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Extreme wave groups on jet currents
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Rogue waves are known to be much more common on jet currents. A possible explanation was put forward in Ref. 1:

for the waves trapped on a current robust long-lived envelope solitary waves localized in both horizontal directions

become possible, such wave patterns cannot exist in the absence of the current. In this work we investigate interactions

between envelope solitons of essentially nonlinear trapped waves by means of the direct numerical simulation of the

Euler equations. The solitary waves remain localized in both horizontal directions for hundreds of wave periods. We

also demonstrate a high efficiency of the developed analytic nonlinear mode theory for description of the long-lived

solitary patterns up to remarkably steep waves. We show robustness of the solitons in the course of interactions, and the

possibility of extreme wave generation as a result of solitons’ collisions. Their collisions are shown to be nearly elastic.

These robust solitary waves obtained from the Euler equations without weak nonlinearity assumptions are viewed as a

plausible model of rogue waves on jet currents.

■✳ ■◆❚❘❖❉❯❈❚■❖◆

Rogue waves in the ocean are known to be much more com-

mon on currents, the Agulhas current near the south-eastern

coast of Africa being a notorious example2,3. To explain this

prevalence at first a number of linear mechanisms of wave am-

plification by currents were suggested (see Refs. 4–6). Later

on, the role of nonlinearity got the most of attention. Sim-

ulations of nonlinear wave evolution on the Agulhas current

based on the kinetic equation with account of wave refraction

on the current were carried out in Ref. 7.

However, the main focus was on studies of modification

by the current of the Benjamin–Feir (modulational) instabil-

ity, since for narrowband wavefields of a given significant

wave height the modulational instability increases the prob-

ability of high waves. To this end various versions of nonlin-

ear Schrödinger equations (NLSE) were derived and analyzed

under assumptions of slow current, weak nonlinearity, and

narrow-banded spectrum (e.g. Ref. 8, and references therein).

The Benjamin–Feir instability was found to be strengthened

for waves on adverse intensifying currents, which was also

confirmed in numerical simulations9–11.

All the above works were concerned with free water waves

propagating on horizontally inhomogeneous currents, how-

ever, besides free waves ocean currents also support the ex-

istence of trapped waves which we expect to play a key role

in explaining the observed prevalence of rogue waves on cur-

rents. In the real ocean the characteristic nonlinear spatial

scales are such that the traditional ray theory cannot faith-

fully describe the evolution of nonlinear trapped waves (see

reviews in Refs. 8 and 12). To address this gap in the mathe-

matical theory, a novel approach enabling one to describe lin-

ear trapped waves asymptotically was put forward in Ref. 12.

Utilizing the found asymptotic solutions for trapped modes,

a weakly nonlinear mode approach was developed in Ref. 1.

Nonlinear dynamics of waves trapped by an opposing jet cur-

rent was studied both analytically and numerically. It was

found that for wave fields narrowband in frequency, but not

necessarily with narrow angular distributions, the wave dy-

namics for a single mode is described to leading order by

the 1D modified nonlinear Schrödinger equations equation of

self-focusing type.

The NLSE solutions, such as envelope solitons and

breathers, are commonly considered to be prototypes of rogue

waves. Ongoing intense research effort is dedicated to the in-

vestigation of complex interactions between envelope solitons

and breathers within the framework of the integrable NLSE

and its non-integrable generalizations, including the strongly

nonlinear frameworks, see Refs. 13–17 and references therein,

among many others.

Crucially, in contrast to the case of free waves in the ab-

sence of currents, both solitons and breather prototype solu-

tions of trapped waves are robust with respect to transverse

perturbations. The linear trapped mode solutions are not ex-

act solutions, which can result in a slow leakage of energy

from the mode under consideration. Direct numerical simula-

tions of the full potential Euler equations showed that gener-

alizations of these solutions satisfactorily describe long-lived

structures. The fact that these structures are long-lived sug-

gests an increased likelihood of encountering their real world

counterparts. One of the important issues left open in Ref. 1

is the robustness of the found structures with respect to colli-

sions with other essentially nonlinear structures.

In this work we investigate interactions between envelope

solitons of essentially nonlinear trapped waves by means of

the direct numerical simulation of the Euler equations. The

solitary waves remain localized in both horizontal directions.

We also demonstrate the high efficiency of the developed an-

alytic nonlinear mode theory for description of the long-lived

solitary patterns, even for remarkably steep waves. We show

the robustness of the solitons with respect to interactions, and
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the possibility of extreme wave generation as a result of colli-

sions of envelope solitons. The robust solitary waves obtained

from the Euler equations without weak nonlinearity assump-

tions are viewed as a plausible model of rogue waves on jet

currents.

■■✳ ●❖❱❊❘◆■◆● ❊◗❯❆❚■❖◆❙ ❆◆❉ ◆❯▼❊❘■❈❆▲

❆PP❘❖❆❈❍

We study wave motions on the free surface of ideal in-

compressible fluid of unit density under the action of gravity.

Waves are propagating along the Ox axis on a given steady

current U, which depends only on the transverse coordinate

y, U = (U(y),0,0). The assumption of potential wave mo-

tions applies, so that the full Eulerian velocity of the fluid

reads v(x,y,z, t) = U+∇ϕ(x,y,z, t), where ϕ is the velocity

potential related to the wave perturbations. The water sur-

face is specified by the condition z = η(x,y, t) with the rest

level z = 0, where the axis Oz is directed upward; the water

depth is infinite. The set of hydrodynamic equations may be

formulated18 in the form of two conditions on the free surface,

ηt +(∇Φ+U) ·∇η = ϕz

(

1+∇η2
)

, z = η ,

(1a)

Φt +gη +
1

2
(∇Φ+U)2 +P =

1

2
ϕz

2
(

1+∇η2
)

, z = η ,

(1b)

and the Laplace equation in the water column,

∇2ϕ +ϕzz = 0, z ≤ η . (2)

The equations are complemented by the condition of motion

decaying at infinity

ϕ → 0, z →−∞. (3)

In Eqs. (1) and (2), the gradient operator acts in the horizontal

plane only, ∇ ≡ (∂/∂x,∂/∂y), g = 9.81 ms−2 is the gravity

acceleration, P(x,y, t) is the pressure applied to the water sur-

face. Note that due the specific form of the current U, the

incompressibility condition reduces to the standard Laplace

equation (2).

Under the stationary rest condition η = 0, ϕ = 0, the prim-

itive equations (1) yield the relation on pressure

P =−1

2
U2, (4)

which specifies spatially inhomogeneous pressure needed to

ensure the unperturbed water surface upon background jet cur-

rent at z = 0. Then, the total surface pressure may be repre-

sented in the form P(x,y, t) = P(y)+Patm(x,y, t), where Patm

is the atmosphere pressure. Assuming the atmosphere pres-

sure to be constant, the original equations on the free surface

(1) may be re-written in the equivalent form

ηt +(∇Φ+U) ·∇η = ϕz

(

1+∇η2
)

, z = η ,

(5a)

Φt +gη +UΦx +
1

2
(∇Φ)2 =

1

2
ϕz

2
(

1+∇η2
)

, z = η .

(5b)

The set of of equations (2), (3) and (5) specifies the Cauchy

problem in a closed form. In this work, this system is solved

numerically using an adapted version of the High Order Spec-

tral Method19.

The general solution for the velocity potential ϕ(x,y,z, t) is

represented in terms of exact solutions of the Laplace equation

(2) with defined values at the water rest level ϕ(x,y,z = 0, t)
and vanishing at great depths (3). At the horizontal plane

z = 0 this representation coincides with the double Fourier

transformation with respect to x and y. The surface velocity

potential Φ(x,y, t) and the vertical velocity on the water sur-

face ϕz(x,y,z = η , t) are linked with the values ϕ(x,y,z = 0, t)
using the Taylor expansions of the order M near the horizon

z = 0. Thus, the method is fully accounting dispersive effects,

but is somewhat limited in nonlinearity. It describes accu-

rately the nonlinear interactions between up to M−1 waves20.

In this work the nonlinearity parameter was set M = 5, which

allows to simulate up to 6-wave interactions. Thus, the chosen

setting corresponds to a strongly nonlinear framework.

The governing hydrodynamic equations possess a set of

conservation integrals: mass M , flux F , momentum P and

transformation of the mechanical energy W , which for the

equations with the current U = (U(y),0,0) have the follow-

ing forms:

M =
∫

ηdxdy =Const, (6)

F =
∫

ηtdxdy =Const, (7)

P =
∫

η (U+∇Φ)dxdy =Const, (8)

E = W +
∫ t

0
A (τ)dτ =Const. (9)

The potential and kinetic constituents of the energy, Wp(t) and

Wk(t), W (t) = Wp +Wk, and the action A (t) due to the cur-

rent read:

Wp =
1

2

∫

gη2dxdy, (10)

Wk =
1

2

∫

(

Φηt +ηU2 −ΦUηx

)

dxdy, (11)

A =
∫

Pηtdxdy. (12)

The numerical integration in time is performed using the 4-

th order Rounge-Kutta method with the constant step 0.125 s.

The accuracy of simulations is controlled by checking the en-

ergy quantity E (t), which should be preserved in a perfect

simulation.
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In the computer experiments discussed in Sec. V the size of

the simulation domain is Lx ×Ly = 6400π ×400π square me-

ters with the spatial resolution 213 ×28 points; the relative er-

ror |E (t)−E (0)|/E (0) in all simulations is less than 2 ·10−4.

The number of grid points in the corresponding Fourier do-

main is doubled along each coordinate in order to partly solve

the aliasing problem. In the simulation discussed in Sec. VI

the length of the domain Lx is twice shorter with the same

spatial resolution; the relative error is within 3.2 ·10−4.

■■■✳ ◆❖◆▲■◆❊❆❘ ❋❘❆▼❊❲❖❘❑ ❋❖❘ ❚❘❆PP❊❉ ▼❖❉❊❙

The modal theory for waves traveling on the jet current may

be developed using uniformity of the rest conditions with re-

spect to x and t, see Ref. 12. Then, within the linear approx-

imation the full solution represents a superposition of trav-

eling waves with longitudinal wavenumbers and angular fre-

quencies (k,ω) propagating collinear to the current with some

mode structure in the (y,z) plane.

The lateral modes are described by a two-dimensional

boundary value problem (BVP). Under the assumption that

the current is broad compared to the longitudinal wave length,

so that the wave is described locally by the solution for a uni-

form current, the BVP may be reduced to the following one-

dimensional nonlinear boundary value problem

d2Y

dy2
+

k2

ω4
g

(

Ω4 −ω4
g

)

Y = 0, (13)

ωg =
√

kg, Ω(y) = ω − kU,

where ωg denotes the frequency of linear gravity waves in

still water, and Y (y) is the transverse mode. The decaying or

non-decaying boundary conditions on Y (y) as x →±∞ spec-

ify trapped and passing-through modes, respectively.

Upon multiplication of (13) by Y (y), consequent integra-

tion with respect to y, y ∈ [a,b], and integration by parts, we

obtain that YY ′|ba −
∫ b

a Y ′2dy+ k2

ω2
g

∫ b
a (Ω4 −ω4

g )Y
2dy = 0. If

d
dy

Y 2 decays to zero when y = a and y = b (for example, in

infinite line, when a →−∞ and b →+∞) or if the problem is

periodic, d
dy

Y (a)2 = d
dy

Y (b)2, then the BVP (13) has no solu-

tion if Ω4 < ω4
g for all y ∈ [a,b]. Far outside the current, when

one may put U = 0, the modes Y (y) decay when ω < ωg.

Therefore, trapped modes may occur only in the frequency

interval ωC < ω < ωg, ωC = ωg +min(kU) < ωg, when the

current is opposite to the direction of wave propagation. The

frequency ωC corresponds to the frequency with the Doppler

shift produced by the adverse uniform current of the speed

max |U |. When the current is strictly opposite, kU(y)< 0, the

term Ω(y) is never zero.

For a given k the eigenproblem (13) is nonlinear in terms

of the frequency ω . For a given k, it may have more than

one eigenvalue and eigenfunction, which we will label with

the subscripts: ω ∈ {ωn}, Y ∈ {Yn}. In case of infinite do-

main, it is straightforward to show12, that within the BVP (13)

each eigenfrequency corresponds to unique eigenfunction for

trapped modes, and to two linearly independent eigenfunc-

tions for passing modes.

The BVP (13) may be further simplified under the assump-

tion of a weak current, |kU/ω| ≪ 1. Then it reduces to the

linear Sturm–Liouville type problem on the eigenfrequency

ω

d2Y

dy2
+4

k2

ωg

[ω − (ωg + kU)]Y = 0. (14)

Similar to the BVP (13), trapped modes may appear only in

the frequency interval ωC < ω < ωg.

For the Sturm–Liouville BVP (14) on the whole axis −∞ <
y < ∞ the combination of trapped modes (which belong to the

discrete spectrum) and non-localized modes (which belong to

the continuous spectrum) form a complete basis of functions

Yn(y) which are orthogonal in the sense

Nnm =

∫

Yn(y)Ym(y)dy
∫

Y 2
n (y)dy

= δn,m, (15)

where δn.m is the Kronecker delta, and thus provide a conve-

nient base for studying waves on jet currents.

For the Sturm–Liouville BVP in periodic domain, U(y+
Ly) = U(y), the set of eigenfrequencies ωn ∈ ℜ is discrete

and infinite; the system of eigenfunctions is full and may be

chosen orthogonal in the form (15), where the integration is

performed over the interval of periodicity Ly.

For a given longitudinal wavenumber k, the general solution

for the water surface displacement is given by the superposi-

tion of the modes:

η(x,y, t) = ∑
n

ψnYn(y)exp(iωnt − ikx)+ c.c., (16)

where ψn are the mode amplitudes. Hereafter, we will use the

mode normalization assuming its maximum displacement is

equal to one,

max |Yn(y)|= 1 for all n, (17)

so that the maximum mode amplitude |ψn| coincides with the

corresponding maximum surface displacement |η |. Note that

consideration of a different wavenumber k̃ will lead to a new

BVP (14) with new eigenfrequencies ω̃m and corresponding

set of orthogonal functions Ỹm(y), which should be added to

the representation (16). Since the modes may evolve, the am-

plitudes are slow functions of time and longitudinal coordi-

nate, ψn = ψn(x, t).

This way, a rigorous asymptotic theory for weakly non-

linear slow modulations may be developed1,12, which yields

nonlinear evolution equations on the amplitudes of certain

modes of the BVP for a given longitudinal wavenumber. The

third-order in nonlinearity dispersive theory for a single mode

trapped by a weak current was formulated in Ref. 1, which has

the form of the nonlinear Schrödinger equation. For the com-

plex amplitude ψn(x, t) of the n-th mode with the longitudinal
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carrier wavenumber k the nonlinear evolution equation is

i

ωn

(

∂ψn

∂ t
+Vn

∂ψn

∂x

)

+
1

8k2

∂ 2ψn

∂x2
+

k2

2
I2
n ψn|ψn|2+ (18)

+k2 ∑
j

µ jI
2
n jψn|ψ j|2 + ∑

p,q,r

νnpqrJnpqrψ
∗
pψqψr = 0,

Vn =
1

∫ ∞
−∞ Y 2

n dy

∫ ∞

−∞

(

kg2

2Ω3
n

+U

)

Y 2
n dy ,

µ j =







√

k
k j
, if k j > k,

√

k j

k
, if k j < k,

I2
n =

∫ ∞
−∞ Y 4

n dy
∫ ∞
−∞ Y 2

n dy
, I2

n j =

∫ ∞
−∞ Y 2

j Y 2
p dy

∫ ∞
−∞ Y 2

n dy
,

Jnpqr =

∫ ∞
−∞ YnYpYqYrdy
∫ ∞
−∞ Y 2

n dy
.

Here I2
n ≤ 1 is the mode overlap integral which determines the

coefficient of the n-th mode self-interaction. The first term in

the second line of the evolution equation (18) is responsible

for trivial resonant interactions. For every index j, ψ j(x, t) are

complex amplitudes of waves with the wavenumber k j > 0

and lateral modes Yj which are solutions of the BVP for k j.

The trivial interactions do not lead to the energy exchange be-

tween modes, d
dt

∫ ∞
−∞ |ψn|2dx = 0. The nonlinear coefficient

for trivial interactions coincides (except for the integral pa-

rameter In j) with the one obtained in Ref. 21 for the problem

of two interacting wave systems in still water.

The last term in the equation (18) describes non-trivial reso-

nant interactions with wavenumbers kp > 0, kq > 0, kr > 0 and

corresponding frequencies ωp, ωq, ωr, so that k+kp = kq+kr

and ωn + ωp = ωq + ωr. The functions ψp(x, t), ψq(x, t),
ψr(x, t) are amplitudes of resonant quartets which belong to

modes Yp, Yq and Yr respectively, – solutions of correspond-

ing BVPs. The coefficient of non-trivial interactions νnpqr has

complicated form and is not given in this paper. The overlap

integrals Jnpgr are assumed to be generally small.

The nonlinear and dispersion coefficients in (18) are written

in the limit of a weak current, under which the expression

for velocity may be also simplified as Vn =
kg2

2ω3
n
+ 5

2
U , where

U =
∫

UY 2
n dy/

∫

Y 2
n dy. The two contributions to Vn depend

on the mode number and are of different signs. Hence the

dependence of Vn on the mode number may be nontrivial.

If the interactions with other modes are disregarded, which

can be justified for a wide range of situations, the evolution

equation (18) differs from the classical NLSE in still water

by the account for the effective Doppler frequency shift and a

reduced nonlinear coefficient due to factor I2
n < 1. It is known

to be integrable, they key role in the evolution is played by

envelope solitons.

The envelope soliton solution may be written as

ψes(x, t) = A
exp

(

i k2A2

4
I2
n ωnt

)

cosh
[√

2k2AIn (x−Vnt)
] = (19)

=
a

In

exp
(

i k2a2

4
ωnt

)

cosh
[√

2k2a(x−Vnt)
] ,

where A and a = InA are amplitude parameters. One may

see, that the effect of the jet current on the soliton longitu-

dinal structure may be reduced to the presence of a calibration

constant for the soliton amplitude a in the problem with no

current. Due to the normalization of modes by their maxi-

mum values (17), the parameter A corresponds to the observ-

able amplitude of the water displacement. Since A = a/In and

In < 1, the amplitudes of solutions of the NLSE upon jet cur-

rent will be increased compared to the solution of the NLSE

without current by the factor I−1
n > 1. For the example of the

current which we consider in this work (see the next section),

we have I−1
1 ≈ 1.19, I−1

2 ≈ 1.18, I−1
3 ≈ 1.21. Respectively, the

width of the envelope soliton with a given wavenumber and a

given maximum amplitude is larger in the case with opposite

current compared to still water.

■❱✳ ❚❍❊ ❏❊❚ ❈❯❘❘❊◆❚ ❈❖◆❉■❚■❖◆ ■◆ ❚❍❊

◆❯▼❊❘■❈❆▲ ❙■▼❯▲❆❚■❖◆❙

In order to apply the pseudo-spectral numerical scheme, pe-

riodic boundary conditions are imposed in both, x and y co-

ordinates. For certainty and convenience we choose the jet

current to be of a cnoidal shape,

U =U0cn2(2K
y

Ly

,s2), (20)

where K(s2) is the complete elliptic integral of the first kind

with the parameter s. We choose the parameters of our model

current to be: U0 =−2 m/s, Ly = 400π ≈ 1200 m and s = 0.9.

Thus, the current varies from U = 0 at y = ±Ly/2 to U =U0

at y = 0 as shown by green curves in Fig. 1.

In this work we operate with dimensional variables; the pa-

rameters of the jet current and of the waves chosen to be real-

istic.

The BVPs (13) and (14) are solved numerically using the

spectral method with the help of the convolution theorem.

Then the problem is reduced to a homogeneous system of

N linear algebraic equations on N Fourier amplitudes of the

mode Yn(y), which may have solution only when its determi-

nant is zero. Thus, the eigenvalue problem is solved by min-

imizing the determinant using the shooting method for fre-

quencies in the interval of trapped waves, ωg − |kU0| < ω <
ωg. When the eigenfrequencies {ωn} are found, the corre-

sponding eigenmodes {Yn} are obtained by solving the in-

homogeneous system of N − 1 linear algebraic equations on

N −1 Fourier amplitudes of the function Yn. The solutions of

the BVPs obtained in this manner are accurate to the computer

precision.
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FIG. 1. Eigenmodes for the longitudinal wavenumbers k =
0.05 rad/m (a) and k = 0.1 rad/m (b). The solid red and dashed

blue curves correspond to the modes Yn obtained solving the nonlin-

ear BVP (13) and the Sturm–Liouville BVP (14), respectively. The

green curves show the jet current profile.

Solutions of the BVPs for the longitudinal wavenumbers

k = 0.05 rad/m and k = 0.1 rad/m are displayed in Fig. 1

and Fig. 2. The mode shapes obtained within the nonlinear

BVP (13) and the linear Sturm–Liouville problem (14) are

close, especially for the modes with low numbers. Hereafter

the modes are sorted in the order of ascending eigenfrequen-

cies. Frequencies of low modes obtained for the problems

(13) and (14) are very close, see Fig. 2. At the same time, the

total number of modes with the frequencies in the interval of

trapped waves [ωC,ωg] may be different. The closeness of the

solutions of the two BVPs may be explained by the smallness

of the ratio of the current velocity to the wave phase speed,

|kU/ω|≲ 0.25.

It is illuminating to use the quantum mechanics analogy for

the BVP (14), where the opposing current plays the role of

a potential well, while the energy of the quantum system is

proportional to (ω −ωg) < 0. Then the low-number modes

correspond to the least energetic states, which are determined

by configuration of the well bottom (i.e., by the shape of the

jet current tip). If the simulated domain is extended in the
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FIG. 2. Eigenfrequencies for the same conditions as per Fig. 1 a,b.

The upper and lower horizontal dashed lines correspond to the fre-

quencies ωC and ωg, respectively.

transverse direction, the chosen shape (20) may be approxi-

mated by a sech function, and the modes with low numbers

will be close to the modes of trapped waves of the problem on

the full axis. At the same time, in the case of a finite width

of the simulated domain, modes with high numbers are obvi-

ously affected by the periodic condition along the transverse

coordinate. In what follows we focus upon the dynamics of

low-mode waves, hence, we may say with some justification

that we study trapped waves.

The modes within the framework of the nonlinear BVP (13)

are not orthogonal, but the overlap integrals Nnm for different

modes are small, as shown in Fig. 3. Mode velocities Vn, cal-

culated according to the definition in (18) demonstrate non-

monotonic dependence on the mode number for a given k, see

Fig. 4. As a result, the celerities of low modes are particularly

close.

❱✳ ❈❖▲▲■❙■❖◆❙ ❖❋ ❚❘❆PP❊❉ ❊◆❱❊▲❖P❊ ❙❖▲■❚❖◆❙

The initial conditions for the simulations of pairs of soli-

tons are taken in the form of a linear superposition of two

independent solitons according to (19) and (16), and the lin-

ear theory for the velocity potential. Accordingly, the surface

displacement and the surface velocity potential are set at t = 0
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FIG. 3. Overlap integrals Nnm for trapped modes with indices n and

m ̸= n for the longitudinal wavenumbers k0 = 0.05 rad/m (a) and

k0 = 0.1 rad/m (b); the values Nnn = 1 are not shown.

as follows:

η(x,y,0) =
1

2

2

∑
j=1

ψ0, j(x)Yj(y)exp(iω jt − ik jx)+ c.c.,

(21a)

Φ(x,y,0) =
1

2

2

∑
j=1

ig

ωg

ψ0, j(x)Yj(y)exp(iω jt − ik jx)+ c.c.,

(21b)

where ψ0, j = ψes, j(x, t = 0), j = 1,2. Several modifications

of the initial condition for the surface velocity potential were

tested through numerical simulations. According to the an-

alytic theory, Ωn(y) should be placed in the denominator in

(21b) instead of ωg. However, when it is replaced by ωg, the

generated solitary structures are found exhibiting less radia-

tion at the initial stage of simulations.

The solitons are characterised by the carrier longitudinal

wavenumbers k j; frequencies ω j and modes Yj(y) which cor-

respond to the mode sequence numbers n j ≥ 1; and ampli-

tudes A j, see the parameters of experiments in Table I. A

simulation of an interaction between two solitons of the mode

n (for longer waves) and m (for shorter waves) is referred to

2 4 6 8

5
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mode number

V
,
m
/
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nonlinear BVP
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FIG. 4. Mode velocities for the longitudinal wavenumber k0 =
0.05 rad/m. The upper and lower horizontal dashed lines correspond

to the reference velocities
ωg

2k and
ωg

2k −|U0|, respectively.

TABLE I. Parameters of numerical simulations. The wavenumbers

k j are in rad/m; the surface displacement amplitudes A j are in meters,

the mode periods Tn j
are is seconds, and mode speeds V j are in m/s,

j = 1,2. Solutions of the nonlinear problem (13) are used.

No k1 A1 n1 Tn1
V1 k2 A2 n2 Tn2

V1

S1-1 0.05 4 1 10.3 4.98 0.1 2 1 7.9 2.94

S1-0 0.05 4 1 10.3 4.98 – – – – –

S0-1 – – – – – 0.1 2 1 7.9 2.94

S2-1 0.05 4 2 10.0 4.95 0.1 2 1 7.9 2.94

S2-0 0.05 4 2 10.0 4.95 – – – – –

S3-1 0.05 4 3 9.8 4.98 0.1 2 1 7.9 2.94

S3-0 0.05 4 3 9.8 4.98 – – – – –

D1 0.05 3 1 10.3 4.98 0.05 3 1 10.3 4.98

as ”Sn-m“. In order to facilitate the interpretation of the simu-

lation results, each run of interacting solitons (i.e., runs S1-1,

S2-1, S3-1) was accompanied by additional numerical simu-

lations, where single solitons were modeled (runs S1-0, S0-1,

S2-0, S3-0). The solitons differ in the carrier wavelengths and

the amplitudes by a factor of two, so that the maximum steep-

ness of the solitons are similar, k1A1 = k2A2 = 0.2.

The mode composition of the simulated surfaces is esti-

mated relying on the property of approximate orthogonality of

the wave modes. The mode amplitudes bn(x, t) and integrated

over the simulation domain mode amplitudes Bn(t) for given

k and mode number n are calculated for a surface η(x,y, t) as

follows:

bn(x, t) =

∫

ηYndy
∫

Y 2
n dy

, Bn(t) =

(

∫

b2
ndx

)1/2

. (22)

Orthogonal eigenmodes Yn(y) which are solutions of the

Sturm–Liouville problem are used in this analysis. Recall

that since the BVP is determined by the longitudinal cur-

rier wavenumbers, in the simulations with different k, each

k yields specific set of transverse modes. The function

bn(x, t) corresponds to the solution of one-dimensional NLSE,

Re(ψn(x, t)exp(iωnt − ikx)). The integral mode amplitudes

Bn ≥ 0 characterize the amount of energy held by the given
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transversal mode in the entire domain of simulation.

The evolution of amplitudes of the simulated single soli-

tons is illustrated in Fig. 5. The maximum wave steepness

estimated as k max |Ĥ bn| is plotted there, where the Hilbert

transform Ĥ with respect to the longitudinal coordinate is

applied to capture the envelope of the mode function. One

may see that while at the initial stage of the simulations the

wave steepness may reach values exceeding 0.2, the actual

steepness of solitary groups for the time t > 400 s lies approx-

imately in the interval from 0.19 down to 0.14.

0 200 400 600 800 1000 1200

0.14

0.16

0.18

0.2

0.22

t, s

k
m
ax

|Ĥ
b|

 

 
S1-0
S0-1
S2-0
S3-0

FIG. 5. Maximum steepness of envelope solitons in the simulations

of single solitons.

❆✳ ■♥t❡r❛❝t✐♦♥ ♦❢ s♦❧✐t♦♥s ♦❢ t❤❡ ❢✉♥❞❛♠❡♥t❛❧ ♠♦❞❡

An example of the initial water surfaces at t = 0 for the sim-

ulation of two solitons of the fundamental mode, n1 = n2 = 1,

which either interact or propagate alone, are given in Fig. 6.

The surfaces at the end of the simulations t = 1200 s are shown

in Fig. 7. The duration of simulation corresponds to almost

120 periods of the first soliton carrier, and more than 150 pe-

riods of the second soliton carrier. The figures clearly show

that the solitons do survive the collision. After a deeper in-

vestigation, one can find that the shorter-wave soliton in the

upper panel of Fig. 7 is in fact superimposed with a smaller-

amplitude pattern of a complicated shape, which was emitted

by the colliding solitons, see the low panel in Fig. 8. The small

amplitude long-scale radiation is also visible in all panels in

Fig. 7.

The radiation appears in the beginning of the simulation

and is spreading later on in the entire simulation domain, as

shown in Fig. 8. In this figure the surface displacements are

10 times magnified in order to exhibit small-amplitude waves.

The radiation consists of waves propagating to the left (which

may be generated due to the imperfect balance between the

surface displacement and the velocity potential of the initial

condition, see the middle panel in Fig. 8), and also forwarding

waves of longer and shorter lengths. The length of the simu-

lated domain Lx = 6400π m, what is about 20 km, is enough

to avoid the interaction between waves propagating to the left

FIG. 6. Initial perturbations of the surfaces in the simulation of two

interacting solitons S1-1 (top panel), just the first soliton S1-0 (mid-

dle panel) and the second soliton S0-1 (bottom panel). Waves propa-

gate to the right; the current profile is given for the reference.

and to the right during the time of modeling, at least in the

magnified amplitude scale of Fig. 8.

The propagating waves may be residual waves due to the

generation of phase-locked nonlinear bound waves, and also

waves generated due to the inaccurate prescription of the en-

velope structure. The slightly inelastic collision of the soliton

structures within the Euler equations causes new wave gen-

eration. The complicated patterns in the low panel of Fig. 8

may be associated with excitation of lateral modes with higher

numbers. As was mentioned above, the low modes have very

close velocities (see Fig. 4), therefore they can travel in com-

bination for a long time. As follows from Fig. 8, most of the

radiation remains confined to the mainstream of the current.

The evolution of integral mode amplitudes in the simula-

tion of two solitons with different wave lengths which be-

long to fundamental modes is shown in Fig. 9 for the car-

rier wavenumber k = 0.05 rad/m. In the figure, the values of

Bn(t) are scaled by the maximum amplitude at the initial mo-

ment, which is B1(0) in this case. The most intense modes

are plotted. The amplitudes of modes with even numbers are

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
8
0
6
5
8



Accepted to Phys. Fluids 10.1063/5.0180658

Extreme wave groups on jet currents 8

FIG. 7. Surfaces at the end of the simulations with the initial condi-

tions shown in Fig. 6.

negligibly small, what is dictated by the symmetry of the sim-

ulated wave fields with respect to the plane y = 0. The choice

of the eigenfunctions Yn used for the calculation of the mode

amplitudes according to (22), either from the Sturm–Liouville

problem (14) or the nonlinear problem (13), has very little ef-

fect on the amplitudes Bn with significant values.

One can see from Fig. 9 that besides the first mode we

wanted to study, there are also some other modes with small

but non-zero amplitudes at the initial instant t = 0. This is

due to the presence of the second soliton with the carrier

wavenumber k = 0.1 rad/m. In the simulations of single soli-

tons, the amplitudes of other modes at t = 0 are zeros. In the

course of the evolution, some variations of the mode ampli-

tudes are observed, as shown in Fig. 9, but they are of oscil-

latory type and are small in magnitude. The period of beating

between the first and the third mode 2π/(ω3 − ω1) is esti-

mated as about 188 s and 194 s according to the solution of

the Sturm–Liouville problem and the nonlinear BVP respec-

tively, which is close to the period of oscillations of B3(t) and

also B1(t) shown in Fig. 9 (the latter is difficult to discern in

the scales of the figure). Small-amplitude fast oscillations of

FIG. 8. Small-amplitude waves generated in the simulation S1-1.

The surface displacements are 10 times magnified in amplitudes. The

current profile is given in the top panel for the reference.

B1(t) at small t is obviously due to the transition of the linear

initial condition to the nonlinear wave.

Similar to Fig. 9 dependencies of mode amplitudes for the

shorter carrier of the second soliton, k = 0.1 rad/m, are not

worthy of investigation, because of the mode overlaping with

a longer and more energetic first soliton.

❇✳ ■♥t❡r❛❝t✐♦♥ ♦❢ s♦❧✐t♦♥s ♦❢ ❞✐✛❡r❡♥t tr❛♥s✈❡rs❡ ♠♦❞❡s

Collisions between solitons of different lateral modes have

been found to occur in a qualitatively similar manner. In the

examples of simulations we present in this subsection, the en-

velope soliton of shorter waves, k2 = 0.1 rad/m, belongs to

the fundamental mode, whereas the longer carrier wave soli-

ton, k1 = 0.05 rad/m, is configured according to the second

mode (run S2-1) and the third mode (run S3-1). Note that the

robustness of a single soliton of even higher, the 5-th mode

has been already demonstrated in the numerical simulation in

Ref. 1.
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FIG. 9. The Sturm–Liouville mode integral amplitudes Bn(t)/B1(0)
for the carrier wavenumber k = 0.05 rad/m in the experiment S1-1.

The surfaces at the initial moment, t = 0, and the instant

when the simulations terminate at t = 1200 s, are shown in

Fig. 10 and Fig. 11 for the second and the third mode, respec-

tively. Figs. 10 and 11 show that the envelope solitons re-

cover after collisions in the both simulations, though the final

solitary patterns look slightly less localized along the prop-

agation direction, which corresponds to a reduction of their

amplitudes in the course of the propagation and collision. Ac-

cording to the envelope soliton solution (19), smaller solitons

are longer. The simulated solitons preserve their specific lat-

eral group structures prescribed by solutions of the BVP.

FIG. 10. Interaction between envelope solitons of the second and the

first modes (run S2-1): the initial condition (above) and the terminal

moment (below).

FIG. 11. Interaction between envelope solitons of the third and the

first modes (run S3-1): the initial condition (above) and the terminal

moment (below).

The integral mode amplitudes for these simulations are

plotted in Fig. 12 and Fig. 13. Due to the overlap between

modes of waves with different carrier wavenumbers, more

than one mode amplitude is non-zero at t = 0. The mode am-

plitudes exhibit quasi-periodic decaying oscillations in time

with no clear trend to grow. The periods of beating be-

tween the second and the fourth modes 2π/(ω4 −ω2) and the

third and the firth modes 2π/(ω5 −ω3), which are the most

energetic ones according to Fig. 12 and Fig. 13, are about

209−219 s and 235−248 s respectively. The observed ampli-

tude oscillations may be a result of the discrepancy between

the solution in the Sturm–Liouville approximation and the ac-

tual nonlinear wave modes.

A greater number of small-amplitude modes is excited in

the situations when the interacting solitons belong to modes

with different evenness, see the run S2-1 in Fig. 12. Ampli-

tudes of such ’parasitic’ modes seem to increase with the soli-

ton mode number (cf. Fig. 9, Fig. 12 and Fig. 13), which is

also observed in the simulations of single solitons S1-0, S2-0

and S3-0. The most likely interpretation of this observation

is a larger discrepancy between the shapes of high transverse

modes in the strongly nonlinear simulation and the approxi-

mate boundary value problem. Within the framework of the

Euler equations, the effect of mode non-orthogonality likely

becomes more noticeable, which makes the mode amplitudes

bn(x, t) and Bn(t) a bit less meaningful.
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FIG. 12. The Sturm–Liouville mode integral amplitudes

Bn(t)/B2(0) for the carrier wavenumber k = 0.05 rad/m in the ex-

periment S2-1. The modes with even smaller energies are plotted by

light grey lines.
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FIG. 13. The Sturm–Liouville mode integral amplitudes

Bn(t)/B3(0) for the carrier wavenumber k = 0.05 rad/m in the ex-

periment S3-1.

❈✳ ❊①tr❡♠❡ ✇❛✈❡s ✐♥ t❤❡ ❝♦✉rs❡ ♦❢ ❡♥✈❡❧♦♣❡ s♦❧✐t♦♥ ❝♦❧❧✐s✐♦♥s

Extreme values of the surface displacement in the entire

simulation domain per each time instant, are shown in Fig. 14

for the three scenarios of interaction between pairs of soli-

tons discussed above. The pink filling bounded from above

by the red curve represents the simulation of interacting soli-

tons, while the dash-dotted blue and broken cyan curves cor-

respond to the simulations of independent solitons. The solid

black curve denotes the sum of the extreme displacements in

the two simulations of single solitons. Thus, in every panel

in Fig. 14 the solid black curve represents the linear combina-

tion of two independent solitons, whereas the filling with the

red upper edge describes the result of nonlinear interaction

between the solitons of trapped waves.

One can see intense oscillations at the begining of the simu-

lations caused by the nonlinear wave adjusting and formation

of the ’true’ strongly nonlinear patterns which correspond to

stable envelope solitons of trapped waves. Some fast and slow

oscillations of the curves for wave extremes occur during the

entire period of simulations. They appear due to the difference

between the wave phase and group velocities and also due to

interactions with radiated waves. Except for the time interval

of collisions (t = 400...500 s), the extremes in the simulations

of interacting solitons generally follow the curves of extreme

displacements in the simulations of single solitons with longer

carrier (the blue dash-dotted curves).

During the collisions, the extreme displacements reach the

values of the linear superposition of two independent solitons

or even exceed them in the situations of odd mode numbers,

when the maxima of interacting soliton modes are located at

y = 0. The collision between waves of odd and even modes

produces relatively smaller waves (Fig. 14 b) due to different

lateral locations of the modes maxima. Within the NLSE, in-

teracting envelope solitons can at best reach the sum of their

amplitudes occurring in the independent evolution.

According to Figs. 9, 12, 13 the mode integral amplitudes

may quickly oscillate during the stage of soliton collision, but

this process does not lead to a noticeable redistribution of the

energy between modes.

❱■✳ ❊❱❖▲❯❚■❖◆ ❖❋ ❉❊●❊◆❊❘❆❚❊ ✷✲❙❖▲■❚❖◆

❙❖▲❯❚■❖◆

Envelope solitons with different carrier wavelengths con-

sidered in Sec. V which travel with substantially different

speeds. The soliton velocity also depends on the mode shape.

A collision of two solitons with close velocities takes very

long time, its simulation would require resource demanding

computations. If the initial condition is specified in the form

of individual solitons located far from each other, the sim-

ulation may be challenging in view of accumulating errors.

To circumvent this difficulty, the exact two-soliton solution

of the NLSE may be used to determine the initial condition

(as was done in Ref. 22 for modeling of unidirectional enve-

lope solitons within the primitive equations of hydrodynam-

ics). Two solitons with the same carrier wave, but with dif-

ferent amplitudes form a bound state (so-called bi-soliton23),

which periodically produces huge waves with the peak ampli-

tude equal to the sum of amplitudes of the tangled solitons. An

exact solution which describes a degenerate bi-soliton for the

case when the soliton amplitudes coincide, is also known23,24.

Within this solution of the NLSE, two identical envelope soli-

tons experience attraction and approach each other, reduce the

amplitudes before they merge, and then, for a short time, form

an envelope with twice the amplitude of individual solitons.

After that the solitons repulse, restore their shapes and drift

infinitely far from each other, see the x− t diagram of the so-

lution in Fig. 15a.

The degenerate solution of the generalized NLSE (18) for

the case when the nonlinear interaction terms, except for the

self-interaction, are neglected (i.e., all µ j and νnpqr are zeros)
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FIG. 14. Evolution of the surface extremes max(x,y) |η(x,y, t)| for the simulations of interacting solitons (shading with red curve above) and

the simulations of independent solitons, against the sum of extremes for experiments with single solitons shown by the solid black curve. The

interactions between solitons of the fundamental mode (a), second and fundamental mode (b) and third and fundamental mode (c) are shown.

may be presented in the following form:

ψdeg(x, t) =

= 4
a

In

ξ sinhξ − coshξ
(

1+ i
2
k2a2ωnt

)

cosh2ξ +1+2ξ 2 + 1
2
k4a4ω2

n t2
ei k2a2

4 ωnt ,

where ξ =
√

2k2a(x−Vt) . (23)

Though the expression looks rather complicated, it is the sim-

plest form of a 2-soliton solution of the NLSE. In the asymp-

totics t → ±∞ the solution splits into two distant envelope

solitons (19) with amplitudes A = a/In. The maximum ampli-

tude of the envelope is achieved at t = 0 in the origin of the

coordinate, |ψdeg(0,0)| = 2A. As discussed above, the solu-

tion represents the scenario with the longest possible interac-

tion between solitons of one mode, which should be the most

favourable for highlighting inelastic features of the interac-

tion.

The degenerate 2-soliton solution was simulated numeri-

cally and under laboratory conditions in Ref. 25, where it was

also discussed in the rogue wave context – as a counterpart to

the Peregrine breather without a background wave.

The numerical simulation of the degenerate 2-soliton solu-

tion (23) for the fundamental mode of trapped waves, n = 1,

within the primitive equations of hydrodynamics is performed

in this work for the same jet current (see Sec. IV). The

initial perturbation is determined according to (21), where

ψ0, j = ψdeg(x,−Tf ) and j = 1. The carrier wavenumber is

taken to be k = 0.05 rad/m, and the amplitude of separated

solitons is A = 3 m, so that the characteristic wave steepness

of a single soliton is kA = 0.15, see the experiment D1 in Ta-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
8
0
6
5
8



Accepted to Phys. Fluids 10.1063/5.0180658

Extreme wave groups on jet currents 12

(a)

(b)

FIG. 15. Exact degenerate 2-soliton solution of the NLSE

|ψdeg(x, t +Tf )| for Tf = 4343 s, k = 0.05 rad/m and the characteris-

tic steepness kA = 0.15 (a), and the envelope for function b1(x, t) in

the following coordinate with V ≈ 5 m/s in the numerical simulation

D1 of the degenerate solution (b). According to the NLSE solution,

the maximum wave should occur at t = 4343 s, at the intersection of

the dashed lines.

ble I. The focusing time Tf = 4343 s is chosen to be identical

(in terms of the dimensionless NLSE) to the conditions simu-

lated in Ref. 25. The solitons at the begining of the simulation

just weakly overlap, see Fig. 15 for t = 0 .

The exact solution of the NLSE and the result of the simula-

tion of the primitive equations are compared in Figs. 15, 16. In

order to represent the result of numerical solution, the function

b1(x, t) is calculated according to (22), where the mode Y1(y)
corresponds to the solution of the Sturm–Liouville problem.

The envelope of b1 is obtained at each instant using the Hilbert

transform, |Ĥ b1|. The mode velocity V =V1 ≈ 4.978 m/s is

calculated according to Eq. (18). The maximum surface dis-

placements as functions of time according to the analytic so-

lution of the NLSE, maxx |ψ|, and estimated using the mode

amplitude, maxx |b1|, are shown in Fig. 16; the latter behaves

very similar to max(x,y) |η | but is slightly larger in magnitude.

The simulated water surfaces at the start of the simulation, at

the end of the simulation, and also at the moment when the

maximum surface displacement occurs, are shown in Fig. 17.

The numerical simulation exhibits a picture qualitatively

similar to the exact solution dynamics: the solitons approach

0 2000 4000 6000 8000

3

4

5

t, s

 

 
NLSE

simulation

FIG. 16. Maximum of the analytic solution of the NLSE |ψdeg| and

maximum of the function |b1| in the numerical simulation D1.

FIG. 17. Surfaces in the simulation D1 at the initial moment (top),

at the moment of the maximal wave (middle) and at the end of the

simulation (bottom) in the co-moving system of references.

each other and finally merge for some time; they produce

strongly amplified waves at approximately the time Tf pre-

dicted by the exact NLSE solution, and then split in two stable

isolated patterns. According to Fig. 16, the maximum wave

amplitude in the end of the simulation is very close to that

of the initial condition. No significant radiation or external

waves are present in Fig. 15b; only small-amplitude waves

propagating away from the simulated wave structure can be

found in Fig. 17.

However, the symmetry of the spatio-temporal diagram

(Fig. 15a) brakes down when simulated within the strongly
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nonlinear framework (Fig. 15b). Compared to the mode ve-

locity V , the simulated solitons move slightly faster. In the

course of collision, the leading soliton acquires more energy

and starts moving even faster after the collision. Extreme

waves with amplitudes slightly exceeding 5 m are generated

in the course of the collision instead of 6 m predicted by the

analytic solution; the focusing event occurs a little earlier.

The inelastic aspects of the soliton interaction in the de-

generate situation are readily seen in Fig. 18, where the in-

tegral mode amplitudes are plotted versus time. It is clear

that the collision of the solitons with generation of steeper

waves at t ≈ 4000 s results in a noticeable increase of am-

plitudes of other modes, which do not relax after the collision

episode. A significant redistribution of energy between trans-

verse modes was previously observed in the simulation of the

modulational instability of steep waves1 when the resulting

large wave tended to break. The leakage of energy from the

mode can lead to some reduction of the peak wave amplitude.

At the same time, the related decrease of the amplitude of the

first mode in Fig. 18 is fairly small. The simulation lasts for

almost 1 000 wave periods, when the solitons with the carrier

wave length 125 m cover the distance of about 50 kilometers.

Therefore, one may conclude that the solitons are robust, and

the longest possible interaction between envelope solitons of

trapped by the jet current waves occurs almost elastically.
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FIG. 18. Sturm–Liouville mode integral amplitudes Bn(t)/B1(0) for

the carrier wavenumber k = 0.05 rad/m in the experiment D1.

❱■■✳ ❈❖◆❈▲❯❙■❖◆❙

Envelope solitons of water waves trapped by opposing

jet currents realize a nearly unique situation where surface

wave groups in deep water may be localized in both hori-

zontal directions1. Recall that the 2D nonlinear Schrödinger

equation for modulations of deep-water waves on the two-

dimensional surface does not possess stable soliton-type so-

lutions localized in the two spatial dimensions, while the pla-

nar envelope solitons which are straightforward to construct

by a simple change of variables from the solutions of the 1D

NLSE, are known to be transversally unstable26.

In the present work we demonstrate by means of the di-

rect numerical simulation of the Euler equations that enve-

lope solitons of trapped waves (at least of low modes) are ro-

bust enough to exhibit, although only approximately, the key

properties of the classic solitons – localized solutions of inte-

grable equations, such as: very long propagation preserving

their structure and energy, and, to a great extent, elastic pair-

wise collisions. In our study the soliton-type nonlinear groups

were generated using approximate initial solutions, thus the

fact that the solitons of trapped waves emerge as result of

such excitations shows that these patterns are attractors. The

results of the numerical simulation also show that the non-

linear inter-mode exchange during evolution of trapped non-

linear waves on jet currents is insignificant (at least in some

class of wave conditions), which makes the mode theory de-

veloped in Ref. 12 effective. In particular, this finding justi-

fies, to the leading order, consideration of dynamics of differ-

ent modes as independent. Although emphasizing the overall

qualitative agreement, note that some quantitative discrepan-

cies between the approximate analytic solutions obtained un-

der the assumptions of weak nonlinearity, weak dispersion,

and weak current compared to the numerical simulation of the

Euler equations have been also found. In particular, interac-

tions between solitons of trapped waves are not fully elastic;

new waves of small amplitude are emitted.

The presented demonstration of qualitative validity of

weakly-nonlinear soliton solutions up to the range of unex-

pectedly strong nonlinearity, up to the characteristic wave

steepness kA≈ 0.2, is in accordance with the recent numerical

and laboratory simulations of strongly nonlinear counterparts

of exact solutions of approximate modulation equations, see

Refs. 22, 25, 27–30. We note, that we simulated an example

of the interaction between even steeper solitons of the fun-

damental mode with kA = 0.25 (not described in this work),

which, again, demonstrated almost elastic collision.

The simulations reported in this paper were carried out with

the nonlinear parameter of the HOSM numerical code M = 5

(which confines the consideration to up to 6-wave interac-

tions). They were also repeated in the series of experiments

with a lower order of nonlinearity, M = 3, which is sufficient

to describe up to 4-wave interactions only. Those experiments

exhibited very similar dynamics.

Coupling of solitons which originally propagate with close

velocities is common of weakly non-integrable wave dynam-

ics. In particular, formation of a transient bound state in the

strongly nonlinear simulation of degenerate 2-soliton NLSE

solution of unidirectional waves was observed in Ref. 25 for

the characteristic wave steepness kA = 0.15. In contrast, in

the case of waves trapped by the jet current, the solitons’ cou-

pling did not occur in the conducted simulation of degenerate

solution with the same steepness and the same initial distance

between the solitons.

One of the limitations of the adopted approach is the as-

sumption of potentiality of the wave motion, which, although

common, is, strictly speaking, not true. However, a rough es-

timate of possible vorticity contribution to dynamics of waves

suggests it to be very weak, so that at the time scales of forma-

tion and evolution of envelope solitons we are interested in, it
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can be neglected. A detailed analysis of the role of vorticity of

water wave field in the dynamics of trapped waves although

being an interesting issue goes beyond the scopes of this work

and requires a dedicated study. Some discussion of the effect

of vorticity on the NLSE theory for waves upon horizontally

inhomogeneous weak current may be found in Ref. 8.

The demonstrated effects of robustness of spatially local-

ized intense wave groups trapped by opposite jet currents with

respect to collisions is expected to be important in the con-

text of anomalous oceanic waves (rogue waves). Whereas

in still water the effect of finite wave directionality greatly

reduces the strength of the modulational instability and the

chance of envelope quasi-solitons to propagate for a relatively

long period of time, solitons of trapped waves can preserve

their structure remarkably long. Hence, they can increase the

probability of high waves with no restriction on the width of

the wave angular spectrum. This essentially nonlinear effect

might be a factor in the observed high likelihood of rogue

wave occurrences on currents. Note that sea surface waves

may be trapped by other large-scale inhomogeneities such as

submerged ridges or other topographic features31–33. Then,

robust envelope solitons may be expected under conditions

when the modulational (Benjamin–Feir) instability is effec-

tive, what presumably requires a great water depth. The latter

condition is obviously very much restrictive to the bathymetry

configuration. The peculiarity of trapped waves on currents is

that they propagate only against the current.

The robustness of solitons of trapped waves opens the

possibility of investigating of specific physical mechanisms

caused by the account of inhomogeneity of the currents. Both

the rapid and adiabatically slow transformation of envelope

solitons of trapped waves can amplify them and lead to even

more extreme wave events. However, these issues are beyond

the scope of this work and will be considered elsewhere.
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