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Abstract

We derive the incremental equations for a hyperelastic solid that incorporate surface tension effect
by assuming that the surface energy is a general function of the surface deformation gradient. The
incremental equations take the same simple form as their purely mechanical counterparts and are valid
for any geometry. In particular, for isotropic materials, the extra surface elastic moduli are expressed
in terms of the surface energy function and the two surface principal stretches. The effectiveness of
the resulting incremental theory is illustrated by applying it to study the Plateau—Rayleigh and Wilkes
instabilities in a solid cylinder.
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1 Introduction

Professor Ray Ogden’s published work has always been marked by simplicity, accessibility, and
elegance in its presentations. For instance, for small deformations superimposed on a finite
deformation in the purely mechanical setting, he promoted the use of the incremental equations
of motion in its most simple form (Chadwick & Ogden 1971)

Ajikug,j = piii, (1.1)
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2 Mathematics and Mechanics of Solids XX(X)

and for isotropic hyperelastic materials gave the following compact expressions for the elastic
moduli (Ogden 1984):

J Aiijj =XNiNiWij, (1.2)
22
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where (u;) is the incremental displacement, p is the material density in the finitely deformed
configuration, a superimposed dot denotes differentiation with respect to time, 4,4 are the
first-order instantaneous elastic moduli, W is the strain energy that is viewed as a function of
the three principal stretches A\, A> and A3, J = A\ AoAs, and W; = oW /oN;, W;; = 0*W /oN; 0,
etc. Although presented above for compressible isotropic materials and in terms of rectangular
coordinates, the above formulation can easily be adapted for incompressible materials and more
general coordinates, and the nonlinear version of (1.1)5 can also be obtained (Fu & Ogden 1999).
The elegance of this formulation has also been extended to electroelasticity (Dorfmann & Ogden
2014), magnetoelasticity (Destrade & Ogden 2011; Saxena & Ogden 2011), and materials with
initial stresses (Dorfmann & Ogden 2021; Melnikov et al. 2021). Although we nowadays take
these equations for granted, it is with these elegant and most accessible formulations that the
dynamic and stability properties of various problems have been studied on a firm footing and in
a systematic manner. In particular, we note that equations (1.1) take the same form as those in
general anisotropic elasticity; all the information about the finite deformation is nicely hidden
in the elastic moduli. As a result, all the advanced methods developed for anisotropic materials,
such as the Stroh formalism (Stroh 1958, 1962), can be applied to finitely deformed elastic solids;
see, e.g., Fu & Mielke (2002) and Su et al. (2018).

Our current study is motivated by the observation that a general incremental formulation that
takes into account surface tension effect does not seem to exist and this has, to some extent,
hampered effective studies and even given rise to controversies. Although Ogden, Steigmann
and collaborators (Ogden et al. 1997; Dryburgh & Ogden 1999; Ogden & Steigmann 2002) have
previously derived the incremental equations based on the Steigmann—Ogden theory (Steigmann
& Ogden 1997), their derivation is restricted to the plane-strain case. Due to the lack of a
general incremental theory, previous studies on surface tension-induced instabilities have resorted
to rather ad hoc, although ingenious, approaches for specific geometries. For instance, recent
studies by Taffetani & Ciarletta (2015); Xuan & Biggins (2017); Wang (2020); Fu et al. (2021);
Emery & Fu (2021a,b) and Emery (2023) have all considered the cylindrical geometry for which
the governing equations are derived directly from a variational principle, with incompressibility
automatically satisfied by the use of mixed coordinates and introduction of a stream function,
and then linearised in order to conduct the necessary linear stability analysis. Bakiler et al. (2023)
derived the incremental equations for a compressible elastic cylinder but focused on a specific
surface energy function. Also, Gurtin and Murdoch’s original theory (Gurtin & Murdoch 1975,
1978) is essentially an ad hoc incremental theory since it is not derived from a fully nonlinear
variational principle and the finite deformation was not fully accounted for. The ad hoc nature
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of this theory has given way to different interpretations; see Ru (2010) for a detailed discussion.
Such different interpretations have even given rise to controversies. For instance, recent results
presented by Yang et al. (2022) and Ru (2022) are at variance with those given by Mora et al.
(2010) and Taffetani & Ciarletta (2015).

Surface tension typically appears in boundary value problems through the non-dimensional
parameter v/(uf), where «y is a measure of the surface tension, p the shear modulus, and ¢ a
representative lengthscale in the problem (e.g., for a solid cylinder ¢ would be the radius). This
parameter becomes significant when either the material is soft (small p) and/or ¢ becomes small.
As a result, surface tension effect becomes non-negligible for soft materials at micrometer and
sub-micrometer levels (e.g., nerve fibers), and has become an area of active research in recent
decades (Liu & Feng 2012; Javili et al. 2013). Extensive research work (Cammarata 1994; Sharma
& Ganti 2002; Sharma et al. 2003; Sharma & Ganti 2004; Duan et al. 2005, 2009; He & Lilley
2008; Chhapadia et al. 2011; Gao et al. 2017) has been devoted to study the size-dependent
elastic properties of nanomaterials induced by surface tension. Although surface tension in solid
materials has been briefly discussed in early studies by Young (1832); Laplace (1825), Gibbs
(1906), Shuttleworth (1950), Scriven (1960) and Orowan (1970), it was not a proper topic of
continuum mechanics until Gurtin and Murdoch published their pioneering works, Gurtin &
Murdoch (1975) and Gurtin & Murdoch (1978). However, the theory formulated by Gurtin
and Murdoch is essentially a linearized incremental theory and was designed to address small
deformations at small scales. It was much later that fully nonlinear theories taking into account
surface elasticity were developed; see Steigmann & Ogden (1997, 1999), Huang & Wang (2006),
Steinmann (2008), Gao et al. (2014) and Huang (2020).

The rest of this paper is divided into six sections as follows. After reviewing briefly the
kinematics of deformable surfaces in Section 2, we summarize and adapt slightly in Section 3 the
surface elasticity theory given by Steinmann (2008), presenting it in a self-contained manner.
In Section 4, we first derive the incremental governing equations in their general nonlinear form
and then obtain their linearized form. In Section 5, we show how our incremental theory can be
reduced to the Gurtin—-Murdoch theory under an appropriate assumption. The effectiveness of
our incremental theory is verified by considering the Plateau—Rayleigh and Wilkes instabilities in
Section 6. The paper is concluded in the final section with a summary and additional comments.

For convenience, we present here some notation needed in the sequel. Let A and B be two
tensors. Their double dot product is defined by A : B = A;;B;;. Given a scalar-valued function

W(A) of a tensor variable A, its derivatives is defined by (Z—K) = (fTV';. The summation

ij
convection over repeated indices is adopted and a comma preceding indices means differentiation.
In a summation, Greek letters o, 8, ... run from 1 to 2, whereas Latin letters 4, j, - - - run from 1

to 3.

2 Kinematics of deformable surfaces

Consider a hyperelastic solid that occupies a region €2 c R? in the reference configuration. The
boundary of the region 2 is denoted by 02 and is assumed to be piecewise smooth. The position
of a material point in the reference configuration is denoted by X. The solid deforms under the
combined effect of mechanical forces and surface stresses. After deformation, the material point
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X moves to a new position & under the deformation map
r=¢(X), XeQ. (2.1)

We assume that ¢ is at least twice continuously differentiable on Q U Q). The deformation
gradient F' is defined by de = FdX.

(a) o (b)

Figure 1: An elastic surface in (a) reference configuration (before deformation) and (b) current
configuration (after deformation).

We assume that the bulk solid is subjected to surface stresses on a smooth part S of the
boundary €, and prescribed (dead-load) traction £ and position & are imposed on the remaining
parts 0€; and 0€2,, of the boundary, respectively. The stressed surface S is parameterized locally
by curvilinear coordinates ' and §2. The position function Y on the surface is identified with
the restriction of X to S,

Y (0',6%) = X|s. (2.2)

The surface S is assumed to be convected by the deformation of the solid so that its image ¢(M)
under the deformation admits the local parametrization

y(6',6%) = o(Y (6", 67)), (2.3)
as shown in Fig. 1. This parametrization induces the tangent vectors
Ga = Y,a € TPSa 9o = y,a € T¢(P)¢(S)7 (24)

where 7,5 and Ty py¢(S) are the tangent planes to the surfaces S and #(S) at the points
P =Y (6',60%) and ¢(P), respectively, and a comma indicates partial differentiation with respect
to the corresponding curvilinear coordinate.
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The oriented unit normals to the tangent planes TS and T, (py¢(S) are defined by
Gy x Gy _91%X9>
= T = n=— —-—

VG NG

where G = det(G, - G) and g = det(g,, - g5) are the metric determinants with (g, - g4), for
instance, denoting the 2 x 2 matrix whose a8-component is the dot product g, - g5. With the
aid of the unit normals, the dual tangent vectors induced by 8¢ can be expressed as

N (2.5)

¢ -"a o_ ¢ (2.6)
=—Ggxn, g%=-—ggxmn, .
VG Nt
where e®? = e, is the unit alternator (e!? = —e?! = 1, e!! = e!2 = 0). These dual vectors satisfy

the relations G* - Gg = g* - g5 = 05, where 63 is the Kronecker delta. The variations of the unit
normals are described by the curvature tensors

ON on
B=--——=-N,®G", b=-— =-— *. 2.7
(9Y , ® bl (»}y n,a ® g ( )
According to the chain rule, the local basis vectors in the reference and current configurations
are related by

g, =FG,. (2.8)

However, it is useful to have a description of the deformation of the surface that does not involve
the deformation of the bulk solid. This can be achieved by introducing the surface deformation
gradient
oy o a
Fsza—Y:y,a(@G =g,0G" =Vy, (2.9)
where here and henceforth the subscript ‘s’ refers to quantities associated with the surface, and
the last equation in (2.9) serves to define the surface del operator V = G* =2 on the undeformed

20
surface S. On the other hand, the deformation gradient of the bulk material can be expressed as

F=z,G"+xny®N, (2.10)

where x y 1= %m(X + tIN)|t=¢ denotes the directional derivative of & along the direction given
by N. Noting that y = x|4(s) is the restriction of & on the deformed surface ¢(S), we deduce
from (2.9) and (2.10) that

F,=F1 on S, (2.11)

where 1 = I — N ® N denotes the projection tensor to the tangent plane of M, which is also
the identity tensor on the same plane and I is the identity tensor on R3. A direct consequence
of (2.11) is that the surface deformation gradient is superficial in the sense that it possesses the
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property F¢IN = 0 (Javili et al. 2018). The superficial property plays an important role in the
surface elasticity theory.

One can extend F'; to a linear transformation defined on R? by declaring F,N = 0. The trace
of Fg is defined through the extension of F'g in this way. This agrees with the trace of 3 x 3
rank-deficient matrix of F's with respect to the basis {G1, G2, N'}. However, the determinant of
F; is defined in a different way since F'4 is rank-deficient when viewed as a linear transformation
on R3. Tt follows from (2.9) that n - Fy = 0. Thus, F is essentially a two-point plane tensor
in the sense that it can be identified with a 2 x 2 matrix when referred to bases of the tangent
planes T),S and Ty(p)@(S). Therefore, the determinant of F'y may be defined by

|Fsu x Fov| =det(Fs)|u xv|, Yu,veTl,S. (2.12)

This generalizes the definition of determinant for tensors defined on the plane R? in the language
of exterior algebra (Winitzki 2010), and is consistent with the formula for the determinant of
2 x 2 matrices when F'; is referred to orthonormal bases of the tangent planes 7;,S and Tyy(p)@(.S).

Suppose that F's depends on a parameter t. With the use of the same method given by
Chadwick (2003) for tensors defined on R?, it can be shown that Jacobi’s formula

dJs
F
dt dt ¢

is still valid, where J, = det(F,) and F,! is the inverse of F, with the latter viewed as a
linear transformation from the two-dimensional vector space TpS to its deformed counterpart
Typy#(S). In particular, we have

dF 71)

— Jtr ( (2.13)

0Js
oF

= J.F;T, (2.14)

where F;T denotes the transpose of F;l. Note that by definition, we have
F'F, =1, F,F;'=i, (2.15)

where ¢ = I — n ® n stands for the identity tensor on the deformed surface ¢(5).

3 Finite-strain surface elasticity theory

In this section, we summarize and adapt slightly the surface elasticity theory given by Steinmann
(2008).

3.1 Constitutive relations of elastic surfaces

The surface elasticity theory assumes that a surface has its own constitutive relation which is
derived from the variation of the surface energy. Let us denote by I the surface energy per unit
reference area. We assume that I” is a function of the surface deformation gradient, i.e., that the
surface is hyperelastic. Then the surface energy of the solid is given by

&, :f [(F,)dA, (3.1)
S
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Applying variations to (3.1), we obtain
0Es = J P, :0F,dA, (3.2)
s

where Py is first Piola-Kirchhoff (P-K) stress of the surface and is defined by

or
oF

P, = (3.3)

Eq. (3.3) gives the constitutive relation of the surface. In particular, for an isotropic surface,
I is only a function of two invariants I = tr(C,) and I3 = det(C) = J2 of the right Cauchy—
Green tensor C'; = FSTFS of the surface. Then using (2.14), the first P-K stress of the surface
is obtained as

or or

P,=2—F,+J,—FT. 3.4
( % s+ J. (3.4)

gy ¢
In the Eulerian description, the Cauchy stress of the surface can be expressed as

r
o,=J P, FT = st—la—FstT +
oI;

or .
&]SZ' (3.5)

The linearization of (3.5) yields the well-known Shuttleworth equation (Shuttleworth 1950).

3.2 Equilibrium equations of elastic surfaces

Assume that the bulk solid is composed of a hyperelastic material, with the strain energy function
W (F'). The total potential energy of the solid is the sum of the bulk energy, surface energy and
load potential:

£ = L W(F)dV + L I(F,)dA— f t xdA. (3.6)

where 09, is a part of 0 where tractions ¢ are prescribed.

According to the principle of stationary potential energy, the equilibrium equations of the
elastic solid are obtained by setting the first variation of the total potential energy to zero. By
the divergence theorem, the variation of the bulk energy & = SQ W(F)dV is calculated as

6 = | PN-dxdA-— f Div(PT) - sz dV, (3.7)
oQ Q

where P = z—VFV, is the first P-K stress of the bulk and Div denotes the divergence with respect

to the Lagrangian coordinates X = Xe; (i.e., Div(T) := Tj; je;).
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Substituting (2.9) into (3.2) and noting that y = x|4as), we see that the variation of the
surface energy &; is

0&, :J P, : (6:c,a®G°‘)dA:f G*-Plsx ,dA
S S
= f (G* - (Ploz) o — G* - PL ox)dA (3.8)
S
= J (V- (PTox) — (V- PT).ox)dA,
S

where V - (o) = G - () ,, signifies the surface divergence. Since Pj is conjugate to F'; and F
is superficial, it follows that P, is also superficial, i.e., P,IN = 0. This implies that PZ&:(; is
a vector that lies on the tangent plane of M, so we can apply the surface divergence theorem
(Steinmann (2008), Eq. (12)) to obtain

6Es :f PSV-(Sde—f (V- Py . szdA, (3.9)
oS S

where 05 denotes the boundary of S, V is its unit outward normal and dS is the arclength
element of 05.

Adding (3.7) and (3.9) together, we see that the variation of the total potential energy is given
by

55=—J Div(PT)~6:1:dV+J (PN —t)-dxdA
° o (3.10)
+J(PN—V~P8T)-6wdA+J P,V -5z dS.
S oS

Setting 0€ = 0 then yields the following equilibrium equations and associated boundary
conditions of the surface elasticity theory:

Div(PT) =0 in Q, (3.11)
PN =t on 00, (3.12)
=T on 0%, (3.13)
PN =V-P' ons, (3.14)
P,V =0 ondS. (3.15)

In particular, Eq. (3.14) describes the equilibrium between the surface stress and the stress in
the bulk, which is usually called the generalized Young—Laplace equation. One can check that
(3.14) agrees with Eq. (4.21) in Steigmann & Ogden (1999) and Eq. (59) in Gao et al. (2014)
when the surface bending stiffness is neglected. Note that Steigmann & Ogden (1999) used a
different definition of the surface divergence operator, which can be shown to be equivalent to
ours.

Prepared using sagej.cls



Xiang Yu and Yibin Fu 9

Using the same variational technique, one can derive from (3.6) the following Eulerian form
of (3.14):

on=V-o, on¢S), (3.16)

where o denotes the Cauchy stress of the bulk and V.o, = g% - 05 o denotes the divergence of
os on ¢(S). In the special case when I' = vJ; with v being a constant (i.e., liquid-like surface
tension), Eqs. (3.5) and (2.7) may be used to evaluate V - os. After some simplification, Eq.
(3.16) reduces to

on =~vytr(b)n on ¢(9), (3.17)

which is the familiar Young—Laplace equation (Taffetani & Ciarletta 2015).

4 Incremental equations in surface elasticity theory and their linearization

This section derives the exact equations governing incremental deformations superimposed on a
finite deformation in surface elasticity theory and the corresponding linearized forms.

4.1 Exact incremental equations

We follow Ogden (1984) who established a general theory of small deformations superimposed
on a finite deformation in an elastic material. Let us denote by By the initially unstressed
configuration of the elastic solid which occupies the region © — R3. A smooth part S of the
boundary 02 of the solid is subjected to surface stresses, and the rest of the boundary is subjected
to either prescribed tractions or displacement, giving rise to a finitely stressed equilibrium
configuration B.. Finally, a displacement (not necessarily small) is superimposed on B, resulting
in a configuration, termed the current configuration and denoted by B;. The position vectors of
a material point in By, B, and B; are denoted by X, & and &, respectively. Then we have

z(X) =x(X) + u(x), (4.1)

where w is the displacement superimposed on B,. The deformation map from By to B, is notated
as ¢; thus we can also write = ¢(X).

The deformation gradients arising from the deformations By — B; and By — B, are denoted
by F and F respectively, which are given by

ox - ox
F-x F-ox (42)
It follows from the chain rule that
F=(I+n)F, (4.3)
where n = % is the incremental displacement gradient. From (2.11), the surface counterpart of
(4.3) is given by
F,=(i+n,)F, (4.4)
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where 4 denotes the identity tensor on the tangent plane of ¢(S) (which is the deformed surface
in B.), Fy, = F1, and i, = mi is the incremental surface displacement gradient.

Let N dA denote a vector surface area element in By, where IN is the unit outward normal
to the surface, and n da the corresponding area element in B,. The area elements are connected
by Nanson’s formula

NdA = J'F'nda, (4.5)

where J = det(F). Similarly, let V dS denote a vector line element in By, where V is the unit
outward normal to the line, and v ds the corresponding line element in B.. The line elements
are connected by the surface Nanson formula (Steinmann (2008), Eq. (49))

VdS = J7 Fluds, (4.6)

where J, = det(F,).
The first P-K stresses associated with the deformations By — B; and By — B, are denoted
by P and P, and are given by

ow - oW
P-2" p- —’ . 47
0 OF |F (47)
Their surface counterparts take the form
or = or
P, = = _ 4.
s an ? S 3F5 FS I’ ( 8)

where P, and P, are the surface first P-K stresses corresponding to the deformations By — By
and By — B,, respectively.

To state the incremental equations, it is convenient to introduce an incremental stress tensor
and its surface counterpart through

7 =\ =T = = & T
XZJl(P_P)F7 Xez']sl(PS_PS)Fs (49)
The incremental forms of (3.11)—(3.13) were given in Ogden (1984) and are of the form

div(x") =0 in ¢(9), (
xn =0 on ¢(0Q), (4.11)
u=0 on ¢(9Q,). (

1

To derive the incremental equations of (3.14) and (3.15), we apply increments to (3.14) to
obtain

(P-P)N=V-(P,—P,)" onS. (4.13)

To obtain the parallel equation of (4.13) valid on the deformed surface ¢(S), let R an arbitrary
region of S and integrating (4.13) over R yields

f (P - P)NdA = J V- (P,—P,)TdA. (4.14)
R R
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Since P, — P, is superficial, by Nanson’s formula and the surface divergence theorem, we have

f J”wfﬂﬁ%mzf(&—PMMS (4.15)
#(R) oR

Applying the surface Nanson formula (4.6), we can rewrite (4.15) as

J xnda = J J NP, — PS)FSTU ds = J XU ds. (4.16)
#(R) 0p(R) 0¢(R)

Then another application of the surface divergence theorem yields

f xnda = f 7 -xT da, (4.17)
B(R) B(R)

0

where V = g% is the surface del operator on ¢(S) and g are the tangent vectors of ¢(M)
induced by the curvilinear coordinates 8. Since R is an arbitrary region of M, we conclude that

xn =V -xI on¢(S). (4.18)
A similar argument shows that the incremental equation of (3.15) is
X0 =0 on ¢(39). (4.19)
On collecting all the incremental equations together, we have

div(x") =0 in ¢(Q), (4.20)
xn =0 on ¢(0), (4.21)
u=0 on¢(0,), (4.22)
(4.23)
(4.24)

xn =V - XZ on ¢(9),
Xev =0 on 6(25),

where div means the divergence with respect to coordinates & = x;e; in B, (i.e., div(T) :=
Tjije;) and V = g“a;% signifies the surface del operator on ¢(5). We remark that (4.21) can
be easily adapted to some non-dead loading cases such as pressure loading (Haughton & Ogden

1979).

4.2 Linearized incremental equations

To state the results, we choose an orthonormal basis {e1, e3, ez} for R? such that {e1, e} span
the tangent plane of ¢(S) and e; = n. The components of a tensor T' relative to the basis
{e1,e2, e3} is denoted by T;;, and all the results presented in the following will be expressed in
terms of the components relative to this chosen basis.

Assume that the displacement u is small so that terms of order |u|? can be neglected.
Substituting (4.7) into (4.9), and linearizing around F = F with the use of (4.3), one obtains
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12 Mathematics and Mechanics of Solids XX(X)

the following linearized stress-strain relation for incremental deformation of the bulk

Xij = AjikMel, (4.25)
where Ajj;, are the first-order instantaneous moduli given by

°W

I
itk = J  Fin Fppy | .
Ajitk = I Fym OF;, 0F o |

(4.26)

In a similar spirit, substituting (4.8) into (4.9), and linearizing around F, = F'; with the use
of (4.4), we obtain the following linearized stress-strain relation for incremental deformations of
the surface

Xia = CaiBjMjs; (4.27)

where we have used the fact that x5 = 13 = 0 which follows from the superficial property of x
and n, with respect to n, the unit normal to ¢(M), and C,,g; are the first-order instantaneous
moduli of the surface defined by

= 1 =8 = o’r
Cpigi = J.YFS FS—oe| .
Bi s ak® Bl a‘kaaFJ&l Fs

(4.28)
Note that in the above expressions we have written x*, n® and F° for X.; M, and F,, respectively,
when their components are displayed for better readability. This convention will be adopted in
later sections. It should also be reminded that F'4 is not superficial with reference to n and thus
% are not zero in (4.28). The linearized governing equations are obtained by substituting the
linearized stress-strain relations (4.26) and (4.28) into the governing equations (4.20)—(4.24).

4.3  Surface moduli for isotropic materials

When the bulk solid and the surface are both isotropic in their undeformed configuration, more
explicit expressions can be obtained in terms of the principal stretches. We may assume that for
the deformation from By to B, the basis vectors {ej, es, es} employed in the previous section
coincide with the principal axes of stretch in the bulk solid, and {ej, ez} coincide with the
principal axes of stretch on the surface. Let A1, Ao and A3 denote the principal stretches of the
deformation from By to B, corresponding to the principal directions e, es and e3, respectively.
For the bulk solid, the expressions for the nonzero components of the first-order instantaneous
modulus A have been given in (1.2) and (1.3).

In the isotropic case, the surface energy I' = I'(A\, \3) is a function of the two principal surface
stretches A\j and A3. Using the chain rule, we deduce from (4.28) that for isotropic surfaces the
nonzero components of the first-order surface instantaneous moduli C are simply (see Appendix
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A for details)

jscaaﬂﬁ = )\a)\BFaﬁa (429)

- Aalo — Mgl

Jscaﬂaﬁ = /\i%, o F 67 (430)
N2 X3

_ Agla — Aol =

Jscaﬂﬁa = AaAﬁW = Jsca,@a/@ — )\aFa; o # B, (431)

jsCaBQS = )\aFaa (432)

where J, = Ao, [y = ;TF (ing) and Tpp = % (A1) The last equality of (4.31) reflects
@ @ B

the fact that the dependence of I on F' is through Cy = Fst.

5 Connection with the Gurtin—-Murdoch model

The well-known Gurtin—-Murdoch model (Gurtin & Murdoch 1975, 1978) expresses the surface
stress tensor as a sum of an isotropic linear function of the surface strain and the residual stress
induced by surface tension. Let «, us and As be the (residual) surface tension, shear modulus
and Lame’s first parameter of the surface, respectively. Then the surface stress tensor in the
Gurtin-Murdoch model is given by (Gurtin & Murdoch (1978), Eq. (2))

oM = 1+ 2(ps — Y)es + (As +7) tr(es)1 + 7V, (5.1)
where 1 stands for the identity tensor on the tangent plane of the undeformed surface, u is the
displacement, &, = £(1Vu + (1Vau)?) is the infinitesimal surface strain and Vu = u , @ G*
denotes the surface gradient of u.

We now show that the Gurtin-Murdoch model can be recovered as a special case of the
incremental theory derived in Section 4. To this end, we consider the following surface energy
function (Bakiler et al. 2023):

I = Hs s >\3 1 2
With the use of (4.27) and (4.28), it can be shown that the incremental surface stress tensor x,
can be written in the compact form

Xs = 2T —Y)es + (AT +9) tr(es)i + 1,65 (present model), (5.3)
where
- 1 _ -
WS = T = S = T, XS = A (5.4)
- =
.= Liim, + (in.)7). 5:5)
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The pf and AT may be referred to as the effective surface shear modulus and Lame’s first
parameter, respectively, €, is obviously the incremental infinitesimal surface strain and & is the
surface Cauchy stress associated with the deformation from By to Be.

The Gurtin-Murdoch model can be recovered from our incremental theory by assuming
that the intermediate configuration B, coincides with the initial configuration By. Under this
assumption, we have F'y; = 4 = 1, and consequently n, = Vu and & = v1. Eq. (5.3) then reduces
to

Xs = 2(ps —7)es + (As + ) tr(es)1 + ym;. (5.7)

By comparing (5.1) and (5.7), one can see that the total surface stress tensor of the present
model, which is y1 + x, is the same as that of the Gurtin-Modorch model. In contrast with
the Gurtin—-Murdoch model which is only valid for small deformations, the current incremental
theory (Eq. (5.3) in particular) is applicable even when the intermediate deformation is finite.

6 Application to an elastic cylinder subjected to surface stresses

We now verify our incremental theory and demonstrate its ease of use by applying it to the
bifurcation analysis of an elastic cylinder that is subjected to surface tension as well as a tensile
and compressive axial force.

When subjected to surface tension, an axially stretched soft cylinder may undergo a localized
deformation culminating in a two-phase state, which is now commonly called the Plateau—
Rayleigh instability (Taffetani & Ciarletta 2015) although in the context of fluid flows the same
term refers to an instability mode with finite wavenumber. Previous stability analyses (Taffetani
& Ciarletta 2015; Lestringant & Audoly 2020; Fu et al. 2021) have mainly focused on the case
of constant surface tension, and have revealed that the zero wavenumber mode is the dominant
bifurcation mode. Very rarely has the situation when the surface tension is strain-dependent
been examined, notable exceptions being the recent work of Bakiler et al. (2023). We now
demonstrate that with the use of the incremental surface elasticity theory just established, we
can study the latter problem more systematically. The axisymmetric buckling of a soft cylinder
under compression is also analyzed as a by-product. The latter problem without surface tension
has previously been examined by Wilkes (1955). For convenience, we refer to this instability in
the presence of surface tension as the Wilkes instability. This instability has previously been
studied by Wang (2020) and Emery & Fu (2021a) assuming that the surface tension is constant.
Bifurcations of coated elastic cylinder subjected to axial tension or compression has also been
studied thoroughly by Bigoni & Gei (2001).

6.1 Homogeneous deformations

We consider a hyperelastic solid cylinder with a radius A in the reference configuration. The
cylinder deforms homogeneously under the combined action of surface stresses on its outer surface
and an axial force N applied at its two ends. In terms of cylindrical coordinates, the homogeneous
deformation is described by

r=aR, 6=0, z=M\Z (6.1)
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where (R,0,Z) and (r,0,z) are the cylindrical coordinates in the reference and current
configurations, respectively, and a and A\ are the constant transversal stretch and axial stretch,
respectively.

From (6.1), we see that the bulk deformation gradient is given by

F=aeyQey+ e, Re, +ae,.Re,, (6.2)

where (e, eg, e.) is the common orthonormal basis for the two sets of cylindrical coordinates.
The three principal stretches are simply

Al = )\3 = a, )\2 = )\, (63)

where we have identified the indices 1,2,3 with the 6, z- and r-directions, respectively. The
surface deformation gradient can be obtained in a similar way, which is

F;=F1=F(I-e,®e,) =aegReyg+ e, Re,. (6.4)
The two principal stretches of the surface deformation are obviously given by
Al=a=X, Aj=A=MA. (6.5)

We assume that the constitutive law of the bulk solid is described by a strain energy function
W (A1, A2, A3) and that of the surface is characterized by a surface energy function

L(AT,A3) = YATAS + (AL, A3), (6.6)

where ~y signifies the surface tension and ¥ represents the strain-dependent part of the surface
energy. Then the first P-K stress of the bulk is given by

P=Wiey®ey+ Wre,Re, +Wse,Re,, (6.7)

where W; = 0W /0)\;. Since the bulk stress is independent of the position, the equilibrium
equations in the bulk are satisfied automatically. Similarly, the surface first P-K stress is given
by

P, = (7\5 +W)eg ®eg + (YA] + Wo)e. ®e., (6.8)
where W, = 0¥/dA:. The boundary condition (3.14) leads to
_ P
P33 = e (6.9)
from which we obtain
1
v = —§Ax\71w1(a, A) = A1 (a, \), (6.10)

where w(a, \) = W{(a, \,a) is a reduced strain energy function and the subscript in w indicates
partial differentiation. Consequently, the resultant axial force at the two ends is given by

N = 1 A?Pyy + 21 APy, = mA%(wa(a, \) — X taw; (a, ) + 2mA(Wa(a, \) — X" tad (a, N)).
(6.11)

With the aid of (6.10) and (6.11), one can easily determine the deformation parameters a and A
once the loading parameters v and N are given.
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6.2 Linear bifurcation analysis

To study the bifurcation from the homogeneous deformation, we perturb the homogeneous
deformation by adding a small displacement of the form

o = u(r,2)e, + v(r, 2)e,. (6.12)

The incremental deformation gradient is calculated as

v o0 0
n=10 v, v ], (6.13)
0 u, u,

where v, = 0v/0z, v, = dv/or, etc.

The identity tensor on the tangent space of the homogeneously deformed outer surface is
i =ey® ey + e, ®e,. From the relation n, = ni on r = aA, we see that the surface deformation
gradient 7, is given by

“o0 0
n,=10 v, 0 . (6.14)
0 Uz 0 r=aA

It is seen that the elements in the third column of i, are all zero, which reflects the fact that
1, is superficial.
The linearized equilibrium equations (4.20) in cylindrical coordinates take the form
Ox22 | OX23 | X23
+ +== =0 6.15
0z or r ’ (6.15)
Ovan  Oy- . —
)fss n X32 I X33 — X11
or 0z T

—0, (6.16)

where (x;;) is the incremental stress tensor defined in (4.25).
According to (4.23), the incremental boundary conditions are given by

aXS a S S
X23 = 22, X33 = Xaz _ @,
0z 0z r

onr = aA, (6.17)

where (x; ) is the incremental surface stress tensor that can be calculated using (4.27) and
(4.29)—(4.32). Information on the bifurcated solution in linear analysis is obtained by solving the
boundary-value problem comprised of (6.15)—(6.17).

For the numerical calculations carried out in the following, we adopt the strain energy function

_ B 3o Ly .
W=tn-3-2mJ)+ 3 (2(J 1) an) (6.18)
for the bulk solid, where p is the shear modulus, x = 2uv/(1 — 2v) with v € [0,1/2] being

Poisson’s ratio, I; is the first principal invariant of the right CauchyGreen tensor and J is
the determinant of the deformation gradient. For the surface, we assume that its energy function
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is given by (5.2). We note that there are different choices of the last term in (6.18) that are
equivalent in the limit x — c0. We pick the one that is in line with previous work (Dortdivanlioglu
& Javili 2022; Emery 2023; Bakiler et al. 2023). Also, for notational simplicity, we scale all length
variables by A and stress variables by u, which is equivalent to set A = 1 and pu = 1. We use the
same letters to denote the scaled quantities. In particular, v and N calculated using (6.10) and
(6.11) are now given by

2+ K4 2 + As — 202 — 2021 — a? X2, — a* N3k
Y= )
2a\
(2 + Kk + 202 + 4\2pu, — 4a® — 4a®us — a*M%k)

N = . 2
N (6.20)

(6.19)

To find the critical wavenumber of the bifurcation, we look for a normal mode solution of the
form

u(r, z) = f(r)e*®,  w(r, z) = g(r)e*?, (6.21)

where k is the axial wavenumber. Substituting this solution into the incremental equations
(6.15)—(6.17) and simplifying the resulting equations with the use of (1.2), (1.3) and (4.29)—
(4.32), followed by eliminating g(r) in favor of f(r), we obtain a boundary value problem for

f(r):

L 1d 1 oA 1d 1,
(2t rar— (e wad)) (e + o g~ (m+#6) ) s =0, (6.22)
F"(r) + b f"(r) + baf'(r) + b3f(r) =0 onr =a, (6.23)
2
(r) + Ef”(T) +baf'(r) +bsf(r) =0 onr=a, (6.24)
where
A 24+ K+ 222 + a2k
=g ®= \/2 + K+ 2a2 4+ at)2k’ (6.25)
1 2+ K+ 222 + a*X 2k
by = —(2 2
17 ( s + As + 2225 + a2)\2)\s)’ (6.26)

and the remaining coefficients b;, 2 < i < 5 are available but are too long to be given here.
One can observe that the general solution to (6.22) bounded at r = 0 is given by

f(r) =cali(kqir) + coli(kgar), (6.27)

where I (x) denotes the modified Bessel function of the first kind, and ¢; and cq are arbitrary
constants. Substituting the above solution into (6.23) and (6.24), we obtain a system of two
linear equations in the unknowns c¢; and c;. The existence of a nonzero solution requires that
the determinant of the coeflicient matrixmust vanish, which yields

Q(k,a,\) =0, (6.28)
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where the expression of  is not given here for the sake of brevity. In view of (6.19), we may
regard a as an implicit function a = a(\,~y) of A and ~ that satisfies (6.19). Then (6.28) leads
to a relation among k, A and -y, from which one can easily determine the variation of the wave
number k with respect to A and .

6.3 Plateau—Rayleigh instability

We first validate the bifurcation condition (6.28) by comparing its predictions with the
corresponding curves in Taffetani & Ciarletta (2015). Setting v = 0.5, us = 0 and A; = 0, we
depict in Fig. 2 the solutions of (6.28) for two typical loading scenarios where either v or A is
fixed, showing perfect agreement with the corresponding curves in Fig. 1 of Taffetani & Ciarletta
(2015).

Next we consider the case when the surface stress is strain-dependent. The strain dependence
or surface stiffening in other words is accounted for by allowing Lame’s constants of the surface
to be nonzero. For the representative parameters values v = 0.5, us = 0.2 and A; = 0.6 which
correspond to the surface Poisson ratio vs = As/(As + 2us) = 0.6, Fig. 3 shows the variation of A
or v with respect to k when the other is kept fixed. The corresponding results for a compressible
bulk solid with Poisson’s ratio v = 0.4 are presented in Figs. 4 and 5. It is seen that whether
the bulk solid is incompressible or compressible, in both loading scenarios the smallest value
of the load occurs at the wave number k.. = 0, which is the same as in the case of constant
surface tension. We have verified this fact for a wide range of values of v, us and A;. We thus
conclude that the strain-dependence is unlikely to affect the nature of the bifurcation and that
the bifurcation always takes place at a zero wave number. This is consistent with the findings in
Bakiler et al. (2023).

A Y
1.6
1.5
1.4
1.3
1.2
1.1 — y=5.7
v=5.8
1.0 y=5.9
—— y=6.0
0.9 5

ot
o

1 k
0.00 0.05 0.10 0.15 020 0.25 0.30 0.1 0.2 0.3 0.4 0.5

(a) (b)

Figure 2: Variations of (a) A against k at different fixed values of v and (b) v against k at
different fixed values of A. The cylinder is incompressible and the surface parameters are pus = 0
and \g = 0.
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10.5

10.0

9.5

9.0

—— y=8.3
— y=8.4
— y=8.5 8.5
— y=8.6 — A=1.3
k 8.0 k
0.00 005 0.10 0.15 020 0.25 0.30 0.0 0.1 0.2 0.3 0.4 0.5

Figure 3: Variations of (a) A against k at different fixed values of v and (b)  relative to k at
different fixed values of A. The cylinder is incompressible and the surface parameters are ps = 0.2
and \g = 0.6.

A Y
6.5
6.0
5.5
5.0
— y=44 — =1
y=4.5 4.5 A=1.1
—— y=4.6 — 2=1.2
— y=4.7 — =13
0.7 k 4.0 k
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Variation of (a) A against k at different fixed values of v and (b) v against k at
different fixed values of A. The cylinder is compressible with Poisson’s ratio v = 0.4 and the
surface parameters are ps = 0 and A; = 0.

Having established the fact that the bifurcation occurs at a zero wave number, we can
determine the critical load analytically. Taking the limit £ — 0 in (6.28) and simplifying, we
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1.0 10

0.9
—— y=6.6
0.8 y=6.7
v=6.8
—— y=6.9 — =13
0.7 k 6
0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 5: Variations of (a) A against k at different fixed values of v and (b) v relative to k at
different fixed values of A. The cylinder is compressible with Poisson’s ratio v = 0.4 and the
surface parameters are us = 0.2 and Ay = 0.6.

obtain
(24 K+ 205 + s + 202 + 2a% s + a* N2 A 4+ 30" N2K)(2 + K + a* NPk — 4a® — 207 — da’p, — 4N py)
—4a%(2 + K+ 2ps + Ao + a2N2A + a2k — 20% — 2a% 1) (2 + 2us + a®N2K) = 0.

(6.29)
It is straightforward to verify that the above bifurcation condition is equivalent to
0yON 0y 0N
N)y= ‘1"~ _“’'-°° _ .
TON) =505 “anaa =0 (6.30)

with v and N given by (6.19) and (6.20), respectively. This equivalence is not a coincidence and
can be established analytically; see Yu & Fu (2022).

When the bulk solid is incompressible for which x — o0, we have a = A™'/2 and (6.29) reduces
to

202+ 23) 22+ X +2)3) As
Yer = + Us + .
2\3/2 2\3/2 \f)\

The first term on the right-hand side represents the value of v, when ps =0 and As; = 0, and
recovers the result given by Taffetani & Ciarletta (2015). From (6.31), it is clear that increasing s
or \s leads to a rise of v, thus having a stabilizing effect on the Plateau—Rayleigh instability.
It also follows from (6.31) that ~., as a function of A has a minimum at A = Ap;,, which is
characterized by the equation

(6.31)

6(1 + 2s) A3 10 — (2015 + Ae)Amin — 12(1 + ps) = 0. (6.32)
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The unique real solution of the above equation for Ay;, is a monotonically decreasing function
of s, equal to 2'/% when u, = 0 and tending to 1.055 when p, — co. This stretch minimum
has a special meaning in the post-bifurcation behavior. It was shown in Fu et al. (2021) that if
a solid cylinder is loaded by increasing v at a fixed length (i.e. fixed axial stretch), then when
the critical value of 7 is reached, the bifurcation corresponds to localized necking if A < Anpin
and to localized bulging if A > Ani,, both cases being subcritical. In the exceptional case when
A = Amin, the bifurcation is supercritical and the cylinder evolves smoothly into a “two-phase”
state. Although these results were obtained for the case when us =0 and A; = 0, they are
expected to be also valid when ps and A4 are non-zero.

A A
0.5 1.0
0.4 0.8
— 0
v=0.6
0.3 y=1.2 0.6
— y=18
0.2 0.4
0.1 0.2
0 5 10 15 20 0 10 20 30 40
(a) (b)

Figure 6: Variation of A\ against k at different fixed values of 7. The cylinder is incompressible
subjected to a compressive axial force and the surface parameters are (a) us = 0, A; = 0 and (b)
s = 0.2, Ag = 0.6.

6.4 Wilkes instability

Finally, we consider the case when the cylinder is subjected to a compressive axial force as
well as surface tension. Fig. 6 shows the variation of A with respect to k for an incompressible
cylinder without or with surface stiffening. The corresponding results for a compressible cylinder
with Poisson’s ratio v = 0.4 are given in Fig. 7. It is seen from Fig. 6(a) that when v = 0 the
maximum of X is 0.444 and is attained as k goes to infinity. This is consistent with the classical
result of Wilkes (1955). The bifurcation mode is essentially a surface wave mode localized near
the surface of the cylinder.

From Figs. 6 and 7, we may draw the following conclusions. Firstly, results for a compressible
cylinder are qualitatively similar to those for an incompressible cylinder. Secondly, when there
is no surface stiffening, the maximum of X is attained at a finite wavenumber as soon as surface
tension is present. For the situation with surface stiffening, the same conclusion holds as long
as the surface tension is beyond a certain threshold (which is equal to 0.616 and 1.039 in Figs.
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A A
0.5 1.0
0.4 — y=0 0.8
v=0.6
y=1.2
0.3 =18 0.6
0.2 0.4
0.1 0.2
. /\ k ) [
0 5 10 15 20 0 10 20 30 40
(a) (b)

Figure 7: Variation of A against k at different fixed values of 7. The cylinder is compressible with
Poisson’s ratio v = 0.4 subjected to a compressive axial force and the surface parameters are (a)
s =0, As = 0 and (b) pus = 0.2, As = 0.6.

6(b) and 7(b), respectively). This means that surface tension penalizes the formation of small
wavelength modes. Thirdly, in contrast with the case of Plateau-Rayleigh instability, surface
stiffness tends to increase the maximum of A and thus has a destabilizing effect on the Wilkes
instability.

In Figs. 8 and 9 we display the bifurcation conditions for the Plateau—Rayleigh and Wilkes
instabilities together. They provide a roadmap on how each instability arises when the cylinder
is loaded in different ways. Similar stability maps were given by Wang (2020) for a hollow tube;
see, however, comments made by Emery & Fu (2021a). Finally, we remark that the bifurcation
condition only provides a necessary condition in each case; what actually happens when the
bifurcation condition is satisfied can only be determined by weakly and fully nonlinear analyses
or numerical simulations.

7 Conclusion

Even in the simplest case when surface tension is a constant, the traction boundary condition
involves the mean curvature of the surface (see (3.17)), and it would not be a simple task to
derive the incremental form of this curvature term, at least for a general surface. This may explain
why recent studies on surface tension-induced instability have resorted to other alternative ways
to derive the incremental boundary equations. On the other hand, it is clearly desirable to
have access to incremental boundary conditions as simple as in the purely mechanical case so
that their use does not require the extra knowledge of differential geometry. It is precisely this
consideration that has motivated our current study. Our main results are (4.23), (4.27), and
(4.28) which are valid for any material and any geometry, and (4.29)—(4.32) which are valid
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Figure 8: Stability map for an incompressible cylinder as a function of axial stretch A and surface
tension 7. (a) us =0, As = 0 and (b) ps = 0.2, As = 0.6.
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Figure 9: Stability map for a compressible cylinder with Poisson’s ratio v = 0.4 as a function of
axial stretch A\ and surface tension 7. (a) us = 0, As = 0 and (b) ps = 0.2, As = 0.6.

for an isotropic surface. Our approach is obviously inspired by Professor Ray Ogden’s style of
presentations, and so we feel that it is appropriate to dedicate this work to Professor Ogden on
the occasion of his 80th birthday.

We conclude by remarking that we have only considered surface elasticity whereby the surface
tension is a function of the surface deformation gradient. A higher-order surface elasticity theory
that allows the surface tension to depend on the gradient of the surface deformation gradient
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so as to capture the bending stiffness of the surface has been developed by Steigmann & Ogden
(1999) and Gao et al. (2014) among others. A parallel derivation of the associated incremental
boundary conditions may be carried out although they will be considerably more involved.
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Appendix A Simple expressions of surface moduli for isotropic materials

In this appendix, we give a derivation of the simple expressions of surface moduli announced in
Subsection 4.3.

In view of the assumption that the basis vectors {e, es} coincide with the principal axes of
stretch on the surface and es is normal to the surface, F'y has the diagonal matrix representation

F, = diag(\, M2, 0) relative to the ordered basis (e, ez, e3). Let F, be perturbed by a small
superficial tensor e,

~ A+ e €12 0
F,=F,+¢e= €921 Ao +e90 0. (A].)
€31 €32 0

To the second order in terms of € , the eigenvalues of 4/ FZjFS are given by

M(ely +€31) + 2M haeroea + (A] — A3)e3,
20N = A3)

Aa(edy +€31) + 2M Aae1oea1 + (A3 — A)e3,
202(A3 = M)

‘1q =X +e11+ +O(‘E|3),

(A.2)

)\g = Aoy + €90 + +O(‘E|3)'

Substituting (A.2) into the surface energy function I'(A,A3) and expanding the resulting

expression to second order, one can express the derivatives % 7 in terms of the derivatives
ikt 51 .

of I' with respect to A] and A3 by identifying the coefficients of ;1€ ;. Inserting these into (4.28)

then yields the surface moduli given in (4.29)—(4.32). Alternatively, these expressions can be

derived using the procedure employed by Ogden (1984) to derive (1.2) and (1.3).
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