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Abstract 

Nucleoside analogue therapeutics have a proven capability within drug discovery as 
antimicrobial, antiviral and antineoplastic agents. However, their efficacy can be limited by poor 
cellular uptake, high off target toxicity and poor bioavailability. Prodrugs of such analogues contribute 
to an improved pharmacokinetic profile. Herein, we explore biocatalytic glycosylation of nucleoside 
analogues. The activity of the nucleoside-specific 3’-O-glycosyltransferase AvpGT from Streptomyces 
sp. AVP053U2 is investigated against a panel of both natural and clinically relevant purine and 
pyrimidine nucleoside analogues. AvpGT demonstrates broad substrate promiscuity, with 16 of 22 
nucleosides tested showing glycosylation by HILIC-MS. Of these, 13 nucleosides were successfully 
glycosylated on 25 µmol scale in 39-91% yields, including four nucleoside analogue therapeutics. 
Furthermore, a novel β-glucosidase, AvpGS, was identified from the same Streptomyces sp. strain, 
heterologously expressed, purified and shown to display high substrate promiscuity in subsequently 
removing glucose from the glycoconjugates. 

Introduction 

 Nucleoside analogues, both synthetic and natural in origin, represent an essential class of 
small molecule pharmaceutical with broad ranging antimicrobial, antiviral and antitumour 
properties.1–3 However, therapeutic intervention using nucleoside analogues can be limited by poor 
cellular uptake and down regulation of nucleoside transporters [e.g., human equilibrative nucleoside 
transporter 1 (hENT1)], low oral bioavailability, rapid degradation or clearance, development of 
resistance profiles and limited conversion to the active metabolite.4,5 One strategy that has emerged 
to contend with some of these issues is a prodrug form of such molecules, perhaps best typified by 
the ProTide approach (e.g., sofosbuvir & remdesivir), which employs a 5’-phosphormamidite group, 
improving cell permeability and overcoming an often rate limiting initial phosphorylation step during 
conversion to the active nucleotide triphosphate.6,7 Another strategy that has been explored in this 
prodrug context is glycosylation. Carbohydrates are abundant biomolecules and the attachment of 
sugars to active pharmaceuticals has been sought as a strategy to improve pharmacokinetic profiles, 
including for nucleoside analogues.8,9 

Cancer cells are significantly reliant on aerobic glycolysis instead of oxidative 
phosphorylation.10 As such, there is an upregulation of glycolytic enzymes, insulin-independent 
glucose transporters (GLUTs) and sodium-dependent glucose transporters (SGLTs) to facilitate the 
increased reliance on glucose as an energy source (also known as the Warburg effect).11–13 Within solid 
tumours, hypoxic regions adapt by activating hypoxia-inducible factor (HIF), resulting in upregulation 
of a variety of genes including GLUT1.14 Conversely, hypoxia and HIF activation has been proposed to 
down regulate expression of ENTs.15,16 In humans,  hENT1 is the main protein responsible for the 
transport of nucleosides, including many pharmaceutically relevant analogues such as gemcitabine 
and for which resistance profiles have rapidly developed.17 This phenotypic change towards increased 
glucose uptake as a result of upregulated GLUT expression, has led to the widespread clinical use of 
18fluorodeoxyglucose positron-emission tomography (FDG-PET) as a method of detecting and staging 
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various cancers.18,19 Glufosfamide20 and an aroylhydrazone glycoconjugate prochelator21 have both 
been demonstrated to rely on uptake by GLUT1 to facilitate cytotoxic activity. 

With a view to developing a novel prodrug strategy for glycosylated nucleoside analogues, 
indicatively invoking uptake through glucose transporters and release by intracellular glycosidase 
activity (Figure 1), we explore herein the substrate profile of a 3’-O-β-nucleoside specific 
glycosyltransferase (GT) from Streptomyces sp. AVP053U2 (AvpGT) against natural purine and 
pyrimidine nucleosides alongside a series of clinically relevant nucleoside analogue drugs. 

 
Figure 1: Targeted transport of nucleoside analogue prodrugs across a cell membrane utilising upregulated 
glucose-transporters followed by glycosidase induced release of nucleoside therapeutic. Boxed: Enzymatic 
glycosylation of nucleosides using bacterial nucleoside-specific glycosyltransferase (AvpGT). 

 Results & Discussion 

Only two nucleoside specific GTs have been identified and examined in detail: NucGT from S. 
calvus,22,23 and AvpGT from Streptomyces sp. AVP053U2.23 Both enzymes are members of the GT2 
family,24 whereby they catalyse glycosyl transfer through an inverting mechanism. Both NucGT and 
AvpGT share a high degree of sequence similarity, sharing 66% sequence identity.23 AvpGT was 
selected, expressed and purified based on previously published protocols.23 In the host species, AvpGT 
catalyses the 3’-O-glucosylation of tubercidin (7-deazadenosine, 2), a potent antimycobacterial and 
antineoplastic agent produced by various species of Streptomyces.25 Previously, work by Pasternak 
et al. showed AvpGT displayed a promiscuity towards 5’-modification and changes of purine 
nucleobase (adenosine & guanosine).23 To further explore AvpGT substrate promiscuity, we sought to 
characterise activity against both purine and pyrimidine nucleosides in addition to a series of clinically 
relevant analogues, featuring modifications to both the nucleobase and ribose ring. 

Exploring AvpGT Activity Profile Towards Purine & Pyrimidine Nucleosides 

The specific activity of glycosyltransferase reactions was determined for a range of purine & 
pyrimidine nucleoside analogues (Table 1). Analysis was performed monitoring the release of uridine-
diphosphate from the glucose donor, UDP-glucose, using strong anion exchange-HPLC. The formation 
of glycosylated nucleoside products was confirmed by HILIC-MS (see ESI, Figures S2-S18).  
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Table 1: Specific glycosyltransferase activity of AvpGT with purine and pyrimidine nucleosides 1−14.  
 

 

Entry Substrate Product Specific Activity 
(mU mg-1)a [AvpGT] Time % Yieldb 

(isolated) 
1 1  1a 940.00 ± 9.23 10 µM 16 h 85 (9.1 mg) 
2 1  1b 239.30 ± 1.16 - - - 
3 2 2a 1467.39 ± 7.36 10 µM 16 h 87 (9.3 mg) 
4 3  3a 62.56 ± 0.81 10 µM 16 h 79 (8.9 mg) 
5 4  4a 41.98 ± 1.22 10 µM 16 h 86 (9.3 mg) 
6 5  5a 115.37 ± 0.85 10 µM 16 h 91 (9.8 mg) 
7 6  6a n.qc - - - 
8 7  7a 19.32 ± 0.28 - - - 
9 8  8a n.qc - - - 

10 9 9a 4.53 ± 0.19 - - - 
11 10  10a 314.54 ± 5.67 - - - 
12 11 11a 17.01 ± 0.18 30 µM 24 h 72 (7.3 mg) 
13 12  12a 148.99 ± 1.24 10 µM 16 h 68 (6.9 mg) 
14 13  13a n.od - - - 
15 14 14a n.od - - - 

aAssay conditions: Substrate (1 mM), UDP-Glc or UDP-Gal (1.5 mM), AvpGT (10 µM), Tris (50 mM, pH7.4), 100 mM NaCl, 10 
mM DTT, 10 mM MgCl2, 30 °C, 100 rpm, 1-60 mins. bIsolated yield following purification by semi-prep HPLC. cn.q – Not 
quantifiable: UDP release observed by SAX-HPLC (after 60 mins), and product formation <5% as observed by HILIC-MS (after 
22 hrs). dn.o – No product formation observed by HILIC-MS (after 22 hrs). Blue circles on structures denote structural 
modification is 2’-deoxy. 

Based on the kinetic parameters reported previously,23 adenosine 1 and tubercidin 2 were 
superior substrates for AvpGT (Table 1, entries 1 and 3), with activity towards guanosine 3 reduced by 
~15-fold compared to 1 (Table 1, entry 4). Switching the sugar nucleotide donor to UDP-galactose 
(UDP-Gal) was possible, with ~3-fold reduction in activity in forming 1b (Table 1, entry 2), compared 
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to the ~4-fold reduction in activity reported previously.23 The enzyme demonstrated no turnover of 
UDP-N-acetyl-glucosamine (UDP-GlcNAc) or UDP-glucuronic acid (UDP-GlcA) donors (see ESI, Figures 
S2-5). Whilst, changing the purine 6-position substitution from -NH2 in 1 to C=O for inosine 4 showed 
a reduced activity (Table 1, entry 5), comparable to that observed for 3. Next, we explored changing 
ring substitution pattern at the 2’-O-position. Using arabinoadenosine 5 resulted in an ~8-fold 
reduction in activity (Table 1, entry 6) and no quantifiable activity could be detected for 
arabinoguanosine 6 (Table 1, entry 7). Furthermore, removal of 2’-OH (2’-deoxy analogues, blue 
sphere) resulted in a ~50-fold reduction compared to 1 for 2’-deoxyadenosine 7 and again no 
quantifiable activity was measured for a guanosine variant 8 (Table 1, entries 8 and 9).  

Overall, these initial results for purine analogues hint at an importance in maintaining 
hydrogen bonding capability and canonical D-ribo configuration at the 2’-position. 2-Position purine 
base substitution appears unfavourable (substrates 3, 6 and 8), whilst changes at the 6-position are 
better tolerated. Finally, for purines, we evaluated a locked adenosine analogue 9 (Table 1, entry 10) 
which showed low activity, alongside 4’-thioadensone 10, which was active (Table 1, entry 11), albeit 
~3-fold reduced compared to 1. In addition, AvpGT demonstrated acceptance of both uridine 11 and 
cytidine 12 as substrates, with the latter showing ~9-fold higher activity over uridine (Table 1, entries 
12 and 13). This combined with higher activity observed towards tubercidin 2 and adenosine 1 
compared to guanosine 3 and inosine 4 suggests the presence of a hydrogen bond donor within the 
nucleobase (at C6 in purines and C4 in pyrimidines) may be a key interaction for activity. Lastly, and in 
alignment to results observed for the purine series, 2’-deoxygneation of D-ribose was not tolerated 
for thymidine 13 or cytidine 14 (Table 1, entries 14 and 15). Substrates 1-5, 11 & 12 were selected for 
scale up and purified by semi-preparative RP-HPLC, delivering multimilligram quantities of 
glycosylated nucleosides 1a-5a, 11a & 12a in isolated yields of 68-91%. The regioselectivity and 
stereoselectivity of AvpGT-mediated glycosylation was confirmed at 3’-O-β for each glycoconjugate 
using a combination of 1H, 1H-decoupled HSQC and 1H-13C HMBC NMR, illustrated for 2a in Figure 2. 

 
Figure 2: 1H-13C HMBC of 3’-O-β-glucosyl-tubercidin (2a) showing 3JH1’’-C3’ correlation between the 1’’ proton on 

glucose and 3’ carbon on ribose.  

3' 2'
1'

O
4'

5'
HO N9

O OH

4

57

8

N
3

2

N
1

6
NH2

1''
O5''4''

3'' 2''

6''

HO
HO

OH

HO

2a

https://doi.org/10.26434/chemrxiv-2024-bmvt7 ORCID: https://orcid.org/0000-0001-6533-3306 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-bmvt7
https://orcid.org/0000-0001-6533-3306
https://creativecommons.org/licenses/by-nc-nd/4.0/


AvpGT Glycosylates Nucleoside Analogue Therapeutics  

 We sought next to prepare a range of 3’-O-glycosylated analogues of known nucleoside 
therapeutics. Analogues such as nelarabine 17,26 fludarabine 18,27 clofarabine 19,28,29 and cladribine 
2030 act as antimetabolites and are approved treatments for lymphoblastic leukaemia, acute myeloid 
leukaemia, lymphocytic leukaemia and hairy cell leukaemia. In the case of nelarabine 17, the 
compound is demethylated to the active compound Ara-G 6 by adenosine deaminase (ADA).26 
Gemcitabine 21, an analogue of cytidine bearing a C2’-deoxy-2’-gemdifluoro modification, is currently 
the second most used anticancer fluorinated nucleoside analogue towards metastatic pancreatic, 
bladder, epithelial ovarian and breast cancers.31 These nucleoside analogue therapeutics were 
examined using AvpGT and the previously established HILIC-MS and strong anion exchange-HPLC 
methods to detect and quantify product formation were employed (Table 2). 

Table 2: Specific glycosyltransferase activity of AvpGT with clinically relevant nucleosides 15-23. 

  

Entry Substrate Product Specific Activity 
(mU mg-1)a [AvpGT] Time Isolated 

Yieldb (%) 
1 15  15a  141.03 ± 8.71 10 µM 16 h 88 (41.2 mg) 
2 16  16a  331.46 ± 1.42 10 µM 16 h 88 (10.2 mg) 
3 17  17a  42.51 ± 0.25 10 µM 16 h 88 (10.1 mg) 
4 18  18a  12.71 ± 0.12 30 µM 24 h 64 (7.2 mg) 
5 19  19a  2.85 ± 0.29 30 µM 24 h 39 (4.5 mg) 
6 20  20a  n.oc - - - 
7 21  21a  1.76 ± 0.23 30 µM 24 h 91 (10.2 mg) 
8 22  22a  n.oc - - - 

aAssay conditions: Substrate (1 mM), UDP-Glc (1.5 mM), AvpGT (10 µM), Tris (50 mM, pH7.4), 100 mM NaCl, 10 mM DTT, 
10 mM MgCl2, 30 °C, 100 rpm, 1-60 mins. bIsolated yield following reaction for 16 hrs and purification by semi-prep HPLC. 
cn.o – No product formation observed by HILIC-MS (after 22 hrs). 

N-Propargylation at the 6-position of adenosine 15 was tolerated, but resulted in a moderate 
loss in activity (~7-fold, Table 2, entry 1). However, this result does support a prospect to utilise 15a 
as a glycosylated nucleoside analogue probe for nucleic acid synthesis, as has been accomplished for 
15.32 C6-O-methylation of guanosine 16 interestingly resulted in an ~5-fold restoration of activity, 
compared to guanosine (3, Table 2, entry 2). Inverting the 2-OH stereochemistry in substrate 16 to 
give nelarabine 17 showed an ~8-fold reduction in activity (Table 2, entry 3). Retaining this D-arabino 
configuration but switching to a C2-halogenated adenosine derivative 18 saw a further ~4-fold 
reduction in activity (Table 2, entry 4). A C2 arabinofluoro analogue with purine C2 halogenation 19 
was the lowest performing analogue tested (Table 2, entry 5). Finally, in this series, 2’-deoxyribo 
cladribine 20 was not active with AvpGT (Table 2, entry 6). Taken together, these purine substrates 
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indicate an exciting and previously unestablished activity profile for AvpGT towards glycosylation of 
nucleoside analogues with C2 and C6 nucleobase modifications beyond those observed in canonical 
systems, alongside accepting a C2’-arabino configuration, but noting that C2’-fluorination or 
deoxygenation is not well tolerated. Switching to pyrimidine bases, gemcitabine (C2’-gem-difluoro) 
was active (Table 2, entry 7), albeit with ~75-fold lower activity that cytidine 12. A 2’-arabino 
configured system, cytarabine 22 was not active (Table 2, entry 8). Comparatively, the results for 
pyrimidine systems, whilst not as widely explored, are particularly encouraging from the prospect of 
a novel C3’-glucosylated gemcitabine conjugate. With the exception of inactive analogues 20 and 22, 
all substrates were scaled up and purified by semi-preparative RP-HPLC providing a library of 
glycosylated nucleoside therapeutics on 4.5-10.2 mg scales. 

Exploring Glycosyl Hydrolase-Mediated Cleavage of Nucleoside Analogue Conjugates 

As a preliminary study to explore the capability of our nucleoside analogue glycoconjugates, 
we examined their activity in combination with a commercially available cytosolic glucosidase. In 
humans the cytosolic glucosidase GBA3 (EC 3.2.1.21) is thought to hydrolyse xenobiotic glycosides in 
particular demonstrating activity against a variety of substrates with a β-glucose, β-galactose, β-
xylose, or α-arabinose moiety linked to a hydrophobic aglycone.33,34 However no hydrolysis was 
detected for any of the glycosylated nucleosides synthesised following incubation with GBA3 
overnight (see ESI Figures S36 & 37). However, analysis of the genome of Streptomyces sp. AVP053U2 
revealed a putative glucosidase (avpGS) with homology to the GH1 family of glycosyl hydrolases.24,35 
Moreover it shared a 92% sequence identity (95% sequence similarity) to a recently disclosed 
glucosidase involved in the biosynthesis of nucleocidin, nucGS,22 highlighting its potential activity on 
glucosylated nucleosides. Therefore the gene for avpGS was inserted into a pET28a plasmid and 
overexpressed in E.coli Rosetta2 cells. After purification by nickel column, soluble protein was 
obtained which migrated in line with the predicted molecular weight (54.4 kDa) upon analysis by SDS-
PAGE (see ESI, Figure S27). The substrate promiscuity of AvpGS was then explored using HILIC-MS for 
substrates 1a, 3a, 12a (Figure 3), 15a, 17-19a & 21a, with quantitative hydrolysis observed for both 
natural and therapeutic nucleosides following overnight incubation at a concentration of 1 mol% (see 
ESI, Figures S28-S35). 
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Figure 3: Hydrolysis of glucosylated cytidine (12a) to cytidine (12) following overnight incubation with AvpGS 
(1 mol%, teal trace); negative control reaction without AvpGS added (blue trace). Reaction followed by HILIC-
DAD-MS and shows two A260 traces overlaid.  
 

Conclusion 

We have established capability for a bacterial glycosyltransferase to glycosylate a range of 
nucleosides, including both natural systems and analogues that are currently used clinically. We 
exemplify the utility of this enzymatic approach through scalable milligram access to thirteen 
glucosylated conjugates and further disclose preliminary studies regarding removal of the glucose 
moiety using a related bacterial glycosyl hydrolase. That none of the nucleoside glucoside conjugates 
tested were active towards a human glycosidase encourages further exploration of these 
bioconjugates in the context of developing prodrug approaches that target systems upregulated in 
the cancer microenvironment, such as GLUTs. Furthermore, an orthogonal activity of the bacterial 
hydrolase AvpGS to GBA3 posits an opportunity to explore target specific drug delivery systems, 
similar to those reported for lectin- and antibody-directed prodrug therapies.36 
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