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Abstract

Precise stellar parameter measurements are crucial for improving our theoretical un-

derstanding of stellar structure. They help quantify model errors and uncertainties

and provide vital constraints for interpreting observed phenomena, such as radius in-

flation in low-mass stars. To advance stellar theory, particularly for main-sequence

intermediate-mass stars, we need to move beyond simplifications related to complex

processes like mixing, convection, and magnetism.

Spectroscopically double-lined eclipsing binaries offer precise measurements of

conventional properties like mass and radius using geometry-based methods, achieving

model-independent precisions often better than 1%. Asteroseismology constrains stel-

lar interiors, reducing model flexibility and enhancing theory-to-observation compar-

isons. Simultaneously, binarity narrows parameter space and resolves model ambigui-

ties for asteroseismology. These synergies make double-lined eclipsing binary systems

with pulsating components invaluable for advancing stellar theory, while also enabling

investigations of tidal effects on pulsations.

This work presents the analysis of two doubled lined detached eclipsing binary

systems, KIC 9851944 and KIC 4851217, each of which consists of a δ Scuti pulsator and

another intermediate mass star. The masses and radii of the components in each EB are

measured to precisions better than 1% on average. We report the detection of tidally

perturbed pulsations in KIC 9851944 and tidally tilted pulsations, as well as a tertiary

component in KIC 4851217. Pulsation mode identification would make these systems

well-equipped for advancing intermediate-mass stellar theory with asteroseismology.

For low-mass stellar theory, observational constraints are limited due to the rarity

of eclipsing systems featuring two spectroscopically detectable low-mass stars. Increas-

ing instances of M dwarfs transiting brighter F/G dwarfs offer indirect measurements

and calibration opportunities. By utilising TESS data and radial velocity measure-

ments, we also improve the characterization of 12 such binaries in this work, in addition

to two where we present the first measurements of the M dwarf’s properties.
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1 Binary Stars and Asteroseismology

The aim of this chapter is to acquaint the reader with the scientific rationale behind

the analysis of pulsating stars in eclipsing binary systems. To accomplish this, it is

necessary to introduce the two fundamental topics: binary stars and asteroseismol-

ogy. Notably, the study of binary stars extends to encompass considerations within

hierarchical multiple systems. After establishing the key concepts necessary for study

in these fields, a discussion of each field in the context of constraining our theoretical

knowledge of stellar structure and evolution lays the groundwork for understanding the

advantages of their integration.
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1.1 Binary Stars

Multiple and binary systems make up the vast majority of all observed medium and

high mass stellar objects in our Galaxy (Duchêne & Kraus, 2013). Such systems can

be used to measure the properties of distant stars and this allows us to understand

the galaxy beyond our solar neighbourhood. The distribution functions of the orbital

parameters of binary stars feed directly into our understanding of binary formation, so

they also contribute to the development of star formation theories (Duchêne & Kraus,

2013; Moe & Di Stefano, 2017; Murphy, 2018; Shahaf & Mazeh, 2019; Murphy et al.,

2021). Many of the objects in the galaxy are the result of binary evolution (e.g.,

cataclysmic variable stars, black hole binaries, X-ray binaries, etc.) so an accurate

understanding of binary evolution is necessary for a complete understanding of the

galaxy (see Kopal, 1959; Morton, 1960; Paczyński, 1971; Zahn, 1977; Wellstein et al.,

2001; Hurley et al., 2002; Paxton et al., 2015, for theories on binary evolution). In

the context of this work, they are important because we can measure accurate stellar

parameters from them. This section introduces the field of binary stars.

1.1.1 Roche Model and Morphology

1.1.1.1 Roche Model

The components in a binary system might not be spherically symmetric owing to

tides and rotation. For well-detached binaries, the distortions may only consist of

minor tidal bulges so can be approximated as small perturbations and described using

Legendre polynomials (Hilditch, 2001); this approach is adopted to describe the angular

dependence of stellar pulsations in Section 1.2.1.2. The approach is not adequate,

however, for the case of strong tides and extreme distortions, i.e., close binaries (e.g.,

Bell & Malcolm, 1987) or those with evolved components. In general, a realistic model

for the shapes of stars in binaries needs to provide a quantitative description of spheres

as well as tidally distorted ellipsoids (Hilditch, 2001).
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For a rigidly rotating star in hydrostatic equilibrium, surfaces of constant density,

potential, and pressure coincide. Thus, the physical shape of a star follows the shape

of an equipotential surface. This is the basis of the Roche model for approximating

the shapes of stars. The Roche model assumes that the shapes of the components

are determined by the instantaneous force field of two point masses surrounded by

a massless envelope, which implies the assumption that deviations from hydrostatic

equilibrium are damped on time-scales that are negligible compared to the orbital

period (Prša, 2018).

The Kopal potential (Kopal, 1959) is the dimensionless effective potential due

to a star in a binary system assuming a synchronous, aligned, and circular orbit.

Wilson (1979) proposed a corresponding expression assuming, only, that the orbital

and rotation axes are aligned, which follows,

Φ =
1

ρ
+ q

(
1√

δ2 + ρ2 − 2ρλδ
− ρλ

δ2

)
+

1

2
F2(1 + q)ρ2(1 − ν2) (1.1)

where δ is the instantaneous distance to the star in units of the separation of the

components, F = Ωrot/Ωorb is the synchronicity parameter defined as the ratio between

the rotational and orbital angular velocities, q is the mass ratio of the components, and

λ = sin θ cos θ and ν = cos θ are direction cosines with θ the co-latitude of the location

of interest with respect to the rotation axis of the subject star (Prša, 2018). The value

of Φ can be calculated for any location around the two stars, allowing for surfaces

of constant potential in a reference frame rotating with the orbit to be calculated

(Hilditch, 2001).

1.1.1.2 Morphology of Binary Stars

Fig. 1.1 shows lines of constant potential calculated for a system with a mass ratio of

q = 5. The red equipotentials from each star touch at the inner Lagrangian point L1,

and the saddle points at L1 define the Roche lobes. The Roche lobe radius, the distance

of L1 from either point mass, depends on the mass ratio of the components and is larger

for the more massive component (Boffin & Jones, 2019). The Roche lobe radii limit
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Figure 1.1: Lines of constant potential calculated for a system with a mass ratio of
5 from Boffin & Jones (2019). The five Lagrangian points are marked and the more
massive component is on the left.
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the possible sizes of the stars because stellar matter is only gravititationally bound to

them if it is within their Roche lobe. This leads to a morphological classification of

binary stars based on the sizes of the components compared to their Roche lobe radii.

Each component in a detached binary system is within its Roche lobe and their

shapes correspond to circular equipotentials, i.e., the innermost grey equipotentials

from the point masses in Fig. 1.1. The only way mass transfer occurs for these systems

is through stellar wind (Boffin & Jones, 2019). These circular equipotentials become

increasingly distorted as the stellar radius approaches the Roche lobe radius, and a

semi-detached configuration occurs when one of the components fills its Roche lobe,

e.g., at later evolutionary stages. Mass transfer may now proceed via the L1 point

with the shape of the overflowing, i.e., donor, star replicating the shape of its Roche

lobe. When both stars fill their Roche lobes, the two stars are in physical contact via

a narrow neck in the region of L1 and are surrounded by a common envelope (Hilditch,

2001). These are contact binaries and take the shape of the equipotentials between the

inner limiting potential (i.e., the red potential in Fig. 1.1), which contains L1, and the

outer limiting potential that contains the second Lagrangian point L2.

The second, or outer, Lagrangian point L2 is the location through which matter

can escape from the gravitational field of the binary system most easily. The L3 point is

an additional escape route at a zone of higher potential (Hilditch, 2001). The potential

maxima are located at L4 and L5.

1.1.2 Geometry and Orbital Dynamics

1.1.2.1 Relationships Between the Orbits

There are three orbits to consider for the components in a binary system. These are

the two barycentric orbits, each describing the motion of either component about the

centre of mass of the binary system, and the relative orbit. The latter describes the

motion of the components relative to one another by considering the difference between

the equations of motion implied by the gravitational acceleration experienced by either
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body. A detailed overview of these orbits is given in Appendix A.

The relationships between these orbits is important; information that we obtain

about the motion of the objects, i.e, radial velocities (RVs), correspond to how the

objects behave in their barycentric orbits. On the other hand, eclipses depend on

the geometry of the stars in their orbits relative to each other. Hence, the following

relationships provide the necessary links between the different types of observational

data (Hilditch, 2001).

First, consider that angular momentum is the cross product of the distance vector

and linear momentum, so is perpendicular to the orbital plane. If angular momentum

is conserved, it is fixed in this direction with respect to each of the orbits and the

orbits are coplanar. Indeed, conservation of angular momentum is implied for binary

orbits where no forces are acting on the system because the potential is central 1. This

further implies the periods and eccentricities must be equal (Prša, 2018),

P1 = P2 = P, (1.2)

e1 = e2 = e, (1.3)

where P and e are the period and eccentricity of the relative orbit, respectively. The

subscripts 1 and 2 (and hereafter) denote the same values for the barycentric orbit

of the primary and secondary star, respectively. Another consequence of the central

potential is that a1 + a2 = a, where a is the semi-major axis of the orbit. These

considerations, as well as further details for which we refer to Appendix A.1, lead to

the following proportionalities,

a1 : a2 : a = M2 : M1 : (M1 + M2) = ṙ1 : ṙ2 : ṙ, (1.4)

where M is stellar mass and ṙ is the orbital speed.

1The potential is central because the only force acting is along the line connecting the stars. The
force and distance vectors are parallel and the torque acting on the system τ = r×F is zero, i.e., no
rotational acceleration or deceleration; angular momentum is conserved.
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1.1.2.2 Orientation of the Orbit

The orientation of an orbit with respect to the plane of the sky is shown in Fig. 1.2

where the observer is defined to be along the z-axis and the x- and y- axes are in the

plane of the sky, which is indicated by the dashed circle.

The inclination i is the angle measured from the sky plane to the orbital plane

and assumes a value between 0 and π/2. The two points of intersection on the orbital

path are the nodes and are where the apparent speed of the star is maximum; the

motion is directed away from the observer at the ascending node, and toward the

observer at the descending node. The argument of periastron ω is the angle measured

from the ascending node to periastron and assumes a value between 0 and 2π; the

value of ω for the secondary star’s orbit is offset by π radians compared to that of

the primary star’s orbit. The longitude of the ascending node Ω is measured from a

reference direction, e.g., north or the x-axis, to the ascending node counter clockwise,

and defines the orientation of the orbit in space perpendicular to the observer (Prša,

2018; Hilditch, 2001).

The ephemeris of the system describes the periodicity of events, e.g., eclipses or

periastron passage, relative to some reference time T0. The period is then the period

at t = T0, i.e., P0, and if this remains constant, the ephemeris is defined completely

by these two parameters. The time of minimum flux is a suitable choice for T0 for

eclipsing systems because of efficient methods in determining its value (e.g., Kwee &

van Woerden, 1956); the ephemeris is then written as,

Min.I = T0 + P0E (1.5)

where E is an integer counting the amount of successive orbital cycles since T0; this is

a linear ephemeris. A non-linear ephemeris arises if the observed period changes with

time, i.e., when the times between consecutive eclipses, in this case, is not constant.

Such eclipse time variations (ETVs) occur due to, e.g., apsidal motion or tidal effects

(see section 1.1.3.4). Apsidal motion refers to the rotation of the line of apsides and

arises due to gravitational torques in the system that are the result of, e.g., non-
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Figure 1.2: Orientation of the orbit from Shin et al. (2015). Note- the angle ν is
indicated by θ in this figure.
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spherical mass distributions in distorted stars2. ETVs imply a time-dependent value

for ω so accurately accounting for such effects in Eq. 1.5 defines the orientation of the

orbit in time.

This completes our parameters for describing the orbit: P, T0, a, e, i, ω,Ω; these

are the Campbell elements (Mendez et al., 2017; Halbwachs et al., 2023), where a and e

describe the two-dimensional geometry of the ellipse and were introduced in the Section

1.1.2.1. The parameters P and T0 specify in the time dimension, while i, ω, and Ω,

extend the description to three-dimensions.

1.1.2.3 Kepler’s Equation

The Hamiltonion describing the total energy of the orbit (Eq. A.3) can not be solved

analytically for a star’s position as a function of time r(t). Thus it is solved for the

position as a function of the true anomaly ν (see below) instead, leading to the polar

equation of orbit (Eq. A.4) and the necessity of a link between r(ν) and r(t).

Fig. 1.3 shows the auxillary circle of an ellipse. We start by exploiting the geom-

etry of the configuration to define the following quantities: The true anomaly ν is the

angle measured from periastron to the star’s position P about the focal point of the

ellipse, which is denoted by S in Fig. 1.3; the eccentric anomaly E is related to the true

anomaly and is similar to the true anomaly except for a projection of the star’s position

onto the auxillary circle at Q and measured from the origin at O; a time dependence

is explicitly introduced by the mean anomaly M, which is defined as,

M = 2π
t− tper

P
= ω(t− tper), (1.6)

where here, ω is the orbital frequency and tper is the time of periastron passage (Moul-

ton, 1895; Fulton et al., 2018). These three anomalies are used to solve the Kepler

2In Section 1.1.2.1, we assumed spherically symmetric stars so the potential depends only on the
gravitational monopole moment, leading to a central potential with no torques acting in or on the
system (see Appendix A.1). Non-uniform mass distributions, on the other hand, give rise to more
complex gravitational fields that require higher order moments and are not purely radially directed.
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Figure 1.3: Auxillary circle from Prša (2018).
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problem in Appendix A.3. The result is Kepler’s equation,

E − e sinE = ω(t− tper) = M, (1.7)

which describes the complex time dependence of the of the stars position on an elliptical

orbit, allowing to convert from r(ν) to r(t) given the following relationship between E

and ν (Smart & Green, 1977, see Appendix A.3),

tan
E

2
=

√
1 − e

1 + e
tan

ν

2
. (1.8)

1.1.2.4 Radial Velocity

The radial velocity (RV) is the component of the velocity that we can measure through

the Doppler effect, so here we are concerned with stellar motion along our line of site,

i.e., the z-axis in Fig. 1.2. The z-component of the velocity is derived in Appendix A.4

as,

ż =
a1ω sin i

1 − e cosE
(
√

1 − e2 cosω cosE − sinω sinE). (1.9)

Using the trigonometric relations for sinE and cosE defined in Eq. A.24, the radial

component of the velocity relative to the barycentre of the system can be written as,

Vr =
2πa1 sin i

P
√

1 − e2
[e cosω + cos(ω + ν)]. (1.10)

The terms outside the square brackets equate to the velocity semi-amplitude K. We

further generalise by accounting for the motion of the barycentre along the line of site,

the systemic velocity γ, by adding it to Eq. 1.10. This yields our model for the orbital

motion of a star bound in Keplarian motion,

Vr = K[e cosω + cos(ω + ν)] + γ, (1.11)

which is plotted as a function of orbital phase in Fig. 1.4 for varied values of e (top

four panels) and ω (bottom four panels).

These RV curves depend on the orbital parameters via Eq. 1.11. For circular

orbits, e cosω = 0 so Eq. 1.11 is dominated by the variation in cos(ω + ν), where
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Figure 1.4: Top four panels: effect of varying e on RV curves with ω = 90◦ and
K = 120 km s−1. Bottom four panels: effect of varying ω on RV curves with e = 0.2
and K = 120 km s−1.
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ω = π/2 = constant for circular orbits and ν = E = M, so the RV curve is sinu-

soidal. However, in general, the time dependence of the true anomaly is complicated,

as demonstrated in Section 1.1.2.3, and this is reflected in the RV curves of eccentric

binaries (see Fig. 1.4). Furthermore, for e > 0, ω dictates what phases correspond to

maxima and minima of the RV curve because ω dictates the location of the ascending

and descending nodes relative to periastron passage, while the phase is calculated rel-

ative to the time of periastron passage in the dynamical analysis (i.e., the analysis of

the components’ barycentric motion).

1.1.2.5 Phase

The phase ϕ of the binary system specifies a particular position within the orbit, or the

fraction of the current orbital cycle that has progressed, and assumes a value between

0 and 1. Phase is a linear function of the mean anomaly such that,

M = 2πϕ, (1.12)

so we can infer from Eq. 1.6 that,

ϕ =
t− tper

P
mod 1, (1.13)

where we have taken the modulus to ensure 0 < ϕ < 1. Thus, for the dynamical

analysis, the zero-phase corresponds to the time of periastron passage tper.

1.1.3 Multiple Systems

1.1.3.1 Spectroscopic Binaries

Measuring the RV curve for a binary system requires time-series RV measurements.

RV measurements can be obtained for binary stars showing well resolved spectral lines

because the wavelength location of spectral lines oscillates in correspondence to or-

bital motion via the Doppler effect; these are spectroscopic binaries. Double lined

spectroscopic binaries (SB2s) are those where the motion of both components can be
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Figure 1.5: The spectroscopic orbits of 10 (labelled) SB2 binaries observed with the SO-
PHIE spectrograph at the Haute-Provence observatory; the circles refer to the primary
component and the triangles to the secondary. Figure from the study by Halbwachs
et al. (2020).

detected spectroscopically (e.g., Pickering, 1890; Halbwachs et al., 2020; Kounkel et al.,

2021) and single lined spectroscopic binaries (SB1s) are those where only the brighter

component is detected (e.g., Fernandez et al., 2009; Zhou et al., 2014).

For SB2s, the RVs for both components can be observed and then fitted via
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Eq. 1.11 (with the help of Eq. 1.7) to obtain estimates for K1, K2, tper, P , e and ω

(e.g., Halbwachs et al., 2020, see Fig. 1.5). Rearranging the expressions for K1,2 (see

Eq. 1.9 and Eq. 1.11) leads to expressions for the semi-major axes of the two barycentric

orbits,

a1 =
P
√

1 − e2

2π sin i
K1; a2 =

P
√

1 − e2

2π sin i
K2. (1.14)

Using Eq. 1.4,

q =
M2

M1

=
a1
a2

=
K1

K2

, (1.15)

so the mass ratio q can be measured directly for SB2s; q is important for morphological

classification purposes as well as defining the shapes of stars since it appears in the

Roche potential, i.e., Eq. 1.1. We can also write,

a = a1 + a2 =
P
√

1 − e2

2π sin i
(K1 + K2), (1.16)

so the separation of the components can be estimated if an independent measurement

for i can be obtained.

Applying Kepler’s third law to the relative orbit gives (see Appendix A.1 for the

mass terms associated to each orbit),

4π2a3

P 2
= G(M1 + M2), (1.17)

and using a = a1 + a2 with the relations in Eq. 1.15, we can express the masses of the

components in terms of their velocity semi-amplitudes;

M1 sin3 i =
P (1 − e2)3/2

2πG
(K1 + K2)

2K2,

M2 sin3 i =
P (1 − e2)3/2

2πG
(K1 + K2)

2K1.

(1.18)

As is the case for a, these are minimum estimations for the masses of the components

because of the sin i dependence. For SB2s, absolute measurements for the masses can

be obtained via Eq. 1.18 if i can be measured from, e.g., eclipses.

For SB1 systems, we can only measure the RV curve for the brighter component

because the spectral lines of the other star are not present. The velocity semi-amplitude
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of the fainter component is not accessible, but we can still measure K1, tper, P, ω and e.

From these quantities, we can derive the minimum estimation for the semi-major axis

of the primary star’s barycentric orbit using Eq. 1.14 as well as the mass function,

f(M) =
P (1 − e2)3/2

2πG
K3

1 =
M3

2 sin3 i

(M1 + M2)2
, (1.19)

which is useful for SB1 systems because it can provide a minimum estimation for the

mass of the secondary star.

1.1.3.2 Eclipsing Binaries

At superior and inferior conjunction, one star passes in front of the other and the two

bodies are aligned with Earth. If the orbital parameters allow for it, one star will

partially or totally block the light emitted from the other star. This is an eclipse.

When the smaller body passes in front of the larger body, only a fraction of the light

from the larger body is blocked, and this is described as a transit or annular eclipse.

The opposite case, when a larger body completely shields the light from the smaller

body, is described as an occultation or total eclipse. Depending on the inclination, it

may be the case that the bodies only partially pass in front of one another; these are

partial eclipses.

Time-series photometric measurements appropriately sampled over the orbital

period allow us to observe the variation of the brightness of the system due to eclipses

in a light curve. Fig. 1.6 shows four example binary star light curves measured by the

WIRE satellite showing eclipses of different shapes for four different binary systems.

The deeper eclipse is the primary eclipse and the shallower eclipse is the secondary

eclipse. Therefore, the component that contributes most to the system flux is eclipsed

during primary eclipse.

To determine whether one star will pass in front the other requires us to transform

to the plane of the sky, contrarily to when we transformed to the line of sight to calculate

RVs in Section 1.1.2.4. The plane of sky transformations for circular orbits from Prša
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Figure 1.6: The light curves of four EBs measured by the WIRE satellite presented by
Southworth (2021).
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(2018) are,

x = a[cos Ω cos(ω + ν) − sin Ω cos i sin(ω + ν)],

y = a[sin Ω cos(ω + ν) + cos Ω cos i sin(ω + ν)],
(1.20)

and the projected separation of the stars when one star is at the origin of the configu-

ration is,

∆2 = x2 + y2 = a2[cos2(ω + ν) + sin2(ω + ν) cos2 i]. (1.21)

The condition for eclipses is then,

no eclipse : R1 + R2 < ∆,

partial eclipse : R1 −R2 < ∆ < R1 + R2,

total eclipse : ∆ < R1 −R2.

(1.22)

The first contact point T1, with corresponding phase ϕ = ϕ1, occurs when ∆ = R1+R2.

This is the instance when the eclipsing star begins to pass in front of the other star in

the plane of the sky, and the reduction in the amount of light due to the eclipse is zero.

The second contact point T2 (ϕ = ϕ2) occurs when ∆ = R1 −R2 and is the beginning

of totality, i.e., a total eclipse. The end of totality occurs at T3 (ϕ = ϕ3) and the end of

the eclipse occurs at T4(ϕ = ϕ4). Partial eclipses do not have a second or third contact

point so they contain less information than total eclipses.

Modelling the shapes of eclipses allows us to derive information about binary

systems because the shapes of eclipses depend on the geometry of the components in

their relative orbits as well as their sizes. The occurrence of an eclipse depends on ∆,

which in turn depends on the phase and inclination i. For any such of these values

that allows for an eclipse, the light lost during a transit, assuming stars are uniformly

illuminated spheres, is proportional to the fraction of the larger star that is blocked,

i.e., on the ratio of the stellar radii, k = R2/R1 = r2/r1, where we have assumed that

star 1 (i.e., the primary star) is larger3 and introduced the fractional radii,

r1 =
R1

a
, r2 =

R2

a
. (1.23)

3In some cases, the larger star is cooler due to, e.g., stellar evolution, in which case the light lost
during the transit is proportional to the reciprocal of k assuming the convention that the primary
(i.e., star 1) is always the hotter star, and this would also modify Eq. 1.24.
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The fractional radii directly influence the occurrence, duration and shapes of eclipses,

and are convenient quantities because of the degeneracy between absolute radius and

separation; eclipses depend on the sizes of the stars as well as their separation (see

Eq. 1.21 and Eq. 1.22). The fraction of light we receive during an occultation focc is

the fraction of light emitted from the larger star. It follows that the fraction of light

emitted from the other star is 1−focc, which allows us to express the surface brightness

ratio as,

J =
k2(1 − focc)

focc
. (1.24)

Information on the orbital parameters is also contained in the timings of eclipses be-

cause the relative timing between primary and secondary eclipse depends on e cosω, i.e.,

the tangential component of eccentricity. Additionally, the ratio of eclipse durations

is tied to the radial component of eccentricity e sinω (Prša, 2018). These parameters,

known as the Poincaré elements, complete our list of eclipse parameters for uniformly

illuminated spheres: k, r1, r2, i, J , e cosω, and e sinω.

Complications in the derivation of the light lost during eclipses arise due to radia-

tive effects, such as limb darkening (see Section 1.1.4). Because of this, calculations of

the light lost during eclipses require substantial mathematical investigations to achieve

analytical solutions (e.g., Kopal, 1959). The complications can also be mitigated via

sophisticated numerical approaches, e.g., Prša et al. (2016), which allows for a full

reconstruction of the Roche geometry of the components. Most modern techniques use

numerical methods applied to discretised discs or Roche surfaces.

1.1.3.3 Eclipsing Spectroscopic Binaries

The occurrence of eclipses means we can account for the sin i dependence in the ex-

pressions for the masses and separation of the components (see Section 1.1.3.1). The

absolute radii then follow from multiplication of the separation with estimations for

the fractional radii from the eclipse model. Densities and surface gravities are then

calculable. Given the parallax is known (from, e.g., Gaia; Gaia Collaboration 2021

or Hipparcos; Perryman et al. 1997), the effective temperature Teff can be measured
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directly (Smalley, 2005). To go further and derive other parameters usually relies on

indirect methods, e.g., modelling each component’s atmosphere.

The surface gravity of the unseen secondary component is the only fundamental

parameter that can be derived directly for SB1 systems, as demonstrated by South-

worth et al. (2007), using,

g2 =
2π

P

√
1 − e2

r22 sin i
. (1.25)

The density of the primary star can also be estimated using,

ρ1 ≈
3π

GP 2r31
, (1.26)

but this requires the assumption that M2 ≪ M1. For SB1 systems, the rest of the

physical properties follow from indirect methods which rely on the combination of the

primary RV curve and eclipse model. One approach is to establish the properties of

the primary component via isochrone fitting, leading to direct but model-dependent

measurements of the properties of the unseen companion. Another is to assume that

the system is rotationally synchronised. A third is to use empirical relations for solar-

type stars to specify the properties of the primary component without using stellar

theory (Enoch et al., 2010; Southworth, 2010; Hartman et al., 2015).

1.1.3.4 Hierarchichal Systems

The Kepler mission allowed us to discover that ∼ 20% of binary systems show evidence

of a tertiary component (Conroy et al., 2014; Prša, 2018). These are hierarchical triple

systems within which a third star is gravitationally bound in orbit with the CM of the

inner binary; we call this the outer orbit. The outer orbit introduces a light travel

time effect (LTTE), or a Roemer Delay (Rappaport et al., 2013; Borkovits, 2022),

causing ETVs, which were discussed in Section 1.2. ETVs are studied by calculating

the residuals of the observed eclipse times against a linear ephemeris and displayed in

an O−C diagram (e.g., Rappaport et al., 2013, see Fig. 1.7).

To distinguish between ETVs caused by a third body and apsidal motion, one can

compare the phase difference between the ETVs of the primary and secondary eclipses.
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Figure 1.7: O - C data and model fits for nine systems by Rappaport et al. (2013).
The red curves are the total of the ETV signature. Dark blue is the contribution to the
model by the LTTE. The light green curves represent the contribution of the physical
delay.
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For ETVs due to an outer orbit, the primary and secondary signals are in phase,

while for apsidal motion, the two signals are out of phase by π radians. Mass-transfer

is another potential cause of the ETVs (Conroy et al., 2014); a considerable time-

span of observations, longer than the outer orbital period, is required to discriminate

between the periodic ETV due to a third component and the parabolic signals that are

characteristic of mass-transfer.

The expression for the LTTE due to an EB in its outer orbit follows,

R(t) = Altte

[
(1 − e23)

1/2 sinE3 cosω3 + (cosE3 − e3) sinω3

]
, (1.27)

where E3, e3, and ω3, are the eccentric anomaly, eccentricity and argument of perias-

tron, respectively, that correspond to the outer orbit and,

Altte =
G1/3

c(2π)2/3
P

2/3
3

[
M3 sin iout

M
2/3
tot

]
, (1.28)

is the amplitude of the time delay, where P3 and iout are the period and inclination of

the outer orbit, M3 is the mass of the tertiary component, and Mtot is the total mass

of the inner pair plus tertiary component (Rappaport et al., 2013). Note, the term in

the square brackets is the cube root of the mass function for the outer orbit.

Similarly to the derivation of the mass function from the dynamical considerations

of SB1 systems, Eq. 1.27 only considers one of the barycentric orbits; the outer orbit.

The mass term for this barycentric orbit is GM3
3/(MEB + M3)

2 (see Appendix A.2) so

from Kepler’s third law we can express the semi-major axis of the outer orbit as,

aout =

(
GMP 2

3

4π2

)1/3

=
G1/3

(2π)2/3
P

2/3
3

[
M3

M
2/3
tot

]
, (1.29)

and therefore,

Altte = aout sin iout/c. (1.30)

Plugging Eq. 1.30 into Eq. 1.27, multiplying by c (i.e., convert the time delay into a

displacement), and accounting for the inclination, i.e.,

R(t)c

sin iout
= aout

[
(1 − e23)

1/2 sinE3 cosω3 + (cosE3 − e3) sinω3

]
, (1.31)
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gives the z-component of the displacement of the CM of the inner binary. Thus, dif-

ferentiating with respect to time retrieves Eq. 1.9, i.e., the z-component of the velocity

(see Section 1.1.2.4). Since Eq. 1.31 is periodic with the outer orbit, this implies that

the systemic velocity of the EB is not constant, i.e., γ = γ(t).

Previously, we assumed a constant value for γ but in the presence of a third

body it describes the barycentric motion of the EB’s CM. The result is that the RV

curve for each component of the inner EB is modelled as the superposition of its inner

barycentric orbit and the outer barycentric orbit, i.e.,

Vr = K1,2[ein cosωin + cos(ωin + νin)] + γin + γout, (1.32)

where,

γin = K3[eout cosωout + cos(ωout + νout)], (1.33)

and γout is the constant radial velocity of the entire triple system. Fig. 1.8 shows how

the RV curve of an inner binary component is influenced by the outer orbit for different

values of P3 (row 1), P1 (row 2), and e3 (row 3). These models were evaluated over the

full period of the outer orbit so they reflect the full amplitude of the centre of mass

velocity variation over one outer orbital cycle.

Another third body effect is the physical delay, which describes actual4 pertur-

bations to the binary period, making it longer (Rappaport et al., 2013). If the outer

orbit is eccentric or inclined, the magnitude of this perturbation changes through the

orbit due to the changing tidal interaction. This leads to an additional contribution to

the ETV curve which should be accounted for in the O-C formula if the effect is not

negligible; the physical delay becomes significant for short outer orbital periods and

long inner binary periods (Rappaport et al., 2013). Finally, we note that the gravita-

tional interaction between the inner EB and the third star can result in apsidal motion

of the inner pair’s orbit. Therefore, accurate modelling of ETV curves may, in some

cases, require the inclusion of multiple contributing effects (e.g., Fig. 1.7).

4The observed variations in period due to the LTTE are apparent because they only arise due to
changes in the amount of time that it takes for the light to reach the telescope over the outer orbital
period.
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Figure 1.8: Model RV curves for the component of a binary system where the CM of
the binary system is in Keplerian motion due to the influence of a third companion.
RV curves are shown corresponding to different outer orbital periods (top row), inner
orbital period (middle), and outer orbital eccentricities (bottom row). The RV curves
were evaluated over the outer orbital period in all cases so capture the full amplitude
of the variation in the systemic velocity over the outer orbital period.
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The study of triple star systems gives new insights into the physics of EB’s (Con-

roy et al., 2014). The orbital architecture and masses of the constituents can contribute

to our understanding of processes that form multiple systems (Rappaport et al., 2013);

the general interpretation for the formation of close binaries is that they become hard-

ened over time through interactions with a third body (Conroy et al., 2014). It is

noted that it is also possible for systems to have more than three components, and

these higher-order systems have been observed.

1.1.4 Radiative Phenomena

An understanding of stellar radiation is essential for astrophysical research, in general,

as well as for the following discussions on radiative effects associated with binary stars.

Thus, a brief overview is provided in Appendix B. Such effects are why the light

emitted over the surface of a star is not uniform and these are important considerations

for predicting the shapes of eclipses. There is a temporal dependence on the visibility

of individual surface elements so the flux distribution over the surface of the star has

to be known in detail to make accurate predictions of the light lost during an eclipse.

1.1.4.1 Limb Darkening

The photosphere is the layer of the stellar atmosphere where photons scatter on average

less than once, thus allowing them to escape; these are the photons that we measure.

In the Eddington approximation, where the absorption coefficient κλ is independent of

wavelength so that κλ = κ (a so-called grey atmosphere), this occurs when the optical

depth τ = 2/3 (Gray, 2005).

The geometrical depth r that corresponds to τ = 2/3 is different for different

values of θ (see Fig. B.1), where cos θ determines the projection of the path traversed

l by a photon in order to emerge along our line of site relative to the radial direction.

The result is that photons originate from shallower geometrical depths for larger values

of θ. Thus, we see deeper into the star at its centre, where l is parallel to the surface
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Figure 1.9: Variation of the linear LD coefficient with Teff for values calculated by
Claret & Bloemen (2011) for the Kepler band, as well as UVBRIJHK of the Johnson-
Cousins photometric system.
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normal (θ = 0), than at the limb, where l is almost perpendicular to it (θ ∼ π/2). This

leads to a phenomenon called limb darkening (LD).

The resulting flux distribution Fλ across the stellar surface due to LD affects the

shapes of eclipses and depends on the strength of the effect. Introducing the variable

µ = cos θ, we may write,

Fλ = 2π

∫ 0

1

Iλ(µ)µ(−dµ) = 2πIλ,norm

∫ 1

0

µL(µ)dµ, (1.34)

where L(µ) = Iλ(µ)/Iλ,norm is the LD function (Prša, 2018). The flux is now described

as the normal emergent intensity Iλ,norm scaled by
∫ 1

0
µL(µ)dµ over the stellar disc.

Various models have been proposed for L(µ) to account for its effect in modelling

eclipses. Examples are the linear, quadratic, and power 2 laws. Theoretical predic-

tions are available for the associated coefficients that determine the strength of LD in

different photometric passbands, e.g., Claret & Bloemen (2011) and Claret (2017) for

Kepler and TESS, respectively, but they can also be included as free parameters.

Since the specific intensity, and thus flux, is calculated by solving the radiative

transfer equation (Eq. B.4), e.g., at the optical depth corresponding to the emergent

photons (i.e, τ = 2/3 in the Eddington approximation), the extent by which a star

is affected by LD depends on the opacity because τ ∝ κλ; this is why theoretical LD

coefficients are calculated in specified photometric passbands. The LD coefficients thus

vary with Teff and wavelength λ via the opacity dependence.

Fig. 1.9 shows how the linear LD coefficient increases with decreasing Teff for

values calculated by Claret & Bloemen (2011) for the Kepler band, as well as UVBRI-

JHK of the Johnson-Cousins photometric system (see Section 2.1.1). Fig. 1.10 presents

observations corresponding to 10 spectro-photometric passbands of the exoplanet tran-

siting system HD 209458 from Knutson et al. (2007); the strength of LD increases at

shorter wavelengths, i.e, bluer in the figure, as reflected by the shapes of the eclipses.
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Figure 1.10: Observations corresponding to 10 spectro-photometric passbands of the
exoplanet transiting system HD 209458 from Knutson et al. (2007). The passbands
correspond to 10 subdivisions of HST STIS spectra equally spaced between 2090 –
10300 Å; the corresponding transits are vertically shifted to higher values for redder
wavelengths.
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1.1.4.2 Gravity Darkening

Tidal forces (due to binarity) and centrifugal forces (due to rotation) deform the shapes

of stars from being spherical and this leads to a surface gravity distribution. Since stars

are described to be in hydrostatic equilibrium (see Appendix C.3), the atmospheric

pressure is relaxed in regions of lower surface gravity along with temperature. The

resulting flux distribution is called gravity darkening. It was shown by von Zeipel

(1924) that,

Fλ = −16T 3

3κ̄

dT

dΩ
gβ, (1.35)

where κ̄ is the Rosseland mean opacity (see Appendix C.6), ρ is the density of the gas,

g is the local acceleration due to gravity, and β is the gravity darkening coefficient.

The value of β depends on the dominant energy transport mechanism. It was

shown by von Zeipel (1924) that β = 1 for radiative envelopes (Teff ≳ 8000) while

Kippenhahn (1977) presented a generalised formalism for the calculation, and Lucy

(1967) computed an average value of β = 0.32 for purely convective envelopes (Teff ≲

5000). For stars where convective and radiative energy transport mechanisms play

significant roles, accurate theoretical predictions were made by Claret (2000) and these

were made based on the formalism of Claret (1999).

The left panel of Fig. 1.11 shows the gravity darkened surface brightness distri-

bution of the host star to the transiting planet KELT 9b from a study by Ahlers et al.

(2020). The star is brighter at the poles and cooler at the equator and this is reflected

by the shape of the planet’s transit shown in the right of the figure; there is clear asym-

metry around the time of minimum light because at the time of first contact, the planet

passes over the brighter regions of the star near the poles, and then passes over dimmer

regions near the equator. The inadequacy of the transit model that does not account

for gravity darkening (red line in the middle right panel of Fig. 1.11 with residuals in

the upper right panel) is obvious. The blue line represents a model that directly fits

for the gravity darkening exponents, yielding β = 0.137 ± 0.014, and a much better fit

to the data (initial guesses for β were taken from Espinosa Lara & Rieutord 2011).
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Figure 1.11: The surface brightness distribution over the surface of the rotating host
of the transiting planet KELT 9b, along with the orientation of the planet’s orbit with
respect to the rotation axis of the host, is shown on the left. The right shows the shape
of the resulting transit and a light curve fit to the data assuming no gravity darkening
(red line) and accounting for gravity darkening (blue line). Figure taken from Ahlers
et al. (2020).
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1.1.4.3 Reflection Effect

A fraction of the flux radiated from one of the components in a binary system will be

intersected by the other component and vice-versa, causing mutual surface irradiation.

This becomes important when the radii of the components are more than 15% – 20% of

the orbital separation (Prša, 2018). A part of the irradiating flux will be redistributed

locally or globally causing heating or having a negligible effect, respectfully, while the

other part is reradiated. The fraction of irradiated flux that is reradiated is determined

by the bolometric albedo A of the irradiated star. Both reradiation and redistribution

can contribute to the so-called reflection effect.

Wilson (1990) developed a rigorous treatment of the effect in binary stars and

Prša (2018) provide a useful explanation, accounting for irradiation of a single surface

element on the irradiated star due to all contributing surface elements on the radiating

star. The reflection factors5 R1,2 are used to recalculate the Teffs of surface elements

accounting for both intrinsic and reflected energy as (Prša, 2018),

Teff,new = R1/4Teff,old. (1.36)

If the fraction of irradiated flux that is absorbed is redistributed locally, as opposed to

globally, we may expect an additional increase of the temperature in the intersecting

region, as first worked out by Prša et al. (2016). Simplified treatments for the effects

of reflection are discussed in e.g., Binnendijk (1960); Kopal (1966); Taylor (2006).

The reflection effect manifests in a light curve as a periodic signal in the baseline

flux with maxima occurring at phases where the irradiated surface elements correspond

to those aligned with the observer’s field of view, e.g., phases of conjunction (see

Fig. 1.12). In cases where reflection at both components is strong, the resulting signal

is the superposition of the signals associated with each star, which are out of phase

by π radians. The periods of the reflection effects associated with each component are

equivalent to the orbital period.

5The reflection factors R1,2 are the ratio of the total emanating flux to that which is intrinsic to
the star.
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Figure 1.12: The PDCSAP flux light curve (see Section 2.1.3) of the post-common-
envelope EB EPIC 216747137 from the study by Silvotti et al. (2020), observed by
Kepler during its secondary K2 phase. This system demonstrates a strong reflection
effect on the secondary component; the brightness of the system increases dramatically
at secondary eclipse.
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1.1.4.4 Ellipsoidal Effect

The ellipsoidal effect denotes to the fluctuation in the brightness of a binary system

arising from the tidal distortion of the stars along the tidal axis. The resulting ellip-

soidal shape becomes evident from our perspective at phases of quadrature (between

eclipses); during eclipse, the tidal axis aligns with the line of site so the components

appear to maintain spherical symmetry.

Thus, the specific intensity is integrated over a larger projected area ∆A during

phases of quadrature and the system appears brighter. The associated variation in the

baseline flux must have a period that is half the orbital period because there are two

phases of quadrature in one orbital cycle. The amplitude must depend on the mass

ratio and separation of the components since these quantities have a significant effect

on the stellar shapes via Eq. 1.1, the Roche potential.

The fractional change in the brightness of one of the components (star 1) due to

the ellipsoidal effect is given by Penoyre & Stone (2019) as,

∆l

l1
≈ −12

16

M1

M2

(R2

a

)33 sin2 i cos2M− 1

(1 − e cosE)3
. (1.37)

The total effect in a light curve is then the superposition of the brightening of both

components. The ellipsoidal effect is observed for the Kepler EBs KIC 9851944 and

KIC 4851217 in Fig. 3.2 and Fig. 4.1, respectively.

1.1.4.5 Spots

Patches of reduced brightness – aka, star spots – are expected on the surfaces of

stars with convective envelopes because they are associated with magnetism and the

magnetic field is generated through the interaction between convection and rotation

via shell dynamo action. Star spots introduce an additional brightness modulation that

overlays the light curve. This modulation occurs periodically, determined by the star’s

rotation period, while the amplitude is dictated by the relative darkness of the spot in

comparison to the photosphere. For a review of star spots, see Strassmeier (2009).
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Describing star spots involves parameters such as their location (colatitude θ,

longitude ϕ), radius rspot, and the temperature factor τsp which characterises the tem-

perature contrast between the spot and the nearby photosphere (Prša, 2018). The cu-

mulative effect of multiple spots, rotating across various sections of the limb-darkened

stellar disc, produces complex pseudo-periodic signals. These signals pose consider-

able challenges for precise integration into a light curve model, a challenge further

compounded by their temporal evolution (Maxted, 2018). Consequently, it might be

prudent to consider their exclusion, i.e., detrend spot signatures prior to modelling.

While star spots are relatively uncommon in intermediate mass stars (e.g., δ Scuti

and γ Doradus stars) due to a significant reduction in the extent of the convection zone

for Teff ≳ 7000 K, resulting in greater depth (see Fig. C.1), they feature prominently

in the light curves of binary systems hosting low-mass stars.

1.1.4.6 Interstellar Extinction

Interstellar extinction is an effect that is extrinsic to both the stars and the binary

system. It is associated with the wavelength-dependent attenuation of radiation by dust

in the interstellar medium before reaching the observer. Since shorter wavelengths are

affected more than longer wavelengths, interstellar extinction is also termed reddening.

Reddening is quantified by the colour excess which is defined as the difference

between the observed colour index and that predicted by the star’s spectral type,

E(B − V ) = (B − V )observed − (B − V )intrinsic. (1.38)

The slope with wavelength is given by the ratio of total visual to selective extinction,

RV =
AV

AB − AV

=
AV

E(B − V )
, (1.39)

within which, AV and AB are extinction coefficients in the B and V passbands, re-

spectfully (Draine, 2003; Gontcharov, 2016; Prša, 2018).

The extinction due to molecules in our atmosphere is proportional to the recip-

rocal of the fourth power of wavelength, i.e., A(λ) ∝ λ−4, which results in RV ∼ 1.2;
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for the interstellar medium, RV ≈ 3.1 (Schlafly & Finkbeiner, 2011). Thus, given a

value for E(B − V ), one can derive the corresponding AV . Dust maps, e.g., Lallement

et al. (2018), offer a means to assess E(B − V ) based on an object’s position and

distance. Alternative approaches involve conversions from photometric systems (e.g.,

Kahraman Aliçavuş et al., 2017) or using the equivalent width of the Na D2 interstellar

line (Munari & Zwitter, 1997).

Reddening can result in data that does not accurately represent the intended

target. For instance, it distorts spectral energy distributions and photometric indices,

which in turn affects the determination of atmospheric parameters (Kahraman Aliçavuş

et al., 2017). The observed dimming due to reddening can result in underestimated

intrinsic luminosities of stars, consequently affecting distance estimations. Therefore,

achieving precise astronomical analyses necessitates meticulous consideration of red-

dening effects.

1.1.5 Constraining Models

The combination of eclipses and RV curves allows for absolute measurements of the

masses and radii of the components in binaries (see Section 1.1.3.3). These measure-

ments are often obtained to a precision better than 1% (e.g., Clausen et al., 2008;

Southworth, 2013, 2015). Since the methods employed to derive these measurements

rely heavily on geometry and orbital mechanics (see Sections 1.1.2 and 1.1.3), they

remain largely model-independent6, These measurements serve as valuable calibration

points for stellar evolution models (Lee et al., 2021).

For this reason, Double Lined EBs (DLEBs) are routinely used to critically assess

stellar evolution theory (e.g., Pols et al., 1997; Pourbaix, 2000; Lastennet & Valls-

Gabaud, 2002; de Mink et al., 2007; Stancliffe et al., 2015; del Burgo & Allende Prieto,

2018; Johnston et al., 2019b; Murphy et al., 2021). This is the most important of

6The properties of EBs can be derived using theoretical LD and gravity darkening coefficients, in
which case the measurements are slightly model dependent
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their applications in the context of this work. Before discussing it, we review stellar

evolution and refer to Appendix C for an overview of stellar structure.

1.1.5.1 Stellar Evolution

The macro- and micro-physics (see Appendix C) govern structural changes leading to

stellar evolution for which this section provides a brief overview; Fig. 1.13 shows the

evolution of a 2 M⊙ star calculated by MIST (MESA Isochrones and Stellar Tracks;

Dotter, 2016) using the MESA (Modules for Expreriment in Stellar Astrophysics; Pax-

ton et al., 2011, 2013, 2015) code. Uncertainties, particularly at later evolutionary

phases, means that this is an on-going field of research, hence the continued efforts to

measure the properties stars. Nevertheless, the following description is accurate to the

level of detail intended.

Fully convective protostars condense out of collapsing interstellar clouds and

contract until hydro-static equilibrium. This is the pre-main sequence (pre-MS),

which is highlighted in blue in Fig. 1.13. Contraction proceeds as the star descends

the Hayashi track and the internal temperature gradually increases, the convection

zone begins to recede from the centre and then the star radiatively contracts along

the Henyey track. The ignition of hydrogen burning into helium via the p-p chain

(0.08 M⊙ ≲ M ≲ 1.15 M⊙) or CNO cycle (M ≳ 1.15 M⊙) marks the beginning of the

main-sequence (MS) phase, which is highlighted in black in Fig.1.13; brown dwarfs

(M < 0.08 M⊙) do not attain such core temperatures.

The MS lasts ∼ 90% of a stars lifetime, during which the mean molecular weight

in its core increases (He>H). This implies a decrease in pressure (Eq. C.17) and con-

sequently, the core contracts coupled with an increase in temperature7. This increases

the nuclear energy generation rate, which in turn raises the pressure in the outer layers;

this is why the radius increases over the MS phase in Fig. 1.13. The star continues to

fuse H to He until it reaches the terminal age main sequence (TAMS) and H in its core

7By the Virial theorem, for a star in hydrostatic equilibrium, half of the released potential energy
due to gravitational collapse is radiated away while the other half is transferred into thermal energy.
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Figure 1.13: Evolution of a 2 M⊙ star from the pre-MS to the post-AGB phase. The
evolutionary track was calculated using the MESA code by MIST (Paxton et al., 2011,
2013, 2015; Dotter, 2016; Choi et al., 2016; Paxton et al., 2019) and the data was used
here to generate this figure.
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has been depleted. The result is an inert, isothermal core of He where no nuclear fusion

takes place. However, hydrogen burning may proceed in a shell around the core. This

places the star on the sub-giant branch (SGB), which is the beginning of the phase

highlighted in red in Fig. 1.13.

Helium is deposited onto the core during this phase, increasing its mass, and

causing it to collapse on a thermal time-scale when its mass reaches the Schönberg-

Chandrasekhar limit. The accompanying rapid increase in temperature and shell burn-

ing causes the outer layers to expand considerably. Since the radiation can not escape

quickly due to opacity, the luminosity (L = 4πR2σT 4) remains constant and the tem-

perature in the envelope drops in response to the expansion. These processes shift the

star toward the ’dip’ on the SGB (see Fig. 1.13), which is known as the Hertzsprung

gap because few stars are observed making this rapid transition.

The Hyashi forbidden zone8 prevents the envelope from cooling below ∼ 3000 K,

at which point the luminosity must increase with the expansion. The star climbs

near vertically along the red-giant branch (RGB) to become a red giant. The RGB

is highlighted in red together with the SGB and Hertzsprung gap in Fig. 1.13. The

inset in Fig. 1.13 magnifies the region where the star ascends the RGB. The ascension

can be seen to be near parallel with the Hayashi track on the pre-MS, as well as the

descension onto the horizontal branch, or the core helium burning (CHeB) phase, which

is highlighted in green.

For stars with masses of 2.3 ≲ M ≲ 9 M⊙, the transition onto the horizontal

branch happens smoothly when the required temperatures to fuse helium via the triple-

α reaction are attained during core collapse, effectively halting it. For stars with masses

of 0.5 ≤ M ≤ 2.3 M⊙, the core continues to collapse until it becomes degenerate.

Degeneracy pressure prevents further collapse and the conditions to ignite the triple-α

reaction are attained from the continued deposition of helium from the surrounding

shell. Due to the insensitivity of degeneracy pressure to temperature, the onset of

8The Hyashi forbidden zone arises because of the implied transparency of the envelope to radiation
by the neutralisation of hydrogen at ∼ 3000K.
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helium burning results in a helium flash, which is a runaway of thermal reactions that

lifts the degeneracy so the ideal gas pressure sets back in. For both mass regimes,

the ignition of helium causes the core to expand, cool, and reach an equilibrium. In

response, the envelope contracts, increases in temperature, and the star settles on the

horizontal branch, where hydrogen shell burning remains active.

Similar processes occur when horizontal branch stars exhaust the helium content

in their cores. The stars burn helium in a shell surrounding the inert core, except

with an additional hydrogen burning shell that surrounds the helium burning shell.

The contraction of the core implies another extreme expansion, so the star ascends the

Asymptotic Giant Branch (AGB), which is highlighted in purple in Fig. 1.13. The enve-

lope of AGB stars is loosely bound at this stage. Hydrogen shell burning is eventually

exhausted and the outer layers are expelled for AGB stars with M ≲ 9 M⊙, exposing

the degenerate core as it traverses the post-AGB branch in Fig. 1.13. The result is a

white dwarf star supported by electron degeneracy pressure.

Stars with M ≳ 9 M⊙ undergo subsequent shell burning stages and reach central

temperatures high enough to fuse heavier elements up to iron; no energy can be gained

beyond iron. A degenerate iron core develops until electron degeneracy pressure is

unable to support its weight, resulting in core collapse and a supernovae explosion.

Neutron degeneracy pressure prevents further collapse when the core reaches nuclear

densities if the mass of the core is below ∼ 3 M⊙; the result is a neutron star. For

core masses exceeding this (uncertain) limit, core collapse continues, producing a black

hole.

The evolution of a star depends on its mass, and to a lesser extent, on the

initial chemical composition (Aerts et al., 2010). Fig. 1.14 presents 16 MIST evolution

tracks calculated for masses between 0.3-36 M⊙ that cover the MS, SGB, Hertzsprung

gap and RGB assuming solar metallicity. These calculations offer model predictions

for the properties of stars but their accuracy depends on our understanding of the

macro- and micro-physics that govern structural changes throughout the evolutionary

stages. Observational constraints are necessary for testing the accuracy of such model

predictions.
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1.1.5.2 Observational Constraints from EBs

A sophisticated stellar model attempts to describe the detailed structure of a star and

its evolution, and this requires higher degrees of complexity than is implied by the sim-

plifications imposed on the standard stellar models described in Appendix C.3. Many

theories have been published (e.g., Yonsei-Yale, Teramo, Dartmouth, PARSEC, MESA,

Demarque et al., 2004; Pietrinferni et al., 2004; Dotter et al., 2008; Bressan et al., 2012;

Nguyen et al., 2022; Paxton et al., 2019), but they still suffer from shortcomings due

to relying on incomplete or over-simplified physics to account for complicated phenom-

ena associated with, e.g., mixing; rotation; convection; magnetism; radiative opacities;

degeneracies; nuclear reaction rates (del Burgo & Allende Prieto, 2018). Discriminat-

ing among the theories and improving them requires assessing their accuracy, and this

necessitates measuring the properties of real stars9.

High precision in the measurements is essential for their effectiveness as con-

straints, especially for mass, which requires precisions of ∼ 1 − 3%, because models

are highly sensitive to this parameter (Torres et al., 2010). It is also preferable for

measurement techniques to minimise their reliance on theory, particularly the models

they aim to constrain, to ensure the constraints are reliable. Measurements satisfying

this criterion can be made for the components of DLEBs (see Section 1.1.3.1).

Fig. 1.15 shows all objects from the Detached Eclipsing Binary CATalogue10 (DE-

BCAT Southworth, 2015) plotted in the mass-radius plane. Main sequence evolutionary

tracks calculated by MIST are also plotted showing the anticipated expansion as a star

evolves off the zero-age MS (ZAMS) (see Section 1.1.5.1). Thus, the vertical location

of the objects with respect to the ZAMS offers an age estimate assuming no mass-loss

(Torres et al., 2010). The effect of mass-loss is apparent for higher masses (M > 20 M⊙)

in Fig. 1.15, as well as the fact that some objects in DEBCAT have evolved off the MS.

9The assessment of a theoretical description of reality requires that predictions made by the theory
are compared to reality.

10DEBCAT is a catalogue of detached eclipsing binary systems with masses and radii measured to
precisions of 2% and can be assessed at: https://www.astro.keele.ac.uk/jkt/debcat/.
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Figure 1.15: Radius plotted as a function of mass for stars taken from DEBCAT (red
dots; Southworth, 2015). Also plotted are the theoretical ZAMS calculated from MIST
evolutionary tracks for solar metallicity (black solid line) and [Fe/H]= −1.0 dex (black
dashed line). The pale blue dotted lines show the evolution of the MIST tracks along
the MS phase for solar metallicity.
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A successful model will predict identical ages for both components in a binary

system based on their measured masses and radii, while assuming a single chemical

composition. This alignment stems from the concept of coevality, wherein the as-

sumption is that the binary components share the same age and chemical composition.

However, the sensitivity of the level of the ZAMS to chemical compositon (see Fig. 1.15)

introduces an element of flexibility into the application coevality. To isolate the ZAMS

and strengthen the test requires a precise measurement of the metallicity [M/H].

A more stringent test to the models follows with the addition of a measurement

for the components’ Teff , leading to the complete set of conventional observational

constraints [M,R, Teff , [M/H]] (Torres et al., 2010). In this scenario, a strict assessment

would use M and [M/H] as inputs and require accurate predictions for the components’

radii and Teff values (or luminosity) at a single age. The difficulty in meeting such

demands increases with measurement precision.

While the best data can never prove a set of models right (Andersen, 1991; Tor-

res et al., 2010), these tests allow for the most accurate theoretical descriptions of

stellar structure and evolution to be identified, as well as exposing deficiencies that

necessitate further development and calibration. The nature in which these deficien-

cies/uncertainties propagate into model predictions, and the stellar processes involved,

depends on the mass regime and evolutionary stage. Here, we are interested in low-

and intermediate-mass dwarfs so expand further on these details for such stars in the

next two sections. However, our understanding is most incomplete at evolved stages

(del Burgo & Allende Prieto, 2018).

1.1.5.3 Complications in Low-Mass Stars

Stellar theory is well understood for stars with masses of 1 – 5 M⊙ (Claret et al., 2021)

compared to low-mass stars in the regime of 0.08 – 0.3 M⊙. Low-mass stars are chal-

lenging because of the complex and varied physics which occurs in their interiors, in

particular, magnetic phenomena (Mullan & MacDonald, 2001); the magnetic field is

stronger and more pervasive (Hawley et al., 2000). The lowest-mass stars are near the
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Figure 1.16: Same as Fig. 1.15 but in the Hertzsprung-Russell (top) and Mass-
Luminosity planes (bottom).
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hydrogen burning limit so the interior temperatures are cool enough (i.e., on the order

of the electron Fermi temperature) for parts of the interior to behave as a partially

degenerate gas (Chabrier & Baraffe, 1997, 2000; Beatty et al., 2007). Furthermore,

the electron number density is such that the mean inter-ionic distance is on the order

of the Fermi screening length, meaning the electron gas is polarised by the external

field. Relatively lower temperatures would also allow for the recombination of molec-

ular hydrogen and other molecules, such as TiO, meaning that the grey atmosphere

approximation becomes least valid as the opacity spectrum becomes most complex.

The interior structure of fully convective low-mass stars is therefore complicated

and different to that of partially radiative higher-mass stars. A lack of observational

constraints on their properties (Swayne et al., 2021) makes it difficult to address in-

accuracies in our understanding of their structure. For instance, the radii of low-mass

stars are observed to be inflated by around 5 – 10 % compared to theoretical predictions

(Hoxie, 1973; Lacy, 1977; López-Morales, 2007; Torres, 2013; Zhou, 2010). The dis-

crepancy has also been observed to persist in stars with masses up to 1 M⊙ (e.g. Torres

et al., 2021; Southworth, 2022). This suggests that the uncertainties surrounding these

complex physical processes are significant, and must be addressed in stellar structure

calculations for stars in this regime.

Since most of the objects with measured radii precise enough to usefully constrain

theoretical models exist in EBs, it has been suggested that tidal interactions in EBs

leads to faster rotation and increased magnetic activity, which decreases the efficiency

of convective energy transport, causing the radius to expand (Mullan & MacDonald,

2001; López-Morales & Ribas, 2005; López-Morales, 2007). Surface activity detectable

in some of their light curves (e.g. Torres et al., 2006; Morales et al., 2008) supports

this hypothesis and, indeed, artificially low values for the mixing length parameter in

the outer convective zone have been observed to reduce the discrepancy considerably

(Torres et al., 2006; Chabrier et al., 2007). However, radius inflation has also been

observed for isolated low-mass stars, which rotate slowly due to magnetic braking, so

explanations should not be restricted to binary systems (Berger et al., 2006; Morrell &

Naylor, 2019). Other possible causes such as metallicity and uncertainties in the input
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physics have been discussed (e.g. Torres et al., 2010; Swayne et al., 2021). It should

be noted that “radius inflation” is not observed for all M dwarfs (e.g., Bentley et al.,

2009; Zhou et al., 2014) to within the measurement errors.

It is clear that more observational constraints are required in order to resolve

the radius inflation problem and the associated uncertainties in descriptions of low-

mass stellar interiors. As outlined in Section 1.1.3.1, it is possible to obtain these

measurements to the required precision for DLEBs by modelling their light and RV

curves (Andersen, 1991; Torres et al., 2010). However, known examples of DLEBs

containing two low-mass stars are relatively rare due to the low binary fraction in

low-mass stars (Duchêne & Kraus, 2013) and their intrinsic faintness.

A solution exists with the advent of wide-field searches for planetary transits

which have led to the discovery of many eclipsing binaries with low-mass companions

(EBLMs) (Beatty et al., 2007; Fernandez et al., 2009; Triaud et al., 2017; Collins et al.,

2018; Zhou et al., 2015), where an M dwarf transits a much larger and brighter F

or G dwarf. The faintness of the M dwarf secondary stars versus the F/G primary

components means they are usually not detected in the spectra of the system, making

EBLMs SB1 systems. However, these systems offer ways to obtain precise, but indirect,

measurements of the masses and radii of M-dwarfs, as outlined in Section 1.1.3.3.

1.1.5.4 Complications Above 1.15M⊙

The nuclear energy generation is dominated by the CNO cycle for stars with masses

above ∼ 1.15 M⊙ so they have a convective core. The convective elements have mass,

and thus inertia. The turbulence associated with convective regions means that the

convective elements possess some velocity. Therefore, convective eddies approaching

the boundary of the convective core will penetrate some distance into the convectively

stable, radiative region, just outside the core. This phenomenon is termed convective

overshooting. Convective overshooting mixes material from the radiative layers into the

core, increasing the extent of the mixed region as well as the amount of nuclear fuel

available on the MS. Overshooting has a significant effect on the evolution of a star;
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the MS lifetime is extended, while the crossing of the sub-giant branch is accelerated.

Classical observations, particularly the use of DLEBs, have provided evidence for

core overshooting (Andersen et al., 1990; Ribas et al., 2000; Claret, 2007), and some

formulation of the effect is now included in most models for stars with convective cores

(Torres et al., 2010). The discrepancy between dynamical masses derived from binaries

and those predicted by evolutionary models, first presented by Ribas et al. (2000), was

shown to significantly decrease by the inclusion of properly calibrated core-boundary

mixing profiles in stars with convective cores by Higl & Weiss (2017) and Tkachenko

et al. (2020). Developing the correct formulation for convective overshooting requires

constraints on the profile of the implied mixing, its extent, and efficiency11.

For intermediate-mass stars, with Teff between around 7000 – 9000 K, calibrating

the extent of the convective region in the envelope may be difficult because these stars

are in the transition region between fully convective and radiative envelopes. The

mixing length parameter αml is expected to change significantly over this temperature

range. Another complication arises in stars with thin or fully absent convection zones

because of the absence of magnetic braking; magnetic braking reduces stellar rotation.

Fast rotation leads to bulging at the equator and modelling in two dimensions might

be necessary. A further complication arises due to the implications fast rotation has on

mixing and angular momentum transport (Aerts et al., 2018). Mixing influences the

stratification of elements, modifies molecular gradients outside convective cores, and is

further influenced by magnetism and pulsations.

The interior processes mentioned in this section are intricate and pose challenges

in stellar modelling. However, continuing in the advancement of intermediate-mass

stellar theory necessitates overcoming these challenges due to the already relatively

accurate theoretical predictions. Given the complexity of these processes, calibrating

their influence in stellar models is difficult and additional constraints on the stellar

interior may be in order. Asteroseismology can deliver those constraints.

11The mass dependence of core overshooting (Claret & Torres, 2016, 2017, 2018, 2019) and the
amount of core mixing in massive stars has been probed using DLEBs (Pavlovski et al., 2018;
Tkachenko et al., 2020)
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1.2 Asteroseismology

Asteroseismology offers ways to obtain less conventional constraints, such as the helium

abundance Y or mixing length parameter αml, among other parameters, which are oth-

erwise usually assumed or adjusted to improve compatibility with observations (Torres

et al., 2010). This makes DLEBs compounded by asteroseismic constraints our most

valuable data sources for testing stellar thoeries because the latter effectively eliminates

any remaining elements of model flexibility which act to lessen the strength of such

model comparison tests discussed in Section 1.1.5.2. We introduce asteroseismology in

this chapter.

1.2.1 Stellar Pulsations

1.2.1.1 Describing The Oscillation Modes

Mechanisms that perturb a star’s internal structure from its equilibrium state can re-

sult in oscillations of the stellar interior which manifest at the surface of the star as

brightness, RV, and spectral line profile variations. There are several possible driving

mechanisms which may act to disturb a star from its equilibrium state and each may

give rise to many modes of oscillation, which are classified into two main groups de-

pending on whether pressure (p modes) or gravity (g modes) is dominant in restoring

the equilibrium (Kurtz, 2006; Aerts, 2021).

The oscillations are described in spherical coordinates, i.e., using the radial dis-

tance r from the centre, co-latitude θ, and longitude ϕ. Each component of the dis-

placement of the oscillating elements of plasma ξ, i.e., the solutions to the equations

of motion, are then (Kurtz, 2006),

ξr(r, θ, ϕ, t) = a(r)Y m
l (θ, ϕ) exp(−i2πνt), (1.40)

ξθ(r, θ, ϕ, t) = b(r)
∂Y m

l (θ, ϕ)

∂θ
exp(−i2πνt), (1.41)

ξϕ(r, θ, ϕ, t) =
b(r)

sin(θ)

∂Y m
l (θ, ϕ)

∂ϕ
exp(−i2πνt), (1.42)
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within which a(r) and b(r) are amplitudes and ν is the oscillation frequency. The

Y m
l (θ, ϕ) terms are spherical harmonics given by,

Y m
l = (−1)m

√
2l + 1(l −m)!

4π(l + m)!
Pm
l (cos θ) exp(imϕ), (1.43)

where,

Pm
l (cos θ) =

1

2ll!
(1 − cos2 θ)m/2 dl+m

d cosl+m θ
(cos2 θ − 1), (1.44)

are Legendre polynomials. The spherical harmonics describe the angular dependencies

of the pulsations and the normalization constant,

cl,m =

√
2l + 1(l −m)!

4π(l + m)!
, (1.45)

secures that the integral of |Y m
l |2 over the unit sphere equals unity (Aerts et al., 2010).

Stationary points on the surface of a pulsating star, i.e., surface nodes, are defined

by the nulls of the associated Legendre polynomial for a mode (Handler, 2013), and the

degree l specifies how many surface nodes there are; for l ̸= 0, the mode is nonradial.

The magnitude of the azimuthal order m specifies how many of the nonradial nodes

are lines of longitude and therefore, the number of nodes that are lines of co-latitude

is equal to l − |m|. The possible values of m range from −l to +l, resulting in 2l + 1

possible modes for each degree. The radial order n gives the number of nodes that are

radial, i.e., concentric shells within the stellar interior. Each of n, l and m are quantum

numbers describing a mode and take integer values.

For purely radial oscillations, l = m = 0, Pm
l (cos θ) = 1 (i.e., zero surface nodes),

and the oscillatory motion is symmetric about the centre of the star. Axisymmetric

modes have l > 0 and m = 0, while sectoral modes have m = l; anything in-between

is referred to as a tesseral mode (Handler, 2013). Examples of nonradial modes at

one instance of an oscillation cycle are shown in Fig. 1.17. Easy to visualise is the

axisymmetric dipole mode (top left of Fig. 1.17) which has n ≥ 1, l = 1, and m = 0.

The surface node of constant co-latitude splits the northern and southern hemispheres

which swell and contract in anti-phase; note that this node is accompanied by at least
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Figure 1.17: The angular dependence of the radial component of the displacement
vector ϵr during one instance of an oscillation cycle for various nonradial modes seen
at an angle of 60◦. The white bands indicate the nodes of the oscillation mode where
ϵr = 0. The red represents contraction and the blue represents expansion. The first
row shows axisymmetric modes with m = 0 and l = 1, 2, 3, from left to right; the
second row shows sectoral modes with m = l and l = 1, 2, 3; the third row are tessoral
modes with (l,|m|) = (3,1), (6,4), (15,5). From Aerts (2021).
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Figure 1.18: Same as Fig. 1.17 but for one solar p-mode with n = 14, l = 20, and
m = 16; the behaviour in the interior is also shown here (Wikipedia contributors,
2023).
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one radial node12. The resulting behaviour of the oscillating elements in the interior

due to the presence of both surface and radial nodes is depicted in Fig. 1.18 for a p

mode with n = 14, l = 20, and m = 16. The oscillating elements above or below a

radial node are split into components moving in antiphase either side of the nonradial

node.

Equations 1.40 and 1.43 combine to give a time dependence exp[−i(2πνt−mϕ)]

for m ̸= 0, meaning these are travelling waves (Kurtz, 2006; Aerts et al., 2010). By

convention, m > 0 corresponds to waves travelling in the direction of rotation of the

star (prograde modes) and vice versa for m < 0 (retrograde modes) (Kurtz, 2006; Aerts

et al., 2010). Each of the 2l + 1 modes within a multiplet with |m| > 0 have identical

frequencies unless the degeneracy is lifted when the star rotates. This is because the

frequencies of the prograde modes are decreased while the retrograde frequencies are

increased in the co-rotating reference frame of the star due to the Coriolis force (Aerts

et al., 2019; Aerts, 2021). The frequencies in the observer’s reference frame are further

Doppler shifted (Aerts et al., 2019) and for a uniformly rotating star are given by

(Ledoux, 1951),

νnlm = νnl0 + m(1 − Cnl)Ω/2π, (1.46)

where νnl0 is the central frequency of the multiplet, Cnl is the Ledoux constant and Ω

is the angular velocity of the star.

1.2.1.2 Calculating the Oscillation Modes

To learn anything about the star from the oscillations requires we describe the re-

sulting perturbations to stellar quantities in the form of equations. The uncertainties

surrounding hydrodynamical processes, that are referred to in Appendix C.4, mean that

similarly to convection, reaching a general solution using a complete hydrodynamical

description of a star is impractical or impossible (Aerts, 2021). Instead, approximating

12We must have n ≥ 1 for the dipole mode because otherwise, the dipole motion would require a
movement of the centre of mass of the star with no external force (Handler, 2013).
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stellar oscillations as small perturbations about some equilibrium structure suffices be-

cause their amplitudes are small compared to the scale of the star (Aerts et al., 2010;

Garćıa & Ballot, 2019).

Uncertainties associated with 2D stellar structure models, especially in the pres-

ence of rotation, have led to stellar oscillation calculations usually relying on 1D equi-

librium structures. This is justified for stars rotating up to 15% and 70% the critical

rotation frequency for p and g modes, respectively (Aerts, 2021). Working in the adi-

abatic approximation to calculate oscillation frequencies (e.g., Aerts et al., 2018) was

shown to be appropriate by Moravveji et al. (2015); Van Reeth et al. (2016); Ouaz-

zani et al. (2017), with differences between adiabatic and non-adiabatic theoretical

frequencies being less than the precision of the detected modes from a nominal Kepler

light curve. If the model is also static, the equilibrium state takes that of a standard

stellar model. Standard stellar models and the associated equations are described in

Appendix C.3.

The oscillation equations are then derived by adding small perturbations to the

equilibrium quantities, inserting them back into the standard stellar structure equa-

tions and then taking the difference between the equilibrium and perturbed versions

of the expressions (Aerts et al., 2010; Aerts, 2021). The symmetry of the 1D struc-

ture permits the separation of the horizontal and radial variations, i.e., factoring out

the spherical harmonics Y m
l (θ, ϕ) as a common factor. After linearising, the resulting

linear, adiabatic stellar oscillation equations are presented in Appendix D. They con-

stitute a system of ordinary differential equations, fourth order in the perturbations

to the displacement of the gas ξr, pressure p′, gravitational potential Φ′ and accel-

eration dΦ′/ dr (Aerts et al., 2010), where the apostrophe indicates that these are

eigen-functions13 describing the variation in the associated quantity (see below).

The key points for asteroseismology are as follows. The stellar oscillation equa-

13Since the solutions are non-trivial only for a discrete set of values of the oscillation frequency,
the problem can be formulated as an eigen-value problem (Garćıa & Ballot, 2019). Consequently, the
frequencies are often referred to as eigen-frequencies and the variation in the perturbed quantities are
the eigen-functions.
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tions have non-trivial solutions only for specific values of the oscillation frequency ν.

These values form a discrete set of eigen-frequencies that correspond to the natural

modes of oscillation for some stellar structure, and are determined by the coefficients

in the oscillation equations (see Appendix D), i.e., the equilibrium quantities of the

model: ρ, p, Γ1 and g, where ρ, Γ1 and g are the density, first adiabatic exponent, and

unperturbed gravitational acceleration, respectively (Aerts et al., 2010). Therefore, the

natural oscillation modes are determined by a star’s equilibrium structure so it is pos-

sible to obtain them numerically for any given stellar model (Garćıa & Ballot, 2019);

various codes have been developed for this task, (e.g., adipls, losc, pulse, posc,

graco, filou, gyre; Christensen-Dalsgaard, 2008; Scuflaire et al., 2008; Brassard

& Charpinet, 2008; Monteiro, 2008; Moya & Garrido, 2008; Suárez & Goupil, 2008;

Townsend & Teitler, 2013). Conversely, the oscillation modes reveal information about

the equilibrium structure. Indeed, seeking agreement between a set of observed and

theoretical oscillation frequencies offers a way to constrain the free parameters of a

stellar model (see Section 1.2.1.2).

1.2.1.3 Mode Trapping

The Cowling approximation (n ≫ 1, l ≫ 1) allows us to think, only, in terms of the

displacement to stellar matter14,

d2ξr
dr2

= −Ks(r)ξr, (1.47)

where,

Ks(r) =
ω2

c2

(N2

ω2
− 1
)(S2

l

ω2
− 1
)
, (1.48)

which is useful for gaining insights into mode trapping given that two important quan-

tities appearing in the stellar oscillation equations (Eqs. D.1; D.3; D.5) remain. The

first is the characteristic acoustic frequency Sl given by,

S2
l =

l(l + 1)c2

r2
= k2

hc
2, (1.49)

14Here, we ignore perturbations to the gravitational potential as well as derivatives of equilibrium
quantities in the oscillation equations (Aerts, 2021).
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Figure 1.19: The characteristic acoustic frequency Sl (dashed lines for l = 1, 5, 20,
and 100) and the Brunt-Väisälä frequency N (solid lines) against fractional radius in a
standard solar model. The heavy horizontal lines indicate the trapping regions for a g
mode with frequency ν = 100 µHz and for a p mode with degree l = 20 and ν = 2000
µHz. Figure taken from Ambastha (2010).
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where kh is the horizontal wave number (Garćıa & Ballot, 2019). The second is the

buoyancy, or Brunt-Väisälä frequency given by,

N2 = g
( 1

Γ1p

dp

dr
− 1

p

dρ

dr

)
. (1.50)

Oscillations can only occur in regions of the stellar interior where Ks > 0; the

modes are trapped in these regions and the boundaries of these trapping regions are

defined by Ks = 0, referred to as turning points. Gravity modes exist in trapping

regions where |ω| < N and |ω| < Sl, while acoustic modes exist in trapping regions

where |ω| > N and |ω| > Sl. Fig. 1.19 shows Sl for modes with l = 5, 20, and 100,

as well as N against fractional radius for a standard solar model (Ambastha, 2010).

The figure shows how these two characteristic frequencies trap p modes in the surface

layers and g modes near the core regions given the above conditions. Hence, p modes

are sensitive to the outer layers of the star and g modes carry information about the

near-core regions.

Two propagation cavities can arise for a single mode if the corresponding fre-

quency satisfies both trapping conditions, e.g., the intermediate mode in Fig. 1.20. This

mode exists near the core with g-mode character and near the surface as a p mode.

These mixed modes occur because Sl decreases as a star evolves, while N increases.

The condition for convective instability is N < 0 (Aerts et al., 2010) so g modes

can not propagate in convective regions, and hence the rapid approach of N to zero

as it approaches the convective core in Fig. 1.20. The sharp spike prior to this due

to chemical gradients of CNO processed material and is discussed in Section 1.2.2.4.

These features are absent in Fig. 1.19 because it represents a solar-mass model.

1.2.1.4 Asymptotic Representations

Tassoul (1980) presented second-order approximate solutions15 to the oscillation equa-

tions by means of the asymptotic technique devised by Olver (1956). These asymptotic

15The asymptotic analysis using the full fourth order set of equations for SPB and γ Doradus stars,
as in Smeyers & Moya (2007), predicts the same patterns as the second order asymptotic analysis
(Aerts, 2021).
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Figure 1.20: The characteristic acoustic frequency Sl (dashed line) and Brunt-Väisälä
frequency N against fractional radius for an evolved 2 M⊙ stellar model, taken from
Handler (2013). The lowest frequency oscillation corresponds to a g5 mode, the highest
frequency is a p8 mode, while the intermediate frequency is a mixed mode. For this
evolved case, N and Sl trap the mixed modes in two regions near the core and surface.
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representations of the mode frequencies are valid for n ≫ l and show that for p modes,

νnl =
(
n +

l

2
+

1

4
+ α

)
∆ν, (1.51)

where ∆ν is the large frequency separation and the inverse of the sound travel time

across a stellar diameter (Chaplin & Miglio, 2013) given by,

∆ν =
[
2

∫ R

0

dr

c(r)

]−1

, (1.52)

and α is a constant of order unity (Aerts et al., 2010). Eq. 1.51 predicts that p modes

of the same degree l, but consecutive radial order n, are equally spaced by ∆ν (e.g.,

Fig. 1.21)16. We would also expect the frequency of a mode νnl to be approximately

equal to the frequency of a mode νn−1,l+2. Fig. 1.21 shows that this is not the case

with a smaller, but clear, separation between the νn−1,l=2 and νn,l=0 oscillation modes.

This is the small frequency separation δν and is explained by expanding further in the

asymptotics to yield (Chaplin & Miglio, 2013),

δνnl = νnl − νn−1,l+2 ≃ −(4l + 6)
∆ν

4π2νnl

∫ R

0

dc

dr

dr

r
. (1.53)

The large separation is related to the evolutionary stage of the star because the

sound travel time increases as the radius expands. The small separation depends on

the sound speed gradient in the deep stellar interior, and the sound speed gradient is

sensitive to the hydrogen and helium composition profiles (Aerts, 2021); those profiles

are directly influenced by nuclear fusion so δν can be used as an age diagnostic (Kurtz,

2006). Plotting δν against ∆ν allows for an unambiguous determination of the stellar

mass and evolutionary state (Handler, 2013).

The corresponding prediction for g modes is,

Pnl =
Π0√
l(l + 1)

(|n| + αl,g), (1.54)

16The Gaussian-like modulation of the observed powers with frequency in Fig. 1.21 is a property
of solar-like oscillators, such as 16 Cyg A, where excitation of the modes is due to turbulence in the
outer convective envelope. Such stars are not the topic of interest here, but the figure gives a good
representation of ∆ν.
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Figure 1.21: An enlargement (red) of the pulsation spectrum (see Section 1.2.2.1) of 16
Cyg A calculated from data acquired by the Kepler Satellite. The p modes are labelled
with by their degree l and the large frequency separation ∆ν is indicated using the
l = 0 radial modes. Figure is adapted from Chaplin & Miglio (2013) and taken from
Aerts (2021).



60

where,

Π0 = 2π2
(∫ r2

r1

N

r
dr
)−1

, (1.55)

within which, r1 and r2 are the inner and outer boundaries of the trapping region

(Ks = 0) and αl,g is a phase term depending on whether the star has a radiative or

convective core (Aerts, 2021). The prediction here is that the periods of oscillation

modes of consecutive radial order are equally spaced by the buoyancy travel time Π0

normalised by
√
l(l + 1) (e.g., Fig. 1.22).

Departures from this uniformly predicted spacing of periods offer an excellent

diagnostic for near-core rotation, chemical gradients, and mixing. Further details follow

in the next section and in Section 1.2.2.4.

1.2.1.5 Accounting for Rotation

How rotation is treated depends on the spin parameter S = 2Ω/ω. If S ≪ 1, the

Coriolis force can be treated as a small perturbation in the oscillation equations. These

can be first order perturbations if the centrifugal force (∼ Ω2) can be ignored but second

order perturbations may be necessary to account for non-negligible deformations (e.g.,

Suárez et al., 2005, for the δ Scuti star HD 187642, aka Altair). The condition S ≪ 1

is satisfied for slowly rotating stars, i.e, stars with extensive convective envelopes, or

for high values of the oscillation frequency ν = ω/2π, i.e., p modes.

Making rotation a function of geometrical depth r, i.e., Ω = Ω(r), the basic idea

behind the perturbative approach to rotation requires an expansion of the discussion in

1.2.1.1 with the introduction of a rotational kernel. The rotational kernal weights the

contributions of the different layers within the non-rigidly rotating star in the overall

determination of the rotational splittings (Aerts et al., 2019). The maximum of the

rotational kernal profile therefore corresponds to the region within the star that the

splittings are most sensitive; indeed, this occurs near the core for g modes (Aerts,

2021).

The modes are said to be gravito-inertial (Aerts, 2021) when the spin param-

eter is larger than unity, i.e., g modes where the oscillation frequency is comparable
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Figure 1.22: Top Panel: The pulsation spectrum (black) in terms of oscillation period
for the γ Doradus star KIC 11721304 calculated from data acquired by Kepler. The
red vertical dashed lines indicate the mode periods with dominant amplitude. Bottom
panel: period spacing pattern derived from the dipole sectoral prograde modes. Figure
is taken from Aerts (2021) and based on data from Van Reeth et al. (2015a).
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to the rotation frequency. The Traditional Approximation to Rotation (TAR) (Lee &

Saio, 1987a,b, 1989) has been used in order to account for the Coriolis force in this

circumstance (e.g., Bouabid et al., 2013; Van Reeth et al., 2016, 2018). The resulting

asymptotic period spacing of g modes within the TAR framework is equal to the buoy-

ancy travel time Π0 normalised by the eigen-value of the Laplace tidal equation λlms

for a g-mode with quantum numbers l, m, and spin parameter S (Aerts et al., 2019),

∆Πl,m =
Π0√
λl,m,S

. (1.56)

If S tends to zero, normalisation by
√

l(l + 1) is recovered.

This introduces a slope in the period-spacings of gravito-intertial modes with

a negative gradient for prograde modes, e.g., Fig. 1.22, and a positive gradient for

retrograde modes. The TAR allows for the period spacing patterns to be modelled

when they show such trends which yields an estimation for the rotation frequency near

the core. It is also possible to supplement this measurement with the identification of

l and m (e.g., Van Reeth et al., 2016, in a study of 68 γ Doradus stars).

1.2.1.6 Driving the Oscillations

Whether any of the natural modes corresponding to an equilibrium model are ex-

cited depends on specific conditions/mechanisms being present to overcome the im-

plied damping to oscillations due to stars being in hydrostatic equilibrium (Handler,

2013)17. The assessment of a driving mechanism’s success in exciting a mode requires

computation of its growth rate (Aerts, 2021), which in turn relies on the calculation of

the imaginary part of the mode’s frequency ωi. Using the example from Aerts et al.

(2010) regarding a particular class of driving mechanisms (see below), then,

ωi =
1

2ω2

∫
V

δρ∗

ρ
δ(Γ3 − 1)δ(ρϵ−∇ · F) dV∫

V
ρ| dr|2 dV

, (1.57)

17Like any musical instrument, you have to do something for the instrument to make a sound.
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where “ * ” denotes the complex conjugate, V is stellar volume, Γ3 is the third adiabatic

exponent, and perturbations to the density δρ and heating δ(ρϵ−∇·F) are given for a

Lagrangian reference frame. Here, instability arises when ωi > 0 so δρ∗ and δ(ρϵ−∇·F)

have the same sign (Aerts et al., 2010). Therefore, when δρ∗ is positive and the system

contracts, δ(ρϵ − ∇ · F) is also positive and heating occurs. This is analogous to a

thermodynamic heat engine, which converts thermal energy into mechanical energy,

hence giving rise to the heat engine class of excitation mechanisms.

The heat engine mechanism is responsible for most of the self driven oscillations

across the HR diagram; in particular, it is responsible for exciting the oscillations in δ

Scuti and γ Doradus stars. The driving of the oscillations via the heat engine mecha-

nism is evidently linked to perturbations in the local flux, i.e., Eq. C.5, via changes in

dq/ dt, so is a non-adiabatic process. Nevertheless, when the quasi-adiabatic approx-

imation is valid (see below), ωi is calculated using the adiabatic eigen-functions (see

Section 1.2.1.2).

In the quasi-adiabatic approximation, assuming L is constant, considering radial

oscillations and neglecting convection, the work integral (numerator of Eq. 1.57) can

be expressed as,

W ≃ −L

∫
M

δρ

ρ
(Γ3 − 1)

d

dm

(δL
L

)
dm. (1.58)

The work integral expresses the energy gained by a mode over one pulsation period

(Cox, 1967, 1974; Aerts et al., 2010). Thus, we have a net gain when W is positive

and this requires the gradient in the luminosity perturbation d
dm

(
δL
L

)
to be negative

toward the surface during compression, i.e, when δρ/ρ is positive everywhere. In this

case, W > 0 implies the energy gained by the mode overcomes the energy lost due to

damping. A positive gradient would act as a release valve for energy to escape above

the layer of interest, contributing to the damping (Cox, 1974); this is often termed

radiative damping.

Since d
dm

(
δL
L

)
is usually positive toward the surface, most stars do not show

variability (Cox, 1974). However, precisely located ionisation zones can lead to a

negative gradient, facilitating excitation via the κ − mechanism. This is because
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Figure 1.23: δL/L against geometrical depth within the star at the instance of minimum
stellar radius during a compression. Here, the He+ ionisation zone is located at R >
Rcrit. From (Cox, 1974).

the strong increase in opacity associated with ionisation zones acts to decrease the

radiative flux (see Eq. C.6). The precise location of an ionisation zone required to

excite a pulsation mode depends on where the transition occurs between the quasi-

and non-adiabatic regions; Eq. 1.58 is a quasi-adiabatic expression.

In a quasi-adiabatic region, the flow of energy over a pulsation period is small

compared to the overall energy content of the surrounding layers (Aerts et al., 2010),

i.e., deeper layers within the star. In contrast, relatively little energy is stored in the sur-

rounding layers at the surface (Cox, 1974), so the surface layers are non-adiabatic. Since

L is effectively frozen at the surface due to negligible nuclear energy generation, the



65

Figure 1.24: Same as Fig. 1.23 except the He+ ionisation zone is located at the critical
radius R = Rcrit. From (Cox, 1974).

ionisation zone must be located in the quasi-adiabtic region for it to have any influence

on d
dm

(
δL
L

)
at all (see Fig. 1.23). However, excitation will only occur if the ionisation

zone coincides precisely with the transition between quasi- and non-adiabatic at Rcrit

because the immediate transition into non-adiabaticity prevents radiative damping by

the tendency for d
dm

(
δL
L

)
to revert back to positive values, i.e., after already being

reduced in the lower portion of the ionisation zone; Fig. 1.24 illustrates this elegently.

It is noted that a decrease in Γ3 can result in a negative perturbation to the

luminosity, and excitation, leading to the γ − mechanism (Aerts et al., 2010). Fur-

thermore, when the convective time-scale is long compared to the pulsation period, the
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convective flux blocking mechanism can contribute to the excitation of modes (Dupret

et al., 2004; Handler, 2013); this is important for γ Doradus stars (see Section 1.2.3.2).

1.2.1.7 Instability Domains

Quantifying the arguments in Section 1.2.1.6 allows for domains of instability to be

derived for different modes in the HR diagram. If the ratio of thermal energy content

surrounding a given layer within a star to the energy radiated by it over a pulsation

period Π is given by,

Ψ =
< cvT > ∆m

ΠL
, (1.59)

where ∆m is the mass of the surrounding layers and < cvT > is a suitable average,

then the transition between quasi-adiabatic and non-adiabatic occurs where Ψ = 1

(Cox, 1974). This shows that higher frequency modes have transition regions near the

surface where the surrounding energy content is small. Thus, given that the ionisation

zones are located in shallower layers for earlier type stars, it is no surprise that the

range of unstable modes in δ Scuti stars are predicted, and observed, to move to higher

frequencies in those with higher Teff (Pamyatnykh, 2000; Dupret et al., 2005; Balona

& Dziembowski, 2011; Xiong et al., 2016).

The arguments developed by Cox (1967, 1974), which form the basis of this

discussion, refer specifically to Cephieds, but the general principles can be applied

wherever convection can be ignored (Aerts et al., 2010); hence the above. However,

accounting for the interaction between convection and pulsations is necessary, e.g., for

reproducing the red edge of the classical instability strip due to the associated damping

effects, such as thermodynamic coupling between convection and oscillations (Xiong

et al., 2016).

1.2.2 Probing Stellar Structures

With the theoretical framework established, asteroseismology finds practical applica-

tions in observational astronomy. It is essential to first measure the pulsation fre-
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quencies before attempting to identify them and draw inferences about the internal

structures of stars.

1.2.2.1 Frequency Analysis

Pulsations manifest in time-series observations as brightness, radial velocity, and line

profile variations (Handler, 2013). Taking the Fourier transform of these signals allows

for the individual frequencies to be decomposed and visualised in a pulsation ampli-

tude spectrum. Fig. 1.25 shows the photometric time-series observations of seven Kepler

slowly pulsating B-type (SPB) stars with their pulsation amplitude spectrum overplot-

ted. Many frequencies combine to yield the overall variable signals in the brightness of

the systems, i.e., many oscillation modes are present. The frequencies of the oscillation

modes can be extracted by fitting sinusoids via, e.g., least squares minimisation. A

technique often employed is to optimise the most dominant frequency, remove it from

the signal, and repeat the process on the residuals until a threshold minimum signal

to noise (S/N) is reached. This technique is called pre-whitening.

The time-base of the observations limits the maximum period of a mode that can

be reliably determined and frequencies separated by less than the inverse of the time

base (i.e, the Rayleigh frequency) can not be resolved. The highest frequency that

can be measured is half the sampling frequency (i.e., the Nyquist frequency) (Handler,

2013). Another limitation is that the surfaces of stars can not usually be resolved.

The result is geometric cancellation which refers to the reduction of the amplitudes

of nonradial modes with high spherical degree due to the implied averaging of disc

integrated measurements. It can be assumed that modes with l > 4 are completely

cancelled out (Handler, 2013).

Some of the observed frequencies do not possess asteroseismic significance. For

instance, the subtraction of an imperfect eclipse model would result in unwanted arti-

facts in the Fourier spectrum at harmonics of the orbital frequency, not to be mistaken

for tidally induced frequencies. Nonlinear interactions between two or more parent

frequencies can lead to combination frequencies (Sekaran et al., 2020), but these can
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Figure 1.25: 110 d excerpt of the 1500 d long cadence Kepler observations (black dots)
of seven SPB stars with their KIC identifier shown. Overplotted in red is the amplitude
spectrum calculated by taking the Fourier transform of the photometric time-series
(more details regarding Kepler in Section 2.1.3). The frequency of maximum amplitude
increases with the rotation frequency of the star from the top panel to the bottom panel.
Figure from Aerts (2021) based on data from Pápics et al. (2017).
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also arise without a physical interpretation resulting from the mathematical analysis

of frequencies in terms of harmonic functions; to differentiate requires analysing their

phase behaviour (Degroote et al., 2009).

1.2.2.2 Scaling Relations

Solar-like oscillations follow simple scaling relations (Ulrich, 1986; Aerts, 2021) based

on the large frequency separation ∆ν (Eq. 1.52) and the frequency of maximum power

νmax. These observables are readily available once the frequency spectrum has been

measured, without having to identify the modes. The scaling based on ∆ν follows,

∆ν

∆ν⊙
=
( M

M⊙

)1/2( R

R⊙

)−3/2

, (1.60)

and for νmax,
νmax

νmax,⊙
=
( M

M⊙

)( R

R⊙

)−2( Teff

Teff,⊙

)−1/2

. (1.61)

This procedure assumes the same physics as the sun (Lampens, 2021) so does not allow

for discernment among different theories. However, assuming that solar-like stars do

indeed share similar physics as the sun, then a measurement of Teff , ∆ν and νmax means

seismic masses and radii are readily available for use in various fields of astrophysics

(Aerts, 2021). Model dependent seismic ages follow using M and R as described in

Section 1.1.5.2.

1.2.2.3 Mode Identification

A crucial step in asteroseismology is the successful identification of the oscillation modes

(Guo et al., 2019), i.e., determining the radial order n, degree l, and azumithal order

m for the observed modes.

Échelle diagrams are often used to identify l and n by plotting the frequencies

as a function of their modulus with respect to ∆ν; modes of the same l line up along

quasi-vertical ridges (e.g., Chaplin & Miglio, 2013). For δ Scuti stars, these ridges
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Figure 1.26: Mode identification using échelle diagrams for six δ Scuti stars with their
names labelled. The greyscale shows the observed échelle amplitude spectrum. Red
symbols (rows a-c) are values calculated from models which which allow mode identi-
fication in other stars, e.g., rows d-f. From Bedding et al. (2020).

display curvature owing to departures of their low-order modes from the asymptotic

regime (e.g., Fig. 1.26; Bedding et al., 2020).

Detection of a complete rotationally split multiplet immediately reveals l and

m. Also, recall from Section 1.2.1.5 that the sign of the gradient in a period-spacing

diagram reveals the sign of m and that both l and m can be derived simultaneously
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with the near-core rotation using the TAR framework (Van Reeth et al., 2016).

Photometric mode identification entails analysing the amplitude differences and

phase behaviour of modes in different photometric filters since these relationships de-

pend on l. This method requires multi-colour observations and only l can be identified.

Spectral line profiles are rotationally broadened which allows the stellar surface

to be reconstructed by Doppler imaging. Pulsations add additional components of

velocity (Doppler shift) and this leads to line profile variations. The shape of the

distorted line profile depends on the resulting velocity field of the contributing modes.

Spectroscopic mode identification fits theoretically calculated 3D velocity fields to the

observed line profles to identify l and m (Handler, 2013). Spectroscopic data is less

sensitive to geometric cancellation effects so modes of higher degree can be identified

than with photometric data.

1.2.2.4 Modelling Period Spacings

Structural glitches in the deep interior, also termed buoyancy glitches, lead to sharp

features in the Brunt-Väisälä frequency. Using the ideal gas equation (Eq. C.17), the

Brunt-Väisälä frequency can be expressed as,

N2 =
g2ρ

p
(∇ad −∇ + ∇µ), (1.62)

which depends on the molecular gradient ∇µ (Aerts et al., 2010). The buoyancy travel

time Π0 depends on the detailed shape of N (Moravveji et al., 2015) so high order g

modes are affected by ∇µ (see Eq. 1.54). This results in substructures in the period-

spacing patterns; an example is given in Fig. 1.22, which also shows the effect of rota-

tion.

Miglio et al. (2008) expanded on the analysis of Tassoul (1980), finding that

molecular gradients manifest in the period-spacing patterns as recurring quasiperiodic

deviations. The amplitude of the deviations was found to be linked to the steepness of

the chemical gradient, while the periodicity is related to its location (Van Reeth et al.,

2016). Bouabid et al. (2013) confirms that the inclusion of mixing acts to partially
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reduce the gradient so this decreases the amplitude of the deviations (Van Reeth et al.,

2016). Modelling these trends offers a less exacting way to obtain constraints on such

processes compared to a full blown modelling of every individual frequency.

This was exploited by Moravveji et al. (2015) to determine that the inclusion of

extra diffusive mixing above the overshoot region is essential to explain the structure

in the observed period spacing pattern of KIC 10526294, as well as deducing the most

appropriate overshoot profile Dov; an exponentially decaying prescription was found to

be more appropriate than a step-function. Modelling the period-spacing patterns of g

modes has also led to an increasing number of stars that have both the surface and

near-core rotation rates measured (Aerts et al., 2017, 2019; Salmon et al., 2017) (see

Section 1.2.1.5), revealing angular momentum history (Guo et al., 2019).

Following the first detection of period-spacing patterns in CoRoT photometry by

Degroote et al. (2010), many studies involving the detection and modelling of period-

spacings have been published (e.g., Kurtz et al., 2014; Saio et al., 2015; Sekaran et al.,

2020; Bedding et al., 2015; Van Reeth et al., 2015a; Ouazzani et al., 2017; Pápics

et al., 2017; Mombarg et al., 2019; Li et al., 2019, 2020a). Modelling the observed

period-spacing patterns with theoretical models (e.g., Schmid & Aerts, 2016; Sekaran

et al., 2020) provides stronger constraints on stellar structure compared to fitting for

Π0 (Ouazzani et al., 2019; Mombarg et al., 2020; Sekaran et al., 2020).

1.2.2.5 Modelling Frequencies

In Section 1.2.1.2, it was discussed how seeking agreement between observed and theo-

retical oscillation frequencies constrains the free parameters of a stellar model. Consid-

ering every oscillation frequency in the seismic modelling is a more exacting diagnostic

than modelling the period spacing patterns because the frequencies are not considered

independent. Instead, they constitute a single parameter Y (Aerts et al., 2018). Since

each frequency has a different propagation cavity, accurately predicting every frequency

simultaneously requires accurate understanding of the entire star, particularly if the

star oscillates in a broad range of frequencies.
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This makes modelling the oscillation frequencies a powerful diagnostic for con-

straining our interpretation of processes occurring throughout the full interior by in-

cluding the free parameters that describe these processes in the modelling. For exam-

ple, since convection contributes to the damping, excitation and trapping of modes (see

Section 1.2.1.3; Bowman et al., 2016; Aerts, 2021), modelling the full set of frequencies

could yield constraints on αml (e.g., Viani et al., 2018), which is expected to vary sig-

nificantly over the δ Scuti mass range. This is in addition to the constraints obtainable

from modelling the period spacing patterns of g modes, e.g., on overshoot profiles and

the associated mixing above the overshoot region (Kippenhahn et al., 2013; Aerts et al.,

2018). The latter is affected by rotational, magnetic and pulsational effects which may

influence mixing in radiative regions well above the convective core. Accounting for

such effects is an improvement on simplifications where mixing is assumed only to oc-

cur in convective regions (see Appendix C.5), and such improvements have revealed

information about angular momentum transport in radiative regions (Moravveji et al.,

2015; Triana et al., 2015; Aerts et al., 2018).

The heightened sensitivity of the individual oscillation frequencies to conditions

where they are trapped makes them ideal for discriminating among different choices of

input physics in different regions of the star. If the modes are stable to the Schwarzchild

criterion but not the Ledoux criterion (see Appendix C.4), a transition between the

adiabatic and radiative temperature gradient might be appropriate; this leads to semi-

convection and might be expected at the transitions between convective and radiative

regions (Aerts et al., 2010, 2018; Aerts, 2021). Opacity and chemical mixtures are

components of the micro-physics that were shown by Moravveji et al. (2015); Aerts

et al. (2018) to have a significant effect on the oscillation frequencies for both pressure

and gravity modes. Additionally, microscopic diffusion consists of gravitational settling,

concentration diffusion, thermal diffusion and radiative levitation (Aerts et al., 2018),

and influences the pulsations zones through their influence on convection zones. Such

microscopic processes probably do not have a discernible impact in the HR diagram.

To assess such input physics of a stellar model, one can repeat the pulsation

modelling for varied theories and compare the results. Uncertainty in the input physics
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obviously leads to uncertainty in the theoretically predicted frequencies. Limitations

associated with using 1D equilibrium structures, the absence of magnetic and centrifu-

gal forces as well as higher order terms in the perturbations being neglected, adds to

this uncertainty. Thus, retaining higher orders in the perturbations in the oscillation

equations, or the accurate integration of 2D structure models is desirable. Indeed, 2D

structure models are currently the frontier of asteroseismology and progress is advanc-

ing (Guo et al., 2016). In any case, there is uncertainty on both sides of the modelling

which introduces heteroskedasticity. Another complication arises because the free pa-

rameters might be strongly correlated. The Mahalanobis distance (Aerts, 2021) is a

more sophisticated merit function compared to using the χ2 and better accounts for

these complications (Aerts, 2021). However, constraints from binarity are particularly

effective in breaking degeneracies among parameters of the seismic models...

1.2.3 Classes of Pulsating Stars

Different seismic diagnostics exploit different types of oscillation modes (p modes, g

modes, high-order asymptotic modes, etc...) and different modes have different probing

capabilities. The presence of different oscillation modes depends on the type of star

and its position in the HR diagram. Thus, the capabilities of seismic tools depend on

the class of pulsator and its evolutionary status (Steindl et al., 2021). It works in the

favour of asteroseismology that pulsations occur across the entire HR-diagram and at

all evolutionary stages because this allows for all the available tools to be exploited.

Fig. 1.27 shows the different regions of instability in the HR diagram that cor-

respond to different classes of pulsator and Table 1.1 gives an overview of the classes

of pulsator shown in Fig. 1.27. Here, we are concerned with the δ Scuti and γ Do-

radus classes of pulsators. From Fig. 1.27, there is a clear overlap in their domains of

instability, so we also discuss δ Scuti/γ Doradus hybrids.
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Figure 1.27: Pulsation HR-diagram from Aerts (2021).
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Table 1.1: Basic overview of the classes of pulsator from Handler (2013).
Name Approx. Periods Discovery/Definition
Mira variables 100 – 1000 d Fabricius (1596)
Semiregular (SR) variables 20 – 2000 d Herschel (1782)
δ Cephei stars 1 – 100 d 1784, Pigott, Goodricke (1786)
RR Lyrae stars 0.3 – 3 d Fleming (1899)
δ Scuti stars 0.3 – 6 h Campbell & Wright (1900)
β Cephei stars 2 – 7 h Frost (1902)
ZZ Ceti stars (DAV) 2 – 20 min 1964 Landolt (1968)
GW Virginis stars (DOV) 5 – 25 min McGraw et al. (1979)
Rapidly oscillating Ap (roAp) stars 5 – 25 min 1978, Kurtz (1982)
V777 Herculis stars (DBV) 5 – 20 min Winget et al. (1982)
Slowly Pulsating B (SPB) stars 0.5 – 3 d Waelkens & Rufener (1985)
Solar-like oscillators 3 – 15 min Kjeldsen et al. (1995)
V361 Hydrae stars (sdBVr) 2 – 10 min 1994, Kilkenny et al. (1997)
γ Doradus stars 0.3 – 1.5 d 1995 Kaye et al. (1999)
Solar-like giant oscillators 1 – 18 hr Frandsen et al. (2002)
V1093 Herculis stars (sdBVs) 1 – 2 hr Green et al. (2003)

1.2.3.1 δ Scuti

The δ Scuti class of pulsator was identified early because δ Scuti stars are relatively

numerous and luminous (Breger, 1979; Rodŕıguez et al., 2000; Guo et al., 2019). Their

relatively short pulsation periods, ranging from 15 min to 8 h (Uytterhoeven et al., 2011;

Aerts et al., 2010), has resulted in the currently known number of δ Scuti pulsators

being higher than other classes because the detection of a full period of oscillation

does not require long stretches of continuous observation (Kahraman Aliçavuş et al.,

2017; Liakos & Niarchos, 2017; Lampens, 2021; Kahraman Aliçavuş et al., 2022). The

position of the δ Scuti class is indicated in Fig. 1.27 at the intersection of the lower part

of the classical Cepheid instability strip and the main-sequence (Breger, 2000; Dupret

et al., 2005; Liakos & Niarchos, 2017; Miszuda et al., 2021). Spectral types range

from A0 – F5 and they are typically in the the main-sequence of evolution (Miszuda

et al., 2021, 2022), however, there are known cases of δ Scuti stars evolving through
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the Hertzsprung gap and in the pre-MS phase (e.g. Rodŕıguez et al., 2000; Dupret

et al., 2005; Aerts et al., 2010; Liakos & Niarchos, 2017; Murphy, 2018; Murphy et al.,

2019). The masses of δ Scuti stars range from about 1.5 – 2.5 M⊙ (Yang et al., 2021;

Hong et al., 2022), which places them in the transition region between lower mass stars

with thick outer convection zones and massive stars with thin outer convection zones

(Bowman, 2017; Bowman & Kurtz, 2018; Yang et al., 2021).

Their pulsations are generally low-order, nonradial pressure modes excited via

the κ-mechanism. As explained in Section 1.2.1.6, the κ-mechanism is responsible for

driving the oscillations when a significant perturbation in the radiative flux results

from a strong increase in the opacity. For δ Scuti stars, the partial ionisation zone of

He II is responsible for the increased opacity and driving most of the oscillation modes

(Pamyatnykh, 1999; Breger, 2000; Antoci et al., 2014; Murphy et al., 2020). However,

higher-order, nonradial pulsations have also been observed in δ Scuti stars, e.g., τ

Peg (Kennelly et al., 1998), and the κ-mechanism may not be sufficient in explaining

the excitation of these modes; such modes may be explained by excitation due to the

turbulent pressure in the hydrogen convective zone (Antoci et al., 2014; Grassitelli et al.,

2015). The current understanding of the excitation mechanisms acting in δ Scuti stars

has resulted in theoretical predictions for the range of unstable modes, calculated from

models with current opacities, that agree with observations (Pamyatnykh, 2003; Dupret

et al., 2005; Casas et al., 2009; Zwintz et al., 2014; Kahraman Aliçavuş et al., 2022).

However, constant stars, i.e., not pulsating, do exist in the δ Scuti instability strip.

Many of such stars are Am stars showing peculiar element abundances. The radiative

levitation and diffusive settling believed to cause these peculiarities may deplete He

from the δ Scuti driving region and damp the modes (Guo, 2021); other explanations

are associated with binarity,

Although the understanding of the pulsations in δ Scuti stars is generally good,

performing asteroseismology using δ Scuti stars (i.e., using the pulsations to infer global

and interior properties) is less advanced and the main reason for this is the difficulties

associated with identifying the modes (Breger, 2000; Bowman & Kurtz, 2018; Murphy

et al., 2021; Guzik, 2021); mode identification is a preliminary step for seismic mod-
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elling. Mode identification relies heavily on recognising patterns (Guo et al., 2019),

which is challenging for δ Scuti stars because the frequency spectra are rich and messy

(Goupil et al., 2005; Handler, 2009b; Yang et al., 2021). Fast rotation leads to over-

lapping of rotationally split multiplets and the low order p modes do not follow the

regular asymptotic frequency spacings. A recent breakthrough is the discovery that

some δ Scuti stars do pulsate in regular patterns that form ridges in an échelle dia-

gram (e.g., Bedding et al., 2020, see Fig. 1.26); this allows mode identification similar

to the case of solar-like oscillations (see Fig. 1.26) but is only possible for some δ Scuti

stars close to the ZAMS (Zero-Age Main-Sequence), including the pre-MS (Murphy

et al., 2021). Pairs of low-order radial modes can have period ratios that allow those

modes to be identified (Petersen & Christensen-Dalsgaard, 1996; Murphy et al., 2021)

but the method can only be used if each corresponding mode is driven to observable

amplitudes; this is not always the case in δ Scuti stars.

Having identified some of the oscillation modes in δ Scuti stars, further difficulty

in their modelling arises due to their relatively fast rotation, which generally requires

two-dimensional equilibrium structure models to account for the distortion (Guo et al.,

2016); the calculation of 2D models in the presence of rotation comes with major

uncertainty (Aerts, 2021). Examples of 2D modelling of δ Scuti stars are, e.g, Deupree

(2011); Deupree et al. (2012). Alternatively, sticking with 1D models, the rotation can

be treated by perturbations to second order, e.g., Suárez et al. (2005). As stated above,

the modes are low order p modes, meaning they are not in the asymptotic regime;

nevertheless, Suárez et al. (2014) showed that an average large frequency separation

∆ν can be determined and used to derive the mean density (Guzik, 2021). Further

characterisations of single δ Scuti stars are presented in e.g., Casas et al. (2009); Zwintz

et al. (2014); Chen et al. (2016). See Guzik (2021) for a review of discoveries with δ

Scuti variable stars from the Kepler era.
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1.2.3.2 γ Doradus

The γ Doradus stars were identified as a class of pulsator in the late 20th century

(Breger & Beichbuchner, 1996; Kaye et al., 1999; Guo et al., 2016). They share a similar

domain in the HR diagram as the δ Scuti stars (see Fig. 1.27), but with a narrower

mass regime of 1.4 – 2.0 M⊙, near the red edge of the classical instability strip. They

show low frequency light variations (Kaye et al., 1999; Yang et al., 2021) due to high-

order g modes with pulsation periods between 0.3 – 3 days (Guo et al., 2016), which

are believed to be excited by the interaction between convection and pulsations (Guzik

et al., 2000; Dupret et al., 2005; Grigahcène et al., 2010; Hong et al., 2022); i.e., the

convective flux blocking mechanism at the base of the convective envelope (see section

1.2.1.6).

The g modes of γ Doradus stars are in the gravito-inertial regime (S ≳ 1), so

are subject to both buoyancy and Coriolis forces (Guzik, 2021). This is due to the fast

rotation of intermediate mass stars, in general, and the relatively low frequencies of the

g modes. Therefore, they should be treated in the TAR framework, which necessitates

that rotation is included as a free parameter in the modelling of their frequencies. Since

g modes predominantly trace the radiative regions near the convective core, near-core

rotation rates can be derived for γ Doradus stars (Zhang et al., 2020). Indeed, γ

Doradus stars are also suited for constraining parameters such as Dov and Dext (see

Section 1.2.2.5).

Individual frequencies in γ Doradus stars are not generally exploited because of

the difficulty in modelling the interaction between convection and oscillations (Guo

et al., 2019). Therefore, seismic modelling is carried out using the period-spacings in

the merit function instead (Saio et al., 2015; Schmid & Aerts, 2016); γ Doradus stars

are amenable to revealing period-spacing patterns due to their high-order g modes

being in the asymptotic regime (Guo et al., 2019). The diagnostics associated with

modelling the non-uniform period-spacing patterns (see Section 1.2.2.4) has revealed

information regarding the inner chemical composition, chemical composition gradients,

diffusive mixing, evolutionary status (e.g. Miglio et al., 2008; Moravveji et al., 2015;
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Sekaran et al., 2021; Yang et al., 2021), core rotation rates (e.g., Bouabid et al., 2013;

Bedding et al., 2015; Saio et al., 2015; Van Reeth et al., 2016; Ouazzani et al., 2017)

and coupling between g modes and inertial modes (e.g., Ouazzani et al., 2020; Saio

et al., 2021) for many γ Doradus stars. Thus, the γ Doradus class of pulsators have

proven to be of considerable seismic value.

1.2.3.3 Hybrids

Stars exhibiting oscillation modes characteristic of two different classes of pulsator are

called hybrids (Handler & Shobbrook, 2002) and the overlap of the δ Scuti and γ Do-

radus instability strips supports the existence of hybrids among these classes (Breger &

Beichbuchner, 1996; Handler & Shobbrook, 2002; Yang et al., 2021). Several δ Scuti/γ

Doradus hybrids had been detected from the ground (e.g., Handler & Shobbrook, 2002;

Handler, 2009a) but it wasn’t until space missions such as CoRoT (Baglin et al., 2008)

and Kepler that it was realised hybrid behaviour might be common (Grigahcène et al.,

2010). This is because the unprecedented precision and continuous monitoring of these

space missions has allowed for the detection of low-amplitude and low-frequency oscil-

lations that were otherwise undetected. Furthermore, the overlapping region in early

calculations of the δ Scuti and γ Doradus instability domains by Dupret et al. (2005)

did not span a very broad range in Teff , so hybrids were expected to be rare.

Later calculations by Xiong et al. (2016) predicted a much broader overlapping

region which conforms better with the findings from studies utilising data from space.

For example, most of the Kepler objects in the study by Grigahcène et al. (2010)

show hybrid nature from their rich pulsation spectra; Uytterhoeven et al. (2011) used

a sample of 750 Kepler A-F stars and found that 63% are either δ Scuti or γ Doradus

and 35% are hybrids; a similar study on a larger sample by Bradley et al. (2015) also

suggests hybrids are very common and Balona et al. (2015) showed that low-frequencies

are present in most δ Scuti stars observed by Kepler. These studies suggest that hybrid

behaviour is normal in these stars and that, potentially, all δ Scuti stars exhibit low-

frequency pulsations (Balona, 2010; Guo et al., 2019).
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This is important because hybrids have great potential for asteroseismology

(Schmid & Aerts, 2016). The p modes probe the stellar envelope while the g modes

carry information about the near core regions (Yang et al., 2021; Grigahcène et al.,

2010; Kurtz et al., 2014; Saio et al., 2015). Specifically, diagnostics applicable to δ

Scuti stars can be combined with diagnostics applicable to γ Doradus stars. The pres-

ence of both types of oscillations also means different driving mechanisms that operate

in different regions can be studied or reviewed simultaneously (Hong et al., 2022).

Xiong et al. (2016) show that both the κ-mechanism and the coupling between con-

vection and oscillations both play a major role in the excitation of δ Scuti stars and γ

Doradus stars, with the former mainly for warmer δ Scuti stars and the latter for cooler

δ Scuti and γ Doradus stars. This leads to the conclusion that there is no substantial

difference between the excitation mechanisms among these stars. Then the slight offset

of the γ Doradus instability strip compared to the δ Scuti instability strip in the study

by Xiong et al. (2016) only arises due to p modes being of higher frequency, and higher

frequencies are more likely in stars with higher Teff as discussed in Section 1.2.1.6).

Hybrid δ Scuti/γ Doradus stars are the key to improving our knowledge regarding

mode excitation mechanisms in intermediate mass stars and we need a statistically

large sample to make the advancement (Guo et al., 2016). This would aid a better

understanding of the effects of convection, rotation, tidal interactions, and nonlinearity

on pulsations.
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1.3 Pulsators in Eclipsing Binary Systems

Since the majority of stars belong to a binary or multiple system (Lampens, 2021), we

must think of a pulsating star in a binary as the ”normal” situation. It is well known

that binarity and, in particular, g mode asteroseismology complement each other and

there are a number case studies exploiting this (e.g., Maceroni et al., 2009, 2013; Welsh

et al., 2011; Chapellier & Mathias, 2013; Debosscher et al., 2013; Hambleton et al.,

2013; Keen et al., 2015; Schmid et al., 2015; Schmid & Aerts, 2016; Matson et al.,

2016; Zhang et al., 2020; Guo & Li, 2019; Guo et al., 2017a,b, 2019; Sekaran et al.,

2020, 2021). DLEBs with a pulsating component are especially useful but challenging

objects to study.

1.3.1 Complementary Methods

Seismic masses and radii can be derived for ensembles of solar-like oscillators because

the scaling relations do not require modes to be identified. For solar-like oscillators

existing in DLEBs, the independent and reliable measurements of the masses and radii

derived using conventional methods provide a way of determining the accuracy and

reliability of those derived from scaling relations, and thus their usefulness. Themeßl

et al. (2018) measured dynamical and seismic properties of pulsating red-giants; they

confirmed that the scalings are accurate when accounting for an empirically derived

value for the large frequency separation.

Sekaran et al. (2021) measured the fundamental parameters of the components

in the pulsating EB KIC 9850387 using conventional methods, as well as measuring

Π0 and ∆Pn,l of the l = 1 and l = 2 period-spacing patterns. The authors carried out

evolutionary modelling based on the fundamental properties, as well as a purely seismic

modelling of the period spacings. They find that binarity yields stronger constraints

on the conventional properties, e.g., M,R, Teff , log(g), while the modelling of g mode

period spacings yields stronger constraints on the internal properties, e.g., the con-

vective core mass Mcc, overshooting parameter fov, and mixing in the envelope Dmix.
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These findings demonstrate how the two data sets complement each other; each data

set provides stronger constraints for different types of stellar parameters.

DLEBs have been used to obtain constraints on overshooting in intermediate-

and high-mass stars (see Section 1.1.5.4). Since the net effect of overshooting is to

increase the convective core mass so the star appears brighter, it is degenerate with

stellar mass and classical constraints from binary systems are unable to distinguish

between different overshoot profiles (Sekaran et al., 2021). The presence of g modes in

these systems extends the analysis capabilities, enabling for the discrimination between

different overshoot prescriptions, such as step overshooting (also termed convective

penetration) and diffusive exponential overshooting. (e.g., Moravveji et al., 2015, as

outlined in Section 1.2.2.4 and Section 1.2.2.5).

Guo et al. (2017b) and Guo & Li (2019) found that the short-period EBs KIC

9592855 and KIC 7385478 both contain a γ Doradus pulsator that is tidally synchro-

nised at the surface as well as the near-core region. Guo et al. (2019) determined that

KIC 4142768 has a slowly-rotating core and a sub-psuedo-synchronous slow-rotating

surface. Such measurements allow for the calibration of the time-scales for synchroni-

sation at the surface compared to the core, and thus the time-scales associated with

angular momentum transport, which further aids in the discrimination among angular

momentum transport theories. Van Reeth et al. (2018) finds that differential rotation is

stronger in binary stars. They hypothesise that angular momentum transport between

the stars rotation and the orbit of the binary is facilitated by coupling between the tides

and g modes, and this induces differential rotation. This study of pulsations in binary

stars provides evidence that g modes participate in angular momentum transport.

1.3.1.1 Constraining Models

Assuming the complete set of conventional constraints derived from EBs, i.e., M,R, Teff ,

[Fe/H] (see Section 1.1.5.2), a successful model needs to simultaneously predict the radii

and Teffs of the components for their measured masses, whilst also satisfying the impo-

sition of coevality (single age and metallicity). If one of the components in the binary
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Figure 1.28: The resulting positions of the best fitting models from modelling the l = 1
and l = 2 period-spacings of KIC 9850387 in a Kiel diagram from the study by Sekaran
et al. (2021). The main plots show the full grid, and the insets show the resulting grids
after imposing spectroscopic constraints (solid box) and dynamical constraints (dotted
box). Results obtained from imposing ∆Pl=1 and ∆Pl=2 separately are shown by blue
and red symbols, respectively, and green symbols when they were imposed together.
Results from the full grid, spectroscopic grid, and dynamical grid are are indicated by
circles, triangles and squares. Left panel : results of using a χ2

red merit function and
right panel : results of using an MD merit function. Grey curves are MESA evolutionary
tracks with input parameters described in Sekaran et al. (2021). The error bars on the
asteroseismic solutions are based on 68% HPD intervals of the Monte Carlo parameter
distributions. Figure from Sekaran et al. (2021).
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is pulsating, it is possible to simultaneously model the pulsations; the model, coupled

to a pulsation code, must additionally predict the observed frequencies or period spac-

ing patterns to within the observational error. The binary measurements isolate the

location of the objects in the HR diagram and this leads to an exacting constraint on

the seismic component of the modelling. Conversely, the seismic constraints eliminate

any remaining elements of model flexibility (e.g., non-conventional parameters) which

act to lessen the strength of model comparison tests (see Section 1.1.5.2).

Fig. 1.28 shows the size of the parameter space of the resulting evolutionary model

grids after imposing spectroscopic constraints and binary constraints compared to the

full grid used in the purely seismic analysis by Sekaran et al. (2021). The resulting

grid based on binary constraints is significantly smaller, even compared to the grid

resulting from spectroscopic constraints. Indeed, binary constraints are more effective

than those that can be obtained for single stars, even when considering the luminosity

which can be derived for single stars (Sekaran et al., 2020) from asterometric data

provided by Gaia (Gaia Collaboration et al., 2016; Gaia Collaboration, 2018, 2021).

With binary constraints, the conventional properties are effectively eliminated from the

investigation, allowing for the intricate details of the model to be tuned more accurately

using the pulsation signatures.

The accuracy of a model required to successfully predict seismic observables when

binary constraints are imposed was demonstrated in the analysis of KIC 10080943 by

Schmid et al. (2015). This system was non-eclipsing so the complete set of binary

constraints were not available; only the imposition of coevality and the observed mass-

ratio could be used to constrain the seismic modelling. That said, the authors were

still not able to simultaneously predict the p modes and g mode period-spacings as

well as satisfying those constraints (Lampens, 2021).

Isolating the location of the objects in the HR diagram dramatically reduces the

parameter space in the seismic modelling, but since degeneracies exist among the free

parameters of the models (e.g., Valle et al., 2017), one might still expect an undesired

number of solutions. However, this is not the case because the binary constraints also

act to alleviate these degeneracies and the use of seismic diagnostics to constrain stellar
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theory is significantly improved, as shown by Johnston et al. (2019a).

1.3.1.2 Mode Identification

Since we can resolve the surfaces of pulsating stars in EBs during the eclipses, we can

identify the spherical wave numbers l and m of the nonradial modes by exploiting the

screening effect (using the spatial filtration or the dynamic eclipse mapping method

Gamarova et al., 2003, 2005; B́ıró & Nuspl, 2011; Lampens, 2021), allowing for a

comparison between observed and predicted pulsation modes.

Fuller et al. (2020) modelled the stellar response to the static tide, obtaining

tidally influenced oscillation frequencies as well as perturbed eigenfunctions. The per-

turbed eigenfunctions are found to be trapped at the pole, equator, or some interme-

diate lattitude (Guo, 2021). The associated amplitude and phase modulation of the

modes can be modelled and used as a mode identification method (e.g., Section 4.7).

1.3.2 The effect of Tides on Pulsations

Binarity implies several phenomena that interact with pulsations, which offer the op-

portunity to further our understanding of pulsations by investigating the influence of

these effects on their behaviour. Such effects concern mass transfer, which modifies

the structure in the envelope, and tides. Tidal effects can be classified into two cate-

gories. The non-wavelike equilibrium tide causes a global, static deformation whereas

the wave-like dynamical tide causes a harmonic tidal forcing with an associated angu-

lar frequency (Polfliet & Smeyers, 1990; Remus et al., 2012). The former influences

self driven pulsations while the latter excites pulsations (see Guo, 2021, for a review

of tides and mass transfer on pulsations in close binaries). We do not discuss mass

transfer given that here we are interested in detached configurations.
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1.3.2.1 The Equilibrium Tide and Pulsations

The static tide is associated with close binaries with circularised and synchronised

orbits. The associated deformation to the shape of the star may also imply deformation

of the pulsation cavity, changing the equilibrium properties that the pulsations are

derived from and modifying their eigen-functions (Polfliet & Smeyers, 1990). These

are tidally perturbed pulsations (TPPs) and were predicted theoretically by Reyniers &

Smeyers (2003a,b, sumarised in Balona 2018). Theory predicts equidistant splittings

of the modes spaced by the orbital frequency in the observed Forurier spectrum. The

multiplet structures observed for the pre-MS δ Scuti RS Cha can be interpreted as

TPPs (Steindl et al., 2021), similar to the conclusion for some of the p modes exibited

by U Gru (Bowman et al., 2019). The first tidally perturbed g modes were discovered

by Jerzykiewicz et al. (2020) for the SPB star π5 Orionis, followed by Van Reeth et al.

(2022) for V456 Cyg, after which Van Reeth et al. (2023) present a sample of close EBs

exibiting tidally perturbed g modes. This raises the question of how significant is the

effect of the equilibrium tide in the near-core regions (Lampens, 2021).

The tidal trapping of modes (Springer & Shaviv, 2013) later led to the interpre-

tation of tidally tilted pulsations (TTPs; Fuller et al., 2020), where the pulsation axis is

aligned with the tidal axis (Handler et al., 2022). As is the case for TPPs, tidal tilting

results in multiplet structures so TPPs and TTPs can each be considered sub-classes

of tidally split modes. The first TTPs were discovered in the ellipsoidal variable HD

74423 by Handler et al. (2020), followed by Kurtz et al. (2020) and then Rappaport

et al. (2021) in CO Camelopardalis and TIC 63328020, respectively. To discriminate

among TPPs and TTPs requires detailed investigations of the pulsation amplitude and

phase dependences with orbital phase.

The effect of the equilibrium tide is observed in the relationships between orbital

and pulsation properties for binaries containing δ Scuti stars. Soydugan et al. (2006)

observed a connection between the orbital period and dominant pulsation period for

these systems. Zhang et al. (2013) made the first theoretical justification for this

connection, where they find that the relation is a function of pulsation constant, filling
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factor of the pulsating component, and mass ratio of the system. Liakos & Niarchos

(2017) propose a threshold for a binary systems orbital period of 13 d beyond which

binarity does not affect pulsations. Kahraman Aliçavuş et al. (2017) almost doubled

this threshold by considering eclipsing systems only (Liakos, 2020).

1.3.2.2 The Dynamical Tide and Pulsations

Tidally excited oscillations (TEOs) occur when the forcing frequency associated with

the dynamical tide of an eccentric binary comes close to an eigen-frequency of a natural

oscillation mode (Aerts et al., 2010); the dynamical tide acts as the driving mechanism.

This causes the excitation of gravity modes that are multiples of the orbital frequency

(e.g., Welsh et al., 2011; Hambleton et al., 2013; Fuller, 2017; Guo et al., 2019) (pressure

mode frequencies are too high to be excited by the dynamical tide). They can be

observed in heartbeat (HB) systems containing A- F- and OB-type stars because their

radiative envelopes facilitate the propagation of gravity waves (Guo, 2021).

Asymptotic approximations of gravity waves were used to study tidally excited

waves by Zahn (1975, 1977) and Goldreich & Nicholson (1989), then extended to include

the effects of rotation by Mathis (2009). Numerical calculations include the effects of

non-adiabaticity and rotation (e.g., Savonije et al., 1995; Papaloizou & Savonije, 1997;

Savonije & Papaloizou, 1997), while the detailed calculations of Witte & Savonije

(1998, 1999) studied the binary evolution and intricate effects such as resonant locking

in massive stars (Guo, 2021).

TEOs are a direct manifestation of the dynamical tide. Hence, they provide the

opportunity to develop our understanding of tidal processes, e.g., tidal heating and

synchronisation, from the energy that is deposited by TEOs and their contribution to

angular momentum transfer (Guo, 2021).
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2 Methods

Having introduced the topics of EBs and asteroseismology, as well as their intersection,

it is evident that these fields’ advancement hinges on the crucial link to the stars

provided by photometric and spectroscopic data. These foundational datasets enable a

diverse range of analytical methods; we begin with the application of photometry and

then spectroscopy.
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2.1 Photometry

2.1.1 Photometric Measurement

The most accessible data acquisition method in astronomy is undoubtedly photometry

(Prša, 2018). Photometry converts brightness into a physical quantity. That physical

quantity may be the flux, or the magnitude (see below). Early instruments used to

perform photometry were e.g., photographic plates, and the first electronic photometric

device was the photoelectric multiplier. Now, photometry is usually carried out using

a charge-coupled-device (CCD), which is an array of photosensitive pixels recording

the photons striking each pixel (Prša, 2018).

The stellar flux is diluted with the square of the distance compared to the sur-

face value (Eq. B.7) because of the solid angle dependence, and reddened (see Section

1.1.4.6); atmospheric scattering and extinction introduce additional effects for obser-

vations taken from the ground. Considerations intrinsic to making a photometric mea-

surement are, e.g., instrumental efficiency of the optical assembly, quantum efficiency,

and the passband filter. Thus, the measured flux is,

F instrumental
λ = P(λ)Rext(λ)Roptics(λ)Rccd(λ)F bol

λ , (2.1)

where P(λ) is the passband filter transmission function, Fbol is the bolometric flux,

which is the flux integrated over the entire spectral energy distribution (SED), and the

remaining R coefficients account for the optical layout and extinction (Prša, 2018).

It is impossible to observe the entire SED (LeBlanc, 2010) and measurements

must be taken within a given wavelength range defined by P(λ), which dominates the

spectral range of the measurement response of the photometer. The instrumental flux

then needs to be transformed into a standard photometric system (see Bessell, 2005,

for an overview of determining the transformation equation), which is defined by a list

of standard magnitudes and colours measured in specific passbands for a set of stars

that are well distributed around the sky (Bessell, 2005). These may be broad-band

(∆λ < 1000Å), intermediate-band (70Å< ∆λ < 1000Å), narrow-band (∆λ < 70Å)
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photometric systems, or those which access infrared (IR) wavelengths (Bessell, 2005).

A series of broad-band systems are shown in Fig. 2.1.

For historical reasons, the fluxes are usually expressed in terms of magnitude

(Bessell, 2005). The magnitude measures the logarithmic value of the flux, which

conforms with the sensitivity of the human eye but takes the form of an inverse scale.

The modern definition of magnitude is,

m−m0 = −2.5 log
( F

F0

)
, (2.2)

where m0 is the magnitude zero-point that corresponds to the flux F0
1 (Prša, 2018).

The propagation of flux error to magnitude error is not symmetric. The errors can be

calculated following Prša (2018) as,

σ±
m = −2.5 log

(
1 ± σF

F

)
, (2.3)

where σF,m are the standard deviation of the measurements. It is customary to either

use σ+ or take an average between the two (Prša, 2018).

A colour index is defined by the difference between the magnitudes measured

in two photometric bands. From these quantities, we introduce the observational HR

diagram – the Colour-Magnitude diagram – where colour represents the Teff . In or-

der to make adequate comparison between theory and observation, much effort goes

into converting passband magnitudes and colours into those which corresponds to the

bolometric flux and Teff , respectively (Bessell, 2005).

2.1.2 Photometry from Space

Photometric space campaigns such as Kepler (Koch et al., 2010; Borucki et al., 2010),

K2 (Howell et al., 2014), TESS (Ricker et al., 2015), CoRoT (Baglin et al., 2006; Au-

vergne et al., 2009) and BRITE (Weiss et al., 2014), have delivered a large amount of

1The UVBRI systems magnitude zeropoints were set by defining Vega to have colours of zero. Its
resulting magnitude is 0.03 in all passbands (Bessell, 2005).
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Figure 2.1: The series of the Johnson-Cousins (Johnson, 1965; Cousins, 1976), Wash-
ington (Canterna, 1976), SDSS (Abazajian et al., 2003, 2004), Hipparcos-Tycho (Per-
ryman et al., 1997), HST (Holtzman et al., 1995) photometric systems. Also shown
are the central wavelengths of the passbands in nm. Figure from Bessell (2005).
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photometric data with precisions on the order of tenths of a mmag (see Southworth,

2021, for a review). The unprecedented precision has allowed for the detection of ex-

tremely low-amplitude pulsation frequencies (Murphy et al., 2013; Bowman & Kurtz,

2018) while long sequences of continuous observations (Lehmann et al., 2013) means

that longer period pulsations can be studied. Such observations are not subject to

aliasing issues and photometric stability problems associated with ground based obser-

vations (Breger, 2000; Liakos, 2020; Grigahcène et al., 2010).

Such issues mainly affect the γ Doradus frequency range. Therefore, it is no

surprise that space missions led to the discovery that hybrid behaviour is common

(see Section 1.2.3.3), in contrast to the view based on observations from the ground.

The full interior-probing potential of g mode period-spacing patterns, discussed in

Section 1.2.2.4, was unlocked due to the advent of the high-precision, high duty cycle,

space-based photometric data, allowing us to further our understanding of near core

phenomena (Saio et al., 2015; Lovekin & Guzik, 2017; Sekaran et al., 2020).

The number of known EBs has benefitted significantly because of photometric

campaigns from space. There are 2878 EBs detected by Kepler and presented in the

Kepler Eclipsing Binary Catalogue (KEBC) by Kirk et al. (2016); Deleuil et al. (2018)

catalogued 2269 EBs detected by CoRoT; 4484 EBs observed by TESS have been

catalogued (Prša et al., 2022). These large samples have the potential to reveal many

EB candidates suitable for use in refining stellar theories, as well as those that show

pulsation signatures (see, Grigahcène et al., 2010; Murphy, 2018; Gaulme & Guzik,

2019; Guzik, 2021; Shi et al., 2022). At least 2000 δ Scuti stars have been detected

in the main Kepler field of view alone (Balona & Dziembowski, 2011; Balona, 2014a;

Bowman et al., 2016).

The studies presented later in this work use data obtained by Kepler and TESS.

Further details are provided for these missions in the next two subsections. Further

information about the other space missions that have been mentioned can be found in

the corresponding references.
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2.1.3 Kepler

2.1.3.1 Mission Overview

The Kepler space telescope was launched in March 2009 with the primary aim of

detecting Earth-like extrasolar planets in the habitable zones around solar-like stars

by continuously monitoring the brightness of ∼ 150000 MS stars; solar-like stars were

preferred to maximise the results. Distinguishing between dwarfs and giants led to

measurements for Teff and log(g) being compiled in the Kepler Input Catalogue (KIC)2,

which was used to rank and select stars (Batalha et al., 2010). As a by-product of

Kepler ’s primary objective, the mission has also provided a huge amount of high-

quality data on stars and stellar systems (Hong et al., 2022; Kahraman Aliçavuş et al.,

2022).

The telescope on board was a 1 m class Schmidt telescope with a 0.95 m aper-

ture and a 115.6 deg2 field-of-view (FOV) pointed in the direction of the constellations

Cygnus and Lyra for the entirety of the mission. The decision to choose the constel-

lation Cygnus and Lyra was partly motivated by the 55◦ sun avoidance angle of the

telescope, which meant that the star field was limited to > 55◦ above the ecliptic plane;

the Cygnus region appeared to be the richest choice (Koch et al., 2010).

The spacecraft maintained a continuous pointing on the single region of sky by

occupying an Earth-trailing heliocentric orbit of 372.5 days. There is a multitude

of advantages associated with pointing to a single region of the sky, e.g., selecting

the richest available star field, optimising spacecraft design, simplifying operations,

etc, (see, Koch et al., 2010); additional advantages associated with the orbit are an

enhanced stability regarding the pointing attitude and the avoidance of high radiation

dosages related to earth orbits. The most important advantage in the context of this

work is maximising the duty cycle, allowing for continuous asteroseismic measurements

to be made over long periods of time (see Gilliland et al., 2010a, for details regarding

the Kepler asteroseismology program).

2The KIC can be accessed at: https://archive.stsci.edu/kepler/kepler_fov/search.php.
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To keep the solar arrays pointed toward the sun during its Earth-trailing he-

liocentric orbit, the spacecraft was rotated by 90◦ every three months (one quarter).

Thus, the data are split into quarters defined by successive rotations. Most of the same

stars remain visible during each quarterly rotation due to the four-way symmetrical

pattern covered on the sky by the photometer on board, which was an array of 42

CCDs arranged in 21 modules, each with 2200x1024 pixels.

The data were collected via two modes of observation; long cadence (29.5 min

sampling rate) provides the primary data for planet detection, and short cadence (58.5 s

sampling rate) allows for improved timings of planetary transits and facilitates aster-

oseismology3 (Koch et al., 2010; Gilliland et al., 2010a). The photometric precision of

these observations was sufficient to detect a 6.5 h transit from an Earth-sized planet

passing in front of a 12th-magnitude G2 star at the 4σ level (Borucki et al., 2010; Koch

et al., 2010). This was achieved by ensuring that the combined differential photometric

precision (CDPP) remained below ≤ 20 ppm (an Earth-Sun transit produces a signal

of 84 ppm).

The CDPP calculation considers shot noise, stellar variability and measurement

noise added in quadrature. Considering that the Sun’s variability during solar maxi-

mum on the timescale of a transit is typically 10 ppm (Koch et al., 2010), the shot noise

and measurement noise were budgeted at 14 and 10 ppm, respectively. The shot noise

demand was met by the 0.95 m aperture for a solar-like star with a visual magnitude

(V) of 12, and the demand in measurement precision required a pointing stability of

better than 0.003 arcsec / 15 min and a thermal stability of the CCD better than 0.15 K

d−1.

The shot noise budget is met when 5 billion photoelectrons are obtained in 6.5 h.

During a single 6.02 s integration, this corresponds to 1.4 million electrons. Considering

Kepler ’s tightest pixel response functions (PRFs) concentrate 60% of the energy into

a single pixel, stars with a brightness exceeding Kp ∼ 11.5 will saturate the detector

3Asteroseismology with Kepler is conducted by the Kepler Asteroseismic Science Consortium
(KASC): https://phys.au.dk/~hans/KASC/.
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Figure 2.2: The Kepler passband. Figure from Koch et al. (2010).

depending on the FOV. However, the photometric aperture size could be adjusted

for saturated stars in order to preserve the photometric precision. Stars fainter than

Kp ∼ 15 are also useful because shot noise dominates over instrumental noise. The

dynamic range in magnitude for Kepler was from at least Kp = 7 – 17 (Gilliland et al.,

2010b; Koch et al., 2010).

The passband response was > 5% between 423 – 897 nm, defining its spectral

range, which was chosen to maximise the signal-to-noise (S/N) for solar-like stars. The

blue cutoff (< 423 nm) avoids UV and the Ca II H and K lines. Also, 60% of the Sun’s

irradiance variation occurs below 400 nm, yet photons below 400 nm only account

for 12% of the Sun’s flux (Krivova et al., 2006). The red cutoff avoids fringing due to

internal reflection of light in the CCDs. Note, the overall measurement response within

the passband is determined by a combination of the optics, the quantum efficiency (QE)

of the CCDs, as well as the BP filters (Koch et al., 2010) (see Fig. 2.2). The maximum

of the spectral response is at ∼ 575 nm (Van Cleve & Caldwell, 2016).

The original Kepler mission lasted until May 2013 when it lost two of its reaction
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wheels. In May 2014, NASA authorized the spacecraft’s repurposing to observe the

ecliptic plane as part of the K2 mission.

2.1.3.2 Kepler Data

After receiving and calibrating the raw pixel values, the data pass through the Kepler

photometric analysis module. The photometric analysis module of the Kepler Science

Operations Centre (KSOC) data processing pipeline is responsible for generating the

flux time series and centroid time series for each of the target stars observed (Jenkins,

2017). Secondary photometric analysis functions are also performed by the Pre-search

Data Conditioning (PDC) module before going through the transit planet search mod-

ule and finally data validation

Prior to computation of the fluxes by the photometric analysis module, ar-

gabrightening events are mitigated, cosmic rays are removed, and a background es-

timate is subtracted from the pixels in the target apertures (Witteborn et al., 2011;

Jenkins, 2017). To optimise the photometric figure of merit, a subset of pixels is col-

lected for each target based on factors such as the estimated S/N at each pixel, the

CDPP of light curves produced by candidate apertures based on these pixels, as well

as other heuristics (Jenkins, 2017). The photometric flux at each cadence is then cal-

culated from the optimal apertures by summing the constituent pixels (Jenkins, 2017).

This is simple aperture photometry and gives rise to the Simple Aperture Photomet-

ric (SAP) fluxes. See Jenkins (2017), chapter 6, for more details on the architecture

and algorithms of the photometric analysis component of the KSOC data processing

pipeline that are used to generate the SAP fluxes.

Secondary functions of the photometric analysis module compute metrics to mon-

itor instrument performance and support systematic error correction in the PDC mod-

ule, giving rise to the PDCSAP fluxes. The PDCSAP fluxes are corrected for light

curve signatures that correlate with error sources from the telescope and spacecraft

(e.g., pointing drift, focus changes, and thermal transients), data anomalies such as

the Sudden Pixel Sensitivity Dropouts (SPSDs), residual outliers and data gaps (such
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as during intra-quarter downlinks), as well as excess flux in the target apertures due

to background sources (Jenkins, 2017). The systematic artifacts are characterised by

quantifying the most common of such features to hundreds of strategically-selected

quiet targets on each detector channel. Then for each channel and quarter, the char-

acterisations are stored as 16 best fit vectors called Cotrending Basis Vectors (CBVs),

representing the most common trends found over each channel ranked by relative am-

plitude that they contribute to the overall systematic trend (Dotson, 2012). The CBVs

are then subtracted from the SAP time-series. This correction is unique to each target

and can be tuned (see Jenkins, 2017, chapter 8, for an in-depth overview of the PDC

architecture and algorithms used to generate PDCSAP light curves).

The detrending and correction procedures in the PDC module were designed with

the objective in mind to hunt planets. Thus, the additional processing could introduce

unwanted artifacts (e.g., Balona et al., 2011; Balona & Dziembowski, 2011) and biases

for other science cases. In particular, the processes could affect pulsation signatures.

On the other hand, users need to be aware that SAP light curves can be contaminated

by astrophysics from neighbouring sources, as well as motion and focus systematics

(Dotson, 2012). However, asteroseismology of δ Scuti and γ Doradus pulsators based on

the SAP fluxes have been hugely successful because signals associated with frequencies

≳ 1 d−1 are mostly unaffected by the majority of instrumental aritifacts (Balona &

Dziembowski, 2011; Balona et al., 2011; Dotson, 2012).

Both the SAP and PDCSAP flux measurements are available at the Mikulski

Archive for Space Telescopes (MAST)4.

2.1.4 TESS

2.1.4.1 Mission Overview

The Kepler mission revolutionised exoplanetary science by revealing that planets with

masses between that of Earths and Neptunes are abundant with a wide range of posi-

4https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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tions and configurations (Ricker et al., 2015). However, given that most of the Kepler

stars are too faint for detailed follow-up observations, the next logical step would be

to search the nearest and brightest stars for transiting planets. This was the objective

of the Transiting Exoplanet Survey Satellite (TESS) mission.

TESS’s primary mission goal is to identify numerous transiting planets smaller

than Neptune orbiting stars bright enough to facilitate subsequent spectroscopic follow

up observations for a comprehensive understanding of these planets’ characteristics.

This objective led to the implementation of an all-sky survey because the brightest

stars are generally evenly distributed across the celestial sphere. Consequently, the

collected data were grouped into sectors based on their positions in the sky.

Stars with spectral types earlier than F5 exhibit rapid rotation, leading to broader

spectral lines. This broadening effect imposes limitations on the precision with which

RVs can be determined, so these stars are not ideal for spectroscopic follow up obser-

vations. Contrarily, stars with spectral types later than M5 are both rare and optically

faint. Therefore, TESS focuses its observations on MS dwarfs with spectral types be-

tween F5 – M5. TESS pre-selected 2 × 105 such stars, based on transit detectability,

to observe with a cadence of 2 min. A sampling of 2 min satisfies the requirements for

transit observations as well as enabling asteroseismology5 (Ricker et al., 2015). The

limiting magnitude of the selected stars in the Cousins I band (Ic) is Ic ≤ 10 –13, de-

pending on spectral type. TESS also observes with a 30 min cadence using the entire,

four camera field of view (24◦ × 96◦), and stores the data as full frame image (FFI)

files to facilitate additional science.

A passband range of 600 – 1000 nm was chosen due to the following considerations.

First, a wide spectral range reduces shot noise, but if the range is too wide, this presents

challenges in constructing a wide-field and well-focused optical system. Also, sensitivity

at redder wavelengths is desired in order to detect small planets; small planets are more

easily detected around small stars, which are cool and red (Ricker et al., 2015). The

5Asteroseismology with TESS is conducted by the TESS Asteroseismic Science Consortium
(TASC): https://tasoc.dk/info/tasc.php.
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Figure 2.3: The TESS passband. Figure from Ricker et al. (2015).

TESS passband is centred on the traditional Cousins I band at 786.5 nm, but wider,

as shown in Fig. 2.3.

The aperture of the space telescope is 10 cm, chosen as of the predicted require-

ments for detecting hundreds of super-Earths. This is smaller than the 0.95 m aperture

of the Kepler telescope. The advantage of a smaller aperture is that it provides a larger

field of view. Similar photometric performance to Kepler was expected by TESS, with

an expected bright limit of Ic ≈ 4.

The TESS orbit is high and elliptical with a period of 13.7 d around Earth. The

high Earth orbit provides a more stable platform for precise photometry than a low

Earth orbit (Ricker et al., 2015) and the approximate perigee at a distance of 17 times

the radius of Earth means the spacecraft would be close enough to Earth, for at least

a portion of the orbit, to facilitate data transfer (Ricker et al., 2015). At perigee, the

science operations are interrupted for ≤ 16 h for data downlink.
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2.1.4.2 TESS Data

The TESS science pipeline was developed by the Science Processing Operations Centre

(SPOC) at NASA Ames Research Centre based on the KSOC pipeline (Jenkins et al.,

2016a). Thus, like the Kepler pipeline, TESS provides calibrated pixels, simple and

systematic error-corrected aperture photometry, and centroid locations for all 200,000

of its targets observed over the 2 yr prime mission, along with uncertainties. Since

SPOC is based on KSOC, the architecture and algorithms are similar; the photometric

analysis module provides the SAP fluxes and the PDC module corrects for systematics

to yield the PDCSAP fluxes, where both measurements are, again, available via MAST.

A detailed discussion of the SPOC architecture and algorithms is provided by Jenkins

et al. (2016a). Similar arguments can be made as in Section 2.1.3.2 about the benefits

and drawbacks of using the PDCSAP or SAP fluxes.

A significant difference between TESS and Kepler is that the TESS FFIs are

collected using a 30 min cadence compared to Kepler ’s monthly FFIs. This is important

because it makes the FFIs amenable to a broader scope of scientific cases, e.g., time-

series analyses of eclipsing binary stars (Ricker et al., 2015).

2.1.5 Light-Curve Modelling

Given a time series of photometric measurements collected, e.g., by NASA as described

in the previous section, of an EB, we can construct a light curve and, hopefully, observe

some eclipses. Modelling the light lost during eclipses becomes analytically feasible

when assuming uniformly illuminated spheres, as demonstrated in Section 1.1.3.2. The

shapes of the eclipses depend solely on the geometrical parameters of the stars in their

relative orbit and the ratio of their surface brightnesses. However, when radiative

effects like limb darkening, reflection, and asphericity come into play, the calculations

require a different approach. Such calculations involve summing up light contributions

from discretised surface elements across the stellar discs, allowing for more realistic

representations of stars in the presence of such complexities. The contribution of each
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surface element to the total system light depends on its visibility and the extent to

which it is influenced by radiative effects. Before employing numerical codes to perform

these calculations, light curve analyses usually involve preliminary procedures.

2.1.5.1 Preliminary light curve analysis

The light curve should be studied carefully to identify systematic trends and outlying

data points, and then corrected for them. Such detrending might still be necessary

for both the SAP and PDCSAP Kepler/TESS light curves; the former are already

processed by the primary functions of the photometric analysis modules and the latter

by further secondary functions. Fig. 2.1.5.1 (left) shows a SAP light curve for the

Kepler EB KIC 4851217, where there is an overlaid systematic trend and outlying data

points.

Difficulty describing the systematic trend in Fig. 2.1.5.1 mathematically arises

because of the ellipsoidal brightening at phases of quadrature. In the absence of such

effects, one can simply mask the eclipses and model the baseline flux. In Fig. 2.1.5.1, a

second-order polynomial was fitted to fluxes that correspond to positions of quadrature,

i.e., the maximum of the ellipsoidal brightening, to estimate the systematic trend.

Subtracting the difference between this model and the median flux of the light curve

yields a model for the local median level of out-of-eclipse flux. This is then divided out,

removing the systematic trend. Outlying data points (purple crosses in Fig. 2.1.5.1)

were located by subtracting a smoothed version of the light curve and rejecting positions

with residuals larger than an appropriate threshold determined by visual inspection.

The right panels in Fig. 2.1.5.1 shows the result after detrending (top) as well as phase

folding (bottom). Other modulating signals, e.g., starspots, also introduce difficulties in

obtaining a cleaned light curve. Starspots can be fitted with combinations of sinusoids

and divided out prior to light-curve modelling (e.g., Chapter 5, Section 5.2).

After such preliminary steps, the light curves are ready for modelling using ded-

icated codes.
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Figure 2.4: Left; raw SAP light curve of the Kepler EB KIC 9851944 from quarter-2
with clipped data and data used to estimate the systematic trend model indicated.
Right; detrended light curve as a function of time (top) and phase (bottom).

2.1.5.2 jktebop

The jktebop code (Southworth et al., 2004a) is based on the EBOP code (Etzel,

1975). The EBOP code uses the NDE biaxial ellipsoidal model (Nelson & Davis,

1972) to approximate stellar shapes with modifications as described in Popper & Etzel

(1981). A further modification incorporated in jktebop is the use of the Levenberg-

Marquardt minimisation (lm) algorithm to optmise the eclipse parameters (Southworth

et al., 2007). The NDE model is simple and efficient, involving relatively few calcu-

lations compared to, e.g., the wd code which employs the full Roche prescription of

equipotential surfaces (Wilson & Devinney, 1971). Using this model, jktebop discre-

tises the stellar discs into concentric rings from which contributions are summed up

using simple numerical integration.

The biaxial ellipsoid approximation to stellar shapes is only satisfactory up to

values for the oblateness of ∼ 0.04 (Popper & Etzel, 1981; Taylor, 2006). Thus, jkte-

bop is appropriate for EBs that are well detached so the shapes are close to spherical;
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systems with fractional radii of up to r ∼ 0.25 are limiting cases of applicability (North

& Zahn, 2004).

The adjustable parameters of the jktebop code are those which are most closely

related to the shape of the light curves. These are: r1, r2, k, J , third light contamination

L3, i, q, and the Poincairé elements e sinω and e cosω (see Section 1.1.3.2) as well as P

and T0. A scale factor associated with the out-of-eclipse light of the system as well as a

parameter describing the phase of T0 relative to phase zero are also included. Reflection

coefficients can also be included in the fit, which is dealt with in a simple bolometric

manner based on Binnendijk (1960) and calculated from the geometry of the system.

The approximation breaks down for largely non-uniform temperature distributions over

the surfaces of the components or when the Teffs of the components differ significantly.

Significant extentions to jktebop were presented in Southworth et al. (2007)

and Southworth (2008), allowing spectroscopic light ratios and times of minimum light

to be input as observational data, and the implementation of non-linear limb-darkening

laws including the quadratic, square root, logarithmic, cubic, and power-2 laws; the

associated limb darkening coefficients may be included or fixed in the fitting procedure.

Southworth (2013) introduced simultaneous fitting of the light curve and RVs of both

stars in jktebop.

Estimations for the uncertainties are produced by the lm algorithm calculated

from the solution covariance matrix, but are unreliable in the presence of parameter

correlations (Southworth, 2008). Correlations arise, e.g., between the ratio of the radii

and light ratio when eclipses are partial (Southworth et al., 2005a). The method of

Monte Carlo has been implemented within jktebop to evaluate random errors and

correlations of the parameters derived from a jktebop light curve fit (Southworth

et al., 2004b). In this method, a best fit to the actual data is used to generate a

synthetic light curve with the same sampling, and added Gaussian noise of the same

magnitude, as the observations. Fitting for the synthetic light curve in the same way

as the observations many times, but perturbing the initial parameters so the result is a

distribution of best fitting parameters, allows for detailed exploration of the parameter

space and parameter correlations (Southworth, 2008), similar to the results of the



105

Markov Chain Monte Carlo techniques.

The Monte Carlo algorithm does not properly account for correlated ’red’ noise

(Southworth, 2008). Systematic errors can be assessed using the residual-permutation

algorithm that is also implemented in jktebop. This algorithm shifts the residuals of

the best fitting light curve solution to the next data point on each iteration, with those

at the end of the data set being wrapped around to the start (Southworth, 2008). A fit

is repeated after each shift, resulting in a distribution of fitted parameter values, from

which uncertainties can be assessed after a full cycle of iterations and the residuals are

back where they started.

2.1.5.3 Wilson Devinney code

For binary systems where the oblateness or fractional radii of the components exceeds

the limitations of the jktebop code, a full discretisation of the Roche equipotential

surfaces describing the shapes of the components is required. An example of a light

curve code which utilises the Roche model is the Wilsen-Devinney (wd) code (Wilson

& Devinney, 1971; Wilson, 1979), where points are defined on the surface of the star,

distributed approximately uniformly in spherical coordinates, and the model is fitted

to observations using differential corrections.

Fitted parameters include P , T0, e, ω, i, q, the rotational velocities of the stars

vrot,1 and vrot,2, the gravitational potentials ϕ1 and ϕ2, Teff,1, Teff,2, the light contri-

butions l1 and l2, gravity brightening coefficients β1 and β2 and reflection coefficients

R1 and R2. The effective wavelength of the observations λ is supplied as a control

parameter. Reflection coefficients are calculated by considering the irradiation of each

individual discretised surface element due to every surface element on the other star,

and are very computationally expensive calculations. The WD code allows for linear,

logarithmic, and square root laws to account for LD.

The disadvantage of using the wd code is that it is computationally expensive so

is much slower than jktebop. The advantage of using the WD code is that it allows

for a very realistic approximation of the shapes of the components in a binary system,
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regardless of morphology. The WD code is described in Wilson & Devinney (1971)

and Wilson (1979, 1990, 2008).

An alternative to the WD is the phoebe code which portrays a similar level of

sophistication and realism in approximating the components of binary systems (Prša

et al., 2016), and indeed the original phoebe code was based on wd. The phoebe2

code is not.
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2.2 Spectroscopy

Photometric observations measure the flux integrated over some wavelength interval

across the SED of the star whereas spectroscopic observations measure the flux as a

function of wavelength. This allows the study of both spectral lines and the continuum

of the SED depending on the resolving power of the spectrograph, which is defined as,

R =
λ

∆λ
, (2.4)

where ∆λ is the wavelength interval over which the spectrum is measured and λ is the

wavelength location in the spectrum, i.e., λmin + n∆λ, where n is an integer between

unity and the number of wavelength intervals defining the length of the spectrum.

Thus, the measured spectrum is a discretisation of the continuous spectrum and the

resolving power changes across it. The measured intensity at λ corresponds to the flux

integrated across ∆λ, so ∆λ behaves like a fine photometric band. In fact, the lowest

resolution spectra have values for ∆λ of around 10 – 50 Å, which is comparable to some

narrow-band photometric systems (Bessell, 2005).

Such low resolution spectra offer the opportunity to measure the stellar contin-

uum because most of the detail (e.g., spectral lines) is averaged out over ∆λ. Con-

versely, detailed studies of the stellar atmosphere requires high resolution observations

(∆λ ∼ 0.01 Å) in order to capture the detailed shapes of line profiles (see Section 2.2.6).

2.2.1 Spectrographs

The basic astronomical spectrograph consists of an entrance slit at the focus of the

telescope to control how much light enters the spectrograph, a collimator that intercepts

the divergent telescope beam, a dispersing element to split the light, and a camera that

focuses the dispersed light onto a detector.

The dispersing element may be, e.g., a prism or plane diffraction grating. In

astrophysics, reflection gratings are used where the grating consists of a large number

of parallel grooves which are smooth, of the same shape and equally spaced. Light
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reflected by the grating is the sum of all contributions of diffracted wavelets from all

portions of the grating, with their corresponding phase shifts, directed in an arbitrary

direction (Gray, 2005).

As with the classical example of the diffraction of monochromatic light through

two slits, i.e., the Young double slit experiment, the resulting interference pattern

consists of maxima and minima. Interference maxima are recognised by their order

n, which increases with diffraction angle away from the central, zeroth order (n =

0) maximum. Illuminating a reflection grating with polychromatic light results in a

collection of interference maxima for each order, comprising the nth order spectrum; the

zeroth order spectrum is undispersed, or white light (Gray, 2005). The number of orders

increases with the number of grooves in the grating and the dispersion of wavelengths

increases for higher orders. The dispersion also increases for smaller spacing between

the grooves. Increasing the dispersion means increasing the resolution, and therefore,

since typical grating spectra work in low orders, they require a small spacing between

grooves (e.g., 300 – 1200 lines/mm) to reach the appropriate resolution (Gray, 2005).

On the other hand, cross dispersed échelle spectrographs work in high orders

(n> 80) to attain high resolutions, but only use around, e.g., 79 lines/mm. A cross

dispersing grating or prism is used to separate and stack the orders, requiring a two-

dimensional detector to record them (Gray, 2005). The combination of working with a

large groove spacing and high orders allows a large wavelength range to be observed at

high resolution. Each order contains a cut of the entire spectrum which overlap with

increasing extent for bluer wavelengths because dispersion is also higher for smaller

wavelengths.

2.2.2 Reduction

Raw spectrographic observations are 2D. For spectral analysis, these observations are

first extracted into 1D by summing up the flux measurements along the spectral axis

at each pixel in the dispersion axis. The dispersion axis must be calibrated from pixel

units to wavelength units. This is done by assigning the known wavelength values of a
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selection of familiar lines in the spectrum to the corresponding pixels. A polynomial fit

of wavelength against pixel number determines the wavelength solution. Normalisation

usually involves fitting a series of polynomials to a selection of regions free of lines

to estimate the continuum. Alternatively, spectra can be compared to theoretically

calculated synthetic spectra. In Section 2.2.2.2, the normalisation of échelle orders is

considered but the method can be adapted to normalise grating spectra. Each of the

stages which are outlined in the following sections regarding the processing of the 1D

extracted spectra and determination of RVs have been implemented in a code written

by myself (specorb; see Section 2.2.4).

2.2.2.1 Cosmic Ray Correction

Cosmic rays are high energy ions and electrons originating mostly from outside the

solar system (Lee, 2001) and partly from the outer region of the heliosphere (i.e.,

solar cosmic rays). Cosmic rays manifest in the extracted spectrum as a spike in flux.

The rate and density of cosmic ray events depends on the location of the observatory,

altitude, and shielding; at mid-point altitudes and at sea-level, a 2 h exposure results

in 1 event/mm2 on the detector (Gray, 2005).

Cosmic ray spikes need to be located and removed for spectral analysis. Moti-

vated by the process from Blanco-Cuaresma et al. (2014a), we resample the spectra

onto a homogeneous grid with a step size which is small enough to respect the original

sampling at all wavelengths. The spectra are then smoothed using a median filter

with an appropriate kernal sufficient to remove the cosmic rays without smoothing

out spectral features, and then they are resampled back onto the original grid. Pixel

locations where the difference between the smoothed and original fluxes is larger than

σ times the observed flux, where σ is a value determined via trial and error (typically

between 0.01 and 0.05), are flagged. The corresponding fluxes can then estimated by

interpolating between the flagged pixel locations.
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2.2.2.2 Blaze Correction of Échelle Orders

A systematic defect of échelle spectra arises due to the non-uniformity in the sensitiv-

ity of the detecting chips which results in more flux being detected in their centres.

This issue manifests within échelle orders as a curve in the continuum baseline and is

mathematically described by the so-called blaze function, which should be divided out

prior to spectral analysis. A theoretical model can be calculated, which depends on

the grating parameters, and divided out. However, the observed blaze function may

contain departures from the theoretical prediction, leaving residual variations in the

resulting blaze corrected continuum (Xu et al., 2019). Another approach is to divide

by the blaze of a flat field calibration source, e.g., a lamp. Difficulties in this approach

arise due to the black body signature of the calibration source being superimposed

on the blaze function. To avoid such difficulties, the blaze function can be modelled

empirically. However, blaze correction via polynomial fitting requires those of high

orders to follow the slope of the blaze (Xu et al., 2019), and poses the risk of spurious

modelling of the continuum in the presence of strong spectral lines.

We employ the method of Xu et al. (2019). An alpha shape (Edelsbrunner et al.,

1983), which is a polygon enclosing the data set, is calculated to capture the general

shape of the blaze function. This entails tracing the shape of the spectrum with a circle

of radius α (see figure 1 of Xu et al., 2019). Local polynomial regression (Cleveland,

1979) is then used to fit a model to the upper boundary of the alpha shape and used as

a preliminary estimation for the blaze function. Local polynomial regression is more

suited to modelling complex data than ordinary polynomial regression owing to its

ability to adapt to local characteristics compared to fitting a single model (Xu et al.,

2019); at each pixel, a polynomial model is calculated by weighted least squares, giving

more weight to points closer to the subject pixel. The spectrum is then divided by this

preliminary model, resulting in a first estimation for the normalised spectrum.

No consideration has yet been made in order to ensure that the blaze estimation

did not dip into spectral lines. To address this, the first estimation for the normalised

spectrum is split into windows separated at points where the upper boundary of the
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alpha shape calculated in the previous step intersected the original spectrum. The

point of normalising by the preliminary estimation of the blaze function is so that the

fluxes within these windows can be split into local quantiles q relative to the same

continuum level (i.e., ∼ 1). Flux values that lie within the 1 − q upper quantile are

selected and the polynomial regression is iterated using these fluxes only. These points

generally do not lie in absorption lines (Xu et al., 2019) because of the way in which

the windows localising the quantiles were defined. However, it may be necessary to

manually mask lines which are known to require special attention, e.g., the Balmer

lines.

It is recommended to use,

α =
max(λ) − min(λ)

6
, (2.5)

when performing this operation using the python implementation afs by Xu et al.

(2019). Good results are then typically observed for q = 0.95, such that 5% of the

fluxes within each window are used in the final regression, and m = 0.25, where m

determines the smoothness of the polynomial fit to the points in the upper quantiles.

For high S/N, one may trust that all fluxes at the height of the spectrum belong to the

continuum, and as such choose q = 0.99. Though usually, the true continuum will be

slightly lower than the upper 1-percentile that is usually dominated by noise.

The method outlined here demonstrates the basic considerations for normalising

spectra, in general, so can be adapted and applied to normalise grating spectra.

2.2.2.3 Edge Correction

Since the blaze function approaches zero at the edges, small errors in the estimation

of the blaze function there are magnified upon division (Xu et al., 2019). A further

difficulty arises when the edge of an order splits an absorption line. However, échelle

orders overlap (see Section 2.2.1) and a weighted average of the overlapping fluxes

yields a better estimation in those regions.

Employing the method of Xu et al. (2019), we apply the weights such that fluxes
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further away from the edge within their own order are favoured, i.e.,

ycorrected = wly1,l + (1 − wl)y2,l, l = 0, ..., n− 1, (2.6)

where y1,l and y2,l are a pair of fluxes corresponding to pixel l from the overlapping

sections of the left and right order respectively, n is the total amount of pixels in the

overlapping region and wl = 1 − l/(n− 1). When l = 0, y2 is the flux at very left edge

of the right order and y1 is the flux that is furthest from the right edge in the left order;

wl is maximum in this circumstance and y1 is favoured.

Note, the orders have to be re-sampled onto a new axes with a globally shared

wavelength increment before the edge correction procedure is carried out. Failing to

do so introduces shifts in the pixel locations of corresponding fluxes relative to each

other in the overlapping region, i.e., l1 ̸= l2 and n1 ̸= n2

2.2.2.4 Merging Échelle Orders

The result of the edge correction procedure is that neighbouring orders share a common

edge. Fluxes can, therefore, be merged directly without resulting in discontinuities.

Fig. 2.5 shows the result of the boundary correction applied to three spectral

orders between 5900 – 6200 Å, each normalised as described in Section 2.2.2.2. The

orders in Fig. 2.5 are from spectral observations of the Kepler EB KIC 9851944. The

overlapping regions can be deduced because orders plotted in red possess a degree of

transparency. The inset magnifies the point of departure between two orders at the

position indicated by the grey vertical dashed line. No discontinuities are observed

meaning that the fluxes can be resampled onto a homogeneous wavelength scale cover-

ing the full spectral range after truncating the spectra in the centre of the overlapping

regions to ensure no fraction of fluxes are duplicated.

Note that the spectra in Fig. 2.5 are broadened due to the rotation of the com-

ponents in KIC 9851944, and the S/N is relatively low. The reader is encouraged to

see Fig. 2.6, which shows the result of the normalisation procedure described here, but

applied to the standard star HD 10606.
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Figure 2.5: The normalised and boundary-corrected spectral orders between 590 –
620 nm. The dotted horizontal line indicates unity for reference. The inset shows
a close-up of the departure of two overlapping orders at the position indicated by the
vertical dashed line. Spectral orders plotted in red are transparent such that overlap-
ping regions are a darker shade of red.
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We employ the python implementation spectres (Carnall, 2017) for the re-

sampling of spectral fluxes, which uses a weighted method to assign the correct fraction

of fluxes into the appropriate bins.

2.2.3 Radial Velocity Analysis

2.2.3.1 Radial Velocity Extraction

Expanding on Section 1.1.2.4, the RV is the component of a star’s velocity that we

can measure because the locations of spectral lines are sensitive to RV via the Doppler

effect,

λ− λ0

λ0

=
∆λ

λ0

=

√
1 + (V/c)

1 − (V/c)
− 1, (2.7)

where λ is the observed wavelength of light emitted from a source, λ0 is the wavelength

of the corresponding light in a reference frame that is stationary relative to the source,

V represents the velocity difference between the observer’s reference frame and the

source’s frame along the line of sight, and c is the speed of light.

There are different methods for measuring RVs from the Doppler shifts of spectral

lines, such as, fitting Gaussian profiles to individual spectral lines (e.g., Southworth &

Clausen, 2007), using least squares deconvolution (LSD) and fitting for the resulting,

average line profile (e.g., Tkachenko et al., 2013; Sekaran et al., 2020) and spectral

disentangling (see Section 2.2.5). The primary approach that we employ involves cross

correlating the observed spectrum of the binary against stationary template spectra.

The cross correlation technique can be executed in one dimension, as outlined in Tonry

& Davis (1979), or the cross correlation function (CCF) can vary in two dimensions,

as in Zucker & Mazeh (1994). The latter, todcor, is the method utilised in this

work, though the former is useful for checking for consistency. In any case, accurate

RV extraction requires that the spectral observations are corrected for the observers

motion about the solar barycentre. We calculate the magnitude of the correction us-

ing Astropy’s radial-velocity-correction package (Astropy Collaboration et al.,
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Figure 2.6: Normalised and apodised spectral order 50 of KIC 9851944 (red) and
HD 101606 (black and offset by +0.75). Note that the lower S/N for KIC 9851944
meant that a smaller q value was necessary. For HD 101606, we can trust that most of
the flux at the height of the spectrum will be continuum rather than noise.

2013, 2018), which is consistent with the IDL implementation of Wright & Eastman

(2014) to the level of 10 mm s−1.

The cross correlation algorithms act in the Fourier domain so apodising the spec-

tra removes any ringing in the Fourier transform by smoothing the ends of the spectra

(target and template) to zero (Kurtz & Mink, 1998). Apodisation is achieved by mul-

tiplying a spectrum by an appropriate window function. We employ a cosine taper

function, which is equivalent to the Hann window (Blackman & Tukey, 1958) when the
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fraction of the window inside the cosine tapered region is set to unity, and equivalent

to a rectangle window when the fraction is set to zero. We prefer to set the fraction

to 0.1 in agreement with Kurtz & Mink (1998), who begin their taper 5% from the

ends of the spectrum. Fig. 2.6 shows order 50 from a Hamilton échelle observation of

KIC 9851944 and the standard star HD 10606 after being normalised and apodised.

The template spectrum may be synthetic or that of a standard star. Barycentric

corrections should be applied to the template in the latter case, as well as correcting

for its RV. The observed and template spectra are then re-sampled onto a common

wavelength scale linear in log space, such that a velocity difference between the target

and templates corresponds to a uniform linear shift in the peak of the CCF (Tonry

& Davis, 1979). The template is broadened to match the observed broadening of the

targets spectral lines due to the rotational velocity of the components’ along our line

of sight v sin i. A preliminary estimate for v sin i can be obtained by cross correlating

the template against the target after broadening the template according to a range of

v sin i values. Broadening a spectrum to a specified value of v sin i involves convolving

it with the corresponding rotational kernal. This can be achieved using Pyastronomy’s

rot-broad package (Czesla et al., 2019), which implements rotational broadening as

described in Gray (2005). Observations used in the determination of v sin i should be

taken at phases away from conjunction so that the peaks of the CCFs are well resolved.

The heights of the resulting grid of CCF peaks can then be interpolated to determine

an estimation for v sin i.

The benefit of the todcor algorithm is that it uses two templates, one for each

component. Thus, the above procedures can be tailored for each template in accor-

dance to the properties of each component in the binary system. This enhances the

correlation at the point in the CCF that corresponds to the true RV for both com-

ponents simultaneously. Performing cross correlation in one dimension either requires

preparing a template that conforms to a suitable average of the properties of the com-

ponents, or favouring one of them. In the former case, this leads to weaker peaks in

the CCF, and in the latter case, the corresponding peak is enhanced for one of the

components but reduced for the other.
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The construction of the todcor CCF, which we denote R, requires the calcu-

lation of the one dimensional CCFs, C1(s1) and C2(s2), between the target and each

of the templates, along with that between the two templates themselves, C12(s2 − s1),

where s1,2 denote the shift at each iteration of the calculation. Either Eq. 2.8 or Eq. 2.9

is then used to compute R depending on whether the light ratio α is known.

R =

√
C2

1(s1) − 2C1(s1)C2(s2)C12(s2 − s1) + C2
2

1 − C2
12(s2 − s1)

, (2.8)

R(α′) =
C1(s1) + α′C2(s2)√

1 + 2α′C12(s2 − s1) + α′2
, (2.9)

where α′ = (σ2/σ1)α, within which σg1 and σg2 are the root mean square (RMS) of the

primary and secondary templates respectively. The sensitivity of the alogorithm to the

light ratio means that todcor can be used to obtain a spectroscopic light ratio.

An example todcor CCF is shown in Fig. 2.7. This example was taken from

an analysis of KIC 9851944, which consists of similar components and hence, there are

two peaks of similar heights. The tallest peak is indicated by the black triangle in

Fig. 2.7. The coordinates of the tallest peak correspond to the best estimates for the

Doppler shifts of each component in the binary. The peak is then isolated and the RVs

corresponding to its maximum determined at the sub-pixel level by, e.g., fitting a two

dimensional polynomial to it, as demonstrated in Fig. 2.8.

2.2.3.2 RV Errors

Errors in the RVs can be determined as in Tonry & Davis (1979). It is assumed that

the one-dimensional CCF is the sum of a perfect correlation function and a remainder

function. The remainder function distorts the position of the peak in the perfect

correlation function due to anti-symmetric parts within it, i.e., noise. Then the error

is regarded as the difference between the position of the perfect correlation function

and the observed one, which is derived by Tonry & Davis (1979) as,

ϵ =
1

4

N

2B

1

1 + r
, (2.10)
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Figure 2.7: Example todcor CCF which was obtained in the process of extracting
RVs from spectral observations of the Kepler EB KIC 4851217 (see Chapter 4).
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Figure 2.8: A fit indicated by the black contours to the tallest peak of the CCF
in Fig. 2.7. The black marker in Fig. 2.7 indicates which peak was the highest and
corresponds to the peak being fitted above.
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where B is the highest wave-number where the Fourier transform of the true CCF has

appreciable amplitude, N is the length of the input spectra, and r is the ratio of the

height of the peak of the true CCF to the RMS height of the remainder function. The

coefficient 1
4

N
2B

is adjusted in practice such that the predicted error fits external errors

(Tonry & Davis, 1979). Kurtz & Mink (1998) find a value of 3w
8

is appropriate for

sinusoidal noise, where w is the full width at half maximum of the correlation peak,

which provides a suitable first estimation.

This description for the calculation of the errors was developed for RVs extracted

using 1D cross correlation. However, this method can be applied to the todcor

analysis by considering each axis in the todcor CCF individually and carrying out

the calculation whilst fixing the other axis to its maximum value (Zucker & Mazeh,

1994). An investigation into the resulting error estimations using this process shows

that, in general, the smaller the difference in the extracted velocities, i.e., the closer

the two peaks in the 1D CCFs, the larger the resulting error. This suggests that

the anti-symmetric part of the remainder function corresponding to the peak of either

component is dominated by the peak of the other component.

Alternatively, errors can be estimated via Monte Carlo simulations, i.e., introduc-

ing synthetic noise (e.g., Poisson noise based on the S/N of the data) into the observed

spectra, and re-running the cross-correlation and RV measurement process multiple

times on these synthetic spectra. This results in a distribution of RV measurements

from which the standard deviation can be calculated. In any case, final estimations for

the errors are scaled to yield a reduced chi-square χ2
ν of unity when fitting a model RV

curve to the measured RVs; these methods to serve to deliver the relative sizes of the

uncertainties corresponding to a time-series of observations.

2.2.3.3 RV Corrections

Systematic errors in RVs measured using the cross correlation technique as large

3 km s−1 can arise due to the effects of line blending between the spectral lines of

both components (Latham et al., 1996), and the problem is exacerbated by rotation
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which broadens spectral line profiles. For double-lined spectra, the main correlation

peak for one component is disturbed by the side lobe pattern of the other. A more

severe disturbance occurs when the two main peaks interfere near phases of conjunc-

tion, and this leads to an underestimated RV measurement. In general, however, the

resulting systematic error in the derived RV is expected to show a complex dependence

on the relative Doppler shifts of the two stars6 (Latham et al., 1996).

This makes it difficult to attain the required accuracy in the component velocity

semi-amplitudes, and therefore their masses, to critically assess stellar evolution mod-

els (Andersen, 1991). For traditional spectrographic measurements, it is possible to

identify and use lines that are not blended with those of the other star (Popper, 1967;

Andersen, 1975b; Popper, 1980; Andersen, 1991; Latham et al., 1996). However, the

averaging properties inherent to cross correlation techniques preclude detailed line-by-

line evaluation of blending effects (Latham et al., 1996). The net line blending effect

is expected to be smaller for larger spectral windows and numbers of lines; the net line

blending errors in SB2 spectra have been shown to be smaller than 0.1 km s−1 over the

1500 Å spectral range covered by the CORAVEL instruments (Latham et al., 1996).

However, for smaller spectral windows, e.g., the 45 Å window of the Centre for As-

trophysics (CfA) Digital Speedometers, significant blending effects should be expected

(Latham et al., 1996), and they can not be ruled out over the 400 Å window between

4400 –4800 Å typically used in the current work for the analysis of A – F stars.

The effect can be investigated by synthesising the observed spectroscopic orbit

by adding synthetic spectra, weighted appropriately according to the relative light

contributions of each component, after applying Doppler shifts according to the RVs

derived from a preliminary fit to the observations (e.g., Latham et al., 1996; Torres

& Ribas, 2002; Southworth & Clausen, 2007). The set of synthetic SB2 spectra are

then subject to the same velocity extraction process used to obtain the original RVs.

The difference between the recovered values and the synthetic RVs gives an indication

6For single star spectra, the single main peak and the accompanying side-lobe pattern oscillates
together in correspondence to the orbital motion and are not expected to interfere with one another.
Therefore, the uncertainty is accurately accounted for by the errors calculated as in Section 2.2.3.2.
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of the magnitude and direction of the effect, and implies a correction that should be

applied to improve the accuracy of original RVs.

The line blending problem is shown to be largely eliminated when using todcor

(e.g., Latham et al., 1996; Torres et al., 2000) instead of the one-dimensional cross

correlation technique, but it should not be assumed a priori that the implied errors are

negligible (Southworth & Clausen, 2007). The magnitude of the effect depends sensi-

tively on the characteristics of the system and subtle details such as filtering and the

amount of end masking (Torres et al., 1997). Torres et al. (2000) applied the correc-

tions, derived as outlined above, to the RV observations of EI Cephei. The authors find

an increase of ∼ 0.25% in the calculated velocity semi-amplitudes compared to before

applying the corrections, and this translates to a ∼ 0.75% increase in mass, which is

about twice the size of the derived uncertainty. Torres et al. (1997) find the magnitude

of the line blending effect to be as high as 2 – 3% of the velocity semi-amplitudes of the

components of HS Hya, translating to 6 – 9% errors in mass. Torres & Ribas (2002)

find that their derived corrections imply a 5% error in the masses of the components

of YY Geminorum.

2.2.3.4 Modelling the Orbit

The extracted RVs are modelled using Eq. 1.11, which was derived in Section 1.1.2.4.

The first step is to calculate the mean anomaly M (Eq. 1.6) in order to calculate the

eccentric anomaly E through Kepler’s equation (Eq. 1.7), which is related to the true

anomaly ν using Eq. 1.8. We employ the python implementation kpe of Zechmeister

(2018) to solve Kepler’s equation. With the true anomalies corresponding to each phase

of the observation calculated, the equation describing the orbital motion (Eq. 1.11) can

be fitted to the RVs.

The problem involves finding the best estimates of the parameters, K, γ, ω, e,

P and Tper by minimising the sum of the squared residuals between the observed RVs
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and those predicted by a model with those parameters, i.e., we minimise,∑
i

{Vi − (γ + K[e cos(ω) + cos(ω + νi)])}2, (2.11)

where Vi is the observed RV at time ti, and νi is the corresponding true anomaly. For

linear least squares problems, the solution can be obtained analytically via (Hastie,

2009),

β = (XTX)−1 ·XTY, (2.12)

where β is a vector containing the model parameter estimates, XT is the transpose of

the design matrix X, and Y is a vector containing the observations. The covariance

matrix is then calculated as,

C(β) = σ2(XTX)−1, (2.13)

where σ is the variance of the residuals between the model and observations.

However, since our objective function, Eq. 2.11, is nonlinear in ω and ν, iterative

optimisation methods are required such as, e.g., the Levenberg-Marquardt (LM) algo-

rithm7. The LM algorithm can be thought of as a combination of the Steepest descent

and Gauss-Newton methods (Lourakis, 2005), which iteratively update parameter es-

timates based on the Jacobian matrix8. Such algorithms require starting values before

the routine can begin. An appropriate guess for K can be obtained by dividing the

sum of the absolute values of the maximum and minimum of the RV measurements by

a factor of two. Subtracting this value from the maximum value then yields an estima-

tion for the systemic velocity γ. Input guesses for P and Tper (used in the calculation of

ν), eccentricity e and argument of periastron ω are usually available from photometry

but should be reliably determined without constraint.

For nonlinear problems, the covariance matrix is estimated based on the proper-

ties of the optimisation algorithm. The covariance matrix is an N×N matrix where N

7SciPy’s python package curve-fit allows for minimisation via the LM algorithm (Virtanen et al.,
2020).

8The Jacobian matrix contains the partial derivatives of the objective function.
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is the number of optimised parameters. The diagonal elements contain the variances

of each of the parameters and the off-diagonals contain the covariances between them.

The errors on the parameters are estimated as the square root of the variances. Cor-

relations among the parameters are estimated by dividing the covariances between the

parameters of interest by the product of the square root of the of their individual vari-

ances, i.e., Cij/
√

CiiCjj. For circular orbits, Tper and ω are 100% correlated, although

in this situation it is appropriate to fix these parameters at Tper = T0 and ω = π/2,

respectfully.

A measure for the goodness-of-fit is obtained by weighting the residuals of the fit

by the square of the uncertainties for each of the ith measurements and summing them,

i.e, the chi square statistic. More commonly used in the context of model evaluations is

the reduced chi square, χ2
ν = χ2/ν, where ν is the degree of freedom. A χ2

ν greater than

unity indicates that the errors are underestimated while a value smaller than unity

indicates they are overestimated. To yield a χ2
ν of unity requires the error bars to be

scaled by
√
χ2
ν , derived from setting χ2

ν = 1.

Alternatively to least squares methods, Markov Chain Monte Carlo (MCMC)

samplers are often used as a method of Bayesian inference 9. Mathematically, Bayes’

theorem states,

P (θ|D) =
P (D|θ) · P (θ)

P (D)
, (2.14)

where P (θ|D) is the posterior probability distribution of the model parameters θ given

the observed data set D, P (D|θ) is the probability of observing the data given spe-

cific values of the model parameters (also called the likelihood function), P (θ) is the

prior probability distribution and P (D) is the marginal likelihood, which ensures the

posterior is properly normalised. The MCMC algorithm is used to draw samples from

P (θ|D) based on the product of P (D|θ) and P (θ) and some acceptance criterion,

forming a Markov-chain, which explores the parameter space until convergence at the

target distribution. Statistical inferences can then be made for the parameters of

9The package emcee (Foreman-Mackey et al., 2013) is an MIT licensed pure-Python implementa-
tion of the Goodman & Weare (2010) affine invariant MCMC ensemble sampler.
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interest, i.e., θ = [K, e, ω, γ, P, Tper], by marginalising over other parameters, i.e., sum-

ming/integrating them out of the joint distribution P (θ|D).

Assuming Gaussian errors, the likelihood function follows,

P (D|θ) =
N∏
i=1

1√
2πσ2

i

exp
(
− (Vi −Mi)

2

2σ2
i

)
, (2.15)

where σi is the uncertainty associated with the observation Vi; for the case of modelling

the RV curve, Vi is the measured RV and,

Mi = K
[
e cos(ω) + cos(ω + νi)

]
+ γ, (2.16)

i.e., Eq 1.11. Optimising Eq. 2.15 by, e.g., least squares, yields an independent estimate

of the parameters θ and is usually used as the starting point for the Markov-chain. The

prior distribution P (θ) encodes any prior knowledge about the parameters θ, such as

constraints or physically acceptable ranges (Foreman-Mackey et al., 2013). This gives

the MCMC fitter flexibility and is a key advantage.

2.2.4 specorb

Most studies of binary stars involve analysing a time series of numerous spectroscopic

observations, and these might be échelle spectra consisting of up to ∼ 100 orders. I

wrote the python code specorb, where its name was derived from its primary purpose

of extracting SPECtroscopic ORBits, which constitutes a workshop for executing the

tasks outlined in the previous sections of this chapter on multiple spectra automati-

cally. The functionalities wrapped into the code allow for a quick transition from raw

extracted 1D spectra to an orbital fit to RVs, regardless of whether treating échelle

orders individually or merging them.

This transition involves various sub-components of the code, for which we give

details here in the correct order they should be executed. Each component relies

on functions contained in the master functions file (specorb functions) and the

external functions file. The external functions file contains open source codes which
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were downloaded from other authors and modified (in some cases) for integration with

specorb (e.g., afs, kpe, spectres, rotbroad; Xu et al., 2019; Zechmeister, 2018;

Carnall, 2017; Czesla et al., 2019). Each component takes a list of inputs; common

to each is the requirement to provide the folder containing the input data, i.e., the

spectra, and the name of the intended output file to store, e.g., processed spectra or

results.

spec-prep implements the method of Xu et al. (2019) to normalise grating spectra,

or deblaze and merge échelle spectra as outlined in Sections 2.2.2.2; 2.2.2.3;

2.2.2.4. Preliminary steps involve cosmic ray correction, as outlined in Section

2.2.2.1, and correcting for the observer’s motion about the solar barycentre,

as outlined in Section 2.2.3.1. Formatting and scale of time stamps must be

given as input to ensure times are properly corrected to BJDTDB. This task will

return merged and corrected échelle orders or return them as individual orders.

Also returned is a data file, which contains necessary data for the operations

by the rv task (see below).

vsini implements the procedures outlined in Section 2.2.3.1 for estimating v sin i for

each of the components.

RV implements the primary function of the code, to extract RVs as described in

Section 2.2.3.1, so an example configuration file for this component of the code

is given at the end of this section. The rv task can handle multiple échelle

orders and treat them individually for every time stamp, or it will assume

one spectrum per time stamp; the option must be given as input so the code

knows what statistics to perform on the results. If the observations are already

on a logarithmic scale, this must be given as input. Templates are provided

as input and can be optionally broadended to input values of v sin i. Other

necessary procedures which are performed by the rv task were outlined in

Section 2.2.3.1. RVs can be extracted using either the 1D cross correlation

technique or using my implementation of the todcor algorithm. Errors are
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calculated as in Section 2.2.3.2. A preliminary orbital fit is calculated to the

extracted RVs and saved in the output folder along with extracted RVs.

SSB2 creates a synthetic SB2 model, as outlined in Section 2.2.3.3, based on the

output files of the rv task.

velcor calculates velocity corrections by executing the rv task on the synthetic SB2

model spectra. The corresponding corrections to the original RVs are then

readily calculable by the code and saved as output.

keporb performs a least-squares fit to the extracted RVs allowing flexibility in the

fitted parameters. Parameters can be fit jointly for both components in the

binary system, or the RVs of each component can be fitted independently.

The task includes the option to fit for the centre of mass acceleration of the

binary, as well as fixing to a circular orbit. Other functionalities include scaling

the errors to yield a χ2
ν of unity and supplying boundary constraints. The

implementation relies heavily on scipy (Virtanen et al., 2020).

The scripts for each of these components of specorb rely on the functions built

into the master functions file (specorb functions) and the external functions file,

and therefore these modules are imported in each of the scripts. This design gives

generality to specorb. Instead of using the scripts corresponding to each of the

ready-made components outlined above, it is possible to make other scripts on the

fly by importing the master file as, e.g., “ SPF ”, and performing any of the desired

operations, e.g., “ SPF.ccf ” to calculate the raw cross correlation function between

two signals. However, note that the required input and output files of the ready-made

components to specorb are all aligned so each step can be performed without requiring

intermediate organisation of input data. This retains automatic flow throughout the

full procedures. The way the code handles output files further depends on whether

orders are treated individually or there is one RV per observation. The full code relies

heavily on numpy (Harris et al., 2020).
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Radial Velocitiy Input File: Notes
============================ =========================

target folder: merged_spectra # Folder containing spectra (see note below)
target name: merged_spec # prefix of spectra names (same for all)
time stamp file: data_files/times # file containing time stamps
method: todcor # either todcor or onecore
orders: 1, # 1 order means spectra are merged or grating
period: 2.163901775 # input guesses for initial fit
t_zero: 56308.3040718 # ...
e: 0.012 # ...
w: 90.0 # ...
light ratio: None # This is fixed or calculated by todcor
out folder: RV_files # folder to store output folders/files
observations: 33 # number of observations to perform operations
scale: lambda # wavelength scale of axis (lambda or exp)

template1
----------
template1 folder: synthetics # Folder containing templates
template1 name: Hamilton_v0_T6964_g3.873_m0.0.dat # name of template
vsini1: 46.33 # broadening to apply (km/s)
LD1: 0.6 # LD to apply to to template
rad1: None # RV of template

template2
-----------
template2 folder: synthetics # same as above for second template
template2 name: Hamilton_v0_T6840_g3.761_m0.0.dat # required if using todcor
vsini2: 57.15
LD2: 0.6
rad2: None

show plot: False

Notes
=================

-target folder - This is the path to the location of the
spectra that will be used for the velocity
extraction. Spectra should be saved in ASCII
format column wise; col1 = wavelegnth, col2 = flux

-target name - This is the name of the observations. You
must ensure that your spectra are named with the
corresonding formation when merged or saved individually:

merged | "<name>_<No._obs>.dat" (where No._obs = No. of observation).

individual | "<name>_<No.obs>_<No.order>.dat" (where No._order = No. of order).

Examples | spectrum_1.dat spectrum_1_56.dat

2.2.5 Spectral Disentangling

Spectral disentangling is an extension of the spectral separation technique which is

used to separate a composite binary star spectrum into its constituent primary and
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secondary components. The observed flux yi at the location λi is the sum of the

component fluxes plus some observational noise (Ilijić, 2003),

yi = ρσ +
n∗∑
k=1

lkx̂k((1 − βk)λi, {xkα}), (2.17)

where lk is the fractional contribution of component k to the continuum, ρ is a random

number drawn from a unit variance normal distribution, σ is the uncertainty in the flux

measurement, the function x̂k((1−βk)λi, {xkα}) represents the spectrum of component

k and estimates its amplitude at λi according to a set of Mk parameters xkα, α =

1, ...,Mk, and within the function, βk is the radial velocity of component k due to the

orbital motion of the system in units of the speed of light. The integer n∗ is 2 for the

purposes of this discussion regarding SB2 binary stars.

Then for J observations we have a set of equations of the form Eq. 2.17, each

linear in the sum of the two sets of parameters M1 & M2. The system of equations can

be solved for xkα at every ith pixel, i = 1, ..., N , where N is the total number of pixels,

thus reconstructing the component spectra. When modelling real data, rather than an

exact solution, we minimise the sum of the square residuals between the observed and

calculated model, which in this case, neglecting the noise, follows (Ilijić, 2003):

r2 =
J∑

j=1

N∑
i=1

(
yij −

n∗∑
k=1

lkx̂k((1 − βkj)λji, {xkα})
)2
, (2.18)

Hence, Eq. 2.18 comprises a system of J×N coupled linear equations in 2×N unknowns,

i.e., the two component fluxes at every ith pixel (Hadrava, 2009; Simon & Sturm, 1994).

The spectral separation technique assumes that the RV values are known. How-

ever, is is possible to allow the βkj values to be free parameters and optimised through-

out the procedure. This is spectral disentangling and can be performed in the wave-

length domain as in Simon & Sturm (1994) or the Fourier domain as first proposed by

Hadrava (1995). The advantage of using the Discrete Fourier Transform (DFT) is that

the system can be uncoupled into 1
2
N + 1 systems, each with two unknowns (Hadrava,

2009; Ilijic et al., 2004). In order to retain stability in the procedure, it is preferred to

optimise the orbital parameters instead of the individual RVs such that the resulting
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βkj values are calculated using the standard equations of orbital motion (see Section

1.1.2.4).

2.2.6 Atmospheric Analysis

Studying the stellar atmosphere entails modelling stellar spectra, which requires an

understanding of what shapes the continuum and how spectral lines are formed, as

well as their behaviour in response to different stellar conditions. Line profiles contain

information about atmospheric conditions because they depend on the atmospheric

temperature and pressure, as well as the abundances of chemical species, which further

depend on mass and age as well as other physics governing the structure of stars (Gray,

2005). Since the atmosphere provides the boundary conditions for stellar models, a

complete understanding is essential for the accuracy of stellar evolution theory.

2.2.6.1 The Stellar Continuum and Spectral Lines

The stellar continuum is shaped by the continuous absorption coefficient κν which is

dominated by absorption from bound-free transitions of neutral hydrogen in B- A- and

F-type stars, giving rise to certain features. The Balmer jump signifies a drop in opacity

when wavelengths exceed 3646 Å because the energy of such photons is not sufficient

to ionise hydrogen from the n = 2 level (see Fig 2.9), and this transition no longer

contributes to κν (see Fig. 2.10). Free-free transitions and stimulated emission also

influence continuous opacity. In cooler stars, the absorption from neutral hydrogen di-

minishes and absorption from negative hydrogen (and potentially molecular absorption

and Rayleigh scattering) increases (Gray, 2005).

Spectral line shapes and strengths depend on various factors, including atomic

absorption coefficients αν associated to bound-bound transitions of a chemical species.

Line broadening mechanisms, e.g., natural, pressure, and thermal broadening affect line

profiles via their contributions in shaping αν . Microturbulence and macroturbulence

account for the motions of turbulent cells that are smaller and larger, respectively, than
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Figure 2.9: The variation of the intensity of the stellar continuum as a function of
wavelength. Indicated are the limits associated with the Bracket (ionization from
n = 4), Paschen (ionisation from n = 3), Balmer (ionisation from n = 2) and Lyman
(ionisation from n = 1) continua. From Trypsteen & Walker (2017).

a unit optical depth (Gray, 2005). Microturbulence acts to increase the thermal broad-

ening component of αν and in this way, enters the radiative transfer equation. Like

rotation, macroturbulence does not influence αν or specific intensity calculations. The

overall line profile is the convolution of the intrinsic profile with those of macroturbu-

lence and rotation. Rotation dominates for values exceeding ≈ 13 km s−1 (Landstreet

et al., 2009) so macroturbulence probably isn’t detectable in δ Scuti stars.

Calculation of the overall line absorption coefficient lν entails further accounting

for the abundances of individual species as well as their excitation and ionisation states.

Considering the addition of lν to κν , the emergent flux can then be mapped as a function

of wavelength across a spectral line, thus permitting the calculation of theoretical

spectral lines. Weak lines’ strength is proportional to abundance until saturation,

after which pressure broadening dominates (see Fig. 2.11). Strong lines increase in

strength approximately as the square root of abundance beyond saturation. Pressure

plays a role in pressure-related broadening mechanisms for strong lines. In general,
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Figure 2.10: Individual absorption coefficients associated with each of the transitions
which contribute to the continuum flux in Fig. 2.9. From Gray (2005).
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Figure 2.11: A representation of the a curve of growth. From Trypsteen & Walker
(2017).

decreasing surface gravity reduces pressure and continuous opacity, leading to increased

line strength. Pressure’s effect on line strength is generally weaker than temperature’s

influence.

Temperature significantly influences line strength through excitation and ioni-

sation processes. Elevated temperatures can increase line strength by enhancing ex-

citation, but they may also induce ionisation, reducing line strength. Temperature’s

net effect depends on its impact on continuous to line opacity ratios and excitation

potentials. The Balmer series exhibits relatively high excitation potential, allowing the

strength of Balmer lines to increase beyond temperatures at which most other chemi-

cal species become multiply ionised, up to around 9000 K. Since most other chemical

species are multiply ionised at these temperatures, their lines tend to appear in the

blue and ultraviolet. This makes the spectral region between 4400 – 4800 Å suitable for

measuring RVs from δ Scuti star spectra (6500<Teff< 9500 K).
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2.2.6.2 Atmospheric parameters

The dependencies of the stellar spectrum on the atmospheric conditions, e.g., exci-

tation and ionisation; broadening mechanisms; abundances of chemical elements, are

parameterised by Teff , [M/H], v sin i, surface gravity log(g), microturbulence vmic and

macroturbulence vmac. These parameters can be derived for a star by seeking agree-

ment between a theoretically computed spectrum and an observed one. Deriving the

parameters in this way is called a synthetic spectral fit (SSF).

The atmospheric structure needs to be known (i.e, temperature profile T (τ)

and pressure profile P (τ)) or computed, in order to synthesise the spectrum. For

an overview of calculating the atmospheric structure of a star, see, e.g., LeBlanc (2010,

chapter 4). Libraries of pre-calculated atmospheric structures exist (e.g., MARCS

GES, ATLAS9; Gustafsson et al., 2008; Kurucz, 2005; Kirby, 2011; Mészáros et al.,

2012). Given a model of the atmospheric structure, computation of a theoretical spec-

trum requires solving the radiative transfer equation as a function of wavelength in the

photosphere. This requires the atomic data for spectral lines so lν can be evaluated.

The product of the statistical weight g and the oscillator strength f (i.e., the weighted

oscillator strength, usually the logarithm) is sufficient for line opacity calculations as

opacity is proportional to this value (LeBlanc, 2010). Other atomic data concerns the

energy levels including degeneracies among them, ionisation energies as well as pho-

toionisation cross sections from the various atomic levels. There are various radiative

transfer codes available for the computation of the spectrum (e.g., spectrum, tur-

bospectrum, SME, moog; Gray & Corbally, 1994; Alvarez & Plez, 1998; Plez, 2012;

Valenti & Piskunov, 1996; Piskunov & Valenti, 2017; Sneden et al., 2012).

An alternative method to determine the parameters is the equivalent width (EW)

method (Takeda et al., 2002), which involves measuring the equivalent widths of in-

dividual iron absorption lines and relating these measurements to the free parameters

of the atmosphere by imposing; 1, the average iron abundance is equal to the average

ionised iron abundance; 2, no trends are found when the abundances are plot against

line excitation potential as well as against equivalent width (Blanco-Cuaresma et al.,
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2014a). Values for vmac and v sin i are not determined using this method because this

technique is based on the intrinsic line strength derived from the radiative transfer

equation which these two broadening mechanisms do not enter.

The ispec (Blanco-Cuaresma et al., 2014a) python framework allows users to

make use of the libraries of available atmospheric models to carry out the SSF and EW

techniques using a choice of radiative transfer codes. On the other hand, ChromaS-

tarPy (Short et al., 2018) is a tool written in python that allows both atmospheric

modelling and spectral synthesis.

2.2.6.3 ispec zj wrapper

The ispec zj wrapper combines the functionalities of ispec allowing for easy use as well

as automating the steps involved in modelling atmospheres and measuring abundances.

The wrapper allows flexibility in the selection of model atmosphere, fixed and fitted

parameters, selected line regions, among other functionalities for which we refer to the

notes in the example input file which is given at the end of this section.

The initial resolution of the observation to be analysed needs to be supplied as

input, this is then degraded by ispec to the resolution of the line list. Either the SSF

or the EW method can be selected and used for atmospheric parameter determination.

The fast abundance method determines abundances by fitting for all lines of a species

contained in the line regions selected for analysis simultaneously, while the slow method

does this line by line. The line list contains the atomic data and a multitude of

choices are included in ispec (see the example input file). This is similarly the case

for the choice of atmospheric model. If an atmospheric model is specified, the ispec

zj wrapper carries out the analysis for that model only, but users can specify to use

every atmospheric model and statistics on the results will be printed as output.

The free parameters to fit for in the atmospheric modelling are easily specified

in the ispec zj wrapper input file (see below) and initial estimates are either specified

or there is the option to estimate them from a pre-computed grid included in ispec.

One may opt to calculate vmic, vmac and α-enhancement using empirical relations.
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iSpec input file
------------------
Configuration NOTES
======================================= ========================================================
Input - For methods, type ’ssf’ or ’ew’
------ - For abundances, type ’fast’, ’slow’ or ’None’
spectrum file: MGIII_pri.dat - For line list, choose an option from below.
method: ssf - For atmospheres, choose option from below
initial resolution: 85000 - For estimates, type ’grid’ or ’specified’:
abundances: fast > if grid - initial guesses estimate from grid.
line list: GESv6_atom_hfs_iso.420_920nm > if specified - initial guesses are specified in
atmosphere: all free parameters section next to ’fixed’ or ’free’
estimates: specified
lines: all - For free parameters, type ’free’ to fit them
empirical vmac: False or ’fixed’ to fix them (Initial guesses and fixed
empirical vmic: False values are specified on the same line).
enhance alpha: False
output path: MGIII/primary_MH/ - Line lists: _

> GESv6_atom_hfs_iso.420_920nm |
> SPECTRUM.300_1100nm |
> VALD.300_1100nm | DO NOT ERASE THESE!

Free parameters | YOU NEED TO COPY THESE
--------------- - Atmospheres: | OPTIONS EXACTLY AS
Teff: fixed 7834 > MARCS.GES | WRITTEN HERE...
logg: fixed 3.982 > ATLAS9.Castelli |
MH: free 0.00 > ATLAS9.APOGEE |
vmic: fixed 3.011 > ATLAS9.Kurucz |
vmac: fixed 0 > ATLAS9.Kirby |
vsini: fixed 43.6 > all _|
Resolution: fixed 85000
vrad: fixed 0.0 - lines specifies which spectral regions will be included
LD: fixed 0.6 in the fit; choose either:
alpha: free 0.04 - metal all in line list of pre selected lines.

- hydrogen all hydrogen lines
- MgII4481A MgII A line at 4481 angstroms
- all every line in the spectral range

Note- custom line regions can and have been added.

- For empirical vmac, vmic and enhance alpha,
use True or False.
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3 Physical properties of the eclipsing bi-
nary KIC 9851944 and analysis of its
tidally-perturbed p- and g-mode pulsa-
tions

The work outlined in this chapter has been published in the Monthy Notices of the Royal

Astronomical Society (MNRAS) main journal (Jennings et al., 2023b).

3.1 Introduction

KIC 9851944 is an EB showing δ Scuti/γ Doradus hybrid pulsation signatures. There-

fore, the object is an ideal candidate for testing our understanding of stellar structure

and evolution given the large amount of constraints that can be obtained due to the

advantages associated with hybrid behaviour as well as binarity. KIC 9851944 is in-

cluded in the Kepler Eclipsing Binary Catalogue (KEBC; Prša et al. 2011; Kirk et al.

2016), as well as a study by Matson et al. (2017) who presented RVs for 41 Kepler

EBs. Gies et al. (2012, 2015) studied the eclipse times for KIC 9851944 and found no

evidence of apsidal motion or a third body; the object was also included in a catalogue

of precise eclipse times of 1279 Kepler EBs by Conroy et al. (2014).

Guo et al. (2016) combined the analysis of Kepler photometry with medium-

resolution spectra (R = λ/∆λ ∼ 6000) to determine the atmospheric and physical

properties of KIC 9851944; we list these results in Table 3.10. Evolutionary modelling

based on these properties shows the post-MS secondary to be more evolved than the

MS primary. The authors concluded that both components show δ Scuti type pulsa-

tions, which they interpreted as p modes and p and g mixed modes, and attempted to

identify the modes by comparison with theoretically computed frequencies; the range

of theoretically predicted unstable modes agreed roughly with observations but the

authors conclude that mode identification is still difficult in δ Scuti stars, even with
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constrained mass, radius and Teff .

This work aims to be complementary to the work by Guo et al. (2016) on KIC

9851944; we additionally include observations by TESS in our photometric analysis

and combine this with the analysis of high-resolution (R = 60000) spectroscopic ob-

servations. Section 3.2 outlines the photometric and spectroscopic observations. We

determine the orbital ephemeris based on the photometric observations in Section 3.3.

In Section 3.4, we analyse RVs derived from the spectroscopic observations and in Sec-

tion 3.5, we present the spectroscopic analysis. The analysis of the photometric light

curves is given in Section 3.6 and in Section 3.7 we present the physical properties of

the system. An investigation of the pulsations is given in Section 3.8. The discussion

and conclusion are given in Sections 3.9 and 3.10, respectively.

3.2 Observations

3.2.1 Photometry

KIC 9851944 was observed by Kepler in six quarters (0, 12, 13, 14, 16, 17) in short

cadence mode between May 2009 and May 2013. The object was also observed by

TESS in sectors 14, 15, 41, 54, 55 and 56 between July 2019 and September 2022.

Details regarding the Kepler and TESS missions are given in Sections 2.1.3 and 2.1.4,

respectively.

The light curves from the Kepler quarters and TESS sectors mentioned above

were downloaded from the Mikulski Archive for Space Telescopes (MAST) and are

used in Section 3.3 to determine the ephemeris of the system, as well as Section 3.6 to

obtain the final model of the light curve. Both SAP and PDCSAP measurements are

available; the SAP and PDCSAP fluxes were similar, which we verified by inspecting the

SAP fluxes with the PDCSAP fluxes over-plotted after dividing them by their median

flux values to put them on the same scale. Thus, we used the SAP measurements to

avoid possible biases due to the additional processing applied to the PDCSAP data. A
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Figure 3.1: Parts of the Kepler Quarter 0 (top panel) and TESS Sector 15 (middle
panel) processed light curves. Also shown in the bottom panels are the phase-folded
light curves observed by WASP between May 2007 and July 2007 (left), and between
June 2008 and July 2008 (right).
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second-order polynomial was fitted to fluxes that correspond to positions of quadrature,

i.e., the maximum of the ellipsoidal brightening, to estimate systematic trends present

in the light curves. Subtracting the difference between this polynomial and the median

flux of the light curve yields a model for the local median level of out-of-eclipse flux.

This model was then divided out to remove systematic trends. The residual value of

a smoothed version of the light curve subtracted from the observed light curve was

calculated and observed fluxes that deviated by more than 1% were rejected. Fluxes

were converted to magnitudes and errors were propagated following Prša (2018). The

short cadence Kepler light curve from Quarter 0 and the two-minute cadence TESS

light curve from Sector 15, after performing these operations, are shown in the top and

middle panels of Fig. 3.1, respectively.

KIC 9851944 was also observed by the Wide Angle Search for Planets (WASP)

telescope (Butters et al., 2010) between May 2007 and July 2010. WASP consisted of

two robotic observatories, one in the Nothern Hemisphere at Observatorio del Roque

de los Muchachos on La Palma and the other at the South African Astronomical Obser-

vatory (SAAO), each with eight 20 mm telescopes on a single mount. Observations of

KIC 9851944 collected by WASP between May 2007 and July 2007 as well as between

June 2008 and July 2008 are shown in the bottom panels of Fig. 3.1 phase folded about

the orbital period determined in Section 3.3. The data collected by WASP for KIC

9851944 were only used to constrain the times of primary minima when performing

preliminary fits to the Kepler and TESS light curves in Section 3.3, to determine the

orbital ephemeris.

3.2.2 Spectroscopy

The following spectroscopic observations were obtained by Dr. John Taylor (2012) and

Dr.Kelsey Clubb (2012 and 2013).

A set of 33 spectroscopic observations were obtained for the target using the

Hamilton échelle spectrograph (Vogt, 1987) on the Shane 3 m telescope at Lick Obser-

vatory during two observing runs, one in July 2012 and the other in June 2013. The
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data were obtained using CCD chip no. 4, giving a wavelength coverage of 340 – 900 nm

over 89 échelle orders at a resolving power of R ≈ 60000.

The data were reduced using the standard pipeline for the spectrograph (e.g.

Fischer et al., 2014). Flat-fields were obtained with a quartz lamp and divided from

the spectra. The wavelength calibration was obtained from exposures of a thorium-

argon emission lamp taken roughly every hour during the night.

Details for the normalisation of the one-dimensional extracted spectra are given

in Sections 3.4 and 3.5 because each of those components of the analysis used different

approaches.

Table 3.1 gives the epochs of each of the 33 spectrosopic observations as well as

the signal-to-noise ratio (S/N), estimated as the square root of the counts close to the

peak of the best-exposed échelle order. Also given are the corresponding RVs of each

component that are derived in Section 3.4.

3.3 Orbital ephemeris

A first model of the Kepler and TESS light curves was obtained using the jktebop

code (Southworth, 2013) (see Section 2.1.5.2). We fitted for the period P , epoch T0,

surface brightness ratio J , sum of the fractional radii rA + rB, ratio of the radii k = rB
rA

,

inclination i, the Poincaré elements e cosω and e sinω, and a light scale factor. We

define star A to be the star eclipsed at the primary (deeper) minimum and star B to

be its companion.

We also fitted for the linear coefficients u of the quadratic limb darkening (LD)

law while quadratic terms were taken from Claret & Bloemen (2011) and Claret (2017)

for the Kepler and TESS bands, respectively; we used the estimated atmospheric

parameters reported in the KIC to choose the appropriate values for the quadratic

coefficients. We performed fits to the WASP light curve but the lower quality of

these data compared to the Kepler and TESS light curves means that including these

results in the calculation of the overall preliminary eclipse model would lead to less
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Table 3.1: RVs and S/N corresponding to the spectroscopic observations taken at times
given in the BJD column. An asterisk next to the BJD value means that observation
was not used to derive the orbital parameters in Section 3.4.

BJD RV Star A RV Star B S/N
2456133.71296 −122.47± 1.33 103.45± 1.14 59
2456133.72724 −119.89± 1.37 101.95± 1.08 59
2456133.74151 −118.46± 1.26 99.54± 1.03 57
2456133.75578 −114.54± 1.21 96.79± 0.93 57
2456133.80101 −104.26± 1.28 87.87± 1.13 60
2456133.83920 −94.81± 1.26 79.68± 1.25 58
2456133.87945 −84.36± 1.02 71.67± 1.67 59
2456133.90977 −77.35± 1.31 63.03± 1.97 58
2456133.94924 −64.66± 1.51 51.37± 2.85 60
2456133.98702* −41.04± 5.71 34.50± 5.52 57
2456134.70808 117.69± 1.01 −121.35± 1.39 57
2456134.72235 116.88± 0.88 −120.01± 1.68 59
2456134.73662 116.27± 0.92 −119.12± 1.65 58
2456134.75090 114.89± 0.81 −118.39± 1.66 55
2456134.78975 109.50± 0.96 −113.29± 1.81 53
2456134.82917 104.240± 1.02 −107.26± 1.72 50
2456134.86653 97.71± 0.94 −99.91± 1.60 56
2456134.91057 86.88± 0.84 −91.01± 1.74 53
2456134.94964 77.43± 1.15 −82.09± 1.50 54
2456134.98739 65.92± 1.34 −72.46± 1.18 52
2456469.93848 115.04± 1.08 −115.25± 1.17 31
2456469.97977 115.86± 0.98 −120.41± 1.65 55
2456470.72325* −41.06± 2.92 29.87± 5.18 41
2456470.79028 −69.87± 1.09 56.92± 2.79 35
2456470.84339 −84.53± 0.94 69.97± 1.69 57
2456470.90594 −101.34± 1.04 83.79± 1.11 56
2456470.96852 −116.02± 1.22 95.28± 1.17 57
2456470.99830 −121.03± 1.23 99.82± 1.12 54
2456471.71677* 43
2456471.77503* 19.52± 2.84 −29.63± 2.40 30
2456471.87251 58.97± 1.67 −68.30± 1.74 50
2456471.90957 69.15± 1.34 −79.35± 1.53 54
2456471.93874 79.31± 1.00 −85.78± 1.15 54
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Figure 3.2: jktebop model fit to the phase folded Kepler light curve from quarter 0.

well determined parameters. Thus, we simply include the epochs of primary minimum

estimated from the WASP light curves as additional observational constraints on T0 in

the preliminary fits to the Kepler and TESS light curves.

The adopted values for the light curve parameters from this preliminary analysis

were taken as the weighted averages of the results from the fits to the individual

Kepler quarters and TESS sectors, where the reciprocal of the squared errors from

the covriance matrix were used as weights. These values are given in Table 3.2, and

Fig. 3.2 shows the fit to the Kepler Quarter 0 light curve; high-frequency variability due

to pulsations of the δ Scuti type is clearly visible at all orbital phases in the residuals

shown in the lower panel, with amplitudes of around ±0.2 mmag.

The value for rA + rB in Table 3.2 suggests that the components of KIC 9851944

are deformed beyond the limits of applicability of the biaxial ellipsoidal approximation

(Popper & Etzel, 1981) due to their close proximity and thus strong mutual defor-

mations; the ellipsoidal variation (∼ 0.04 mag) observed in Fig. 3.1 and Fig. 3.2 is an-
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Table 3.2: Prelimimary light curve results from jktebop fits to the Kepler and TESS
light curves. We do not present the error bars of the parameters in Table 3.2 for two
reasons. First, the uncertainties from the covariance matrix of a light curve fit are
notoriously underestimated and the results from these preliminary fits are not reliable
(see below) so we did not attempt to derive better uncertainties. Second, excluding
the error bar from the result makes it clear that these are not our final values for the
light curve parameters.

Paramter Value
J 0.7956
rA + rA 0.5091
k 1.591
i(◦) 74.294
e cosω -0.000120
e sinω -0.012329
uA 0.684
uB 0.310

other indication of this. Furthermore, plotting the results from individual quarters and

sectors against each other reveals strong degeneracies between the fitted parameters,

specifically rA + rB, k, i, J and the LD coefficients. This is highlighted by the results

giving a wide range of ratios of the light contributions of the two stars. Therefore, we

present a detailed analysis of the Kepler and TESS light curves using a more sophisti-

cated modelling code, as well as constraints on the light ratio ℓB/ℓA from our spectral

analysis, to reliably determine the light curve solution in Section 3.6.

Among the reliably constrained parameters from this preliminary analysis are the

period and epochs of primary minimum from individual quarters and sectors. There-

fore, the analysis is useful for establishing the orbital ephemeris. A linear ephemeris

was fit to the resulting values of T0 against orbital cycle using the reciprocal of the

squared errors from the covariance matrix as weights; these errors were rescaled during

the fitting procedure to yield a reduced chi-squared value of χ2
ν = 1. Fig. 3.3 shows the

residuals of the fit and the red line represents the linear ephemeris.

There seems to be a trend in the O-C diagram compared with the linear ephemeris,



145

Figure 3.3: O-C plot from the linear fit (red line) to the times of primary minimum
(black dots), where the grey shaded region represents 1σ uncertainty associated with
the corresponding calculated values.. The blue dashed line represents an attempt to
additionally fit for a quadratic term.

with data points corresponding to TESS observations (>1000 cycles) all appearing

above the red line. Thus, we also attempted to fit for a quadratic ephemeris, which is

represented by the blue dashed line in Fig. 3.3. However, the corresponding quadratic

term was a similar size to its errorbar. We therefore decided to stick with the linear

ephemeris which was measured to be:

Min I (BJDTDB) = 2456308.304072(14) + 2.163901775(98) E.

3.4 Radial velocity analysis

The spectral range between 4400 – 4800 Å is a suitable region to carry out the RV

extraction procedure for A- and F-type stars because there are many well-resolved

spectral lines (see Section 2.2.6.1) and the region does not contain any wide Balmer

lines. Thirteen échelle orders within this range were cosmic ray corrected, deblazed

and merged as outlined in Chapter 2.2.
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Preliminary estimations for the projected rotational velocity, v sin i, of the com-

ponents of KIC 9851944 were obtained by cross correlating the observed spectra with

a template broadened to a range of v sin i values between 0 and 150 km s−1 in steps

of 10 km s−1. Observations taken less than 0.125 orbital phases from the eclipses were

excluded to minimise issues arising due to lines from each component blending or be-

ing eclipsed. Interpolating the peak heights of the correlation functions and taking

the maximum yields v sin iA = 46.3 ± 0.4 km s−1 and v sin iB = 57.2 ± 0.5 km s−1 for

the primary and secondary component, respectively. These values for v sin i were then

used and applied to synthesise primary and secondary templates using the ispec code

(Blanco-Cuaresma et al., 2014b). In the first iteration, the Teff and log(g) values were

taken from the Kepler Input Catalogue (KIC). For the final iteration of the RV extrac-

tion, the atmospheric parameters of the templates corresponded to those derived from

our atmospheric analysis of the disentangled spectra (see Section 3.5.1.)

Our own implementation of the todcor two-dimensional algorithm was used to

extract the RVs (see Section 2.2.3.1). Systematic errors arise when using the cross-

correlation technique to extract RVs because neighbouring peaks and side-lobes in the

doubled-peaked CCF disturb each other, and this is related to blending between the

spectral lines of the two components (Andersen, 1975a; Latham et al., 1996). We

obtained corrections and added them to our measured RVs as outlined in Section

2.2.3.3.

This procedure was iterated multiple times using templates with different at-

mospheric parameters; the top panel of Fig. 3.4 shows the resulting orbital fit to the

corrected velocities that were derived in our final iteration, where we used templates

with atmospheric parameters corresponding to those derived in Section 3.5.1, and the

results are presented in Table 3.3. The middle panel of Fig. 3.4 shows the residuals

of the fit and the lower panel, split into two for the primary and secondary, gives the

corrections that were applied to the extracted RVs. RVs with corrections larger than

2.5 km s−1 were excluded and are not shown because these RVs correspond to phases

of conjunction, where line blending effects are most severe, and negligible information

is contained on the velocity semiamplitudes. The fit was constrained to a circular or-
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Figure 3.4: Top: orbital fit to the corrected RVs using the merged approach. Bottom:
velocity corrections for the corresponding RVs.
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Table 3.3: Orbital parameters derived for KIC 9851944.

Parameter Value
KA (km/s) 125.282± 0.269
KB (km/s) 117.453± 0.328
γ (km/s) −5.52± 0.16
ℓB/ℓA 1.222± 0.136

bit because attempts to fit for eccentricity yielded values consistent with zero and the

study by Guo et al. (2016) suggests that this system has circularised. The uncertainties

on the RV measurements were rescaled by a constant factor during the fitting proce-

dure to yield a χ2
r of unity. The root mean square (RMS) of the residuals of the fit

compared to the RVs for the primary and the secondary are 1.1 km s−1and 1.4 km s−1,

respectively.

The differences between our final results for KA and KB presented in Table 3.3

and those derived from the initial run (both after applying corrections), which used

templates with atmospheric parameters corresponding to those from the KIC, was

∼ 0.1%. The corresponding difference in ℓB/ℓA was ∼ 9%. This shows that the

todcor light ratio is more sensitive to the atmospheric parameters of the templates

than the derived RVs. We added these differences in quadrature, to the uncertainties

derived from the covariance matrix of the fit for the orbital parameters, and to the

standard error in the mean value of ℓB/ℓA derived from different observations, in our

calculation of the parameter error bars in Table 3.3.

Applying the corrections resulted in an increase in the velocity semiamplitudes

KA and KB by 0.2% and 0.3%, respectively. This is a small increase, suggesting that

todcor is less sensitive to blending effects than the one-dimensional cross correlation

technique. However, the 0.2% and 0.3% increase in the velocity semiamplitudes trans-

lates to a 0.6% and 0.9% increase in the derived masses, which is significant considering

that we aim to achieve precisions smaller than these values. This suggests that the

corrections are necessary. Furthermore, the corrections are clearly systematic, and de-
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pend on the relative Doppler shifts of the components, as shown in the bottom panels

of Fig. 3.4.

3.5 Spectral analysis

The following atmospheric analysis was performed by Prof. Kresimir Pavlovski in col-

laboration with myself, and is included in this thesis because it is an important part

the analysis for this object.

3.5.1 Atmospheric parameters

The method of spectral disentangling (SPD) makes it possible to separate the spectra

of individual components from a time-series of binary or multiple star spectra (Simon

& Sturm, 1994), as outlined in Section 2.2.5. The disentangled spectra are still in the

common continuum of the binary system, but can be renormalised if the light ratio

between the components is known from other sources, e.g., from the analysis of light

curves (Hensberge et al., 2000; Pavlovski & Hensberge, 2005, 2010). Alternatively, the

disentangled spectra can be fitted with synthetic spectra to determine the light ratio

between the components, and this can be useful for partially-eclipsing systems where

there is a degeneracy between the radius ratio and light ratio in the system (Tamajo

et al., 2011; Tkachenko, 2015; Pavlovski et al., 2023). In well-determined cases, the

precision of the light ratio can approach 1% (Pavlovski et al., 2022).

Since we planned to apply the method of SPD to extract the individual spectra of

the components, normalisation of the observed spectra was of critical importance. We

used a different approach than that in Section 3.4, where we extracted RVs. Here, we

used the dedicated code described in Kolbas et al. (2015). First, the blaze function of

échelle orders was fitted with a high-order polynomial function. Then, the normalised

échelle orders were merged. When overlapping regions of successive échelle orders are

sufficiently long, the very ends were cut off because of their low S/N. Échelle orders
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Table 3.4: Determination of the atmospheric parameters from disentangled spectra for
the components of KIC 9851944. The surface gravity for each component was fixed to
the values determined from light curve and RVs solution as listed in Table 3.7.

Parameter Hβ Hα Metals
Wavelength range (Å) 4750–4890 6500–6600 5120–5220
Primary
Teff [K] 6980±55 6940±70 7205±90
log g [cgs] 3.873 3.873 3.873
v sin i [ km s−1] 56.2 56.22 56.5±1.9
LDF 0.432±0.005 0.434±0.007 0.4390.009
Secondary
Teff [K] 6875±45 6770±65 6990±80
log g [cgs] 3.761 3.761 3.761
v sin i [ km s−1] 67.2 67.2 67.2±1.5
LDF 0.568±0.004 0.566±0.006 0.561±0.009

containing broad Balmer lines, in which it is not possible to define the blaze function

with enough precision, were treated in a special way. For these échelle orders, the blaze

function was interpolated from adjacent orders. This produces more reliable normali-

sation in spectral regions with broad Balmer lines than the usual pipeline procedures.

For recent applications of this approach, please see Pavlovski et al. (2018, 2023); Lester

et al. (2019, 2022); Wang et al. (2020, 2023).

SPD was performed in the Fourier domain with the prescription by Hadrava

(1995). The FDBinary code, developed in Ilijic et al. (2004), was applied to the time-

series of normalised échelle spectra of KIC 9851944. FDBinary uses the fast Fourier

transform approach (see Section 2.2.5) which allows flexibility in selection of spectral

segments for SPD whilst still keeping the original spectral resolution. The orbital

parameters, specifically KA and KB, were fixed to the solution reported in Table 3.3,

thus SPD was used in pure separation mode (Pavlovski & Hensberge, 2010). At this

point, the reconstructed individual spectra of the components were still in the common

continuum of the binary system. A portion of separated spectra for both components

in the spectral range 4900 – 5290 Å is shown in Fig. 3.5.
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Figure 3.5: Portion of disentangled spectra in the spectral range 4900–5290 Å. The
similarity between the spectra of both components is obvious.
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Figure 3.6: Optimal fitting of the wings for Hβ lines in disentangled spectra of binary
system KIC 9851944. The spectral lines of metals were masked during the fitting, so
were not included in calculations of the merit function. The disentangled spectra are
shown in black, and the optimal fits in red.
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Overall, a slight difference in line depth between the two components is seen. The

more massive component has deeper lines and slightly faster rotation. The Balmer lines

are broadened by Stark broadening, and generally are not sensitive to the rotational

broadening. Thus, we first optimised portions of the disentangled spectra free of the

Balmer lines, primarily to discern the v sin i values. We then performed optimal fitting

of disentangled spectra centred on the Hβ and Hα lines, with fixed v sin i.

It is well-known that the hydrogen Balmer lines are excellent diagnostic tools for

the determination of the Teffs for stars with Teff < 8000 K because the degeneracy with

the surface gravity vanishes (Gray, 2005). Moreover, we can use log(g) determined

for the components since this quantity is determined with high precision from the

analysis of DLEBs. In the case of KIC 9851944, the log(g) values are determined with

uncertainties of about 0.01 dex, for both components. Therefore, preference is given to

the determination of the Teff for the components in KIC 9851944 from line profile fitting

of Balmer lines, with fixed surface gravity. This is advantageous over the calculation

of the Teff from metal lines because their strength depends on the metallicity of the

stellar atmosphere.

Without any appreciable changes in the light ratio in the course of the orbital

cycle, i.e. no spectra were observed in eclipse, ambiguity exists in the reconstruction

of the components’ spectra and only separation of the spectra still in the common

continuum of the binary system is possible. The components’ spectra are correctly

reconstructed but with scaling factors, i.e. the shapes of the spectral lines are correct,

but not their strength. In such a case, the light ratio can be determined from fitting the

separated spectra with synthetic (theoretical) spectra, in the course of determination of

the atmospheric parameters. The optimal fitting was performed in constrained mode,

as defined in Tamajo et al. (2011), with the condition that the sum of the light dilution

factors is equal to unity. The starfit code (Kolbas et al., 2015) uses a genetic algo-

rithm to search for the best fit within a grid of synthetic spectra pre-calculated using

the uclsyn code (Smalley et al., 2001). The uncertainties were calculated using the

MCMC approach described in Pavlovski et al. (2018). This task was straightforward

due to the fixed surface gravities and v sin i values: only the light ratio and Teffs were
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optimised.

The results of the optimal fitting for all three spectral segments are given in

Table 3.4. We adopt the weighted average of the results from Hα and Hβ for Teff ,

which is 6964 ± 43 K and 6840 ± 37 K for the primary and secondary, respectively;

these values are used to obtain the light curve solution in Section 3.6 and are presented

formally in Section 3.7. Our Teff values indicate that the KIC Teff (6204 K) for this

object is underestimated, consistent with prior studies (e.g., Molenda-Żakowicz et al.,

2011; Lehmann et al., 2011; Tkachenko et al., 2013; Niemczura et al., 2015) reporting

similar underestimations for stars with Teff ∼ 7000 K.

With the Teff determined from the Balmer lines, the depths of the metal lines

cannot be matched – the metal lines for both components are slightly deeper than the

synthetic spectra for given parameters. This could be explained with the metallicity

effect, which affects metal lines more than broad Hβ and Hα lines for which Stark

broadening dominates. The effects of metallicity explain the somewhat higher Teff (by

about 200 K) found from the metal lines. From a grid of calculated synthetic spectra for

given atmospheric parameters derived from Balmer lines, we found that the metallicity

for both components is [M/H] ∼ 0.15 dex. Since the components of KIC 9851944 are

at the cool end of where Am stars are found, this motivated us to disentangle the

spectra between 3853 – 4067 Å and compare the Ca K lines to synthetic spectra; the

comparison was carried out by Dr. Barry Smalley whose findings did not suggest Am

peculiarity although the Ca K line for the primary appears slightly weakened. Due to

the relatively high v sin i for both components, and thus severe line blending, we did

not attempt to determine individual elemental abundances.

The light ratio from the optimal fitting of the wings of Hβ and Hγ lines, spectral

segments containing only metal lines, and the Mg I triplet at around 5180 Å, are

1.315±0.018, 1.304±0.025 and 1.278±0.033 (Table 3.4). All three values for the light

ratio are consistent within their 1σ uncertainties, with the light ratio determined from

the wings of the Hβ line being the most precise of the three.

Guo et al. (2016) determined atmospheric parameters from tomographically re-

constructed spectra of the components. Their spectra cover the wavelength range
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3930 – 4610 Å at a medium spectral resolution of R = 6000. The analysis by Guo et al.

(2016) was similar to ours, but with an important difference that they fitted complete

separated spectra, whilst we concentrate on the wings of Balmer lines. Our results for

the Balmer lines corroborate their findings to within 1σ. We also find good agreement

for the v sin i values, which are also within 1σ for both components. Guo et al. (2016)

obtained a mean light ratio of ℓB/ℓA1.34 ± 0.03 from spectra centred at 4275 Å – this

is slightly larger than but still consistent with our own results.

3.5.2 Direct fitting for the light ratio

We were initially unable to constrain the light ratio of the system from the photometric

analysis alone (see Section 3.3), so estimated it using several independent methods.

The first method was the todcor light ratio reported in Table 3.3, the second was

the optimal fitting of the disentangled spectra (ODS), and a third method is developed

here.

We minimise the sum of the squared residuals between synthetic composite spec-

tra and the observed spectra, where the synthetic composite spectra are built by adding

Doppler-shifted synthetic spectra weighted by light fractions according to some value

of ℓB/ℓA, and with atmospheric parameters from the ODS analysis. We search in a grid

of ℓB/ℓA values between 0.8 and 2 with ten uniformly spaced samples; these bounds

were determined after an initial trial run with bounds of 0.5 to 3. The minimum of

a polynomial fit to the sum of the square residuals against trial values for ℓB/ℓA then

yields a best estimate for its value. The only free parameters of the minimisation

for each trial ℓB/ℓA were the coefficients of a sixth-order polynomial that was used to

normalise the observed spectra against the synthetic spectrum. The applied Doppler

shifts were fixed according to the corresponding RV values derived in Section 3.4. The

minimisation was carried out using the Nelder-Mead method as implemented in the

Scipy python package minimize (Virtanen et al., 2020).

We repeated the process for all spectral orders showing sufficient well-resolved

lines in regions unaffected by tellurics from Earth’s atmosphere. To save computing



156

4510 4520 4530 4540 4550 4560
Wavelength Å

0.7

0.8

0.9

1.0

1.1

No
rm

al
ise

d 
Fl

ux

Figure 3.7: Spectral fit to order 66 using the grid search method with optimal normal-
isation.
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Figure 3.8: Resulting ℓB/ℓA values from the grid search method averaged over the
orders.
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Table 3.5: Light ratios measured and adopted for KIC 9851944.

Source Light Ratio ℓB/ℓA
todcor 1.222± 0.136
ODS 1.300± 0.015
Direct Fit 1.302± 0.021

Adopted 1.300± 0.036

time, only the two observations closest to positions of quadrature were used. This

approach resulted in 30 spectral orders showing adequate fits with well defined minima

in the sum of the square residuals. Fig. 3.7 shows the result of this method applied to

order 66, which demonstrates the effectiveness of optimising the normalisation of the

observed spectra in the fitting routine for an order where line blending is significant.

The resulting values for ℓB/ℓA after applying this method to the selected orders are

shown in Fig. 3.8, where each result is the average of the result from each of the two

observations used.

Thus, after taking the average of the results in Fig. 3.8, which corresponds to the

blue line, we have three independent estimations for the light ratio of the system, i.e.,

todcor, ODS, and direct fitting for the light ratio. These estimations are given in

Table 3.5, where we take the average and its standard deviation from the ODS method.

For the rest of this study, we adopt ℓB/ℓA = 1.300 as the weighted mean of those values,

with an errorbar of ± 0.036 which is their standard deviation. This value is used to

ascertain the correct light curve solution is obtained in the next Section.

3.6 Analysis of the light curve

The following analysis of the light curve, which uses the wd code, was performed by

Dr. John Taylor, and is included in this thesis because it is an important component of

the analysis for KIC 9851944.



159

The components of KIC 9841944 are close to each other and thus have a significant

tidal deformation. We therefore sought to model the light curve using a code that is

based on Roche geometry. We selected the Wilson-Devinney (WD) code (Wilson &

Devinney, 1971; Wilson, 1979) for this, and used the 2004 version of the code driven

using the jktwd wrapper (Southworth et al., 2011). The user guide which accompanies

the WD code (Wilson & Van Hamme, 2004) includes a description of all input and

output quantities discussed below.

The WD code is computationally expensive and is not suited to the analysis of

the full 500 000 short-cadence datapoints in one step. We therefore used the orbital

ephemeris determined in Section 3.3 to convert the datapoints to orbital phase, and

then binned them into a much smaller number of points. We chose a bin size of 0.001

orbital phases during the eclipses and 0.005 outside the eclipses, resulting in a total of

456 phase-binned datapoints suitable for analysis with the WD code.

Through a process of trying a large number of different fits with a range of

fixed and fitted parameters, we arrived at a good solution to the light curve. We

adopt this as the default solution, plot it in Fig. 3.9, and give the fitted parameters in

Table 3.6. It was obtained in Mode = 0 with the following fitted parameters: the light

contributions of the two stars; their potentials; their gravity darkening coefficients; the

linear coefficients of the logarithmic LD law; and the orbital inclination. We fixed the

mass ratio at the spectroscopic value, the orbital eccentricity to zero, the albedos to 1.1,

the logarithmic coefficients of LD to values from Van Hamme (1993), third light to zero,

and the rotation rates to synchronous. We adopted the maximum numerical precision

values of N1 = N2 = 60 and N1L = N2L = 60, the simple treatment of reflection, and

the Cousins R-band as a proxy for the Kepler passband. This solution gives a light

ratio in excellent agreement with the spectroscopic values in Table 3.5. The fractional

radii in Table 3.6 are volume-equivalent values calculated by the lc component of the

WD code.

The main confounding factors in fitting the light curve were the albedo and

gravity darkening. Albedo values around 1.0 give a good fit to the data, but there

is a wide local minimum of χ2 at albedos in the region of 0.0 that gives a worse fit
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Figure 3.9: The best-fitting WD model (green line) to the Kepler phase-binned light
curve of KIC 9851944 (red filled circles). The residuals of the fit are plotted in the
lower panel using a greatly enlarged y-axis to bring out the detail.
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but is frequently found by the steepest-descent minimisation method implemented in

the WD code. After extensive experimentation, we found that fixing the albedos to

values slightly above 1.0 yielded the best fits and did not risk descending into the

local minimum at lower abedo values. Fitting for gravity darkening turned out to be

a crucial step in obtaining a good model, and the best-fitting values were somewhat

varied but generally around 0.8 for the primary star and 1.1 for the secondary star.

We interpret this as a systematic issue caused by residual pulsations in the light curve

and account for it in the uncertainties.

For the determination of the uncertainties of the fitted parameters we ran a wide

range of solutions with a large number of different possible approaches to modelling

the light curve (see Southworth 2020). We calculated the errorbar for each parameter

by adding in quadrature the contribution from every model choice, which in turn was

taken to be the amount that parameter changed by versus the default solution. The

following different approaches were explored.

1. We varied the amount of binning prior to the WD solution, finding that it had

a negligible effect on the fitted parameters.

2. We changed the numerical precision to N1 = N2 = N1L = N2L = 50. This

modified the fractional radii by a maximum of 0.5%.

3. We tried the detailed reflection effect and found almost identical results.

4. Attempts to fit for mass ratio returned a value very close to the spectroscopic

one and almost no change in the other parameters.

5. Fitting for the rotation rates of the stars yielded values close to and consistent

with synchronous rotation and little change in the other parameters.

6. Fitting for albedo gave a poorer fit but again very little change in the other

parameters.

7. Allowing for third light gave very similar parameters and a very small amount

of third light consistent with zero.
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8. Fitting for one of the temperatures of the stars instead of the two light contri-

butions directly (namely Mode = 2) changed the fractional radii by 0.2%.

9. Fixing the limb darkening coefficients to theoretical values changed the frac-

tional radii by 0.5%.

10. Using the square-root instead of logarithmic limb darkening law had a negligible

effect.

The best-fitting parameters were highly robust against all these experiments. The only

significantly discrepant fit (neglecting our original exploratory ones) was when we used

the Cousins I-band instead of the R-band. However, we are able to reject this fit as

it is not consistent with the spectroscopic light ratio. The calculated uncertainties are

given in Table 3.6.

Fig. 3.9 shows that the best fit is extremely good, with an r.m.s. of 0.20 mmag,

but that there are systematics remaining in the residuals. We attribute these to the

WD numerical integration for points during the eclipses, and residual pulsations for

points outside eclipse. Our approach of phase-binning the data gives a light curve

practially without Poisson noise, so makes any imperfections in the fit easily noticable.

We note that the systematics in the residuals of the fits we found to the data are too

small to show up in plots of unbinned data, so may well be present in previous work

on this object.

3.7 Physical properties

The physical properties of the KIC 9851944 system reported in this section were calcu-

lated by Dr. John Taylor.

We determined the physical properties of KIC 9851944 from the spectroscopic and

photometric results obtained above. For this, we used the jktabsdim code (South-

worth et al., 2005b), modified to use the IAU system of nominal solar values (Prša
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Table 3.6: Summary of the parameters for the wd2004 solutions of the light curves
of the system. Detailed descriptions of the control parameters can be found in the
WD code user guide (Wilson & Van Hamme, 2004). A and B refer to the primary
and secondary stars, respectively. Uncertainties are only quoted when they have been
robustly assessed by comparison of a full set of alternative solutions.

Parameter wd2004 name Value
Control and fixed parameters:
wd2004 operation mode mode 0
Treatment of reflection mref 1
Number of reflections nref 1
LD law ld 2 (logarithmic)
Numerical grid size (normal) n1, n2 60, 60
Numerical grid size (coarse) n1l, n2l 60, 60

Fixed parameters:
Mass ratio rm 1.06
Phase shift pshift 0.0
Orbital eccentricity e 0.0
Teff star A (K) tavh 6964
Teff star B (K) tavc 6840
Bolometric albedos alb1, alb2 1.1, 1.1
Rotation rates f1, f2 1.0, 1.0
Logarithmic LD coefficients y1a, y2a 0.294, 0.293

Fitted parameters:
Star A potential phsv 5.365 ± 0.044
Star B potential phsc 4.867 ± 0.093
Orbital inclination (◦) xincl 73.912 ± 0.044
Star A gravity darkening gr1 0.75 ± 0.40
Star B gravity darkening gr2 1.14 ± 0.40
Star A light contribution hlum 5.58 ± 0.12
Star B light contribution clum 7.34 ± 0.12
Star A linear LD coefficient x1a 0.658 ± 0.019
Star B linear LD coefficient x2a 0.662 ± 0.013
Fractional radius of star A 0.2344 ± 0.0024
Fractional radius of star B 0.2759 ± 0.0040
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Table 3.7: Physical properties measured for the four systems analysed in this work.
The units labelled with a ‘N’ are given in terms of the nominal solar quantities defined
in IAU 2015 Resolution B3 (Prša et al., 2016).

Parameter Star A Star B
Mass ratio 1.0667 ± 0.0038
Semimajor axis (RN

⊙) 10.805 ± 0.019
Mass (MN

⊙) 1.749± 0.010 1.866± 0.010
Radius (RN

⊙) 2.533± 0.026 2.981± 0.044
Surface gravity (log[cgs]) 3.874± 0.009 3.760± 0.013
Synchronous velocity ( km s−1) 59.2± 0.6 69.7± 1.0
Teff (K) 6964± 43 6840± 37
Luminosity log(L/LN

⊙) 1.133± 0.014 1.244± 0.016
Absolute bolometric magnitude 1.907± 0.035 1.631± 0.039
E(B − V ) (mag) 0.14 ± 0.02
Distance (pc) 935 ± 13

et al., 2016) plus the NIST 2018 values for the Newtonian gravitational constant and

the Stefan-Boltzmann constant. Errorbars were propagated via a perturbation analy-

sis. The results are given in Table. 3.7.

The distance to the system was determined using optical BV magnitudes from

APASS (Henden et al., 2012), near-IR JHKs magnitudes from 2MASS (Cutri et al.,

2003) converted to the Johnson system using the transformations from Carpenter

(2001), and surface brightness relations from Kervella et al. (2004). The interstel-

lar reddening was determined by requiring the optical and near-IR distances to match.

We found a final distance of 935 ± 12 pc, which is significantly shorter than the dis-

tance of 999±12 pc from the Gaia DR3 parallax (Gaia Collaboration et al., 2016; Gaia

Collaboration, 2021). We have no explanation for this at present, but note that the

Gaia DR2 and DR3 parallaxes of this object differ by nearly 2σ so might be affected

by its binarity.
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3.8 Asteroseismic analysis

The pulsation analysis presented in this section was performed by Dr. Timothy Van

Reeth; it is included because understanding the seismic properties of KIC 9851944 is an

important aspect of this thesis.

3.8.1 Frequency analysis

Following the binary modelling, we continue with the asteroseismic analysis of the

target. Because the observed pulsations have much smaller amplitudes than the binary

signal, the quality of the TESS and WASP data are insufficient for the asteroseismic

analysis, and we limit ourselves to using the residual Kepler light curve. This is the

merged light curve of all available Kepler short-cadence data after subtracting the best-

fitting binary model, hereafter referred to as the pulsation light curve. To minimise

the impact of outliers and instrumental effects on the asteroseismic analysis of small-

amplitude pulsations, we apply additional processing to the data. Firstly, we remove

those parts where coronal mass ejections (CMEs) or thermal and pointing changes

of the spacecraft, such as at the start of a quarter or after a safe-mode event, have

a visible impact on the quality of the light curve. Secondly, we apply preliminary

iterative pre-whitening (as described by, e.g., Van Reeth et al., 2023) to build a tentative

mathematical model of the 20 most dominant pulsations using a sum of sine waves

L(t) =
N=20∑
i=1

ai sin (2π [fi (t− t0) + ϕi]) , (3.1)

where ai, fi and ϕi are the amplitude, frequency, and phase of the ith sine wave,

respectively, and t0 is the average time stamp of all data points in the pulsation light

curve. We then identify individual outliers in the residuals using 5σ clipping, and

remove these data points from the pulsation light curve as well.

Next, we use iterative pre-whitening to measure the pulsation frequencies from

the resulting cleaned pulsation light curve. Hereby we iteratively fit additional sine
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Figure 3.10: Lomb-Scargle periodogram of the short-cadence Kepler light curve of
KIC 9851944 (black) with the iteratively prewhitened frequencies (full red lines).

waves to the time series, with frequencies that correspond to the dominant amplitudes

in the Lomb-Scargle periodogram (Scargle, 1982) of the residual pulsation light curve.

However, in the particular case of KIC 9851944, there is a significant amount of red

noise present in the data, most likely caused by residual instrumental effects, even

after cleaning the pulsation light curve. To ensure that we detect all significant pul-

sation frequencies (with a signal-to-noise ratio S/N ≥ 5.6; see e.g. Baran et al. 2015),

we customise our approach. Firstly, we split the frequency range between 0 d−1 and

the Nyquist frequency (734.21 d−1) in overlapping parts and apply the iterative pre-

whitening to these individually: from 0 d−1 to 2 d−1, from 1 d−1 to 6 d−1, from 4 d−1

to 11 d−1, from 9 d−1 to 21 d−1, from 19 d−1 to 51 d−1, from 49 d−1 to 201 d−1, and

from 199 d−1 to the Nyquist frequency. In this stage, we measure all frequencies with

S/N ≥ 4.0. Secondly, we merge the different frequency lists, keeping only those fre-

quencies that are dominant in a 2.5 fres-window, where fres is the frequency resolution

of the light curve (Loumos & Deeming, 1978) with a value of 0.00208 d−1, and that

have S/N ≥ 5.6. Thirdly, we non-linearly optimise this filtered frequency list using

the least-squares minimisation with the trust region reflective method from the lmfit

python package (Newville et al., 2019). After the optimisation, we redetermined the
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S/N that are associated with the different frequencies, again only keeping those with

S/N ≥ 5.6. This leaves us with a final list of 133 measured frequencies in both the p-

and g-mode regimes, considerably more than the 89 frequencies reported by Guo et al.

(2016). Notably, we formally detect one frequency at 391.5095 ± 0.0002 d−1 with an

amplitude of 6.3±1.2µmag. However, a detailed analysis of this sine wave reveals that

it originates from the noise properties of the short-cadence light curve. The signal has

a maximal amplitude during the first parts of quarters 13 and 14, but is not detectable

in most other parts of the light curve. Hence, we discard this frequency and limit

ourselves to the remaining frequencies, with values below 25 d−1. These are illustrated

in Fig. 3.10 and listed in Table 3.8.

3.8.2 Tidal perturbation analysis

As already demonstrated by Guo et al. (2016) and illustrated in Fig. 3.11, many of

the detected frequencies form orbital-frequency spaced multiplets, also called “tidally

split multiplets”. In our work, we identify each multiplet by looping over all measured

frequencies fi in order of decreasing amplitude, and consider frequencies fj to be part

of a multiplet around it if

|fi − fj − nforb| < ∆f, (3.2)

where n is an integer chosen to minimise the left-hand side of the Equation, and ∆f is a

chosen frequency tolerance of 0.002 d−1, that is ≈ fres. In each iteration, the considered

frequencies fj have amplitudes aj that are smaller than the amplitude ai, associated

with fi, and are not yet associated with a different multiplet.

We identify 13 multiplets that consist of three or more components, as listed in

Table 3.8. One of these, with the dominant frequency at 1.386342(4) d−1, consists of

19 frequencies that match integer multiples of the binary orbital frequency forb within

∆f , and is discussed in detail below in Sect. 3.8.3. In their work, Guo et al. (2016)

explained the other multiplets as consequences of (i) rotational frequency splitting,

and (ii) partial occultations of the pulsation mode geometries during the eclipses (e.g.,
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Table 3.8: Parameter values associated with the iteratively prewhitened frequencies,
which were obtained as described in Sec. 3.8.1. The frequencies are grouped, with
the first set consisting of those labelled as independent frequencies, and the following
groups consisting of combination frequencies, sorted according to the dominant par-
ent frequency. In the last column, we list the identified combinations. Combination
frequencies that are found within the frequency resolution fres but not within 3σ, are
indicated with ∗ in the first column and with ≈ in the final column.

frequency f amplitude a phase ϕ signal-to-noise S/N comments
(d−1) (mmag) (2π rad)

f1 0.029864(4) 0.3292(12) 0.4796(6) 20.42
f2 0.04104(12) 0.1145(12) 0.246(2) 7.15
f3 0.050798(11) 0.1231(12) -0.482(2) 7.72
f4 0.429539(12) 0.1126(12) -0.412(2) 8.25
f6 1.13642(2) 0.0559(12) 0.196(3) 5.68
f7 1.26821(2) 0.0855(12) 0.151(2) 9.41
f8 1.297029(9) 0.1389(12) 0.044(14) 15.59
f14 2.1344(2) 0.0598(12) 0.345(3) 10.12
f15 2.20293(2) 0.0554(12) -0.028(3) 9.51
f16 2.239718(6) 0.23(12) -0.0492(8) 39.16
f17 2.27839(4) 0.0363(12) -0.258(5) 6.12
f22 4.14574(3) 0.04(12) -0.092(5) 5.63
f27 5.097165(3) 0.5158(12) -0.301(4) 55.8
f28 5.53879(2) 0.0597(13) -0.271(3) 5.91
f30 5.99419(2) 0.0644(12) 0.442(3) 5.87
f34 6.59017(2) 0.0672(12) 0.469(3) 6.12
f35 7.22671(2) 0.0824(12) -0.288(2) 8.08
f45 9.59223(5) 0.0284(12) -0.486(7) 7.4
f53 10.176017(2) 0.6515(12) 0.429(3) 172.1
f54 10.399706(2) 0.8015(12) -0.2904(2) 221.19
f58 10.90789(6) 0.0211(12) 0.045(9) 5.79
f60 11.00533(2) 0.0579(12) 0.059(3) 16.02
f61 11.018536(5) 0.2785(12) 0.3112(7) 76.68
f63 11.08192(6) 0.0237(12) 0.408(8) 6.61
f66 11.27246(3) 0.0487(12) 0.117(4) 13.83
f67 11.3651(5) 0.0275(12) -0.247(7) 7.76
f68 11.41982(7) 0.1941(12) -0.3938(10) 54.46
f70 11.43819(3) 0.0376(12) -0.15(5) 10.57
f71 11.52234(5) 0.2606(12) -0.4854(7) 73.33
f74 11.890477(2) 0.5704(12) 0.1807(3) 164.93
f90 13.61013(6) 0.0213(12) 0.222(9) 7.7
f93 13.76588(7) 0.019(12) 0.161(10) 7.05
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Table 3.8 continued.
frequency f amplitude a phase ϕ signal-to-noise S/N comments

(d−1) (mmag) (2π rad)
f98 14.01097(2) 0.0589(12) -0.244(3) 23.17
f100 14.21089(3) 0.0417(12) -0.354(5) 16.79
f102 14.315077(5) 0.2819(12) 0.4401(7) 115.05
f103 14.39805(2) 0.0527(12) -0.117(4) 21.96
f104 14.448108(7) 0.1824(12) -0.3085(11) 77.2
f105 14.4932(3) 0.0396(12) 0.333(5) 16.83
f107 14.69426(7) 0.0175(12) 0.023(11) 7.6
f111 14.83253(6) 0.022(12) 0.083(9) 9.79
f125 19.126701(8) 0.1584(12) -0.4735(12) 91.81
f126 19.42779(2) 0.0847(12) -0.419(2) 47.64
f127 20.15601(9) 0.0139(12) -0.124(14) 7.51
f129 20.82366(3) 0.0432(12) 0.429(4) 21.19

f ∗
5 0.462195(5) 0.2625(12) -0.3711(7) 19.39 ≈ 1forb

f ∗
10 1.386342(4) 0.3628(12) -0.3605(5) 44.54 ≈ 3forb
f ∗
13 1.848604(10) 0.1336(12) 0.2485(14) 20.41 ≈ 4forb
f18 2.310647(4) 0.3462(12) 0.3839(6) 58.23 5forb
f20 2.77278(7) 0.1827(12) 0.0065(11) 32.88 6forb
f21 3.234899(8) 0.1651(12) -0.3581(12) 29.22 7forb
f ∗
24 4.62137(3) 0.051(12) 0.015(4) 6.14 ≈ 10forb
f ∗
26 5.08347(2) 0.0676(12) -0.349(3) 7.34 ≈ 11forb
f ∗
31 6.007556(11) 0.1215(12) -0.13(2) 11.09 ≈ 13forb
f ∗
36 7.85624(2) 0.0794(12) 0.441(2) 9.71 ≈ 17forb
f39 8.7805(4) 0.0331(12) -0.314(6) 7.19 19forb
f ∗
52 10.16693(3) 0.0453(12) -0.448(4) 11.96 ≈ 22forb
f64 11.09106(2) 0.0642(12) -0.195(3) 17.87 24forb
f77 12.01533(3) 0.0517(12) 0.058(4) 15.06 26forb
f95 13.86382(6) 0.021(12) 0.064(9) 7.98 30forb
f109 14.7881(4) 0.0326(12) 0.314(6) 14.44 32forb
f118 15.71249(6) 0.0201(12) -0.435(10) 9.87 34forb
f122 17.56078(6) 0.0202(12) -0.407(10) 10.72 38forb
f124 18.48512(5) 0.0242(12) -0.172(8) 13.89 40forb

f9 1.315491(12) 0.1099(12) 0.252(2) 12.54 f16 - 2forb
f ∗
12 1.77778(2) 0.0577(12) -0.476(3) 8.7 ≈ f16 - forb

f ∗
23 4.17278(2) 0.062(12) -0.128(3) 8.61 ≈ f27 - 2forb
f25 4.635033(12) 0.1126(12) 0.394(2) 13.54 f27 - forb
f29 5.559303(5) 0.2567(12) -0.1643(8) 25.3 f27 + forb
f ∗
32 6.021343(13) 0.1002(12) -0.298(2) 9.15 ≈ f27 + 2forb
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Table 3.8 continued.
frequency f amplitude a phase ϕ signal-to-noise S/N comments

(d−1) (mmag) (2π rad)
f ∗
33 6.48364(2) 0.0743(12) 0.31(3) 6.72 ≈ f27 + 3forb

f131 22.06635(5) 0.0237(12) -0.077(8) 12.1 f52 + f73
f132 24.70539(5) 0.0264(12) 0.45(7) 14.83 f73 + f81

f11 1.39562(2) 0.0572(12) 0.312(3) 7.06 f53 - 19forb
f19 2.319817(12) 0.1116(12) -0.005(2) 18.75 f53 - 17forb
f37 8.32746(2) 0.0582(12) -0.077(3) 9.42 f53 - 4forb
f40 8.78961(3) 0.0418(12) 0.348(5) 9.09 f53 - 3forb
f42 9.25174(2) 0.0625(12) 0.162(3) 15.84 f53 - 2forb
f47 9.71391(2) 0.0599(12) -0.347(3) 15.77 f53 - forb
f57 10.63816(2) 0.058(12) -0.107(3) 15.93 f53 + forb
f ∗
65 11.10018(3) 0.0449(12) -0.321(4) 12.47 ≈ f53 + 2forb
f ∗
72 11.56252(4) 0.0362(12) 0.098(5) 10.34 ≈ f53 + 3forb
f78 12.02459(4) 0.0327(12) -0.062(6) 9.52 f53 + 4forb
f84 12.94893(4) 0.0356(12) 0.191(5) 11.25 f53 + 6forb
f96 13.87319(5) 0.0283(12) 0.428(7) 10.81 f53 + 8forb
f ∗
110 14.79735(8) 0.0163(12) -0.299(12) 7.22 ≈ f53 + 10forb

f ∗
38 8.55106(4) 0.0327(12) -0.308(6) 6.3 ≈ f54 - 4forb
f ∗
43 9.47551(2) 0.067(12) 0.496(3) 17.51 ≈ f54 - 2forb
f48 9.93758(14) 0.0905(12) 0.007(2) 23.92 f54 - forb
f ∗
73 11.78622(4) 0.0348(12) 0.096(6) 10.11 ≈ f54 + 3forb
f ∗
81 12.71017(5) 0.0264(12) 0.386(7) 8.21 ≈ f54 + 5forb
f ∗
91 13.63457(8) 0.0158(12) -0.362(12) 5.72 ≈ f54 + 7forb

f49 10.08101(3) 0.0377(12) -0.22(5) 9.93 f60 - 2forb

f50 10.094274(11) 0.1133(12) 0.134(2) 29.92 f61 - 2forb
f75 11.942814(7) 0.1987(12) 0.13(10) 57.43 f61 + 2forb

f41 9.21174(5) 0.0262(12) 0.358(7) 6.61 f71 - 5forb
f46 9.67396(5) 0.0273(12) -0.086(7) 7.21 f71 - 4forb
f51 10.13587(4) 0.0313(12) -0.405(6) 8.28 f71 - 3forb
f56 10.598064(10) 0.1353(12) 0.2578(14) 37.3 f71 - 2forb
f62 11.06027(3) 0.0476(12) -0.186(4) 13.31 f71 - forb
f76 11.9845(5) 0.0274(12) 0.103(7) 8.01 f71 + forb
f80 12.44658(5) 0.0237(12) -0.383(8) 7.04 f71 + 2forb
f83 12.90873(7) 0.0189(12) 0.327(10) 5.96 f71 + 3forb
f87 13.37075(5) 0.0246(12) -0.004(8) 8.46 f71 + 4forb
f101 14.29517(9) 0.0146(12) 0.283(13) 5.95 f71 + 6forb
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Table 3.8 continued.
frequency f amplitude a phase ϕ signal-to-noise S/N comments

(d−1) (mmag) (2π rad)

f44 9.58038(4) 0.0297(12) -0.181(6) 7.74 f74 - 5forb
f ∗
55 10.50457(2) 0.0551(12) 0.106(3) 15.18 ≈ f74 - 3forb
f59 10.96637(3) 0.042(12) -0.292(5) 11.57 f74 - 2forb
f69 11.42854(2) 0.0649(12) 0.357(3) 18.21 f74 - forb
f79 12.35285(2) 0.08(12) -0.375(2) 23.84 f74 + forb
f ∗
82 12.814957(5) 0.2491(12) 0.0752(8) 77.37 ≈ f74 + 2forb
f85 13.27707(3) 0.0514(12) -0.101(4) 17.07 f74 + 3forb
f92 13.73916(3) 0.0399(12) -0.488(5) 14.76 f74 + 4forb
f99 14.2014(3) 0.0509(12) 0.167(4) 20.4 f74 + 5forb
f106 14.66346(4) 0.031(12) -0.274(6) 13.37 f74 + 6forb
f113 15.12563(4) 0.0365(12) 0.415(5) 17.04 f74 + 7forb
f117 15.5876(6) 0.0227(12) -0.035(8) 11.38 f74 + 8forb
f119 16.04978(7) 0.0198(12) -0.329(10) 10.23 f74 + 9forb

f112 14.93524(5) 0.0278(12) 0.498(7) 12.66 f98 + 2forb

f86 13.28676(5) 0.0259(12) 0.304(7) 8.65 f100 - 2forb

f88 13.39085(4) 0.0341(12) 0.204(6) 11.76 f102 - 2forb
f ∗
94 13.85328(4) 0.0326(12) -0.282(6) 12.38 ≈ f102 - forb

f108 14.77747(4) 0.031(12) -0.005(6) 13.62 f102 + forb
f114 15.2393(3) 0.0473(12) -0.302(4) 22.42 f102 + 2forb
f120 16.16355(5) 0.0262(12) -0.061(7) 13.58 f102 + 4forb

f115 15.32214(8) 0.0173(12) -0.351(11) 8.23 f103 + 2forb

f89 13.52388(2) 0.0822(12) 0.432(2) 29.63 f104 - 2forb
f116 15.37227(8) 0.0156(12) -0.108(12) 7.54 f104 + 2forb

f97 13.90834(6) 0.02(12) 0.279(10) 7.68 f111 - 2forb

f121 17.27819(3) 0.0423(12) -0.464(5) 22.4 f125 - 4forb
f123 17.74024(7) 0.019(12) 0.113(10) 10.38 f125 - 3forb

f128 20.3521(2) 0.0686(12) -0.152(3) 35.16 f126 + 2forb
f130 21.27623(2) 0.0601(12) -0.429(3) 29.62 f126 + 4forb
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Figure 3.11: Échelle diagram of the prewhitened frequencies of KIC 9851944, folded
with the orbital frequency forb. Identified multiplets are indicated in different colours
ranging from purple to dark yellow, with a white star marking the dominant frequency
of each multiplet. Single frequencies are shown in black. The marker sizes indicate the
associated amplitudes.
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Reed et al., 2001, 2005; Gamarova et al., 2003; Rodŕıguez et al., 2004; Gamarova et al.,

2005). However, it is now known that pulsation modes are often tidally perturbed (e.g.,

Samadi Ghadim et al., 2018; Steindl et al., 2021; Van Reeth et al., 2023) or tilted (e.g.,

Fuller et al., 2020; Handler et al., 2020; Kurtz et al., 2020; Rappaport et al., 2021; Van

Reeth et al., 2022) in close binaries.

Hence, to determine the true origin of the detected multiplets, we evaluate their

dependence on binary orbital phase in detail. Each multiplet with three or more

components is studied individually by removing all measured variability that is not

associated with that multiplet from the pulsation light curve, that is, we subtract all

sine waves with frequencies that are not in the multiplet from the pulsation light curve.

We then fold the residual light curve with the orbital period, split the data in 50 bins,

and fit the dominant sine wave of the multiplet to the data, optimising the amplitude

and phase for each orbital-phase bin. The reason for this approach is twofold: (i) the

frequency spacings within the detected multiplets are not always exact multiples of

forb, and (ii) there can be frequencies missing within the detected multiplets. As a

result, the analytical reconstruction from Jayaraman et al. (2022) is not well suited for

this star.

The results are illustrated in Fig. 3.12 to 3.24 for all pulsations. In each figure, the

relevant frequency multiplet is plotted in the left-hand panel, with a white star marking

the dominant frequency. On the right-hand side, the middle and bottom panels show

the orbit-phase dependence of the pulsation amplitude and phase, respectively. For

reference, the top right panel shows the orbital-phase-folded light curve of the binary.

From these figures we can draw several conclusions. Firstly, because most pulsation

amplitudes and phases vary significantly at all orbital phases, and the scales of the ob-

served pulsation phase modulations are of the order of 0.5 to 1.5 rad, we can conclude

that the observed pulsations are tidally perturbed. While tidally tilted pulsations are

expected to have pulsation phase modulations of 0 rad, π rad or 2π rad, which can be

smeared out (Fuller et al., 2020), tidal perturbations can result in much smaller pulsa-

tion phase modulations (e.g., Van Reeth et al., 2023). Moreover, the observed tidally

split multiplets are not perfectly equidistant. This is in contradiction with current the-
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oretical predictions made for tidally perturbed (e.g., Smeyers, 2005) and tidally tilted

pulsations (Fuller et al., 2020), indicating that aspects that are currently not included

in these theoretical frameworks, such as the Coriolis force, also play a role. Secondly,

based on the different morphology of the curves for the different pulsations, we can

conclude that the pulsations have different mode geometries (Van Reeth et al., 2023).

For example, while most observed pulsations are modulated twice per orbit, the ampli-

tude of the pulsation with frequency f = 5.097165(3) d−1 only reaches one maximum

per orbital cycle. Moreover, for some pulsations the pulsation phase decreases as a

function of the orbital phase when the observed amplitudes are maximal, while for

others the pulsation phase increases. There is no detectable correlation between these

effects and the pulsation frequency, but the tidal modulations are most easily observed

for pulsations with higher (average) amplitudes. This suggests that most if not all pul-

sations in this target are tidally perturbed, but that the S/N of the lower-amplitude

pulsations is too low for a detection.

Finally, we can confirm that some pulsations belong to the primary, while others

could belong to either the primary or the secondary component, in agreement with

the inferences made by Guo et al. (2016) based on asteroseismic models. As seen in

Fig. 3.12, the observable amplitude of the p mode with frequency 10.39971 d−1 drops

during the primary eclipse, indicating that it belongs to the primary. The higher ob-

served amplitudes just before and after the primary eclipse signifies that the pulsation

has a higher amplitude on the side of the primary that is facing the secondary com-

ponent, similar to what has been observed for g-mode pulsations in V456 Cyg (Van

Reeth et al., 2022), and KIC 3228863 and KIC 12785282 (Van Reeth et al., 2023). By

contrast, the observable amplitudes of the p modes with frequencies 11.52234 d−1 and

11.89048 d−1 peak during the primary eclipse, as shown in Figs. 3.18 and 3.19. This

can either indicate that these pulsations belong to the secondary component, or it can

be caused by reduced geometric mode cancellation during the eclipse, depending on

the geometry of these pulsation modes. The origin of the observed pulsations can be

investigated further using detailed asteroseismic modelling, which would allow us to

calculate the probability that specific pulsations belong to one or the other component.
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.

Figure 3.12: Tidally perturbed pulsation with frequency f = 10.399706(2) d−1. Left:
Associated frequency multiplet, as shown in Fig. 3.11. The white star marks the dom-
inant frequency of the multiplet. Top right: Orbital-phase folded light curve. Middle
right: Orbital-phase dependent modulations of the pulsation amplitude, calculated in
50 data bins, with the 1σ uncertainty range indicated by the dashed lines. Bottom
right: Orbital-phase dependent modulations of the pulsation phase, calculated in 50
data bins, with the 1σ uncertainty range indicated by the dashed lines.



176

Figure 3.13: Tidally perturbed pulsation with frequency f = 2.239718(6) d−1.
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Figure 3.14: Tidally perturbed pulsation with frequency f = 5.097165(3) d−1.
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Figure 3.15: Tidally perturbed pulsation with frequency f = 10.176017(2) d−1.
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Figure 3.16: Tidally perturbed pulsation with frequency f = 10.399706(2) d−1.
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Figure 3.17: Tidally perturbed pulsation with frequency f = 11.018536(5) d−1.
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Figure 3.18: Tidally perturbed pulsation with frequency f = 11.522340(5) d−1.
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Figure 3.19: Tidally perturbed pulsation with frequency f = 11.890477(2) d−1.
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Figure 3.20: Tidally perturbed pulsation with frequency f = 14.210888(3) d−1.
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Figure 3.21: Tidally perturbed pulsation with frequency f = 14.315077(5) d−1.
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Figure 3.22: Tidally perturbed pulsation with frequency f = 14.448108(7) d−1.
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Figure 3.23: Tidally perturbed pulsation with frequency f = 19.126701(8) d−1.
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Figure 3.24: Tidally perturbed pulsation with frequency f = 19.427792(15) d−1.
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However, such a modelling study lies outside the scope of the current work.

3.8.3 Orbital harmonic frequencies

In addition to the tidal perturbation of self-excited pulsations, and in agreement with

Guo et al. (2016), we also detect an orbital harmonic frequency comb, illustrated in

Fig. 3.25, which can indicate tidally excited oscillations. However, we do not recover

the same orbital harmonics as Guo et al. (2016). They reported the detection of

8forb, 22forb, 46forb, and 50forb. While our detected orbital harmonic frequency comb

consists of 19 frequencies, we only recover 22forb. This discrepancy is likely caused

by differences between the reduced short- and long-cadence Kepler light curves, and

between the photometric binary models. Thus, while we confirm the presence of orbital-

phase dependent variability in the pulsation light curve, as seen in the bottom right

panel of Fig. 3.25, its exact observed characteristics have to be treated with caution.

As pointed out by Guo et al. (2016), the detection of an orbital harmonic fre-

quency comb is somewhat unexpected for synchronised binaries with circular orbits,

though it has also been detected for other such systems (da Silva et al., 2014). Because

the orbital eccentricity of the binary is zero, the equilibrium tides that are responsi-

ble for deforming the star and perturbing the pulsations are considerably larger than

the dynamical tides that excite oscillations. Hence, this can indicate that this system

has a slightly eccentric orbit or that one or both of the components is asynchronously

rotating, within the uncertainty margins of our measurements.

3.8.4 Gravity-mode period-spacing pattern

Finally, we analyse the observed g-mode pulsations in detail. Li et al. (2020b) reported

the detection of a short period-spacing pattern of prograde sectoral quadrupole modes,

that is with (k,m) = (0, 2), and assigned them to the primary component of the system,

based on the stellar masses determined by Guo et al. (2016). In this work, we confirm

the pattern detection by Li et al. (2020b) using the methodology from Van Reeth
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Figure 3.25: Tidally excited oscillations in KIC 9851944. Left: Associated frequency
multiplet, as shown in Fig. 3.11. The white star marks the dominant frequency of the
multiplet. Top right: Orbital-phase folded light curve. Bottom right: Orbital-phase
folded residuals of the light curve after subtraction of the binary model. Individual data
points are shown in black. The overplotted purple line shows the average variability
as a function of orbital phase, evaluated in 50 equal bins.
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et al. (2015b), as shown in Fig. 3.26. Only the g mode with frequency ∼ 0.461 d−1

was not recovered because of the higher signal-to-noise ratio cutoff that we used, that

is, S/N ≥ 5.6 instead of 4.0. Moreover, the dominant g mode in the pattern, with a

frequency f of 2.239718(6) d−1, was found to be tidally perturbed and exhibit spatial

filtering during the primary eclipse, as shown in Fig. 3.13 and with the corresponding

multiplet listed in Table 3.8. These observations confirm that the g modes belong to

the primary component of the system: the observed tidal perturbations exhibit a dip in

the amplitude and a saw-tooth-like “glitch” in the pulsation phase during the primary

eclipse, which can only be explained if the pulsation belongs to the primary (Van Reeth

et al., 2022, 2023).

To investigate the potentially asynchronous rotation of the pulsating star, we

modelled our detected period-spacing pattern by fitting an asymptotic period-spacing

series, following the method described by Van Reeth et al. (2016). We confirmed the

pulsation mode identification found by Li et al. (2020b), (k,m) = (0, 2), and found that

the star has a buoyancy radius Π0 of 4370+690
−660 s and a near-core rotation frequency frot of

0.49+0.05
−0.06 d−1. These values agree within 1σ with the results from Li et al. (2020b), who

found Π0 and frot values of 3500±500 s and 0.41±0.05 d−1, respectively. Moreover, both

sets of values are consistent with synchronous rotation. However, because the detected

pattern is so short, the uncertainties on these frot values are relatively large. Hence,

there is still a possibility that the primary is asynchronously rotating, but insufficiently

strongly to be detected with the available data.

3.9 Discussion

We compared the observed properties of the components of KIC 9851944 to isochrones

calculated by MIST (Mesa Isochrones and Stellar Tracks) using the mesa code (Pax-

ton et al., 2011, 2013, 2015; Dotter, 2016; Choi et al., 2016; Paxton et al., 2019). We

searched for the best MIST isochrone using two methods. For method 1, we inter-

polated radius, Teff and luminosity as functions of mass. We then estimated these
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Figure 3.26: Detected period-spacing pattern of g modes with (k,m) = (0, 2) that
belong to the primary component of KIC 9851944. Top: part of the Lomb-Scargle pe-
riodogram of the pulsation light curve (black) with the pulsation periods of the modes
that form the pattern (red dashed lines). Bottom: the period spacing between consec-
utive modes in the detected pattern, as a function of the pulsation period. Because
there is an undetected mode between the fourth and fifth detected pulsation modes,
the fourth period spacing in the pattern is not shown. The error margins are smaller
than the symbol sizes.
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parameters using the interpolants at our measured masses. The objective function to

minimise is then the sum of the quadrature distances between the interpolated and

observed locations of the components with age and metallicity as free parameters. For

method 2, we included mass in the calculation of the objective function, i.e., masses

are not constrained to the observed values. For the minimisation, we used SciPy’s

implementation of the stochastic differential evolution algorithm (Storn & Price, 1997;

Virtanen et al., 2020). Our grid of isochrones spanned from −4.0 to 0.5 dex in [Fe/H]

and 0.5 to 10.3 dex in log10(age). The grid spacing in [Fe/H] was 0.05 dex between

−0.5 and 0.5 dex and 0.25 dex outside that range up to ±2 dex, beyond which the grid

spacing was 0.5 dex. A grid spacing of 0.05 dex in log10(age) was used through the full

grid.

After the best matching coeval isochrone was found, we removed the correspond-

ing metallicity value from our isochrone grid and repeated the procedure to explore

the effect of varying [Fe/H] on the predicted age of the system. We did this twice,

leading to first, second, and third best matching coeval isochrones, each corresponding

to a different metallicity. For method 1, the metallicity values of the first, second and

third best matching isochrones were 0.05, 0.1 and 0.0 dex, respectively. For method 2,

these values correspond to 0.05, 0.0 and 0.1 dex, i.e., the same set, except the second

and third best matches are swapped. In all cases, the predicted age of the system is

1.259 ± 0.073 Gyr. The error on this age estimate is taken to be half the average grid

spacing either side of the best fitting isochrone. We note that this age estimation is in

excellent agreement with the estimation by Guo et al. (2016) of 1.25 Gyr.

The three best-fitting isochrones are shown in Fig. 3.27 with the observed loca-

tions of the objects over-plotted in the M − log(Teff), M − log(R), M − log(L) and HR

diagrams; also shown are their isochrone neighbours, i.e., ± the grid spacing in age.

For both model comparison methods, the isochrone with [Fe/H] = 0.05 dex yielded the

model with the smallest quadrature distance to the observed quantities that were in-

cluded in the objective functions so we adopt the corresponding model predictions from

now on. Those values and their differences relative to the observed values are given

in Table 3.9 for both model comparison methods. The locations of these values in the
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Figure 3.27: The three best fitting isochrones with the observed locations of the ob-
jects over-plotted in the M − log(Teff) (top-left), M − log(R) (top-right), M − log(L)
(bottom-left) and HR (bottom-right) planes. Also plotted are the best fitting isochrone
neighbours, i.e., ± the grid spacing in age. The locations of the isochrones within those
planes corresponding to the model with the smallest quadrature distance to the mea-
sured quantities that were included in the objective function are indicated for those
from both model comparison methods.
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Table 3.9: Model parameters of the best fitting isochrone with [Fe/H] = 0.05 dex and
an age of 1.259 ± 0.073 Gyr. The results obtained from both comparison methods
are given. Also given are the differences ∆ between the observations and model for
each parameter; we quote this difference in units of the uncertainty associated with the
observations in brackets.

Parameter Method 1 Method 2
Value ∆[%] Value ∆[%]

Mass ratio 1.0667 0.0 (0.0σ) 1.0530 -1.2 (3.6σ)
MA [ M⊙] 1.749 0.0 (0.0σ) 1.758 0.5 (0.9σ)
MB [ M⊙] 1.866 0.0 (0.0σ) 1.851 -0.8 (1.5σ)
RA [ R⊙] 2.469 -2.5 (2.5σ) 2.512 -0.8 (0.8σ)
RB [ R⊙] 3.214 7.8 (5.3σ) 3.096 3.8 (2.6σ)
Teff,A [K] 6987 0.33 (0.5σ) 6971 0.1 (0.2σ)
Teff,B [K] 6636 -3.0 (5.5σ) 6694 -2.1 (3.9σ)
log(LA/L⊙) 1.117 -1.4 (1.0σ) 1.128 -0.4 (0.4σ)
log(LB/L⊙) 1.256 1.0 (0.8σ) 1.239 -0.4 (0.3σ)

planes of Fig. 3.27 are also shown; note the relative scales of the axes, particularly for

Teff where the scale of the axis is much smaller than the scales of the other axes.

Table 3.9 confirms that the luminosity predictions from our best matching isochrone

resulting from both comparison methods are accurate for both components and this is

also clear in the lower, left panel of Fig. 3.27. The other parameters are also in good

agreement for star A, particularly regarding those resulting from method 2 where the

agreement is excellent. However, for star B, the radius is underestimated while the

Teff is overestimated, and these discrepancies compensate for each other to yield the

accurate luminosity prediction.

A possible explanation is that the secondary star is approaching the terminal

age main sequence (TAMS), i.e., an evolved stage where the sensitivity of the models

increases. Thus, a full evolutionary modelling analysis, such as that carried out by

Guo et al. (2016), might yield better model predictions because metallicity and other

parameters relating to, e.g., overshooting, are included as free parameters so the model

is more flexible. This would also provide the means for a more detailed discussion of
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model comparison with observations but is beyond the scope of this paper. Here, we

simply searched in grids of pre-computed models, which are limited by the size of the

grid steps in metallicity and age, as well as fixed input physics, to estimate the age of

the system. The parameter ranges that the isochrone neighbours span in the planes

shown in Fig. 3.27 (i.e., about twice the uncertainty), and the agreement with the value

determined by Guo et al. (2016), is evidence that this age estimation is accurate.

The evolutionary tracks corresponding to the masses of the models in Table 3.9

are shown in the Teff-R, and HR diagrams in Figs. 3.28 and 3.29, respectively, as well as

the observed locations of the components. While Guo et al. (2016) find the secondary to

be in the hydrogen-shell burning phase for the same age estimate as ours, we find that

the secondary has not yet exhausted the hydrogen in its core, and is approaching the

TAMS. The scenario found here is more likely to be observed on a statistical basis since

the evolution up the HR diagram after the blue loop occurs on a very short timescale.

In any case, the secondary is more evolved and thus larger and more massive than the

primary, but cooler.

Also shown in those figures are is the blue and red edges of the instability strips

for low-order p- (dashed lines), and g-modes (dotted lines) in δ Scuti and γ Doradus

stars, respectively, from Xiong et al. (2016). Both stars are well within both instability

domains which is in agreement with the findings in Section 3.8 that both components

might be pulsating. Guo et al. (2016) find that the secondary is slightly hotter than the

blue edge of the γ Doradus instability domain calculated by Dupret et al. (2005). This

reflects the fact that the calculations by Xiong et al. (2016) (used here) predict a much

broader overlap between the δ Scuti and γ Doradus instability domains so stars with

a larger range in Teff are expected to pulsate simultaneously in p- and g-modes, i.e.,

hybrids are expected to be more common. We also plotted a sub-solar ZAMS ([Fe/H] =

-0.25 dex) as well as the ZAMS corresponding to our best matching isochrone ([Fe/H

= 0.05 dex] in Fig. 3.28 and Fig. 3.29; this shows how the ZAMS is raised to higher

luminosities and radii for higher metallicity.

We present the results previously derived by Guo et al. (2016) in Table 3.10. The

13 spectroscopic observations that the previous authors used to derive their RVs and
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Figure 3.28: The Teff-R plane showing the evolutionary tracks corresponding to the
models presented in Table 3.9. The evolutionary tracks are shown in green and purple
for star A and star B, respectively, and their observed locations are indicated by the blue
and black markers. The blue (blue lines) and red (red lines) edges of the instability
domains for low-order p- and g-modes calculated by Xiong et al. (2016) for δ Scuti
(dashed lines) and γ Doradus (dotted lines) stars are indicated. The thin, black line
is the ZAMS corresponding to the models in Table 3.9 ([Fe/H] = 0.05 dex) and the
dotted black line is the ZAMS for a metallicity of [Fe/H] = −0.25 dex. The thick,
black line represents the best fitting isochrone which is shown as a solid grey line in
Fig.3.27. Transparent grey dotted lines show the evolutionary tracks of [Fe/H] = 0.05
dex stars with other labelled masses.
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atmospheric parameters have resolutions of R = 6000. While it was already discussed

in Section 3.5.1 that our atmospheric parameters agree with those derived by Guo

et al. (2016), the higher resolution (R = 60000) of the spectra, and larger number

of observations (33) used in this work yielded a much higher quality RV curve. This

is reflected by comparing the reported masses between the two studies; the precision

in the mass estimates by Guo et al. (2016) are 4.0% and 3.9% for the primary and

secondary, respectively, while we attain precisions of 0.57% and 0.59%. The two sets

of mass measurements agree to within 0.2σ for MA and 1.1σ for MB. In contrast,

our radius measurements differ from those of Guo et al. (2016) by 6.6σ for star A and

3.5σ for star B. However, Guo et al. (2016) note the discrepancy between their values

for the radius ratio derived from two spectroscopic methods (k = 1.22 ± 0.05 and k =

1.27±0.29) and the value derived from their light curve modelling (1.41±0.018), where

they tentatively adopt the radii associated with the latter. The radius ratio derived here

agrees with the values derived by Guo et al. (2016) using their spectroscopic methods

within 0.8σ and 0.3σ, but shows the same discrepancy compared to the value derived

from their light curve modelling, for which Guo et al. (2016) note there exists a family

of comparable solutions due to the partial nature of the eclipses.

We have assumed a circularised and synchronised orbit for KIC 9851944 because

our RV- and light-curve solutions were consistent with a circular orbit, and the values

for the component of the synchronous velocity along our line of site are in excellent

agreement with the values for v sin i derived in Section 3.5.1 (see Table 3.4). Further

justification was provided by Guo et al. (2016) where they examined the eclipse times

by Conroy et al. (2014) and Gies et al. (2015), finding that the median deviation of the

phase difference between the primary and secondary eclipses from that of a circular

orbit suggests e ≥ 0.0001. Furthermore, the circularisation time-scale for a binary

system like KIC 9851944 is 600 Myr, and the synchronisation timescale is an order of

magnitude shorter (Zahn, 1977; Khaliullin & Khaliullina, 2010; Guo et al., 2016); these

timescales are shorter than the age of the system reported by both studies.

Our estimations of the near-core and surface rotations reported in Section 3.5.1

and 3.8 suggest KIC 9851944 is rotating rigidly and synchronously. This is similar
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to the findings by e.g. Guo et al. (2017b); Guo & Li (2019), that the short-period

EBs KIC 9592855 and KIC 7385478 both contain a γ Doradus pulsator that is tidally

synchronised at the surface as well as at the near-core regions. Such measurements

allow for a calibration of the time-scales for synchronisation at the surface compared

to the core, and thus the time-scales associated with angular momentum transport,

which further aids in the discrimination among different theories.

In contrast to the above, our detection of the orbital harmonic frequency comb

for KIC 9851944 either suggests asynchronous rotation or a non-zero eccentricity that

has not been detected due to observational error because these can be indicative of

tidally excited oscillations. It is unclear whether the very small value for the lower

limit on the eccentricity, i.e., e > 0.0001, reported above for this system would be

enough to induce tidal excitation of modes at the amplitudes observed here.

The pulsation analysis here complements the study by Guo et al. (2016) who

report splittings to some of the pulsation modes. We confirm the detection of tidally

split multiplets, and explain their origin; we present evidence to suggest that these are

due to perturbations to the pulsation mode cavities, i.e., tidally perturbed pulsations,

by investigating their phase and amplitude dependencies with orbital phase. Guo

et al. (2016) attempted to interpret the modes by comparing the observations with

theoretically computed frequencies, from which they concluded that the observations

can be explained by low-order p modes in the primary and the secondary, or the g

mode and mixed modes of the secondary (Guo et al., 2016). We confirm that some

of the p modes belong to the primary, and others could belong to either the primary

or the secondary from modulation of the amplitudes during eclipses. Our evidence

suggests the primary is the hybrid, and this is because the saw-tooth-like ”glitch” in

pulsation phase of the tidally perturbed g mode (see Fig.3.13) can only be explained if

the pulsation belongs to the primary (Van Reeth et al., 2022, 2023). Guo et al. (2016)

report that mode identification was inconclusive, reflecting the difficulty in identifying

the p modes in δ Scuti stars.
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Table 3.10: Previously reported results for KIC 9851944 by Guo et al. (2016). Also
given are the discrepancies ∆ of our results compared to those results, given as a
percentage of the previous result as well as units of sigma σ.

Parameter Star A Star B
Value ∆ [%] Value ∆[%]

Mass ( M⊙) 1.76± 0.07 -0.6 (0.2σ) 1.79± 0.07 4.24 (1.1σ)
Radius ( R⊙) 2.27± 0.03 11.6 (6.6σ) 3.19± 0.04 -6.55 (3.5σ)
log(g [cgs]) 3.96± 0.03 -2.2 (2.7σ) 3.69± 0.03 1.9 (2.1σ)
vsync ( km s−1) 51.4± 0.7 15.2 (8.4σ) 72.1± 0.09 -3.3 (2.4σ)
Teff (K) 7026± 100 -0.9 (0.6σ) 6902± 100 -0.9 (0.6σ)
q 1.01 ± 0.03 5.6 (1.9σ)
a ( R⊙) 10.74 ± 0.014 0.6 (2.8σ)

3.10 Conclusions

We have determined the physical properties of KIC 9851944, a short-period detached

eclipsing binary containing two F-type stars, both of which pulsate. Our analysis is

based on 33 échelle spectra plus light curves from the Kepler and TESS missions. We

measure masses and Teffs to 0.6%, radii to 1.0% and 1.5%, and 133 frequencies due to

p- and g-mode pulsations. We find no evidence of a third component, apsidal motion,

or eccentricity. We estimate the age of the system to be ∼1.26 Gyr by comparison of

the measured properties to the MIST model isochrones.

We investigated the systematic errors associated with using the cross correlation

technique to extract RVs, which arise due to blending between the spectral lines of the

components in a binary system. We find that the effect is small when using todcor

but correcting for the issue is still necessary because the resulting shifts are clearly

systematic in nature and have a non-negligible impact on the results. We used three

independent spectroscopic methods to determine the light ratio for the system. The

results are in agreement with each other and consistent with the value obtained from

modelling the light curve which supports the reliability of our light curve solution. We

compared our results to those reported by Guo et al. (2016) and find that we have
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improved the precision of the measured masses significantly, but the precision in the

radius estimates are comparable. Both these outcomes are expected since we use much

higher-resolution spectra but the same photometry (primarily Kepler).

By analysing the residuals of the light curve model, we confirm the detection of

tidally perturbed p mode pulsations, possibly in both components of KIC 9851944. A

short period spacing pattern was detected among the g modes and was assigned to the

primary component, where perturbations to one of the g modes was detected. Thus,

the primary component is a δ Scuti/γ Doradus hybrid. If pulsation mode identification

can be performed (as in, e.g., Bedding et al., 2020) on the p modes, KIC 9851944 will

become a well-equipped laboratory for stellar physics.
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4 Physical Properties of the Hierarchichal
Triple KIC 4851217 and Discussion of its
Tidally Tilted Pulsations

4.1 Introduction

This chapter presents a comprehensive analysis of KIC 4851217. This object is a de-

tached EB in a close orbit with a period of ∼ 2.47 d and shows δ Scuti pulsations,

some of which are tidally tilted pulsations (TTPs) meaning that the pulsation axis is

aligned with the tidal axis (e.g., Handler et al., 2020; Kurtz et al., 2020; Rappaport

et al., 2021). ETVs are detected in the O-C diagram (see Section 4.3.1) which we

successfully modelled as a combination of the LTTE due to a third body and apsidal

motion of the EB orbit. Thus, the object is an ideal candidate for deriving constraints

on stellar structure from its pulsations and dynamically derived fundamental parame-

ters, studying the effects of tides on pulsations from its TTPs, as well as contributing

to our understanding of hierarchical systems.

KIC 4851217 was previously studied by Liakos (2020), who presented a detailed

light curve, spectroscopic, and seismic analysis using RVs derived by He lminiak et al.

(2019) in their high resolution (R ∼ 50000) spectroscopic monitoring of 22 bright

objects in the Kepler eclipsing binary catalogue (KEBC) (Prša et al., 2011; Kirk et al.,

2016). A frequency analysis was also performed by Fedurco et al. (2019) on the Kepler

data. In addition to other previous studies mentioned by Liakos (2020), KIC 4851217

was detected by Gaulme & Guzik (2019) in their systematic search for pulsators in

the KEBC; similarly, Chen et al. (2022) detected the object in their search for δ Scuti

pulsators in the catalogues of TESS EBs by Prša et al. (2022); Shi et al. (2022). None of

these studies report the detection of a tertiary companion. Only a long-term parabolic

trend in the primary and secondary ETVs was noted in the studies by Gies et al.

(2012, 2015) and Conroy et al. (2014). Our work is complementary to the previous

studies. We present and analyse new, higher-resolution (R = 85000) spectroscopic
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observations, while the inclusion of TESS photometry allows us to report the discovery

and characterisation the tertiary component for the first time.

Section 4.2 outlines the observations and in Section 4.3.2 we perform a prelimi-

nary analysis of KIC 4851217. We present a detailed spectroscopic analysis in Section

3.5 and analyse the light curves in Section 4.5. In Section 4.6, we perform a simulta-

neous analysis of RVs, light curves, ETVs and SED (jointly) from which estimations

of the components’ physical properties follow, as well as determine the physical prop-

erties based on the individual modelling of those data. We perform a preliminary

investigation of the pulsations in Section 4.7, and give concluding remarks in Section

3.10.

4.2 Observations

4.2.1 Photometry

KIC 4851217 was observed by Kepler in seven quarters in SC mode between 2009 June

and 2013 May (Q2.3, Q4.2, Q9, Q13, Q15–17), and in 15 quarters in LC mode (Q0–Q5,

Q7–Q9, Q11–Q13, Q15–Q17). KIC 4851217 has been observed by TESS in five sectors

so far. These are sectors 14 and 15 (2019 July 18 to August 15), 41 (2021 July 23 to

August 20), and 54 and 55 (2022 July 9 to September 1). In all cases it was selected

for observations in SC mode.

4.2.2 WHT spectoscopy

The WHT spectroscopic observations outlined here were obtained by Dr. Stuart Little-

fair (2011) and Dr. Steven Bloemen (2012).

Spectroscopic observations were carried out using the ISIS spectrograph on the

4.2 m William Herschel Telescope (WHT) at La Palma. ISIS has two arms split by

a dichroic so can observe two wavelength intervals simultaneously. We used ISIS to
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Figure 4.1: Top panel; a cut of the Kepler SAP light curve from quarter-4. Bottom
panel; same as the top panel but for the TESS sector 55 SAP light curve.

acquire 17 observations in 2011 June (over 4 nights) and 14 observations in 2012 July

(over 7 nights).

A 0.5′′ slit was used to obtain the highest possible spectral resolution. In the

2011 run the slit width-adjustment mechanism was not working properly so the slit

width was set manually to somewhere close to the intended 0.5′′.

In the blue arm we used the H2400B grating to obtain spectra covering the

6100–6730 Å wavelength interval. The reciprocal dispersion was 0.11 Å px−1 and the

resolution was approximately 0.22 Å. The standard 5300 Å dichroic was used to split

the blue and red arms.
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In the red arm we used the R1200R grating to obtain spectra covering the 4200–

4550 Å wavelength interval. The reciprocal dispersion was 0.26 Å px−1 and the resolu-

tion was approximately 0.52 Å.

4.2.3 HERMES spectoscopy

The HERMES spectroscopic observations following were obtained by Dr. Jonas Deboss-

cher and kindly made available to us by Dr. Timothy Van Reeth.

A total of 41 spectroscopic observations of KIC 4851217 were obtained using

the cross-dispersed fibre-fed échelle spectrograph HERMES (High Efficiency and Res-

olution Mercator Échelle Spectrograph; Raskin et al., 2011) on the 1.2 m Mercator

telescope at La Palma. The high-efficiency mode was used, giving spectra with a re-

solving power of R = 85 000. These observations were obtained between 2011 April

and 2012 July.

4.3 Preliminary Analysis

4.3.1 Ephemeris

In all, there were 438 primary and 442 secondary eclipse times extracted from the

Kepler lightcurves, as well as 54 primary and 50 secondary eclipse times derived from

the TESS lightcurves. These data span 13.3 years. The method we used for determining

the eclipse mid-times has been discussed in several previous papers (see Borkovits et al.,

2015, 2016).

The best fit linear ephemeris for these eclipse times is given by:

TTDB(E) = 2456016.12186(13) + 2.47028992(34)E. (4.1)

The ETV curve that results from subtracting out this linear ephemeris is shown in

Fig. 4.2. We did subtract off 0.042 days from the primary ETV curve so as to bring it
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visually closer to the secondary ETV curve, but this was done only after we analyzed the

curves for an outer orbit. A cursory look at these ETV curves shows three interesting

features: (i) there is clearly non-linear behaviour that likely indicates the presence of

a third body; (ii) the two curves drift upward, indicating that our trial linear fit to

the eclipse times has some residual term to be fit for; and (iii) the two ETV curves

are slowly, but clearly, converging (by ∼0.003 days over 13 years), thereby indicating

a possible apsidal motion.

4.3.2 Preliminary ETV analysis

We attempted to fit an outer orbit to the ETV curves shown in Fig. 4.2. As noted, in

addition to the obvious non-linear behaviour in the ETV curves that likely indicates an

outer orbit, the two curves are slightly converging toward each other. If the non-linear

behaviour is due to the classic light travel time effect (LTTE)1, the ETV curves of

both the primary and secondary eclipses should run parallel to each other. Since they

do not, we take this to tentatively indicate that there is apsidal motion in the EB.

Later, we demonstrate that this is too large an effect to be driven by the third body.

Therefore, for now we assume that any apsidal motion in the EB is due to the classical

effect from mutually induced tides, and treat it as such in our preliminary fit of the

ETV curves.

The expression we fit is as follows:

ETV(t) = t0 + dP (t− ti)/Pin + LTTE(t) (4.2)

± einPin

π
cos[ωin(ti) + 2π(t− ti)/Paps] (4.3)

where ti is simply defined as the start of the observations on BJD 2454950, and is not

a free parameter, and the plus and minus symbol refers to the primary and secondary

eclipse times, respectively. In all, there are four terms comprising ten free parameters:

(i) an arbitrary offset time for the ETVs, t0; (ii) a linear term in time that corrects the

1Later we show that the dynamical delays are negligible in this system.
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EB period, dPin; (iii) the LTTE effect that accounts for the outer orbit with five free

parameters, Pout, aout,eb sin i2, eout, ωout, and τout, with their usual meanings; and (iv)

the apsidal motion term which has three free parameters: ein, ωin, and Paps, where the

“in” subscript refers to the ‘inner orbit”, i.e., that of the EB, and Paps is the period of

the apsidal motion.

The red curves superposed on each of the ETV curves in Fig. 4.2 are the result of

a Levenberg-Marquardt minimisation of χ2. The best-fit parameters are summarised in

Table 4.1, where the cited uncertainties were derived by Prof. Saul Rappaport from an

MCMC (Ford, 2005) evaluation of parameter space. The outer orbital period is fairly

well determined at 2700± 40 days (note that there are nearly two full outer periods in

the span of the data train). The outer eccentricity is fairly high at eout ≃ 0.55 ± 0.01.

The inferred mass function is f(M) = 0.0033 M⊙, which in turn would indicate that

the mass of the third body is about 0.4 M⊙ for an assumed outer orbital inclination

angle near 90◦ and total mass of the EB near 4 M⊙.

The fit to the apsidal motion yields a well-defined apsidal period for the EB

of 160 ± 5 years. Later in this work we show that this is quite a reasonable value

given the properties of the two EB stars, and their relatively large values of R/a. An

additional bonus from fitting the precise ETV times for apsidal motion is that we

also find remarkably precise values of ein and ωout of 0.03173 ± 0.00005 and 170◦ ± 1◦,

respectively.

4.3.3 SED fitting

In this section we attempt to see what can be learned about the system parameters

using only information from the spectral energy distribution of the triple system (SED);

this stage of the analysis was carried out by Prof. Saul Rappaport. We find 25 SED

point on the VizieR (Ochsenbein et al. 2000; Simon & Boch: http://vizier.unistra.

fr/vizier/sed/) SED database between 0.35µm and 11.6µm. These are shown in

2This is the projected semimajor axis of the EB around the centre of mass of the triple system.
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Figure 4.2: Eq.4.2 (red curves) fitted to the primary and secondary eclipse mid-times,
where those for the secondary are shifted by -0.042 days.

Table 4.1: Results from the ETV model.

Parameter Result
τout [days] 6747± 85
Pout [days] 2676± 43
Altte [days] 0.00317± 0.00015
eout 0.551± 0.03
ωout [◦] 21± 10
Paps [years] 163± 13
ωin [◦] 170.2± 1.7
ein 0.03174± 0.00008
dp [days] 1.89 × 10−6± 0.10 × 10−6



209

Fig. 4.3. We assign fixed uncertainties of 10% on all fluxes to take into account the

fact that there are frequent eclipses of this depth occurring. The purpose of the SED

fitting at this stage of the analysis is to provide some initial insights into the system

parameters.

In order to fit three stars to a single SED curve it is important to have at least

a few other constraints in order to produce anything like a unique solution. Here we

adopt the following set of conditions and assumptions: (1) there are three stars in the

system with a coeval evolution and with no prior mass transfer events; (2) the tertiary

component, star B, contributes ≲ 10% of the system light, otherwise it would have

been detected in the RV data (see Sect. 3.4); and (3) the hotter primary star in the

EB, star Aa, has an approximate temperature ratio with the secondary star, star Ab,

of Teff,Ab/Teff,Aa = 0.975 ± 0.007 based on the ratio of eclipse depths. Finally, we

note that the large amplitudes of the ellipsoidal variations (ELV) in the lightcurve (of

∼4% full amplitude) imply that one or more of the stars must be evolved in radius to

produce this ELV. In that case, in order to nudge the solutions in the right direction,

we somewhat arbitrarily assume that the cooler star, Ab, is the slightly more massive

and evolved star of the pair, with (4) MAa/MAb ≲ 0.95 and (5) RAa/RAb ≲ 0.95. The

details of these latter two constraints are unimportant as long as the best-fit answers

for the masses and radii are well away from these constraint boundaries.

The other constraints are (1) we take the Gaia distance of 1127± 20 pc, and use

it as a prior, but with the distance uncertainty increased by a factor of 2 to ±40 pc; (2)

we use MIST stellar evolution tracks for an assumed solar composition (Paxton et al.

2011; Paxton et al. 2015; Paxton et al. 2019; Dotter 2016; Choi et al. 2016) to compute

the stellar radii and Teff values given the stellar mass and the age of the system; and

(3) we utilise stellar atmosphere models from Castelli & Kurucz (2004).

The fitting is done via an MCMC code specifically constructed for this problem

as described in Rappaport et al. (2022). There are five fitted parameters which are:

MAa, MAb, MB, the system age, interstellar extinction (AV ), as well as a consistency

check on the distance.

The results of the SED fit are shown in Fig. 4.3 and in Table 4.2. The values in
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Figure 4.3: Left panel: An illustrative SED fit to the KIC 4851217 system. The orange
points are the observed SED values take from VizieR (see text), while the blue, red, and
green curves are the model SED curves for the secondary, primary, and tertiary stars,
respectively. Black is the sum of the individual stellar contributions. Right panel: The
corresponding locations of the three stars on the MIST stellar evolution tracks (see
text). The numbers labeling the tracks are the stellar mass in M⊙. Note that the
primary star, Aa, is the hotter, but less massive of the binary pair.

Table 4.2: KIC 4851217 parameters determined from the SED fit only

Parameter Value Uncertainty
MAa [M⊙] 1.93 0.13
RAa [R⊙] 2.33 0.28
TAa [K] 8018 300
MAb [M⊙] 2.12 0.08
RAb [R⊙] 3.06 0.27
TAb [K] 7777 300
MB [M⊙] 0.77 0.06
RB [R⊙] 0.71 0.05
TB [K] 4800 300
system age [Myr] 821 120
AV 0.31 0.10
distance [pc] 1126 17
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Table 4.2 are the median values of the posterior distributions, while the error bars are

the rms scatter of the posterior distributions around the mean. The fit to the SED

points in Fig. 4.3 shows the 25 measured flux values at wavelengths between 0.35 µm

and 11.6 µm, as well as the modelled flux for each of the three stars individually (blue,

red, and green curves) and the total flux (black curve). In the right panel of Fig. 4.3 we

show where the stars with the inferred properties would lie. As can clearly be seen, the

secondary star (Ab) is the more massive and evolved, and is in the evolutionary ‘loop’

corresponding to contraction of the H-depleted core after leaving the main sequence.

While the primary star (Aa) has definitely evolved off the ZAMS, it has not yet arrived

at the evolutionary ‘loop’ in the R− Teff plane. We note that the tertiary star is fully

consistent with contributing ≲ 1% of the system light, and having a mass ≲ 1 M⊙.

Consulting Table 4.2, we see that the masses are determined to ∼6% accuracy,

about 10% in the radii, and ∼300 K for Teff . The distance is nicely consistent with the

Gaia result. The system age of ∼800 Myr is what is expected for 2 M⊙ stars that are

just leaving the MS. It is gratifying to see that our final, much more accurate stellar

parameter set for the inner EB, found from all the available data, agree to within the

1σ error bars in Table 4.2.

Overall, the SED fit, with just a few reasonable assumptions and constraints,

yields some remarkably useful first estimates of the stellar parameters of the system.

4.4 Spectroscopic Analysis

4.4.1 Radial velocities

The 41 HERMES spectra were reduced and échelle orders were merged with the stan-

dard HERMES pipeline. The 31 ISIS spectra were reduced using pamela and molly

by Dr. John Taylor. Normalisation was carried out using the method of Xu et al. (2019)

(see Section 2.2.2.2). Template spectra were synthesised using ispec (Blanco-Cuaresma

et al., 2014b) for the components of the inner EB; the atmospheric parameters of these
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templates were determined from a preliminary analysis of the ISIS spectra and were

in agreement with those derived from the SED fitting in Section 4.3.3. Each set of

templates was synthesised according to the resolution of either instrument, which in

velocity space satisfies 1.56 km s−1 for the HERMES spectra and 7.46 km s−1 for the

ISIS spectra.

Values for v sin i of each component were estimated following the method outlined

in Section 3.4 for the analysis of KIC 9851944. For the HERMES observations, this ap-

proach yielded v sin iAa = 43.9±0.5 km s−1 and v sin iAb = 61.6±0.3 km s−1, which are

in excellent agreement with our adopted values derived from the atmospheric analysis

of the disentangled HERMES spectra (see Section 4.4.3). For the ISIS observations,

this approach yielded v sin iAa = 31.7 ± 0.5 km s−1 and v sin iAb = 55.7 ± 0.7 km s−1,

where the discrepancy is likely due to the lower velocity resolution. In any case, these

are the values that maximise the peaks of the CCFs for each set of templates so we

broadened them to these values (Gray, 2005; Czesla et al., 2019).

RVs were measured using our implementation of todcor (Zucker & Mazeh,

1994) using the region between 4400 – 4800 Å on the HERMES spectra and between

4380 – 4580 Å on the blue arm of the ISIS observations. These regions were chosen

because of the presence of many well resolved lines, which makes them reliable indica-

tors of RV, and the absence of broad lines, i.e., the Balmer series, compared to other

regions. We excluded RVs derived from observations taken near phases of conjunction

because these RVs contain little or no information about the velocity semi-amplitudes

of the components and are prone to yielding anomalous RVs due to severe blending of

the spectral lines.

Blending between the main correlation peaks and side lobes introduces systematic

shifts in RVs derived from double lined spectra at any phase, and the dependence on

phase is expected to be complex (Latham et al., 1996, see Sections 2.2.3.3 and 3.4).

As an attempt to mitigate this effect, we performed an initial fit to the extracted RVs

using the SciPy package curvefit (Virtanen et al., 2020) and then synthesised the

observed orbit by adding synthetic spectra weighted by the relative light contributions

of each component, as derived from the todcor light ratio, after applying Doppler
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Table 4.3: Orbital parameters for KIC 4851217 derived from HERMES and ISIS RVs.

Primary Secondary
K ( km s−1) 130.1 ± 0.1 114.6 ± 0.2
γ ( km s−1) −22.5 ± 0.1
e 0.032 ± 0.001
ω (◦) 170.8 ± 2.0
Tper [BJDTDB] 2456016.649 ± 0.013
rms ( km s−1) 1.1 1.6

shifts according to the initial fit. We used the exact same procedure to extract the

known RVs from the simulated orbit and calculated their discrepancies which were

applied to our actual RVs as corrections, as in Section 3.4.

We modelled the corrected RVs from both instruments jointly. The result is

shown in Fig. 4.4.1 in the top panel and the corresponding orbital parameters for

KIC 4851217 are given in Table 4.3. We attempted to fit for the CM acceleration due

to the third body but the results were negligible. This suggests that the third body’s

influence is negligible over the time-span of the spectroscopic observations. This is

expected; the ∼ 0.003 day amplitude of the LTTE estimated in Section 4.3.2 translates

to a ∼ 2.5 km s−1 velocity semi-amplitude of the CM of the EB, while our RVs only

span ∼ 15% of the outer orbital period estimated in Section 4.3.2.

Our final values for the light ratio were obtained by repeating the RV extraction

using templates corresponding to our adopted atmospheric parameters derived in Sec-

tion 4.4.3. These values correspond to ℓAb/ℓAa = 1.83±0.02 and ℓAb/ℓAa = 1.95±0.12

for the HERMES and ISIS spectra, respectively. Using the updated templates had a

negligible impact on the resulting orbital parameters, as expected since RVs depend on

the relative locations of spectral lines while ℓAb/ℓAa is more sensitive to their shapes

and depths.

Fig. 4.4.1 shows the corrections that were applied to the RVs as a function of

RV in the bottom two panels. Applying the corrections to the HERMES RVs led

to a 0.08 % and 0.2 % increase in the velocity semi-amplitude of the primary and
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secondary, respectively, where the latter translates to a 0.6 % increase in the mass,

which is significant considering that we aim to achieve precisions of ∼ 0.5 %. The

corresponding values for the ISIS spectra are a 0.5 % and 1.2 % increase in the velocity

semi-amplitudes, translating to a 1.5 % and 3.5 % increase in the mass of the primary

and secondary stars, respectively, which is very significant.

4.4.2 Spectral disentangling

The spectral disentangling technique allows for the spectra of the individual compo-

nents to be separated out from the composite binary spectra whilst simultaneously

optimising the orbital parameters of the system, as outlined in Sections 2.2.5 and 3.5.

We use the implementation fd3 by Ilijic et al. (2004), which works in the Fourier

domain, to disentangle the HERMES observations in three spectral regions: (1) 4700 –

5000 Å , which contains the Hβ line of the hydrogen Balmer series, (2) 5050 – 5300Å ,

which contains the Mg b triplet associated with transitions in neutral magnesium, (3)

6480 – 6640Å , which contains the Hα line of the hydrogen Balmer series. An initial run

was performed with initial values for the input parameters taken from Table 4.3 and

allowed to vary to within 3 times their error bar to explore the possibility that fd3

might predict different orbital parameters. In all three cases, 100 optimisation runs

each consisting of 1000 iterations did not converge to a solution with a smaller χ2 than

at the starting point. We therefore separated the spectra with the orbital parameters

fixed to the values in Table 4.3 for subsequent runs. We ignored the presence of the

third body since it is not detected spectroscopically as demonstrated in Section 4.4.1.

The absence of observations taken during eclipse requires that we perform disen-

tangling assuming equal light contributions from each of the components and, therefore,

the resulting disentangled spectra share a common continuum. For the disentangled

spectra to be scaled appropriately relative to their individual continua requires renor-

malisation as described in Ilijić (2017), which heavily relies on an accurate value for

the light ratio of the system. Due to the sensitivity in the todcor light ratio on the

choice of stellar parameters of the templates (as discussed in Section 3.4) we utilise the
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Table 4.4: Results for the light ratio determination.

Wavelength range [Å] ℓAb/ℓAa

4400–4800 2.06± 0.07
5050–5300 1.96± 0.03
5300–5500 1.88± 0.06
5500–5700 1.99± 0.05
Adopted 1.96± 0.11

method used in Section 3.5.2, which we find to be largely insensitive to relatively small

differences in the stellar parameters of the templates, to derive an independent value

for ℓAb/ℓAa.

Here, we estimate ℓAb/ℓAa by minimising the sum of the square residuals (SSR)

between the observed binary spectra and synthetic composite spectra, where the lat-

ter were calculated by adding Doppler-shifted synthetic spectra generated by ispec

weighted by light fractions corresponding to trial values for ℓAb/ℓAa. For the synthetic

spectra, we used the Teff values given in Table 4.2 derived from the analysis of the SED,

Doppler shifts corresponded to the RVs derived in Section 3.3, and we searched in a

grid of 12 values for ℓAb/ℓAa between 1.1 and 2.5. We reiterate that, to ensure optimal

normalisation of the raw observations using this method, they are normalised at each

iteration of the fit by dividing by a polynomial (second order here) whose coefficients

are set as free parameters (see Section 3.5.2).

This process was carried out on a spectral segment within the region used to ex-

tract the RVs (4400-4600Å ), the Mg b triplet (5050–5300Å ) region, as well as regions

between 5300-5500Å , and 5500-5700Å because these spectral regions showed a rela-

tively large number of well-resolved lines. We then used the five observations closest

to positions of quadrature for each spectral segment and the minimization was carried

out using Scipy’s minimize (Virtanen et al., 2020). The results were averaged over the

observations for each spectral region and are given in Table 4.4. The optimally nor-

malised observation at phase 0.762 is plotted in Fig. 4.5 with the best fitting composite

synthetic spectrum over-plotted for the region containing the Mg b triplet.
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Figure 4.5: The observation at phase 0.762 optimally normalized as described in the
text (black) for the spectral region between 5050−5300Å and the best fitting synthetic
spectrum, calculated based on the light ratio reported in Table 4.4, over-plotted (red).



218

The average of the light ratios estimated from each spectral segment satisfied

ℓAb/ℓAa = 1.96 ± 0.02. This value is consistent with the todcor light ratio derived

from the ISIS spectra but inconsistent with that derived from the HERMES spectra.

Thus, we inflate the error bar to be consistent with the weighted average of those two

values and present this as our adopted value for ℓAb/ℓAa in Table 4.4. We then use

this value to normalise all observations in the Mg b triplet, Hα, and Hβ regions by

optimising the coefficients of a second order polynomial against synthetic templates,

as described above.

We performed disentangling as described at the start of this section on the nor-

malised spectra and rescaled the results, as described in Ilijić (2017), using our adopted

value for ℓAb/ℓAa. Our disentangled component spectra for KIC 4851217 are shown in

Fig. 4.6 for the Mg b triplet, Hβ, and Hα regions. One of the benefits of spectral dis-

entangling is the increased S/N and this is obvious when comparing the middle panel

of Fig. 4.6 to Fig. 4.5.

The normalisation of the observed spectra and the light ratio used to re-scale

the disentangled spectra are possible sources of uncertainty that may propagate into

the atmospheric analysis. Thus, we computed two more sets of disentangled spectra.

For the first set, we normalised the observed spectra by optimising the coefficients of

a polynomial against synthetic templates with differing atmospheric parameters, i.e.,

∆Teff = 150 K and ∆[M/H] = 0.1 dex. We did not adjust log(g) because this is reliably

determined dynamically and we do not attempt to derive its value from the atmospheric

analysis. For the second set of additional disentanged spectra, we varied the value of

ℓAb/ℓAa used to rescale the spectra within the error bar reported in Table 4.4.

Thus, in this section we have derived an independent value for the light ratio of

the EB which we find to be more reliable than the values derived using todcor. We

then used this light ratio to normalise our observed binary spectra against synthetic

spectra, as well as calculate our primary set of disentangled spectra for each component.

We also carried out the normalisation and disentangling with adjusted values for the

atmospheric parameters of the templates and light ratio, yielding two extra sets of

disentangled spectra. These extra sets of disentangled spectra are used to estimate
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systematic uncertainties in the atmospheric parameters which we derive in the next

section.

4.4.3 Atmospheric parameters

We used the facilities provided by ispec to estimate the S/N of the disentangled

component spectra. This led to an average S/N of 82 and 156 for the primary and

secondary, respectively. Estimations for the errors on the disentangled fluxes then

follow by dividing them by the S/N.

Atmospheric parameters were determined via synthetic spectral fits using the

ispec framework combined into the ispec zj wrapper which was described in Section

2.2.6.3. By default, we opted to use the MARCS models (Gustafsson et al., 2008)

because these are adequate for dwarf stars (Blanco-Cuaresma et al., 2014b) but we

also consider the ATLAS9 models (Kurucz, 2005; Kirby, 2011; Mészáros et al., 2012)

to explore wider ranges in Teff and estimate systematic uncertainties. We combined

the MARCS models with the solar abundances from Grevesse et al. (2007) to conform

with the choice by Blanco-Cuaresma et al. (2014b), where they report better precisions

in the resulting parameters, and used the Gaia Eso Survey (GES) atomic line list. Our

synthesis is only performed on the pre-selected line-masks provided by ispec, which

are based on the GES atomic linelist, and these only extend down to 4800 Å so part of

our Hβ region was not included in the fits.

In all cases, log(g) is fixed to the dynamical values derived from the combined

analysis of the light and RV curves because it is more accurate than the spectroscopic

values (Guo et al., 2016). The macroturbulent velocity was fixed to zero for two reasons:

(1) the convective envelope is relatively deep in early F/ late A stars, so we we expect

granulation signatures to be relatively weak, (2) for surface velocity fields to be directly

detectable requires v sin i ≲ 13 km s−1 for stars with Teff ∼ 7500 K (Landstreet et al.,

2009); our estimations for v sin i are ∼ 3 and ∼ 5 times this threshold for the primary

and secondary, respectively (see Table 4.5).

First, we fitted for the spectral region containing the Mg b triplet (5050 – 5000Å )
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Table 4.5: Atmospheric parameters for the components of KIC 4851217. See text for
descriptions related to the calculation of the adopted values in column four.

Parameter Hβ Hα Mg b III Adopted
Wavelength range (Å) 4800–5000Å 6480–6640Å 5050–5300Å (see text)
Primary
Teff [K] 7810± 99 7880± 140 7890± 330 7833± 80
[M/H][dex] 0.0 0.0 0.06± 0.23 0.02± 0.11
vmic[ km s−1] 3.2± 0.4 5.0± 3.2 2.9± 0.5 3.1± 0.3
v sin i [ km s−1] 43.6 43.6 43.6± 4.6 43.6± 4.6
Secondary
Teff [K] 7715± 94 7680± 120 7860± 390 7701± 74
[M/H][dex] 0.0 0.0 -0.03± 0.27 -0.10± 0.15
vmic[ km s−1] 3.3± 0.3 3.9± 1.2 3.1± 0.5 3.3± 0.3
v sin i [ km s−1] 61.6 61.6 61.6± 7.0 61.6± 7.0

mainly to determine v sin i because this region is free of strong lines, i.e, the Balmer

series where the line profiles are heavily influenced by Stark broadening mechanisms.

We then constrained Teff by fitting the Balmer regions with v sin i fixed. We expect

Teff to be better determined from Balmer lines because their profiles are highly tem-

perature sensitive and are insensitive to log(g) for stars with Teff ≲ 8000 K (Smalley,

2005; Bowman et al., 2021); we expect the dynamical log(g) to be accurate but any

uncertainties in fixing its value are thus minimised. We also fixed [M/H] to zero in the

Balmer regions because our solution from the Mg b triplet region was consistent with

solar (see Table 4.5) and, in any case, Balmer lines are less sensitive to the influence

of metallicity.

We repeated the fits at each spectral region using the Kurucz, Castelli, and

APOGEE ATLAS9 models to investigate the systematic uncertainty associated with

our preferred choice of atmospheric model. For Teff , the MARCS, Castelli, and

APOGEE models give consistent results but the Kurucz models predict larger Teff

values by around ∼ 150K for both components and in both the Hα and Hβ regions.

We also carried out the full process on the two extra sets of disentangled spectra that
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Figure 4.7: Synthetic spectral fits to the Hβ (top), Mg b III (middle), and Hα (bottom)
regions. Observed data is shown in black and the best fitting synthetic spectra are
shown in red for the primary and green for the secondary. Gaps in the synthetic spectra
are because the synthesis was only carried out for spectral regions containing the pre-
selected line-masks (see text). The primary data are offset by +0.5 for presentation
purposes.



223

were calculated in the previous section to estimate the uncertainty associated with our

estimation for ℓAb/ℓAa as well as the the normalisation of the raw observations (see

Section 4.4.2). In each investigation, we take the standard deviations of the results

as the estimates for the associated systematic uncertainties. Final error bars are then

calculated by adding these values in quadrature to the formal error bars from the least

squares fits. Results for the fitted parameters from the fits to each spectral region are

given in the first three columns of Table 4.5 (fixed parameters are given without an error

bar) and Fig. 4.7 displays the best fitting synthetic spectra against the observations.

Values for Teff are poorly constrained in the Mg b triplet region. This could

be explained due to correlations between Teff and [M/H] being complicated due to,

e.g., line blanketing effects, and this is compounded by the fact both those parameters

are correlated with the microturbulent velocity vmic. However, these effects are less

pronounced for Balmer lines so our adopted values for Teff are the weighted averages

of the results from the Hα and Hβ regions. This decision is corroborated by the

insensitivity of Balmer lines to log(g) for stars with Teff ≲ 8000 K. We adopt the

weighted average of the results from all three regions for the final value for vmic and

finally note that our values for v sin i are consistent with synchronous rotation. Adopted

values for the atmospheric parameters are given in the fourth column of Table 4.5.

The correlations between Teff [M/H] and vmic may be the cause of the large

uncertainties in the values for [M/H] derived from the Mg b triplet region. In an

attempt to better constrain the values for [M/H], we repeated the fits in the Mg b

triplet region except we additionally fixed Teff and vmic to our adopted values. Here

we obtain [M/H] = 0.02 ± 0.06 dex for the primary and [M/H] = −0.10 ± 0.05 dex

for the secondary. The updated metallicity of the secondary is significantly sub-solar

compared to the primary, but we also noticed our adopted values for vmic are larger

than the empirical values calculated from ispec’s built-in relation constructed based

on Gaia FGK benchmark stars (Jofré et al., 2014). These empirical values correspond

to 2.5 and 2.4 km s−1 and result in an increase of [M/H] by 0.10 dex and 0.14 dex for

the primary and secondary, respectfully. We add these differences in quadrature to the

uncertainties on the values for [M/H] reported above and present them as our adopted
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values in Table 4.5. These efforts reduced the uncertainties by about a factor of two

compared to the previously derived values for [M/H] reported in the third column of

Table 4.5, but yield the same conclusions that both components are of solar abundance

to within the uncertainty.

In summary, we have derived atmospheric parameters for the components of

KIC 4851217 by performing synthetic spectral fits in three spectral regions. Our un-

certainties on the parameters take into account those associated with the normalisation

of the observations, choice of atmospheric models, and light ratio used to rescale the

disentangled spectra. The uncertainties on our adopted values for [M/H] take into

account the observed, strong anti-correlation with vmic.

4.5 Light curve analysis with the Wilson Devinney

Code

The following light curve analysis was carried out by Dr. John Taylor.

To obtain the light curve solution, we considered only the Kepler SC observations,

as these have a much better time resolution than the Kepler LC observations and a

lower scatter than the TESS data. We evaluated the orbital phase of each datapoint,

sorted them according to phase, and binned them into a total of 352 datapoints. Orbital

phases around the eclipses were sampled every 0.001 in phase, whilst those away from

the eclipses had a sampling of 0.01 phases. This process removed the shifts in eclipse

times (neglecting the extremely small changes over the course of one month), averaged

out the pulsation signature, and reduced the number of observations by three orders

of magnitude. We analysed the phase-binned light curve using the Wilson-Devinney

(wd, Wilson & Devinney, 1971; Wilson, 1979) code. We used the 2004 version of the

code driven using the jktwd wrapper (Southworth et al., 2011).

We quickly arrived at a good solution to the light curve through a process of

trying a large number of different modelling options available in wd2004. Our default



225

solution was obtained in Mode = 0 with a numerical precision of N = 60, the mass

ratio and Teff values of the stars fixed at the spectroscopic values, synchronous rotation,

gravity darkening exponents of 1.0 for both stars, the simple reflection model, limb

darkening implemented according to the logarithmic law with the non-lnear coefficients

fixed, and using the Cousins R filter as a proxy for the Kepler response function.

The fitted parameters comprised the potential, albedos, light contributions and linear

limb darkening coefficients of the two stars, plus the orbital inclination, eccentricity,

argument of periastron, and third light.

The best fit to the light curve corresponds to a light ratio between the components

of approximately 1.5, which is in significant disagreement with the spectroscopic value.

We therefore forced the solution to agree with the spectroscopic light ratio, finding

that the fit is almost as good. For the remainder of this work we use the results for

the fixed light ratio to ensure internal consistency between analyses.

The uncertainties in the fitted parameters are dominated by the uncertainty

in the spectroscopic light ratio, model choices and the numerical integration limit,

because the Poisson noise in the binned light curve is negligible. We evaluated the

uncertainties individually for all relevant sources and added them in quadrature for each

fitted parameter. The sources include the spectroscopic light ratio, chosen numerical

precision, mass ratio, mode of operation of wd2004 (0 or 2), rotation rates (varied by

10%), gravity darkening, whether or not to include third light, choice of limb darkening

law (logarithmic versus square-root) and choice of filter (Cousins R versus I).

The best-fitting parameters and uncertainties are given in Table 4.6. Third light

is negligible, which places constraints on the brightness of the third component. Of

greatest importance is that we have managed to measure the volume-equivalent frac-

tional radii to precisions of approximately 1.5%. Our results differ significantly from

those of He lminiak et al. (2019), who relied on the jktebop code in their work. The

eccentricity and argument of periastron also agree well with the spectroscopic value

derived in Section 4.3.

A plot of the solution is shown in Fig. 4.8 where significant structure can be seen

in the residuals. The short-period wiggles in the residuals during eclipse are likely due
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Figure 4.8: The best-fitting WD model (blue line) to the Kepler SC phase-binned light
curve of KIC 4851217 (red filled circles). The residuals of the fit are plotted in the
lower panel using a greatly enlarged y-axis to bring out the detail.
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Table 4.6: Summary of the parameters for the wd2004 solution of the phase-binned
light curve of KIC 4851217. Detailed descriptions of the control parameters can be
found in the WD code user guide (Wilson & Van Hamme, 2004). A and B refer to
the primary (hotter) and secondary (cooler) stars, respectively. Uncertainties are only
quoted when they have been robustly assessed by comparison of a full set of alternative
solutions.
Parameter wd2004 name Value
Control and fixed parameters:
wd2004 operation mode mode 0
Treatment of reflection mref 1
Number of reflections nref 1
LD law ld 2 (logarithmic)
Numerical grid size (normal) n1, n2 60
Numerical grid size (coarse) n1l, n2l 60

Fixed parameters:
Mass ratio rm 1.135
Phase shift pshift 0.0
Teff star A (K) tavh 7834
Teff star B (K) tavh 7701
Gravity darkening exponents gr1, gr2 1.0
Rotation rates f1, f2 1.0, 1.0
Logarithmic LD coefficients y1a, y2a 0.618, 0.628

Fitted parameters:
Star A potential phsv 6.78 ± 0.12
Star B potential phsv 5.537 ± 0.061
Orbital inclination (◦) xincl 76.86 ± 0.12
Orbital eccentricity e 0.0324 ± 0.0049
Argument of periastron (◦) perr0 161 ± 19
Bolometric albedo of star A alb1 1.4 ± 0.5
Bolometric albedo of star B alb2 1.1 ± 0.3
Star A light contribution hlum 4.34 ± 0.17
Star B light contribution clum 8.52 ± 0.17
Star A linear LD coefficient x1a 0.640 ± 0.046
Star B linear LD coefficient x2a 0.734 ± 0.032
Fractional radius of star A 0.1790 ± 0.0024
Fractional radius of star B 0.2509 ± 0.0032
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to spatial resolution of the pulsations plus possible commensurabilities between the

orbital period and pulsation periods. The cause of the slower variation seen outside

eclipse is unclear but may be related to imperfect treatment of the mutual irradiations

of the stars, residual pulsation effects, or Doppler beaming (Zucker et al., 2007).

We found that the albedos of the stars must be fitted to obtain the best solution,

although their values are sensitive in particular to the passband used. Or more interest

– and concern – is that another source of significant uncertainty was the numerical

precision specified. Our exploratory solutions with lower numerical precision (N = 30

or 40) had clearly higher residuals, but we also find a significant change in the fitted

parameters if the N values are set to 56, 57, 58, 59 or 60. This is unexpected and

merits further exploration, but a detailed analysis is beyond the scope of the current

work.

4.6 Physical Properties

In this section we undertake a comprehensive and combined analysis of all the various

data sets that we have available for this source. This is carried out with the software

Lightcurvefactory (Borkovits et al., 2013, 2019), and the result is a unified set of

all the system parameters, both stellar and orbital. The results of this comprehensive

analysis are then compared to the parameters that we were able to extract from various

subsets of the data. This approach to extracting information from various parts of the

data, vs. what can be done by a single global analysis is instructive for cases where the

data sets are not so rich.

4.6.1 An independent, joint light curve, radial velocity curve
and ETV analysis with Lightcurvefactory

The contribution to the analysis of KIC 4851217 made in this section was performed

by Prof. Tamás Borkovits.
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For the independent and combined analysis of all the KIC 4851217 data sets, we

used the software package Lightcurvefactory (Borkovits et al., 2013, 2019). This

code is able to simultaneously handle multi-passband light curves, RVs and ETVs of dif-

ferent orbital configurations of hierarchical few body systems, from simple binary stars

up to sextuple star systems. Thus, with the use of this software package we analysed

KIC 4851217 directly as a hierarchical triple star system. In practice, this means that

for each time of the observations, the software calculated the 3D Cartesian coordinates

and velocities of all three constituent stars and then synthesised the observable stellar

fluxes and RVs of each star accordingly. Moreover, the mid-eclipse times for the ETV

curves were also calculated directly from the relative, sky-projected distances of the

stellar disks, without the use of any analytic formulae which are often used for fitting

RV and/or ETV curves. Lightcurvefactory has a built-in numerical integrator to

calculate the stars’ positions and velocities directly from the perturbed equations of

motion. However, in the current situation, due to the large distance of the low-mass

tertiary component, we found that the only detectable departure from pure Keplerian

motions of both the inner and outer subsystems may come from the constant-rate

apsidal motion of the inner pair, which is dominated by the tidal distortions of the

inner binary stars. Therefore, instead of numerically integrating the stellar motions,

we calculated the stellar positions only with the use of the usual analytic formulae

describing the two (inner and outer) Keplerian motions, and with the assumption that

the argument of pericentre of the inner orbit varied linearly in time.

This additional analysis, using Lightcurvefactory, was also independent in

the sense that we used (partly) different sets of the analyzed data. In the first rounds we

used folded, binned and averaged Kepler SC data, but in the present situation we used

1000 bins of equal in length and, hence, there was no difference in the sampling between

the in-eclipse and out-of-eclipse sections of the light curve. Also, we used slightly

different primary and secondary ETV curves for the joint analysis than that which was

used for the preliminary ETV analysis in 4.3.2. For our purposes we redetermined all

mid-eclipse times from both the Kepler and TESS observations in the same manner as

was described in Borkovits et al. (2015, 2016) and used for several cases before. Note,
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however, that the two different sets of eclipse times and hence, the ETVs calculated

from these data are very similar. Finally, we used the very same RV data which were

analyzed before in Sect. 3.4.

For the parameter optimisation, and to explore parameter phase space, we used

the built-in MCMC solver contained in the software package. We tried different sets

of the stellar and orbital parameters to be adjusted. In our final solutions we adjusted

the following parameters:

(i) Eight plus one orbital element related parameters describing the two Keplerian

orbits, as follows: e1 cosω1, e1 sinω1, and i1 giving the eccentricity, argument of

periastron and the inclination of the inner orbit; furthermore, the parameters

of the wide, outer orbit: P2, e2 cosω2, e2 sinω2, i2, and its periastron passage

time, τ2. Moreover, we also adjusted the constant apsidal advance rate of the

inner orbit ∆ω1.

(ii) Three parameters connected to the stellar masses: primary star’s mass, mAa,

the mass ratio of the inner pair, q1, and, finally the mass function of the outer

orbit f2(mB).

(iii) Four mainly light-curve connected parameters: the duration of the primary

eclipse (∆tpri) is an observable which is strongly connected to the sum of the

fractional radii of the EB stars; the ratio of the radii and the Teff of the two EB

stars (RAb/RAa; TAb/TAa), and, finally, the passband-dependent extra (con-

taminated) light: ℓKepler.

Furthermore, nine additional parameters were internally constrained (or derived), as

follows:

(i) The orbital period of the EB, P1, and the time of an inferior conjunction T inf
1

of the secondary star (i.e., the mid-time of a primary eclipse) were constrained

via the ETV curves (see appendix A of Borkovits et al., 2019).

(ii) Even though in the current system, the light contribution of the distant tertiary

is negligible, the code needs the Teff , TB, and the radius, RB of the third
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component. These parameters were calculated internally simply according to

the main sequence mass-luminosity and mass-radius relations of Tout et al.

(1996).

(iii) The systemic radial velocity (γ) was derived internally at the end of each trial

step by minimising the value of χ2
RV.

(iv) Finally, note that similar to our previous modelling efforts, we applied a loga-

rithmic limb-darkening law of which the coefficients for each star were interpo-

lated from passband-dependent tables downloaded from the Phoebe 1.0 Legacy

page3. These tables are based on the Castelli & Kurucz (2004) atmospheric

models and were originally implemented in former versions of the Phoebe

software (Prša & Zwitter, 2005).

Finally, the following parameters were kept fixed: the Teff of the primary star was set to

TAa = 7834 K, i.e., to the same value which was used in the wd2004 model. Moreover,

since both EB members are hot, radiative stars, their gravity darkening exponents and

bolometric albedos were set to unity and, opposite to the wd2004 model, all these

parameters were fixed.

We also carried out a second type of complex photodynamical modelling with

Lightcurvefactory, where, besides the above described datasets, we included in

the analysis a simultaneous fit of the observed, net SED of the triple system to a

model SED. The model SED is constructed from precomputed PARSEC tables of stellar

evolutionary tracks (Bressan et al., 2012) which are built into Lightcurvefactory.

In the case of this latter type of analysis, the code calculates the radii, Teff and selected

passband magnitudes of each component separately with iteration from the three di-

mensional grids of [mass; metallicity; age] triplets (see Borkovits et al., 2020, for a

detailed description of the process). In this astrophysical model-dependent analysis,

naturally, the temperature and stellar radii-related parameters are no longer adjusted

3http://phoebe-project.org/1.0/download
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or, kept fixed, but are interpolated from the PARSEC grids in each trial step. New ad-

justed parameters are the stellar metallicity [M/H] and (logarithmic) age.4 Moreover,

two additional parameters, the interstellar extinction, E(B − V ), and the distance to

the system are fit for as well. The former of these is also adjusted in each step, how-

ever, the distance calculated at each step is done a posteriori by minimising the value

of χ2
SED.

The tabulated results, the median values of the posteriors of the adjusted and sev-

eral derived parameters, together with their 1σ uncertainties for both kinds of analyses

are tabulated in Table 4.7.

4.6.2 Physical properties of the EB from the individual anal-
yses

The results in Table 4.8 were calculated by Dr. John Taylor.

The physical properties of the inner EB of KIC 4851217 can also be determined

from the spectroscopic and photometric results derived from the individual analysis of

those data, which are presented in Tables 4.3, 4.5 and 4.6. We used the KA and KB

values from Table 4.3, the orbital period from Section 4.3.1, and the fractional radii,

orbital inclination and eccentricity from Section 4.5. These were fed into the jktab-

sdim code (Southworth et al., 2005b), modified to use the IAU system of nominal

solar values (Prša et al., 2016) plus the NIST 2018 values for the Newtonian gravita-

tional constant and the Stefan-Boltzmann constant. Errorbars were propagated via a

perturbation analysis. The results are given in Table 4.8.

We determined the distance to the system using optical BV magnitudes from

APASS (Henden et al., 2012), near-IR JHKs magnitudes from 2MASS (Cutri et al.,

2003) converted to the Johnson system using the transformations from Carpenter

4These parameters, technically, can be set separately for each star, but in practice, we generally
assume coeval stellar evolution and, moreover, identical chemical compositions of all the stars in a
given multi-stellar system and, hence, we adjust only one global age and metallicity parameter.
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Table 4.7: Orbital and astrophysical parameters of KIC 4851217 from the joint photo-
dynamical lightcurve, RV and ETV solution with and without the involvement of the
stellar energy distribution and PARSEC isochrone fitting.

without SED+PARSEC with SED+PARSEC

orbital elements
subsystem

Aa–Ab A–B Aa–Ab A–B
Panom [days] 2.4703999+0.0000027

−0.0000027 2716+26
−16 2.4703997+0.0000026

−0.0000029 2725+16
−15

a [R⊙] 12.22+0.02
−0.02 1349+14

−6 12.20+0.02
−0.01 1355+9

−9

e 0.03102+0.00004
−0.00004 0.64+0.05

−0.04 0.03101+0.00004
−0.00004 0.67+0.03

−0.04

ω [deg] 168.4+0.6
−0.6 15+3

−3 168.4+0.6
−0.5 15+3

−2

i [deg] 77.32+0.11
−0.12 70+33

−14 77.24+0.07
−0.06 76+20

−14

τ [BJD - 2400000] 55742.4719+0.0031
−0.0031 56694+32

−28 54951.9443+0.0044
−0.0037 56686+27

−20

∆ω [deg/yr] 2.40+0.06
−0.06 ... 2.39+0.06

−0.06 ...
mass ratio [q = Msec/Mpri] 1.137+0.003

−0.003 0.122+0.016
−0.014 1.140+0.003

−0.003 0.120+0.021
−0.011

Kpri [km s−1] 129.99+0.16
−0.12 3.20+0.45

−0.24 129.94+0.09
−0.09 3.43+0.28

−0.32

Ksec [km s−1] 114.39+0.35
−0.34 27.40+1.94

−3.41 114.02+0.29
−0.24 28.29+1.18

−2.86

γ [km s−1] −22.183+0.034
−0.034 −22.178+0.028

−0.032

stellar parameters
Aa Ab B Aa Ab B

Relative quantities
fractional radius [R/a] 0.1719+0.0025

−0.0024 0.2511+0.0010
−0.0010 0.00033+0.00004

−0.00004 0.1728+0.0011
−0.0010 0.2520+0.0006

−0.0006 0.00034+0.00006
−0.00003

fractional flux [in Kepler-band] 0.3238+0.0092
−0.0077 0.6686+0.0084

−0.0066 0.0007+0.0003
−0.0002 0.3269+0.0032

−0.0032 0.6681+0.0030
−0.0039 0.0005+0.0004

−0.0001

Physical Quantities
M [M⊙] 1.876+0.012

−0.012 2.132+0.009
−0.009 0.489+0.064

−0.058 1.865+0.011
−0.008 2.125+0.008

−0.005 0.477+0.083
−0.044

R [R⊙] 2.101+0.031
−0.031 3.069+0.013

−0.012 0.448+0.061
−0.050 2.108+0.016

−0.013 3.075+0.008
−0.008 0.461+0.083

−0.043

Teff [K] 7834 7741+9
−9 3749+98

−58 7997+45
−45 7882+36

−31 3451+224
−96

Lbol [L⊙] 14.92+0.45
−0.44 30.36+0.28

−0.28 0.036+0.015
−0.009 16.28+0.51

−0.34 32.76+0.69
−0.58 0.027+0.021

−0.007

Mbol 1.81+0.03
−0.03 1.03+0.01

−0.01 8.36+0.33
−0.39 1.74+0.02

−0.03 0.98+0.02
−0.02 8.69+0.33

−0.64

MV 1.78+0.03
−0.03 1.01+0.01

−0.01 9.96+0.47
−0.60 1.69+0.02

−0.03 0.91+0.02
−0.02 10.51+0.50

−0.97

log g [dex] 4.068+0.012
−0.012 3.794+0.004

−0.004 4.825+0.030
−0.011 4.060+0.004

−0.005 3.789+0.002
−0.002 4.788+0.043

−0.075

log(age) [dex] − 8.916+0.003
−0.005

[M/H] [dex] − 0.076+0.011
−0.011

E(B − V ) [mag] − 0.133+0.008
−0.009

extra light ℓ4 [in Kepler -band] 0.005+0.006
−0.003 0.005+0.004

−0.002

(MV )tot 0.57+0.01
−0.01 0.48+0.02

−0.02

distance [pc] − 1074+6
−6
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Table 4.8: Physical properties of KIC 4851217 derived from the independent analysis
of the photometric and spectroscopic data. The units labelled with a ‘N’ are given in
terms of the nominal solar quantities defined in IAU 2015 Resolution B3 (Prša et al.,
2016). The synchronise rotational velocity vsync is reported for the period of the system
and corresponding radii measurements.

Parameter Star A Star B
Mass ratio 1.1354 ± 0.0025
Semimajor axis (RN

⊙) 12.263 ± 0.015
Mass (MN

⊙) 1.899± 0.008 2.156± 0.007
Radius (RN

⊙) 2.195± 0.030 3.077± 0.039
Surface gravity (log[cgs]) 4.034± 0.011 3.796± 0.011
vsync ( km s−1) 45.0± 0.6 63.0± 0.8
Teff (K) 7834.0± 80.0 7700.9± 74.1
Luminosity log(L/LN

⊙) 1.214± 0.018 1.477± 0.018
Absolute bolometric magnitude 1.706± 0.046 1.047± 0.044
Interstellar extinction E(B − V ) (mag) 0.04 ± 0.02
Distance (pc) 1115 ± 17

(2001), and surface brightness relations from Kervella et al. (2004). The interstel-

lar reddening was determined by requiring the optical and near-IR distances to match.

and is consistent with zero: E(B − V ) = 0.02 ± 0.02 mag. We found a final distance

of 1115± 17 pc, which is in good agreement with the distance of 1127± 20 pc from the

Gaia DR3 parallax (Gaia Collaboration et al., 2016; Gaia Collaboration, 2021), as well

as the value from the SED fit in Section 4.3.3.

4.6.3 Comparison of physical properties from the individual
and combined analyses

In this work we have done separate and independent analyses for subsets of the system

parameters using subsets of the data, including RV data, ETV curves, SED fitting, and

lightcurve analysis, in addition to a simultaneous joint analysis of all the data. Here

we compare how the results of the analyses of the various subsets of the data compare

with those from the joint analysis. Numerical comparisons are given in Table 4.9 both
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Table 4.9: Full table of comparisons ∆ calculated for both sets of results from the
combined analysis against those obtainable from the individual analysis, given as per-
centages. Also given are these discrepancies in units of the quadrature addition of the
uncertainties σ.

∆ Case 1 ∆ Case 2

Orbital parameters from RV analysis

KAa -0.09% (-0.58σ) -0.13% (-1.08σ)

KAb -0.18% (-0.48σ) -0.50% (-1.54σ)
γ -1.45% (2.84 σ) -1.48% (2.90 σ)

e -3.06% (-0.98σ) -3.09% (-0.99σ)

ω -1.41% (-1.15σ) -1.41% (-1.15σ)

Parameters from ETV curve analysis

q 0.14% (0.41 σ) 0.41% (1.18 σ)
τ3 -0.79% (-0.58σ) -0.90% (-0.68σ)

P3 1.50% (0.80 σ) 1.83% (1.07 σ)

e3 16.15% (1.53 σ) 21.60% (2.38 σ)
ω3 -28.57% (-0.58σ) -28.57% (-0.58σ)

Paps -7.98% (-0.96σ) -7.59% (-0.91σ)

ω -1.06% (-0.10σ) -1.06% (-0.10σ)
e -2.27% (-8.05σ) -2.30% (-8.16σ)

Parameters from SED fitting

MAa -2.80% (-0.41σ) -3.37% (-0.50σ)

MAb 0.57% (0.15 σ) 0.24% (0.06 σ)
MB -36.49% (-3.20σ) -38.05% (-2.86σ)

RAa -9.83% (-0.81σ) -9.53% (-0.79σ)

RAb 0.29% (0.03 σ) 0.49% (0.06 σ)
RB -36.90% (-3.32σ) -35.07% (-2.57σ)

Teff,Aa -2.30% (-0.61σ) -0.26% (-0.07σ)

Teff,Ab -0.46% (-0.12σ) 1.35% (0.35 σ)
Teff,B -21.90% (-3.33σ) -28.10% (-3.60σ)

age N/A 0.37% (0.03 σ)

distance N/A -4.62% (-2.88σ)
E(B − V ) N/A 33.00% (1.05 σ)

Parameters from the atmospheric analysis

Teff,Aa 0.00% (0.00 σ) 2.08% (1.78 σ)

Teff,Aa 0.53% (0.55 σ) 2.36% (2.21 σ)
[M/H]Aa N/A 406.67% (0.54 σ)

[M/H]Ab N/A -179.17% (1.54 σ)

Light curve analysis parameters

rAa -3.97% (-2.05σ) -3.46% (-2.35σ)

rAb 0.08% (0.06 σ) 0.44% (0.34 σ)

Physical properties derived from individual models
a -0.35% (-1.72σ) -0.514% (-2.52σ)
MAa -1.21% (-1.60σ) -1.790% (-2.50σ)

MAb -1.11% (-2.11σ) -1.438% (-2.92σ)
RAa -4.28% (-2.18σ) -3.964% (-2.56σ)

RAb -0.26% (-0.20σ) -0.065% (-0.05σ)

log(g)Aa 0.84% (2.09 σ) 0.645% (2.15 σ)
log(g)Ab -0.05% (-0.17σ) -0.184% (-0.63σ)

log(L/L⊙)Aa -3.30% (-1.80σ) -0.17% (-0.09σ)

log(L/L⊙)Ab 0.340% (0.27 σ) 2.57% (1.89 σ)
E(B − V ) N/A 232.50% (4.24 σ)

distance N/A -3.68% (-2.27σ)
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as a percentage difference with respect to the values from the joint analysis and in

terms of the mutual sigmas of the two approaches.

In general, for the vast majority of the parameters we find agreement between the

results for a subset of the data versus the full joint solution at the ≲ 1.5σ level. In some

cases the discrepancy for some of the non-essential parameters (e.g., the γ velocity and

colour excess) rises to the 3− 4σ level. This provides a caveat that we should not take

these particular results too seriously at the exact quoted level of uncertainty. There

is one particular parameter, namely the eccentricity of the EB, that is discrepant at

the 8-σ level. From our fit to the ETV data alone we found ein = 0.03174 ± 0.00008

while from the joint analysis the result is ein = 0.03102±0.00004. Thus, these differ by

0.00074±0.00009. However, if the actual uncertainty in e is just 0.0004, perhaps due to

a tiny systematic error, then there is no significant discrepancy at all. Nonetheless, this

provides a warning that super-small error bars are to be viewed with some skepticism.

Table 4.9 presents the full list of comparisons of the results derived from both

cases of the combined analyses with those that were derived from the individual subsets

of data. The table also serves to summarise the parameters available from each of the

subsets of data. Regarding the discrepancies larger than ∼ 1.5σ, we note the different

levels of constraint that each type of analysis is subject to. For example, the results

from the individual modelling of each subset of data are subject to the lowest level

of constraint, relatively speaking, while those from case 2 of the combined analysis

are subject to the highest level of constraint. In the latter case, all the available

observational constraints are imposed but note, the results are not entirely model-

independent. Finally, we note the longer list of parameters reported in Table 4.7 for

the tertiary component; notably, absolute estimations for its mass follow from the

estimation for the outer orbital inclination.

4.7 Pulsation Analysis

Fedurco et al. (2019) were the first to report pulsation in KIC 4851217. They detected
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a large number of pulsation frequencies of the δ Scuti type, many of which are spaced

by the orbital frequency. These authors interpreted those pulsations as sequences of

sectoral modes. Liakos (2020) argued that the highest-amplitude pulsations originate

in the secondary star on the basis of a comparison of the amplitudes during primary

and secondary eclipse. In what follows, we present an analysis of the pulsations in this

system.

4.7.1 Frequency Analysis

The frequency analysis outlined here was performed by Prof. Gerald Handler.

To this end, we used the Period04 software (Lenz & Breger, 2005). This package

produces amplitude spectra by Fourier analysis and can also perform multi-frequency

least-squares sine-wave fitting. It also includes advanced options, such as the calcula-

tion of optimal light-curve fits for multiperiodic signals including harmonic, combina-

tion, and equally spaced frequencies which is essential for the analysis to be presented.

We have examined the Kepler LC and SC data and chose to analyse the LC data.

The SC data do show some peaks at higher frequency than the LC Nyquist frequency.

Those lie in the 35− 40 d−1 range, but can be seen to be, at least primarily, harmonics

and combinations of the pulsation modes at half that frequency range. The Kepler LC

data, which span 1459.5 d after removal of the Q0 and Q2 data that show large drifts,

give higher frequency resolution. The higher frequency harmonics and combinations

do reflect about the Nyquist down into the lower frequency range, where they lie in

the 10− 15 d−1 range, but at lower amplitude than we are analysing and hence can be

neglected. The Kepler data are more precise than, and of longer time span than the

TESS data (∆T = 1140.9 d). Minor complications of using those data are that KIC

4851217 shows pulsational amplitude variations during the 4-year time base of Kepler

observations, as do a large fraction of δ Scuti pulsators (e.g., Bowman et al., 2016),

and that there are ETVs (Sect.4.3.1).

The first step in the analysis therefore is to determine the average value of the
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orbital frequency during the time of Kepler observations, and then to fit a harmonic

series to remove that as a heuristic representation of the orbital light variations from

the LC data. The average orbital frequency obtained was νorb = 0.40481179(2) d−1.

Owing to the ETVs and amplitude variations, we have subdivided the data set

into four parts (with comparable time bases and numbers of data points): [Q1,Q3–5],

Q7–Q9, Q11-Q13, Q15–Q17. We established the frequencies using the full data set

for best accuracy, but then determined the amplitudes and phases of the signals from

the four data subsets. For the detection of additional frequencies we then merged the

residuals of those four data subsets into a single light curve and computed residual

Fourier spectra, mostly free of artifacts from pulsational amplitude variations, from it.

During this process it became clear that there is a multitude of pulsational signals,

often spaced by multiples of the orbital frequency.

In such a situation one needs to be careful about the application of signal to

noise criteria regarding frequency detection, as this may lead to overly optimistic num-

bers of detections (Balona, 2014b). In a first step, we therefore accepted signals with

amplitudes exceeding 0.05 mmag, corresponding to S/N = 25 following Breger et al.

(1993) only. We then computed an Échelle Diagram using those frequencies with re-

spect to the orbital frequency (see Jayaraman et al. (2022) for an explanation) and

looked for additional possible components of the emerging multiplet structures. For

multiplet components to be accepted, we demanded them to be exactly5 equally spaced

in frequency by multiples of the orbital frequency within Period04, and that their

amplitude exceeds 0.012 mmag (S/N = 6). The Échelle Diagram obtained in this way

is shown in Fig. 4.7.1, and the list of pulsation frequencies in Table 4.10.

The complicated échelle Diagram is an indication of tidally tilted pulsation (e.g.,

Handler et al., 2020; Kurtz et al., 2020; Fuller et al., 2020; Rappaport et al., 2021).

To examine this possibility, we reconstructed the runs of the pulsation amplitudes and

phases of individual modes from the list of pulsation frequencies (Table 4.10) using the

5This is in contrast to the analysis of the TPPs in KIC 9851944, where multiplet components were
demanded to be spaced by multiples of the orbital frequency to within a given threshold (see Section
3.8).
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Figure 4.9: The échelle Diagram of the pulsations. The lower panels are zooms into the
most crowded regions. The size of the plot symbols is proportional to the amplitude
of the signals.
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expressions given by Jayaraman et al. (2022).

4.7.2 Interpretation of the Modes

We examine the results of the reconstructed pulsation amplitudes and phases of indi-

vidual modes in an attempt to understand the nature of the pulsations. To aid this

examination, Prof. Saul Rappaport simulated light curves of KIC 4851217 assuming

that Star Aa is the pulsator, and that it pulsates in a single tidally tilted mode with a

typical period of 0.051 days. The simulations were carried out assuming tidally tilted

dipole and quadrupole modes with Ylm = Y10, Y11, Y20 and Y22, but for varied

inclinations in order to investigate how the line of site with respect to the tidal axis

affects the observations. I plotted these data in Fig. 4.10 for inclination values of 75◦

and 80◦ along with the corresponding pulsation amplitudes and phases as functions of

time; the effect of such a slight change in the inclination is most obvious by comparing

the peak heights of the sectoral modes (m = l).

The easiest nonradial mode to understand is the axisymetric dipole mode (Y10).

If the pulsation axis is aligned with the tidal axis, then we expect the amplitude of

the Y10 pulsation to modulate with the orbit because at phases of quadrature, both

hemispheres (with respect to the pulsation axis) are observed to pulsate with an anti-

phase relationship, so the variability is cancelled out. Hence, the maximum of the

modulation occurs during conjunction when only a single hemisphere with respect

to the pulsation axis is visible. Thus, we observe the product of the pulsations and

some modulation, which for the Y10 mode is sinusoidal with the orbital frequency and

the Fourier transform is two delta functions which are shifted relative to the central

frequency of the pulsation mode by ± the orbital frequency (see Fig. 4.10). Multiplying

the pulsation by the modulating term also accounts mathematically for the associated

pulsation phase changes, which occur at the nulls of the modulation (i.e., phases of

quadrature for the Y10 mode when the hemisphere that is visible changes) and are

integer multiples of π. Similar but more complicated arguments lead to the results for

the Y11, Y20 and Y22 modes in Fig. 4.10 (see, e.g., Jayaraman et al., 2022).
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Figure 4.10: Simulations of the KIC 4851217 light curve except for inclination angles
which were adjusted to i = 75◦ (red) and i = 80◦ (black). The primary component
is assumed to pulsate in a single tidally tilted Y10 (top left), Y11 (top right), Y20
(bottom left) and Y22 (bottom right) mode. Indicated are the the times of primary
(blue) and secondary (grey) eclipses.
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and Y11 (right column). The red curves indicate the size of the formal error. The
orbital light curve is plotted in two panels at the top of each column for reference.
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Figure 4.12: Same as Fig. 4.11 but for modes identified as Y20 (left) and Y22 (right).



244

For this thesis, 12 of the échelle ridges in Fig. 4.7.1 are selected for which the

corresponding mode can be identified relatively simply and explained in terms of the

TTP hypothesis by comparison of the multiplet structures, pulsations phases and am-

plitudes, with the simulated results in Fig. 4.10. The reconstructed runs of phases and

amplitudes of these 12 modes are plotted in Fig. 4.11 and Fig. 4.12. The left and right

columns of Fig. 4.11 shows the runs for modes that we identify as Y10 and Y11 dipole

modes, respectively. The left and right columns of Fig. 4.12 show the runs for modes

that we identify as Y20 and Y22 quadrupole modes, respectively. The first step in

identifying l and m for these modes is to compare the multiplet structures for the

frequencies in Fig. 4.7.1 to the simulated Fourier transforms (FTs) in Fig. 4.10. For

example, the quintuplet due to ν7 clearly matches the FTs of the Y22 mode. The dou-

blets due to ν29 and ν17 match the FTs of the Y10 mode. For the latter, good matches

are also observed in terms of the pulsation phase and amplitude modulations. This is

almost the case for the ν18 mode, except its runs of phase and amplitude show wiggles.

These are related to the spatial filtering effect during eclipse, which results in extra

multiplet components (see Fig. 4.7.1); this is similarly the case for the Y20 quadrupole

mode at ν20. Notice that for the Y11 modes, the amplitude maxima of the pulsations

and the corresponding phase changes are shifted to occur during conjunction. For the

quadrupole Y20 modes in Fig. 4.12 (left column), we observe twice as many amplitude

maxima as well as twice as many phase shifts compared the dipole modes, as expected

from the simulations in Fig. 4.10.

These identifications and the phase shifts corresponding to integer multiples of π

are compounded by the multiplet components being spaced exactly by integer multiples

of the orbital frequency in suggesting that these modes are tidally tilted. The caveat

in these identifications of l and m is that low amplitudes means additional components

could be lost in the noise and thus they are not present in the échelle. However, the fact

that such additional components were not detected argues that the modes have been

described accurately. Many of the échelle ridges in Fig. 4.7.1 (e.g., ν6, ν9, ν12, ν19, ν26,

ν6, ν30, ν31, and ν38) require further investigations due to them being complicated in

nature. We mentioned above that the pulsations of KIC 4851217 are subject to higher
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degrees of complexity owing to ETVs and the other contributions to the amplitude

modulation observed in δ Scuti pulsators. This is in addition to spatial filtering effects.

We note that the results for the selected modes presented in the right panel of Fig. 4.12

were tentatively identified as Y22 quadrupole modes based on the FTs; the phase and

amplitude runs are less convincing. The topic of TTPs is still in its infancy and more

studies are required for a complete understanding and accurate interpretation of every

observed signature. To that end, a detailed investigation into every mode displayed in

Fig. 4.7.1 is in preparation.

We finally consider the mode at ν3 (see Fig. 4.13), which was previously inves-

tigated by Fedurco et al. (2019) with the interpretation that the mode is a tidally

locked (TPP) sectoral mode. We note the similarity between the amplitude and phase

modulations for this mode to those of a mode in the tidally tilted subdwarf B star

HD 265435 (ν03 in Jayaraman et al., 2022), where those authors identified the mode to

be a Y22 quadruple mode. We suggest that the identification by Fedurco et al. (2019)

is correct, but the interpretation is incorrect, and ν3 is a tidally tilted mode.

The insights into the modes discussed in this this section benefited largely from

conversations with Saul Rappaport, Donald Kurtz, Gerald Handler and Jim Fuller.



246

0.0

0.1

0.2

Δm
Δ[M

ag
]

1

2

3

A p
ul

sΔ[
m

m
ag

] ν3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
OrbitalΔPhase

−1.0

−0.5

0.0

0.5

1.0

ϕ/
π

Figure 4.13: Same as Fig.4.11 but only considering the mode at ν3.



247

Table 4.10: Multiple pulsation frequency solution for the Kepler 30-min photometry of
KIC 4851217. The phases are calculated with respect to a time of primary minimum
of BJDTDB 2454953.900333. The formal errors on the frequencies and phases (Mont-
gomery & O’Donoghue, 1999) are given in brackets in units of the last significant digit;
the formal errors on the amplitudes are ±0.008 mmag.
ID Freq. Ampl. Phase ID Freq. Ampl. Phase

(d−1) (mmag) (rad) (d−1) (mmag) (rad)
ν1−9νorb 15.449121 0.033 1.8(3) ν6−10νorb 12.18782 0.019 1.4(5)
ν1−8νorb 15.853932 0.021 1.8(5) ν6−9νorb 12.59263 0.021 −0.2(4)
ν1−7νorb 16.258744 0.033 1.8(3) ν6−8νorb 12.99744 0.027 1.5(3)
ν1−6νorb 16.663556 0.030 1.7(3) ν6−7νorb 13.40225 0.026 0.0(3)
ν1−5νorb 17.068368 0.044 1.8(2) ν6−6νorb 13.80706 0.035 1.6(2)
ν1−4νorb 17.47318 0.043 2.0(2) ν6−5νorb 14.21188 0.033 0.1(2)
ν1−3νorb 17.877991 0.076 1.5(1) ν6−4νorb 14.61669 0.038 1.7(2)
ν1−2νorb 18.282803 0.135 −0.03(6) ν6−3νorb 15.0215 0.036 0.2(2)
ν1 − νorb 18.687615 0.266 1.75(3) ν6−2νorb 15.426311 0.063 1.7(1)
ν1 19.092427(1) 3.410 1.703(3) ν6 − νorb 15.83112 0.022 0.5(4)
ν1+2νorb 19.90205 0.055 0.5(2) ν6 16.23593(1) 0.303 1.93(3)
ν1+3νorb 20.306862 0.248 1.86(3) ν6+2νorb 17.04556 0.082 1.8(1)
ν1+4νorb 20.711674 0.062 1.8(2) ν6+3νorb 17.45037 0.034 0.6(3)
ν1+5νorb 21.116486 0.032 1.9(4) ν6+4νorb 17.85518 0.043 1.7(2)
ν1+6νorb 21.521298 0.039 1.8(3) ν6+5νorb 18.25999 0.026 0.8(4)
ν1+7νorb 21.926109 0.030 1.7(4) ν6+6νorb 18.66481 0.028 2.2(4)
ν1+8νorb 22.330921 0.028 1.9(4) ν6+8νorb 19.47443 0.019 −0.7(5)
ν2−10νorb 11.96951 0.024 1.6(5) ν7−2νorb 15.03273 0.062 1.4(1)
ν2−9νorb 12.374322 0.026 2.2(4) ν7 − νorb 15.43754 0.042 −0.4(2)
ν2−8νorb 12.779134 0.038 1.7(3) ν7 15.842351(1) 0.251 1.35(3)
ν2−7νorb 13.183946 0.031 2.2(3) ν7+νorb 16.24716 0.062 −0.1(1)
ν2−6νorb 13.588757 0.060 1.7(2) ν7+2νorb 16.65197 0.093 1.4(1)
ν2−5νorb 13.993569 0.033 2.2(3) ν8−4νorb 16.70908 0.026 −0.5(4)
ν2−4νorb 14.398381 0.084 1.8(1) ν8−2νorb 17.5187 0.535 −0.11(2)
ν2−3νorb 14.803193 0.077 1.9(1) ν8 − νorb 17.92351 0.062 2.1(1)
ν2−2νorb 15.208005 0.059 −0.8(2) ν8 18.32832(1) 0.346 −0.03(3)
ν2 − νorb 15.612816 1.176 1.876(7) ν8+νorb 18.73314 0.051 0.7(2)
ν2 16.017628(2) 0.784 1.80(1) ν8+2νorb 19.13795 0.356 1.59(3)
ν2 + νorb 16.422440 1.829 1.946(5) ν8+5νorb 20.35238 0.022 0.0(5)
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Table 4.10 continued.
ID Freq. Ampl. Phase ID Freq. Ampl. Phase

(d−1) (mmag) (rad) (d−1) (mmag) (rad)
ν2+2νorb 16.827252 0.630 2.06(1) ν9−6νorb 16.02389 0.023 1.0(5)
ν2+3νorb 17.232064 0.139 2.04(6) ν9−4νorb 16.83352 0.030 1.3(4)
ν2+4νorb 17.636875 0.069 2.1(1) ν9−3νorb 17.23832 0.061 −0.4(1)
ν2+5νorb 18.041687 0.020 1.7(6) ν9−2νorb 17.64314 0.055 1.3(2)
ν2+6νorb 18.446499 0.066 2.1(1) ν9 − νorb 18.04795 0.112 −0.3(1)
ν2+7νorb 18.851311 0.033 1.6(3) ν9 18.45276(3) 0.048 1.5(2)
ν2+8νorb 19.256123 0.049 2.1(2) ν9+νorb 18.85757 0.123 −0.2(1)
ν2+9νorb 19.660934 0.020 1.6(6) ν9+2νorb 19.26239 0.033 1.7(3)
ν2+10νorb 20.065746 0.035 2.1(3) ν9+3νorb 19.6672 0.022 0.3(4)
ν2+12νorb 20.87537 0.024 2.1(5) ν9+4νorb 20.07201 0.029 1.7(3)
ν3−7νorb 16.256245 0.023 0.7(5) ν10−2νorb 15.23858 0.032 0.0(3)
ν3−5νorb 17.065869 0.024 0.4(5) ν10 16.04820(1) 0.246 −0.35(4)
ν3−3νorb 17.875493 0.040 0.5(3) ν10+νorb 16.45301 0.193 −0.56(5)
ν3−2νorb 18.685116 0.034 0.7(3) ν10+2νorb 16.85783 0.136 1.01(7)
ν3 − νorb 19.494740(2) 1.761 0.693(5) ν10+3νorb 17.26264 0.099 −0.72(9)
ν3 19.899552 0.065 0.2(1) ν10+4νorb 17.66745 0.081 0.6(1)
ν3+νorb 20.304363 1.606 2.323(5) ν10+5νorb 18.07226 0.119 −0.10(8)
ν3+2νorb 20.709175 0.053 1.6(1) ν10+6νorb 18.47707 0.106 2.24(8)
ν4−4νorb 14.618782 0.042 0.8(3) ν10+7νorb 18.88188 0.056 −0.1(1)
ν4−3νorb 15.023594 0.074 2.1(1) ν10+10νorb 20.09632 0.031 0.8(3)
ν4−2νorb 15.428406 0.727 −0.76(1) ν11−2νorb 15.24229 0.307 −0.20(3)
ν4 − νorb 15.833218 0.268 −0.72(3) ν11 − νorb 15.6471 0.066 −0.7(1)
ν4 16.238029(2) 1.676 0.816(5) ν11 16.05191(1) 0.342 −0.01(3)
ν4+νorb 16.642841 0.310 0.68(3) ν11+νorb 16.45672 0.282 0.36(3)
ν4+2νorb 17.047653 0.333 −0.64(3) ν11+2νorb 16.86154 0.248 1.49(4)
ν5−7νorb 12.938057 0.014 1.9(6) ν11+3νorb 17.26635 0.035 −0.4(3)
ν5−5νorb 13.74768 0.016 1.9(6) ν11+5νorb 18.07597 0.036 −0.3(3)
ν5−2νorb 14.962116 0.084 1.2(1) ν12−4νorb 17.80443 0.024 2.0(4)
ν5 − νorb 15.366927 0.022 0.4(4) ν12−3νorb 18.20924 0.037 −0.2(3)
ν5 15.771739(5) 0.715 1.22(1) ν12−2νorb 18.61406 0.059 0.9(2)
ν5+νorb 16.176551 0.244 1.11(3) ν12 − νorb 19.01887 0.052 0.2(2)
ν5+2νorb 16.581363 0.083 −0.42(9) ν12 19.42368(1) 0.318 −0.77(3)
ν5+3νorb 16.986175 0.045 −0.5(2) ν12+2νorb 20.2333 0.066 1.0(1)
ν5+4νorb 17.390986 0.080 −0.1(1)
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Table 4.10 continued.
ID Freq. Ampl. Phase ID Freq. Ampl. Phase

(d−1) (mmag) (rad) (d−1) (mmag) (rad)
ν13−2νorb 17.012433 0.122 0.41(7) ν26−3νorb 17.79352 0.038 0.4(2)
ν13 − νorb 17.417245 0.035 -0.6(3) ν26−2νorb 18.19833 0.030 1.9(3)
ν13 17.822057(5) 0.650 0.38(1) ν26 − νorb 18.60314 0.055 -0.3(2)
ν14 − νorb 17.86777 0.035 0.3(3) ν26 19.00795(1) 0.316 0.49(3)
ν14 18.27258(2) 0.211 0.68(4) ν26+νorb 19.41277 0.049 2.2(2)
ν14+2νorb 19.08220 0.176 -0.77(5) ν26+2νorb 19.81758 0.243 2.06(4)
ν15−4νorb 17.959205 0.059 1.2(1) ν26+6νorb 21.43682 0.024 2.2(4)
ν15−3νorb 18.364016 0.054 0.5(1) ν27 19.50695(7) 0.045 1.6(2)
ν15−2νorb 18.768828 0.272 -0.16(3) ν27+2νorb 20.31658 0.043 0.1(2)
ν15 19.578452(8) 0.431 -0.07(2) ν28−2νorb 19.84917 0.032 0.7(3)
ν15+2νorb 20.388075 0.039 1.6(2) ν28 20.65880(6) 0.052 0.8(2)
ν16 − νorb 19.21393 0.099 1.17(9) ν28+2νorb 21.46842 0.035 0.8(3)
ν16 19.61874(2) 0.041 -0.1(2) ν29−2νorb 21.88076 0.034 1.7(3)
ν16+νorb 20.02355 0.140 1.28(7) ν29 22.69038(9) 0.035 1.9(3)
ν17−2νorb 19.23716 0.119 0.91(8) ν30−4νorb 15.14377 0.037 0.1(3)
ν17 20.04678(2) 0.141 0.98(7) ν30 16.76302(8) 0.042 0.2(2)
ν18−7νorb 15.61714 0.022 0.8(4) ν30 + νorb 17.16783 0.032 1.9(3)
ν18−5νorb 16.42676 0.024 1.0(4) ν30+2νorb 17.57264 0.031 0.2(3)
ν18 − νorb 18.04601 0.142 1.26(6) ν30+3νorb 17.97746 0.034 -0.2(3)
ν18 18.45082(2) 0.032 -0.1(3) ν31−3νorb 17.29054 0.027 1.1(3)
ν18+νorb 18.85563 0.180 1.32(5) ν31 − νorb 18.10016 0.027 -0.6(3)
ν18+3νorb 19.66526 0.025 1.4(4) ν31 18.50497(6) 0.060 -0.4(2)
ν18+5νorb 20.47488 0.027 1.5(3) ν31+2νorb 19.31460 0.044 1.3(2)
ν19−10νorb 15.68755 0.030 -0.6(3) ν32−2νorb 20.04343 0.059 1.9(2)
ν19−8νorb 16.49718 0.039 1.5(2) ν32 20.85306(6) 0.032 2.1(3)
ν19−7νorb 16.90199 0.027 0.9(3) ν32+2νorb 21.66268 0.046 0.4(2)
ν19−6νorb 17.30680 0.036 -0.3(3) ν33 − νorb 16.81905 0.033 -0.6(3)
ν19−5νorb 17.71161 0.059 1.2(2) ν33 17.22387(8) 0.032 1.2(3)
ν19−2νorb 18.92605 0.028 1.6(3) ν33+νorb 17.62868 0.041 -0.4(2)
ν19 19.73567(4) 0.081 1.7(1) ν34−2νorb 22.13968 0.039 0.7(2)
ν20−2νorb 17.31839 0.083 2.0(1) ν34 22.94931(8) 0.031 -0.7(3)
ν20 18.12801(4) 0.061 1.4(1) ν35−2νorb 22.14875 0.045 1.7(2)
ν20+2νorb 18.93764 0.038 1.4(2) ν35 22.95838(7) 0.042 0.1(2)
ν21 16.10628(8) 0.040 -0.4(2) ν36 20.61582(7) 0.050 2.0(2)
ν21+νorb 16.51109 0.037 1.1(2) ν36+2νorb 21.42545 0.033 2.0(3)
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Table 4.10 continued.
ID Freq. Ampl. Phase ID Freq. Ampl. Phase

(d−1) (mmag) (rad) (d−1) (mmag) (rad)
ν22−3νorb 18.15684 0.027 1.9(3) ν37 17.39852(7) 0.054 -0.3(2)
ν22 19.37128(3) 0.099 0.46(9) ν37+2νorb 18.20814 0.024 1.3(4)
ν22+2νorb 20.18090 0.094 1.96(9) ν38−5νorb 15.69757 0.030 0.6(3)
ν23-3νorb 18.56518 0.039 -0.7(2) ν38−4νorb 16.10238 0.028 2.3(3)
ν23 19.77961(8) 0.027 0.9(3) ν38−2νorb 16.91200 0.024 -0.7(4)
ν23+3νorb 20.99405 0.031 -0.4(3) ν38 17.72163(2) 0.207 -0.48(4)
ν24−2νorb 17.36238 0.038 -0.1(2) ν38+2νorb 18.53125 0.029 -0.5(3)
ν24 − νorb 17.76720 0.029 1.9(3) ν39−2νorb 15.71829 0.040 1.8(2)
ν24 18.17201(5) 0.072 -0.3(1) ν39 16.52792(6) 0.054 2.1(2)
ν24+νorb 18.57682 0.029 2.1(3) ν40 19.49752(3) 0.100 0.89(9)
ν24+2νorb 18.98163 0.071 -0.1(1) ν41 21.19934(4) 0.091 1.7(1)
ν25−2νorb 19.81179 0.043 1.1(2) ν42 21.72483(6) 0.056 1.4(2)
ν25 20.62141(4) 0.085 1.2(1) ν43 21.72880(4) 0.079 -0.7(1)
ν25+2νorb 21.43104 0.061 1.2(1) ν44 20.14523(2) 0.152 1.56(6)

ν45 15.85114(3) 0.096 0.1(1)
ν46 19.09031(1) 0.275 -0.09(3)

4.8 Conclusion

Considering our model-independent methods of analysis of the photometric and spec-

troscopic data (i.e., using the results from the individual modelling of the data subsets

and their joint analysis via method 1 in Section 4.6.1), we measured the masses of the

components of the inner EB to 0.5% and 0.4% on average for star Aa and Star Ab,

respectively; their radii were measured to 1.4% and 0.8% on average. We measured

both their Teffs to ∼ 1% via the atmospheric analysis of the components’ disentangled

spectra in Section 4.4.3. Both model-dependent methods, i.e., the SED fitting in Sec-

tion 4.3.3 and method 2 of the combined analysis are consistent with an age of 0.82

Gyr. The secondary is larger and more massive than the primary, but cooler as it is

evolving off the MS (see Fig. 4.3). This study has highlighted the results obtainable

from the modelling of the individual subsets of spectroscopic and photometric data,

and compared those with the results of their combined analysis; in general, we find



251

good agreement.

We have reported the detection of a tertiary companion (star B) in the KIC 4851217

system from the analysis of the primary and secondary mid-eclipse times of the inner

EB, which were measured from Kepler and TESS light curves and show ETVs due

to an outer orbit and apsidal motion of the EB orbit. The relatively low amplitude

of the ETV signatures mean that the outer orbit is undetected in the time-span of

our spectroscopic observations, and is another example of the advantages associated

with the high precision, long time-base monitoring of stars provided by such space

missions. We analysed the ETVs jointly with the light curves and RVs measured from

high (HERMES; R ∼ 85000) and moderate (ISIS; R ∼ 10000) resolution spectra to

yield estimates for the mass, radius and Teff of star B to 15%, 16% and 5%, precisions

on average, respectively.

We analysed the Kepler LC light curves and extracted a list of pulsation frequen-

cies which we present in Table 4.10. Many of these frequencies are spaced by multiples

of the orbital frequency and form ridges in the échelle diagram of Fig. 4.7.1 plotted

with respect to the orbital frequency. An examination of the reconstructed pulsation

phases and amplitudes of the individual modes suggests that these are TTPs, which

has allowed for the identification of l and m for a selection of these modes. The TTP

hypothesis is further supported by the fact that we only accepted components to belong

to a multiplet if they were spaced exactly by the orbital frequency. This is in contrast

to the detection of TPPs in Section 3.8.2. We also note that the phase modulations of

the TPPs in KIC 9851944 were of the order 0.5 – 1.5 rad rather than integer multiples

of π expected for TTPs and observed here.

Until the detection of TTPs in the subdwarf B star HD 265435 by Jayaraman

et al. (2022), there were only three conclusively identified TTPs reported in the litera-

ture (Handler et al., 2020; Kurtz et al., 2020; Rappaport et al., 2021), with each of them

being δ Scuti stars. Thus, the former precludes the possibility that tidal tilting of the

pulsation axis is a phenomenon unique to δ Scuti stars, and this is in line with theory

(Fuller et al., 2020). This study contributes another δ Scuti TTP to the literature and

the precisely derived physical properties make KIC 4851217 an ideal candidate for de-



252

veloping our understanding of the TTP phenomenon via pulsation modelling. Indeed,

full investigations into the complicated pulsations of KIC 4851217 are on-going and

plans are in place to carry out a detailed modelling of this object’s pulsations. Tidally

tilted pulsations are a relatively new discovery and hence the lack of reported detec-

tions in the literature. To advance our understanding of this phenomenon, we need to

detect and model more TTPs; it is noteworthy that while some stars exhibit TTPs,

others display TPPs. KIC 4851217 is a precisely-characterised δ Scuti star so its con-

tribution to the literature also aligns with the broader objective to derive constraints

on the internal structures of intermediate mass stars.
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5 Revising the properties of low mass eclips-
ing binary stars using TESS light curves

The work outlined in this chapter was published in the Monthy Notices of the Royal

Astronomical Society (MNRAS) main journal (Jennings et al., 2023a).

5.1 Introduction

Thirteen EBLMs considered in this study have been observed using ground-based pho-

tometry. Such data are sufficient to detect and measure the properties of EBLMs, but

the observational scatter often limits the precision of the mass and radius measure-

ments. The situation can be greatly improved by using space-based photometry due to

its competitive precision coupled with improved time sampling over longer periods of

continuous monitoring. The use of photometry from space satellites has revolutionised

the study of EBs (Southworth, 2021).

The Transiting Exoplanet Survey Satellite (TESS, Ricker et al. 2015) is the most

useful mission in the context of this project because it has observed the great majority of

the sky in both hemispheres. In this work, we use light curves from TESS and published

RVs to obtain new measurements of the physical properties of a set of known EBLMs.

The aim is to provide improved constraints on theoretical models of low-mass stars

and thus more accurately address the uncertainties surrounding the interior structure

of these objects for which we refer to Section 1.1.5.3. We also present new ground-based

high-precision light curves of two objects obtained in four passbands simultaneously.

Basic information regarding the systems studied in this work are given in Ta-

ble 5.1. These objects were chosen with the aim to include all EBLMs with published

RVs and previously unstudied TESS light curves. However, we explicitly excluded ob-

jects in the EBLM series of papers (see Triaud et al., 2017) as these are currently being

analysed by others.
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In Section 5.2 a description of the observations and data used in this work is

presented. Section 5.3 outlines the analysis techniques, and the results for each system

are presented in Section 5.4. A discussion and concluding remarks are presented in

Section 5.5.

5.2 Observations

5.2.1 TESS observations

TESS has observed over 200 000 selected main sequence dwarfs in 2-minute cadence

(SC) mode and many more in the 30-minute cadence (LC) mode in which the data are

saved as a full-frame-image (FFI). We account for the sparser sampling of the latter

using numerical integration (see Section 5.3).

The TESS-point web tool1 was used to determine which and how many sectors

the targets had been observed in. For SC data, both simple aperture photometric

(SAP) and pre-search data conditioned SAP (PDCSAP) data (Jenkins et al., 2016b)

were inspected before choosing one of them as the most suitable. This is necessary

since the PDC reduction pipeline usually yields more precise data but can introduce

unwanted artefacts in targets dissimilar to those that the routine is tailored to.

For targets observed in LC mode, the data were extracted from the FFIs using

custom routines. Aperture photometry was performed using apertures whose size and

position were adjusted manually for each target to optimally extract the flux of each

target while minimsing background flux from neighbours. The surrounding field was

investigated by first querying the Vizier 2 database for all objects within a 3.5 arcminute

radius from the target with an apparent Gaia G magnitude of less than 16 in the Gaia

DR2 catalogue (Gaia Collaboration, 2018). A threshold magnitude of G = 16 was

chosen since objects fainter than this are not expected to be bright enough to have

1https://heasarc.gsfc.nasa.gov/wsgi-scripts/TESS/TESS-point_Web_Tool/TESS-point_

Web_Tool/wtv_v2.0.py/
2https://vizier.cds.unistra.fr/
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any effect on the observations (Southworth et al., 2020). The positions of these objects

were then marked on the 200th frame of the target, chosen due to early frames in the

time series being contaminated by scattered light from Earth near perigee. Verifying

the locations of neighbouring objects also aided the choice of the size and location of

the aperture. The positions of any marked contaminants in Gaia DR2 were further

confirmed using the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006) as a

reference when available. In a few cases where a 2MASS image was unavailable, we used

images from the ESO Digitised Sky Survey (DSS) instead. The level of contaminant flux

captured within the aperture of LC targets was investigated by plotting the position

of the centroid of the target in the x and y planes of the target pixel file against time.

Shifts in the position of the centroids occur during eclipses when contamination is

serious.

All LC and SC data were normalised by dividing the flux and error by the median

flux value. Quasi-periodic variations present in most light curves were attributed to

starspots in the primary component and divided out. Before dividing out the magnetic

activity, it was necessary to mask the eclipses. Astropy’s implementation of the box

least squares algorithm (Astropy Collaboration et al., 2013, 2018), which models a

transit as a periodic upside-down top hat with four simple parameters, was used to

develop a mask for the primary eclipses. The parameters of the model are the transit

midpoint, duration, period and depth, where the first three of these were used in the

masking process. The secondary eclipses were masked manually.

The variations were then modelled via two methods and divided out. The most

effective method based on a visual inspection of the resulting light curve was cho-

sen. The first method used Astropy’s implementation of Lomb-Scargle periodograms

in order to model the observed variations with a combination of sinusoids. The sec-

ond method applied a Savitsky-Golay filter, as implemented by the python package

lightkurve (Lightkurve Collaboration et al., 2018), to the masked time series, fitting

successive subsets of adjacent datapoints with a low-degree polynomial by linear least

squares. Trial values for the degree of polynomial were used and the best result carried

forward for comparison with the first method.
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Some objects were observed by TESS in more than one sector. In these cases, the

data from each sector were concatenated into a single data file after the above process

was carried out individually for each sector. The phase-folded TESS data are shown

in Fig. 5.1.

5.2.2 Ground-based observations

The following ground based observations and data reductions were carried out by Dr.

John Taylor, Dr Pierre Maxted and Dr Luigi Mancini.

One transit each of TYC 2755-36-1 and TYC 3121-1659-1 was observed simulta-

neously in four passbands using the Bonn University Simultaneous CAmera (BUSCA)

four-band imaging photometer (Reif et al., 1999) on the 2.2 m telescope at Calar Alto,

Spain (Fig. 5.2). Due to the brightness of TYC 2755-36-1 we elected to observe through

the intermediate-band Strömgren uby and Johnson I filters. TYC 3121-1659-1 is signif-

icantly fainter and was observed through the Strömgren v, Gunn g and r, and Johnson

I filters. In both cases we operated with the telescope defocussed following the ap-

proach of Southworth et al. (2009), and were able to extract good light curves in all

four passbands.

One more transit of TYC 3121-1659-1 was obtained through a Cousins I filter

using the 1.23 m telescope at Calar Alto and the DLR-MKIII CCD camera. The

telescope was operated out of focus as before.

The data were reduced using the defot pipeline (Southworth et al., 2009, 2014),

which depends on the NASA astrolib library3 idl4 implementation of the aper

photometry routine from daophot (Stetson, 1987). We specified software apertures

by hand and chose the aperture radii that minimised the scatter in the final light curve.

Differential-magnitude light curves were generated versus an ensemble comparison star

containing the weighted flux sum of all good comparison stars. A low-order polynomial

3http://idlastro.gsfc.nasa.gov/
4http://www.harrisgeospatial.com/SoftwareTechnology/ IDL.aspx
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Figure 5.1: The TESS light curves for our targets around primary eclipse (left) and
secondary eclipse (right) compared to the fitted model (lines). Binned data (black) is
plotted over the raw (grey) data. The system TYC 2755-36-1 is not included because
no TESS data are available for it.
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Figure 5.2: The ground-based light curves presented in this work for TYC 2755-36-1
(left) and TYC 3121-1659-1 (right). The filters are labelled in the legends. The red
lines show the fitted models.

was also fitted to the observations outside transit and subtracted to shift the final light

curve to zero differential magnitude. The timestamps were converted to the midpoint

of the exposure on the BJDTDB timescale (Eastman et al., 2010).

5.3 Analysis methods

5.3.1 Light and RV curve modelling

The light curves and published RVs were modelled using the jktebop code (South-

worth, 2012, 2013) after converting the fluxes and errors to magnitudes and converting

the time stamps from Barycentric TESS Julian Day (BTJD) to BJD. The components

of the binary systems were modelled as spheres under the assumption that distortion

from tidal effects would be negligible in EBLMs. We investigated the validity of this

assumption by quantifying the amount of distortion expected along the lines of cen-
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Figure 5.3: Fits to the RV data for each object. Object names are shown in the top
left of each plot.
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tres of the stars following Sterne (1941) and Beech (1985) and using the parameters

derived in later sections. Assuming synchronous rotation, the average distortion ex-

pected among our list of targets is ≈ 0.36%. The average ratio of the uncertainty in

the final radii values against the uncertainty expected from distortion is ≈ 35 with all

but one object having a ratio of at least 9. For all but one of our targets, the expected

deformation is therefore insignificant compared to the size of the uncertainty on the

final radii measurement. For TYC 3121-1659-1, the distortion reaches a value of 1.6%.

This is expected given the relatively larger value of r1 for this object (see Table 5.4).

Parameters fitted for all targets with jktebop were the period P , the ratio of the

radii k = R2/R1, the inclination i, the sum of the radii normalised by the semi-major

axis of the orbit, r1+r2, the time of primary minimum T0 and a magnitude scale factor.

All targets were fitted for their surface brightness ratio J , except TYC 2755-36-1 for

which only data for the primary eclipse is available so we assumed J = 0. The Poincaré

elements, e cosω and e sinω, where e is the orbital eccentricity and ω the argument of

periastron, were also included for all targets. The quadratic limb darkening law was

used to model limb darkening where as many coefficients were included in the fit as

possible subject to the condition that their fitted values remained between 0 and 1.

Where this condition was not satisfied, the values were taken from Claret (2017). A

parameter to account for any contaminating light sources, L3, was included as a fitted

parameter but was only found to be needed for TYC 2855-585-1. For the remaining

targets, we found that L3 had either a negative value or a value smaller than its

errorbar, so we fixed it at zero. Our ability to extract measurements of L3 from the

light curves is limited due to the shallowness of the secondary eclipses.

We included in our analysis all available published ground-based light curves that

were well sampled, covered the full primary eclipse and were obtained with a ≳ 1 m

telescope. Data satisfying these criteria are available for TYC 2755-36-1, TYC 3576-

2035-1, TYC 3473-673-1 and GSC 06465-00602. For the remaining objects, only the

published reference time of primary minimum was included to constrain the orbital

ephemeris, under the assumption of a constant orbital period. We ensured each was

converted to BJDTDB. Combining the published RV measurements within the fits
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allowed for the primary velocity semi-amplitude, K1, and the systemic velocity, γ,

to be included as free parameters and to further constrain P , T0, the eccentricity e

and argument of periastron ω. RV measurements published in HJD were converted to

BJD using Wright & Eastman (2014). For ground-based data where photometry was

obtained in more than one passband simultaneously, that with the highest quality was

chosen to be fitted with the RVs.

The low sampling cadence for the LC data was accounted for using numerical

integration implemented within jktebop (Southworth, 2010). The model was evalu-

ated at seven points evenly spaced within an 1800 s interval, and the average of these

points was used to compare to the observed brightness measurement.

Errors in the fitted parameters were determined via both Monte Carlo and resid-

ual permutation algorithms (Southworth, 2008). The larger of the two errorbars was

chosen for each parameter. For targets observed through more than one passband, a

weighted average of the photometric parameters was taken. The resulting ephemerides

and spectroscopic orbits are given in Table 5.3, and the photometric parameters in

Table 5.4. The jktebop fits to the TESS data are shown in Fig. 5.1, and for the

ground-based data in Fig. 5.2. Fits to the RV measurements are shown in Fig. 5.3.

5.3.2 Physical properties

The physical properties of the systems were determined using the values of r1, r2, i,

e, K1 and P found above. This analysis also used measurements of Teff , as given in

Table 5.1, as well as published values for the metallicity, if those values were measured

from high resolution spectra, e.g., at least R ∼ 20000. For cases where such a measure-

ment is absent, we adopted [Fe/H] = −0.1 ± 0.2 as a representative value in the solar

neighbourhood (Haywood, 2001, their fig. 3). Table 5.2 presents the values for [Fe/H]

for objects where we used the previously published value, as well as the spectrograph

and resolution used to obtain the measurement.

Those values for Teff in Table 5.1 are taken from the corresponding reference also

given in that table when the analysis is deemed reliable, such as those determined
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Table 5.2: Previously reported values for [Fe/H] for objects where the value was mea-
sured from spectral observations with R ≳ 20000. Also given is the spectrograph and
resolution used to obtain the measurement.

Object [Fe/H] R Spectrograph
TYC-7096-222-1 0.08± 0.13 60000 CORALIE

TYC-6493-290-1 -0.4± 0.1 24000 ANU 2.3m Échelle

GSC-06493-00315 -0.4± 0.1 24000 ANU 2.3m Échelle

GSC-05946-00892 -0.1± 0.2 24000 ANU 2.3m Échelle

GSC-06465-00602 -0.60± 0.06 24000 ANU 2.3m Échelle

TYC-3700-1739-1 -0.05± 0.17 32000 Tautenburg 2m Échelle

from high-resolution échelle spectra. In other cases, the Teff values correspond to those

calculated by us from a fit to the spectral energy distribution (SED), using the vosa

software (Bayo et al., 2008) to obtain photometric flux values as well as perform the

fit. Values of the colour excess, E(B − V ), were determined using the stilism tool

(Lallement et al., 2018) and a value of RV = 3.1 was used as the canonical value in

the diffuse interstellar medium (Schlafly & Finkbeiner, 2011) resulting in extinction

coefficients, AV , to be included in the SED fit and allowed to adjust to within their

error bar for each target. In most cases, the error was taken as half the grid step in the

models that the χ2 fit was calculated against and is 125 K in Teff . For TYC 2755-36-1

and HAT-TR-205-003 this value was increased to 200 K and 150 K, respectively, in

order to remain consistent with Gaia and TESS predictions. An asterisk next to the

quoted Teff in Table 5.1 indicates that the value was determined via this SED fitting

process.

The physical properties were then determined using an isochrone fitting method

by Dr. John Taylor. For each object, we first estimated a suitable value of the velocity

semi-amplitude of the secondary component (K2) and then calculated the physical

properties of the system. This initial value of K2 was iteratively refined to maximise

the agreement between the measured Teff and calculated radius of the primary star, and

the predictions of theoretical models for a given mass and [Fe/H]. This was done over a
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grid of age values to determine the overall best mass and age for the system, and then

over a set of five different sets of theoretical models (Southworth, 2009; Southworth,

2010). The model sets used were the Yonsei-Yale (Demarque et al., 2004), Teramo

(Pietrinferni et al., 2004), VRSS (VandenBerg et al., 2006), Dartmouth (Dotter et al.,

2008), and an extension to lower masses of the models from Claret (2004).

Random errors from the input parameters were propagated by perturbation. Sys-

tematic errors were quantified by calculating the largest difference in values for a given

parameter between the results using the five sets of theoretical models. The result-

ing properties are given in Table 5.5 for the primary components and Table 5.6 for the

secondary components of our target EBLMs.

We determined the Teff value of each secondary star as follows. We interpolated a

synthetic spectrum for the primary star using its Teff and surface gravity, and the BT-

Settl synthetic spectral grid from Allard et al. (2001). We then did the same for a grid

of Teff values for the secondary star covering 2600 K to 6000 K. All spectra were then

convolved with the TESS passband response function from Ricker et al. (2015) and the

predicted surface brightness ratio within the TESS passband was calculated by dividing

the secondary star spectra by the primary star spectrum. The Teff of the secondary

star was then obtained by interpolating the grid of surface brightness ratios to the

value measured from the light curve. Errors in the measured surface brightness ratio

and primary star Teff were propagated and added in quadrature. These calculations to

derive Teff values for the each of the secondary stars were also carried out by Dr. John

Taylor.

We did not make use of any Gaia information in our analysis. This is because

six of our objects have a renormalised unit weight error (RUWE) much larger than the

maximum value of 1.4 for a reliable astrometric solution (Gaia Collaboration, 2021).

However, we did cross-check our results against the distances obtained from simple

inversion of the Gaia EDR3 parallax values. To do this we adopted the physical

properties determined in this work, apparent magnitudes from Høg et al. (2000) and

Skrutskie et al. (2006), interstellar extinction values from Lallement et al. (2018) and

bolometric corrections from Girardi et al. (2002). We found good agreement in all cases,
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but this is not a strong conclusion because of the significant correlation between Teff

and reddening, and the uncertainty of the JHK apparent magnitudes and passband

definitions.

5.4 Results for each system

5.4.1 TYC 2755-36-1

TYC 2755-36-1 was observed by the HATNet (Hungarian-made Automatic Telescope

Network) wide angle survey and identified as a planetary candidate by both Beatty

et al. (2007) and Latham et al. (2009). Both studies reported the object to be an EB

with a faint component following reconnaissance spectroscopy. The 23 RV measure-

ments published by Latham et al. (2009) are identical to those obtained by Beatty

et al. (2007). These measurements are presented in their table 1 and were utilised in

the current study (Fig. 5.3).

Stellar parameters were also reported by both Beatty et al. (2007) and Latham

et al. (2009) for TYC 2755-36-1 via cross correlation of the observed spectra against

a library of synthetic spectra. A full characterisation of the system was performed

by Beatty et al. (2007) using the assumption that the system is synchronised and

combining their spectroscopic measurements with those derived from the modelling of

follow-up light curves. The resulting masses and radii from their study can be found

in Table 5.7 along with the previous literature estimations of these parameters for all

other objects included in this work.

The radii reported by Beatty et al. (2007) for both components of TYC 2755-36-1

agree with our estimations within 1σ. The masses are larger by 19% (1.2σ) and 12%

(1.2σ) for the primary and secondary, respectively. The previous authors report an

M dwarf radius inflated by 11% while the current study finds that the magnitude of

inflation is 5% when compared to the corresponding Baraffe et al. (2015) (BCAH15,

hereafter) isochrone for its age estimation given in Table 5.5.
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Table 5.5: The physical properties determined in the current work for the primary stars.
For these calculations we used the nominal physical constants and solar quantities
defined by the IAU (Prša et al., 2016).

Object M1 ( M⊙) R1 ( R⊙) log g1 (cgs) ρ1 ( ρ⊙) Age (Gyr)
TYC 2755-36-1 1.241± 0.085 1.312± 0.038 4.296± 0.019 0.549± 0.030 1.6 +1.5

−0.6

HAT-TR-205-003 1.150± 0.074 1.343± 0.062 4.243± 0.037 0.475± 0.059 3.2 +1.6
−0.7

T-Aur0-13378 1.270± 0.071 2.26± 0.12 3.835± 0.045 0.111± 0.017 1.9 +1.0
−0.4

TYC 3576-2035-1 1.046± 0.061 1.767± 0.035 3.963± 0.013 0.189± 0.005 6.8 +1.4
−1.1

TYC 3473-673-1 1.161± 0.061 1.686± 0.033 4.050± 0.012 0.242± 0.008 4.5 +1.2
−0.3

TYC 3545-371-1 1.350± 0.069 1.283± 0.067 4.352± 0.045 0.640± 0.098 0.2 +0.5
−0.2

TYC 3121-1659-1 1.271± 0.063 1.545± 0.029 4.165± 0.012 0.345± 0.011 2.4 +0.7
−0.6

TYC 7096-222-1 1.67± 0.11 2.087± 0.083 4.022± 0.030 0.184± 0.018 0.5 +0.4
−0.2

TYC 2855-585-1 1.20± 0.11 1.51± 0.13 4.159± 0.069 0.348± 0.083 2.9 +1.9
−1.1

TYC 9535-351-1 1.263± 0.072 1.778± 0.055 4.040± 0.024 0.225± 0.017 2.2 +0.6
−0.6

TYC 6493-290-1 1.071± 0.078 1.90± 0.20 3.913± 0.088 0.157± 0.049 4.6 +2.1
−0.7

GSC 06493-00315 1.169± 0.087 1.416± 0.094 4.204± 0.055 0.412± 0.077 2.6 +1.8
−0.8

GSC 05946-00892 1.11± 0.11 1.423± 0.080 4.176± 0.043 0.384± 0.055 4.6 +3.0
−0.7

GSC 06465-00602 1.003± 0.053 1.26± 0.18 4.24± 0.13 0.51± 0.24 4.9 +1.9
−1.3

TYC 3700-1739-1 1.53± 0.12 1.61± 0.15 4.208± 0.077 0.364± 0.098 0.4 +0.5
−0.2

The M dwarf in this system is the densest and has the smallest radius out of all

objects included in the current study. It has the second largest surface gravity and is

the second least massive. There are no spots identified in the light curve of the host

system, and this would oppose the hypothesis that enhanced magnetic fields due to

faster rotation induced by synchronisation are the cause for inflation (Beatty et al.,

2007).

5.4.2 HAT-TR-205-003

HAT-TR-205-003 was also observed by the HATNet survey and identified as a planetary

transit candidate by Latham et al. (2009). A spectroscopic reconnaissance confirmed

the nature of the companion to be stellar. Seventeen RV measurements were obtained

from single-order échelle spectra and used to obtain a preliminary orbital solution.
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Table 5.7: Results from previous authors. For TYC 7096-222-1, the quoted value for
M2 is in the middle of the range off possible values reported by the previous authors
and the given uncertainty satisfies both ends of this range.

Object M1 ( M⊙) M2 ( M⊙) R1 ( R⊙) R2 ( R⊙)
TYC 2755-36-1 1.04± 0.14 0.124± 0.011 1.28± 0.04 0.169± 0.006
T-Aur0-13378 1.60± 0.13 0.37± 0.03 2.40± 0.10 0.37± 0.02
TYC 3576-2035-1 0.91± 0.15 0.345± 0.034 1.63± 0.08 0.360± 0.017
TYC 3473-673-1 1.49± 0.07 0.315± 0.010 1.83± 0.03 0.325± 0.005
TYC 3545-371-1 0.77± 0.08 0.198± 0.012 1.14± 0.03 0.238± 0.007
TYC 3121-1659-1 0.95± 0.11 0.240± 0.019 1.36± 0.05 0.265± 0.010
TYC 7096-222-1 1.735± 0.054 0.435± 0.165 1.662± 0.092 0.263± 0.046
TYC 2855-585-1 1.26± 0.11 0.20± 0.02 1.30± 0.05 0.17± 0.01
TYC 6493-290-1 1.10± 0.07 0.17± 0.01 1.70± 0.09 0.18± 0.01
GSC 06493-00315 1.1± 0.1 0.132± 0.01 1.20± 0.05 0.154± 0.007
GSC 05946-00892 1.2± 0.1 0.20± 0.02 1.58± 0.06 0.22± 0.01
GSC 06465-00602 0.97± 0.06 0.110± 0.006 1.22± 0.03 0.147± 0.004
TYC 3700-1739-1 1.493± 0.073 0.188± 0.014 1.474± 0.040 0.234± 0.009

These RV measurements are presented in table 2 of their paper.

By cross-correlating the observed spectra against a library of synthetic spectra,

Latham et al. (2009) were able to derive estimates for the Teff , v sin i and log(g) as-

suming solar metallicity, but aside from a preliminary estimation of R1, no further

characterization of the object was carried out as their study concentrated on candidate

transiting planets.

Our results are the first measurements of the fundamental parameters for this

object. The radius of the companion in this system, R2 = 0.270±0.013 R⊙, is found to

agree with the BCAH15 theoretical predictions for its mass (M2 = 0.267 ± 0.012 M⊙)

and age (3.2+1.6
−0.7 Gyr).

5.4.3 T-Aur0-13378

The transit events for T-Aur0-13378, as well as the objects described in the following

four subsections, were detected by the Trans-Atlantic Exoplanet Survey (TrES) and
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the companion in each was confirmed to be stellar by Fernandez et al. (2009) via

a spectroscopic reconnaissance. Thirteen RVs were measured for each object from

single-order échelle spectra along with estimations for Teff , v sin i and log(g). The RVs

are presented in their tables 2–6. The stellar parameters were derived for four fixed

metallicities, −1, −0.5, 0.0 and +0.5 dex, resulting in four sets of parameters. Binary

parameters were obtained from the analysis of follow-up light curves.

Combining binary and spectroscopic parameters allowed for the derivation of

physical parameters via isochrone fitting following the procedure of Torres et al. (2008).

Physical parameters were also derived independently by invoking the assumption that

the orbits are synchronised. Both methods were carried out for each set of atmospheric

parameters corresponding to the four fixed metallicities described above. The expec-

tation was that one of the fixed metallicities would yield agreeable solutions between

the two methods.

For T-Aur0-13378, no good solution was found for any of the input metallicities,

opposing the idea that the system is synchronised, so the results from isochrone fitting

with solar abundance were adopted. It was necessary to fix e = 0 in our study to

obtain the optimum solution and this indicates that the system is at least older than

the circularisation timescale. However, Fernandez et al. (2009) calculated the ratio

of the orbital and rotational angular momentum, α, for the objects in their study

and for each of them, this resulted in a value larger than 70, which means that the

timescales for synchronisation and alignment are expected to be shorter than that for

circularisation.

Fernandez et al. (2009) hypothesise a possible reason for the system not being

synchronised but circularised is that the primary component in the system is evolved.

As the primary component expands, its rotational velocity decreases in order to con-

serve angular momentum and this process may dominate over tidal forces acting to

synchronize the system. The current results support this hypothesis with small values

for the surface gravity and density for a relatively massive star among Table 5.5, along

with the relatively large surface brightness ratio reported in Table 5.4.

The masses derived here are smaller than those reported by the previous authors,
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and given in Table 5.7, by 21% (2.2σ) and 16% (1.8σ) for the primary and secondary

components, respectively. The estimated radius for the primary component is consis-

tent between both studies within 1σ but our measurement of the M dwarf radius is 9%

(1.1σ) smaller. A marginal inconsistency in the radius of the M dwarf was observed by

Fernandez et al. (2009) when compared to the theory in the direction of inflation. The

current results demonstrate inflation by 12% relative to the BCAH15 isochrone for its

age.

5.4.4 TYC 3576-2035-1

The study by Fernandez et al. (2009) also included the system TYC 3576-2035-1. For

this system, there was a metallicity range where the two methods of characterization

agreed and a value of [Fe/H] = −0.5 ± 0.2 dex was adopted. For systems where an

acceptable solution was found, Fernandez et al. (2009) adopted the one derived via the

assumption of synchronisation.

The primary star and M dwarf masses from that solution are both in agreement

with the parameters derived here within 1σ. Our estimations for the radii are 8%

(1.6σ) and 7% (1.4σ) larger compared to those of Fernandez et al. (2009) for R1 and

R2, respectively. The previous authors find their estimation for the radius of the

M dwarf to be marginally inflated compared to isochrones. We observe a radius 11%

larger than the BCAH15 theoretical prediction for its age.

The secondary eclipse of about 0.0025 mag deep is clearly visible and, combined

with the good phase coverage in the RV measurements, provides a strong constraint

on the eccentricity for this system of e = 0.003 ± 0.004 (Table 5.3). This is consistent

with a circular orbit and shows that circularisation timescales have been satisfied by

the age of this system. Given the value of α > 70 reported by Fernandez et al. (2009),

the system is expected to be synchronised.

As Fernandez et al. (2009) state, synchronisation is not always guaranteed when

evidence is strong (e.g, Pont et al. 2006) and the consistency between their synchronised

and model-dependent solutions is ultimately dependent on the adopted atmospheric
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parameters. The disagreement between our results for the radii and those of the syn-

chronised solution reported by Fernandez et al. (2009) may therefore be explained by

the difference in metal abundance and Teff adopted between the studies.

5.4.5 TYC 3473-673-1

For TYC 3473-673-1, Fernandez et al. (2009) deduced a metallicity of [Fe/H] = 0.5±0.2

dex along with the parameters corresponding to a synchronised orbit. The primary and

secondary masses derived here are 22% (3.5σ) and 15% (3.6σ) smaller compared to the

values derived by Fernandez et al. (2009) while the radii are 8% (3.2σ) and 10% (4.8σ)

smaller.

Again, good phase coverage in RV measurements and a visible secondary eclipse

leads to a well-constrained orbit for this system with e = 0.008± 0.007. This is consis-

tent with a circular orbit (Lucy & Sweeney, 1971), so the assumption of synchronisation

invoked by Fernandez et al. (2009) is valid given α > 70. The arguments explained

in the previous subsection apply and may explain the disagreement in the resulting

parameters of the two studies. The finding that the M dwarf is inflated compared to

models is, however, in agreement with our findings, where we find that its radius is 7%

larger than the BCAH15 predictions.

5.4.6 TYC 3545-371-1

A solution corresponding to a synchronised orbit was adopted by Fernandez et al. (2009)

for TYC 3545-371-1 on the basis that the resulting parameters agreed with those from

isochrone fitting for a metallicity of [Fe/H] = −0.5± 0.2 dex. Our results are larger by

75% (5.5σ) and 40% (5.3σ) in mass and 13% (2.0σ) and 33% (3.9σ) in radius for the

primary and secondary, respectively. These are large discrepancies and are probably

caused by differences in the assumed Teff values between the two studies. We adopted a

Teff value 756 K hotter than that of the model-dependent solution derived by Fernandez
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et al. (2009), which matched the synchronised solution that they adopted. Also, the

difference in metal abundance is 0.5 dex.

Their result for R2 was found to disagree within error with theoretical predictions

in the direction of radius inflation. The prediction here is that the M dwarf radius is

inflated compared to theory for a pre-MS age of ∼0.2 Gyr (reported in Table 5.5). The

error bar for the age estimation of this object, however, spans the entire pre-main-

sequence; it is therefore unclear how reliably the inflation status of this star can be

determined given the size of the variation in the predicted radius over the lower range

of its age uncertainty. This is shown by comparing the position of the 0.05 Gyr and

0.3 Gyr isochrones in Fig. 5.5.

A significant value for third light of L3 = 0.37±0.13 was found in our first analysis.

However, this leads to an unphysically small r1 so we instead present a solution with

L3 = 0. The Teff we use has a noticeable effect on the age estimate for this target – a

lower Teff of 6500 K gives a solution with a larger age of 1.5+0.5
−0.6 Gyr and a significantly

lower M1 of 1.29± 0.06 M⊙. A high-quality spectrum of this target would be useful for

checking and confirming its Teff .

5.4.7 TYC 3121-1659-1

The fifth and final object studied by Fernandez et al. (2009) is TYC 3121-1659-1. A

synchronised solution, matched to a model-dependent solution with [Fe/H] = −0.5±0.2

dex, was adopted. Our estimates of the fundamental parameters for this object were

again in conflict with those derived by Fernandez et al. (2009). For the primary and

secondary, this amounted to a 34% (2.5σ) and 18% (1.8σ) increase in mass accompanied

by a 14% (3.2σ) and 14% (3.3σ) increase in radius. The previous authors observed the

M dwarf radius to be marginally inflated, in agreement with our findings that its radius

is 8.2% inflated compared to the BCAH15 models. The results obtained by Fernandez

et al. (2009) are given in Table 5.7 for comparison. We also calculated the properties of

the system after accounting for the distortion of the primary star and found that they

changed by much less than their errorbars. We therefore elected to present the results



275

Table 5.8: Comparison of the results obtained for TYC 3121-1659-1.

Passband r1 r2 k i (◦)
TESS 0.296± 0.018 0.0522± 0.0040 0.176± 0.003 81.8± 2.6
Cousins I 0.280± 0.004 0.0571± 0.0012 0.204± 0.001 86.9± 2.4
Gunn r 0.283± 0.005 0.0554± 0.0012 0.196± 0.002 86.5± 1.8
Gunn g 0.282± 0.005 0.0557± 0.0013 0.198± 0.002 86.2± 1.6
Johnson i 0.281± 0.005 0.0553± 0.0011 0.197± 0.002 86.5± 1.7
Strömgren v 0.290± 0.008 0.0578± 0.0020 0.199± 0.003 83.5± 1.5
Adopted 0.282± 0.003 0.0559± 0.0006 0.198± 0.001 85.3± 0.7

obtained without accounting for distortion, for consistency with the other objects in

the current work.

For this object, our ground-based light curves (Section 5.2) were used in the

photometric analysis. Table 5.8 shows the results from the different light curves for the

photometric parameters. The resulting values for i and k are significantly smaller from

the TESS band compared to the other passbands. This may be due to the combined

effect of the under-sampling of positions of contact across the primary eclipse from the

TESS 30-minute cadence mode, as well as some third light being collected in the larger

TESS pixels. An alternative explanation for the inclination being different is that the

orbital plane has undergone precession due to exterior forcing, such as a third body.

However, since the radius ratio is also affected, the former explanation is more likely.

5.4.8 TYC 7096-222-1

This object was identified as an EB using photometry collected by WASP-South and

was characterised by Bentley et al. (2009). RVs were derived from grating spectra,

and stellar parameters of the primary were determined from synthetic spectral fits to

high-resolution échelle spectra (R ∼ 60000). Their value for [Fe/H] of 0.08 ± 0.13 was

adopted in the current work.

By combining the results from their spectral and light curve analysis, Bentley
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et al. (2009) derived full system parameters following the results of the primary mass,

which was obtained from isochrone fitting. The mass of the secondary was found

to depend on the eccentricity, which was not well constrained by the available RVs.

Bentley et al. (2009) obtained limiting values of 0.29 ± 0.02 M⊙ for e = 0, and 0.54 ±
0.06 M⊙ for e = 0.75.

Our analysis is able to rectify this issue because the secondary eclipse is detectable

in the TESS observations. We find a significant eccentricity of e = 0.134 ± 0.021. Our

estimate of M2 = 0.281 ± 0.018 M⊙ agrees with the value quoted by Bentley et al.

(2009) for an orbit of zero or modest eccentricity while our estimate for M1 is also

in agreement within 1σ. The primary and secondary radii derived here are both 25%

larger than those calculated by Bentley et al. (2009), corresponding to 3.4σ and 1.4σ,

respectively.

Bentley et al. (2009) find their estimation for the M dwarf radius to agree with

theoretical predictions. We find that the system is inflated by 19.3%, which is compa-

rable to the 25% increase in our R2 compared to Bentley et al.’s value, explaining the

different conclusions regarding the object’s inflation status.

The primary star is of approximately A8/F0 spectral type and such stars are

expected to have rotational velocities of ≈ 200 km s−1 (Gray, 2005). Bentley et al.

(2009) suggest that the object is a fairly typical Am star given its relatively slow

rotation (v sin i = 35 ± 0.5 km s−1); Am stars are thought to have been spun down

by a companion. The previous authors determine that the rotation of the primary

is still larger than that of the secondary, showing that the synchronisation process is

ongoing, suggesting an upper limit to the age of the system of ≈ 0.92 Gyr, calculated as

the synchronisation timescale by Bentley et al. (2009). The current age estimation of

0.5+0.4
−0.2 Gyr supports these statements. It is also noted that the newly derived estimate

for the eccentricity shows that circularisation time-scales are also yet to be satisfied.

This also supports our young age estimate for this system.
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5.4.9 TYC 2855-585-1

Koo et al. (2012) identified transit-like variations in the photometric data of Lee et al.

(2008) for the object TYC 2855-585-1. High-resolution multi-epoch échelle spectra were

obtained from which six RVs were derived. Follow-up photometry was modelled and

the absolute dimensions were computed by applying the photometric and spectroscopic

measurements to the mass–radius and mass–Teff relations for EBs from Southworth

(2009).

The current estimations for the masses of the components agree with those by

Koo et al. (2012) within 1σ but the radii are 16% (1.5σ) and 42% (3.0σ) larger for the

primary and secondary, respectively. There was no discussion of the system parameters

in the context of the radius discrepancy in low mass stars by Koo et al. (2012), but

here we find that the radius is 14.6% inflated compared to its corresponding BCAH15

isochrone.

This object is the only system where we did not fix third light at zero. We find

a value of L3 = 0.22 ± 0.20, which is not significant and has little effect on the results.

5.4.10 TYC 9535-351-1

TYC 9535-351-1 was identified by Crouzet et al. (2012) and Wang et al. (2014) as

a potential planetary candidate. Follow-up RV observations were conducted by both

authors and the RVs derived confirmed the object to be an EB in both cases. Five RV

measurements were provided to us by Wang et al. (2014) and four were obtained from

Crouzet et al. (2012).

The current study is the first time that a full characterization has been performed

for the object and as such contributes another M dwarf with precise mass and radius

measurements to the literature. The orbit for this system is the most eccentric in this

study, with e = 0.337 ± 0.025. We find that the system is 4.3% inflated compared to

the BCAH15 isochrone for its mass and age given in Tables 5.6 and 5.5, respectively.
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5.4.11 TYC 6493-290-1

TYC 6493-290-1 was identified from photometric observations by the HATSouth global

network and characterised by Zhou et al. (2014). Spectroscopic analysis yielded ten RVs

as well as atmospheric parameters of the primary. A global fit to the RVs and available

light curves was performed simultaneously. The masses and radii of the components

were derived at each iteration by combining the assumption of synchronisation with

an isochrone fitting method. For TYC 6493-290-1, their photometric follow-up data

consisted of only a partial primary eclipse and so is heavily reliant on the discovery

data.

Our estimation for the primary mass agrees with the estimation from Zhou et al.

(2014) within 1σ but our value for the M dwarf mass is 9% (1.2σ) larger. The radii

predictions between the two studies for both components in this system are in agree-

ment within 1σ. However, a comparison of our values to those of Zhou et al. (2014)

is limited by the precision of the published values, so the discussion of the agreement

in radii is based on rounding ours to the same precision. Zhou et al. (2014) find the

radius of the M dwarf to agree with theoretical predictions, as do we. We find the

system to be eccentric, e = 0.131 ± 0.055, with an estimated age of ≈ 4.6 Gyr.

5.4.12 GSC 06493-00315

The study by Zhou et al. (2014) also included the system GSC 06493-00315. The

identification and characterization of the object were carried out in the same way as

for TYC 6493-290-1. For this object, they obtained 12 RV measurements but no follow-

up light curves. The characterization was thus reliant on the discovery data alone.

Our results for the masses of the components are in agreement with those of Zhou

et al. (2014) within 1σ but our radius measurements are 18% (2σ) and 14% (1.5σ) larger

for the primary and secondary, respectively. Again, we find a marginally significant

eccentricity, e = 0.109 ± 0.049, which means the assumption of synchronisation (Zhou

et al., 2014) is questionable. Zhou et al. (2014) found their measured R2 to agree with
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theoretical models within the uncertainty. Our results confirm this.

5.4.13 GSC 05946-00892

GSC 05946-00892 is another object that was previously characterised in the study by

Zhou et al. (2014), who obtained six RV measurements. Excellent agreement is found

between their estimations and our measurements of the masses of the components,

amounting to less than 0.3σ for the secondary. Our radii are smaller by 10% (1.6σ) and

11% (1.5σ). Zhou et al. (2014) derived and adopted a chemical abundance consistent

with solar, [Fe/H] = −0.1 ± 0.2 dex, which is in agreement with our approach.

Zhou et al. (2014) found that R2 agrees with theoretical models to within its

errorbar. We find that the R2 value is 8.6% lower than the predicted value from the

BCAH15 isochrones. Whilst the error bars of the R2 values from each study encompass

the other, the sum of the uncertainties is ≈ 11% so is larger than the size of the under-

inflation observed in the current study.

5.4.14 GSC 06465-00602

The fourth and final object characterised by Zhou et al. (2014) is GSC 06465-00602, for

which they obtained 14 RV measurements. Our measurement for the M dwarf radius

is the only one that differs with that found by Zhou et al. (2014), and by an amount

of 35% (1.8σ); all other values are in agreement within 1σ. Zhou et al. (2014) found

that their radius estimation for the secondary is inflated by ≈ 13% when compared to

theoretical models. We find that the M dwarf is inflated by 39%. Looking at Fig. 5.5,

the M dwarf is seen to lie on the 0.1 Gyr isochrone.

The reported age in Table 5.6 is estimated as 4.9+1.9
−1.3 Gyr on the MS but an

alternative solution that we derived, assuming solar metallicity, yields an age estimation

with a lower boundary of the uncertainty that spans the pre-MS, where contraction is

ongoing. This scenario would suggest that the location of the object in Fig. 5.5 relative

to the 0.1 Gyr isochrone might be correct, in which case the M dwarf is not inflated.
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This may be important given the unusually low metallicity of [Fe/H] = −0.6 ± 0.06

reported by Zhou et al. (2015) that was also adopted in our final solution.

The secondary component of this system has the smallest mass out of all objects

included in the current study as well as the smallest surface brightness ratio. We

find a marginally significant eccentricity for this system of e = 0.111 ± 0.088, so the

assumption of synchronisation invoked by Zhou et al. (2014) may not be valid.

5.4.15 TYC 3700-1739-1

TYC 3700-1739-1 was detected in the Berlin Exoplanet Search Telescope (BEST) and

Tautenburg Exoplanet Search Telescope (TEST) surveys as an exoplanetary candi-

date and the object was published as an uncharacterised Algol type by Pasternacki

et al. (2011) after its planetary status was deemed false. Eigmüller et al. (2016) later

combined the data from both surveys in their study of the binary star system. Spec-

troscopic follow-up observations were performed resulting in 21 échelle spectra and RV

measurements. A simultaneous fit to the RVs and photometric data from the two sur-

veys was performed and the resulting binary parameters are presented in their table 4.

By co-adding the individual observations corrected for their orbital motion, they were

able to obtain a high-S/N spectrum which was used to derive the stellar parameters of

the primary component. Full system parameters were derived via isochrones in com-

bination with the stellar parameters of the primary and 2MASS apparent magnitudes.

The resulting parameters are in agreement with our findings to within 1σ except for

R2, where our estimation is 23% larger, corresponding to 2.0σ.

Comparisons to theoretical models by the previous authors indicate that the

secondary has an inflated radius even when correcting the isochrones for 5% of the

discrepancy observed among low-mass stars. This might be due to the fact that the

system is young; Eigmüller et al. (2016) estimate a synchronisation factor of Prot/Porb =

0.43 ± 0.05 leading to an upper limit to the age of this system of 120–250 Myr via

synchronisation timescales. Those authors also derive a statistically insignificant value

for the eccentricity, e = 0.070 ± 0.063, in agreement with our value (Table 5.3). This
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suggests that the system is at least older than the time taken to circularise and, coupled

with the upper limit suggested above, tightly constrains its age.

This upper limit on the age of the system is encompassed by the uncertainty in

the current age estimation of 0.4 +0.5
−0.2. The current study estimates that the M dwarf

is 41% inflated compared to a 0.3 Gyr BCAH15 isochrone. This value is suspiciously

large. Looking at Fig. 5.5, we see that the BCAH15 isochrones predict a rapid phase of

contraction from 0.05 Gyr to 0.3 Gyr. Lowering the current age estimation within its

uncertainty would account for much of the 41% inflation as well as obey the upper age

limit suggested above. Then, given the size of the uncertainty on the M dwarf’s age

about a phase of such rapid contraction means that the inflation status of this object

can not be reliably discerned, while the evidence does suggest a younger age and a

lesser amount of inflation. Further support that the system is young is also provided

by the overestimate of the M dwarf Teff compared to the models (see Fig. 5.5), since

radius inflation is commonly observed together with a lower Teff .

5.5 Discussion

We have characterised 15 EBLM stars using new light curves and published RVs. We

used light curves from the TESS mission for 14 of them, and our own high-precision

multi-band ground-based light curves for two of them. Two of the EBLMs had not

previously been analysed in detail so our results represent the first measurements of

their physical properties. Regarding those that were previously characterised, the

precision in 19 of the 26 masses has been improved. Although the overall precision in

the radius measurements from both studies were comparable (∼ 3%), only 8 of the 26

radii have improved in precision, despite the much better data available, which suggests

that some of the published errorbars are underestimated.

In order to convert the light curve and RV results into the physical parameters

of the two stars, we needed a value for the metal abundance of each system. We have

assumed a value representative of the solar neighbourhood in all cases as these are
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nearby stars, except where the previously published value was measured from high

resolution spectroscopy. In the latter case, we deemed the result reliable and adopted

its value. Metallicity values were published for some of the other objects, but were

either derived from low-resolution spectra or have large uncertainties.

Revised metallicity measurements from high-resolution and high-S/N échelle

spectra would be valuable in most cases. Inaccuracies in the adopted metallicity leads

to inaccuracies in the stellar models used in determining the physical parameters, and

adds further uncertainty to the systematic uncertainty already inherent to the model-

dependent results. See Southworth (2009) for a discussion of the nature in which

systematic uncertainties propagate into the resulting parameters. Reliable estimations

for Teff could also be derived from such spectra. While the choice of metallicity affects

the model used in each iteration, the choice of Teff affects the best-matching solution

that is returned because the solution is compared to the Teff (and calculated radius) at

each iteration. It is therefore important that this value is accurate such that the final

best-fitting match is indeed that which corresponds to the true system parameters.

We find that in the absence of such measurements for Teff and [Fe/H], the detec-

tion of the secondary eclipse as well as the use of high-precision space photometry still

allows for significantly increased accuracy and reliability of the measured properties.

This is especially the case for objects whose previous estimates for eccentricity were

vague, e.g. TYC 7096-222-1. The literature value of [Fe/H] for this system, which we

adopted, was also derived from the highest resolution échelle spectra among our tar-

gets, along with a value for Teff . The resulting parameters reported in Tables 5.5 and

5.6 for this object may therefore be considered the most reliable.

Reliability as well as precision in the measurement of the fundamental properties

of M dwarfs is important in order to address uncertainties surrounding the interior

physics governing the evolution of them. Fig. 5.5 displays the objects plotted in the

mass-radius plane along with all M dwarfs with radii previously determined to better

than 10% as catalogued by Parsons et al. (2018). The figure also displays BCAH15

isochrones for 0.05, 0.1, 0.3 Gyr and 10 Gyr. Notice the rapid contraction between 0.05

and 0.3 Gyr as the model evolves toward the main sequence. In the main sequence,
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Figure 5.4: Top; BCAH15 isochrones for 0.05, 0.1, 0.3 and 10 Gyr plotted in the mass-
radius plane with the locations of the current objects overplotted in red. M dwarfs
from Parsons et al. (2018) are also shown where SB2 M-dwarfs are plotted in grey and
SB1 M-dwarfs are plotted in blue. Bottom; Same as top but in the mass-log(g) plane.
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between 0.3 and 10 Gyr, theory systematically underestimates M dwarf radii. This

conclusion is verified in Fig. 5.5, where surface gravity is used instead of radius; the

surface gravity of the M-dwarf is derived from the light-curve and RVs alone (South-

worth et al., 2007), so is not dependent on the models. We also show the same objects

in the mass-Teff plane with the same isochrones. The SB2 systems suggest that tem-

peratures are overestimated by the models. We note that our M-dwarf Teff predictions

appear to conform to the general trend set by SB2 M-dwarfs better than other SB1

M-dwarf determinations for this parameter.

It has been claimed that a correlation exists where inflated radii are accompanied

by a cooler Teff such that luminosity is unaffected (e.g. Torres, 2007). We investigated

this by plotting the two discrepancies relative to BCAH15 isochrones for the objects

studied in this work in Fig. 5.6. The discrepancies were calculated relative to the cor-

responding isochrones for each object’s age, so this was not possible for the rest of

the objects in Fig. 5.5. Below the dashed blue line, objects show overestimated Teffs

by the models, and to the right of the red dashed line, objects are inflated, i.e., un-

derestimated by the models. It does not appear that inflated radii are accompanied

by an overestimated Teff from this sample. This is in contrast to the majority of SB2

systems that do show overestimated Teffs by the models in Fig. 5.5. It is possible that

different physical processes due to the brighter companion, such as global redistribu-

tion of a larger amount of incident radiation, may affect the adequacy of using SB1

systems to test the constant luminosity hypothesis, and this could be why the radius,

as well as the Teff , is underestimated by the models for five of the objects in this study.

Furthermore, the constant luminosity hypothesis requires a gradient of −0.5, which

is represented by the black dash-dotted line in Fig. 5.6. We found that removing the

outlier, GSC-06465-00602 (bottom right in the figure), from the investigation yields

a linear fit to the remaining objects that satisfied a gradient of +0.42; the weighted

Pearson correlation coefficient of 0.217, however, indicates that this is only a weak

correlation.

TYC 3700-1739-1B shows the largest amount of inflation compared to the models

but note that this is a young system, as estimated by the previous authors as well as the
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Figure 5.5: Same as Fig. 5.5 but in the mass-Teff plane.

Figure 5.6: The fractional radius and Teff discrepancies relative to theoretical predic-
tions of BCAH15. Below the dashed blue line, objects show overestimated tempera-
tures by the models for the corresponding age and to the right of the red dashed line,
objects are inflated. The constant luminosity hypothesis is represented by the black
dash-dotted line.
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current study. The margin of uncertainty in the current age estimate for this system

encompasses the entire pre-main sequence phase, where the models show the largest

and most rapid variation in radius. Taking the lower limit of the age estimation in the

determination of its inflation status leads to the conclusion that the object is under-

inflated after previously being stated to be inflated by 41%. It is therefore vital that

precise age estimates are obtained for young stars in order to be able to accurately

compare their properties to theory. The same scenario is observed for GSC 06465-

00602, where it is observed to be inflated by a large amount while the uncertainty in

its age spans the pre-main sequence. It is concluded that the inflation status of an

M dwarf cannot be accurately addressed if the uncertainty in its age estimate allows

a pre-main-sequence solution, where small changes in the object’s age would change

the result. This necessity for precise age estimations due to rapid evolutionary changes

makes these young objects valuable tests for our theoretical understanding.

Large uncertainties in age estimations are common but this has a much smaller

effect on the predicted radius of a main sequence M dwarf. Inflation observed well

within the main sequence is therefore likely accurate. The contraction of the core

throughout the main sequence due to an increasing mean molecular weight results in a

slight increase in the star’s radius but most M dwarfs are found to be inflated beyond

this. This is demonstrated in Fig. 5.5 by the gap between the 0.3 and 10 Gyr BCAH15

isochrones, where most M dwarfs lie above it.

A widely discussed hypothesis is related to the binarity of the majority of

M dwarfs with measured radii precise to 10%. Increased rotational velocity induced

via synchronisation between the orbital and rotational periods speeds up the internal

dynamo, increasing magnetic activity and decreasing the efficiency of convection (Fer-

nandez et al., 2009). This may cause the radius to expand (Mullan & MacDonald,

2001; López-Morales, 2007). However, the dynamos may operate differently in fully

convective stars (Zhou et al., 2014) so the relationship between rotation and activity

regarding such systems and its relevance to radius inflation is unclear. As stated in

Section 1.1.5.3, the explanation needs not to be restricted to binary stars due field stars

measured via interferometry demonstrating the same discrepancy compared to models;
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field stars rotate slowly due to magnetic braking.

Berger et al. (2006) found the disagreement to be larger for metal rich stars,

concluding that an opacity component missing from the models may lead to larger

radii for stars with larger metallicity. Then it is interesting that two of the M dwarfs

(TYC 6493-290-1 and GSC 06493-00315), found to agree with their isochrones in the

current work, were previously found to have sub-solar metallicity by their previous

authors, Zhou et al. (2014) and Fernandez et al. (2009). It is of particular interest

to determine whether the remaining M dwarf which agrees with isochrones, HAT-TR-

205-003, is also metal-poor. This would support the hypothesis of Berger et al. (2006)

and other authors who have suggested the treatment of metallicity in the models as a

source for inflation.

On the other hand, von Boetticher et al. (2019) found a correlation between

radius residual with solar isochrones and estimated metallicity, such that for objects

with values for [Fe/H] ̸= 0, accounting for it in the isochrones would act to reduce the

observed inflation or remove it. Estimations for [Fe/H] derived from high resolution

échelle spectra would therefore be particularly valuable because it would mean that

the radius residuals against the solar isochrones can be corrected for it as well as being

able to include the value for [Fe/H] in the derivation of the empirical M dwarf radius.

We note, since GSC-06465-00602 is the only inflated object in the current study with

a significantly sub-solar, and potentially reliable value for metallicity, the reliability

of the investigation into the size of the discrepancy might be improved by using a

non-solar metallicity isochrone, rather than the solar BCAH15 isochrones.

GSC 05946-00892 is the only object in the current study found to be under-

inflated compared to models. This object also has the largest surface gravity estimation

among the other objects included in this work.

We have used the BCAH15 isochrones to determine how inflated the M dwarfs

are in each system. However, these models may have a different age scale from the

models used to determine the properties of the primary stars. The difference between

the age scales is at most 0.2 Gyr, so should not affect our conclusions.
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5.6 Conclusion

We have presented determinations of the physical properties of a set of 15 EBLMs

using TESS and new ground-based light curves plus published RVs. Photometric data

were modelled simultaneously with the RVs using jktebop and physical parameters

were calculated using an isochrone fitting method, yielding masses and radii of both

components as well as the orbital semimajor axis and age of the systems. Our results

are the first measurements of these properties for two of the systems. Our results

improve and extend the catalogue of available physical properties of low-mass stars.

The full phase coverage of the TESS light curves means that the secondary eclipse

for 14 of these objects has been observed and analysed for the first time, allowing for an

estimation of the surface brightness ratio and Teff of the M dwarf, whilst also reliably

constraining the eccentricity of the systems. Our M dwarf Teff predictions appear to

be more reliable than previous attempts to estimate this value for M dwarfs in SB1

systems.

Estimated Teff values for the M dwarfs allowed for the objects to be displayed in

the mass-Teff plane as well as the mass-radius diagram, among other well-characterised

M dwarfs, and discussed in the context of radius inflation. It was discovered that

exquisite precision in the age estimate of young stars is required in order to reliably

address their inflation status. Neglecting such objects (TYC 3545-371-1, TYC 3700-

1739-1) from the following statistic due to the uncertainty in the determination of its

inflation status, 10 out of the 13 remaining objects were found to be inflated, by 11.4%

on average. We do not find evidence from our SB1 sample of M-dwarfs that luminosity

is unaffected by inflation; however, we note that our sample of objects with inflated

radii is relatively small compared to the amount of SB2 M dwarfs in Fig. 5.5 where

Teff is overpredicted by models.

Precise measurements of the metallicity and Teff for these systems would improve

the reliability of the results and possibly remove ambiguity regarding some of the dis-

agreements between the current and previous results. These would ideally be based

on new high-quality échelle spectra. Additional RV measurements would be useful
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for many of the systems, and TESS continues to observe the objects we have stud-

ied. Our work is therefore an important improvement, but not the final word, in our

understanding of these objects.
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6 Conclusion

6.1 Overview

Through the analysis of EBs we are able to measure the properties of stars to high pre-

cision and in a model-independent way that enables us to constrain our understanding

of stellar theory. Asteroseismology is used to probe the interiors of pulsating stars and

this allows us to go deeper in the level of intricacy to which we can aim to calibrate

stellar models when pulsating stars exist in EBs. Measuring the physical properties of

pulsating stars in EBs (e.g., Chapter 3 and Chapter 4) is an indispensable complement

to stellar astrophysics, as is the characterisation of EBs in general (e.g., Chapter 5).

Thus, our complete understanding of celestial mechanics and gravity (in the New-

tonion limit) provides the backbone for advancement in stellar astrophysics, and the

advancement leads to investigations of phenomena associated with binaries (e.g., apsi-

dal motion, tidal friction, binary evolution) as well as discoveries such as tertiary (or

multiple) components. Given dynamical constraints from binarity, which act to re-

duce the parameter space of seismic models and remove degeneracies, asteroseismology

simply relies on our ability to measure pulsation frequencies accurately; being able to

reproduce them hinges on the advancement of stellar astrophysics.

Our ability to measure pulsation frequencies accurately increased significantly

with the advent of the Kepler space mission; as outlined in Section 2.1.2, Kepler re-

vealed that hybrids, such as KIC 9851944, are common. Furthermore, the combination

of the Kepler and TESS time base, as well as the high photometric precision of these

space missions, allowed us to the discover the tertiary component in KIC 4851217.

These statements boast the success of these space missions which have played a pivotal

role in the entirety of this work; their data are a central feature.

It is important to note that this thesis presents characterisations and analyses of

objects already studied by previous authors. This work aimed to complement and build

on those studies by presenting the analysis of new data and utilizing previously reported
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results. Similarly, our work acts as an additional stepping stone in the advancement

of stellar astrophysics, and lays the foundations for further studies of the objects.

Additionally, we present the first characterisations of three M-dwarfs; HAT-TR-205-

003B, TYC 9535-351-1B, and the tertiary component gravitationally bound to the EB

KIC 4851217, where for the latter we report its discovery.

6.2 Project Comparison

There are two aims outlined in the title of this thesis and those are to determine the

physical properties of intermediate- and low-mass stars, each with the broader aim of

contributing to the advancement of stellar theory in those mass-regimes. In Chapter

3 and Chapter 4, we concentrate on the first of these objectives, while Chapter 5 is

centred on the latter. Notably, in Chapter 5, we present the analysis of 15 non-pulsating

EBLMs. The inadequacy of the models in the low-mass regime is discernible from

conventional constraints alone (see Fig. 5.5). In contrast, we focus on single objects in

Chapter 3 and Chapter 4, each of which contains a pulsating star, and the intention is

that in future, a comprehensive seismic analysis will be conducted. These approaches

underscore the completeness of stellar theory in the intermediate-mass regime compared

to the low-mass regime.

KIC 9851944 and KIC 4851217 are similar objects for two reasons in particular.

First, they have a comparable mass ratio near unity (1.05 < q < 1.15) and secondly,

they are situated at comparable stages in their evolution, where in each system the

secondary is evolving off the main sequence owing to its slightly larger mass. This

makes both objects equally valuable in testing stellar theory at a critical transitional

phase of evolution. Such rare examples of significant differential evolution in equal

mass binaries are rare, and can be very informative (Torres et al., 2010).

Aside from the fact that KIC 4851217 is hierarchichal triple system, the difference

between the inner EBs mainly lies within the pulsations. While both dominantly boast

δ Scuti signatures, KIC 9851944 is a δ Scuti/γ Doradus hybrid. Furthermore, while
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both the systems’ pulsations are influenced by tides, the pulsations of KIC 9851944

are TPPs and those of KIC 4851217 are TTPs. Thus, this work reports the detec-

tion of both types of tidally influenced pulsations, as well as evidence for TEO’s in

KIC 9851944. The detection of TEOs is evidence of a non-eccentric orbit, which is

against both our photometric and spectroscopic values of e = 0 for KIC 9851944, be-

cause TEOs are driven by the dynamical tide. The KIC 9851944 system might be

eccentric (or a non-synchronous rotator) below our observational limit for detection,

but it is not clear whether such a small value would be enough to excite TEOs at the

observed amplitudes; this observation is not understood. In contrast, the eccentricity

of the KIC 4851217 system is small but significant (e ∼ 0.032).

The KIC 4851217 and KIC 9851944 EBs are both partially eclipsing (i ∼ 77◦),

which introduces degeneracies in the eclipse model, particularly among the radius ratio

and light ratio. The effect was observed for both systems and the light ratio was

difficult to constrain. This was outlined in detail throughout Chapter 3, where we

adopted three spectroscopic methods to determine the light ratio of the KIC 9851944

system. Likewise, the light ratio was not well constrained from photometry alone for the

KIC 4851217 EB with similarly good fits to the light curve returning solutions with light

ratios of ∼ 1.5 and ∼ 1.9. We adopted the latter based on our spectroscopic method (see

Sections 3.5.2 and 4.4.2) which depends on template spectra but with less sensitivity

on their atmospheric parameters than the todcor light ratio. We conclude that the

todcor light ratio should be treated tentatively if the atmospheric parameters of the

input templates are not reliable (i.e., preliminary estimations), which is in contrast to

the RVs which are quite robust against the choice of template parameters.

We have extracted RVs from spectroscopic observations corresponding to a range

of resolving power using todcor and estimated systematic corrections associated to

them, as outlined in Section 2.2.3.3. The magnitude of these corrections has been

shown to be smaller for larger resolving power. The WHT/ISIS observations (R ≈
11000) led to RV corrections translating to as high as 1.5% and 3.5% in mass for the

primary and secondary, respectively. These values are as low as 0.24% and 0.6% for the

HERMES observations (R ≈ 85000), and somewhat in between at 0.6% and 0.9% for
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the Hamilton observations (R ≈ 60000). We determined the masses of the components

of the KIC 9851944 and KIC 4851217 EBs to ∼ 0.5% precision so it might be sensible

only to bypass the velocity correction procedure for resolutions comparable to the

HERMES spectrograph and slow rotators; we suggest that the significant corrections

estimated for the HERMES RVs for the secondary component of the KIC 4851217 EB

are the result of its larger v sin i value compared to that of the primary’s.

Each of the three projects presented in Chapters 3, 4 and 5 utilized data from

the Kepler and/or TESS space missions and benefitted from the advantages associated

with continuous and long timebase monitoring of stars. This is notable from a seismic

perspective and the discovery of the tertiary component in KIC 4851217. In addition,

the resulting full phase coverage of the EBLMs studied in Chapter 5 removed ambiguity

in the eccentricity of these systems as well as allowing for first estimations of the M-

dwarf’s Teff values in most cases.

High precision is another advantage of the data collected from the Kepler and

TESS space missions. However, ground based telescopes can attain competitive preci-

sions. We considered ground based observations obtained from > 1 m class telescopes

in our analysis of TYC 2755-36-1 and TYC 3121-1659-1 in Chapter 5 because such data

are likely to be of comparable or better precision than the TESS data. There is the

additional benefit of higher cadence during eclipse when only the long cadence space

data are available (e.g., TYC 3121-1659-1). This is not the case for ground based tele-

scopes with smaller apertures, e.g., WASP data which were only used as constraints on

the times of mid eclipse to obtain the preliminary light curve solution for KIC 9851944

from Kepler and TESS light curves.

Consideration of the orbital configurations of the objects studied in this thesis

influenced our approaches to the light curve modelling. We assumed that the distortion

from tidal effects is negligible in EBLMs, and justified this assumption in Section 5.3.1.

Thus, the jktebop code is reliable in this circumstance so is the preferred choice

compared to, e.g., the wd code, because jktebop is faster. On the other hand, the

difficulty in reaching a robust light curve solution for the KIC 9851944 and KIC 4851217

EBs is compounded by their close proximity and associated deformation, rendering the
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jktebop code plausible only for preliminary investigations, and the wd code was used

for the final solution.

6.3 Future Work

The heightened sensitivity of models at evolved stages makes the KIC 9851944 and

KIC 4851217 systems particularly well suited for comprehensive evolutionary modelling

(e.g., del Burgo & Allende Prieto, 2018) where a successful model would need to pre-

dict the MS properties of the primary simultaneously with the TAMS properties of the

secondary for a single age and metallicity (see section 1.1.5). The difficulty in repro-

ducing the observations for these objects would be compounded by the inclusion of the

observed pulsation frequencies in the modelling. Accurate seismic modelling of these

relatively fast-rotating stars relies on sufficiently accurate equilibrium structure mod-

els being used and the ability to identify the pulsation modes. Thus, future work will

be focused on identifying the pulsation modes in these stars and satisfying one of the

main motives for studying such systems, which is to combine seismic and conventional

constraints in the modelling. It is expected that the equilibrium structure models for

the calculation of the pulsation frequencies will advance with increasing numbers of

such studies.

It is important to continue characterising more pulsating EBs because their is a

lack of studies taking advantage of the joint analysis of dynamical and seismic data

(Sekaran et al., 2020; Liakos, 2021). The number of ideal candidates is increasing

thanks to systematic searches for pulsators in EBs observed by Kepler (Gaulme &

Guzik, 2019) and TESS (Chen et al., 2022) with emphasis of the detection of δ Scuti

EBs in the southern TESS field by Kahraman Aliçavuş et al. (2023). In particular, this

will lead to more well-characterised hybrid pulsators, which are arguably considered

our most valuable objects for constraining stellar theory; a statistically large sample of

hybrid pulsators is required to advance our knowledge of mode excitation mechanisms

which would improve our understanding of convection, rotation, tidal interactions and
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nonlinearity on pulsations (Guo et al., 2016).

Regarding the tidal influence on the pulsations of KIC 9851944 and KIC 4851217,

it is noteworthy to ask why the former exhibits TPPs and the latter exhibits TTPs.

It was noted in Section 4.8 that the topic of TTPs is still in its infancy and there are

only four TTP systems which have been conclusively identified, three of which are δ

Scuti stars. The detection and modelling of more TTPs is crucial for advancement on

this front. Therefore, one might propose for systematic searches for TPP and TTP

candidates, with emphasis on the latter, in the catalogues of pulsating EBs reported

above.

Studies must also continue which involve measuring the properties of low-mass

stars for progress to advance on this front and for models to overcome the radius

inflation problem. This is important for the broader objective to advance stellar astro-

physics, but also from a planet hunting perspective. Planets are easily detected around

small stars (Ricker et al., 2015), i.e., M-dwarfs, and understanding a planet’s host is

important for accurate characterisation of the planet. The PLanetary Transits and

Oscillations of stars (PLATO) satellite is due launch in 2026 with the aim of detecting

and characterising planets as well as their hosts using asteroseismology (Rauer et al.,

2022). The PLATO mission is set to provide highly relevant data for future research

in line with the overarching goals of this thesis.
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A Orbital Dynamics Appendix

A.1 The Two Body Problem

The point mass approximation used in the Roche model is also useful when studying

the dynamical relationships among the orbiting bodies in a binary system because

Newton’s second theorem states that the gravitational force of a spherical body of mass

m is equivalent to that of a point mass m located at the centre of the sphere. The

theorem breaks down under certain conditions but is a sufficiently valid assumption

in most cases since stars are centrally condensed objects (Hilditch, 2001). In this

approximation, the motion of the components about the centre of mass in a binary

system constitutes a classical two-body problem (Prša, 2018).

Assuming an isolated system, the only force experienced by either body results

from the gravitational field of the other component, and the total force equates to zero;

the centre of mass of the system moves through space at constant velocity, as demon-

strated in, e.g., Hilditch (2001). The difference between the equations of motion that

are implied by the gravitational acceleration experienced by each body, and described

with respect to an arbitrary coordinate system (see Fig. A.1), results in a description

for the motion of the stars relative to each other, i.e.,

r̈ = r̈1 − r̈2 = −GM2

r2
r̂ +

GM1

r2
(−r̂) = −G(M1 + M2)

r2
r̂, (A.1)

for r1 and r2 the position vectors of the bodies located at P1 and P2, respectfully, in

Fig. A.1, r̂ is a unit vector in the direction of their separation r, and M1,2 are the masses

of the components. Multiplying this result by the reduced mass µ = M1M2/(M1 +M2)

yields,

µr̈ = −G(M1 + M2)

r2
µr̂ = −GM1M2

r2
r̂, (A.2)

which is equivalent to the force acting on either body. This demonstrates that the

relative motion of the bodies is equivalent to a single body of mass µ orbiting a central

mass that corresponds to the total mass of the system (Prša, 2018; Hilditch, 2001);
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Figure A.1: Arbitrary coordinate system describing the positions of the components in
an EB. From Hilditch (2001).

this is the relative orbit. The classical two body problem can be solved by reducing it

to a single body in this orbit (Prša, 2018).

The Hamiltonian describing the total energy is then,

H =
1

2
µṙ2 − GM1M2

r
, (A.3)

where ṙ is the speed of a fictitious body of mass µ, i.e., the relative speed of the two

components. The solution for r(t) is not analytical so we solve for r(ν), where ν is

the angle measured from periastron to the position of the star about the focal point of

the orbit (see Section 1.1.2.3); by definition, periastron is the location of the orbit at

which the two components are closest to each other. The solution for r(ν) satisfies a

conic section and is the polar equation of orbit,

r(ν) =
a(1 − e2)

1 + e cos ν
, (A.4)

where the semi-major axis,

a =
J2

µGM1M2(1 − e2)
, (A.5)
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and eccentricity,

e =

(
1 +

2HJ2

µG2M2
1M

2
2

)1/2

, (A.6)

are the constants of integration. Here, H is the total energy, as in Eq. A.3, and J is

the total angular momentum of the system.

Kepler’s second law shows that the specific angular momentum L = r2ν̇ is con-

stant, and can be expressed as (see Appendix E.1.1),

L =
4π2a3

P 2
a(1 − e2) = M(1 − e2), (A.7)

where we recognise M is the mass term from Keplers third law, which depends on

the orbit in consideration (see below). Differentiating Eq. A.4, and using the previous

expression for L, results in the following equation for the speed,

ṙ2 = M

[
2

r
− 1

a

]
. (A.8)

Since mass is inseparable from the gravitational constant G in orbital motion calcula-

tions, the M in Eq. A.8 corresponds to G(M1 +M2) for the relative orbit, i.e., Eq. A.2,

where the gravitational acceleration is due to the total mass of the system (M1 +M2).

Using this mass term and plugging Eq. A.8 into Eq. A.3 leads to the following

expression for the total energy of the relative orbit,

H = −1

2

GM1M2

a
, (A.9)

which is constant since no forces are acting on the system. For H > 0, the bodies are

not bound, and the orbit is hyperbolic with e > 1. Parabolic orbits are the result of

H = 0, e = 1, and elliptical orbits have H < 0, e < 1. The total angular momentum

of the system J is found by adding up the angular momentum of the two barycentric

orbits. This can be expressed in terms of the specific angular momentum of the relative

orbit as follows,

J = M1
M2

2

(M1 + M2)2
L + M2

M2
1

(M1 + M2)2
L, (A.10)
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which leads to,

J = µωa2
√

1 − e2, (A.11)

where ω = 2π/P is the orbital frequency, within which, we have introduce the period

P of the binary system. The value of J is another constant of the orbit since the

potential is central (Prša, 2018) 1. This is also implicit through Kepler’s second law

which states that the radius vector sweeps out equal areas in equal intervals of time.

The consequence of this is that bodies move faster when they get closer (Hilditch,

2001).

A.2 Barycentric Orbits

We need to relate the orbit of the fictitious body in the relative orbit to the barycentric

orbits where each body is in motion about the centre of mass, denoted C in Fig. A.1.

The vector describing the position of C in any coordinate system is given by (Prša,

2018),

R =
M1r1 + M2r2
M1 + M2

, (A.12)

for distance vectors r1,2 of each component from the origin, as before. Denoting R1,2

the distance vectors describing the position of each component relative to C, and r

their position relative to each other, then we can write,

r1 = R + R1; r2 = R + R2; r = r1 − r2 = R1 −R2. (A.13)

Using Eq. A.12 and Eq. A.13 we can show M1R1 + M2R2 = 0 (see Appendix E.1.3).

Hence, we can write (see Appendix E.1.4),

R1 = +
µ

M1

r,

R2 = − µ

M2

r,
(A.14)

1The potential is central because the only force acting is along the line connecting the stars. The
force and distance vectors are parallel and the torque acting on the system τ = r×F is zero, i.e., no
rotational acceleration or deceleration; angular momentum is conserved.
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which implies that the barycentric orbits are equivalent to the orbit of the fictitious

orbit, except they are in opposite directions, and scaled by µ/M1,2. The equations of

motion for the barycentric orbits are then derived using the expressions for r̈1 and r̈2

in Eq. A.1, as well as the expressions in Eq. A.13 and Eq. A.14 as (see Appendix E.1.5),

R̈1 = − GM3
2

(M1 + M2)2
R1

R3
1

; R̈2 = − GM3
1

(M1 + M2)2
R2

R3
2

, (A.15)

where the mass terms for the barycentric orbits are now apparent, i.e, GM3
2/(M1+M2)

2

and M3
1/(M1 + M2)2 for the star of mass M1 and M2, respectively.

A.3 Derivation of Kepler’s Equation

Following (Prša, 2018), the coordinates of the star’s position on the auxiliary circle

are xp = ae + r cos ν and yp = r sin ν. The coordinates of Q are xQ = a cosE and

yQ = a sinE. It is then clear from Fig. 1.3, that the distance from position T to

position S is,

|TS| = ae− a cosE = r cos(π − ν) = −r cos ν. (A.16)

Rearranging for cos ν and subbing into the polar equation of orbit, i.e., Eq. A.4, leads

to the equation of orbit in terms of the eccentric anomaly (see Appendix E.1.6),

r(E) = a(1 − e cosE). (A.17)

Now is a good time to take note of the following identities,

xP = xQ : ae + a(1 − e cosE) cos ν = a cosE,

ayp = byq : ar sin ν = ba sinE,
(A.18)

where b denotes the semi-minor axis of the barycentric orbit. The derivative of the

reciprocal of the polar equation of orbit leads to an equation for the specific angular

momentum that reads (see Appendix E.21),

r2ν̇ =
a(1 − e2)ṙ

e sin ν
= ωa2

√
1 − e2, (A.19)
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where we have equated the result to Eq. A.11/µ and, again, ω = 2π/P is the orbital

angular frequency. The derivative of Eq. A.17 satisfies,

ṙ = ae sinEĖ, (A.20)

which we equate to Eq. A.19 via ṙ and rearrange to find,

Ė =
aω sin ν

a sinE
√

1 − e2
=

aω sin ν

b sinE
=

aω

r
=

aω

a(1 − e cosE)
, (A.21)

where we used b = a
√

1 − e2, the y-component of the alignment in Eq. A.18, and subbed

for r using Eq. A.17. Writing Ė as dE/dt and cancelling the a’s, we can now integrate

as follows, ∫
(1 − e cosE) dE =

∫
ω dt ⇒ E − e sinE = ωt + C, (A.22)

where C = −ωtper due to the condition that E|t=tper = 0. The result is Keplers

equation,

E − e sinE = ω(t− tper) = M, (A.23)

which describes the star’s position as a function of time by relating the the eccentric

anomaly (position dependence) to the mean anomaly (time dependence).

From the identities in Eq. A.18 (see Appendix E.1.8),

cosE =
e + cosν

1 + e cos ν
, sinE =

√
1 − e2

1 + e cos ν
sin ν. (A.24)

Dividing these equations leads to the relationship between the true and eccentric

anomalies as,

tanE =

√
1 − e2 sin ν

e + cos ν
, (A.25)

which can be converted using half angle identities to a more practical form (Smart &

Green, 1977),

tan
E

2
=

√
1 − e

1 + e
tan

ν

2
. (A.26)

Thus, for some time t, we can calculate E from M and this can be used to compute

ν. We can then use Eq. A.4 to specify the position as a function of time r(t).



302

A.4 Velocity along the line of site

From Eq. A.18,

ẋ = −aĖ sinE,

ẏ = bĖ cosE.
(A.27)

From Kepler’s equation,

Ė = ω + e cosEĖ =
ω

1 − e cosE
(A.28)

so,

ẋ = − a1ω sinE

1 − e cosE
; ẏ =

b1ω cosE

1 − e cosE
. (A.29)

Using the following transformation from the orbital plane to our line site from Prša

(2018),

ż = sin i sinωẋ + sin i cosωẏ, (A.30)

and plugging in for ẋ and ẏ yields,

ż =
a1ω sin i

1 − e cosE
(
√

1 − e2 cosω cosE − sinω sinE). (A.31)
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B Radiation Basics

Consider an arbitrarily chosen surface within a star, the specific intensity Iν is the

energy emitted per area dA and per solid angle dω in a direction θ measured from

the surface normal, within a frequency and time interval dν and dt, respectfully (see

Fig. B.1). Thus,

Iν = lim
∆Eν

cos θ∆A∆ω∆t∆ν
,

Iν =
dEν

cos θ dA dω dt dν
,

(B.1)

which is easily converted to a function of wavelength λ using Iν dν = Iλ dλ.

As light propagates toward the surface of a star, the photons endure a random

walk, which consists of various absorption and scattering processes, as well as emission.

The net extinction to the intensity of a photon beam due to these processes is expressed

as,

dIν = −κνρIν dl + jνρ dl, (B.2)

where κν is the continuous absorption coefficient and jν is the continuous emission

coefficient (Gray, 2005; Prša, 2018). Defining the optical depth,

dτ = −κνρ dl, (B.3)

Figure B.1: A depiction of a photon beam, i.e., the specific intensity from Gray (2005).
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which refers to the opacity (κνρ) along the path traversed ( dl) by a photon, allows us

to reformulate Eq. B.2 and express the radiative transfer equation as,

dIν
dτν

= −Iν + Sν , (B.4)

where Sν = jν/κν is the ratio of emission to absorption, i.e., the source function.

Solving Eq. B.4 yields the specific intensity at a given location; this is how model

atmospheres are calculated.

The monochromatic flux Fν is the specific intensity integrated over all solid an-

gles, but projected along the surface normal 1,

Fν =

∮
Iν cos θ dω =

∫ π

0

∫ 2π

0

Iν cos θ dϕ sin θ dθ, (B.5)

where ϕ is measured clockwise about the dashed circle in Fig. B.1. Since Fν is a measure

of the net flow of energy through the area dA, then, Fν = F in
ν + F out

ν , where,

F in
ν =

∫ 2π

0

∫ π

π/2

Iν cos dϕθ sin θ dθ.

F out
ν =

∫ 2π

0

∫ π/2

0

Iν cos dϕθ sin θ dθ,

(B.6)

(see Fig. B.1). Indeed, the surface containing dA may be one that corresponds to the

physical boundary of the star, in which case, Fν = F out
ν .

Assuming that Iν is not sensitive to rings of constant θ, i.e., no ϕ dependence,

then at the stellar surface (Gray, 2005),

Fν = F out
ν = 2π

∫ π/2

0

Iν cos θ sin θ dθ. (B.7)

Integrating Eq. B.7 over the entire area of the star and over all frequencies yields the

luminosity,

L = 4πR2

∫ ∞

0

Fν dν, (B.8)

1The light we receive at the telescope is the component of the specific intensity in the direction of the
projected area of the star ∆A integrated over all solid angles, i.e., we measure the flux corresponding
to some frequency interval ∆ν- the photometric pass band- and time interval ∆t- the exposure time.
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which is the total power output from the star. If the star was approximated as a black

body radiator with the same power output as the star, the distribution Iν is described

by the Plank function,

Bν =
2hν3

c2
1

exp hν
kT

− 1
, (B.9)

which leads to2 (Gray, 2005),

L = 4πR2σT 4
eff , (B.10)

where Teff is the effective temperature and σ is the Stephen Boltzman constant. The

effective temperature Teff is therefore the temperature of a black body with the same

power output L as the star (Smalley, 2005).

The distribution Iν at the surface of the star is more complex than the Plank

function; to predict Iν , atmospheric models must solve the radiative transfer equation

(Eq. B.4) in the upper atmospheric layers to the photosphere, taking into account

continuous and line opacity variations along the photons path. However, the value of

Teff serves as a characteristic temperature of the stellar photosphere.

2If Iν is not direction dependent then from Eq.B.7, Fν = πIν = πBν and
∫ π/2

0
Fνdν =

π
∫ π/2

0
Bνdν = σT4. This is the Stephan-Boltzmann law.
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C Stellar Structure

C.1 Equations of Hydrodynamics

Stars consist of ionised gas (plasma) within which, the constituents behave collectively

as a fluid. Thus, the equations describing the structure of a star are the equations of

hydrodynamics. The associated properties are the local density ρ(r, t), local pressure

p(r, t) and local, instantaneous velocity v(r, t), of the gas inside the star, expressed as

functions of time t and position relative to some stationary point r1(Aerts, 2021).

The equation of continuity,

dρ

dt
+ div(ρv) = 0, (C.1)

expresses that mass in conserved; the rate of change of mass in a volume is balanced

by the flux of mass into the volume V (Aerts et al., 2010). The equation of motion,

ρ
dv

dt
= −∇p− ρ∇Φ, (C.2)

expresses momentum conservation, where Φ is the local gravitational potential; the

only forces considered to act on a volume of gas are due to pressure and gravity, i.e.,

other forces such the centrifugal and magnetic forces are neglected. The Laplacian ∇2

of the gravitational field is proportional to the mass density via the Poisson equation,

∇2Φ = 4πGρ, (C.3)

where G is the Newtonion gravitational constant. Finally, conservation of energy is

expressed by the first law of thermodynamics,

dq

dt
=

dE

dt
+ p

dV

dt
, (C.4)

where dq/ dt is the heating term, E is the internal energy of the system, and the last

term on the right is the work done by the system in expanding or compressing the gas.

1Our definition for r means our description of the stellar hydrodynamical properties is what is seen
by a stationary observer, so is Eulerian. Alternatively, in a Lagrangian description, the quantities are
defined such that the observer follows the motion of the gas (Aerts et al., 2010).
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C.2 Diffusion Approximation

The heating term in Eq. C.4 depends on the energy generation per unit mass ϵ and the

flux F via (Aerts et al., 2010; Aerts, 2021),

ρ
dq

dt
= ρϵ− divF . (C.5)

To calculate the flux (Eq. B.5), one needs to determine the specific intensity which is

derived by solving the radiative transfer equation (Eq. B.4). A simplification arises at

large optical depths (i.e., interior regions where τ >> 1), where the mean free path of

a photon is small compared to the distance scales over which the temperature changes,

because the local temperature can be directly associated to the thermodynamic prop-

erties of the local plasma; the system is in local thermodynamic equilibrium (LTE). The

specific intensity assuming LTE is equivalent to the Plank distribution Bν , which leads

to the following approximation for the flux,

F = − 4π

3κνρ
∇B = −4acT 3

3κνρ
∇T (C.6)

Eq. C.6 is called the diffusion approximation for radiative energy transfer.

C.3 Standard Stellar Models

The so called standard stellar models assume that the stellar structure is static, spher-

ically symmetric (i.e., depends only on the radial distance r from the centre) and that

there are no velocities (Aerts et al., 2010). The continuity equation (Eq. C.1) becomes

trivial in this situation, and the equation of motion (Eq. C.2) reduces to that of hydro-

static equilibrium,
dp

dr
= −g(r)ρ(r), (C.7)

where g is the gravitational acceleration and the first integral of the Poisson equation,

g(r) = G

∫ r

0

4πρ(r) dr =
G

r2

∫ r

0

4πρ(r)r2 dr =
GM(r)

r2
, (C.8)
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where the following identification,

M(r) =

∫ r

0

4πρ(r)r2dr, (C.9)

ensures mass is conserved. Since the flux is directed radially outward in a spherically

symmetric model and dq/ dt = 0 in LTE, from Eq. C.5,

ρϵ =
1

r2
d

dr
(r2F (r)) =

1

4πr2
dL(r)

dr
, (C.10)

where L = 4πr2F (r); L is the total flow of energy over the entire sphere of radius r

from the centre. Hence,
dL

dr
= 4πr2ρ(r)ϵ, (C.11)

which expresses energy conservation. We can also use F = L/4πr2 to express the

diffusion approximation as,

dT

dr
= − 3κνρ(r)

16πr2acT 3
L(r). (C.12)

Eqs. C.7, C.9, C.11, and C.12 are the standard equations of stellar structure (MacDon-

ald, 2015; Lamers, 2017).

C.4 Convection

Convection involves the transfer of heat via the motions of the fluid itself, distinct

from radiative transfer. The mixing length theory2 (MLT) (Böhm-Vitense, 1960) is a

simplified and time-independent treatment of convection. It is commonly used due to

limited understanding surrounding the turbulent, time-dependent nature of convective

elements which prevents a complete hydrodynamical description (i.e., one that accounts

for both radiative and convective energy transport). In this sense, convection is treated

2The MLT describes the average length scale, the mixing length lml, over which convective elements
traverse before before dissipating in thermodynamic equilibrium, and is usually parameterised by the
mixing length parameter αml multiplied by the pressure scale height Hp. See Joyce & Tayar (2023)
for a review of the MLT of convection in 1D stellar modelling.
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as a separate contribution to the flux in Eq. C.5 and Eq. C.12 is modified in convectively

unstable regions (Aerts et al., 2010).

A region is unstable to convection if convective energy transport is more effi-

cient than radiative energy transport in that region. This is assessed by calculating

the temperature gradients associated with either transport mechanism. The adiabatic

temperature gradient inside convective cells is used to evaluate the efficiency of con-

vection (convection is an adiabatic process). It is convenient to express this gradient

against pressure as,

∇adi =

(
d lnT

d lnP

)
adi

=

(
γ − 1

γ

)
, (C.13)

where γ is the ratio of specific heats cp and cV at constant pressure and volume,

respectively (LeBlanc, 2010). From Eq. C.7 and Eq. C.12, the radiative temperature

gradient then follows (see Appendix E.2.1),

∇rad =

(
d lnT

d lnP

)
rad

=
3κνp

16πacGT 4

L(r)

M(r)
. (C.14)

The gradient in the mean molecular weight µ is also important because convective cells

rise due to buoyancy; a decrease in µ would act to increase stability against convection.

This leads to the Ledoux criterion for convective instability,

∇rad > ∇ad + ∇µ; (C.15)

the Schwarzchild criterion simplifies the assessment by neglecting ∇µ.

The top panel of Fig. C.1 shows the extent of the convective envelope as a func-

tion of Teff and the lower panel shows the contribution of convection to the total

flux along the zero-age main-sequence (ZAMS) calculated using the MLT. The figure

demonstrates that convection is an efficient energy transport mechanism throughout

the envelopes of low- and intermediate-mass stars up to Teff ∼ 7000K, at which point

the convection zone splits into contributing components at shallower and deeper geo-

metrical depths; these are the first and second ionization zones of helium, respectively.

Ionization zones lead to convection because of the associated increase in opacity; from
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Eq. C.14 and Eq. C.15, convective stability decreases with increasing opacity. Eq. C.14

is also proportional to the flow of energy per unit mass in the region of interest, i.e.,

L(r)/M(r). Since the energy generation in stars with masses exceeding ∼ 1.2 M⊙ is

strongly concentrated in the core (oweing to the temperature sensitivity of the CNO

cycle), this leads to a convective core (Naur & Osterbrock, 1953).

C.5 Mixing

Convective turnover time-scales are on the order of months or years (Landin et al.,

2010) so convective regions can be regarded as fully mixed with uniform composition.

In radiative regions, the rate of change of the abundance X of an element k follows,

∂Xk

∂t
= Rk +

∂

∂M

(
Dk

∂Xk

∂M

)
+

∂

∂M
(VkXk). (C.16)

The abundance Xk is expressed as the mass fraction of element k, Rk is the rate of

change of Xk due to nuclear reactions and Dk and Vk are the diffusion coefficient and

settling constant, respectfully, for element k (Aerts et al., 2010). Heavier elements

tend to settle near the stellar center due to gravity, resulting in a negative molecular

gradient ∆µ. However, radiative levitation and diffusive mixing processes act to oppose

gravitational settling, leading to chemical peculiarity in stars.

Rotational, magnetic, and pulsational effects also contribute to the mixing of

chemical species but, due to limited understanding, are approximated as diffusive and

usually wrapped in Dk (Aerts et al., 2010, 2018; Aerts, 2021). Stellar models are

often simplified further by assuming mixing only occurs in convective regions, leading

to uncertainties in the composition profiles of radiative regions. These uncertainties

are compounded by those associated to the MLT. Addressing such uncertainties by

deriving constraints on the individual processes is one of the goals of asteroseismology.
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Figure C.1: Extent of the envelope convection zone as a function of Teff . The dashed
vertical lines, within which this ”splitting” occurs, indicate the limits of the classical
instability strip. The δ Scuti instability domain is located within the classical instability
strip (see section 1.2.3.1) so these convection zones are relevant in δ Scuti stars (6500 <
Teff < 9500).(Christensen-Dalsgaard, 2000).
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C.6 Micro-physics

Hydrostatic equilibrium, energy transfer, stratification and mixing describe macro-

physical processes. Descriptions for the properties of stellar matter itself are contained

in the micro-physics and the micro-physics influences the macro-physics.

The equation of state determines the thermodynamic properties of the plasma

and so the way it behaves. An ideal gas is composed of non-interacting particles and

leads to the familiar ideal gas equation of state obeying Maxwell-Boltzmann statistics

(LeBlanc, 2010),

P =
ρkBT

µmu

, (C.17)

where kB is the Boltzmann’s constant and mu is the atomic mass unit. The ideal

gas approximation is usually valid in stars (LeBlanc, 2010), in which case the the

various states of ionisation and the relative populations of states can be calculated

using the Saha and Boltzman equations, respectively. The approximation breaks down

at high densities when degeneracy sets in and the appropriate equation of state needs

to consider degeneracy pressure. Non-ideal effects can also be important when the flux

of radiation is large enough that radiation pressure becomes significant, or when energy

densities are so large that relativistic effects are important.

Opacity calculations require knowledge of the ionisation and excitation states, as

well as other thermodynamic properties associated to the equation of state. To consider

each individual frequency across the distribution κν is complex, making it difficult to

draw general conclusions (LeBlanc, 2010). The Rosseland mean opacity, obtained as a

harmonic mean of the frequency-dependent opacity (Aerts et al., 2010), is a suitable

average which significantly reduces the complexity of stellar model calculations where

the diffusion approximation is valid. Opacity subtracts from the photon beam (Eq.B.4)

so evidently impacts radiative energy transfer.

A precise comprehension of Coulomb interactions among particles, quantum phe-

nomena like tunneling, and reaction rates is essential to accurately integrate the nuclear

processes responsible for a star’s energy into stellar models. These nuclear reactions
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influence stellar structure; for instance, whether reactions adhere to the p-p chain or

the CNO cycle dictates the manner in which energy is emitted from the core. These

factors carry heightened significance in determining the stages of stellar evolution.

We finally note that atomic diffusion and settling also occurs on a microscopic

level, as a pose to the macrosopic description in section C.5. This leads to a further

level of detail in the complexity of stellar model calculations.
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D Stellar Oscillation Equations

D.1 Linear-Adiabatic Oscillations

The stellar oscillation equations are linearised by neglecting terms of order higher than

unity (Aerts et al., 2010; Aerts, 2021). The radial displacement variation of the stellar

plasma due to linear adiabatic oscillations is given by,

dξr
dr

= −
(2

r
+

1

Γ1p

dp

dr

)
ξr +

1

ρc2

(S2
l

ω2
− 1
)
p′ +

l(l + 1)

ω2r2
Φ′, (D.1)

where, ρ is the density, c is the speed of light, ω = 2πν is the angular frequency

(Garćıa & Ballot, 2019), Φ′ is the perturbation to the gravitational potential Φ, p′ is the

perturbation to the pressure p, Γ1 is the first adiabatic exponent, and the characteristic

acoustic frequency Sl is given by,

S2
l =

l(l + 1)c2

r2
= k2

hc
2, (D.2)

where kh is the horizontal wavenumber. The pressure perturbation varies as,

dp′

dr
= ρ(ω2 −N2)ξr +

1

Γ1p

dp

dr
p′ − ρ

dΦ′

dr
, (D.3)

where N is the buoyancy, or Brunt-Väisällä, frequency, given by,

N2 = g
( 1

Γ1p

dp

dr
− 1

p

dρ

dr

)
, (D.4)

with g the unperturbed acceleration due to gravity. Finally, the derivative of the per-

turbation to the gravitational potential (i.e., the perturbed gravitational acceleration)

is expressed as,

1

r2
d

dr

(
r2

dΦ′

dr

)
= 4πG

(p′
c2

+
ρξr
g

N2
)

+
l(l + 1)

r2
Φ′. (D.5)

This fourth order system of ordinary differential equations (Eqs. D.1; D.3; D.5) is

a complete set describing linear, adiabatic, non-radial oscillations in the perturbed

quantities ξr, p
′, Φ′ and dΦ′/ dr (Aerts et al., 2010).
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E Extra Derivations

E.1 Orbital Mechanics

E.1.1 Kepler’s Second Law shows L is constant

Keplers second law states equal areas are swept out in equal periods of time by the

radius vector of a component in an elliptic orbit. The infinitesimal area dA swept by

the radius vector r after traversing the angle dθ in over the time dt is given by,

dA

dt
=

r2

2

dθ

dt
. (E.1)

Over a full period then, the full area of the ellipse A = πab is traced, so,

r2

2

dθ

dt
=

πab

P
, (E.2)

where a and b are the semi-major and -minor axes of the ellipse. Therefore,

r2
dθ

dt
=

2πab

P
= constant. (E.3)

The definition of angular momentum is mr× ṙ with a magnitude in polar coordinates

of mr2θ̇. Thus, Eq. E.3 shows specific angular momentum is constant and expressed

by 2πab/P .
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E.1.2 Derivation of Eq.A.9

Plugging Eq. A.8 into Eq. A.3, using G(M1+M2) as the mass term in the relative orbit,

we have,

H =
1

2
µG(M1 + M2)

[
2

r
− 1

a

]
− GM1M2

r

=
1

2

M1M2

(M1 + M2)
G(M1 + M2)

[
2

r
− 1

a

]
− GM1M2

r

=
GM1M2

2

[
2

r
− 1

a

]
− GM1M2

r

=
GM1M2

2

[
2

r
− 1

a
− 2

r

]
= −1

2

GM1M2

a
.

(E.4)

E.1.3 Derivation of M1R1 + M2R2 = 0

To show M1r1 + M2r2 = 0, consider Eq. A.12 and Eq. A.13,

M1R1 = M1(r1 −R)

= M1r1 −M1

(
M1r1 + M2r2

(M1 + M2)

)

= M1r1 −

(
M2

1r1 + M1M2r2
(M1 + M2)

)

=
(M2

1r1 + M1M2r1) − (M2
1r1 + M1M2r2)

(M1 + M2)

=
M1M2r1 −M1M2r2

(M1 + M2)
.

(E.5)
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Now do the same for the same for M2r2,

M2R2 = M2(r2 −R)

= M2r2 −M2

(
M1r1 + M2r2

(M1 + M2)

)

= M2r2 −

(
M1M2r1 + M2

2r2
(M1 + M2)

)

=
(M2

2r2 + M1M2r2) − (M1M2r1 + M2
2r2)

(M1 + M2)

=
M1M2r2 −M1M2r1

(M1 + M2)
.

(E.6)

Therefore,

M1R1 + M2R2 =
M1M2r1 −M1M2r2

(M1 + M2)
+

M1M2r2 −M1M2r1
(M1 + M2)

=
M1M2r1 −M1M2r2 + M1M2r2 −M1M2r1

(M1 + M2)

= 0.

(E.7)

E.1.4 Derivation of Eq.A.14

Use the fact that M1r1 + M2r2 = 0 and Eq. A.13,

R1 = −M2R2

M1

, (E.8)

and therefore,

r = R1 −R2 = −M2R2

M1

−R2

= −R2

(
M2

M1
+ 1

)

= −R2

(
M2 + M1

M1

)
.

(E.9)

Using µ = M1M2/(M1 + M2),

R2 = −r

(
M1

M1 + M2

)
= − µ

M2

r. (E.10)
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Similarly, using R2 = −M1R1/M2,

R1 = r

(
M2

M1 + M2

)
=

µ

M1

r. (E.11)

E.1.5 Derivation of Barycentric Equations of Motions

First, take the equation of motion for component 1 from Eq. A.1, which was described

in an arbitrary coordinate system, i.e.,

r̈1 = −GM2

r2
r̂ = −GM2

r3
r, (E.12)

where we used r̂ = r/r. Using Eq. A.13, we can also write,

r̈1 = −GM2

r3
(R1 −R2). (E.13)

We also have from Eq. A.14 (derived in Appendix E.1.4) that,

r = rr̂ = R1
(M1 + M2)

M2

= R1
(M1 + M2)

M2

r̂, (E.14)

since R1 and r are in the same direction, i.e., the CM is in the line connecting the

star’s and there are not external forces acting on the system. Thus,

r3 =
(M1 + M2)

3

M3
2

R3
1, (E.15)

which we sub back into Eq. E.13 to yield,

r̈1 = − GM4
2

(M1 + M2)3
(R1 −R2)

R3
1

. (E.16)

From Aection A.2 M1R1 + M2R2 = 0 so,

r̈1 = − GM4
2

(M1 + M2)3
(R1 + M1R1/M2)

R3
1

,

= − GM4
2

(M1 + M2)3
(1 + M1/M2)R1

R3
1

,

= − GM4
2

(M1 + M2)3
(M2 + M1)

M2

R1

R3
1

,

= − GM3
2

(M1 + M2)2
R1

R3
1

.

(E.17)
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Finally, since there are no external forces acting on the system, the CM acceleration is

zero, i.e., R̈ = 0, and r̈1 = R̈1 so,

R̈1 = − GM3
2

(M1 + M2)2
R1

R3
1

. (E.18)

The derivation is the same for R̈2.

E.1.6 Derivation of Eqation of Orbit in terms of E

Using,

cos ν =
a(e− cosE)

−r
, (E.19)

then,

r =
a(1 − e2)

1 + e cos ν

r =
a(1 − e2)

1 + ea(e−cosE)
−r

r
[
1 +

ea(e− cosE)

−r

]
= a(1 − e2)

r − a(e2 − e cosE) = a(1 − e2)

r = a(1 − e2) + a(e2 − e cosE)

r(E) = a(1 − e cosE).

(E.20)

E.1.7 Specific Angular Momentum from Polar Orbit

1

r
=

1 + e cos ν

a(1 − e2)

− r−2ṙ = − e sin νν̇

a(1 − e2)

r2ν̇ =
a(1 − e2)ṙ

e sin ν
.

(E.21)

Now since the total angular momentum is,

J = µωa2
√

1 − e2, (E.22)
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we can divide by µ and write the specific angular momentum as,

r2ν̇ =
a(1 − e2)ṙ

e sin ν
= ωa2

√
1 − e2, (E.23)

where ω = 2π/P is the orbital frequency.

E.1.8 Derivation of expressions for cos(E) and sin(E)

Begin with the identities in Eq.A.18,

cosE = e + (1 − e cosE) cos ν

cosE = e + cos ν − e cosE cos ν

cosE + e cosE cos ν = e + cos ν

cosE(1 + e cos ν) = e + cos ν

cosE =
e + cos ν

1 + e cos ν
.

(E.24)

Now for sinE, from Eq. A.18,

sinE =
r sin ν

b

sinE =
r sin ν

a
√

1 − e2
,

(E.25)

where we used b =
√

1 − e2. Subbing in for r using Eq. A.4,

sinE =
a(1 − e2)

1 + e cos ν

sin ν

a
√

1 − e2

sinE =

√
1 − e2

1 + e cos ν
sin ν.

(E.26)

E.2 Stellar Theory

E.2.1 Derivation of Radiative Temperature Gradient

From Eq. C.7,

dr = − dp

g(r)ρ
, (E.27)
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and from Eq. C.12,

dr = −16πr2acT 3

3κρL(r)
dT, (E.28)

so,
dT

dp
=

3κρL(r)

16πr2acT 3g(r)ρ
=

3κL(r)

16πacT 3GM(r)
. (E.29)

and,
d lnT

d ln p
=

dT/T

dp/p
=

3κpL(r)

16πacGT 4M(r)
. (E.30)
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