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Abstract. The mathematical formulations for transverse compression of a thin elastic disc are considered, including various
boundary conditions along the faces of the disc. The mixed boundary conditions corresponding to the loading by normal
stresses in absence of sliding are studied in detail. These conditions support an explicit solution in a Fourier series for
the boundary layers localised near the edge of the disc and also do not assume making use of the Saint-Venant principle
underlying the traditional asymptotic theory for thin elastic structures. As an example, an axisymmetric problem is studied.
Along with the leading order solution for a plane boundary layer, a two-term outer expansion is derived. The latter is
expressed through the derivatives of the prescribed stresses. Generalisations of the developed approach are addressed.
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1. Introduction

Analytical treatment of a thin elastic disc subject to transverse compression along its faces is important
for various industrial applications, including manufacturing of gaskets and dampers, characterisation of
soft materials, and microfabrication of nanostructures. The engineering considerations on the subject, see
[5,6,17,19,20,22,23] and references therein, often rely on kinematic assumptions regarding displacement
and stress variation across the thickness. A few papers also exploit separation of variables, e.g. see [3,21].
All cited publications do not consider the boundary layers along the edges of the disc, adapting ad hoc
boundary conditions on the solutions for the disc interior.

The mathematical formulations governing transverse compression of a thin disc may vary depending
on the type of surface loading. In particular, compression may be specified by prescribing either normal
displacements or normal stresses. There is also a room for modelling of tangential sliding, including the
assumption of no sliding. The asymptotic theory for thin elastic structures [1,7–9,14,16,24] seems to be
the most appropriate framework for tackling all possible scenarios.

For the so-called classical boundary conditions along faces, i.e. boundary conditions expressed in
terms of stresses, the term corresponding to transverse compression appears in the right hand side of 2D
differential equations of motion [7,9,14]. In this case, the boundary conditions at structure edges follow
from the asymptotic generalisation of the canonical Saint-Venant principle [7,10–13], ensuring decay of
boundary layers. It is worth noting that numerous engineering plate theories usually do not consider
the effect of transverse compression and also do not implement rational mathematical arguments for
establishing effective boundary conditions.

The non-classical boundary conditions along faces, i.e. the boundary conditions involving constrains
on displacements, apart from those for a sliding contact [4] do not require solving differential equations for
interior domains [1,2,8]. In this case, the outer solution can be readily expressed through the derivatives
of given data, e.g. normal displacements. Transverse compression by a uniform normal displacement field
is usually studied in the majority of the publications on the subject, see references above. At the same
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time, the Saint-Venant principle is not applicable for the transverse compression problems involving non-
classical boundary conditions along faces. For the latter, the decay of the boundary layers localised near
edges is guaranteed a priori.

In this paper, transverse compression is modelled via mixed boundary conditions along both faces. The
focus is on the axisymmetric deformation of a thin elastic disc compressed by normal stresses assuming
zero tangential displacements along the faces. The thickness of the disc is small compared to its radius.
For definiteness, the disc contour is assumed to be traction-free. In contrast with a number of papers in
this area, we assume that compression is due to a given stress but not a displacement. The main benefit
of the chosen mixed boundary conditions is that they support a simple solution for the boundary layer
expressed through a Fourier series.

As usual, the asymptotic solution of the formulated problem is split into outer and inner (boundary
layer) components, [1,7]. The asymptotic behaviour of the outer one is radically different from that in
a similar transverse compression problem within the traditional thin plate theory, when the tangential
stresses but not the displacements are equal to zero along disc faces [9,14]. The two-term asymptotic
expansion of the outer solution is derived from the canonical elasticity relations for displacements and
stresses. For comparison, the leading-order solution is also presented in terms of the Love potential
in Appendix. The obtained explicit formulae express all sought for quantities through the derivatives
of arbitrary normal stresses prescribed along faces. In this case, however, a discrepancy arises in the
homogeneous boundary conditions originally imposed on the edge of the disc.

To eliminate the discrepancy, we construct a plane boundary layer, localised near the edge, e.g. see
[1,7]. At leading order, it is given by the plane strain equations. The adapted mixed boundary conditions
along faces both ensure an exponential decay of the boundary layer at the scale of the thickness and, as
it has been already mentioned, lead to an explicit trigonometric solution, similar to that in [15]. This
analytical solution is compared with a FEM one, in order to validate a numerical framework for further
developments. The point is that only mixed boundary conditions do not assume a numerical treatment
supporting the separation of variables.

2. Statement of the problem

Consider a thin disc of the uniform thickness 2h, with the radius R, compressed by normal stresses p along
its faces, see Fig. 1. The disc is assumed to be isotropic and linearly elastic. Let a cylindrical coordinate
system with the origin at the mid-plane of the disc be defined such that z axis is perpendicular to the
mid-plane, while the polar radius r is parallel to it. We also assume that the edge r = R is traction-free
and there is no sliding along the faces z = ±h.

In what follows, we restrict ourselves to analysis of an axisymmetric problem, when the equilibrium
equations are written as

∂σr

∂r
+

∂τrz

∂z
+

σr − σϕ

r
= 0,

∂σz

∂z
+

∂τrz

∂r
+

τrz

r
= 0,

(1)

where σr, σϕ, σz and τrz are the components of the Cauchy stress tensor. Here and below, see [18] for
more detail.



ZAMP Transverse compression of a thin elastic disc Page 3 of 15   116 

Fig. 1. A thin elastic disc under transverse compression

The constitutive relations for a linear isotropic elastic solid are given by

σr = (λ + 2μ)
∂u

∂r
+ λ

(u

r
+

∂w

∂z

)
,

σϕ = (λ + 2μ)
u

r
+ λ

(∂u

∂r
+

∂w

∂z

)
,

σz = (λ + 2μ)
∂w

∂z
+ λ

(u

r
+

∂u

∂r

)
,

τrz = μ
(∂u

∂z
+

∂w

∂r

)
,

(2)

where u and w are the components of the displacement vector; λ and μ are the Lamé’s constants.
The boundary conditions at the disc faces z = ±h are taken in the form

σz = −p, u = 0, (3)

where p = p(r) denotes a prescribed normal stress. These mixed boundary conditions are not a feature of
the canonical plate and shell theories, e.g. see [1,7,8] operating with Neumann type boundary conditions
expressed in terms of stresses only.

Besides, we impose traction free boundary conditions at the edge r = R, which can be written as

σr = 0, τrz = 0. (4)

It is obvious that the adapted boundary conditions support the solution for which u, σr, σϕ and σz are
even functions of the transverse variable z, while w and τrz are odd ones.

The goal of the paper is to develop an asymptotic procedure oriented to a thin disc specifying a small
geometric parameter given by ε = h/R � 1. In this case, we implement the traditional scheme, e.g. see
[1,7], separating the sought for solution into outer and inner (boundary layer) components.

3. Outer solution

Consider first the interior domain of the disc, outside a narrow vicinity of its edge. To this end, we scale
original variables as

ξ =
r

R
, η =

z

h
(5)
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and define dimensionless quantities

u∗ =
u

h
, w∗ =

w

R
, σ∗

r =
ε

μ
σr, σ∗

ϕ =
ε

μ
σϕ,

σ∗
z =

ε

μ
σz, τ∗

rz =
1
μ

τrz and p∗ =
ε

μ
p,

(6)

where all quantities with the asterisk are of the same asymptotic order.

The equilibrium equations and constitutive relations in a non-dimensional form may now be rewritten
as

∂σ∗
r

∂ξ
+

∂τ∗
rz

∂η
+

σ∗
r − σ∗

ϕ

ξ
= 0,

∂σ∗
z

∂η
+ ε2

(∂τ∗
rz

∂ξ
+

τ∗
rz

ξ

)
= 0,

σ∗
r = α

∂w∗

∂η
+ ε2

(
(α + 2)

∂u∗

∂ξ
+ α

u∗

ξ

)
,

σ∗
ϕ = α

∂w∗

∂η
+ ε2

(
(α + 2)

u∗

ξ
+ α

∂u∗

∂ξ

)
,

σ∗
z = (α + 2)

∂w∗

∂η
+ αε2

(∂u∗

∂ξ
+

u∗

ξ

)
,

τ∗
rz =

∂u∗

∂η
+

∂w∗

∂ξ
,

(7)

where α =
λ

μ
.

The boundary conditions become

σ∗
z = −p∗, u∗ = 0 at η = ±1 (8)

and

σ∗
r = 0, τ∗

rz = 0 at ξ = 1. (9)

Next, we expand the displacements and stresses in the asymptotic series in terms of the small parameter
ε as

⎛
⎜⎜⎜⎜⎜⎜⎝

u∗

w∗

σ∗
r

σ∗
ϕ

σ∗
z

τ∗
rz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u(0)

w(0)

σ
(0)
r

σ
(0)
ϕ

σ
(0)
z

τ
(0)
rz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ ε2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u(1)

w(1)

σ
(1)
r

σ
(1)
ϕ

σ
(1)
z

τ
(1)
rz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ .... (10)
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Substituting these expansions into Eq. (7), and the boundary conditions (8) along the faces, we obtain
at leading order

∂σ
(0)
r

∂ξ
+

∂τ
(0)
rz

∂η
+

σ
(0)
r − σ

(0)
ϕ

ξ
= 0,

∂σ
(0)
z

∂η
= 0,

σ(0)
r = α

∂w(0)

∂η
,

σ(0)
ϕ = α

∂w(0)

∂η
,

σ(0)
z = (α + 2)

∂w(0)

∂η
,

τ (0)
rz =

∂u(0)

∂η
+

∂w(0)

∂ξ
,

(11)

with

σ(0)
z = −p∗(ξ), u(0) = 0 at η = ±1. (12)

Integrating Eqs. (11) and (12) in η, we have

u(0) =
α + 1

2(α + 2)
∂p∗(ξ)

∂ξ
(η2 − 1),

w(0) = − η

α + 2
p∗(ξ),

σ(0)
r = σ(0)

ϕ = − α

α + 2
p∗(ξ),

σ(0)
z = −p∗(ξ),

τ (0)
rz =

α

α + 2
∂p∗(ξ)

∂ξ
η.

(13)

At next order, the equations and boundary conditions are given by

∂τ
(0)
rz

∂ξ
+

τ
(0)
rz

ξ
+

∂σ
(1)
z

∂η
= 0,

σ(1)
r = (α + 2)

∂u(0)

∂ξ
+ α

u(0)

ξ
+ α

∂w(1)

∂η
,

σ(1)
ϕ = α

∂u(0)

∂ξ
+ (α + 2)

u(0)

ξ
+ α

∂w(1)

∂η
,

σ(1)
z = (α + 2)

∂w(1)

∂η
+ α

(∂u(0)

∂ξ
+

u(0)

ξ

)
,

τ (1)
rz =

∂u(1)

∂η
+

∂w(1)

∂ξ
,

(14)

with

σ(1)
z = 0, u(1) = 0 at η = ±1. (15)
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As a result,

u(1) =
(α + 1)
2(α + 2)

(∂3p∗(ξ)
∂ξ3

+
1
ξ

∂2p∗(ξ)
∂ξ2

− 1
ξ2

∂p∗(ξ)
∂ξ

)(
η2 − η4

6
− 5

6

)
,

w(1) =
α

2(α + 2)

(∂2p∗(ξ)
∂ξ2

+
1
ξ

∂p∗(ξ)
∂ξ

)(
η − η3

3

)
,

σ(1)
r = − 1

2(α + 2)

(
(3α + 2)

∂2p∗(ξ)
∂ξ2

+
α

ξ

∂p∗(ξ)
∂ξ

)(
1 − η2

)
,

σ(1)
ϕ = − 1

2(α + 2)

(
α

∂2p∗(ξ)
∂ξ2

+
(3α + 2)

ξ

∂p∗(ξ)
∂ξ

)(
1 − η2

)
,

σ(1)
z =

α

2(α + 2)

(∂2p∗(ξ)
∂ξ2

+
1
ξ

∂p∗(ξ)
∂ξ

)(
1 − η2

)
,

τ (1)
rz =

(3α + 2)
2(α + 2)

(∂3p∗(ξ)
∂ξ3

+
1
ξ

∂2p∗(ξ)
∂ξ2

− 1
ξ2

∂p∗(ξ)
∂ξ

)(
η − η3

3

)
.

(16)

Now, keeping two terms in the outer expansion (10), together with the formulae (5) and (6), the displace-
ments and stresses may be written in a dimensional form as

u(r, z) = − (α + 1)
2μ(α + 2)

[
∂p(r)
∂r

(h2 − z2) +
(

∂3p(r)
∂r3

+
1
r

∂2p(r)
∂r2

− 1
r2

∂p(r)
∂r

) (
5
6
h4 − h2z2 +

1
6
z4

)]
,

w(r, z) =
z

μ(α + 2)

[
−p(r) +

α

2

(
∂2p(r)
∂r2

+
1
r

∂p(r)
∂r

)(
h2 − 1

3
z2

)]
,

σr(r, z) = − α

α + 2

[
p(r) +

1
2

(
(3α + 2)

α

∂2p(r)
∂r2

+
1
r

∂p(r)
∂r

)(
h2 − z2

)]
,

σϕ(r, z) = − α

α + 2

[
p(r) +

1
2

(
∂2p(r)
∂r2

+
(3α + 2)

α

1
r

∂p(r)
∂r

)(
h2 − z2

)]
,

σz(r, z) = −p(r) +
α

2(α + 2)

(
∂2p(r)
∂r2

+
1
r

∂p(r)
∂r

)(
h2 − z2

)
,

τrz(r, z) =
α

α + 2
z

[
∂p(r)
∂r

+
3α + 2

α

(
∂3p(r)
∂r3

+
1
r

∂2p(r)
∂r2

− 1
r2

∂p(r)
∂r

) (
h2 − 1

3
z2

)]
.

(17)

These expressions are different to the predictions of the theory for thin elastic plates, e.g. see [1,9,14],
since the adapted asymptotic behaviour (6) is not the same as that for prescribed stresses characteristic
of this theory. In particular, the displacement u in the last formulae demonstrates a parabolic variation
in the transverse variable z, but not a uniform one as for a plate loaded by given stresses. It is worth
mentioning that a parabolic variation in this displacement is a popular kinematic hypothesis within
many engineering formulations for compression problems, e.g. see references in [21]. At the same time,
the refined expressions (17) can only be deduced using the asymptotic methodology.
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Fig. 2. Plane boundary layer

Finally, we remark that for uniform loading p(r) = const the aforementioned formula (17) reduces to
the exact solution of the problem, for which we have

w = − z

α + 2
p

μ
,

σz = −p,

σr = σϕ = − α

α + 2
p,

u = τrz = 0.

(18)

4. Discrepancy at a traction-free edge and boundary layer

The two-term asymptotic expansions (17) derived in the previous section do not satisfy the homogeneous
boundary conditions (4) at the free edge r = R. The associated discrepancies are

σr(R, z) = − α

α + 2

[
p(R) +

1
2

(
(3α + 2)

α

∂2p(r)
∂r2

∣∣∣∣
r=R

+
1
R

∂p(r)
∂r

∣∣∣∣
r=R

) (
h2 − z2

)]
,

τrz(R, z) =
α

α + 2
z

[
∂p(r)
∂r

∣∣∣∣
r=R

+
3α + 2

α

(
∂3p(r)
∂r3

∣∣∣∣
r=R

+
1
R

∂2p(r)
∂r2

∣∣∣∣
r=R

− 1
R2

∂p(r)
∂r

∣∣∣∣
r=R

)(
h2 − 1

3
z2

)]
.

(19)

To eliminate the latter, we take into consideration the so-called plane boundary layer, e.g. see [1,7],
localised in a small O(ε) vicinity of the edge. Let us demonstrate that this boundary layer is governed by
the equations in plane elasticity over a semi-infinite strip of thickness 2h, see Fig. 2. Changing variables
in the original relations (1) and (2) by

γ =
R − r

h
, ξ =

z

h
, (20)
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we obtain

− ∂σr

∂γ
+

∂τrz

∂ξ
+

ε

1 − εγ

(
σr − σϕ

)
= 0,

− ∂τrz

∂γ
+

∂σz

∂ξ
+

ε

1 − εγ
τrz = 0

(21)

and

h

μ
σr = −(α + 2)

∂u

∂γ
+ α

(
∂w

∂ξ
+

ε

1 − εγ
u

)
,

h

μ
σϕ =

ε

1 − εγ
(α + 2)u + α

(
∂w

∂ξ
− ∂u

∂γ

)
,

h

μ
σz = (α + 2)

∂w

∂ξ
+ α

(
ε

1 − εγ
u − ∂u

∂γ

)
,

h

μ
τrz =

(
∂u

∂ξ
− ∂w

∂γ

)
.

(22)

Neglecting in the last formulae O(ε) terms, we arrive at the equations in plane elasticity in the dimensional
variables x = hγ and z. They can be written as

∂σxx

∂x
+

∂τxz

∂z
= 0,

∂τxz

∂x
+

∂σzz

∂z
= 0

(23)

and

1
μ

σxx = (α + 2)
∂u

∂x
+ α

∂w

∂z
,

1
μ

σzz = (α + 2)
∂w

∂z
+ α

∂u

∂x
,

1
μ

τxz =
(∂u

∂z
+

∂w

∂x

)
.

(24)

The stress σϕ transforms to the normal stress orthogonal to (x, z) plane. The latter is not of great interest
for plane elasticity and may be omitted.

Equations (23) and (24) are related to their counterparts (21) and (22) by the substitutions

u → −u, w → w, σr → σxx, σz → σzz, τrz → −τxz. (25)

We have to subject the studied plane strain equations to inhomogeneous boundary conditions at the
edge x = 0, in order to eliminate the discrepancies given by (19). At leading order, we get, due to the
asymptotic setup (6),

σxx = q, τxz = 0, (26)

where q =
λ

λ + 2μ
p(R).

We also impose mixed homogeneous boundary conditions at the disc faces z = ±h. They are

σzz = 0, u = 0. (27)
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5. Calculation of boundary layer

Consider the boundary value problem (23), (24), (26) and (27). First, expanding the function q = const
in a Fourier series, we rewrite the boundary conditions (26) as

σxx =
4q

π

∞∑
n=1

(−1)n−1

(2n − 1)
cos(knz), τxz = 0, (28)

where kn =
(2n − 1)π

h
, n = 1, 2, 3, ...

Next, we introduce the Airy stress function ϕ(x, z), e.g. see [18] in Eqs. (23) and (24), having

σxx =
∂2ϕ

∂z2
, σzz =

∂2ϕ

∂x2
,

τxz = − ∂2ϕ

∂x∂z

and
∂u

∂x
=

1 − ν2

E

(∂2ϕ

∂z2
− ν

1 − ν

∂2ϕ

∂x2

)
,

∂w

∂z
=

1 − ν2

E

(∂2ϕ

∂x2
− ν

1 − ν

∂2ϕ

∂z2

)
(29)

with E =
μ(3λ + 2μ)

λ + μ
and ν =

λ

2(λ + μ)
denoting Young’s modulus and Poisson’s ratio, respectively.

The Airy function satisfies the bi-harmonic equation. Thus,

Δ2ϕ = 0, (30)

where

Δ2 =
∂4

∂x4
+ 2

∂4

∂x2∂z2
+

∂4

∂z4
.

The boundary conditions (26) and (27) then become

∂2ϕ

∂z2

∣∣∣
x=0

= q,
∂2ϕ

∂x∂z

∣∣∣
x=0

= 0,
∂2ϕ

∂z2

∣∣∣
z=±h

= 0,
∂2ϕ

∂x2

∣∣∣
z=±h

= 0. (31)

Let us now expand the sought for function ϕ as

ϕ(x, z) =
∞∑

n=1

ϕn(x, z) (32)

with

ϕn(x, z) = fn(x) cos(knz), (33)

satisfying both boundary conditions along the faces z = ±h in (31). In this case, the ordinary differential
equation for the functions fn takes the form

f (IV )
n (x) − 2k2

nf
′′
n (x) + k4

nfn(x) = 0. (34)

The decaying solution of this equation can be written as

fn(x) = Cne−knx + Dnxe−knx, (35)

where Cn and Dn are unknown constants.
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Table 1. Problem parameters

Parameters Values

Thickness, h (mm) 5

Length, L (mm) 200
Young’s modulus, E (MPa) 200000
Poisson’s ratio, ν(/) 0.3
Normal stress, q (MPa), see (26) 1

Then, substituting (32) into the homogeneous boundary condition at the edge x = 0 in (31), we obtain

Dn = Cnkn. (36)

As a result, we have from the inhomogeneous boundary condition in (31)

Cn =
(−1)n4qh2

(2n − 1)3π3
. (37)

Finally, we derive from (29) and the related intermediate formulae

u(x, z) = 2
1 − ν2

E

∞∑
n=1

Cnkn

(
1 +

1
2(1 − ν)

knx

)
e−knx cos(knz),

w(x, z) = −1 + ν

E
(1 − 2ν)

∞∑
n=1

Cnkn

(
1 − 1

1 − 2ν
knx

)
e−knx sin(knz),

σxx(x, z) = −
∞∑

n=1

Cnk2
n(1 + knx)e−knx cos(knz),

σzz(x, z) = −
∞∑

n=1

Cnk2
n(1 − knx)e−knx cos(knz),

τxz(x, z) = −
∞∑

n=1

Cnk3
nxe−knx sin(knz).

(38)

6. Numerical results

Below we compare the analytical results for the boundary layer obtained in the previous section with
FEM calculations. The chosen values of the problem parameters are presented in Table 1. The stresses
and displacements calculated by the formulae (38) are compared with those obtained using FEA free
software LISA 8.0 (http://lisafea.com/).

Figures 3 and 4 show the variation in displacements and stresses along x-coordinate for z = 5, 4.5, 3, 0 [mm],
as well as their variation along z-coordinate for x = 0, 1, 10, 20 [mm]. The solid line in all figures corre-
sponds to the analytical solution, while FEM predictions are plotted with dots.

The numerical data presented in these figures demonstrate an excellent agreement between analytical
and FEM results with virtually the only exception of the stresses σxx and τxz entering the boundary
conditions at the edge x = 0. The latter is a consequence of the expected effect of FEM modelling.

http://lisafea.com/
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Fig. 3. Displacement variation along x-coordinate (a) and (c) and along z-coordinate (b) and (d)

7. Concluding remarks

A full asymptotic solution of the axisymmetric problem for transverse compression of a thin elastic disc
is obtained. The adapted mixed boundary conditions along disc faces support an explicit inner solution
corresponding to a plane boundary layer. The exponential decay of the latter is a priori guaranteed, in
contrast with the setup, involving the classical Neumann type boundary conditions [7,8] that assumes the
implementation of the Saint-Venant principle. The two-term outer solution derived from the 2D equations
for displacements and stresses is valid for arbitrary loading. It is expressed through the derivatives of the
prescribed normal stresses. For comparison, the leading-order outer solution is also deduced using the
Love potential.

The developed methodology is not restricted to the considered problem. It can be easily extending to
a disc of a general shape with a variety of non-classical boundary conditions along its faces. In this case,
however, an anti-plane boundary layer may also arise along with a plane one [1,7]. In addition, simple
solutions for the boundary layers, like that for mixed boundary conditions studied in this paper, are
usually not achievable, motivating FEM calculations. Among other natural extensions of the proposed
asymptotic scheme, we mention analysis of a transversely inhomogeneous disc, including a functionally
graded one. The latter topic seems to be of interest for various technologies.
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Fig. 4. Stress variation along x-coordinate (a), (c) and (e) and along z-coordinate (b), (d) and (f)
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APPENDIX

The bi-harmonic equation for the Love potential ψ(r, z) can be written as, e.g. see [18]

Δ2ψ = 0 (A1)

with

Δ =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
. (A2)

The quantities in the boundary conditions (3) along disc faces are expressed through this potential as

u = − 1
2μ

∂2ψ

∂r∂z
,

σz =
∂

∂z

(
3α + 4

2(α + 1)
Δ − ∂2

∂z2

)
ψ.

(A3)

Let us rewrite the formulae (A1) and boundary conditions (3) in the dimensionless variables (5), having

Δ2
∗ψ∗ = 0, (A4)

where ψ∗ =
ε

μh3
ψ and

Δ∗ = h2Δ =
∂2

∂η2
+ ε2

(
∂2

∂ξ2
+

1
ξ

∂

∂ξ

)
, (A5)

subject to

∂2ψ∗
∂ξ∂η

= 0,
∂

∂η

(
3α + 4

2(α + 1)
Δ∗ − ∂2

∂η2

)
ψ∗ = −p∗ (A6)

at η = ±1.
At leading order

(
ψ∗ = ψ0 + O(ε2)

)
, we have

∂4ψ0

∂ξ4
= 0 (A7)

and
∂2ψ0

∂ξ∂η
= 0,

α + 2
2(α + 1)

∂3ψ0

∂η3
= −p∗. (A8)

The solution of this problem is given by

ψ0 = A(ξ)η + B(ξ)η3 (A9)

with
dA

dξ
=

α + 1
α + 2

∂2p∗
∂ξ

, B = −p∗
3

α + 1
α + 2

. (A10)

Substituting the last formula into (A3), we arrive at the same relations as in (13). Other stress and
displacement components in (13) can be also expressed through the potential ψ.

http://creativecommons.org/licenses/by/4.0/
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