂ϱ

∂Z

dZ

dr
(4.1)

where the partial derivatives have been obtained from the equation of state,

and the hydrostatic condition is applied: dP/dr = −ϱ g. Gravity is a time-

independent function of the radius, expressed as an analytical fit from the 1D

model:

g(r[cm]) = −
7∑

n=0

an r
n cm s−2, (4.2)

with the following coefficients used:

a0 = 1.389 869 06× 1014 a1 = − 2.611 254 76× 106

a2 = 2.101 117 88× 10−2 a3 = − 9.386 056 09× 10−11

a4 = 2.514 064 18× 10−19 a5 = − 4.037 712 06× 10−28

a6 = 3.600 322 41× 10−37 a7 = − 1.374 975 79× 10−46

Overall, the variables recomputed with this method result very close to the

original 1D model ones, having a relative difference that is below 1 per cent.

These variables have been mapped on a cubic Cartesian grid with a side of

0.64× 108 cm, with the radius spanning the range 3.40 - 4.04× 108 cm. Some

small seed perturbations are added to trigger convective instability: in each

cell between 3.6 < r < 3.8 × 108 cm, i.e. the predicted convective zone, the

values of density and temperature are modified in the following way:

ϱ → ϱ (1 + rand) ; T → T/ (1 + rand) (4.3)

where rand is a random number between −2.5 and +2.5× 10−7, different for

each cell. This method was chosen because it is the same one that has been

applied in Cristini et al. (2017, 2019); it ensures that the perturbations are
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much smaller than the original values (relative difference smaller than 10−13),

and the product ϱ · T remains constant.

For the domain boundaries, reflective boundary conditions in the vertical direc-

tion and periodic boundary conditions in the horizontal directions have been

assumed. Additionally, near the lower boundary a velocity-damping region

has been included between 3.40 < r < 3.46 × 108 cm, in order to mimic the

downward propagation of low-speed gravity waves according to the method

described in Cristini et al. (2017). Specifically, the velocity magnitude is mul-

tiplied by a damping factor, which depends on the radial position r, according

to:

v → v · 1

1 + dt · ω · fd
; fd =

1

2

Å
cos

Å
π
r − ri
ro − ri

ã
+ 1

ã
(4.4)

where dt is the time-step of the simulation, ω = 0.01 is the damping frequency,

and ri = 3.4× 108 cm, ro = 3.46× 108 cm. This damping is present during the

entire simulation and always at the same radii.

Finally, convection has been driven in the 3D simulations using an explicit

nuclear network of five isotope: 4He, 16O, 20Ne, 24Mg, 28Si. The abundance of

4He is assumed to be always at nuclear equilibrium, a reasonable assumption

for late burning stages. As I described in Sec. 3.4.5, these isotopes are involved

in the neon-burning nuclear reactions 20Ne(γ, α)16O and 20Ne(α, γ)24Mg, and

in the secondary reaction 24Mg(α, γ)28Si, allowing not only to fuel convection

with nuclear energy, but also to study the nucleosynthesis of these species.

At the beginning of each simulation, the nuclear burning at the bottom of

the convective shell triggers the turbulent motions, gradually filling the region

of space predicted to be convective in the 1D input model. After this initial

transient, convection has fully developed and the simulation enters what can

be called the “quasi-steady state” regime.

From the initial conditions obtained as just described, I have run a set of 3D

simulations with different resolution and luminosity boosting, combining the

three grids of 1283, 2563, 5123 cells with the three boosting factors 1, 10, 100
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Table 4.1: Properties of the 3D hydrodynamic simulations presented in this
chapter: model name; resolutionNxyz; boosting factor of the driving luminosity
ε; starting τstart and ending τend time of the quasi-steady state; convective
turnover time τc; number of convective turnovers simulated in the quasi-steady
state nc; root-mean-square convective velocity vrms; sonic Mach number Ma;
cost required to run the simulation in CPU core-hours.

name Nxyz ε τstart τend τc nc vrms Ma cost

(s) (s) (s) (106 cm/s) (10−3) (106 hr)

Ex1 128 1283 1 2500 3006 230 2 0.28 0.21 0.08
Ex10 128 1283 10 250 1502 50 25 1.58 4.53 0.04
Ex100 128 1283 100 100 250 25 6 3.42 9.60 0.01
Ex1 256 2563 1 2500 5000 127 20 0.56 1.51 1.00
Ex10 256 2563 10 250 1832 47 34 1.70 4.44 0.36
Ex100 256 2563 100 98 251 23 7 3.62 10.1 0.11
Ex1 512 5123 1 2500 3202 98 7 0.70 1.93 11.4
Ex10 512 5123 10 250 1004 49 15 1.49 3.96 4.66
Ex100 512 5123 100 96 251 22 7 3.72 9.95 1.15
Ex1000 512 5123 1000 17 24 9 1 8.00 23.2 0.28
Ex10 1024 10243 10 500 811 49 6 1.49 3.94 48.2

times the nominal case. When a boosting in luminosity is present, all the

nuclear reaction rates have been multiplied by the boosting factor, including

the neutrino cooling rate. The complete list of simulations is presented in

Table 4.1, identified by code names that summarize the boosting factor Ex

followed by the resolution. Two additional simulations have also been run: a

high-boosting Ex1000 512 simulation with resolution 5123 and boosting fac-

tor 1000, and a high-resolution simulation Ex10 1024 with resolution 10243

and boosting factor 10. Due to the high computing cost, the latter has been

restarted from the Ex10 512 simulation after 500 s.
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4.2 The turbulent regime

In Table 4.1, I present the list of simulations run for this study, complete of

their most important properties. In addition to listing the model features,

which include the resolution, boosting factor, starting and ending time of the

quasi-steady state, I also made use of the RANSX library and computed the

convective turnover time τc, which is the time taken by the flow to cover twice

the radial extent of the convective zone, the number of convective turnovers

in the quasi-steady state, the convective root-mean-square velocity vrms, the

sonic Mach number defined as vrms over sound speed, and the cost of each

simulation in CPU core-hours.

From the table, it is possible to draw some interesting conclusions regarding

the effects of the resolution and luminosity boosting on the simulations. Gen-

erally, simulations with different resolution but same boosting factor tend to

have similar properties, with the exception of the simulations with a resolution

of 1283, which seem to have lower vrms than their higher-resolution counter-

parts, hinting that at this low resolution the fluid motions are not converged

upon grid refinement yet. However, one must keep into account that simu-

lations run for longer time-scales have higher vrms because they built larger

kinetic energies over time.

On the other hand, the boosting factor has a strong effect on sets of sim-

ulations with the same resolution, increasing the convective velocities and

Mach number, and therefore decreasing the convective turnover time. The

predicted scaling vrms ∝ ε1/3 (Biermann, 1932; Kolmogorov, 1941) and there-

fore τc ∝ v−1
rms ∝ ε−1/3 seem to hold well in these simulations.

In order to study the flow regime, it is possible to calculate a characteris-

tic number associated with the fluid called the “Reynolds number” or Re

(Reynolds, 1883). This number represents the ratio between the inertial and

the viscous forces in the fluid, so its value can help determine if the flow is

laminar or turbulent, with the threshold between the two regimes usually es-
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timated around Re ∼ 2 × 103 (Durst & Ünsal, 2006; Pavelyev et al., 2003).

In real stars the Reynolds number, that depends on the viscosity of the fluid,

is normally on the order of Re ∼ 109 or more (see Arnett & Meakin, 2016).

However, stellar hydrodynamic simulations do not resolve the viscous scale,

but rather rely on the numerical viscosity (see Sec. 3.3); therefore, it is more

correct in this context to talk of an “effective Reynolds number” that can be

defined in the following way.

We start from the definition of the Reynolds number Re = v ℓ/ν, where v is

the flow velocity, ℓ the flow characteristic length, and ν the viscosity. We can

assume that the numerical viscosity, which dimensionally is a velocity times a

length, has an expression of the type ν = ∆v∆x, where ∆x is the typical grid

cell size and ∆v the fluid velocity across this cell. Finally, we can define two dif-

ferent energy dissipation rates, one for the largest scales εℓ = v3/ℓ and one for

the grid scale ε∆x = ∆v3/∆x, and we know from Kolmogorov (1941) that the

dissipation rates must be equal at all scales. Combining everything together,

we can finally estimate the effective Reynolds number as Reeff = (ℓ/∆x)4/3. If

we assume that ℓ is the size of the convective zone, then the ratio ℓ/∆x simply

becomes the number of cells used for resolving the convective zone. In this

way, Reeff is resolution-dependent, which is logically consistent with the ILES

assumption that the numerical grid mimics the effects of viscosity.

In my simulations, Reeff and the number of cells that resolve the convective

shell depend on each simulation and on the specific time frame. Indicative val-

ues for simulations with resolution 1283 are 250 - 350, for 2563 are 700 - 900, for

5123 are 1800 - 2300, and for 10243 is 4800. According to these numbers and

to the threshold value for a turbulent regime Re ∼ 2000, choosing a resolution

of 1283 or 2563 for the simulations could result in a regime which is not fully

turbulent, while 5123 and 10243 can be considered acceptable. Indeed, for the

analysis of the results I focused here on the set of simulations with resolution

5123, which are highly detailed and reproduce enough convective turnovers to

be statistically significant.
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4.3 Dynamics of the fluid motions

To make a first, meaningful comparison between the 1D and the 3D mod-

els, I present in Fig. 4.4 the radial profiles of different velocity components.

The black line is the convective velocity predicted by the 1D model according

to the mixing-length-theory (see Sec. 2.1.1); the coloured lines are horizon-

tally averaged velocity components from the 3D simulation Ex1 512, averaged

over one convective turnover. The 1D mixing-length-theory velocity is approxi-

mately half of the 3D root-mean-square velocity obtained in the hydrodynamic

simulation: this means that the strength of the turbulent motions is under-

estimated in 1D. The convective velocity at the beginning of the 3D model

(in red) is slightly smaller compared to the one at the end of the simulation

(in blue, solid), where the upper boundary is also visibly shifted outwards as

expected from entrainment. The radial component of the convective velocity

(blue dotted line) has a maximum at the centre of the cell, while the horizontal

component (blue dashed line) is larger closer to the boundaries, reflecting the

fact that the fluid elements under convection move radially in the bulk of the

convective zone, and turn to move horizontally at the boundaries.

It is always useful to have a visual representation of the simulation evolution;

hence, I display in Fig. 4.5 some vertical cross-sections of simulation Ex1 512

taken at different time-steps throughout the simulation, with the fluid speed

in colour scale. What we can see here is that as the simulation evolves the

nuclear burning drives the turbulent motions, which start filling the convective

region predicted by the 1D input model. The duration of this initial transient

in the simulations depends on the fluid speed and therefore on the boosting

factor, but after convection is fully developed in the shell the simulation is in

the quasi-steady state and can be analysed.

I also present in Figure 4.6 the cross-sections of the four different simulations

Ex10 128, Ex10 256, Ex10 512, Ex10 1024, which have the same boosting fac-

tor but different resolution. This figure shows very well the impact of the
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Figure 4.4: Radial profiles of different velocity components: in black, the
mixing-length-theory velocity of the 1D model; in red, the root-mean-square
velocity at the beginning of Ex1 512; in blue solid, the root-mean-square veloc-
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components of vend respectively. The shaded area is the convective zone ac-
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Figure 4.5: Vertical cross-sections taken from Ex1 512 at 1000, 1700, 2400 and
3001 seconds, with the fluid speed in colour scale. The progression shows the
formation of the convective cell and its growth as expected from turbulent
entrainment, with an increase in the velocity magnitude of the fluid elements.
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resolution on the fluid motions, producing eddies and plumes progressively on

smaller scales as the resolution increases. According to the ILES framework

(see Sec. 3.3), the dissipative scale corresponds here to the grid scale, having

numerical dissipation that mimics the effect of viscosity; therefore, simulations

with higher resolution have smaller dissipation scales and display more de-

tailed convective features, but since the dissipation rate is independent of the

scale, the physics of convection is expected to be the same regardless of the

resolution.

Finally, I compare in Figure 4.7 the cross-sections of the four models Ex1 512,

Ex10 512, Ex100 512, Ex1000 512 when they all have a similar convective shell

size, to present the effects of the energy boosting in a different way. The time

frames of the simulations have been chosen at the moment when their upper

convective boundaries have all reached r ∼ 3.9 × 108 cm. This figure clearly

shows how a larger boosting factor is linked to higher kinetic energies of the

fluid, as expected.

As a different way of studying the time evolution of the simulations, I present

in Fig. 4.8 the specific total kinetic energy, integrated across the simulation

domain, evolving over time for the four simulations with same resolution and

different boosting Ex1 512, Ex10 512, Ex100 512, Ex1000 512. In all simula-

tions, the first part of the plot is dominated by a sudden increase in kinetic

energy, which corresponds to the initial transient when turbulent convection

is building up inside the region predicted to be convective. The duration of

this transient depends on the convective velocities, therefore on the boosting

factor: this is why it is considerably longer for the nominal-luminosity model.

Afterwards, the simulations are in the quasi-steady state, during which the

kinetic energy slowly increases over time. This phase is dominated by the

visible pulses in kinetic energy with a period equal to the convective turnover

time (see Table 4.1 for values). These oscillations come from the time delay

between the formation of large-scale plumes at the bottom of the convective

zone and their rise and dissipation towards the top. It is worth mentioning
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Figure 4.6: Same as Fig. 4.5, but for the models with different resolution
Ex10 128, Ex10 256, Ex10 512, Ex10 1025, taken at 800 seconds from the
beginning of each simulation. Since a higher resolution is linked to a smaller
dissipation scale, the simulations produce eddies on a smaller scale when the
resolution is increased.
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Figure 4.7: Same as Fig. 4.5, but for the models with different boosting factors
Ex1 512, Ex10 512, Ex100 512, Ex1000 512, taken at 3001, 400, 60, 16 seconds
respectively, chosen so that the convective boundary locations are similar in
all simulations. One major effect of the boosting is an increase in the velocity
magnitude of the fluid elements.
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Figure 4.8: Time evolution of the specific kinetic energy for Ex1 512, Ex10 512,
Ex100 512, Ex1000 512. After an initial transient, the simulations enter the
quasi-steady state (starting time indicated by the vertical dashed lines). Mod-
els with larger boosting factors have shorter time-scales, and reach higher
kinetic energies.

here that the magnitude of the kinetic energy scales with the luminosity ac-

cording to a simple relation: having established that vrms ∝ ε1/3 (Biermann,

1932), it follows that the kinetic energy is proportional to ε2/3. The convective

velocity from Table 4.1 follows the expected scaling, and apart from statistical

fluctuations the kinetic energy from Fig. 4.8 does the same.

Similarly, I show in Fig. 4.9 the time evolution of the kinetic energy for four

simulations with different resolution but same boosting factor: Ex10 128,

Ex10 256, Ex10 512, Ex10 1024. In this case, the evolution is the same for

all simulations because of the similar values of vrms and τc in models with the

same boosting factor, regardless of the resolution (see Table 4.1).
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4.3.1 Spectral analysis of the kinetic energy

A different way of studying the kinetic energy distribution and evolution in

the 3D simulations is to perform a spectral analysis. Since the present set of

simulations has been produced assuming a Cartesian geometry and the plane-

parallel approximation, I performed here a horizontal 2D Fourier analysis of

the velocities in the simulations, following a similar approach to e.g. Cristini

et al. (2019) and Andrassy et al. (2022). Having fixed the radius x inside the

convective zone, a discrete Fourier transform of a quantity q as a function of

the horizontal coordinates y, z is defined as:

q̂(ky, kz) =
1

NyNz

Ny−1∑

ny=0

Nz−1∑

nz=0

q(y, z) e
−i 2π

Ñ
kyny

Ny

+
kznz

Nz

é
(4.5)

where Ny, Nz are the numerical resolution, ny, nz the cell numbers, and ky, kz

the wavenumbers, which span the range:

ky =

®
i, if 0 ≤ i < Ny/2

i−Ny, if Ny/2 ≤ i < Ny

kz =

®
j, if 0 ≤ j < Nz/2

j −Nz, if Nz/2 ≤ j < Nz

(4.6)

To visualize this process, one can imagine the transform q̂ as a function of the

reciprocal space k⃗ = (ky, kz) with ky ∈ [−Ny/2, Ny/2] and kz ∈ [−Nz/2, Nz/2].

Therefore, the norm k =
»
k2
y + k2

z draws a circle in the (ky, kz) space, so we

need to be careful and limit our spectra to the range k ∈ [0,min{Ny/2, Nz/2}]
to avoid the circle going beyond the domain and losing a fraction of the signal,

resulting in a drop of the power spectrum.

In the spectra I present here, I plot the squared Fourier transform of the veloc-

ity, which can be interpreted as a specific kinetic energy, as a function of both

the wavenumber k and the real space r. I also normalise the spectra by the

power law expected for the inertial scaling k−5/3 (Kolmogorov, 1941): in this

way, the scales where the spectra have a horizontal trend correspond to the
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inertial range. In Fig. 4.10, I compare the spectra of the radial velocity in mod-

els with different resolution (top panel) and different boosting factors (bottom

panel). These spectra are averaged over the entire quasi-steady state for each

simulation, and have been taken in the bulk of the convective region. We can

see from the upper plot that increasing the resolution the inertial plateaus are

extended towards larger k, because dissipation occurs at smaller scales r, as

expected from the ILES method. On the other hand, increasing only the lumi-

nosity as in the lower plot results in an increase of the kinetic energy without

changing the length of the plateaus, since the convective velocities are higher

but the dissipation scale remains the same.

To study the time evolution of the spectra, I plot in Fig. 4.11 the different ve-

locity components taken at different times from the beginning to the end of the

Ex10 512 simulation, averaged over windows of 50 s, which is approximately

the convective turnover time. The spectra were taken at r = 3.6 × 108 cm,

and the figure shows the square of the radial velocity (top panel) and of the

horizontal velocity (bottom panel). At the very beginning of the simulation,

during the initial transient, the spectra present a peak at large k, i.e. at small

scales, because convection is dominated by small eddies at this early stage.

As time passes, the velocity magnitude increases and the peaks move towards

smaller k, as the turbulent flow forms large-scale structures that contain most

of the energy. During the quasi-steady state, the spectra converge and remain

relatively constant over time.

Additionally, I compare in Fig. 4.12 the velocity spectra taken at different ra-

dial locations inside the convective zone, from 3.58 to 3.88×108 cm, during the

quasi-steady state of Ex10 512, averaged over 500 - 550 s. The spectra present

very little difference, confirming that turbulence remains generally isotropic

throughout the convective zone. The major difference is in the radial veloc-

ity close to the convective boundaries, at the uppermost and lowermost radii,

whose spectra show a lower radial velocity around k = 10 compared to the

spectra in the bulk of the convective region. This can be easily explained con-
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Figure 4.10: Fourier transforms of the radial velocity, squared and multiplied
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Ex10 1024 (top panel), and with different boosting factors Ex1 512, Ex10 512,
Ex100 512, Ex1000 512 (bottom panel). The vertical dashed lines show in the
upper plot the dissipation range for each resolution, and in the lower plot 32,
16, 8 times the dissipation range for resolution 5123.



84

101 102 103

103

105

107

109

1011

1013

V̂
2 (k

)
×
k

5/
3

VrVrVrVrVrVrVr

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

Normalised wave number, k

VhorVhorVhorVhorVhorVhorVhor

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

VrmsVrmsVrmsVrmsVrmsVrmsVrms

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

106107108 106107108

real space r (cm)

106107108

101 102 103

103

105

107

109

1011

1013

V̂
2 (k

)
×
k

5/
3

VrVrVrVrVrVrVr

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

Normalised wave number, k

VhorVhorVhorVhorVhorVhorVhor

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

VrmsVrmsVrmsVrmsVrmsVrmsVrms

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

106107108 106107108

real space r (cm)

106107108

101 102 103

103

105

107

109

1011

1013

V̂
2 (k

)
×
k

5/
3

VrVrVrVrVrVrVr

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

Normalised wave number, k

VhorVhorVhorVhorVhorVhorVhor

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

VrmsVrmsVrmsVrmsVrmsVrmsVrms

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

106107108 106107108

real space r (cm)

106107108

101 102 103

103

105

107

109

1011

1013

V̂
2 (k

)
×
k

5/
3

VrVrVrVrVrVrVr

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

Normalised wave number, k

VhorVhorVhorVhorVhorVhorVhor

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

101 102 103

VrmsVrmsVrmsVrmsVrmsVrmsVrms

t=0-50

t=50-100

t=100-150

t=150-200

t=200-250

t=300-350

t=700-750

106107108 106107108

real space r (cm)

106107108

Figure 4.11: Same as Fig. 4.10, but for the Fourier transforms of the radial
velocity (top panel) and horizontal velocity (bottom panel), taken at different
times through the Ex10 512 simulation, with the averaging windows listed in
the legend. The convergence of the spectra towards the quasi-steady state can
be clearly seen.
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Figure 4.12: Same as Fig. 4.10, but for the Fourier transforms of the radial
velocity (top panel) and horizontal velocity (bottom panel), taken at different
radial locations inside the convective zone, listed in the legend, from Ex10 512

averaged over 500 - 550 seconds.
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sidering that the convective boundaries limit the motion of the fluid elements

in the radial direction, while they are still free and encouraged to move in the

horizontal direction; indeed, the spectra of the horizontal velocity do not show

such a strong difference.

4.4 Chemical composition and nucleosynthe-

sis

In addition to studying the dynamics of the simulations, it is also worth inves-

tigating the changes in the chemical composition, making use of the explicit

burning routine included in PROMPI. The key species involved in neon burn-

ing are 16O, 20Ne, 24Mg and 28Si. It is useful to plot the abundances of

these species in cross-sections of the simulations, as I do in Fig. 4.13 where I

show the mass fractions in colour scale after 1500 s from the beginning of the

Ex1 512 simulation. The situation here fully reflects what is expected from a

neon-burning environment: compared to the mean abundance in the shell (in

white for each isotope), neon is consumed inside the convective region, so its

mass fraction goes towards the blue, while oxygen, magnesium and silicon are

produced, so they are more red-coloured. These cross-sections also show very

clearly how the different species are mixed inside the convective zone, being

transported by the turbulent motions of the fluid.

Although cross-sections are impactful ways of visualizing the simulations, they

are impractical for a rigorous analysis of the results. To study the chemical

composition, it is better to use horizontally averaged profiles of the mass frac-

tions, assuming that the chemicals are horizontally well mixed and non-radial

fluctuations are small, as is often the case. As an example, I present in Fig. 4.14

the radial profiles of 16O, 20Ne, 24Mg and 28Si at the beginning (dashed) and

at the end (solid) of the Ex10 512 simulation; thus, the dashed lines indicate

the composition of the 1D input model. We can see that above the convec-
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Figure 4.13: Vertical cross-sections from Ex1 512 at 1500 seconds, with the
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dance of 20Ne reflect the nuclear reactions of the neon burning.
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Figure 4.14: Radial profiles of the horizontally averaged mass fractions of
16O, 20Ne, 24Mg, 28Si at the beginning (dashed) and at the end (solid) of the
Ex10 512 simulation.
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tive region, at r > 3.88 × 108 cm, the composition is consisting mostly of

oxygen and neon as a result of the previous helium burning in this region

(see Fig. 4.1), that produced mostly 12C and 16O, and the following carbon

burning that converted 12C into 20Ne, according to the nuclear reactions that I

described in Sec. 3.4.5. Inside the convective zone, where 3.56 < r < 3.88×108

cm, the composition profiles are plateauing because of convective mixing, and

the neon-burning reactions are taking place as described before, consuming

neon to produce oxygen and magnesium, which are more abundant in the

convective zone compared to the external layers. Below the convective zone

r < 3.56×108 cm, radiative burning has taken place and has converted oxygen,

neon and magnesium into heavier nuclides such as silicon and sulphur.

Towards the end of the simulation, Fig. 4.14 shows that the upper boundary

has moved outwards, due to the entrainment of material from the upper sta-

ble region; a similar effect, but weaker, is also present at the bottom of the

convective zone, causing the slight downward shifting of the lower convective

boundary. Inside the convective zone, the abundance of 20Ne has increased

despite the nuclear burning reactions, because of the entrainment of neon-rich

material from above, while 16O, 24Mg and 28Si have slightly decreased due to

the mixing with material that is poor in these elements. This is an important

result, and it shows that for this environment the hydrodynamic simulations

predict that the impact of entrainment is much stronger than the effects of the

nuclear burning.

4.5 Convective boundary mixing

To study the effects of entrainment on the evolutions of the neon-shell simula-

tions, we first need to have a solid method that allows us to track the location

of the convective boundaries. This is not a trivial problem: in 1D models,

conditions like the Schwartschild criterion can be applied, making use of vari-
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ables that depend only on the radius and are often step-like; but in multi-D

simulations, variables usually have a smooth transition between layers, and the

boundaries assume the form of extended surfaces that can be deformed and

fluctuate. Normally, it is possible to define the convective boundary using ei-

ther the thermodynamic variables or the chemical composition of the layers. I

make use here of the latter, in consistency with previous works such as Cristini

et al. (2017, 2019).

In Fig. 4.15, the mean atomic mass Ā is shown from the 1D initial model. As

in the case of the mass fraction profiles, the central plateau corresponds to a

well-mixed region, which is the convective zone, while the upper plateau is a

stable region above the convective one. In the model of Cristini et al. (2017),

a lower plateau was also present, so they defined the convective boundary lo-

cations as the mid-points between the convective and the radiative plateaus;

however, a lower plateau is missing in our case. Therefore, I decided here to

define the radial location of the upper convective boundary as where Ā is inter-

mediate between the value in the convective and in the upper stable regions;

as for the lower convective boundary, I use the same jump in Ā between the

convective and upper stable regions, and I define the boundary as where Ā is

equal to the value in the convective zone plus half the jump. Summarizing:

rupper boundary = r

Å
Ā =

Āconvective + Āupper radiative

2

ã
rlower boundary = r

Å
Ā = Āconvective +

Āconvective − Āupper radiative

2

ã (4.7)

The convective boundaries obtained with these definitions are shown in Fig. 4.15

as vertical dashed lines.

To give a preliminary idea of how the convective boundaries are expected to

evolve over time, I display in Fig. 4.16 the time evolution of the horizontally

averaged mean atomic mass for Ex10 512. Just like in Fig. 4.15, the value

of Ā, here in colour scale, gives a clear indication of the different layers that

compose the simulation: the convective zone, which is the part in yellow, can
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Figure 4.15: Radial profile of the mean atomic mass at the beginning of the
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dashed lines are the convective boundary locations computed as described in
this section.
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be clearly distinguished from the upper and lower stable regions, which have

lower and higher values of Ā respectively. Furthermore, the plot shows that

after an initial transient of ∼ 250 s the convective zone starts growing both

upwards and downwards under the effect of entrainment of material from the

upper and lower stable regions. This shows that entrainment is present and

strong in the hydrodynamic simulations, and it can be studied making use of

the changes in chemical composition.

Using the findings and definitions introduced above, we can finally study the

evolution of the convective boundaries in a rigorous way. The plots in Fig. 4.17

show the time evolution of the upper and lower boundary locations enclosing

the convective zone, for the four high-resolution models with different boosting

factors. It is evident the strong impact of the energy boosting on the growth of

the convective zone: a larger boosting factor promotes the convective bound-

ary mixing, so the entrainment rate is progressively larger. The models with

a large boosting also show very clearly the downward migration of the lower

boundary: entrainment actually takes place at both boundaries, but it is much

weaker at the lower one, so it is more difficult to observe in simulations with

small boosting.

The figure also shows another interesting aspect of the simulations. Studying

entrainment in models that include energy boosting can present some difficul-

ties: on the one hand, simulations with no boosting evolve extremely slowly,

and are computationally very expensive; on the other hand, when the boosting

is excessive the boundary migration is not smooth and can rapidly reach the

domains of the simulation, affecting the accuracy of the results. These effects

are clearly illustrated by Fig. 4.17. For these reasons, a more effective way of

studying entrainment is to collect information from simulations with different

levels of boosting, and include it into a more generally applicable law. We shall

see how this is performed for the present set of simulations in the following

section.
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Figure 4.17: Time evolution of the upper and lower convective boundaries, en-
closing the growing convective zone (in magenta), for the four models Ex1 512,
Ex10 512, Ex100 512, Ex1000 512. The impact of the boosting factor on the
evolution of the convective regions can be clearly seen.
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4.5.1 Computing the entrainment law

I have described in Sec. 2.2.2 how entrainment can be parametrized with a sim-

ple and general law (2.25), making use of the definitions in (2.26). I briefly re-

call here that the quantities needed for performing the parametrization are the

entrainment velocity ve, the convective velocity vrms, and the bulk Richardson

number RiB, which is computed from the Brunt-Väisälä frequency N defined

in (2.15). In this section, I analyse the set of simulations with high resolu-

tion 5123 and different boosting factors, that allow to resolve the boundaries

in detail and have been run for multiple convective turnovers. The simulation

Ex1000 512 has been excluded from the entrainment analysis, due to its exces-

sive boosting that distorts the shape of the boundaries and makes it difficult

to follow the convective boundary evolution.

The values of the entrainment rates and bulk Richardson numbers estimated

from the simulations are listed in Table 4.2. The entrainment velocities

have been obtained from the time derivatives of the boundary locations from

Fig. 4.17; RiB was calculated from the definitions in (2.15) and (2.26). All

data have been averaged over the entire quasi-steady state for each simula-

tion. In particular, since there is no strict definition for ℓ in (2.26), here I

set it equal to a fraction of the local pressure scale hight, as done in Cristini

et al. (2019), who set ℓ = HP/2. However, for the present simulations this

range would be almost as large as the entire convective region, because the

radial domain is ∼ 30 times smaller than in Cristini et al. (2019); therefore,

I set here ℓ = HP/12 so that it can include just the convective boundaries.

Despite this being a hand-tuned choice, it is not expected to impact the value

of RiB, because the integrated quantity, N2, presents a narrow peak around

the boundary, and it is close to zero elsewhere: as long as ℓ includes the peak

entirely, integrating additional regions brings negligible contribution to RiB.

It is worth here discussing the sensitivity of the entrainment rate measure-

ments to other choices. First, the resolution of the simulation can potentially
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Table 4.2: List of measurements for the entrainment analysis from the 3D hy-
drodynamic simulations: model name; upper-boundary entrainment velocity
vupe ; lower-boundary entrainment velocity vlowe ; upper-boundary bulk Richard-
son number RiupB ; lower-boundary bulk Richardson number RilowB .

name vupe (cm s−1) vlowe (cm s−1) RiupB RilowB

Ex1 512 1.36× 103 1.17× 102 493 2214
Ex10 512 6.97× 103 6.16× 102 104 492
Ex100 512 7.56× 104 5.63× 103 19 103

affect the boundary migration, primarily because the boundary location may

not be well resolved; I have confirmed that for resolution 2563 and above the

boundary migration is smooth (see Fig. 4.17) and produces similar entrain-

ment rates for the same luminosity, regardless of the resolution. Second, the

entrainment rate might depend on the time window chosen for measuring the

boundary migration. From Fig. 4.17, we can see that entrainment behaves

linearly during the quasi-steady state, after the initial transient and before

reaching the upper domain. As long as the time averaging falls within this

window, the entrainment rate is constant. I decided to use for each simulation

the entire quasi-steady state as averaging window, in order to limit the statis-

tical fluctuations that affect the small time-scales.

From Table 4.2, we can see that simulations with a larger boosting factor

produce larger entrainment velocities and smaller RiB, due to the larger pen-

etrability of the boundaries. Making use of these measurements, I can finally

parametrize entrainment by estimating the free parameters A, n that define

the entrainment law (2.25). I perform here a liner regression in log scale on the

data from both the upper and lower convective boundaries, treating them as

independent measurements of entrainment in different conditions. In order to

put these results into context, I show in Fig. 4.18 the data and the line of best

fit in log scale for the present neon-shell simulations (blue, solid), alongside
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previous PROMPI simulations of a carbon shell (green, dashed, Cristini et al.,

2019) and an oxygen shell (orange, dot-dashed, Meakin & Arnett, 2007), in-

tending this figure as an update of Fig. 2.1. In the plot, I also include the error

bars for the neon-shell measurements corresponding to the standard deviations

of the bulk Richardson number and the entrainment rate at each time-step in

the simulations.

The estimates for the entrainment law parameters from this new study are

logA = −0.53±0.47 and n = 0.96±0.19; these values fall in between the ones

obtained for the carbon shell and the oxygen shell. Comparing the parame-

ter estimates from different burning stages can help determine whether or not

the entrainment law varies during the stellar evolution; in this case, Fig. 4.18

shows that entrainment seems to occur in a similar way across the different

burning stages of massive stars.

The best fit for n in the neon-shell simulations is compatible with the value of

1 expected from geophysical studies (Fernando, 1991). The estimate for A is

more uncertain, since the fitting has been done in log scale and the measure-

ments have a large dispersion: the new results indicate a value between A ∼ 0.1

and 1, which is in line with the other hydrodynamic simulations of entrain-

ment (Gilet et al., 2013; Müller et al., 2016; Horst et al., 2021). Differently, 1D

stellar model studies of entrainment (Staritsin, 2013; Scott et al., 2021) find

much smaller values close to A ∼ 10−4, as I explained in Sec. 2.2.2, having

fixed n = 1 and calibrating A through asteroseismic measurements (Staritsin,

2013) or the observed main sequence width (Scott et al., 2021). However,

these results have been obtained for convective cores of main-sequence stars,

but 1D stellar models have never investigated entrainment in late-phase con-

vective zones, and they rarely include any CBM prescription for these late

phases. This evidence strongly motivates further investigation of CBM and

entrainment in 1D models of massive stars.

As one of the most important results of the present study, this new set of re-

alistic hydrodynamic simulations of stellar convection establishes the presence
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boundaries. Error bars (only for Ne-shell) are standard deviations. Parameter
estimates for the entrainment law ve/vrms = A Ri−n

B are listed in the legend
for each study. Figure taken from Rizzuti et al. (2022).
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of significant entrainment when using the exact conditions from a state-of-

the-art 1D stellar model; therefore, we can conclude that strong turbulent

entrainment is not a result of the large boosting factors normally used in hy-

drodynamic simulations, neither it comes from unusual initial conditions, but

is a natural result that is expected to occur in real stars.
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5 321D second-generation simulations
of neon burning

5.1 Motivations and overview

As I explained in the previous chapters, making progress in understanding

the evolution of stars is only possible employing both 1D and multi-D stellar

models; despite their own limitations, each model complements the other with

the ability of investigating aspects that are precluded to the other. 1D evo-

lutionary models give a general but complete description of the entire stellar

evolution, while multi-D models investigate localized problems with a high de-

gree of detail and realism. The relation between the two is sometimes called

“321D approach”, referring to the fact that prescriptions about the stellar

physics are obtained from 3D hydrodynamic simulations and integrated into

1D evolutionary models, in order to improve the predictions thanks to the re-

fined physical assumptions.

This is not simply a linear approach, because 3D models are also based on

initial conditions assumed from 1D models. We can imagine this as a cycle

that connects 1D to 3D, in which each model is based on assumptions from

the other, but it also produces results that can improve the other model. In

Chapter 4, the 3D hydrodynamic simulations have been started from initial

conditions assumed from a 1D model with no CBM prescription in the late

phases, and the results were used to parametrize entrainment. The next logical

step in the 321D approach is to produce new-generation 1D models that keep

into account the strong CBM predicted by hydrodynamic simulations. And

this can be pushed even further: results from 321D-guided 1D models can be

fed into hydrodynamic simulations to test whether or not an equilibrium has

been reached and predictions from 1D and 3D models are consistent. The

major problem, as I described before, is that different studies can strongly
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disagree on the amount of CBM to include in 1D stellar models, since hydro-

dynamic simulations always predict much larger entrainment rates than the

ones assumed in 1D models.

In this chapter, I present the results from a new set of 3D hydrodynamic models

simulating a neon-burning shell from a 20 M⊙ star, started from a 321D-guided

model that assumes stronger CBM prescriptions than usual. The results pre-

sented here have been published in Rizzuti et al. (2023). In particular, the 1D

model assumed for initial conditions has been produced by collaborators, while

I prepared, ran and analysed the hydrodynamic simulations. This work allowed

me to compare the entrainment rates measured from the new 3D simulations

to the ones assumed in 1D, which are normally much slower. Additionally, the

simulations have been run for the entire nuclear burning time-scale until fuel is

exhausted and convection dies out. Simulating an entire burning phase using

hydrodynamic models is a complete novelty in the literature, and these re-

sults help answer some open questions in stellar physics, in particular whether

convection stops when fuel is exhausted or if the mixing of entrained material

extends the convective growth indefinitely. These are important points to clar-

ify, because they determine the size of the convective zones, which can affect

multiple aspects of the stellar life as I described in Sec. 2.2.

5.1.1 Setup of the simulations

Initial conditions have been assumed from a 1D stellar evolution model pro-

duced with the MESA code (Paxton et al., 2011, 2013, 2018, 2019), simulating

the evolution of a 20 M⊙ star at solar metallicity (Z = 0.014) using the rela-

tive abundances of Asplund et al. (2009). Mass-loss rates were taken from the

so-called “Dutch” options, that include rates from Vink, de Koter & Lamers

(2000, 2001) for O-type stars, from Nugis & Lamers (2000) if the star enters

the Wolf-Rayet stage, i.e. when the surface hydrogen mass fraction drops below

0.4, and the empirical mass-loss rate from de Jager, Nieuwenhuijzen & van der
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Hucht (1988) if the stellar effective temperature is Teff < 104 K. Convection in

MESA is treated according to the mixing-length theory (see Sec. 2.1.1), having

set αMLT = 1.67 according to Arnett et al. (2018); in particular, the convective

boundaries are determined through the Schwarzschild criterion (see Sec. 2.1).

Convective boundary mixing was included according to the exponential de-

caying diffusive prescription I described in Sec. 2.2.1, assuming fov = 0.05 for

the upper boundaries of all convective cores and shells, and fov = 0.01 for the

lower boundaries of all convective shells.

Setting fov = 0.05 for the upper convective boundaries implies a stronger

CBM than normally assumed in stellar models, for example αov = 0.1 in Ek-

ström et al. (2012) and αov = 0.335 in Brott et al. (2011), considering that

fov ∼ 1/10 αov (see Scott et al., 2021). This large value is motivated by the

work of Scott et al. (2021), who showed that fov ≥ 0.05 in stars ≥ 20 M⊙

best reproduces the observed main-sequence width in the Hertzsprung-Russell

diagram (Castro et al., 2014), as indicated by Scott et al. (2021) in their fig.

9. For the lower convective boundaries, setting fov to 1/5 of the value for

the upper boundary is based on 3D hydrodynamic simulations (Cristini et al.,

2019; Rizzuti et al., 2022), who found that CBM is weaker at the lower bound-

ary due to its larger stiffness. Furthermore, Scott et al. (2021) show that the

amount of CBM increases with the initial stellar mass, so choosing fov = 0.05

for a 20 M⊙ star is consistent with the smaller values inferred from asteroseis-

mic measurements for less massive stars (see Bowman, 2020). In conclusion,

including a strong CBM prescription in the 1D input model at all convective

boundaries is supported by both observations and hydrodynamic simulations,

and is a key aspect for the novelty of the results I present here.

Figure 5.1 shows the structure evolution diagram of the 1D input model, from

the pre-main-sequence phase until core collapse. The convective zones are blue

in colour, while the CBM zones are shown in green; we can see here the impact

of CBM on the size of the convective zones. The 3D hydrodynamic simulations

of this chapter have been started from the neon-burning shell indicated by the
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Figure 5.1: Structure evolution diagram of the 20 M⊙ 1D MESA model as a
function of the time left until the predicted collapse of the star (in years, log
scale). In blue the convective zones, in green the CBM zones. The red arrow
indicates the neon-burning shell the 3D simulations were started from, with a
zoom-in in the top right corner. Figure taken from Rizzuti et al. (2023).

red arrow, a zoom-in of which is shown in the top right corner of Fig. 5.1

in mass coordinates, and also in Fig. 5.2 in radius coordinates. Additionally,

Fig. 5.2 also shows the squared convective velocity in colour scale, the radial

domain of the hydrodynamic simulations as a red line, and the isomass con-

tours as black lines.

In the same way as it has been done in Chapter 4, the radial variables density,

pressure, temperature, entropy, mass, and chemical composition have been

remapped from the 1D to the 3D grid, adding small perturbations to density
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and temperature between 4.5 < r < 5×108 as seeds for convective instabilities.

The hydrostatic equilibrium has been recomputed in PROMPI as I described in

the previous chapter. I used here a grid in spherical coordinates with a radial

extent 3.6 < r < 8.5 × 108 cm and an angular size of 26◦ in both θ and φ.

The boundary conditions are reflective at the top and bottom domains, and

periodic at the lateral sides. As before, a velocity-damping region is present

between 3.6 < r < 3.9× 108 cm.

By making use of a spherical coordinate system, I can introduce a time-

dependent gravitational term; thus, gravity is recomputed at each time-step

according to equation (3.33), allowing for a contraction or expansion of the

layers. Since the radial extent of the grid is approximately twice the size in

the other dimensions, I used here a resolution with twice the number of cells in

radius. The grid is linear in θ and φ but not in r, to account for the fact that

in spherical coordinates the cell size increases with the radius. Starting from

the innermost radius Rmin towards the outermost Rmax, the next grid point

r(i+ 1) is obtained by multiplying the previous r(i) by a constant factor that

includes the radial resolution Nr:

r(i+ 1) = r(i) exp

®Å
Rmax

Rmin

ã1/Nr

− 1

´
(5.1)

so that the last grid point, as expected, is

r(Nr) = Rmin

Ç
exp

®Å
Rmax

Rmin

ã1/Nr

− 1

´åNr

≃ Rmin

ÇÅ
Rmax

Rmin

ã1/Nr
åNr

= Rmax

(5.2)

The set of simulations run for the longest time range have a resolution of

256 × 1282 grid points in r, θ, and φ, respectively; for a more detailed anal-

ysis of entrainment and other aspects I ran a set of simulations with higher

resolution 512 × 2562; finally, results have been validated with the very high-

resolution simulations of 1024× 5122 and 2048× 10242 grid points.

Convection in these simulations has been fuelled by an explicit nuclear burn-

ing routine. Differently from Chapter 4, where only the five key isotopes for
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neon burning were included, I have now extended the nuclear network to in-

clude 12 isotopes: n, p, 4He, 12C, 16O, 20Ne, 23Na, 24Mg, 28Si, 31P, 32S, and

56Ni. This is the list of 11 isotopes I presented in Sec. 3.4.5, that can cover

every burning phase from helium to oxygen, plus 56Ni that is not involved in

any of these reactions but has been added here to enforce the conservation

of the total mass fraction. While the extension from 5 to 12 isotopes does

not have any important effect on the neon-burning energy release, which was

already accurate with just the five isotopes, this upgrade allows me to study

the nucleosynthesis and transport of other species, as well as start testing the

implementation of an extended nucleosynthesis in multi-D stellar models.

Making use of this nuclear burning routine, I included in my study simula-

tions with and without boosted luminosity. A nominal-luminosity simulation

is always present for every resolution, to validate the results and exclude the

possibility that conclusions are influenced by the boosting. When a lumi-

nosity boosting is included, the nuclear rates for the neon-burning reactions

20Ne(γ, α)16O and 20Ne(α, γ)24Mg have been multiplied by a boosting factor.

Since these reactions dominate the energy release, it does not make any dif-

ference that the other reactions have not been boosted. The boosting factors

I used for these simulations are 1 (nominal luminosity), 5, 10, and 50.

5.2 Analysis of the fluid dynamics

In Table 5.1, I summarize the properties of the hydrodynamic simulations I

present in this chapter, calculated with the RANSX library in the same way I did

in Chapter 4. The code name of each simulation describes its radial resolution

(r) and its boosting factor (e). We can see that simulations with different

resolution but same boosting factor have very similar properties, and even the

simulations with the lowest resolution seem already converged upon grid refine-

ment. In particular, simulations r256e1, r256e5, r256e10 and r256e50 have
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Table 5.1: Properties of the 3D hydrodynamic simulations presented in this
chapter: model name; resolution Nrθφ; boosting factor of the driving luminos-
ity ε; starting tstart and ending tend time of the simulation; convective turnover
time τc; number of convective turnovers simulated in the quasi-steady state
nc; root-mean-square convective velocity vrms; sonic Mach number Ma; cost
required to run the simulation in CPU core-hours.

name Nrθφ ε tstart tend τc nc vrms Ma cost

(103 s) (103 s) (s) (106 cm/s) (10−2) (106 hr)

r256e1 256× 1282 1 0 60 155 96 3.29 0.83 2.08
r256e5 256× 1282 5 0 29 59 25 6.55 1.76 0.89
r256e10 256× 1282 10 0 19 50 16 8.06 2.15 0.60
r256e50 256× 1282 50 0 30 30 5 13.1 3.48 0.96
r512e1 512× 2562 1 16 19 136 22 3.83 0.99 1.66
r512e5 512× 2562 5 0 2 59 25 6.65 1.80 0.80
r512e10 512× 2562 10 0 1 49 16 8.28 2.23 0.50
r512e50 512× 2562 50 0 0.49 30 5 13.4 3.61 0.20
r1024e1 1024× 5122 1 10 10.4 127 3 3.26 0.84 2.88
r2048e1 2048× 10242 1 10.01 10.03 113 0 3.85 0.99 2.02

been run until the complete exhaustion of neon in the shell, taking around

5 to 16 hours depending on the boosting, while the other simulations are

higher-resolution versions of that set, with r512e1 that has been restarted

from r256e1 at 16 000 s, together with r1024e1 and r2048e1 that have been

restarted at 10 000 s and run only for a short time range due to their high

computing cost (notice that running 20 s of r2048e1 has the same cost as

running 60 000 s of r256e1).

As a starting point, I present in Fig. 5.3 a vertical cross-section of the neon

mass fraction in colour scale from the highest-resolution r2048e1 simulation.

This plot serves the double purpose of showing the fine detail that this hydro-

dynamic simulation can reveal, and also presenting the mixing of neon-rich and

neon-poor material inside the convective zone, together with the entrainment

of some neon-rich material (in red) from the upper stable region, underlining

the importance and occurrence of CBM in this stellar environment. In this
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context, the entrainment of fresh fuel is crucial because it can extend the nu-

clear burning time-scale and therefore the lifetime of the convective shell.

In Fig. 5.4, I show the effects of the mixing on the convective boundaries.

In the top panel, I present the difference in mean atomic mass and entropy

between the 1D initial conditions and a 3D r512e1 test simulation run for

five convective turnovers. I also superimposed on the profiles the grid points

of the 3D simulation, to show the resolution used to resolve the convection

boundaries. The mean atomic mass and entropy for r < 5.4 × 108 cm do not

match perfectly (∼10−4 relative difference) because of the remapping and the

small mixing that occurs during the initial transient. The figure shows that

the convective boundary shifts outwards due to CBM, and both the chemi-

cal composition and the entropy are consequently mixed. The bottom panel

of Fig. 5.4 shows the actual and adiabatic temperature gradients, defined in

(2.8), for the same models. Both the 1D and 3D stellar models deviate from

the adiabatic temperature gradient outside the convective region, so in the 3D

simulation the CBM has altered the temperature gradient in the overshooting

region 5.5 < r < 5.7×108 cm, that has become adiabatic unlike the 1D model.

These two plots show very clearly that the 1D MESA code reproduces accu-

rately the composition mixing, because the boundary shape in Ā is similar to

the 3D one, but the entropy profile is visibly different, therefore it is necessary

to include also the mixing of entropy in 1D models.

In Fig. 5.5, I present the time evolution of the specific turbulent kinetic energy

integrated across the domain; the specific turbulent kinetic energy at radius r

has been defined using the Reynolds averages of the velocity components (see

Sec. 3.5.2):

ETK(r) =
1

2

Ä
v2r − vr

2 + v2θ − vθ
2 + v2φ − vφ

2
ä

(5.3)

and ETK(r) has been integrated in volume across the entire shell domain, from

Rmin = 3.6× 108 cm to Rmax = 8.5× 108 cm, to obtain the total energy:

Etot
TK =

3

4π (R3
max −R3

min)

∫ Rmax

Rmin

ETK(r) 4πr
2 dr (5.4)
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Figure 5.5: Time evolution of the specific turbulent kinetic energy for the four
simulations with different luminosity boosting, r256e1, r256e5, r256e10, and
r256e50. Figure taken from Rizzuti et al. (2023).

In the figure, I show the evolution of the simulations with the longest time

range, the set r256e1, r256e5, r256e10, r256e50. The difference in luminos-

ity boosting between the simulations explains the different trends. The kinetic

energy builds up during the initial transient; afterwards, all simulations evolve

with similar trends, gradually increasing the kinetic energy during the first

phase (the nuclear-burning phase), followed by a slow decrease after all neon

is consumed in the convective zone and nuclear burning cannot sustain the

kinetic energy any longer. Primarily, the luminosity boosting affects the mag-

nitude of the kinetic energy and the time-scale of the simulations, since the

nuclear rates control the amount of energy produced and how rapidly the fuel

is consumed, therefore the nuclear burning time-scale. In the plot, the peaks

in kinetic energy occur approximately at 20 000, 2200, 960 and 180 seconds

for r256e1, r256e5, r256e10 and r256e50, respectively, and the neon mass
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fraction left in the convective shell is about 6 per cent in all cases.

From Fig. 5.5, it is also possible to see that, after fuel exhaustion, the tur-

bulent kinetic energy of all simulations seems to converge towards a value

of ∼ 1012 erg g−1, regardless of the boosting factor. This can be explained

considering that after neon is exhausted the burning reactions 20Ne(γ, α)16O

and 20Ne(α, γ)24Mg stop occurring, but the secondary 24Mg(α, γ)28Si can still

proceed due to the abundant magnesium residue, and this reaction was not

boosted so it has the same rate in all simulations. However, this “magnesium

burning” is not energetic enough to sustain convection as before with neon

burning, so turbulence slowly decays and the shell growth halts.

Another way of studying the time evolution of the turbulent kinetic energy is

presented in Fig. 5.6, where I plot ETK(r) versus time with values in colour

scale. As we saw before, apart from the difference in energy magnitude and

time-scale, all simulations share a very similar evolution, with a first period

dominated by nuclear burning and entrainment, demonstrating a linear growth

of the shell, followed by fuel exhaustion and the slow dissipation of convection,

as evident from the drop in kinetic energy, halting the shell growth. Addi-

tionally, another weak burning front is visible around r ∼ 8 × 108 cm, which

is produced by the impact of gravity waves on a carbon shell above the neon

one, but its energy is three orders of magnitude lower than in the neon-burning

shell, so it has no impact on convection or entrainment.

These results have important implications for stellar evolution. Previous stud-

ies (e.g. Cristini et al., 2019; Horst et al., 2021; Rizzuti et al., 2022) supposed

that the strong CBM predicted from hydrodynamic simulations would even-

tually lead to the convective engulfment of the entire star, but the new sim-

ulations I present here show that the shell naturally halts its growth once

fuel is exhausted. Indeed, it is possible to estimate the nuclear burning time-

scale by using nuclear network calculations in a one-zone model starting from

the same initial conditions as the 3D simulations, to exclude the contribution

from convective mixing. In this way, the nuclear burning time-scale XNe/ẊNe
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Figure 5.6: Time evolution of the specific turbulent kinetic energy for the four
simulations with different luminosity boosting, r256e1, r256e5, r256e10, and
r256e50. Figure taken from Rizzuti et al. (2023).
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in the neon shell is estimated around 4000 seconds, which is much shorter than

the time-scale for mass entrainment Mentr/Ṁentr around 30 000 seconds in the

nominal-luminosity simulation. We can conclude that the entrainment of fresh

fuel cannot sustain convection on its own. This finding puts a limit on the ex-

tent that convective zones can reach in stars, which has an important impact

particularly on the evolution of massive stars and on their final structure.

5.2.1 Nuclear burning time-scale: a fast evolution

If we compare the nominal-luminosity simulation in the first panel of Fig. 5.6

to the corresponding shell evolution of the 1D model in Fig. 5.2, it appears

evident that the convective shell in the 3D model evolves approximately ∼ 5

times faster than its 1D equivalent. Understanding this difference is not trivial.

In Fig. 5.6, I overlaid some isomass contours in white so that the expansion

of the layers can be seen, as I did also in Fig. 5.2. In the 3D simulations,

the contours show a small expansion of the layers around the convective zone,

but no expansion is allowed close to the upper and lower domain boundaries,

because mass flow is not allowed to pass through. Instead, in the 1D model

around the neon shell a strong expansion of the layers is present, because

they are not limited by domain boundaries but are free to contract or expand.

This difference in convective zone size between 1D and 3D models can also

explain the difference in burning time-scale. This is because the neon-burning

energy release is strongly dependent on the temperature, according to a power

of ∼ T 50 (Woosley et al., 2002) due to the temperature dependence of the

nuclear reaction rates and the α-particle mass fraction, and the temperature of

a gas is dependent on its volume, according to its equation of state. Therefore,

the expansion has an impact on the nuclear time-scale through a difference in

volume and temperature between the 1D and the 3D shells.

I show here with a simple calculation that the volume difference between the

final states of the convective zone in 1D versus 3D can explain the difference
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in time-scales. Assuming for simplicity that the two states are separated by

an adiabatic expansion (it is reasonable to assume no heat exchange with the

surroundings), it is true that:

T3D

T1D

=

Å
V1D

V3D

ãγ−1

=

Å
R3

1D − r31D
R3

3D − r33D

ãγ−1

(5.5)

having expressed the temperature ratio of the simulations in terms of the inner

r and outer R radii of the shells, and of the heat capacity ratio γ. Comparing

the 1D and 3D models at the end of the nominal-luminosity neon burning,

when the neon abundance is XNe ∼ 0.015, the radii in units of 108 cm are

R1D = 7.34, r1D = 4.63, R3D = 6.93, r3D = 4.44. From the equation of state

of the 3D model we get γ = 1.55, therefore the ratio in (5.5) results T3D/T1D =

1.11. The actual temperatures found in the simulations at the bottom of the

convective shell, where the burning is taking place, are T3D = 1.88 GK and

T1D = 1.78 GK, corresponding to a ratio of 1.06. From these values we can

conclude that the limited expansion in the 3D simulations due to the closed

boundary conditions can account for the higher temperatures compared to the

1D input model.

Now we can estimate the effect of the larger temperature reached in 3D on

the nuclear time-scale. The nuclear energy generation rate can be expressed

as a power of the temperature ε̇ ∼ T α, thus the difference in nuclear burning

time-scale, defined as τ ∼ 1/ε̇, becomes:

τ3D
τ1D

∼
Å
T1D

T3D

ãα

(5.6)

Woosley et al. (2002) suggested a value of α = 50 for neon burning; using the

temperature ratio T1D/T3D = 1.78/1.88, the result is a 3D time-scale that is

15 times shorter than the 1D one. This is much faster than what we see in the

simulations, for which the non-boosted case is only ∼ 5 times faster; this is

because the energy generation rate is also dependent on the neon abundance,

which decreases with time, therefore the value of α is expected to decrease in

time as neon is depleted.
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Both the 1D and 3D simulations are complex scenarios, but this simple calcula-

tion, estimating the effect of the expansion on the nuclear burning, shows how

the difference in time-scale between the 3D and 1D models can be explained.

5.2.2 Spectral analysis and turbulence theory

As I did in the previous chapter, also for this set of simulations it is possible

to compute and analyse the power spectrum of the kinetic energy. Since these

new simulations employ a spherical system of coordinates, it would be rea-

sonable to perform a spherical harmonic decomposition; however, the model

domain reproduces only a small fraction of a sphere, covering 0.2 steradians

or 2 per cent of the spherical surface, therefore it would be difficult to perform

the decomposition. Horst et al. (2021) conducted a spherical harmonic decom-

position on hydrodynamic simulations similar to the ones presented here, by

repeating the pattern periodically until the entire spherical surface is covered,

but this approach introduces artefacts from the surface remapping, and it is

still unable to represent the low-order modes due to the lack of large-scale

structures. I prefer here to compute the spectra of these simulations in the

same way as I did in Sec. 4.3.1, using a 2D Fourier analysis. Fixing the radius

in the middle of the convective region (in this case I chose r = 5 × 108 cm),

the definition of the Fourier transform in spherical coordinates for a quantity

q is:

q̂(kθ, kφ) =
1

NθNφ

Nθ−1∑

nθ=0

Nφ−1∑

nφ=0

q(θ, φ) e
−i 2π

Ñ
kθnθ

Nθ

+
kφnφ

Nφ

é
(5.7)

with Nθ, Nφ the numerical resolution, nθ, nφ the cell numbers, and kθ, kφ the

wavenumbers, which span the range:

kθ =

®
i, if 0 ≤ i < Nθ/2

i−Nθ, if Nθ/2 ≤ i < Nθ

kφ =

®
j, if 0 ≤ j < Nφ/2

j −Nφ, if Nφ/2 ≤ j < Nφ

(5.8)
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Employing these definitions, I compute the term
1

2
|v̂rms|2 that can be in-

terpreted as the power spectrum of the specific kinetic energy, as a func-

tion of the wave number k =
»
k2
θ + k2

φ. As before, the range is limited to

k ∈ [0,min{Nθ/2, Nφ/2}] to avoid losing any signal.

In Fig. 5.7 (top panel) I show the spectra for simulations at nominal luminosity

but with different resolution; these spectra have been averaged over one con-

vective turnover, except for r2048e1 that has been averaged for the last 10 s

due to its very short time-scale. The bulk of the spectra follow the expected

Kolmogorov scaling, a confirmation that the simulations have a large inertial

range. As expected, the spectra deviate from Kolmogorov’s k−5/3 scaling both

at the largest scales, around the vertical line at k ∼ 2, due to the anisotropy

of the flow, and at the smallest scales due to the numerical dissipation at the

grid scale. As the resolution increases the inertial range extends towards larger

wave numbers, because dissipation takes place on smaller real-space scales; the

spectra start deviating strongly from k−5/3 around a scale that corresponds to

15 cells for all simulations, as represented in the plot with vertical dotted lines

around k ∼ 8 - 70.

On the other hand, I also present in Fig. 5.7 (bottom panel) the spectra for

simulations with same resolution but different boosting factors, averaged over

one convective turnover. As expected, the specific kinetic energy increases

with the boosting factor, but the extent of the inertial range does not change

since the resolution is the same. This confirms the fact that the boosting factor

does not affect the properties of the turbulent flow apart from the magnitude

of the kinetic energy.

5.3 Entrainment analysis and parametrization

In this section, I show results concerning the analysis and parametrization of

entrainment in the new set of simulations. I refer to the analysis of the simu-
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Figure 5.7: Spectra of the specific kinetic energy as function of the wave num-
ber k and the real space x, for simulations with different resolution (top panel)
and with different boosting factors (bottom panel). The dashed black line is
the Kolmogorov scaling k−5/3; the vertical dotted line at k ∼ 2 is the size of
the convective region; the vertical dotted lines at k ∼ 8 - 70 correspond to 15
cells for each resolution. Figures taken from Rizzuti et al. (2023).
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Table 5.2: List of measurements from the simulations in this chapter used for
the entrainment analysis: model name; root-mean-square convective velocity
vrms; upper entrainment rate vupe /vrms; lower entrainment rate vlowe /vrms; upper
bulk Richardson number RiupB ; lower bulk Richardson number RilowB .

name vrms (cm s−1) vupe /vrms vlowe /vrms RiupB RilowB

r512e1 3.83 × 106 1.01 × 10−3 5.38 × 10−5 51.3 224
r512e5 6.65 × 106 5.03 × 10−3 3.69 × 10−4 13.8 64.7
r512e10 8.28 × 106 8.25 × 10−3 6.54 × 10−4 8.91 42.5
r512e50 1.34 × 107 2.72 × 10−2 1.84 × 10−3 2.63 15.3

lations in the previous chapter, in particular to Sec. 4.5.1, for the computation

methods. Here, the convective boundary locations have been obtained using

the angularly averaged neon mass fraction profiles, defining the boundary as

the mid-point between the plateaus in the convective and in the radiative re-

gions. As before, ve is the entrainment velocity obtained as the time derivative

of the boundary location, vrms is the velocity inside the convective zone de-

fined as
Ä
v2r + v2θ + v2φ

ä1/2
, and the length scale ℓ is set equal to 1/12 of the

local pressure scale height. For the entrainment analysis, I selected the group

of simulations r512e1, r512e5, r512e10, and r512e50, that have been run

for enough convective turnovers to be statistically significant, and also have a

high resolution to make sure that the boundaries are correctly resolved. All

quantities have been averaged for the entire time the simulations spent in the

entrainment regime. Figure 5.6 has shown that the growth of the convective

zone follows the same slope at any point during the entrainment regime. The

results are presented in Table 5.2.

In agreement with the results from the previous chapter, an increase in the

boosting factor results in larger convective and entrainment velocities and

smaller RiB due to the larger penetrability. These results are used to esti-

mate again the free parameter A, n that define the entrainment law (2.25).
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For greater accuracy, instead of fitting the data with a linear regression in

log scale, I used here an “orthogonal distance regression” that minimizes the

squared perpendicular distance of the points from the fitting function. The

scipy.odr library that I employed allows to take into account the errors in

both x- and y-axes, and gives the possibility of fitting an arbitrary function,

in this case a power law.

The measurements of entrainment rates, bulk Richardson numbers and the

fitting laws are shown in Fig. 5.8, where I compare the results from this new

work (in blue) to the simulations of the neon shell from Chapter 4 (in red),

and to the 1D entrainment study of a convective hydrogen core in a 15 M⊙

star from Scott et al. (2021) (in black). The error bars are standard deviations

of the values at each time-step of the simulations, and since the new fitting

has been done in real space, the plot in log scale can show some of the bars

going towards zero.

The plot in Fig. 5.8 shows different values of RiB estimated both in late con-

vective phases (data points, RiB ∼ 1 - 103) and in the main-sequence core (ver-

tical line, RiB ∼ 105); the main reason of the disagreement between 1D and

3D models is the inability of running non-boosted hydrodynamic simulations

of the convective cores, and the consequent need to extrapolate entrainment

rates at very large RiB. But Fig. 5.8 also shows an interesting result of the

new simulations: the new entrainment law estimated from the present work

appears to be intermediate between the previous multi-D simulations and the

1D prescription, being potentially able to explain and reproduce entrainment

both at small and large RiB.

This result is confirmed by the plot of Fig. 5.9, where I compare entrainment

from all PROMPI simulations in the literature: the new simulations clearly have

lower entrainment rates then all the previous multi-D measurements. These

new rates are not as small as it would be predicted from the 1D entrainment

law (the black line in Fig. 5.8), but the larger steepness and lower dispersion

of the new rates produce an entrainment law that predicts much smaller rates
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Figure 5.8: Entrainment rate versus bulk Richardson number, data from stellar
simulations and respective linear regressions: “MESA” Ne-shell from this study
(blue), “GENEC” Ne-shell from Chapter 4 (red), and H-core from 1D Scott et al.
(2021) (black). Triangles are measurements for lower convective boundaries,
circles for upper boundaries. The dashed vertical line indicates RiB in the
convective H-core. Error bars are standard deviations. In the legend, param-
eter estimates for the entrainment law ve/vrms = A Ri−n

B . Figure taken from
Rizzuti et al. (2023).
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Figure 5.9: Same as Fig. 5.8, but comparison between different PROMPI sim-
ulations: “MESA” Ne-shell from this study (red, solid), “GENEC” Ne-shell from
Chapter 4 (blue, dotted), C-shell from Cristini et al. (2019) (green, dashed),
O-shell from Meakin & Arnett (2007) (yellow, dot-dashed). In the legend,
parameter estimates for the entrainment law ve/vrms = A Ri−n

B . Figure taken
from Rizzuti et al. (2023).

at larger RiB, in very good agreement with 1D models of the convective core.

This new-found convergence between 1D and 3D stellar models is a direct re-

sult of the improvements implemented in the hydrodynamic models and in the

initial conditions they were started from. The two sets of hydrodynamic simu-

lations shown in Fig. 5.8 are both of a Ne-burning shell, with the same nuclear

burning reactions and energy release, but the initial conditions were assumed

from two very different 1D models: in Chapter 4, I used a GENEC model with
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no CBM in this phase, while in this chapter I employed a MESA model with

strong CBM for all phases. The stellar mass is also different, but previous

hydrodynamic simulations of massive stars do no show any dependence of the

entrainment law parameters on the stellar mass (see Fig. 5.9). Furthermore,

the present set of simulations has been run for an entire evolutionary time-

scale, which has never been done before.

The conclusion from the results presented in this section is that, when a hy-

drodynamic simulation is started from a 1D model that includes an up-to-date

CBM prescription, the entrainment rate predicted from the 3D model is sig-

nificantly more in agreement with the one from the 1D input model than sim-

ulations started from initial conditions with absent or underestimated CBM.

5.4 Nucleosynthesis and time evolution of the

isotopes

In the set of simulations I present here, it is possible to study the time evo-

lution and space distribution of the different isotopes included in the nuclear

network. We have seen in the previous sections how the simulations evolve

towards the complete depletion of neon and consequent decline of convection.

To track the neon consumption, Figure 5.10 shows the time evolution of the

neon abundance inside the convective zone, for the four simulations with dif-

ferent boosting factors r256e1, r256e5, r256e10, and r256e50. During the

first ∼100 s, the fluctuations in neon abundance come from the propagation of

convection throughout the convective region and the entrainment of some ma-

terial from the neon-rich layers above; this initial trend is different in r256e50

because neon is also consumed due to the high energy boosting. After this

initial transient phase, the simulations consume neon on different time-scales

but all with the same trend.

The chemical abundances can be studied with a mean-field statistical analysis,
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Figure 5.10: Time evolution of the 20Ne mass fraction inside the convective
region, for the four simulations with different boosting factors r256e1, r256e5,
r256e10, and r256e50. Figure taken from Rizzuti et al. (2023).
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Figure 5.11: Angularly averaged mass fractions of 16O, 20Ne, 24Mg, 28Si as func-
tion of the stellar radius, at the beginning of the r256e1 simulation (dashed)
and after 8 hours (solid), towards the end of the convective phase.

employing the tools I presented in Sec. 3.5.2. I plot in Fig. 5.11 the initial and

final mass fraction profiles, as dashed and solid lines respectively, of the four

isotopes involved in neon burning from the simulation r256e1. The convective

zone is identified by the central plateaus in the abundance profiles. We can see

that at the beginning of the simulation the convective region extends from 4.5

to 5.8×108 cm, but by the end of the simulation it has almost doubled in size,

as also visible in Fig. 5.6. Concerning the individual isotopes, the plot shows

that 20Ne has been completely consumed in the convective zone, due to the

neon-burning reactions 20Ne(γ, α)16O and 20Ne(α, γ)24Mg, therefore 16O and

24Mg have been produced as a result, but part of the 24Mg has been converted

to 28Si according to 24Mg(α, γ)28Si.

We can also study the transport of the isotopes across the layers by plotting the
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radial flux profiles, defined as fi = ϱ flX ′′
i v

′′
r for each species i. Figure 5.12 shows

the flux profiles from the high-resolution r1024e1 simulation, averaged over 3

convective turnovers. In this plot, positive and negative values of the flux rep-

resent upward and downward flows, respectively. The flux is dominated by the

downward transport of 20Ne towards the bottom of the convective zone, where

the nuclear burning is taking place, while 16O, 24Mg and 28Si are produced at

the bottom and transported upwards, hence their positive fluxes. Outside the

convective region, there is no mixing therefore no transport of species. How-

ever, immediately below the convective zone the flux is slightly positive for

silicon and negative for oxygen and magnesium; this is because silicon is more

abundant below the boundary so it is brought inside the convective zone by

entrainment, while oxygen and magnesium are produced and more abundant

above the boundary so they are transported downwards. Finally, the black line

in Fig. 5.12 represents the sum of all the fluxes for the 12 isotopes included in

the simulations, and it is always equal to zero, confirming that the sum of the

mass fractions is conserved.

So far we have only seen angularly averaged quantities, but it is also interest-

ing to study the horizontal fluctuations of the chemicals. For this purpose, I

plot in Fig. 5.13 the standard deviation profiles of the mass fraction for 16O,

20Ne, 24Mg, 28Si, defined as σi = (‡X ′′
i X

′′
i )

1/2 for a species i, with σi in the

top panel and the normalized σi/X̄i in the bottom panel of Fig. 5.13. The

standard deviations represent the dispersion of the chemicals as function of

the radius, therefore they can be used to measure the difference from a perfect

spherical symmetry, as in the case of 1D models. The largest deviations can be

found at the convective boundaries, due to the deformation of the boundary

under the effects of entrainment and convective motions. Instead, inside the

convective zone the mixing makes the composition homogeneous and reduces

the dispersion. Small deviations are also present below the convective region,

due to the fluctuations generated by entrainment and internal gravity waves.
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Figure 5.12: Flux profiles of 16O, 20Ne, 24Mg, 28Si as function of the stellar
radius, from simulation r1024e1. The black line is the sum of the flux profiles
for all the 12 isotopes in the network. Figure taken from Rizzuti et al. (2023).
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The presence of an angular distribution of the chemicals can have a significant

impact on the stellar nucleosynthesis. In these plots, the standard deviations

are generally small, so there are no major differences from a perfect spheri-

cal symmetry, as expected for nucleosynthesis in normal convective burning

episodes. The situation is different in more dynamic contexts, like in merging

shells (e.g. Mocák et al., 2018, see also Chapter 6) or in cases where fuel is

ingested into an unusual burning region (e.g. carbon ingestion into an oxygen-

burning shell, Andrassy et al., 2020).
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Figure 5.13: Standard deviation profiles σi (top panel) and normalized stan-
dard deviation profiles σi/X̄i (bottom panel) of the mass fractions for 16O,
20Ne, 24Mg, 28Si, from simulation r1024e1. Figures taken from Rizzuti et al.
(2023).
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6 Shell merging and nucleosynthesis
in 3D hydrodynamic simulations

6.1 Motivations and overview

The 1D stellar evolution model presented in Sec. 5.1.1, from which the 3D sim-

ulations of Chapter 5 have been started, shows a very interesting occurrence

in the evolution of the star: the merging of multiple convective shells into a

single convective region (see Fig. 5.1). This is a challenging environment to

study, due to the complex interaction between convection, nuclear burning and

entrainment, resulting in alternative dynamics and nucleosynthesis paths that

are difficult to include in 1D models using simplifying prescriptions. These

differences are expected to have a deep impact on the structure and chemical

composition of the star, affecting the possible supernova explosion and chem-

ical enrichment of the interstellar medium.

A major source of uncertainty related to the formation and evolution of con-

vective shell mergers is the limited literature that investigates these episodes.

1D stellar evolution models have been reporting the occurrence of convective

carbon-oxygen shell merging for a long time (Rauscher et al., 2002; Tur, Heger

& Austin, 2007). These studies suggest that shell-merging events in evolved

massive stars can be responsible for the production of isotopes that are difficult

to explain otherwise, both during these convective phases and later on in the

supernova explosions. Carbon-oxygen merging shells can be a principal source

for the nucleosynthesis of the odd-Z elements P, Cl, K, and Sc, whose produc-

tion is currently underestimated by Galactic chemical evolution models (see

e.g. Cescutti et al., 2012 for the origin of phosphorus). Indeed, the heating of

ingested carbon at oxygen-burning temperatures can trigger a sequence of γ-

reactions, among which (γ, p) that release free protons and can produce odd-Z

elements; this is sometimes called “p-process”. Additionally, during the ex-
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plosive nucleosynthesis in core-collapse supernovae, the carbon-oxygen merger

sites can explain the production of rare proton-rich isotopes beyond iron. In

this case, it is the collapse of the star that triggers the photodisintegration of

heavy isotopes, which can produce in these layers the p-nuclei through a chain

of photodisintegrations, also called “γ-process” (see Roberti et al., 2023).

Recently, a few works also started studying these events employing hydrody-

namic models. Ritter et al. (2018) have performed 3D hydrodynamic simula-

tions of carbon ingestion from a stable layer into a convective oxygen-burning

shell, assuming a stratification based on a 25 M⊙ stellar evolution model. The

nucleosynthesis in their simulations, computed with a 1D multi-zone post-

processing code, confirms that the high entrainment rates boost the produc-

tion of the odd-Z elements 31P, 35Cl, 39K, and 45Sc through (γ, p) reactions.

Their study also shows that the consequent explosive nucleosynthesis does not

reprocess these elements, indicating that their principal production sites are

the convective merging shells.

Andrassy et al. (2020) further investigated the ingestion of carbon into a con-

vective oxygen-burning shell using 3D simulations that include explicit carbon-

and oxygen-burning reactions. In addition to confirming the entrainment rates

found in Ritter et al. (2018), they estimate that the carbon-burning inside the

oxygen shell can contribute to 14 - 33 per cent of the total luminosity of the

shell, showing how impactful the extra burning can be.

Finally, Mocák et al. (2018) have studied the merging of neon and oxygen shells

in a 23 M⊙ star, simulating the ingestion of neon into a convective oxygen-

burning shell with the PROMPI code in spherical geometry. They included an

explicit 25-isotope network that can reproduce the energy release dominated

by oxygen- and neon-burning inside the convective shell. In particular, the

neon burning results from the mixing of entrained material into the convective

oxygen layers, while oxygen burning is enhanced by the additional fuel mixed

from the stable regions. As a result, a new quasi-steady state is reached and

the simulation predicts two burning shells within a single convective zone, with
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two distinct peaks in nuclear energy generation.

As ground-breaking as these studies are, they focus their attention on situa-

tions where an alternative fuel is ingested from a stable region into a convective

one, affecting its nucleosynthesis; this represents the merging of a convective

region with a stable one. Instead, the 1D model of Fig. 5.1, representative of

many other stellar simulations, shows the merging of multiple shells of different

composition, but all convective. The evolution of convective shells that begin

their life as separate and later merge has never been explored in the literature

with multi-D simulations. Nevertheless, it is an interesting environment to

simulate, not only for the peculiar nucleosynthesis paths that it can enable,

but also for the effects of these extreme dynamics on the stellar structure, as

visible from the large convective shell generated by the merging in Fig. 5.1.

In this chapter, I present results from a set of 3D hydrodynamic simulations of

a shell merging event predicted by the 321D-guided model introduced earlier.

Analysing both the dynamics and nucleosynthesis of this environment allows

me to shed light on the relatively unexplored shell-merging events, drawing

conclusions of great interest for the stellar structure and chemical evolution

theory. Additionally, I used this opportunity to push the PROMPI code towards

an even more realistic setup, implementing a nearly 4π geometry in addition

to a spherical system of coordinates, a 12-isotope network for nuclear burning,

and the high resolution common to the simulations presented in the previous

chapters.

6.1.1 Setup of the simulations

As mentioned above, the initial conditions for the new 3D simulations pre-

sented in this chapter have been assumed from the same 20 M⊙ 1D stellar

evolution model used in Chapter 5; see Sec. 5.1.1 for a description. I focus my

attention here on the time interval in Fig. 5.1 between 10−2 - 10−4 yr before

the predicted collapse of the star; I present a zoom-in of this region in Fig. 6.1.
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From this plot, it is possible to see that three distinct convective regions exist

at the start of the 3D simulations, and they all are predicted to merge after

10 000 s. A fourth convective shell is predicted to form below the others after

the 3D simulation starting time, but it does not merge with the others and

halts around 10 000 s. One first question that the hydrodynamic simulations

shall answer is whether a merging takes place in the 3D model within the

simulated time range or not. Furthermore, Figure 6.1 shows from the isomass

contours that no major expansion is predicted to occur during the time range

of the 3D simulations; even if an expansion of the layers takes place during

the shell merging in 3D, the large radial extent selected for the simulations is

expected to contain this problem.

The remapping of variables from 1D to 3D has been carried out exactly as

described in Sec. 5.1.1 for the previous set of simulations, including adding

seed perturbations between 6 - 7 × 108 cm and between 9.5 - 12 × 108 cm.

For this study, I present two different simulations in spherical geometry, start-

ing from the same initial conditions. Both simulations have a radial extent of

0.3 < r < 6.8×109 cm, as also shown in Fig. 6.1, but the angular range covered

by θ and φ is different. One setup is a 3D wedge with the same angular size

of 60◦ in both θ and φ, and resolution 768 × 2562 in r, θ and φ; I code-name

it a60n256 after its angular size and resolution. The other setup has instead

a size of 90◦ in θ and 360◦ in φ, and resolution 512× 256× 1024 in r, θ and φ;

I code-name it a360n1024. The reason for running these two simulations is to

study the evolution of the same initial conditions in the two different geome-

tries. In particular, a60n256 has a higher local resolution but more limited

spatial extent, while a360n1024 is closer to a 4π solid angle, covering over 70

per cent of the spherical surface, at the cost of a slightly lower local resolu-

tion. The reason why the PROMPI code cannot perform full 4π simulations is

explained in Sec. 3.4.2: the spherical grid presents singularities at the centre

and along the polar axis of the sphere, therefore artefacts are produced by

the code the closer the domain approaches these points in space. However, it
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Figure 6.1: Zoom-in on the convective shells used as initial conditions, as a
function of the time in seconds from the start of the 3D simulations. In colour
scale, the squared convective velocity. Isomass contours are shown as black
lines. The vertical blue bars show the radial extent of the 3D model, at the
starting and ending time of the simulations.
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is important to go beyond the box-in-a-star setup and towards fully spherical

simulations, in order to correctly reproduce the fluid motions especially in case

of large convective regions.

A velocity-damping region has been included at the upper domain for r >

6× 109 cm to dissipate the gravity waves, in particular at the beginning of the

simulation when the equilibrium state has not been reached yet; no damping

could be included at the lower domain due to the close presence of convective

regions. Periodic boundary conditions have been implemented in φ, but for θ

reflective boundary conditions have been chosen instead. This is justified by

the proximity to the polar axis, where periodic conditions are no longer realis-

tic and can create an excess of kinetic energy, therefore it is more physical to

assume that the flow cannot cross the axis (see Müller, 2020).

The 12-isotope network employed for energy generation is particularly appro-

priate for this environment: as explained in Sec. 3.4.5, this network can cover

carbon, neon and oxygen burning, which are the most important reactions

expected to take place in these convective shells. These events are dynami-

cal enough that it is not required to implement any boosting of the driving

luminosity, as it was the case in the previous chapters; this ensures that no

artefacts result from changes in the energy generation.

6.2 Dynamics of the shell merging

I present in Table 6.1 the properties of the two hydrodynamic simulations of

shell mergers included in this chapter. As explained before, the two simulations

are started from the same initial conditions and run for the same time-scale,

but with two different geometries, to test the dependence of results on the

model setup. As I will show below, the evolution of the two simulations is very

similar and in many parts of this chapter, when the analysis is not focused

on the differences arising from the geometry, I will only show results from
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Table 6.1: Properties of the two hydrodynamic simulations I present in this
chapter: model code name; polar angular extent, ∆θ; azimuthal angular ex-
tent, ∆φ; radial resolution, Nr; polar angle resolution, Nθ; azimuthal angle
resolution, Nφ; ending time of the simulation, tend; and finally cost required to
run the simulation in CPU core-hours.

name ∆θ ∆φ Nr Nθ Nφ tend (s) cost (106 hr)

a60n256 60◦ 60◦ 768 256 256 3000 0.92
a360n1024 90◦ 360◦ 512 256 1024 3000 2.44

a360n1024, which is closer to a fully spherical geometry. To better display

this, I show in Fig. 6.2 two cross-sections taken from a360n1024, one showing

the equatorial plane (top panel) and one showing a vertical plane from two

opposite sides of the polar axis (bottom panel). We can clearly see the ef-

fects of the geometry on the fluid motions: on the equatorial plane, large-scale

structures have the possibility to form thanks to the large radial extent and

the 360◦ range spanned by φ. In the vertical plane instead, large-scale eddies

take up the entire domain: this is due to the reflective boundary conditions

assumed in θ, that encourage the formation of one large eddy; additional tests

show that periodic boundary conditions in θ encourage instead the formation

of two large eddies in the same convective region.

We can now study the evolution and merging of the convective shells in the

3D simulations. To have a visual representation similar to the 1D model of

Fig. 6.1, I present in Fig. 6.3 the time evolution of the angularly averaged

kinetic energy (in colour scale) for the two models a360n1024 (top panel) and

a60n256 (bottom panel). Thanks to the log scale applied to the radius, we can

clearly identify the different convective shells and track their evolution. The

main event in both simulations is the merging of the two outermost shells, the

carbon- and the neon-burning shells, around 1200 s (much faster than in 1D),

which generates a large increase in kinetic energy due to the burning of the
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taken from a360n1024 at 1500 seconds, with the fluid speed in colour scale in
units of cm s−1. The two frames show the 360◦ range in φ-angle (top) and the
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freshly engulfed material. The third shell, the oxygen-burning shell, displays a

different behaviour: neither it rapidly mixes material with the upper merged

shell, nor it effectively burns the fresh fuel producing the large energy release

seen in the shell merging. Instead of merging with the other two shells as

predicted by the 1D model, the entrainment from the merged shell proceeds

slowly due to the strong entropy barrier, and it slowly turns off the nuclear

burning in the oxygen shell, as also visible from the energy generation pro-

files (see Fig. 6.6). This trend is confirmed by a preliminary low-resolution

test simulation that has been run up to 10 000 s, and that shows the death

of convection in the oxygen-burning shell and the lack of a dynamical merg-

ing. However, it cannot be excluded that in the higher resolution simulations

presented here a merging would eventually take place, considering that the

oxygen shell does not completely die out by the end of the simulations, despite

a temporary halt around 1500 s after the first impact with the merging shells

above.

The most important difference between the two simulations is the lack in

a60n256 of a second oxygen-burning shell immediately above the lower do-

main of the model, which is present instead in a360n1024. Differently from

the other shells, this is the only one that is not present in the initial conditions,

but is expected to form afterwards, as visible in Fig. 6.1. The low-resolution

test simulation, similar in geometry to a60n256, shows that a second oxygen-

burning shell does form eventually, but around 4000 s. This delay can be

therefore attributed to the “wedge” geometry, that apparently delays the cor-

rect development and evolution of the shells. Indeed, the comparison between

the two geometries in Fig. 6.3 shows how much smoother the evolution of the

shells is in a360n1024 compared to a60n256, where convection in the shells

can temporarily fade to reappear later.

The time evolution of the spatially integrated kinetic energy for the hydrody-

namic simulations is shown in Fig. 6.4, alongside the same quantity for the

1D input model. a360n1024 and a60n256 share a very similar evolution, with
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Figure 6.3: Time evolution of the angularly averaged kinetic energy in colour
scale for simulations a360n1024 (top panel) and a60n256 (bottom panel).
Overlaid in white are the isomass contours. The log scale applied to the radius
on the y-axis provides a comprehensive view of all the convective shells.
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Figure 6.4: Specific turbulent kinetic energy integrated across the entire do-
main for simulations a360n1024 and a60n256 compared to the evolution of
the 1D MESA model.

sharp increases in kinetic energy after an initial transient, interrupted by two

plateaus around 750 and 2000 s right before and after the main merging event,

respectively. The 1D model also shares a similar evolution, but on a time-scale

that is about 5 times slower; this is the same effect that we have seen and

analysed in the simulations of Chapter 5. I concluded in Sec. 5.2.1 that this is

due to the closed boundary domains and limited expansion that characterize

the 3D simulations; the same seems to be occurring here, despite the large

radial extent selected to contain this problem.

As another way of highlighting the differences in geometry between the two

simulations, I computed the power spectra of the kinetic energy with 2D

Fourier transforms as previously described in Sec. 5.2.2 for a spherical ge-

ometry. The results are shown in Fig. 6.5, for a360n1024 in the top panel

and a60n256 in the bottom panel, at a radius inside the main shell merging
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Figure 6.5: Spectra of the specific kinetic energy as function of the wave num-
ber k and the real space x, taken at r = 1× 109 cm in the middle of the main
shell merging event, for a360n1024 (top panel) and a60n256 (bottom panel),
at four key time-steps in the simulations (see Table 6.2). The dashed black
line is the Kolmogorov scaling k−5/3; the vertical dotted line on the left is the
average size of the merged shell, and the one on the right is the size of 10 cells.
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event. Both spectra follow the expected Kolmogorov scaling at most scales,

but the one for a360n1024 can reach higher k due to its larger number of cell,

and larger scales x due to its larger domain. In real space, a60n256 follows

the Kolmogorov scaling for a larger range (4 × 107 - 4 × 108 cm) compared

to a360n1024 (6 × 107 - 4 × 108 cm), due to the higher local resolution of

a60n256 that induces the dissipation at smaller spatial scales. Additionally,

some strong absorption frequencies are present in the spectrum of a360n1024,

but the fact that they stay constant in time and do not appear in a60n256

gives strong indications that they are an effect of the model geometry, which

is close to but not exactly a full sphere.

I focus my attention now on the analysis of a360n1024. Table 6.2 shows the

convective velocity, radial size and convective turnover time of each shell dis-

played in Fig. 6.3 for a360n1024 at four key time-steps, chosen to represent the

initial situation with separate shells (250 s), right before and after the merging

(750 s and 1500 s), and the final state (3000 s) of the simulation. It is not easy

to perform a statistical analysis of convective shells that have such different

properties across time and between each other: the carbon and neon merging

shells increase their convective velocity by almost one order of magnitude in

time, reaching a maximum right after the merging before starting decreasing

again. The convective velocity in these shells can be up to 10 times larger than

in the oxygen shell. As a result, the convective turnover time assumes a wide

range of values across the different shells, requiring attention when choosing

the time windows for the statistical analysis.

Some radial profiles from a360n1024 are shown in Fig. 6.6 at different times

throughout the simulation: nuclear energy generation rate (top panel), tem-

perature and entropy (bottom panel). These quantities help us interpret the

evolution of the simulations presented in the figures before: the three convec-

tive shells at the beginning of the simulation at r ≲ 10 × 108 cm are fuelled

by an equal number of peaks in energy generation, but as time passes the two

outermost peaks, i.e. the carbon- and neon-burning shells, merge into a single
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Table 6.2: Properties of the a360n1024 shell-merger simulation presented in
this chapter, for the three convective shells burning carbon, neon, and oxygen
(refer to Fig. 6.3) at different key times in the simulations: convective velocity
vrms; shell size ∆r; convective turnover time τc. The carbon and neon shells
share the same values after the merging.

convective velocity vrms (10
6 cm s−1)

time
shell

C Ne O

250 s 6.81 8.49 6.68
750 s 15.2 7.33 8.41
1500 s 56.4 5.26
3000 s 41.3 −

shell size ∆r (108 cm)

time
shell

C Ne O

250 s 5.12 2.28 0.56
750 s 25.7 1.04 0.85
1500 s 46.0 0.44
3000 s 52.0 −

convective turnover time τc (s)

time
shell

C Ne O

250 s 150 53.7 16.8
750 s 338 28.4 20.2
1500 s 163 16.7
3000 s 252 −
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Figure 6.6: Angularly averaged radial profiles from a360n1024 taken at dif-
ferent times throughout the simulation: nuclear energy generation rate (top
panel), temperature and entropy (bottom panel).
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larger peak, while the innermost oxygen-burning shell reduces its energy release

with time until it completely disappears. This same behaviour is reflected by

the evolution of the temperature. Additionally, some nuclear burning starts

taking place also in the outer layers after the shells merge (r > 20 × 108

cm), due to the entrainment of helium and carbon from the upper layers at

r > 40 × 108 cm (see Fig. 6.8). This is the same situation reached in the

simulation of Mocák et al. (2018), with two different burning shells present

within the same convection zone. However, its energy generation is at least

two orders of magnitude lower than in the main event, so its contribution is

not significant. Finally, the evolution of the entropy profiles shows that the

convective shells are dynamical enough to mix entropy rapidly and efficiently.

6.3 Evolution of the chemical composition

As interesting and important as it is to study the evolution of the abundances

in these simulations of merging shells, it can also be very challenging to have

a clear picture of what exactly is happening across the multiple convective

regions, considering the contributions from convective mixing, nuclear burning

and entrainment. I will present in this section the time evolution and radial

distribution of the chemical abundances in order to provide a description of

the nucleosynthesis in the shell merger environment.

In Fig. 6.7, I present the time evolution of 12C, 16O, 20Ne, 24Mg, and 28Si at a

radius of 1× 109 cm, i.e. inside the carbon-burning shell first and the merged

shells later, for simulation a360n1024. It is not easy to disentangle the two

main processes that contribute to the variation of these abundances, which are

the nuclear reactions and the radial transport of species. Before the merging

event, which occurs around 1200 s, 12C stays relatively constant inside the shell

because its consumption is rapidly compensated by the strong convective mix-

ing across the region, while 20Ne slightly decreases due to its consumption and
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Figure 6.7: Time evolution of the mass fractions of key isotopes at radius
1× 109 cm, inside the merging shells, throughout simulation a360n1024.

transport to the neon-burning region immediately below. 16O, 24Mg and 28Si

slightly increase thanks to their production by these reactions. These trends

are strongly enhanced after the shell merging (t ≳ 1200 s), due to the efficient

carbon and neon burning that occurs in the newly formed shell; specifically,

12C and 20Ne are more rapidly consumed, leading to a strong production of

16O, 24Mg and 28Si. No destruction of oxygen is observed in this shell.

We can also study the spatial distribution of the isotopes at different time-

steps by plotting their angularly averaged radial profiles, as I do in Fig. 6.8 for

different combinations of isotopes. From the abundances we can easily identify

the three initial convective shells, indicated by the plateaus in 16O between 4 -

5× 108 cm, in 12C between 9 - 14× 108 cm, and the gradient in 20Ne (bottom

panel) between 6 - 8× 108 cm due to its fast consumption and mixing. After

the merging at t ∼ 1200 s, a single large plateau is dominating most of the
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domain, extending inwards due to entrainment and mixing of material, and

decreasing the abundance of 12C and 20Ne due to their burning in the shell,

with an increase of 16O and 24Mg as a result. Entrainment of 4He and 12C

from the rich upper layers r > 40 × 108 cm is also visible in the top panel,

contributing to the secondary peak in energy generation visible in Fig. 6.6.

It is also possible to study the radial transport of the isotopes employing the

mean-field analysis tools I have introduced in Sec. 3.5.2 and applied in Sec. 5.4.

The radial flux profiles, defined as fi = ϱ flX ′′
i v

′′
r for a species i, are shown in

Figs. 6.9 and 6.10 for the most important isotopes of simulation a360n1024

at the usual four time-steps. It is very useful to look at the evolution of

these quantities, because they represent the mixing of material that brings

the fuel towards the burning regions and the ashes away from them. As be-

fore, positive and negative values of the flux represent upward and downward

transport of species, respectively. At the beginning of the simulation (Fig. 6.9,

top panel) the four convective regions are clearly indicated by the peaks and

valleys in flux, corresponding to upward and downward transport of ashes and

fuel, respectively, as it was the case in the simulations analysed in Sec. 5.4.

Specifically, the two innermost shells are burning mainly oxygen to produce

silicon, while the central shell between 6 - 8× 108 cm is burning mostly neon

to produce oxygen and silicon, and the outermost shell is burning carbon to

produce neon. We can see that when the two shells merge (t = 750 - 1500 s,

Fig. 6.9 bottom and Fig. 6.10 top), a single convective zone forms in the middle

of the domain, and it is burning both neon and carbon to generate oxygen,

magnesium and silicon. The magnitude of the flux greatly increases right after

the merging, but with time it starts reducing again following the decrease in

kinetic energy, as visible in Fig. 6.10, bottom panel.

Finally, I show in Fig. 6.11 the normalized standard deviation profiles of the

mass fraction, defined as σi/X̄i = (‡X ′′
i X

′′
i )

1/2/X̄i for a species i, for the same

isotopes as before, and at two time-steps before and after the shell merging.

It can be challenging to recognise precise shapes in these plots, but neverthe-
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Figure 6.9: Flux profiles of 12C, 16O, 20Ne, 24Mg, and 28Si as a function of
the stellar radius, from simulation a360n1024 at 250 s (top panel) and 750 s
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Figure 6.10: Same as Fig. 6.9, but at time 1500 s (top panel) and 3000 s
(bottom panel), averaged over 200 s and 500 s respectively.
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less they can provide an idea of the magnitude of the chemical dispersion in

the layers, i.e. the deviation from spherical symmetry assumed in 1D models.

Before the merging, the peaks of normalized dispersion at the shell boundaries

can reach up to 200 per cent, but inside the convective carbon-burning region

(9 - 14× 108 cm) they are closer to 10 per cent for carbon and up to a few per

cent for the other isotopes. Immediately after the merging, the new peaks in

normalized deviation go beyond 300 per cent, and the values inside the merged

region have also increased to 30 per cent for carbon and silicon, and at least 10

per cent for neon and magnesium. Overall, these values are rather large, espe-

cially if compared to the dispersions from more conventional burning phases

like the one simulated in Chapter 5. This is an effect of the highly dynamical

environment found in the shell mergers, and it shows the significant impact

that these events can have on the nucleosynthesis processes already during the

evolution of the star, before the supernova explosion.
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7 Conclusions and future work

A good understanding of the structure and evolution of massive stars is of

crucial importance for many different fields in Astrophysics. This is why it is

necessary to improve our knowledge and ability to relate observations to accu-

rate models of stars. This is particularly challenging when it comes to studying

the internal structure of stars, since observations are generally limited to the

stellar surface and can only give indirect information on the interiors. For

massive stars, the question is complicated even more by the fact that towards

the end of the stellar life the internal structure is organised in concentric shells

with multiple convective regions. Nevertheless, it is important to have a good

understanding of these environments, especially for their impact on studies of

supernova progenitors and explosion mechanisms, predictions on the nature

and physics of the remnant, nucleosynthesis and galactic chemical evolution.

Stellar models represent a precious tool for producing accurate predictions of

the structure and evolution of stars. Simulating the complete evolution of an

entire star will probably never be possible in more than one dimension, given

the high computational cost of multi-dimensional models. Therefore, the 1D

models will remain the main tool for predicting and explaining the stellar evo-

lution. Since these models are largely based on simplifying assumptions that

reproduce the complex multi-D processes inside stars, it is crucial that the

physics implemented is always accurate and up to date. Nowadays, there are

still many uncertainties related to these processes, with one of the most im-

portant being the extent of convective zones in stellar interiors.

More light on these uncertainties can be shed by multi-D simulations of spe-

cific parts of the stellar interiors, produced employing numerical models. The

results can give very detailed information on the dynamics of the stellar con-

vective layers, improving the physics and parametrization of 1D models. How-

ever, multi-D models are computationally very expensive, so it is difficult to
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reproduce a significant portion of the stellar lifetime in more than one dimen-

sion. Therefore, it is the interplay between 1D and multi-D models that really

pushes forwards our knowledge of stellar evolution.

In this thesis, I presented the results of different sets of hydrodynamic sim-

ulations, run and analysed with the goal of improving the understanding of

turbulent dynamics and nucleosynthesis in evolved massive stars. Three dif-

ferent environments have been explored: a neon-burning shell from a 15 M⊙

star in Chapter 4, a neon-burning shell from a 20 M⊙ star in Chapter 5, and a

shell merging event from a 20 M⊙ star in Chapter 6. Each of these scenarios

has been studied to probe different aspects of the stellar evolution, and the

conclusions drawn are diverse and of general interest for stellar evolution the-

ory and other fields of Astrophysics.

The convective neon shell simulated in Chapter 4 (Rizzuti et al., 2022) is one

of the few cases in the literature of 3D stellar simulations at nominal luminos-

ity, i.e. the energy generation has not been altered. As a burning phase, the

neon burning is still distant from the final collapse of the star. The simulations

clearly show the evolution of the convective zone and its growth in time due to

entrainment of material from the stable regions. Having run multiple simula-

tions from the same initial conditions but with different luminosity boosting,

and having extracted the entrainment rates from both the upper and lower

convective boundaries, I parametrized entrainment with a simple law that can

be used for 1D models. The law is consistent with previous parametrizations

from hydrodynamic simulations, but not with the results from 1D stellar evolu-

tion models. This is a well-known problem in stellar evolution theory, but the

new simulations presented here show that the large entrainment rates found

by multi-D models are not an effect of the luminosity boosting, but a natural

result of the turbulent dynamics.

The simulations presented in Chapter 5 (Rizzuti et al., 2023) have been started

instead from initial conditions assumed from a “321D-guided” stellar model,

which includes overshooting prescriptions that are stronger than what is nor-
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mally used in these models. A neon-burning shell from this 1D model has been

simulated in 3D until the complete exhaustion of fuel and the death of con-

vection. The simulations, that as in the previous case have been run with and

without boosted luminosity, show again large entrainment rates, but the en-

trainment law parametrized from these data is significantly more in agreement

with the measurements from 1D models of main-sequence stars. This finding

is a promising sign of convergence in overshooting prescriptions between 1D

and multi-D models. Additionally, abundance variations have been studied in

these simulations, showing strong radial fluxes that transport species across

the convective zone, but only a modest dispersion of species as a function of

the radius.

Finally, I presented in Chapter 6 simulations of a more peculiar event, the

merging of two convective shells into a larger one. This scenario is of great

interest for the evolution of the stellar structure towards its final phases and

the nucleosynthesis paths that it can enable. Initial conditions were assumed

from the “321D-guided” stellar model that predicts the merging of multiple

convective shells. The corresponding 3D simulations confirm the merging of a

carbon-burning with a neon-burning shell, with a strong increase of the fluid

kinetic energy. The new merged shell becomes an important site for nucle-

osynthesis, presenting an efficient nuclear burning of both carbon and neon.

The dispersion of species as a function of the radius is very large as a result of

the highly dynamical environment. Additionally, these simulations have been

run with two different geometries to compare the effects on the results, con-

cluding that moving towards a full 4π setup encourages a smoother evolution

of convective regions on large scales.

Future research will make further progress in understanding the processes that

occur in stellar interiors. 1D stellar evolution models will need to revise their

modelling of convection, in particular concerning the size of convective zones,

which are found to be larger than current implementations by numerical sim-

ulations. This issue also encompasses the question of what shape the con-
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vective boundaries should have in 1D, since 3D results show the mixing of

both chemical composition and entropy. On the other hand, multi-D hydro-

dynamic simulations of stellar interiors still need to improve the realism of the

environments they simulate. Recent studies are starting implementing solver

schemes for magnetohydrodynamic equations (Varma & Müller, 2021; Leidi

et al., 2022), allowing the simulations to include magnetic fields coming from

dynamo effects; this will put important constraints on the amount of kinetic

energy and turbulent motions that the fluid can build up. Additionally, recent

works are showing that a continuously increasing number of chemical species

can be now included directly into the numerical simulations (Couch et al.,

2015; Müller et al., 2016; Mocák et al., 2018; Yoshida et al., 2019), contribut-

ing to the energy release and the production of new species; this is extremely

interesting for studies of nucleosynthesis and galactic chemical evolution. My

work also shows that the model geometry can have an impact on the evolution

of the simulations, therefore employing a fully spherical geometry should be

preferred in the cases when convection occurs on large scales. Finally, with

the advent of large computing facilities, new types of processing units, and

progress in numerical solver schemes, it will be possible to run simulations of

stellar interiors with increasing resolution and time-scales. This will allow to

have more detailed predictions of the fluid motions and their evolution in time.

There are several aspects I would like to explore further to continue the work of

this thesis. Given the large uncertainties of convection and convective bound-

ary mixing linked to the extrapolation from boosted-luminosity simulations,

it will be crucial to extend the repository of hydrodynamic simulations run at

nominal luminosity, in order to better understand the impact of the boosting

on the stellar physics. This can include late stellar burning phases such as

carbon, neon or oxygen burning. Additionally, it would be also important to

further improve and extend the implementation of explicit nuclear networks

into hydrodynamic codes, which is particularly interesting for the late burning

phases characterized by different nuclear species contributions. This will allow
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me to study not only the nucleosynthesis in multi-D stellar environments, but

also the evolution of convection over a nuclear burning time-scale. Finally, I

would be interested in investigating the effects of magnetic fields on convec-

tion, employing magnetohydrodynamic simulations that include amplification

effects from the small-scale dynamo mechanism. I expect magnetic fields to

influence the fluid motions by damping the velocities on small scales through

the Lorentz force; this will cast new light on the effects of magnetic fields on

stellar convection and convective boundary mixing.

Considering these premises, the road ahead seems to hold many stimulating

challenges and exciting possibilities for future research on stellar modelling,

and additional simulations and analysis will further broaden our knowledge of

the life and death of stars.
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A&A, 653, A55

Hoyle F., 1954, ApJS, 1, 121

Hurlburt N. E., Toomre J., Massaguer J. M., Zahn J.-P., 1994, ApJ, 421, 245

http://dx.doi.org/https://doi.org/10.1006/jcph.1996.0088
http://dx.doi.org/10.1088/0004-637X/773/2/137
https://hal.science/hal-01620642
https://ui.adsabs.harvard.edu/abs/1961PASJ...13..450H
http://dx.doi.org/10.1086/338487
http://dx.doi.org/10.1086/146661
https://ui.adsabs.harvard.edu/abs/2000A&A...360..952H
http://dx.doi.org/10.1088/0004-637X/727/2/89
http://dx.doi.org/10.1088/2041-8205/792/1/L3
http://dx.doi.org/10.1093/mnras/stad2157
http://dx.doi.org/10.1051/0004-6361:20041095
http://dx.doi.org/10.1051/0004-6361/202140825
http://dx.doi.org/10.1086/190005
http://dx.doi.org/10.1086/173642


163

Janka H.-T., Melson T., Summa A., 2016, Annual Review of Nuclear and

Particle Science, 66, 341

Jermyn A. S., Anders E. H., Lecoanet D., Cantiello M., 2022, ApJS, 262, 19

Jones S., Hirschi R., Pignatari M., Heger A., Georgy C., Nishimura N., Fryer

C., Herwig F., 2015, MNRAS, 447, 3115

Jones S., Andrassy R., Sandalski S., Davis A., Woodward P., Herwig F., 2017,

MNRAS, 465, 2991

Kageyama A., Sato T., 2004, Geochemistry Geophysics Geosystems, 5, 9

Kaiser E. A., Hirschi R., Arnett W. D., Georgy C., Scott L. J. A., Cristini A.,

2020, MNRAS, 496, 1967

Kippenhahn R., Weigert A., Weiss A., 2012, Stellar Structure and Evolution,

Springer, Berlin

Kolmogorov A., 1941, Akademiia Nauk SSSR Doklady, 30, 301

Landau L. D., Lifshitz E. M., 1987, Fluid Mechanics, Butterworth-Heinemann

Langanke K., et al., 2003, Phys. Rev. Lett., 90, 241102

Ledoux P., 1947, ApJ, 105, 305

Leidi G., Birke C., Andrassy R., Higl J., Edelmann P. V. F., Wiest G., Klin-
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