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Abstract: Treating bone-cartilage defects is a fundamental clinical problem. The ability of
damaged cartilage to self-repair is limited due to its avascularity. Left untreated, these
defects can lead to osteoarthritis. Details of osteochondral defect repair are elusive, but
animal models indicate healing occurs via an endochondral ossification-like process,
similar to that in the growth plate. In the growth plate, the signalling molecules
parathyroid hormone-related protein (PTHrP) and Indian Hedgehog (Ihh) form a
feedback loop regulating chondrocyte hypertrophy, with Ihh inducing and PTHrP
suppressing hypertrophy. To better understand this repair process and to explore the
regulatory role of signalling molecules on the regeneration process, we formulate a
mathematical model of osteochondral defect regeneration after chondrocyte
implantation. The drivers of healing are assumed to be chondrocytes and osteoblasts,
and their interaction via signalling molecules. We model cell proliferation, migration and
chondrocyte hypertrophy, and matrix production and conversion, spatially and
temporally. We further model nutrient and signalling molecule diffusion and their
interaction with the cells. We consider the PTHrP-Ihh feedback loop as the backbone
mechanisms but the model is flexible to incorporate extra signalling mechanisms if
needed. Our mathematical model is able to represent repair of osteochondral defects,
starting with cartilage formation throughout the defect. This is followed by chondrocyte
hypertrophy, matrix calcification and bone formation deep inside the defect, while
cartilage at the surface is maintained and eventually separated from the deeper bone
by a thin layer of calcified cartilage. The complete process requires around 48 months.
A key highlight of the model demonstrates that the PTHrP-Ihh loop alone is insufficient
and an extra mechanism is required to initiate chondrocyte hypertrophy, represented
by a critical cartilage density. A parameter sensitivity study reveals that the timing of
the repair process crucially depends on parameters, such as the critical cartilage
density, and those describing the actions of PTHrP to suppress hypertrophy, such as
its diffusion coefficient, threshold concentration and degradation rate.

Response to Reviewers: Reply to Reviewers

We thank the reviewers for their careful reading of the manuscript and the insightful
comments and suggestions they have provided. This has led to the manuscript being
thoroughly revised both in the content and structure. The main revisions made are as
follows. These are referred to by the corresponding section numbers and page
numbers in the revised manuscript.

1. The Introduction (section 1) and Discussion (Section 5) are now more focused on
the main goals and objectives of the paper based on the suggestions by Reviewer 1.

2. We have slightly modified the equation for the rate of change of hypertrophy-
suppressing signalling molecule, gHS (Eq. 15). This is related to the production term
(third term on the right-hand-side of Eq. 15)) which is proportional to the product of
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gHM and CC. The explanation for this is provided below Eq. 15.

3. We have conducted a more extensive literature search on parameters related to the
suppressing and modulating signalling molecules. This has resulted in small changes
to the boundary and initial conditions (Sections 2.2 and 2.3), non-dimensionalization of
gHM and gHS and dimensionless equation (Section 3) and related dimensional and
dimensionless parameters in Tables 1 and 2, respectively. These changes are
highlighted in yellow in the corresponding text.

4. We have revised Section 4.2 – Sensitivity of parameters by adding plots that gives a
quantitative measure of model sensitivity related to the biologically important
parameters as well as some of the “guessed” parameters. We have removed Table 3
and embedded the results and explanations within the text in Section 4.2.

5. We have improved the quality of all the figures in the manuscript and provided
requested details in the captions.

6. We have revised the Discussion such that we clearly address the main aim and two
specific questions.

We now provide replies to each of the reviewer’s comments.

Reply to Reviewer 1

1. My only concern about this work is that the mathematical formulation is mainly
based on reaction-diffusion equations. Therefore, the solution of these equations are
normally mesh dependent. Have the authors performed some analysis of the effect of
the mesh size?

Reply: Yes, we have performed a formal error and convergence analysis based on
reducing the mesh size systematically and measuring the error in the solution. We do
not show the formal analysis here as the focus is more on the biology. However, we
have added a paragraph at the beginning of Section 3.1 – Implementation and
simulated case, explaining this.

2. I think initial and boundary conditions should be represented in one figure, or even it
could be included in figure 2b.
Reply: We think this is going to be very difficult to represent in one figure which would
make it too crowded and difficult to synthesize. We have decided to keep as it is in
Sections 2.2 and 2.3.

Reply to Reviewer 2

Thank you once again for your helpful and extensive comments. We have grouped the
points 1.1 to 1.4 in our response.

1.It was not clear exactly what the authors main objectives were with this paper.

1.1In the introduction the author stated they were using the model to address 2
questions: ‘(a) How does the PTHrP-Ihh feedback loop control endochondral
ossification in the healing process, and (b) Which key parameters most influence the
healing process, controlling the thickness of the articular cartilage in the repaired
defect?’.
However, both of these aims had only the briefest mentions in the discussion, so I am
not sure if these were in fact the aim?

1.2The beginning of the discussion implied the aim was to produce a model that was
comparable to animal experiments from Lydon et al.? If this is the goal of the model,
rather than the questions mentioned in 1.1), it needs to be stated early on in the paper,
and a more explicit comparison of the model to the animal results (either quantitative or
qualitative) is required in both results and discussion.
Summarize 1.1 and 1.2, I would suggest that the authors provide a discussion that
explicitly addresses the aims of the paper that they have stated in the introduction,
whether these be one the two aims listed above or otherwise.
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1.3As detailed in 1.1 it is not fully clear to me what the aims and hence the conclusion
of this study is. It is essential that this is clarified in the manuscript.

1.4Related to 1.2), at the beginning of the discussion the authors state they use
extensive insights from an animal model from Lydon et al. However minimal
comparison is made between the data/results from that paper and the model to support
model results. If it is purely a qualitative comparison the authors need to make this
clear and more comprehensive, otherwise the comparison data should be included in
the results and an interpretation of the comparison between the model and the data
should be added to the discussion. If the animal model was used primarily in model
development this needs to be made clearer in the model formulation. In this case, I
would also question that there were no parameters derived from the animal model? if
there is quantitative data available from the animal model in Lydon et al, this paper
would benefit from a comprehensive comparison to the data. This would also help
justify the parameters used and add credibility to the model results.

Reply: Re-reading the Introduction and Discussion in light of your comments 1.1-1.4,
we entirely agree, to the point where we ask ourselves why we hadn’t noticed this
ourselves. As indicated in the Introduction, our starting point was the suggestion from
animal experiments (including those by Lydon et al.) that healing of osteochondral
defects seems to recapitulate processes that occur in the growth plate. Our main aim
was therefore indeed to address the two questions you also noted in the Introduction,
namely:
(a) How does the PTHrP-Ihh feedback loop control endochondral ossification in the
healing process, and (b) Which key parameters most influence the healing process,
controlling the thickness of the articular cartilage in the repaired defect?
We did have access to more data from Lydon et al. and wanted to make an extensive
quantitative comparison, but we never got to a position we could do this. An important
reason for this is that assessing PTHrP gene expression levels in tissue is very difficult
because the levels are so low. Current knowledge around the PTHrP-Ihh loop comes
from genetically engineered mouse lines that use a reporter construct to show these
levels. Whereas this is relatively straightforward with mice, doing this in a large animal
model is currently not possible. However, since a mouse is so much smaller than a
human, one important question is whether the PTHrP-Ihh loop can even work on the
scale of an adult human. Knowing that in principle it can work would give a motivation
to perform targeted experiments or use novel spatial transcriptomics techniques such
as single-molecule fluorescence in situ hybridization (smFISH) that can assess low-
level expression levels. Therefore, a better pair of questions is:
(a) Can the PTHrP-Ihh feedback loop control endochondral ossification in the healing
process, and (b) Which key parameters most influence the healing process, in
particular controlling the thickness of the articular cartilage in the repaired defect?
We have now amended these questions in the Introduction, and explicitly answer them
in the Discussion. The answer to our second question about the key parameters is now
more extensive in response to your comment 1.9 below. We have removed the
sentence in the Discussion referring to an extensive comparison with the sheep model
from Lydon et al.

1.5The discussion provides a comprehensive description of results and limitations, but
I found it lacking in interpretation of the results. The discussion would benefit for some
from some further interpretation of the implications of the model results on the disease
and treatment modelled.

Reply: Thank you for your suggestion. As we explain above, an important question is
whether the feedback loop can work at all on the human scale. We have now amended
the discussion to include this, and provide some implications for further research.

1.6If one of the main goals is the addition of the PTHrP-Ihh feedback loop control in the
model, the discussion could benefit from a more concise statement of the advantages
of the addition of the feedback loop in relation to the results shown including the
feedback loop compared to previous results without this feedback loop.

Reply: As explained above, the aim was not so much to implement the feedback loop,
but rather to find if it might work on the scale of a large animal. We think we have
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answered this affirmatively, so the next step would be to follow the suggestions that
you asked for under 1.5 above and 1.7 below.

1.7The authors have addressed the limitations of the model in relation to simplification
of the biology. However, the manuscript could benefit from some discussion on the
limitations of the model from a mathematical perspective, namely parameter
identification.

Reply: The reviewer is right: our model is probably too simplified to try a best fit to an
experiment. As we explain above, this was our initial plan, but we quickly realised we
did not know enough about the basic building blocks of a suitable model. We therefore
decided to start simple and explore whether the PTHrP-Ihh feedback loop could play a
role in endochondral defect healing. We think we are now at a stage where a
geometrically more realistic model could be made and fitted to experiments – perhaps
starting modestly with a rodent model. We have now added some discussion in the
limitations of our model in this sense.

1.8I found most of the manuscript to be well structured, but the discussion could be
more concise. This may improve with clarification of the aims of the paper, potentially
using subheadings in the discussion section to make it clearer, and some editing of
text to clarify the message of each paragraph.

Reply: We have tried to do what you suggested, hopefully we have managed.

1.9The second concern was related to parameterization of the model. A large number
of the parameters used in the model were listed as a 'guess'. Note, this is not in and of
itself a major issue, I appreciate that it is difficult to find sufficient data to parameterize
such a model, my concern is that this was not addressed in the manuscript and no
analysis was presented on the sensitivity of the results due to these parameter
guesses. Consequently, it is difficult to know how credible the results presented are.
Though some sensitivity analysis was performed, it was presented from a biological
standpoint and did not directly address the issue of unknown parameters. I would
recommend a formal analysis to investigate the sensitivity of the model, and
consequently the results presented in this paper, to the unknown parameters in
particular.

Reply: Section 4.2 has now been revised to include a sensitivity analysis of both the
biologically important parameters as well as some of the “guessed” parameters. This
comment also prompted us to re-check the literature hoping to reduce the number of
guessed parameters, which we managed. The additional references (and adjusted
values) are indicated in Table 1.

Minor
1.1.The authors have provided all equations and parameters needed to reproduce the
model. However, I would strongly suggest the authors provide their model code
alongside the paper (see research data section of the authors guide for the journal).

Reply: Thank you for this very good suggestion. We will provide the MATLAB codes for
the model with appropriate documentation.

1.2.Figure 1: needs more detail in the caption, such as supplying the colour scheme for
the cells in the diagram and an explanation of what the arrows indicate.

Reply: Our apologies, we should have done this in the first place. We have now
modified the caption to explain the meaning of the colours and arrows.

1.3.Figure 3: diagram would benefit from changing some of the fill colours, it is difficult
to see the black text on the blue and brown background. Additionally, the text and next
to the arrows was quite low resolution in my version of the manuscript.

Reply: This has been done now.

1.4.The manuscript could benefit from a diagram of the spatial dynamics of the system
in addition to the signalling interactions shown in Figure 3.
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Reply: We hope that our improved Figure 3, in combination with Fig. 1, addresses this
comment.

1.5.Figures 4-9: please use colours that are easier to see against a white background
and also consider a different aspect ratio to widen plots.

Reply: We have now improved the quality of all the figures in the manuscript.

1.6.Figures 5-9: please put the legend in each figure for which the colour scheme is
used.

Reply: This has been done now.

1.7.Table 1: consider putting references/justifications of parameters values in a third
column. Also note error in cite command for p8.

Reply: We have tried this but the columns become too wide and difficult to format. We
have decided to keep it as it is. We thank the reviewer for pointing out this error which
has been corrected along with a few other typos.

1.8.Table 3: rather than presenting these results as a table containing paragraphs of
text, I would consider the use of symbols or numbers in a table, or plots. Note, this
relates to my comments on the sensitivity analysis which may result in modifications to
this table. I would strongly recommend adding a plot that gives some quantitative
measure of model sensitivity to enable readers to easily interpret these results.

Reply: We have now removed Table 3 and embedded within the text in Section 4.2.
We have also added plots to give some quantitative measure of all the model
parameters, where possible.

1.9.I would consider mentioning the specific modelling approach taken in the abstract
and possibly also in keywords.

Reply: Definitely a good idea, we have now added reaction-diffusion to the abstract
and keywords.

1.10.I found the equations to have bad readability, specifically equations 2, 3, 5, 7, 20
and 22. I believe this is related to placing multiple equations next to each other on one
line. Potentially also excessive use of intermediate functions, such that many functions
required combinations of multiple equations (e.g. I think the formula for dC_C required
putting together 5 equations), which made it difficult to understand the model
formulation.

Reply: Unfortunately, we cannot think of any better way to formulate the equations. As
for readability, our reasons to place multiple equations on a single line was to save
space and facilitate getting an overview. We have now tried to improve readability by
(1) increasing the line spacing between subsequent lines, and (2) using a “long space”
between each equation instead of a comma. These two changes improve the
separation between neighbouring equations and hopefully improves readability.
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Dr. Akira Sasaki 

Co-Chief Editor 

Journal of Theoretical Biology 

 

         Oswestry, 12 April 2024 

Dear Dr Asaki  

 

Re: Revision of JTB-D-23-00814 (A mathematical model of signalling molecule-mediated processes 

during regeneration of osteochondral defects after chondrocyte implantation) 

 

Please find enclosed the revised version of our manuscript, plus our responses to the reviewers’ 

comments. We would like to thank you again for the opportunity to revise our manuscript, the extra 

time you gave us, and hope this version addresses the reviewers’ concerns. 

With kind regards, Jan Herman Kuiper  

1. Cover Letter



This piece of the submission is being sent via mail. 
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Reply to Reviewers 

We thank the reviewers for their careful reading of the manuscript and the insightful 

comments and suggestions they have provided. This has led to the manuscript being 

thoroughly revised both in the content and structure. The main revisions made are as 

follows. These are referred to by the corresponding section numbers and page numbers in 

the revised manuscript. 

1. The Introduction (section 1) and Discussion (Section 5) are now more focused on the 

main goals and objectives of the paper based on the suggestions by Reviewer 1. 

2. We have slightly modified the equation for the rate of change of hypertrophy-suppressing 

signalling molecule, gHS (Eq. 15). This is related to the production term (third term on the 

right-hand-side of Eq. 15)) which is proportional to the product of gHM and CC. The 

explanation for this is provided below Eq. 15. 

3. We have conducted a more extensive literature search on parameters related to the 

suppressing and modulating signalling molecules. This has resulted in small changes to the 

boundary and initial conditions (Sections 2.2 and 2.3), non-dimensionalization of gHM and gHS 

and dimensionless equation (Section 3) and related dimensional and dimensionless 

parameters in Tables 1 and 2, respectively. These changes are highlighted in yellow in the 

corresponding text. 

4. We have revised Section 4.2 – Sensitivity of parameters by adding plots that gives a 

quantitative measure of model sensitivity related to the biologically important parameters as 

well as some of the “guessed” parameters. We have removed Table 3 and embedded the 

results and explanations within the text in Section 4.2. 

5. We have improved the quality of all the figures in the manuscript and provided requested 

details in the captions. 

 

6. We have revised the Discussion such that we clearly address the main aim and two 

specific questions. 

We now provide replies to each of the reviewer’s comments. 

 

Reply to Reviewer 1 

1. My only concern about this work is that the mathematical formulation is mainly based on 

reaction-diffusion equations. Therefore, the solution of these equations are normally mesh 

dependent. Have the authors performed some analysis of the effect of the mesh size? 

Reply: Yes, we have performed a formal error and convergence analysis based on reducing 

the mesh size systematically and measuring the error in the solution. We do not show the 

formal analysis here as the focus is more on the biology. However, we have added a 

paragraph at the beginning of Section 3.1 – Implementation and simulated case, explaining 

this. 

2. I think initial and boundary conditions should be represented in one figure, or even it could 

be included in figure 2b. 

Response to Reviews (for Revision)



Reply: We think this is going to be very difficult to represent in one figure which would make 

it too crowded and difficult to synthesize. We have decided to keep as it is in Sections 2.2 

and 2.3. 

 

Reply to Reviewer 2 

Thank you once again for your helpful and extensive comments. We have grouped the 

points 1.1 to 1.4 in our response. 

1. It was not clear exactly what the authors main objectives were with this paper. 

1.1 In the introduction the author stated they were using the model to address 2 

questions: ‘(a) How does the PTHrP-Ihh feedback loop control endochondral 

ossification in the healing process, and (b) Which key parameters most influence the 

healing process, controlling the thickness of the articular cartilage in the repaired 

defect?’.  

However, both of these aims had only the briefest mentions in the discussion, so I am 

not sure if these were in fact the aim? 

 

1.2 The beginning of the discussion implied the aim was to produce a model that was 

comparable to animal experiments from Lydon et al.? If this is the goal of the model, 

rather than the questions mentioned in 1.1), it needs to be stated early on in the 

paper, and a more explicit comparison of the model to the animal results (either 

quantitative or qualitative) is required in both results and discussion. 

Summarize 1.1 and 1.2, I would suggest that the authors provide a discussion that explicitly 

addresses the aims of the paper that they have stated in the introduction, whether these be 

one the two aims listed above or otherwise. 

1.3 As detailed in 1.1 it is not fully clear to me what the aims and hence the conclusion of 

this study is. It is essential that this is clarified in the manuscript. 

 

1.4 Related to 1.2), at the beginning of the discussion the authors state they use 

extensive insights from an animal model from Lydon et al. However minimal 

comparison is made between the data/results from that paper and the model to 

support model results. If it is purely a qualitative comparison the authors need to 

make this clear and more comprehensive, otherwise the comparison data should be 

included in the results and an interpretation of the comparison between the model 

and the data should be added to the discussion. If the animal model was used 

primarily in model development this needs to be made clearer in the model 

formulation. In this case, I would also question that there were no parameters derived 

from the animal model? if there is quantitative data available from the animal model 

in Lydon et al, this paper would benefit from a comprehensive comparison to the 

data. This would also help justify the parameters used and add credibility to the 

model results. 

Reply: Re-reading the Introduction and Discussion in light of your comments 1.1-1.4, we 

entirely agree, to the point where we ask ourselves why we hadn’t noticed this ourselves. As 

indicated in the Introduction, our starting point was the suggestion from animal experiments 

(including those by Lydon et al.) that healing of osteochondral defects seems to recapitulate 

processes that occur in the growth plate. Our main aim was therefore indeed to address the 

two questions you also noted in the Introduction, namely: 



(a) How does the PTHrP-Ihh feedback loop control endochondral ossification in the healing 

process, and (b) Which key parameters most influence the healing process, controlling the 

thickness of the articular cartilage in the repaired defect? 

We did have access to more data from Lydon et al. and wanted to make an extensive 

quantitative comparison, but we never got to a position we could do this. An important 

reason for this is that assessing PTHrP gene expression levels in tissue is very difficult 

because the levels are so low. Current knowledge around the PTHrP-Ihh loop comes from 

genetically engineered mouse lines that use a reporter construct to show these levels. 

Whereas this is relatively straightforward with mice, doing this in a large animal model is 

currently not possible. However, since a mouse is so much smaller than a human, one 

important question is whether the PTHrP-Ihh loop can even work on the scale of an adult 

human. Knowing that in principle it can work would give a motivation to perform targeted 

experiments or use novel spatial transcriptomics techniques such as single-molecule 

fluorescence in situ hybridization (smFISH) that can assess low-level expression levels. 

Therefore, a better pair of questions is: 

(a) Can the PTHrP-Ihh feedback loop control endochondral ossification in the healing 

process, and (b) Which key parameters most influence the healing process, in particular 

controlling the thickness of the articular cartilage in the repaired defect? 

We have now amended these questions in the Introduction, and explicitly answer them in the 

Discussion. The answer to our second question about the key parameters is now more 

extensive in response to your comment 1.9 below. We have removed the sentence in the 

Discussion referring to an extensive comparison with the sheep model from Lydon et al.   

   

 

1.5 The discussion provides a comprehensive description of results and limitations, but I 

found it lacking in interpretation of the results. The discussion would benefit for some 

from some further interpretation of the implications of the model results on the 

disease and treatment modelled. 

Reply: Thank you for your suggestion. As we explain above, an important question is 

whether the feedback loop can work at all on the human scale. We have now amended 

the discussion to include this, and provide some implications for further research. 

 

1.6 If one of the main goals is the addition of the PTHrP-Ihh feedback loop control in the 

model, the discussion could benefit from a more concise statement of the 

advantages of the addition of the feedback loop in relation to the results shown 

including the feedback loop compared to previous results without this feedback loop. 

 

Reply: As explained above, the aim was not so much to implement the feedback loop, 

but rather to find if it might work on the scale of a large animal. We think we have 

answered this affirmatively, so the next step would be to follow the suggestions that you 

asked for under 1.5 above and 1.7 below.   

 

1.7 The authors have addressed the limitations of the model in relation to simplification of 

the biology. However, the manuscript could benefit from some discussion on the 



limitations of the model from a mathematical perspective, namely parameter 

identification. 

 

Reply: The reviewer is right: our model is probably too simplified to try a best fit to an 

experiment. As we explain above, this was our initial plan, but we quickly realised we did not 

know enough about the basic building blocks of a suitable model. We therefore decided to 

start simple and explore whether the PTHrP-Ihh feedback loop could play a role in 

endochondral defect healing. We think we are now at a stage where a geometrically more 

realistic model could be made and fitted to experiments – perhaps starting modestly with a 

rodent model. We have now added some discussion in the limitations of our model in this 

sense. 

 

1.8 I found most of the manuscript to be well structured, but the discussion could be 

more concise. This may improve with clarification of the aims of the paper, potentially 

using subheadings in the discussion section to make it clearer, and some editing of 

text to clarify the message of each paragraph. 

Reply: We have tried to do what you suggested, hopefully we have managed. 

 

1.9 The second concern was related to parameterization of the model. A large number of 

the parameters used in the model were listed as a 'guess'. Note, this is not in and of 

itself a major issue, I appreciate that it is difficult to find sufficient data to 

parameterize such a model, my concern is that this was not addressed in the 

manuscript and no analysis was presented on the sensitivity of the results due to 

these parameter guesses. Consequently, it is difficult to know how credible the 

results presented are. Though some sensitivity analysis was performed, it was 

presented from a biological standpoint and did not directly address the issue of 

unknown parameters. I would recommend a formal analysis to investigate the 

sensitivity of the model, and consequently the results presented in this paper, to the 

unknown parameters in particular. 

 

Reply: Section 4.2 has now been revised to include a sensitivity analysis of both the 

biologically important parameters as well as some of the “guessed” parameters. This 

comment also prompted us to re-check the literature hoping to reduce the number of 

guessed parameters, which we managed. The additional references (and adjusted 

values) are indicated in Table 1.   

 

Minor 

1.1. The authors have provided all equations and parameters needed to reproduce the 

model. However, I would strongly suggest the authors provide their model code 

alongside the paper (see research data section of the authors guide for the journal). 

 

Reply: Thank you for this very good suggestion. We will provide the MATLAB codes 

for the model with appropriate documentation. 

 

1.2. Figure 1: needs more detail in the caption, such as supplying the colour scheme for 

the cells in the diagram and an explanation of what the arrows indicate. 



 

Reply: Our apologies, we should have done this in the first place. We have now 

modified the caption to explain the meaning of the colours and arrows. 

 

1.3. Figure 3: diagram would benefit from changing some of the fill colours, it is difficult to 

see the black text on the blue and brown background. Additionally, the text and next 

to the arrows was quite low resolution in my version of the manuscript. 

Reply: This has been done now. 

 

1.4. The manuscript could benefit from a diagram of the spatial dynamics of the system 

in addition to the signalling interactions shown in Figure 3. 

 

We hope that our improved Figure 3, in combination with Fig. 1, addresses this 

comment. 

 

1.5. Figures 4-9: please use colours that are easier to see against a white background 

and also consider a different aspect ratio to widen plots. 

 

Reply: We have now improved the quality of all the figures in the manuscript. 

 

1.6. Figures 5-9: please put the legend in each figure for which the colour scheme is 

used. 

 

Reply: This has been done now. 

 

1.7. Table 1: consider putting references/justifications of parameters values in a third 

column. Also note error in cite command for p8. 

Reply: We have tried this but the columns become too wide and difficult to format. 

We have decided to keep it as it is. We thank the reviewer for pointing out this error 

which has been corrected along with a few other typos. 

 

1.8. Table 3: rather than presenting these results as a table containing paragraphs of 

text, I would consider the use of symbols or numbers in a table, or plots. Note, this 

relates to my comments on the sensitivity analysis which may result in modifications 

to this table. I would strongly recommend adding a plot that gives some quantitative 

measure of model sensitivity to enable readers to easily interpret these results. 

 

Reply: We have now removed Table 3 and embedded within the text in Section 4.2. 

We have also added plots to give some quantitative measure of all the model 

parameters, where possible. 

 

1.9. I would consider mentioning the specific modelling approach taken in the abstract 

and possibly also in keywords. 

 

Reply: Definitely a good idea, we have now added reaction-diffusion to the abstract 

and keywords.  

 

1.10. I found the equations to have bad readability, specifically equations 2, 3, 5, 7, 

20 and 22. I believe this is related to placing multiple equations next to each other 

on one line. Potentially also excessive use of intermediate functions, such that many 



functions required combinations of multiple equations (e.g. I think the formula for 

dC_C required putting together 5 equations), which made it difficult to understand 

the model formulation. 

Reply: Unfortunately, we cannot think of any better way to formulate the equations. 

As for readability, our reasons to place multiple equations on a single line was to 

save space and facilitate getting an overview. We have now tried to improve 

readability by (1) increasing the line spacing between subsequent lines, and (2) 

using a “long space” between each equation instead of a comma. These two 

changes improve the separation between neighbouring equations and hopefully 

improves readability.  

 



A mathematical model of signalling molecule-mediated processes during
regeneration of osteochondral defects after chondrocyte implantation

Kelly Campbella, Shailesh Nairea, Jan-Herman Kuiperb,c,∗

aSchool of Computing and Mathematics, Keele University, Keele, ST5 5BG, U.K.

bSchool of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, U.K.

cRobert Jones and Agnes Hunt Orthopaedic & District Hospital NHS Trust, Oswestry, SY10 7AG, U.K.

Abstract

Treating bone-cartilage defects is a fundamental clinical problem. The ability of damaged cartilage to self-repair

is limited due to its avascularity. Left untreated, these defects can lead to osteoarthritis. Details of osteochondral

defect repair are elusive, but animal models indicate healing occurs via an endochondral ossification-like process,

similar to that in the growth plate. In the growth plate, the signalling molecules parathyroid hormone-related protein

(PTHrP) and Indian Hedgehog (Ihh) form a feedback loop regulating chondrocyte hypertrophy, with Ihh inducing

and PTHrP suppressing hypertrophy. To better understand this repair process and to explore the regulatory

role of signalling molecules on the regeneration process, we formulate a reaction-diffusion mathematical model

of osteochondral defect regeneration after chondrocyte implantation. The drivers of healing are assumed to be

chondrocytes and osteoblasts, and their interaction via signalling molecules. We model cell proliferation, migration

and chondrocyte hypertrophy, and matrix production and conversion, spatially and temporally. We further model

nutrient and signalling molecule diffusion and their interaction with the cells. We consider the PTHrP-Ihh feedback

loop as the backbone mechanisms but the model is flexible to incorporate extra signalling mechanisms if needed.

Our mathematical model is able to represent repair of osteochondral defects, starting with cartilage formation

throughout the defect. This is followed by chondrocyte hypertrophy, matrix calcification and bone formation

deep inside the defect, while cartilage at the surface is maintained and eventually separated from the deeper bone

by a thin layer of calcified cartilage. The complete process requires around 48 months. A key highlight of the

model demonstrates that the PTHrP-Ihh loop alone is insufficient and an extra mechanism is required to initiate

chondrocyte hypertrophy, represented by a critical cartilage density. A parameter sensitivity study reveals that

the timing of the repair process crucially depends on parameters, such as the critical cartilage density, and those

describing the actions of PTHrP to suppress hypertrophy, such as its diffusion coefficient, threshold concentration

and degradation rate.
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1. Introduction

Chondral and osteochondral defects are both a cause and result of osteoarthritis, a degenerative condition that causes

the joints to become painful and stiff, primarily in patients over 50 years old (Falah et al. (2010); Moyad (2011);

Allen et al. (2022)). Osteochondral defects of the knee can occur through acute trauma, natural wear and tear of

the joint, and underlying disease of the bone (Madry et al. (2010); Williams et al. (1998)). General understanding

of osteochondral defect healing has clinical significance, but little experimental data in humans is available and

reliable treatment strategies are lacking. Once a joint with an osteochondral defect is osteoarthritic, repair is

problematic and treatment options are limited (Gomoll et al. (2012)). Some treatment options for osteochondral

defects include autologous chondrocyte implantation (ACI), osteochondral autograft transfer (OAT), osteochondral

allograft transplantation surgery (OATS) and microfracture (Brittberg (2008); Dahmen et al. (2018); de Windt and

Saris (2014)). Of these, ACI and the two graft procedures are able to achieve the hyaline-type cartilage needed

for long-term clinical benefit and are the treatments most used in clinical practice, with ACI determined to be an

effective treatment strategy (Biant et al. (2014); Brittberg (2008); De Bari and Roelofs (2018)). ACI is a two-stage

surgical procedure: in stage one healthy chondrocytes (cartilage cells) are harvested from a non-weight-bearing area

of the joint, to be cultured to appropriate cell numbers. Approximately two weeks later, in a second procedure,

these cells are implanted into the chondral or osteochondral defect and sealed with a periosteal patch or collagen

membrane, or alternatively seeded first in a biodegradable scaffold which is then placed in the defect (Brittberg

(2008)). Long-term outcomes of this procedure are very good, with ACI not only the gold standard treatment for

chondral defects, but also showing good outcomes in osteochondral lesions of the knee (Biant et al. (2014)).

Natural osteochondral defect healing can occur spontaneously but the underlying mechanism driving tissue regen-

eration is elusive. The quality of naturally regenerated tissue is unpredictable and can often be primarily fibrous,

resulting in subsequent degradation. When an osteochondral defect forms, damaged blood vessels located within

bone at the site of the defect produce blood which coagulates and forms a fibrous clot. Within this clot there are

thought to be cartilage and bone precursors, such as mesenchymal stem cells (MSCs), along with a fibrin net that

acts as a scaffold for cells to travel along (Madry et al. (2010)). The precursor cells are thought to move into the

defect and differentiate into chondrocytes, fibroblasts or osteoblasts, which synthesize new tissue from the base of

the defect. The tissue resulting from natural healing is generally of poor quality overall: although the defect may

fill it is typically with fibro-cartilaginous tissue which is not the hyaline-type needed for long-term withstanding

of the compressive forces across weight-bearing joints (Guo et al. (2004); Jackson et al. (2001)). Generally, this

fibro-cartilage tissue will degrade and the original symptoms of pain and discomfort will return, putting the patient

at increased risk of developing osteoarthritis (Wakitani et al. (1994)).

Lydon et al. (2019), using an ovine model, demonstrated that healing of osteochondral defects in large mammals

involves endochondral ossification. They showed that healing begins with cartilage formation first occurring along

the edges of the defect, filling from the sides inwards and upwards until the defect fills and forms a cartilage model.

Once this process has completed, chondrocytes undergo hypertrophy and ossification takes place, with a layer of

cartilage remaining along the articular surface of the defect. Other earlier studies using smaller mammals found a

similar healing mechanism, such as those using the Göttingen minipig (GMP) model that show defects located in
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the trochlear groove of the knee heal via endochondral ossification (Gotterbarm et al. (2008); Jung et al. (2009)).

Shapiro et al. (1993) also observed an endochondral sequence starting from the base of osteochondral defects in

rabbit models.

The occurrence of endochondral ossification during healing of osteochondral defects suggests that the process may

be similar to processes in the growth plate (Mariani et al. (2014)). In the growth plate, the signalling molecules

parathyroid hormone-related protein (PTHrP) and Indian Hedgehog (Ihh) form a negative feedback loop regulating

chondrocyte hypertrophy, with Ihh produced by pre- and early-hypertrophic chondrocytes stimulating production of

PTHrP, which in its turn suppresses chondrocyte hypertrophy (Figure 1; Kronenberg (2003); Mariani et al. (2014)).

Indian hedgehog (Ihh) stimulates chondrocyte proliferation, along with chondrocyte and osteoblast differentiation

Figure 1: Schematic of the PTHrP-Ihh feedback loop that occurs during endochondral ossification. Adapted from Kronenberg (2003).

Red circles represent proliferating chondrocytes, orange ovals pre-hypertrophic chondrocytes and yellow circles hypertrophic chondro-

cytes. Lines ending with an arrow head indicate stimulation, lines ending with a horizontal line indicate suppression.

(Kronenberg (2003)). Indian hedgehog is secreted when chondrocytes are exiting their proliferative state to undergo

hypertrophy, whereas parathyroid hormone-related protein (PTHrP) is secreted by proliferating chondrocytes in

the growth plate and surface zone chondrocytes in articular cartilage, the latter under the influence of mechanical

loading (Jiang et al. (2008); Zhang et al. (2012)). PTHrP keeps chondrocytes in their proliferative state, inhibiting

chondrocyte hypertrophy and therefore production of Ihh, thus forming a negative feedback loop (Kronenberg

(2003); Zhang et al. (2012)).

Various authors have reported the need for an additional local or external signaling molecule for chondrocytes to

progress from proliferative to hypertrophic state, thereby initiating the endochondral ossification process. Kerkhofs

et al. (2012) explore the chondrocyte gene network controlling endochondral ossification in the growth plate, and

identify a self-regulated sequential process that does however need external switching of PTHrP and Ihh levels to

initiate state transitions, including that from proliferation to hypertrophy. The additional signaling molecule could

be a systemic factor, such as thyroid hormone (TH, see Mackie et al. (2011) but also a local regulator, for instance

a critical minimum cartilage density as implemented by Geris et al. (2008) and Carlier et al. (2016) to initiate

chondrocyte hypertrophy in their bio-regulatory computer models of fracture healing. This concept of a minimum

cartilage density is based on observations by Einhorn (1998) in a rat model of fracture healing that cartilage

mineralisation occurs in the abundance of cartilage, similar to a critical density being achieved. Kozhemyakina
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et al. (2015) describe pathways regulating the conversion of chondrocytes from a proliferative to a hypertrophic

state within the growth plate, and argue that C-type natriuretic peptide (CNP) is a key regulator involved in the

initiation of hypertrophy. CNP is produced by proliferative and pre-hypertrophic chondrocytes and hypertrophy is

initiated when the local CNP concentration is high enough. CNP might thus underlie both Einhorn’s observations

and the critical cartilage density hypothesis used in fracture healing models: a regulator outside the PTHrP-Ihh

loop initiating the conversion from proliferation to hypertrophy in chondrocytes.

As indicated above, the direct evidence for the role of the PTHrP-Ihh feedback loop in endochondral bone formation

comes from small animal (mouse and rat) models. This is related to the fact that the gene expression levels for

the two proteins are low, requiring the use of transgenic mice and reporter genes (Chen et al. (2008)). However, in

these animals cartilage thickness is small. A widely cited paper argues that intercellular communication distances

are restricted to around 250 µm (Francis and Palsson (1997)), which would be reasonable for mice. However, an

osteochondral defect can be over 10 mm deep in adult humans (Nizak et al. (2017)) and it is therefore not clear

if this feedback loop can work in humans. Mathematical models can help to address such a question. Moreover,

these models can also explain and explore the complex interactions between the cell types and signalling molecules

that contribute to osteochondral defect repair and mediate the endochondral ossification process. The aim of this

study is to formulate a mathematical model to describe the osteochondral defect healing process as occurs in large

animals after ACI. The model aims to incorporate the main characteristics of healing as described above, focusing

on healing via the endochondral ossification pathway. The model will address two key questions: (a) How does the

PTHrP-Ihh feedback loop control endochondral ossification in the healing process, and (b) Which key parameters

most influence the healing process, controlling the thickness of the articular cartilage in the repaired defect?

Current mathematical models of osteochondral defect repair are primarily concerned with mechanical stimuli,

exploring the properties of relevant scaffolds used in defect repair (Kelly and Prendergast (2006)) and mechanical

influence on mesenchymal stem cell differentiation within a defect (Kelly and Prendergast (2005)). Though these

models explore some aspects of the healing process, our study will develop a mathematical model to depict the key

mechanisms of osteochondral defect healing via endochondral ossification.

In previous work, we formulated a series of reaction-diffusion type mathematical models exploring the processes

involved in chondral defect healing after cell therapy. Lutianov et al. (2011) simulated cartilage regeneration

following ACI or autologous stem cell implantation (ASCI), an ACI-like therapy where mesenchymal stem cells

are implanted instead of chondrocytes. The simulations compared healing patterns between the two cell therapies,

concluding there was no difference in overall healing time while highlighting differences in cell behaviour and healing

evolution. Following on from this work, the effects of two signalling molecules were incorporated into this model

to simulate the interactions between chondrocytes and mesenchymal stem cells in a co-implantation cell therapy

procedure (Campbell et al. (2019a,b)). This work highlighted the importance to chondral healing of cell-to-cell

interactions between mesenchymal stem cells and chondrocytes. Specifically, it built on an in vitro model by Wu

(2013) and demonstrated how the co-implantation of these two cell types led to a growth-factor mediated trophic

effect on healing at early times, though there was no difference in overall healing time.
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Mathematical models relevant to our approach study bone fracture healing and include Bailón-Plaza and Van-

der Meulen (2001), who proposed a modelling framework for fracture healing, primarily focused on the role of

signalling molecules on the healing process. Their model includes the process of endochondral ossification regulated

by extracellular matrix density (ECM). Geris et al. (2006) formulated a mathematical model of fracture healing

in mice to validate experimental data; their model utilised modelling principles similar to Bailón-Plaza and Van-

der Meulen (2001), and achieved results similar to those of the experimental data in murine models, along with a

bio-regulatory model for bone fracture healing that utilised an endochondral ossification process including a critical

density to regulate chondrocyte hypertrophy (Geris et al. (2008)).

We follow the modelling approaches undertaken in our work so far, combined with those in Bailón-Plaza and

Vander Meulen (2001), Geris et al. (2006) and Geris et al. (2008), and apply them to our aim of formulating a reac-

tion-diffusion mathematical model to describe the osteochondral defect healing process after ACI. The model will

address two key questions: (a) Can the PTHrP-Ihh feedback loop control endochondral ossification in the healing

process in large animals, and (b) Which key parameters most influence the healing process, in particular controlling

the thickness of the articular cartilage in the repaired defect? The plan of the paper is as follows. In §2 we describe

the basic model and the assumptions made, the boundary and initial conditions used, estimates of the parameter

values and the scalings used to non-dimensionalise the equations. The results of our simulations are discussed in

§4, where a sensitivity analysis is undertaken in §4.2 to validate our parameters and highlight those most sensitive

to change within the model. Finally, in §5 we explore the implications of the model and suggest future work.

2. Mathematical model

2.1. Model formulation

a b

Figure 2: (a) Magnetic Resonance (MR) image of an 11.5mm deep osteochondral defect in the knee (Nizak et al. (2017)); (b) Schematic

cross-section of the defect shown in (a). The axis denoted by x in (b) is along the depth of the defect. After debridement of the defect,

chondrocytes are seeded along the defect boundaries.

A typical osteochondral defect has small aspect ratio, i.e., its length and width are much larger than its depth, see

Fig. 2a. Hence, cell growth along the width of the defect can be assumed negligible compared to that along its

depth. This is valid in the middle section of the defect, away from the walls. This assumption enables us to simplify

to a one-dimensional problem where we model cell growth along the defect depth only, shown as the x direction in

Fig. 2b.
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Our model assumes a regenerating osteochondral defect can be populated by three cell types, namely chondrocytes,

hypertrophic chondrocytes and osteoblasts, which each produce their specific matrix: cartilage, calcified cartilage or

bone, respectively. Depending on cell type, the cells are able to migrate non-directed (random diffusion), proliferate

via the uptake of nutrients, differentiate, undergo hypertrophy and deposit matrix via nutrient uptake. In order

to explore our central hypothesis that the PTHrP-Ihh feedback loop, important in endochondral ossification, also

controls the healing of osteochondral defects, we include a particular mechanism representing the signaling molecules

in this feedback loop and their stimulative and suppressive influence on chondrocyte hypertrophy. We do not include

mechanobiological signals, known to influence bone resorption and remodelling as well as patterns of endochondral

ossification, even though they may play a role in the repair process. We also do not explicitly include chemotaxis

(directed motility). As with the model formulated in Campbell et al. (2019a,b), cell motility (assumed to occur

through diffusion) is modelled proportional to nutrient concentration, with cell proliferation and differentiation

ceasing when nutrient levels are low. At these levels, cell motility is the driving force of changing cell densities,

with cells migrating towards locations of higher nutrient concentration. We now develop a mathematical model for

the evolution of each species in time, t, and space, x, where x is measured along the depth of the defect (see Fig.

2b). Much of the model formulation follows from our previous models of chondral defect regeneration (Campbell

et al. (2019a,b); Lutianov et al. (2011)).

The variables in our model are three cell densities (chondrocyte density CC , mature (or hypertrophied) chon-

drocyte density CH and osteoblast density CB , all expressed as cells/mm3), four matrix densities (total matrix

density m, which is made up of cartilage matrix density mC , bone matrix density mB and calcified cartilage

density mCa, all expressed in g/mm3), the nutrient concentration n (moles/mm3) and three signaling molecules

(hypertrophy-inducing molecule concentration gHI , hypertrophy-suppressing molecule concentration gHS and hy-

pertrophy modulating molecule concentration gHM , all expressed in moles/mm3).

Osteochondral defect repair follows a sequential healing process, with the defect first filling entirely with cartilage,

before chondrocyte hypertrophy and eventual conversion into bone occurs (Lydon et al. (2019)). We focus here

on formulating the cartilage-to-calcified cartilage and calcified cartilage-to-bone transitions in the endochondral

ossification pathway and the role of signaling molecules, in particular PTHrP and Ihh, and other factors such as

cartilage matrix density mediating these. We assume three signaling molecules regulate these stages, represented

in the model by gHI , gHM , gHS . Here, we use gHI to represent a locally produced molecule that induces hypertro-

phy. Once hypertrophic chondrocytes are being produced, a modulating molecule gHM is released that acts as an

intermediate step within the signalling pathway. This factor gHM represents Ihh which stimulates chondrocytes to

produce a hypertrophy-suppressing signalling molecule gHS , representing effects similar to PTHrP, and suppressing

hypertrophy by keeping chondrocytes proliferating (Kerkhofs et al. (2012)). Figure 3 shows a schematic of the

signalling feedback loop.

We also include a local regulator that allows chondrocytes to switch from a proliferative to a hypertrophic state,

namely the critical cartilage density mC,crit. Once mC,crit is reached, cartilage can begin conversion into calcified

matrix which is subsequently remodelled to bone as seen in bone fracture healing (Carlier et al. (2016); Geris et al.

(2008)). This conversion of cartilage to calcified matrix can only occur at locations where mC reaches mC,crit by
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Figure 3: Schematic of signaling molecule feedback loop of endochondral ossification with inducing (gHI), modulating (gHM ) and sup-

pressing signalling molecules (gHS). PTHrP and Ihh are the prototype suppressing and modulating signalling molecules, respectively,

whereas several candidates exist for the inducing molecule. Solid black lines with arrows indicate inducing and without arrows represent

inhibiting. CC and CH represent chondrocytes and hypertrophic chondrocytes, respectively.

allowing chondrocytes to convert from a proliferative to a hypertrophic state. Below we describe in detail how the

above mechanisms are incorporated in our model.

Chondrocytes proliferate by uptake of nutrients, they can migrate and can undergo hypertrophy. Based on these

processes, the rate of change of chondrocyte density is modelled as:

∂CC

∂t
=

∂

∂x

(
DCC

(m)
∂CC

∂x

)
+ p5

(
m,

CC

CC,max(m)

)
CC

n

n+ n0
H (n− n1)

− p6CCH (gHI − gHI0
)H (gHS0

− gHS)H (mC −mC,crit)− p7CcH (n1 − n) .

(1)

The first term on the right of Eq. (1) represents random chondrocyte migration, modelled as a diffusion process,

with an effective chondrocyte diffusion coefficient, DCC
. This coefficient is assumed to depend on the total matrix

density, m, where m = mC +mB +mCa. This is based on the argument that cells can only migrate by attaching

to a substrate (in this case, matrix). We use a density-weighted formula for the effective chondrocyte diffusion

coefficient, DCC
, based on the diffusivity through cartilage, DCC,C

, calcified cartilage, DCC,Ca
, and bone matrix,

DCC,B
, using a mixtures rule (analogous to the total circuit resistance of parallel resistors in an electrical circuit).

We follow Olsen et al. (1997) and Bailón-Plaza and Vander Meulen (2001) in choosing expressions for DCC,C
, DCC,Ca

and DCC,B
.

1

DCC
(m)

=
(mC

m

)α 1

DCC,C
(mC)

+
(mB

m

)α 1

DCC,B
(mB)

+
(mCa

m

)α 1

DCC,Ca
(mCa)

, α ≥ 2

DCC,C
(mC) = DCC,C0

mC

m2
C +m2

C,1

DCC,B
(mB) = DCC,B0

mB

m2
B +m2

B,1

DCC,Ca
(mCa) = DCC,Ca0

mCa

m2
Ca +m2

Ca,1

(2)

where (DCC,C0
, DCC,B0

, DCC,Ca0
) are reference diffusion ratios of chondrocytes, cartilage, bone and calcified carti-

lage, respectively, and (mC,1,mB,1,mCa,1) are reference matrix densities. The exponent α ≥ 2 is chosen so that

we mimic the low motility of cells for the limiting cases when there is no cartilage (or bone) present and for large

cartilage (or bone) matrix densities.
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The second term on the right of Eq. (1) represents chondrocyte proliferation. Cell proliferation is assumed to

be proportional to the chondrocyte density and the nutrient concentration. This process is assumed to start only

when the nutrient concentration exceeds a critical value, n1 (or, alternatively, cell proliferation is switched-off when

the nutrient concentration falls below this critical value). This is modelled by the Heaviside function, H(n − n1),

which takes the unit value when n > n1 and zero otherwise. The chondrocyte proliferation rate is given by p5. The

proliferation rate is assumed to depend on both the chondrocyte and total matrix densities. We choose

p5

(
m,

CC

CC,max(m)

)
= p5,m

(
1− CC

CC,max(m)

)
1

p5,m(m)
=

(mCtot

m

)α 1

p5,C(mCtot)
+

(mB

m

)α 1

p5,B(mB)
, α ≥ 2

p5,C(mCtot) = p5,C0

mCtot

m2
Ctot

+m2
C,2

p5,B(mB) = p5,B0

mB

m2
B +m2

B,2

CC,max(m) = CC,max0

(
1− m

mmax

)
.

(3)

The dependence of p5 on the total matrix density is represented by p5,m(m). A density-weighted formula (similar

to the effective cell migration/diffusion coefficient) is used to model the effective proliferation rate based on the cell

proliferation rate in the presence of cartilage (represented by p5,C) and bone (represented by p5,B). The depen-

dence of (p5,C , p5,B) on the matrix density (mCtot
,mB) are chosen so that (p5,C , p5,B) = 0 when (mCtot

,mB) = 0,

(p5,C , p5,B) → 0 for large (mCtot ,mB) and (p5,C , p5,B) attain a maximum at some intermediate matrix density,

(mCtot
,mB) = (mC,2,mB,2). The coefficients, (p5,C0

, p5,B0
), represent chondrocyte proliferation rates in the pres-

ence of cartilage and bone, respectively. We assume that p5,C depends on the total cartilage matrix density,

mCtot
= mC +mCa and not on the cartilage type, i.e., whether regular or calcified cartilage. The dependence of p5

on the chondrocyte density is assumed to follow a logistic growth model with the proliferation rate decreasing as

the chondrocyte density approaches its maximum value, CC,max. This maximum chondrocyte density is assumed to

decrease linearly with total matrix density, m, because the presence of matrix will limit the space for cells. CC,max0

is a reference maximum chondrocyte density.

The third term on the right of Eq. (1) models chondrocyte maturation (hypertrophic state). This is assumed to

be proportional to the chondrocyte density and is regulated by the hypertrophy-inducing and suppressing signaling

molecules gHI and gHS , respectively, and the critical cartilage density mC,crit. The maturation rate is p6 and

assumed constant. The dependence on these signaling molecule concentrations is modelled using the Heaviside

function, H(gHI − gHI0
) and H(gHS0

− gHS), where gHI0
and gHS0

are a threshold hypertrophy-inducing and

suppressing molecule concentration, respectively. The first Heaviside function promotes hypertrophy once the

hypertrophy-inducing signaling molecule concentration exceeds its threshold value, gHI0 , and the second suppresses

hypertrophy once the hypertrophy-suppressing signaling molecule concentration exceeds its threshold value, gHS0 .

The Heaviside function, H(mC −mC,crit), initiates chondrocyte hypertrophy only if mC > mC,crit at any location

in the defect.

The last term in Eq. (1) represents cell death due to lack of adequate nutrients. This process starts when the

nutrient concentration falls below the critical value, n1, and is modelled using the Heaviside function, H(n1 − n),
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which takes the unit value when n < n1 and zero otherwise. The cell death rate is p7, and is assumed constant.

The rate of change of mature hypertrophic chondrocyte density is modelled as:

∂CH

∂t
=

∂

∂x

(
DCH

(m)
∂CH

∂x

)
− p8CH + p6CCH (gHI − gHI0

)H (gHS0
− gHS)H (mC −mC,crit) , (4)

where DCH
is the migration (diffusion) coefficient and p8 is the death rate. We use similar expressions as in Eq.

(2) for

1

DCH
(m)

=
(mC

m

)α 1

DCH,C
(mC)

+
(mB

m

)α 1

DCH,B
(mB)

+
(mCa

m

)α 1

DCH,Ca
(mCa)

, α ≥ 2

DCH,C
(mC) = DCH,C0

mC

m2
C +m2

C,1

DCH,B
(mB) = DCH,B0

mB

m2
B +m2

B,1

DCH,Ca
(mCa) = DCH,Ca0

mCa

m2
Ca +m2

Ca,1

,

(5)

where (DCH,C0
, DCH,B0

, DCH,Ca0
) are reference diffusion rates of hypertrophic chondrocytes through cartilage, bone

and calcified cartilage, respectively. The last term in Eq. (4) models formation of hypertrophic chondrocytes

modulated by the hypertrophy-inducing and suppressing signaling molecule concentrations, and the critical cartilage

densiyt, mC,crit.

The rate of change of osteoblast density is modelled as:

∂CB

∂t
=

∂

∂x

(
DCB

(m)
∂CB

∂x

)
+ p9

(
m,

CB

CB,max(m)

)
CB

n

n+ n0
H (n− n1)

− p10CBH (n1 − n) ,

(6)

where DCB
is the osteoblast migration (diffusion) coefficient, p9 is the osteoblast proliferation rate and p10 is the

osteoblast death rate. We use similar expressions as in Eqs. (2,3,5) for the matrix-dependent osteoblast diffusion

and proliferation coefficients, given by

1

DCB
(m)

=
(mC

m

)α 1

DCB,C
(mC)

+
(mB

m

)α 1

DCB,B
(mB)

+
(mCa

m

)α 1

DCB,Ca
(mCa)

, α ≥ 2

DCB,C
(mC) = DCB,C0

mC

m2
C +m2

C,1

DCB,B
(mB) = DCB,B0

mB

m2
B +m2

B,1

DCB,Ca
(mCa) = DCB,Ca0

mCa

m2
Ca +m2

Ca,1

p9

(
m,

CB

CB,max(m)

)
= p9,m

(
1− CB

CB,max(m)

)
1

p9,m(m)
=

(mCtot

m

)α 1

p9,C(mCtot
)
+

(mB

m

)α 1

p9,B(mB)
, α ≥ 2

p9,C(mCtot
) = p9,C0

mCtot

m2
Ctot

+m2
C,2

p9,B(mB) = p9,B0

mB

m2
B +m2

B,2

CB,max(m) = CB,max0

(
1− m

mmax

)
,

(7)

where (DCB,C0
, DCB,B0

, DCB,Ca0
) are reference osteoblast migration rates through cartilage, bone and calcified

cartilage, respectively, and (p9,C0
, p9,B0

) are reference osteoblast proliferation rates in the presence of cartilage and

bone, respectively. The maximum osteoblast density, CB,max, is assumed to decrease linearly with total matrix
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density, m. CB,max0 is a reference maximum osteoblast density. We choose the reference maximum stem cell, normal

and mature chondrocyte and osteoblast densities, CS,max0
, CC,max0

, CH,max0
, CB,max0

, respectively, such that

CS,max0
+CC,max0

+CH,max0
+CB,max0

= Ctotal,max0
, where Ctotal,max0

is a reference maximum total cell density.

Hence, using the expressions for CS,max, CC,max and CB,max in Eqs. (2,7) gives, (CS,max+CC,max+CB,max)(m) =

(Ctotal,max0 − CH,max0)(1−m/mmax).

The rate of change of cartilage matrix density is modelled as:

∂mC

∂t
= DmC

∂2mC

∂x2
+ p11(mC)

n

n+ n0
CC − p12(mC)CH , (8)

where DmC
is the cartilage matrix diffusion coefficient (assumed constant), p11 is the cartilage matrix synthesis

rate and p12 is the rate of localized cartilage matrix degradation. We choose

p11(mC) = p110 − p111mC , (9)

where p110 is a cartilage matrix production rate and p111 is its degradation rate. This assumes that the cartilage

matrix synthesis rate decreases linearly with increasing cartilage matrix density (Olsen et al. (1997), Bailón-Plaza

and Vander Meulen (2001)). The last term in Eq. (8) models localized degradation of cartilage matrix and is

assumed to be proportional to the hypertrophic chondrocyte density. We choose

p12(mC) = p120mC , (10)

where p120 is a cartilage matrix degradation rate. This assumes that the degradation is proportional to the cartilage

matrix density. We allow cartilage degradation to occur once m̄C has reached the critical density mCcrit and to

cease when mCa and mB have reached the maximum matrix density.

The rate of change of calcified cartilage matrix density is modelled as:

∂mCa

∂t
= p12(mC)CH − p20mCaCB . (11)

The first term on the right of Eq. (11) describes the formation of calcified cartilage as the cartilage matrix degrades

in the presence of hypertrophic chondrocytes. This term is switched on only whenmC has reached the critical density

mCcrit
. The second term describes degradation of calcified cartilage matrix and is assumed to be proportional to its

density and the osteoblast density, and p20 the degradation rate. Here, we do not distinguish between osteoblasts

and osteoclasts which are responsible for converting calcified cartilage into bone.

The rate of change of bone matrix density is modelled as:

∂mB

∂t
= DmB

∂2mB

∂x2
+ p13(mB)

n

n+ n0
CB + p20mCaCB , (12)

where DmB
is the bone matrix diffusion coefficient (assumed constant) and p13 is the bone matrix synthesis rate.

We choose

p13(mB) = p130 − p131mB , (13)

where p130 is a bone matrix production rate and p131 is its degradation rate. The last term in Eq. (12) models

bone matrix formation from calcified cartilage matrix.
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The rate of change of hypertrophy-inducing signaling molecule concentration is modelled as:

∂gHI

∂t
= DgHI

∂2gHI

∂x2
− p25gHI , (14)

where DgHI
is the hypertrophy-inducing signaling molecule diffusion coefficient (assumed constant) and p25 is the

rate of degradation (assumed constant).

The rate of change of hypertrophy-suppressing signaling molecule concentration is modelled as:

∂gHS

∂t
= DgHS

∂2gHS

∂x2
+ p21CCH (x− 90%d) + p15gHMCCH (x− 90%d) − p22gHS , (15)

where DgHS
is the hypertrophy-suppressing signaling molecule diffusion coefficient (assumed constant), p21 is the

production rate by surface chondrocytes, p15 represents its production rate, and p22 is the degradation rate (assumed

constant). The second term in Eq. (15) models the production of a hypertrophy-suppressing signalling molecule

from chondrocytes and is assumed to be proportional to the chondrocyte density. We assume here that this signalling

molecule is produced only by the chondrocytes at the upper 10% of the defect (denoted by x = 90%d). The third

term models the production of hypertrophy-suppressing signalling molecule via the stimulation of chondrocytes

by the hypertrophy-modulating signalling molecule, and is assumed to be proportional to hypertrophy-modulating

signalling molecule concentration and the chondrocyte density (only chondrocytes in the upper 10% of the de-

fect). The fourth term represents the degradation of this signalling molecule (assumed to be proportional to the

hypertrophy-suppressing signalling molecule concentration).

The rate of change of hypertrophy-modulating signalling molecule concentration is modelled as:

∂gHM

∂t
= DgHM

∂2gHM

∂x2
+ p23CH − p26gHM , (16)

where DgHM
is the hypertrophy-modulating signalling molecule diffusion coefficient (assumed constant), p23 is the

production rate by hypertrophic chondrocytes, and p26 represents its degradation rate (assumed constant). The

production of the hypertrophy-modulating molecule is assumed to be proportional to the hypertrophic chondrocyte

density (second term in Eq. (16)).

Finally, the rate of change of nutrient concentration is modelled as

∂n

∂t
= Dn

∂2n

∂x2
− n

n+ n0
(p17CC + p18CB + p19CH) , (17)

where Dn is the nutrient diffusion coefficient (assumed constant), p17, p18 and p19 represent the nutrient uptake

rate by chondrocytes, osteoblasts and mature chondrocytes, respectively (assumed constant).

2.2. Boundary conditions

We need to specify two boundary conditions for each species (except mCa, which does not require spatial boundary

conditions). These are specified at either end of the defect domain. We assume x = 0 at the subchondral bone

interface (“base” of the defect) and x = d at the interface with the opposing normal cartilage (“top” of the defect,

see Fig. 2b). The boundary conditions chosen at x = 0 are:

−DCC
(m)

∂CC

∂x
= −DCH

(m)
∂CH

∂x
= −DmC

∂mC

∂x
= −DmB

∂mB

∂x
= 0

CB = CB0
n = N0 gHI = gHI1

gHS = gHS1
gHM = gHM1

(18)
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The first four boundary conditions represent no flux of chondrocytes, hypertrophic chondrocytes, cartilage matrix

and osteoblasts from the subchondral bone. We assume that a reservoir of osteoblasts from the underlying intact

bone, with uniform cell density, CB0
, and nutrients from the underlying vascular network, with uniform concen-

tration, N0, are always available at this end. This is represented by the sixth and seventh boundary conditions,

respectively. The last three boundary conditions represent a constant supply of hypertrophy-inducing, suppressing

and modulating signalling molecules from the underlying vascular network, with uniform concentration, gHI1
, gHS1

and gHM1
, respectively.

At x = d, we impose:

−DCC
(m)

∂CC

∂x
= −DCB

(m)
∂CB

∂x
= −DCH

(m)
∂CH

∂x
= −DmC

∂mC

∂x
= −DmB

∂mB

∂x
= 0

n = N1 gHI = gHI2
−DgHS

∂gHS

∂x
= γ1(gHS − gHS2

) −DgHM

∂gHM

∂x
= γ2(gHM − gHM2

)

(19)

The first four boundary conditions represent no flux of chondrocytes, osteoblasts, hypertrophic chondrocytes and

matrix, respectively, from the normal cartilage interface. We assume that a reservoir of nutrients with uniform

concentration, N1, is always available at this end. A constant supply of hypertrophy-inducing signalling molecule,

with uniform concentration, gHI2 is available at this boundary. We allow the hypertrophy-suppressing and mod-

ulating molecules to permeate (diffuse) through this boundary, represented by the eight and ninth boundary con-

ditions, respectively, with the diffusive flux proportional to the signalling molecule concentration, and constant of

proportionality γ1,2, respectively (assumed constant). Here, gHS2,HM2
represent the concentrations of the hypertro-

phy-suppressing and modulating signalling molecules in the overlying articular cartilage (assumed constant)

2.3. Initial conditions

We need to prescribe profiles for each species at time t = 0. We are interested in one implantation scenario, related

to Autologous Chondrocyte Implantation (ACI). Initially, chondrocytes are implanted into a nutrient-filled defect

with a small amount of matrix present. The initial conditions chosen for this case are:

CC = C
(0)
C h(x) CB = CB0h1(x) CH = 0 n = N0 − (N0 −N1)

x

d
mC = mC,3

mB = mB,3 mCa = 0 gHI = gHI1
− (gHI1

− gHI2
)
x

d
gHS = gHS1

gHM = gHM1

(20)

Here, C
(0)
C , h(x) and h1(x) are an initial chondrocyte density, and specified initial spatial profiles for chondrocytes

and osteoblasts, respectively.

There are several parameters appearing in the model. Their estimated values and the references from which they

are obtained are provided in Table 1. All approximated parameters are disclosed in this table and references are

provided where available.

dimensional parameters estimated value

defect depth d 3-5 mm - 1-2 mm cartilage, 2-3 mm bone (Ahern et al. (2009) for sheep)
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maximum chondrocyte migration (or diffusion) 3.6 × 10−4 mm2/hr

coefficient in cartilage, DCC,C
Obradovic et al. (2000), in silico

maximum chondrocyte migration (or diffusion) 3.6 × 10−4 mm2/hr

coefficient in bone, DCC,B
(assumed same as DCC,C

)

maximum chondrocyte migration (or diffusion) 3.6 × 10−4 mm2/hr

coefficient in calcified cartilage, DCC,Ca
(assumed same as DCC,C

)

maximum mature chondrocyte migration (or diffusion) 10−5 mm2/hr (guess)

coefficient in cartilage, DCH,C

maximum mature chondrocyte migration (or diffusion) 10−5 mm2/hr (assumed same as DCH,C
)

coefficient in bone, DCH,B

maximum mature chondrocyte migration (or diffusion) 10−5 mm2/hr (assumed same as DCH,C
)

coefficient in calcified cartilage, DCH,Ca

maximum osteoblast migration (or diffusion) 10−6 - 10−5 mm2/hr (guess)

coefficient in cartilage, DCB,C

maximum osteoblast migration (or diffusion) 10−4 - 10−3 mm2/hr (guess)

coefficient in bone, DCB,B

maximum osteoblast migration (or diffusion) 10−4 - 10−3 mm2/hr (guess)

coefficient in calcified cartilage, DCB,Ca

chondrocyte migration (or diffusion) 7.2 × 10−9 (mm2/hr) (g/mm3)

coefficient, DCC,C0
= 2mC,1DCC,C

(assuming mC,1 = 10−5 g/mm3 )

chondrocyte migration (or diffusion) 7.2 × 10−9 (mm2/hr) (g/mm3)

coefficient, DCC,B0
= 2mB,1DCC,B

(assuming mB,1 = 10−5 g/mm3 )

chondrocyte migration (or diffusion) 7.2 × 10−9 (mm2/hr) (g/mm3)

coefficient, DCC,Ca0
= 2mCa,1DCC,Ca

(assuming mCa,1 = 10−5 g/mm3 )

mature chondrocyte migration (or diffusion) 10−10 (mm2/hr) (g/mm3)

coefficient, DCH,C0
= 2mC,1DCH,C

(assuming mC,1 = 10−5 g/mm3 )

mature chondrocyte migration (or diffusion) 10−10 (mm2/hr) (g/mm3)

coefficient, DCH,B0
= 2mB,1DCH,B

(assuming mB,1 = 10−5 g/mm3 )

mature chondrocyte migration (or diffusion) 10−10 (mm2/hr) (g/mm3)

coefficient, DCH,Ca0
= 2mCa,1DCH,Ca

(assuming mCa,1 = 10−5 g/mm3 )

osteoblast migration (or diffusion) 10−11 - 10−10 (mm2/hr) (g/mm3)

coefficient, DCB,C0
= 2mC,1DCB,C

(assuming mC,1 = 10−5 g/mm3 )

osteoblast migration (or diffusion) 10−9 (mm2/hr) (g/mm3)

coefficient, DCB,B0
= 2mB,1DCB,B

(assuming mB,1 = 10−5 g/mm3 )

osteoblast migration (or diffusion) 10−9 (mm2/hr) (g/mm3)

coefficient, DCB,Ca0
= 2mCa,1DCB,Ca

(assuming mCa,1 = 10−5 g/mm3 )
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nutrient diffusion coefficient, Dn 4.6 mm2/hr Zhou et al. (2004), mathematical model

cartilage matrix diffusion coefficient, DmC
0-2.5 × 10−5 mm2/hr Obradovic et al. (2000), in silico

bone matrix diffusion coefficient, DmB
0-10−6 mm2/hr (guess)

hypertrophy-inducing signalling molecule 0.8 mm2/hr Williams et al. (2007), in vitro, in vivo

diffusion coefficient, DgHI

hypertrophy-suppressing signalling molecule 0.18 mm2/hr Fasano et al. (2010), mathematical model,

diffusion coefficient, DgHS
in vivo

hypertrophy-modulating signalling molecule 0.18 mm2/hr Fasano et al. (2010), mathematical model,

diffusion coefficient, DgHM
in vivo

maximum chondrocyte proliferation rate in cartilage, p5,C 2 × 10−4/hr (guess)

maximum chondrocyte proliferation rate in bone, p5,B 2 × 10−4/hr (assumed same as p5,C)

chondrocyte proliferation rate, p5C,0
= 2mC,2p5,C 4 × 10−9 g/mm3/hr (assuming mC,2 = 10−5 g/mm3 )

chondrocyte proliferation rate, p5B,0
= 2mB,2p5,B 4 × 10−9 g/mm3/hr (assuming mB,2 = 10−5 g/mm3 )

chondrocyte hypertrophic differentiation rate, p6 2 × 10−2/hr Wilsman et al. (1996), in vivo

chondrocyte death rate, p7 3.75 × 10−3/hr (guess)

mature chondrocyte death rate, p8 6 × 10−3/hr Wilsman et al. (1996), in vivo

maximum osteoblast proliferation rate in cartilage, p9,C (10−3-10−2)/hr (guess)

maximum osteoblast proliferation rate in bone, p9,B (10−3-10−2)/hr (assumed same as p9,C)

osteoblast proliferation rate, p9,C0
= 2mC,2p9,C 2 × (10−8-10−7) g/mm3/hr

(assuming mC,2 = 10−5 g/mm3 )

osteoblast proliferation rate, p9,B0
= 2mB,2p9,B 2 × (10−8-10−7) g/mm3/hr

(assuming mB,2 = 10−5 g/mm3 )

osteoblast death rate, p10 10−3/hr (guess)

cartilage matrix production rate, p110 3.75 × 10−13(g/mm3)/((NC/mm3) hr)

Obradovic et al. (2000), in silico

cartilage matrix degradation rate, p111 3.75 × 10−9/((NC/mm3) hr) Obradovic et al. (2000),

in silico

cartilage matrix degradation rate by 4 × 10−5 /((NC/mm3) hr) Wilsman et al. (1996), in vivo

hypertrophic chondrocytes, p120

bone matrix production rate, p130 5 × 10−12 (g/mm3)/((NC/mm3) hr)

bone matrix degradation rate, p131 10−12/((NC/mm3) hr) (guess)

nutrient uptake rate by chondrocytes, p17 1.5 × 10−14 mol/(NC hr) Zhou et al. (2004),

mathematical model

nutrient uptake rate by osteoblasts, p18 1.5 × 10−14 mol/(NC hr) (assumed same as p17)

nutrient uptake rate by mature chondrocytes, p19 1.5 × 10−14 mol/(NC hr) (assumed same as p17)

calcified cartilage matrix degradation rate, p20 8 × (10−3-10−2)/((NC/mm3) hr)
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Bailón-Plaza and Vander Meulen (2001), mathematical model

hypertrophy-inducing signalling molecule 5.78× 10−2 /hr (assuming half-life 12 hours,

degradation rate, p25 Rayon et al. (2020))

hypertrophy-suppressing signalling molecule 3.3× 10−22 mol/(NC hr) Garzón-Alvarado et al. (2009),

production rate by surface chondrocytes, p21 mathematical model

hypertrophy-suppressing signalling molecule 10−6/((NC/mm3) hr) (guess)

production rate by proliferating chondrocytes, p15

hypertrophy-suppressing signalling molecule 5.78× 10−2 /hr (assuming half-life 12 hours,

degradation rate, p22 Rayon et al. (2020))

hypertrophy-modulating signalling molecule 2.6× 10−21 mol/(NC hr) Garzón-Alvarado et al. (2009)

production rate, p23 mathematical model

hypertrophy-modulating signalling molecule 5.78× 10−2 /hr (assuming half-life 12 hours,

degradation rate, p26 Rayon et al. (2020))

maximum total cell density, Ctotal,max0
106 NC/mm3 (assuming 10µm cell diameter)

maximum chondrocyte density, CC,max0
0− 106 NC/mm3

maximum mature chondrocyte density, CH,max0 0− 106 NC/mm3

maximum osteoblast density, CB,max0 0− 106 NC/mm3

maximum cartilage matrix density, 10−4 g/mm3

mC,max Bailón-Plaza and Vander Meulen (2001), mathematical model

maximum bone matrix density, mB,max 1× 10−3 g/mm3 (based on density of cortical bone)

maximum calcified cartilage matrix density, mCa,max (1− 2)× 10−3 g/mm3

(assumed same as mB,max)

maximum matrix density, (2.1− 4.1)× 10−3 g/mm3

mmax = mC,max +mB,max +mCa,max

maximum total cartilage matrix density, (1.1− 2.1)× 10−3 g/mm3

mCtot,max
= mC,max +mCa,max

initial chondrocyte cell density, C
(0)
C 2.5× 105 NC/mm3 (based on 106 cells in

20mm x 20mm x 10µm volume)

reference cartilage matrix density, mC,1 10−5 g/mm3 (assumed mmax/100)

intermediate cartilage matrix density, mC,2 10−5 g/mm3 (assumed mmax/100)

reference calcified cartilage density, mCa,1 10−5 g/mm3 (assumed mmax/100)

reference bone matrix density, mB,1 10−5 g/mm3 (assumed mmax/100)

intermediate bone matrix density, mB,2 10−5 g/mm3 (assumed mmax/100)

initial cartilage/bone matrix density, mC,3,mB,3 10−8 g/mm3 (assumed mmax/10
5)

initial nutrient concentration, N1 (2.85 - 9.5) × 10−11 mol/mm3 (3-10% oxygen tension)

Zhou et al. (2004), mathematical model

initial nutrient concentration, N0 9.5 × 10−11 mol/mm3 (Kiaer et al. (1989), human
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threshold nutrient concentration, n0 2.3× 10−11 mol/mm3 Zhou et al. (2004),

mathematical model

critical nutrient concentration, n1 9.5× 10−12 mol/mm3 (assumed N0/10)

threshold hypertrophy-inducing signalling molecule (0.5− 1)× 10−15 mol/mm3

concentration, gHI0

threshold hypertrophy-suppressing signalling molecule 40× 10−18 mol/mm3 (guess)

concentration, gHS0

initial hypertrophy-inducing signalling molecule 2× 10−15 mol/mm3 Rovensky et al. (2005)

concentration, gHI1

initial hypertrophy-inducing signalling molecule 2× 10−15 mol/mm3 Rovensky et al. (2005)

concentration, gHI2

hypertrophy-suppressing signalling molecule 2× 10−18 mol/mm3 Okano et al. (1995)

concentration, gHS1

hypertrophy-suppressing signalling molecule 2× 10−18 mol/mm3 Okano et al. (1995)

concentration, gHS2

hypertrophy-modulating signalling molecule 3× 10−16 mol/mm3 Zhang et al. (2014)

concentration, gHM1

hypertrophy-modulating signalling molecule 3× 10−16 mol/mm3 Zhang et al. (2014)

concentration, gHM2

initial osteoblast cell density, CB0
9 × 103 NC/mm3 Martin and Burr (1984), human

hypertrophy-suppressing signalling molecule 0 mm/hr (no flux - guess)

flux parameter, γ1

hypertrophy-modulating signalling molecule 0 mm/hr (no flux - guess)

flux parameter, γ2

critical cartilage density, mC,crit 95% mC,max

Table 1: Estimated values of dimensional parameters. In the above,

NC represents number of cells.

3. Non-dimensionalisation of model equations, boundary and initial conditions

It is instructive to non-dimensionalise (make dimensionless) the above equations, boundary and initial conditions.

One can then compare (or measure) the variables against their corresponding characteristic quantities. We introduce
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the following dimensionless variables based on characteristic quantities for each variable:

x̄ = x/d t̄ = t(p110Ctotal,max0
/mC,max) (C̄C , C̄H , C̄B) = (CC , CH , CB)/Ctotal,max0

(m̄, m̄C , m̄Ca, m̄B , m̄Ctot
) = (m/mmax,mC/mC,max,mCa/mCa,max,mB/mB,max,mCtot

/mCtot,max
)

n̄ = n/N1 ḡHI = gHI/gHI1 ḡHM = gHM/gHM1 ḡHS = gHS/gHS1 ,

(21)

where the overbars represent dimensionless quantities. The characteristic quantities used to measure the spatial

variable, x, cell densities, matrix densities, nutrient concentration and the hypertrophy-inducing, suppressing and

modulating signalling molecule concentrations are the defect depth, d, the reference maximum total cell density,

Ctotal,max0
, the maximum cartilage and bone matrix densities, mC,max, mCa,max, mB,max, respectively, the total

matrix density, mmax = mC,max +mCa,max +mB,max, the total cartilage matrix density, mCtotal,max = mC,max +

mCa,max, the initial nutrient concentration at x = d, N1, and the initial hypertrophy-inducing, suppressing and

modulating signalling molecule concentrations at x = 0, gHI1
, gHS1

and gHM1
, respectively. We choose to measure

time, t, based on the cartilage matrix production time scale, mC,max/(p110Ctotal,max0
). Using the parameter values

in Table 1, we estimate this time scale to be approximately 11 days (a unit of time corresponds to approximately

11 days).

Using the above dimensionless variables, the non-dimensional equations can be written as:

∂C̄C

∂t̄
=

∂

∂x̄

(
D̄CC

(m̄)
∂C̄C

∂x̄

)
+ p̄5

(
m̄,

C̄C

C̄C,max(m̄)

)
n̄

n̄+ n̄0
C̄CH(n̄− n̄1)

− p̄6C̄CH(ḡHI − ḡHI0
)H(ḡHS0

− ḡHS)H(m̄C − m̄C,crit)− p̄7C̄CH(n̄1 − n̄) (22a)

∂C̄H

∂t̄
=

∂

∂x̄

(
D̄CH

(m̄)
∂C̄H

∂x̄

)
+ p̄6C̄CH(ḡHI − ḡHI0

)H(ḡHS0
− ḡHS)H(m̄C − m̄C,crit)− p̄8C̄H (22b)

∂C̄B

∂t̄
=

∂

∂x̄

(
D̄CB

(m̄)
∂C̄B

∂x̄

)
+ p̄9

(
m̄,

C̄B

C̄B,max(m̄)

)
n̄

n̄+ n̄0
C̄BH(n̄− n̄1)− p̄10C̄BH(n̄1 − n̄) (22c)

∂m̄C

∂t̄
= D̄mC

∂2m̄C

∂x̄2
+ p̄11(m̄)

n̄

n̄+ n̄0
C̄C − p̄12(m̄C)C̄H (22d)

∂m̄Ca

∂t̄
=

p̄12
Γ1

(m̄C)C̄H − p̄20m̄CaC̄B (22e)

∂m̄B

∂t̄
= D̄mB

∂2m̄B

∂x̄2
+ p̄13(m̄)

n̄

n̄+ n̄0
C̄B + p̄20

Γ1

Γ
m̄CaC̄B (22f)

∂ḡHI

∂t̄
= D̄gHI

∂2ḡHI

∂x̄2
− p̄25ḡHI (22g)

∂ḡHS

∂t̄
= D̄gHS

∂2ḡHS

∂x̄2
+

(
p̄21C̄C + p̄15ḡHM C̄C

)
H (x̄− 0.9) − p̄22ḡHS (22h)

∂ḡHM

∂t̄
= D̄gHM

∂2ḡHM

∂x̄2
+ p̄23C̄H − p̄26ḡHM (22i)

∂n̄

∂t̄
= D̄n

∂2n̄

∂x̄2
− n̄

n̄+ n̄0

(
p̄17C̄C + p̄18C̄B + p̄19C̄H

)
, (22j)
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where

p̄5

(
m̄,

C̄C

C̄C,max(m̄)

)
= p̄5,m(m̄)

(
1− C̄C

C̄C,max(m̄)

)
C̄C,max(m̄) = C̄C,max0

(1− m̄)

1

p̄5,m(m̄)
= (β + ϵ)α

(m̄Ctotal

m̄

)α 1

p̄5,C(m̄Ctotal
)
+ ηα

(m̄B

m̄

)α 1

p̄5,B(m̄B)
, α ≥ 2

p̄5,C(m̄Ctotal
) = p̄5,C0

m̄Ctotal

m̄2
Ctotal

+ m̄2
C,2

p̄5,B(m̄B) = p̄5,B0

m̄B

m̄2
B + m̄2

B,2

p̄9

(
m̄,

C̄B

C̄B,max(m̄)

)
= p̄9,m(m̄)

(
1− C̄B

C̄B,max(m̄)

)
C̄B,max(m̄) = C̄B,max0

(1− m̄)

1

p̄9,m(m̄)
= (β + ϵ)α

(m̄Ctotal

m̄

)α 1

p̄9,C(m̄Ctotal
)
+ ηα

(m̄B

m̄

)α 1

p̄9,B(m̄B)
, α ≥ 2

p̄9,C(m̄Ctotal
) = p̄9,C0

m̄Ctotal

m̄2
Ctotal

+ m̄2
C,2

p̄9,B(m̄B) = p̄9,B0

m̄B

m̄2
B + m̄2

B,2

p̄11(m̄C) = 1− p̄111m̄C p̄12(m̄C) = p̄120m̄C p̄13(m̄B) = p̄130 − p̄131m̄B

D̄CC,C
(m̄C) = D̄CC,C0

m̄C

m̄2
C + m̄2

C,1

D̄CC,B
(m̄B) = D̄CC,B0

m̄B

m̄2
B + m̄2

B,1

D̄CC,Ca
(m̄Ca) = D̄CC,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

1

D̄CH
(m̄)

= βα
(m̄C

m̄

)α 1

D̄CH,C
(m̄C)

+ ηα
(m̄B

m̄

)α 1

D̄CH,B
(m̄B)

+ ϵα
(m̄Ca

m̄

)α 1

D̄CH,Ca
(m̄Ca)

D̄CH,C
(m̄C) = D̄CH,C0

m̄C

m̄2
C + m̄2

C,1

D̄CH,B
(m̄B) = D̄CH,B0

m̄B

m̄2
B + m̄2

B,1

D̄CH,Ca
(m̄Ca) = D̄CH,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

1

D̄CB
(m̄)

= βα
(m̄C

m̄

)α 1

D̄CB,C
(m̄C)

+ ηα
(m̄B

m̄

)α 1

D̄CB,B
(m̄B)

+ ϵα
(m̄Ca

m̄

)α 1

D̄CB,Ca
(m̄Ca)

D̄CB,C
(m̄C) = D̄CB,C0

m̄C

m̄2
C + m̄2

C,1

D̄CB,B
(m̄B) = D̄CB,B0

m̄B

m̄2
B + m̄2

B,1

D̄CB,Ca
(m̄Ca) = D̄CB,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

C̄C,max0 + C̄B,max0 = 1− C̄H,max0

(23)
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The non-dimensional boundary and initial conditions are:

− D̄CC
(m̄)

∂C̄C

∂x̄
= −D̄CH

(m̄)
∂C̄H

∂x̄
= −D̄mC

∂m̄C

∂x̄
= −D̄mB

∂m̄B

∂x̄
= 0 (24a)

C̄B = C̄B0
n̄ = N̄0 ḡHI = 1 ḡHS = ḡHM = 1 at x̄ = 0

− D̄CC
(m̄)

∂C̄C

∂x̄
= −D̄CH

(m̄)
∂C̄H

∂x̄
= −D̄CB

(m̄)
∂C̄C

∂x̄
= −D̄mC

∂m̄C

∂x̄
= −D̄mB

∂m̄B

∂x̄
= 0 (24b)

n̄ = 1 ḡHI = ḡHI2
− D̄gHS

∂ḡHS

∂x̄
= γ̄1(ḡHS − ḡHS2

)

−D̄gHM

∂ḡHM

∂x̄
= γ̄2(ḡHM − ḡHM2

) at x̄ = 1

C̄C = C̄
(0)
C h̄(x̄) C̄B = C̄B0

h̄1(x̄) C̄H = 0 (24c)

n̄ = N̄0 − (N̄0 − 1)x̄ m̄C = m̄C,3 m̄B = m̄B,3 m̄Ca = 0

ḡHI = 1− (1− ḡHI2
)x̄ ḡHS = ḡHM = 1 at t̄ = 0.

The dimensionless parameters and their estimated values are provided in Table 2.

dimensionless parameters estimated value

chondrocyte migration (or diffusion) D̄CC,C0
= DCC,C0

/(p110Ctotal,max0
d2) 10−3

coefficient (cartilage)

chondrocyte migration (or diffusion) D̄CC,B0
= DCC,B0

/(p110Ctotal,max0
d2Γ) 10−3

coefficient (bone)

chondrocyte migration (or diffusion) D̄CC,Ca0
= DCC,Ca0

/(p110Ctotal,max0
d2Γ1) 10−3

coefficient (calcified cartilage)

hypertrophic chondrocyte migration D̄CH,C0
= DCH,C0

/(p110Ctotal,max0
d2) 10−5

(or diffusion) coefficient (cartilage)

hypertrophic chondrocyte migration D̄CH,B0
= DCH,B0

/(p110Ctotal,max0
d2Γ) 10−5

(or diffusion) coefficient (bone)

hypertrophic chondrocyte migration D̄CH,Ca0
= DCH,Ca0

/(p110Ctotal,max0
d2Γ1) 10−5

(or diffusion) coefficient (calcified cartilage)

osteoblast migration (or diffusion) D̄CB,C0
= DCB,C0

/(p110Ctotal,max0
d2) 10−6

coefficient (cartilage)

osteoblast migration (or diffusion) D̄CB,B0
= DCB,B0

/(p110Ctotal,max0
d2Γ) 10−4

coefficient (bone)

osteoblast migration (or diffusion) D̄CB,Ca0
= DCB,Ca0

/(p110Ctotal,max0
d2Γ1) 10−4

coefficient (calcified cartilage)

cartilage matrix diffusion D̄mC
= DmC

mC,max/(p110Ctotal,max0
d2) 10−3
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coefficient

bone matrix diffusion D̄mB
= DmB

mC,max/(p110Ctotal,max0
d2) 10−5

coefficient

nutrient diffusion D̄n = DnmC,max/(p110Ctotal,max0
d2) 100

coefficient

hypertrophy-inducing signalling D̄gHI
= DgHI

mC,max/(p110Ctotal,max0
d2) 2

molecule diffusion coefficient

hypertrophy-suppressing signalling D̄gHS
= DgHS

mC,max/(p110Ctotal,max0
d2) 0.5

molecule diffusion coefficient

hypertrophy-modulating signalling D̄gHM
= DgHM

mC,max/(p110Ctotal,max0
d2) 0.5

molecule diffusion coefficient

chondrocyte proliferation rate (cartilage) p̄5,C0
= p5,C0

/(p110Ctotal,max0
/τ) 10−3

chondrocyte proliferation rate (bone) p̄5,B0
= p5,B0

/(p110Ctotal,max0
Γ) 10−3

chondrocyte hypertrophic p̄6 = p6mC,max/(p110Ctotal,max0) 5

differentiation rate

chondrocyte death rate p̄7 = p7mC,max/(p110Ctotal,max0) 1

hypertrophic chondrocyte p̄8 = p8mC,max/(p110Ctotal,max0) 1.6

death rate

osteoblast proliferation rate (cartilage) p̄9,C0 = p9,C0/(p110Ctotal,max0/τ) 5.3× 10−2

osteoblast proliferation rate (bone) p̄9,B0
= p9,B0

/(p110Ctotal,max0
Γ) 5.3× 10−2

osteoblast death rate p̄10 = p10mC,max/(p110Ctotal,max0
) 0.2

cartilage matrix degradation rate p̄111 = p111mC,max/p110 1

cartilage matrix degradation rate p̄120 = p120mC,max/p110 104

bone matrix production rate p̄130 = p130/(p110η) 13

bone matrix degradation rate p̄131 = p131mC,max/p110 3× 10−4

nutrient uptake rate by chondrocytes p̄17 = p17mC,max/(p110N1) 104

nutrient uptake rate by osteoblasts p̄18 = p18mC,max/(p110N1) 104

nutrient uptake rate by hypertrophic p̄19 = p19mC,max/(p110N1) 104

chondrocytes

calcified cartilage matrix p̄20 = p20mC,max/p110 105

degradation rate

hypertrophy-suppressing signalling molecule p̄21 = p21mC,max/(p110gHS1
) 4× 104

production rate by surface chondrocytes

hypertrophy-suppressing signalling molecule p̄15 = p15mC,maxgHM1
/(p110gHS1

) 4× 104

production rate by hypertrophy-modulating

signalling molecule

hypertrophy-suppressing signalling molecule p̄22 = p22mC,max/(p110Ctotal,max0
) 15.47
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degradation rate

hypertrophy-modulating signalling molecule p̄23 = p23mC,max/(p110gHM1
) 2.3× 103

production rate by hypertrophic chondrocytes

hypertrophy-modulating signalling molecule p̄26 = p26mC,max/(p110Ctotal,max0
) 15.47

degradation rate

hypertrophy-inducing signalling molecule p̄25 = p25mC,max/(p110Ctotal,max0
) 15.47

degradation rate

maximum mature chondrocyte density C̄H,max0
= CH,max0

/Ctotal,max0
0-1

maximum osteoblast density C̄B,max0
= CB,max0

/Ctotal,max0
0-1

initial chondrocyte density C̄
(0)
C = C

(0)
C /Ctotal,max0 0.25

initial nutrient concentration N̄0 = N0/N1 1-3

threshold nutrient concentration n̄0 = n0/N1 0.24-0.81

critical nutrient concentration n̄1 = n1/N1 0.1

reference cartilage matrix density m̄C,1 = mC,1/mC,max 0.1

intermediate cartilage matrix density m̄C,2 = mC,2/mCtot,max 0.1

reference calcified cartilage density m̄Ca,1 = mCa,1/mCa,max 0.1

reference bone matrix density m̄B,1 = mB,1/mB,max 10−2

intermediate bone matrix density m̄B,2 = mB,2/mB,max 10−2

initial cartilage matrix density m̄C,3 = mC,3/mC,max 10−5

initial bone matrix density m̄B,3 = mB,3/mB,max 10−5

threshold hypertrophy-inducing signalling ḡHI0
= gHI0

/gHI1
0.5

molecule concentration

threshold hypertrophy-suppressing signalling ḡHS0
= gHS0

/gHS1
20

molecule concentration

initial hypertrophy-inducing signalling molecule ḡHI2
= gHI2

/gHI1
1

concentration

hypertrophy-suppressing signalling molecule ḡHS2
= gHS2

/gHS1
1

concentration

hypertrophy-modulating signalling molecule ḡHM2
= gHM2

/gHM1
1

concentration

initial osteoblast density C̄B0
= CB0

/Ctotal,max0
10−2

maximum cartilage matrix density β = mC,max/mmax 0.1

maximum bone matrix density η = mB,max/mmax 1

maximum calcified matrix density ϵ = mCa,max/mmax 1

ratio maximum bone to cartilage density Γ = mB,max/mC,max 10

ratio maximum calcified cartilage to cartilage density Γ1 = mCa,max/mC,max 10

ratio maximum calcified cartilage τ = mCa,max/mCtot,max
1
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to total cartilage density

exponent α 2

hypertrophy-suppressing signalling γ̄1 = γ1d/DgHS
0

molecule flux parameter

hypertrophy-modulating signalling γ̄2 = γ2d/DgHM
0

molecule flux parameter

critical cartilage matrix density m̄C,crit/mC,max 0.95

Table 2: Estimated values of dimensionless parameters.

3.1. Implementation and simulated case

We use a second order accurate finite-difference discretisation scheme to discretise the spatial variable x in Eqs.

22-24, keeping the time derivative t continuous. The resulting ordinary differential equations are solved in MATLAB

(Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United States) using the stiff ODE solver ode15s.

The time step was controlled within the solver to maintain the stability of the numerical solutions. The accuracy

and convergence of the numerical scheme are formally checked by systematically reducing the mesh size ∆x and

measuring the error in the solution. Based on this, we choose the mesh size ∆x = 5× 10−3 (200 mesh points) to

present the numerical solutions below. We confirm that for this choice of ∆x the solutions are an accurate reflection

of the evolution process and also practical with respect to the computational time taken to run simulations to time

equivalent to 48 months.

The dimensionless parameters and their estimated baseline values are provided in Table 2. Initially we have a

population of chondrocytes, C̄
(0)
C , implanted at the base of the defect at the subchondral bone interface (x̄ = 0),

corresponding to an ACI procedure (Lutianov et al. (2011); Campbell et al. (2019a,b)). The initial chondrocyte

cell density spatial profile is C̄C(x, 0) = C̄
(0)
C [1− tanh(A(x̄− x̄0))]/2, with A = 104 and x̄0 = 0.1. We also include

an initial population of bone cells, C̄B0 , assumed to be constant at the subchondral bone interface. The bone cell

density spatial profile is C̄B(x, 0) = C̄B0 [1− tanh(A(x̄− x̄1))]/2, with A = 104 and x̄1 = 10−3. Dimensionally, this

corresponds to a chondrocyte density, 2.5× 105 cells/mm3, seeded within a region of thickness 500µm near x = 0,

and zero everywhere else. The initial bone cell density corresponds to 9× 103 cells/mm3 present within a region of

thickness 5nm near x = 0, and zero everywhere else.

We simulate the evolution of chondrocytes, CC , hypertrophic chondrocytes, CH , bone cells, CB , cartilage matrix,

mC , calcified matrix, mCa, bone matrix, mB , and nutrients, n, along with signalling molecules, gHS,HM .

4. Results and parameter sensitivity analysis

4.1. Numerical results

Figures 4-6 show the evolution of osteochondral defect healing following an ACI procedure, for time ranging from

1 month to 48 months post implantation. As early as 1 month chondrocytes produce cartilage matrix, mC , and
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Figure 4: Evolution of cell and matrix densities, and nutrient concentration at (a) t =0 days, (b) t = 1 month and (c) t = 3 months,

following implantation of chondrocytes.

migrate through the matrix towards the top of the defect (Lutianov et al. (2011)). Due to the low proliferation rate

of chondrocytes (p̄5,C0
= 10−3), migration is their main means of evolution and by 3 months they have extended

and deposited cartilage matrix in the bottom half of the defect. These results replicate those of our previous

chondral regeneration model, with evolution of cartilage deposition occurring at a fast pace due to high availability

of nutrients (Lutianov et al. (2011)). During this initial stage of the regeneration process, a purely chondral

regeneration mechanism takes place. At 6 months, mC is steadily increasing from the base of the defect, with

chondrocyte hypertrophy and matrix calcification not yet initiated. As time progresses to 12 months, we observe the

defect continuing to fill, with chondrocytes and new cartilage matrix having reached the top of the defect and with

a cartilage density over 90% at the defect base (Fig. 5(b)). At the defect base, the critical cartilage matrix density,

assumed 95%, is reached at 18 months (Fig. 5(c)). The chondrocytes here start to convert from a proliferative

to a hypertrophic state, converting cartilage matrix into calcified matrix, ready to initiate bone production via

endochondral ossification (Fig. 5(c)). The hypertrophic chondrocytes convert cartilage matrix at the defect base

entirely into calcified matrix, mCa. Osteoblasts at the defect base further convert this matrix to bone matrix,

mB . The conversion rate of mC to mCa and mCa to mB is very rapid owing to the large values of p̄120 = 104 and

p̄20 = 105, therefore mCa levels observed are very low. This signifies the end of cartilage formation at this location

and the beginning of the endochondral ossification process. The modulating and suppressing signalling molecules

regulate chondrocyte hypertrophy and cartilage calcification from this time on. At 24 months, our simulations show

an upward moving narrow zone where chondrocytes are undergoing hypertrophy and converting cartilage matrix

into calcified matrix (Fig. 6(a)). The base of the defect is filled with bone matrix, mB , with a narrow middle zone of

calcified cartilage and a top layer of cartilage that has not yet reached its full density across the top of the defect. As

bone matrix was deposited from the defect base, bone cells such as osteoblasts and osteoclasts are able to migrate

within this matrix towards the top of the defect. At 36 months, more of the defect has been filled with mB (Fig.
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Figure 5: Evolution of cell and matrix densities, and nutrient concentration at (a) t = 6 months, (b) t = 12 months and (c) t = 18

months.

Figure 6: Evolution of cell and matrix densities, and nutrient concentration at (a) t = 24 months, (b) t = 36 months and (c) t = 48

months.
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6(b)). The middle zone of active endochondral ossification has moved towards the top, with mC being remodelled

into mCa, ready for conversion into mB where bone cells are present (Fig. 6(b)). At the top of the defect, there is

a section of cartilage that has not calcified (Fig. 6(b)). This is due to a flux of hypertrophy-suppressing signalling

molecule, gHS , diffusing downwards from the top of the defect where it is produced by the surface chondrocytes,

both directly and through gHM stimulation of these cells.

Figure 7: Evolution of the concentration of (a) hypertrophy-suppressing, gHS and (b) hypertrophy-modulating, gHM , signalling

molecules from t = 0− 48 months.

Throughout the simulation (t = 0− 48 months), the hypertrophy-inducing molecule gHI concentration remains con-

stant (gHI = 1) along the defect height, above its threshold value ḡHI0 = 0.5. Hypertrophy is nevertheless suppressed

until t = 18 months because the cartilage matrix density is below its critical level mCcrit = 0.95, combined with the

activity of hypertrophy modifying and suppressing signalling molecules gHS,HM at later times. Figure 7(a, b) show

the evolution of gHS,HM . The threshold gHS concentration above which hypertrophy is suppressed is ḡHS0 = 20,

and we assume no-flux of signalling molecules out of the top of the defect (γ̄1 = γ̄2 = 0). We observe a progressive

build-up of gHS at the top of the defect which diffuses downwards. The region corresponding to gHS > gHS0
is

where hypertrophy is suppressed resulting in the formation of non-calcified cartilage. In this zone, chondrocytes are

prevented from hypertrophying and endochondral ossification cannot take place. At 36 months the defect is mostly

filled with full or near-full-density matrix, whether bone, calcified or cartilage (Fig. 6(b)). As time progresses to

48 months, the defect is now entirely filled with full-density bone and cartilage matrix, signifying the endochondral

ossification process has ended and the defect has been repaired (Fig. 6(c)).

4.2. Sensitivity of parameters

The model uses a large number of dimensionless parameters. Their values were derived from literature where pos-

sible, but often had a wide range and sometimes values were assumed or guessed. The simulation results may be

sensitive to some of these values, potentially indicating their biological significance. On the other hand, if the solu-

tion is not sensitive to the exact value of a parameter whose value has been approximated, then this indicates that
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the exact value is not important and an approximation suffices. We therefore conducted a sensitivity analysis on

parameters deemed to be important for the model, exploring specifically the sensitivity to parameters describing the

endochondral ossification process, namely those relating to the signalling molecules and chondrocyte hypertrophy,

including the critical cartilage density. In addition, we investigated sensitivity to the parameters whose values were

assumed or guessed.

The concentration of hypertrophy-inducing signalling molecule gHI is essentially a linear interpolation between its

values at the two boundaries, and as a consequence its effects are very simple. If its concentration is below the

threshold gHI0 , hypertrophy is completely suppressed. If its concentration is however above the threshold, as in the

base case, hypertrophy is governed by the critical cartilage density and the hypertrophy-suppressing molecule gHS

concentration.

Figures 8(a, b, c) show the cell and matrix densities at t = 6 months for varying critical cartilage matrix densities,

mCcrit
= 10%, 50%, 95%, respectively. Decreasing mCcrit

from 95% to 50% activates chondrocyte hypertrophy much

earlier resulting in early calcified matrix and bone formation (Fig. 8(b). The initial fill-up of the defect with car-

tilage is suppressed (Fig. 8, compare (b) and (c)). Further decreasing the critical density to 10%, however, stops

Figure 8: Cell and matrix densities at t = 6 months for varying the critical cartilage density, mC,crit, at t=6 months. (a) mC,crit = 0.1,

(b) mC,crit = 0.5 (b) and (c) mC,crit = 0.95 (baseline value).

the initial fill of the defect with cartilage, with chondrocytes undergoing hypertrophy as soon as mC,crit > 0.1 (Fig.

8(a)). Bone formation begins almost immediately.

Figures 9(a, b) show the cell and matrix densities at t = 48 months for varying hypertrophy-suppressing signalling

molecule threshold concentrations, ḡHS0=20 (baseline), 80, respectively. We observe that increasing ḡHS0 , decreases

the thickness of the cartilage layer remaining at the top of the defect. This can be explained using Fig. 11(a),

where increasing the threshold concentration restricts the region where gHS > ḡHS0
to the top of the defect. Here,

chondrocyte hypertrophy is suppressed and the endochondral ossification pathway is switched off.
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Figure 9: Cell and matrix densities for varying the hypertrophy-suppressing signalling molecule threshold concentration, ḡHS0
, at t = 48

months. (a) ḡHS0 = 20 (baseline value) and (b) ḡHS0 = 80.

Figures 10(a, b, c) show the cell and matrix densities at t = 48 months for varying hypertrophy-suppressing sig-

nalling molecule diffusion coefficients, D̄gHS
=0.5 (baseline), 1 and 5, respectively. We observe that increasing D̄gHS

marginally increases the thickness of the cartilage layer remaining at the top of the defect. As D̄gHS
is increased,

gHS produced by the chondrocytes at the top of the defect can diffuse further into the defect to suppress endochon-

dral ossification. Figures 11(a, b, c) show the corresponding evolution of gHS from t = 0− 48 months for D̄gHS
=0.5

(baseline), 1 and 5, respectively. gHS produced by the chondrocytes at the top of the defect diffuses rapidly through

the entire defect as D̄gHS
increases, suppressing endochondral ossification.

Figures 12(a, b, c) show the cell and matrix densities at t = 48 months when varying the gHS flux (via γ̄1) leaking

from the defect surface. Figures 13(a, b, c) show the corresponding gHS concentration for t = 0− 48 months. If the

flux from the surface is not too large, then the production of gHS by the surface chondrocytes offsets its removal,

and the concentration of gHS is observed to gradually increase (Fig. 13(b)) albeit much slower than the baseline

case (Fig. 13(a)). This results in the endochondral ossification process continuing until it reaches the top of the

defect (Fig. 12(b)) before the gHS concentration exceeds the threshold concentration to suppress hypertrophy (Fig.

13(b)). For larger values of the flux, the leaking out of gHS exceeds its production there, and as time progresses

its concentration falls below the threshold value (Fig. 13(c)). This promotes chondrocyte hypertrophy and the

osteochondral ossification pathway leading to bone formation right up the top of the defect (Fig. 12(c)); eventually

the defect will fill-up entirely with bone. In this case, at t = 48 months there is no longer an intact layer of cartilage

at the top of the defect, unlike the baseline case shown in Fig. 12(a).

Figures 14(a, b) show the cell and matrix densities at t = 48 months for varying hypertrophy-suppressing signalling

molecule production rates by surface chondrocytes, both the default rate p̄21 and its modification via the hypertro-

phy-modifying molecule gHM , namely p̄15. Figures 15(a, b) show the corresponding evolution of gHS concentration

for t = 0− 48 months. For lower values of p̄15 and p̄21 compared to the baseline value, the production of gHS by
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Figure 10: Cell and matrix densities for varying hypertrophy-suppressing signalling molecule diffusion coefficients, D̄gHS , at t = 48

months. (a) D̄gHS = 0.5 (baseline value), (b) D̄gHS = 1 and (c) D̄gHS = 5.

Figure 11: Evolution of gHS for varying hypertrophy-suppressing signalling molecule diffusion coefficients, D̄gHS , between t = 0− 48

months. (a) D̄gHS = 0.5 (baseline value), (b) D̄gHS = 1 and (c) D̄gHS = 5.
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Figure 12: Cell and matrix densities at t = 48 months for varying gHS flux via γ̄1 out of the top of the defect at x = 1. (a) γ̄1 = 0

(baseline value), (b) γ̄1 = 102 and (c) γ̄1 = 103.

Figure 13: Evolution of gHS between t = 0− 48 months for varying gHS flux via γ̄1 out of the top of the defect at x = 1. (a) γ̄1 = 0

(baseline value), (b) γ̄1 = 102 and (c) γ̄1 = 103.
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the surface chondrocytes is not sufficient to overcome its degradation (p22 = 15.47), hence gHS stays below the

threshold value at all times (Fig. 15(a)) promoting hypertrophy and osteochondral ossification with bone filling-up

the defect (Fig. 14(a)). Increasing p̄15 and p̄21 above a threshold value results in the production of gHs offsetting its

degradation, allowing it to cross the threshold concentration to suppress hypertrophy and osteochondral ossification

to form a cartilage layer at the top of the defect. Increasing (decreasing) the hypertrophy-suppressing signalling

Figure 14: Cell and matrix densities for varying the hypertrophy-suppressing signalling molecule production rates by surface chondro-

cytes, p̄15 and p̄21, at t = 48 months. (a) p̄15 = p̄21 = 102 and (b) p̄15 = p̄21 = 4× 104 (baseline).

molecule degradation rate, p̄22, relative to p15 and p21 results in lower (higher) concentrations of ḡHS within the

defect. The results are similar to the behaviour observed in Figs. 14,15, hence we do not report them here in more

detail.

Similarly, increasing (decreasing) the hypertrophy-modulating signalling molecule degradation rate, p̄26, results in

lower (higher) concentrations of ḡHM within the defect. This modulates the production of gHS by surface chon-

drocytes. The behaviour is again similar to that shown in Figs. 14,15. Figures 16(a, b, c) show the cell and matrix

densities at t = 48 months when varying the chondrocyte hypertrophic differentiation rate, p̄6. This parameter does

not significantly influence the results, except a visible increase in CH (Fig. 16(b, c)). Figures 17(a, b, c) show the

cell and matrix densities at t = 48 months when varying the osteoblast proliferation rate, p̄9. Increasing p̄9 increases

the bone cell density although the bone matrix density does not increase as much. Decreasing p̄9 results in less

bone matrix due to lower bone cell density. Figures 18(a, b) show the cell and matrix densities at t = 48 months

when varying the cartilage matrix degradation rate, p̄120 . Increasing p̄120 results in rapid mC degradation into mCa,

although bone production remains relatively unchanged.Decreasing p̄120 leads to low mCa levels due to less cartilage

degradation. The bone matrix levels remaining fairly unchanged since mCa conversion to mB pathway is unaffected

by varying p̄120 .

Figures 19(a− d) show the cell and matrix densities at t = 48 months when varying the calcified cartilage matrix

degradation rate, p̄20. Increasing p̄20 enhances bone production, resulting in lower mCa, as bone remodelling is
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Figure 15: Evolution of gHS for varying the hypertrophy-suppressing signalling molecule production rates by surface chondrocytes, p̄15

and p̄21, between t = 0− 48 months. (a) p̄15 = p̄21 = 102 and (b) p̄15 = p̄21 = 4× 104 (baseline).

Figure 16: Cell and matrix densities for varying the chondrocyte hypertrophic differentiation rate, p̄6, at t = 48 months. (a) p̄6 = 0.1,

(b) p̄6 = 5 (baseline) and (c) p̄6 = 10.
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Figure 17: Cell and matrix densities for varying the osteoblast proliferation rate, p̄9 at t = 48 months. (a) p̄9 = 10−3, (b) p̄9 = 5.3× 10−2

(baseline) and (c) p̄9 = 0.1.

Figure 18: Cell and matrix densities for varying the cartilage matrix degradation rate, p̄120 at t = 48 months. (a) p̄120 = 10 and (b)

p̄120 = 104 (baseline).
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increased (Figs. 19(c, d)). Decreasing p̄20 results in higher mCa, but bone matrix levels appear unchanged. In

this case, bone is predominantly being produced by CB . Figures 20(a, b, c) show the cell and matrix densities at

Figure 19: Cell and matrix densities for varying the calcified cartilage matrix degradation rate, p̄20 at t = 48 months. (a) p̄20 = 1, (b)

p̄20 = 10, (c) p̄20 = 102 and (d) p̄20 = 105 (baseline).

t = 48 months when varying the chondrocyte proliferation rate, p̄5,C0 . For smaller values of p̄5,C0 , the proliferation

of chondrocytes is not sufficient to trigger hypertrophy and osteochondral ossification, therefore the bone repair

process is delayed (Fig. 20(a). In comparison, for larger values of p̄5,C0
, there is an adequate supply of proliferating

chondrocytes to trigger the pathways for bone and cartilage production (Figs. 20(b, c). However, if p̄5,C0
is very

large then production of chondrocytes is also extremely high as observed in Fig. 20c, which seems biologically

unrealistic. Figures 21(a, b, c) show the cell and matrix densities at t = 48 months for varying the hypertrophic

chondrocyte death rate, p̄8. Increasing p̄8 results in lower CH levels as they degrade faster (Fig. 21(b, c)), leading

to less conversion of mC to mCa. We observe slightly higher bone density at the base of the defect and more car-

tilage remaining in the defect. Decreasing p̄8 results in higher CH levels and slightly higher mCa, but mB appears

unaffected.

5. Discussion

This paper aims to formulate a reaction-diffusion mathematical model describing the osteochondral defect healing

process in large animals such as humans after ACI. The two specific questions to be addressed by the model are

(a) Can the PTHrP-Ihh feedback loop control endochondral ossification in the healing process in large animals,

and (b) Which key parameters most influence the healing process, in particular controlling the thickness of the

articular cartilage in the repaired defect? Our model achieved the overall aim and simulated the key stages of

natural osteochondral defect healing as observed in a large animal experiment, namely an initial fill of the defect

by cartilage, followed by a process of endochondral ossification starting at the base of the defect that resulted in

bone formation from the base upwards, eventually leaving a layer of articular cartilage at the top of the defect
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Figure 20: Cell and matrix densities for varying the chondrocyte proliferation rate, p̄5,C0 at t = 48 months. (a) p̄5,C0 = 10−3, (b)

p̄5,C0
= 0.012 (baseline) and (c) p̄5,C0

= 0.1.

Figure 21: Cell and matrix densities for varying the hypertrophic chondrocyte death rate, p̄8 at t = 48 months. (a) p̄8 = 0, (b) p̄8 = 0.5

(baseline) and (c) p̄8 = 1.
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separated from the bone by a thin layer of calcified cartilage (Lydon et al. (2019)). Our model thus demonstrates

how an osteochondral defect, when treated by implanting chondrocytes under a patch covering the defect, heals in

a way that bone and cartilage are regenerated. In doing so, the model therefore suggests that the PTHrP-Ihh feed-

back loop can indeed control endochondral ossification in large animals. The parameters most strongly influencing

the healing process were the local factor relating to hypertrophy induction (critical cartilage density) and those

related to the hypertrophy suppressing signalling molecule (PThRP), namely its baseline production rate and the

modification of that production rate by the hypertrophy modifying signalling molecule (Ihh) and its surface flux.

In formulating our mathematical model, we made extensive use of the qualitative insights from a series of experiments

based around an ovine model of natural osteochondral defect healing in skeletally mature animals (Lydon et al.

(2019)). We did so for two main reasons. Firstly, the sheep is a relatively large animal with a knee anatomy

comparable to that of humans, which makes this animal model closer to the clinical situation than for instance

murine or laprine models (Ahern et al. (2009); Chu et al. (2010)). Secondly, Lydon et al. (2019) analysed 5 separate

time points (1-2 weeks, 4-8 weeks, 8-12 weeks, 18 weeks and 26 weeks). Such a detailed study of the healing

process over time is not uncommon when conducted using small animals (e.g. Shapiro et al. (1993); Anraku et al.

(2008)), but is unique when conducted in large animals. Of course, we realise that the process by which a freshly

created osteochondral defect naturally heals is not necessarily the same as that by which a clinical osteochondral

defect in humans, treated using autologous chondrocytes, heals. Nevertheless, the key stages observed are also seen

following chondrocyte implantation. Filling of the complete defect by cartilage or cartilage-like tissue, followed by

bone forming from the base of the defect upwards, has been observed in large-animal models of ACI therapy (e.g.

Munirah et al. (2007); Jurgens et al. (2013)). After one year, osteochondral defects up to 1 cm deep in humans

and treated with ACI demonstrate new bone formation at the base and a layer of mature (hyaline) or immature

cartilage at the top (Bentley et al. (2003)).

Our chondral defect healing models (Campbell et al. (2019a,b)) simulate the filling of a defect with cartilage, but do

not simulate the conversion of cartilage into bone at the base of the defect. Lydon et al. (2019) observed that this

process occurs via endochondral ossification, similar to the process observed during bone formation in the growth

plate or during fracture healing. The current work therefore primarily focused on the endochondral ossification

process. In this process, cartilage converts into bone via chondrocyte hypertrophy, where the hypertrophic chon-

drocytes form a primary spongiosa which is then invaded and remodelled by osteoblasts and osteoclasts (Lydon

et al. (2019)). Crucially, not all chondrocytes hypertrophy and form primary spongiosa; a layer of hyaline cartilage

is left in the top section of the defect, forming articular cartilage.

In our mathematical model we approached this by concentrating on key regulatory pathways that control chondro-

cyte hypertrophy during growth. Specifically, we concentrated on factors that initiate and suppress this process.

Chondrocyte hypertrophy is known to be initiated by systemic factors (hormones) and locally produced signalling

molecules (Mackie et al. (2011); Kozhemyakina et al. (2015)). The hypertrophy-inducing factor in our model rep-

resents the systemic factors, a prime example of which is thyroid hormone (Mackie et al. (2011)). We modelled

these systemic factors as a flux coming in from the top and base of the defect. We assumed that this hypertrophy-

inducing systemic factor would have to reach a threshold value before initiating hypertrophy. The local factors
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were represented in our model as a critical or threshold cartilage density, below which hypertrophy is not initiated.

This implementation of local factors is similar to that used in models of endochondral ossification during fracture

healing (Carlier et al. (2016); Geris et al. (2008)). We chose the critical density to be around 95%, but also inves-

tigated other values in our sensitivity analysis. Both critical values would need to be reached before chondrocyte

hypertrophy was initiated. In our model, the process was dominated by the local factor (critical cartilage density):

once this density was reached, chondrocytes started to hypertrophy and produce calcified matrix from the cartilage

model. These two processes would also halt local chondrocyte proliferation and cartilage matrix formation.

Further regulation of hypertrophy, once initiated, was implemented in our model as the Ihh-PTHrP pathway (Kro-

nenberg (2003); Kozhemyakina et al. (2015)). The Ihh-PTHrP pathway is not only a key regulator of chondrocyte

hypertrophy, but also important in relation to the question why bone forms in the bottom section but not the top

section of an what controls the thickness of the eventual articular cartilage layer at the top of a healed osteochon-

dral defect. PTHrP, a suppressor of hypertrophy, is produced by proliferating chondrocytes in the growth plate

and restricted to chondrocytes in the superficial zone of articular cartilage (Chen et al. (2008); Jiang et al. (2008);

Kronenberg (2003)). In articular cartilage, the primary regulation of PTHrP is in the form of mechanical loading

(Chen et al. (2008)). Its production is also stimulated by Ihh, which is produced by pre-hypertrophic chondrocytes.

In our model, we called Ihh a hypertrophy-modulating signalling molecule and assumed it would be produced by

hypertrophic chondrocytes. To simulate the production of PTHrP specifically by superficial zone chondrocytes, we

modelled a flux of hypertrophy-suppressing signalling molecule that permeated from the upper layer of the defect.

Due to its low diffusion coefficient, this growth factor only penetrated the top layer of the simulated defect restricted

its production to the upper 10% of the defect. The effects of PTHrP at the top of the defect were the main factor

regulating the remaining cartilage layer. The hypertrophic chondrocytes produced calcified matrix, which then

was converted to bone by osteoblasts and osteoclasts, simply referred to as ’osteoblasts’ in our model. Finally, we

assumed the underlying bone at the base of the defect and the surrounding synovial fluid at the top of the defect to

provide nutrients within the model. This was unlike our previous mathematical model of a healing chondral defect

treated by ACI, where we assumed the flux of nutrient from the base equals zero because subchondral bone is left

intact in this treatment, preventing nutrient flow from the defect base.

In combination, this relatively simplistic approach captivates the key mechanisms driving osteochondral healing

after ACI via an endochondral ossification-like process. Our model would not be valid for deep osteochondral

defects where a bone-plug may be a more appropriate treatment strategy (de Windt and Saris (2014)). However,

osteochondral defects with a bone defect up to 1cm in depth can be treated using cell therapy alone (Bentley et al.

(2003)). Data from the German Cartilage Registry suggest that using cell therapy alone for osteochondral defects

is indeed common practice: although over 60% of defects in this registry are osteochondral defects only 1 in 9 ACI

cases use bone graft augmentation (Niemeyer et al. (2016)).

During the initial phase of regeneration, a purely chondral healing mechanism took place. These results corresponded

to our chondral defect healing model (Campbell et al. (2019a,b)), with slightly improved matrix formation due to

the nutrients available from the base of the defect. These models of chondral defect healing assumed no nutrients

would flow in from the base, leading to a lack of nutrients constraining cell proliferation and matrix deposition.
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By 1 year, cartilage filled the osteochondral defect, with low-density cartilage matrix at the top of the defect and

a high-density matrix covering the base. By 18 months the critical cartilage density required for initiation of

chondrocyte hypertrophy was reached at the defect base, initiating the conversion of cartilage to calcified matrix by

hypertrophic chondrocytes followed by formation of bone. As time continued, cartilage continued to be converted

into calcified matrix with bone subsequently being produced, progressing as a traveling wave upwards to the top.

This pattern of conversion predicted by our model followed qualitatively mirrored the formation of bone and cartilage

in sheep observed by Lydon et al. (2019). By 2 years the layer of cartilage that would remain at the top of the defect

became more evident, with bone entirely covering the base of the defect and cartilage degradation to calcified matrix

occurring in the midsection. This trend continued until 48 months, when the defect was entirely filled with new bone,

aside from a section of calcified matrix and a thin layer of cartilage remaining at the top of the defect. The thickness

of this layer was mainly regulated by the diffusion coefficient of the hypertrophy-suppressing signalling molecule,

which was produced by the chondrocytes at the top of the defect parameters related the the hypertrophy-suppresing

signalling molecule (PThRP), in particular its production rate (partly influenced by Ihh), its threshold level and

its leakage from the top of the healing defect into the synovial fluid.. Including a population of superficial zone

chondrocytes (at x̄=0.9-1) producing hypertrophy-suppressing molecules was based on experimental observations

in vitro by Jiang et al. (2008) and in vivo by Chen et al. (2008), who found that superficial zone chondrocytes in

articular cartilage produce PThRP, which suppresses mineralisation of chondrocytes in deeper zones. Chen et al.

(2008) also showed that mechanical loading is an important regulator of PTHrP expression in articular cartilage,

but this is something we did not consider here.

The main conclusion from this work is that the Ihh-PThRP feedback loop can play a role in osteochondral healing

in large animals, and that the main determinant of the resulting cartilage is related to the hypertrophy-suppressing

molecule PThRP. So far, research on the role of PTHrP in post-natal osteochondral healing has been restricted to

transgenic mice, needed to visualise its expression levels Chen et al. (2008). However, with the recent rapid advance

in spatial transcriptomic and proteomic profiling techniques Moffitt et al. (2022), studying the expression of PThRP

should now also be possible in large animals.

The assumptions we made in this model do simplify the biological process occurring during osteochondral healing,

potentially limiting conclusions we can draw from this work. An important factor we do not consider directly

in our model is the influence of mechanical forces on cells, in particular on cell proliferation, differentiation and

matrix synthesis, which earlier mathematical models suggest to be important in chondral defect repair (Lacroix

and Prendergast (2002)). Mechanical loading is also thought to influence the patterns of endochondral ossification,

specifically in the formation of long bones (Wong and Carter (1990)). However, by assuming that superficial zone

chondrocytes produced a hypertrophy-suppressing signaling molecule (PTHrP), we did implicitly include the effect of

mechanical loading. We also excluded the effects of other local signalling molecules, in particular the influence of the

fibroblast growth factor (FGF18) and C-type natriuretic peptide (CNP), which together with PTHrP and Ihh control

the initiation of hypertrophy, and insulin-like growth factor (IGF1), epidermal growth factor receptor (EGFR) and

reactive oxygen species (ROS), which control the later phases of chondrocyte hypertrophy (Kozhemyakina et al.

(2015)). We completely ignored the latter three and simply assumed that once initiated, chondrocyte hypertrophy
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would proceed autonomously. We consider this assumption justified in light of our main aim to capture the main

characteristics of the repair process. Instead of FGF18/CNP signaling we used the critical cartilage density mC,crit

as an extra local hypertrophy initiating factor, following earlier mathematical models of healing bone fractures

(Carlier et al. (2016); Geris et al. (2006)). Although this simplifies the model, the effect is probably similar. FGF18

and CNP have an antagonistic effect on chondrocytes, with FGF18 produced by superficial zone chondrocytes and

maintaining chondrocyte proliferation versus CNP produced by proliferating and pre-hypertrophic chondrocytes.

There is no feedback control between these two molecules and hypertrophy is assumed to start once CNP levels

are high enough relative to FGF18 (Kozhemyakina et al. (2015)). Effectively, our model used cartilage density as a

proxy for CNP concentration. Although modelling FGF18 and CNP separately might affect the results, the change

is most likely minor due to the lack of feedback. Lydon et al. (2019)describe initial cartilage formation occurring

at the top edges of the defect adjacent to damaged cartilage. The reason cartilage first forms here is unknown, but

could possibly be related to chondrocytes attaching preferentially to damaged cartilage rather than bone. In our

1-dimensional model we had to omit this preferential attachment to top edges of the defect because these edges

were not represented. This simplification meant we also did not include the invasion of cells from the sides of the

defect. In addition, when an osteochondral defect is created, damaged blood vessels nested within bone at the site

of the defect are damaged. These damaged vessels produce blood which coagulates and forms a fibrous clot within

the defect. This fibrous clot will act as a nutrient source at the beginning of regeneration, as well as acting as a

scaffold for cells to travel along. These functions of a clot were not explicitly modelled in our work, and neither was

clot formation.

We also did not consider mesenchymal stem cells to be present in this model, despite their well-documented role

in osteochondral defect healing (Madry et al. (2011); Farmer et al. (2001); Getgood et al. (2012)). Lutianov et al.

(2011) explore the effects of autologous chondrocyte implantation (ACI) and articular stem cell implantation (ASI)

in chondral defects, which are surgical procedures where either chondrocytes or MSCs are inserted into a defect

with the hope to promote healing. In that work, despite MSCs achieving higher cartilage formation at early

time, overall healing time did not significantly change (Lutianov et al. (2011)). In Campbell et al. (2019a,b), we

explored the effects of signalling molecules on the chondral healing process, and also how a co-implantation of

MSCs and chondrocytes could promote an earlier healing time. Our work demonstrated that within the first year

an enhanced rate of healing was observed when a co-implantation procedure was carried out, with an increase

of up to 136% at 3 months when compared with ACI cartilage healing alone, but despite this, an earlier healing

time was not achieved; the conclusion of this work was that a co-implantation procedure could have benefits by

allowing a patient to become mobile sooner after surgery. The consideration of MSCs in our model could lead

to MSC differentiation into chondrocytes or osteoblasts and having trophic effects, requiring extra assumptions

around the control of their differentiation into osteoblasts and the mutual effect of osteoblasts and MSCs. However,

based on our models of co-implanting MSCs and chondrocytes, it is doubtful whether the effects on the amount

of cartilage formation would be large. MSCs may also influence the healing environment via their production of

paracrine factors such as transforming growth factor /beta (TGF/beta), insulin-like growth factor 1 (IGF1), and

vascular endothelial growth factor (VEGF), among others, which may influence cell function and survival and
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subsequent tissue regeneration (Fontaine et al. (2016); Linero and Chaparro (2014)). It is thought MSCs may be

most effective within tissue regeneration via their paracrine signalling, not their direct contribution to extracellular

matrix production via differentiation to osteoblasts and chondrocytes. Based on the findings in Campbell et al.

(2019a,b) on the paracrine effect of MSCs, we think it is instructive to start the modelling process by including

only chondrocytes and osteoblasts.

Finally, our 1-dimensional model may capture the essential features of osteochondral healing but it is probably too

simplistic for proper parameter identification. We regard this model as a first step to get these essential features

in place, but a comparison to animal or human experiments will probably require a geometrically more realistic

model, for instance a 2-dimensional axi-symmetric model. Given the crucial importance of the hypertrophy-sup-

pressing signalling molecule PThRP, further work should include determining its concentration or expression levels

in large animal models. Thanks to modern spatial proteomic or transcriptomic techniques this should be feasible

(Moffitt et al. (2022)).

In future work, the inclusion of the modulatory effects of MSCs via their paracrine signalling would more accurately

simulate the cell environment, such as the chondrocyte-MSC interaction modulated by FGF-1 and BMP-2 modeled

in Campbell et al. (2019a,b).

In conclusion, our mathematical model suggests that repair of osteochondral defects following chondrocyte implan-

tation relies on endochondral ossification processes similar to the growth plate. The reaction diffusion-type model

presented here is a first step towards better understanding of osteochondral defect regeneration after cell therapy

techniques.
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Abstract

Treating bone-cartilage defects is a fundamental clinical problem. The ability of damaged cartilage to self-repair

is limited due to its avascularity. Left untreated, these defects can lead to osteoarthritis. Details of osteochondral

defect repair are elusive, but animal models indicate healing occurs via an endochondral ossification-like process,

similar to that in the growth plate. In the growth plate, the signalling molecules parathyroid hormone-related protein

(PTHrP) and Indian Hedgehog (Ihh) form a feedback loop regulating chondrocyte hypertrophy, with Ihh inducing

and PTHrP suppressing hypertrophy. To better understand this repair process and to explore the regulatory

role of signalling molecules on the regeneration process, we formulate a reaction-diffusion mathematical model

of osteochondral defect regeneration after chondrocyte implantation. The drivers of healing are assumed to be

chondrocytes and osteoblasts, and their interaction via signalling molecules. We model cell proliferation, migration

and chondrocyte hypertrophy, and matrix production and conversion, spatially and temporally. We further model

nutrient and signalling molecule diffusion and their interaction with the cells. We consider the PTHrP-Ihh feedback

loop as the backbone mechanisms but the model is flexible to incorporate extra signalling mechanisms if needed.

Our mathematical model is able to represent repair of osteochondral defects, starting with cartilage formation

throughout the defect. This is followed by chondrocyte hypertrophy, matrix calcification and bone formation

deep inside the defect, while cartilage at the surface is maintained and eventually separated from the deeper bone

by a thin layer of calcified cartilage. The complete process requires around 48 months. A key highlight of the

model demonstrates that the PTHrP-Ihh loop alone is insufficient and an extra mechanism is required to initiate

chondrocyte hypertrophy, represented by a critical cartilage density. A parameter sensitivity study reveals that

the timing of the repair process crucially depends on parameters, such as the critical cartilage density, and those

describing the actions of PTHrP to suppress hypertrophy, such as its diffusion coefficient, threshold concentration

and degradation rate.
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1. Introduction

Chondral and osteochondral defects are both a cause and result of osteoarthritis, a degenerative condition that causes

the joints to become painful and stiff, primarily in patients over 50 years old (Falah et al. (2010); Moyad (2011);

Allen et al. (2022)). Osteochondral defects of the knee can occur through acute trauma, natural wear and tear of

the joint, and underlying disease of the bone (Madry et al. (2010); Williams et al. (1998)). General understanding

of osteochondral defect healing has clinical significance, but little experimental data in humans is available and

reliable treatment strategies are lacking. Once a joint with an osteochondral defect is osteoarthritic, repair is

problematic and treatment options are limited (Gomoll et al. (2012)). Some treatment options for osteochondral

defects include autologous chondrocyte implantation (ACI), osteochondral autograft transfer (OAT), osteochondral

allograft transplantation surgery (OATS) and microfracture (Brittberg (2008); Dahmen et al. (2018); de Windt and

Saris (2014)). Of these, ACI and the two graft procedures are able to achieve the hyaline-type cartilage needed

for long-term clinical benefit and are the treatments most used in clinical practice, with ACI determined to be an

effective treatment strategy (Biant et al. (2014); Brittberg (2008); De Bari and Roelofs (2018)). ACI is a two-stage

surgical procedure: in stage one healthy chondrocytes (cartilage cells) are harvested from a non-weight-bearing area

of the joint, to be cultured to appropriate cell numbers. Approximately two weeks later, in a second procedure,

these cells are implanted into the chondral or osteochondral defect and sealed with a periosteal patch or collagen

membrane, or alternatively seeded first in a biodegradable scaffold which is then placed in the defect (Brittberg

(2008)). Long-term outcomes of this procedure are very good, with ACI not only the gold standard treatment for

chondral defects, but also showing good outcomes in osteochondral lesions of the knee (Biant et al. (2014)).

Natural osteochondral defect healing can occur spontaneously but the underlying mechanism driving tissue regen-

eration is elusive. The quality of naturally regenerated tissue is unpredictable and can often be primarily fibrous,

resulting in subsequent degradation. When an osteochondral defect forms, damaged blood vessels located within

bone at the site of the defect produce blood which coagulates and forms a fibrous clot. Within this clot there are

thought to be cartilage and bone precursors, such as mesenchymal stem cells (MSCs), along with a fibrin net that

acts as a scaffold for cells to travel along (Madry et al. (2010)). The precursor cells are thought to move into the

defect and differentiate into chondrocytes, fibroblasts or osteoblasts, which synthesize new tissue from the base of

the defect. The tissue resulting from natural healing is generally of poor quality overall: although the defect may

fill it is typically with fibro-cartilaginous tissue which is not the hyaline-type needed for long-term withstanding

of the compressive forces across weight-bearing joints (Guo et al. (2004); Jackson et al. (2001)). Generally, this

fibro-cartilage tissue will degrade and the original symptoms of pain and discomfort will return, putting the patient

at increased risk of developing osteoarthritis (Wakitani et al. (1994)).

Lydon et al. (2019), using an ovine model, demonstrated that healing of osteochondral defects in large mammals

involves endochondral ossification. They showed that healing begins with cartilage formation first occurring along

the edges of the defect, filling from the sides inwards and upwards until the defect fills and forms a cartilage model.

Once this process has completed, chondrocytes undergo hypertrophy and ossification takes place, with a layer of

cartilage remaining along the articular surface of the defect. Other earlier studies using smaller mammals found a

similar healing mechanism, such as those using the Göttingen minipig (GMP) model that show defects located in
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the trochlear groove of the knee heal via endochondral ossification (Gotterbarm et al. (2008); Jung et al. (2009)).

Shapiro et al. (1993) also observed an endochondral sequence starting from the base of osteochondral defects in

rabbit models.

The occurrence of endochondral ossification during healing of osteochondral defects suggests that the process may

be similar to processes in the growth plate (Mariani et al. (2014)). In the growth plate, the signalling molecules

parathyroid hormone-related protein (PTHrP) and Indian Hedgehog (Ihh) form a negative feedback loop regulating

chondrocyte hypertrophy, with Ihh produced by pre- and early-hypertrophic chondrocytes stimulating production of

PTHrP, which in its turn suppresses chondrocyte hypertrophy (Figure 1; Kronenberg (2003); Mariani et al. (2014)).

Indian hedgehog (Ihh) stimulates chondrocyte proliferation, along with chondrocyte and osteoblast differentiation

Figure 1: Schematic of the PTHrP-Ihh feedback loop that occurs during endochondral ossification. Adapted from Kronenberg (2003).

Red circles represent proliferating chondrocytes, orange ovals pre-hypertrophic chondrocytes and yellow circles hypertrophic chondro-

cytes. Lines ending with an arrow head indicate stimulation, lines ending with a horizontal line indicate suppression.

(Kronenberg (2003)). Indian hedgehog is secreted when chondrocytes are exiting their proliferative state to undergo

hypertrophy, whereas parathyroid hormone-related protein (PTHrP) is secreted by proliferating chondrocytes in

the growth plate and surface zone chondrocytes in articular cartilage, the latter under the influence of mechanical

loading (Jiang et al. (2008); Zhang et al. (2012)). PTHrP keeps chondrocytes in their proliferative state, inhibiting

chondrocyte hypertrophy and therefore production of Ihh, thus forming a negative feedback loop (Kronenberg

(2003); Zhang et al. (2012)).

Various authors have reported the need for an additional local or external signaling molecule for chondrocytes to

progress from proliferative to hypertrophic state, thereby initiating the endochondral ossification process. Kerkhofs

et al. (2012) explore the chondrocyte gene network controlling endochondral ossification in the growth plate, and

identify a self-regulated sequential process that does however need external switching of PTHrP and Ihh levels to

initiate state transitions, including that from proliferation to hypertrophy. The additional signaling molecule could

be a systemic factor, such as thyroid hormone (TH, see Mackie et al. (2011) but also a local regulator, for instance

a critical minimum cartilage density as implemented by Geris et al. (2008) and Carlier et al. (2016) to initiate

chondrocyte hypertrophy in their bio-regulatory computer models of fracture healing. This concept of a minimum

cartilage density is based on observations by Einhorn (1998) in a rat model of fracture healing that cartilage

mineralisation occurs in the abundance of cartilage, similar to a critical density being achieved. Kozhemyakina
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et al. (2015) describe pathways regulating the conversion of chondrocytes from a proliferative to a hypertrophic

state within the growth plate, and argue that C-type natriuretic peptide (CNP) is a key regulator involved in the

initiation of hypertrophy. CNP is produced by proliferative and pre-hypertrophic chondrocytes and hypertrophy is

initiated when the local CNP concentration is high enough. CNP might thus underlie both Einhorn’s observations

and the critical cartilage density hypothesis used in fracture healing models: a regulator outside the PTHrP-Ihh

loop initiating the conversion from proliferation to hypertrophy in chondrocytes.

As indicated above, the direct evidence for the role of the PTHrP-Ihh feedback loop in endochondral bone formation

comes from small animal (mouse and rat) models. This is related to the fact that the gene expression levels for

the two proteins are low, requiring the use of transgenic mice and reporter genes (Chen et al. (2008)). However, in

these animals cartilage thickness is small. A widely cited paper argues that intercellular communication distances

are restricted to around 250 µm (Francis and Palsson (1997)), which would be reasonable for mice. However, an

osteochondral defect can be over 10 mm deep in adult humans (Nizak et al. (2017)) and it is therefore not clear

if this feedback loop can work in humans. Mathematical models can help to address such a question. Moreover,

these models can also explain and explore the complex interactions between the cell types and signalling molecules

that contribute to osteochondral defect repair and mediate the endochondral ossification process. The aim of this

study is to formulate a mathematical model to describe the osteochondral defect healing process as occurs in large

animals after ACI. The model aims to incorporate the main characteristics of healing as described above, focusing

on healing via the endochondral ossification pathway.

Current mathematical models of osteochondral defect repair are primarily concerned with mechanical stimuli,

exploring the properties of relevant scaffolds used in defect repair (Kelly and Prendergast (2006)) and mechanical

influence on mesenchymal stem cell differentiation within a defect (Kelly and Prendergast (2005)). Though these

models explore some aspects of the healing process, our study will develop a mathematical model to depict the key

mechanisms of osteochondral defect healing via endochondral ossification.

In previous work, we formulated a series of reaction-diffusion type mathematical models exploring the processes

involved in chondral defect healing after cell therapy. Lutianov et al. (2011) simulated cartilage regeneration

following ACI or autologous stem cell implantation (ASCI), an ACI-like therapy where mesenchymal stem cells

are implanted instead of chondrocytes. The simulations compared healing patterns between the two cell therapies,

concluding there was no difference in overall healing time while highlighting differences in cell behaviour and healing

evolution. Following on from this work, the effects of two signalling molecules were incorporated into this model

to simulate the interactions between chondrocytes and mesenchymal stem cells in a co-implantation cell therapy

procedure (Campbell et al. (2019a,b)). This work highlighted the importance to chondral healing of cell-to-cell

interactions between mesenchymal stem cells and chondrocytes. Specifically, it built on an in vitro model by Wu

(2013) and demonstrated how the co-implantation of these two cell types led to a growth-factor mediated trophic

effect on healing at early times, though there was no difference in overall healing time.

Mathematical models relevant to our approach study bone fracture healing and include Bailón-Plaza and Van-

der Meulen (2001), who proposed a modelling framework for fracture healing, primarily focused on the role of
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signalling molecules on the healing process. Their model includes the process of endochondral ossification regulated

by extracellular matrix density (ECM). Geris et al. (2006) formulated a mathematical model of fracture healing

in mice to validate experimental data; their model utilised modelling principles similar to Bailón-Plaza and Van-

der Meulen (2001), and achieved results similar to those of the experimental data in murine models, along with a

bio-regulatory model for bone fracture healing that utilised an endochondral ossification process including a critical

density to regulate chondrocyte hypertrophy (Geris et al. (2008)).

We follow the modelling approaches undertaken in our work so far, combined with those in Bailón-Plaza and

Vander Meulen (2001), Geris et al. (2006) and Geris et al. (2008), and apply them to our aim of formulating a reac-

tion-diffusion mathematical model to describe the osteochondral defect healing process after ACI. The model will

address two key questions: (a) Can the PTHrP-Ihh feedback loop control endochondral ossification in the healing

process in large animals, and (b) Which key parameters most influence the healing process, in particular controlling

the thickness of the articular cartilage in the repaired defect? The plan of the paper is as follows. In §2 we describe

the basic model and the assumptions made, the boundary and initial conditions used, estimates of the parameter

values and the scalings used to non-dimensionalise the equations. The results of our simulations are discussed in

§4, where a sensitivity analysis is undertaken in §4.2 to validate our parameters and highlight those most sensitive

to change within the model. Finally, in §5 we explore the implications of the model and suggest future work.

2. Mathematical model

2.1. Model formulation

a b

Figure 2: (a) Magnetic Resonance (MR) image of an 11.5mm deep osteochondral defect in the knee (Nizak et al. (2017)); (b) Schematic

cross-section of the defect shown in (a). The axis denoted by x in (b) is along the depth of the defect. After debridement of the defect,

chondrocytes are seeded along the defect boundaries.

A typical osteochondral defect has small aspect ratio, i.e., its length and width are much larger than its depth, see

Fig. 2a. Hence, cell growth along the width of the defect can be assumed negligible compared to that along its

depth. This is valid in the middle section of the defect, away from the walls. This assumption enables us to simplify

to a one-dimensional problem where we model cell growth along the defect depth only, shown as the x direction in

Fig. 2b.

Our model assumes a regenerating osteochondral defect can be populated by three cell types, namely chondrocytes,

hypertrophic chondrocytes and osteoblasts, which each produce their specific matrix: cartilage, calcified cartilage or
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bone, respectively. Depending on cell type, the cells are able to migrate non-directed (random diffusion), proliferate

via the uptake of nutrients, differentiate, undergo hypertrophy and deposit matrix via nutrient uptake. In order

to explore our central hypothesis that the PTHrP-Ihh feedback loop, important in endochondral ossification, also

controls the healing of osteochondral defects, we include a particular mechanism representing the signaling molecules

in this feedback loop and their stimulative and suppressive influence on chondrocyte hypertrophy. We do not include

mechanobiological signals, known to influence bone resorption and remodelling as well as patterns of endochondral

ossification, even though they may play a role in the repair process. We also do not explicitly include chemotaxis

(directed motility). As with the model formulated in Campbell et al. (2019a,b), cell motility (assumed to occur

through diffusion) is modelled proportional to nutrient concentration, with cell proliferation and differentiation

ceasing when nutrient levels are low. At these levels, cell motility is the driving force of changing cell densities,

with cells migrating towards locations of higher nutrient concentration. We now develop a mathematical model for

the evolution of each species in time, t, and space, x, where x is measured along the depth of the defect (see Fig.

2b). Much of the model formulation follows from our previous models of chondral defect regeneration (Campbell

et al. (2019a,b); Lutianov et al. (2011)).

The variables in our model are three cell densities (chondrocyte density CC , mature (or hypertrophied) chon-

drocyte density CH and osteoblast density CB , all expressed as cells/mm3), four matrix densities (total matrix

density m, which is made up of cartilage matrix density mC , bone matrix density mB and calcified cartilage

density mCa, all expressed in g/mm3), the nutrient concentration n (moles/mm3) and three signaling molecules

(hypertrophy-inducing molecule concentration gHI , hypertrophy-suppressing molecule concentration gHS and hy-

pertrophy modulating molecule concentration gHM , all expressed in moles/mm3).

Osteochondral defect repair follows a sequential healing process, with the defect first filling entirely with cartilage,

before chondrocyte hypertrophy and eventual conversion into bone occurs (Lydon et al. (2019)). We focus here

on formulating the cartilage-to-calcified cartilage and calcified cartilage-to-bone transitions in the endochondral

ossification pathway and the role of signaling molecules, in particular PTHrP and Ihh, and other factors such as

cartilage matrix density mediating these. We assume three signaling molecules regulate these stages, represented

in the model by gHI , gHM , gHS . Here, we use gHI to represent a locally produced molecule that induces hypertro-

phy. Once hypertrophic chondrocytes are being produced, a modulating molecule gHM is released that acts as an

intermediate step within the signalling pathway. This factor gHM represents Ihh which stimulates chondrocytes to

produce a hypertrophy-suppressing signalling molecule gHS , representing effects similar to PTHrP, and suppressing

hypertrophy by keeping chondrocytes proliferating (Kerkhofs et al. (2012)). Figure 3 shows a schematic of the

signalling feedback loop.

We also include a local regulator that allows chondrocytes to switch from a proliferative to a hypertrophic state,

namely the critical cartilage density mC,crit. Once mC,crit is reached, cartilage can begin conversion into calcified

matrix which is subsequently remodelled to bone as seen in bone fracture healing (Carlier et al. (2016); Geris et al.

(2008)). This conversion of cartilage to calcified matrix can only occur at locations where mC reaches mC,crit by

allowing chondrocytes to convert from a proliferative to a hypertrophic state. Below we describe in detail how the

above mechanisms are incorporated in our model.
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Figure 3: Schematic of signaling molecule feedback loop of endochondral ossification with inducing (gHI), modulating (gHM ) and sup-

pressing signalling molecules (gHS). PTHrP and Ihh are the prototype suppressing and modulating signalling molecules, respectively,

whereas several candidates exist for the inducing molecule. Solid black lines with arrows indicate inducing and without arrows represent

inhibiting. CC and CH represent chondrocytes and hypertrophic chondrocytes, respectively.

Chondrocytes proliferate by uptake of nutrients, they can migrate and can undergo hypertrophy. Based on these

processes, the rate of change of chondrocyte density is modelled as:

∂CC

∂t
=

∂

∂x

(
DCC

(m)
∂CC

∂x

)
+ p5

(
m,

CC

CC,max(m)

)
CC

n

n+ n0
H (n− n1)

− p6CCH (gHI − gHI0
)H (gHS0

− gHS)H (mC −mC,crit)− p7CcH (n1 − n) .

(1)

The first term on the right of Eq. (1) represents random chondrocyte migration, modelled as a diffusion process,

with an effective chondrocyte diffusion coefficient, DCC
. This coefficient is assumed to depend on the total matrix

density, m, where m = mC +mB +mCa. This is based on the argument that cells can only migrate by attaching

to a substrate (in this case, matrix). We use a density-weighted formula for the effective chondrocyte diffusion

coefficient, DCC
, based on the diffusivity through cartilage, DCC,C

, calcified cartilage, DCC,Ca
, and bone matrix,

DCC,B
, using a mixtures rule (analogous to the total circuit resistance of parallel resistors in an electrical circuit).

We follow Olsen et al. (1997) and Bailón-Plaza and Vander Meulen (2001) in choosing expressions for DCC,C
, DCC,Ca

and DCC,B
.

1
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mB

m2
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mCa

m2
Ca +m2

Ca,1

(2)

where (DCC,C0
, DCC,B0

, DCC,Ca0
) are reference diffusion ratios of chondrocytes, cartilage, bone and calcified carti-

lage, respectively, and (mC,1,mB,1,mCa,1) are reference matrix densities. The exponent α ≥ 2 is chosen so that

we mimic the low motility of cells for the limiting cases when there is no cartilage (or bone) present and for large

cartilage (or bone) matrix densities.

The second term on the right of Eq. (1) represents chondrocyte proliferation. Cell proliferation is assumed to

be proportional to the chondrocyte density and the nutrient concentration. This process is assumed to start only

when the nutrient concentration exceeds a critical value, n1 (or, alternatively, cell proliferation is switched-off when
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the nutrient concentration falls below this critical value). This is modelled by the Heaviside function, H(n − n1),

which takes the unit value when n > n1 and zero otherwise. The chondrocyte proliferation rate is given by p5. The

proliferation rate is assumed to depend on both the chondrocyte and total matrix densities. We choose

p5

(
m,

CC

CC,max(m)

)
= p5,m

(
1− CC

CC,max(m)

)
1

p5,m(m)
=

(mCtot

m

)α 1

p5,C(mCtot
)
+

(mB

m

)α 1

p5,B(mB)
, α ≥ 2

p5,C(mCtot
) = p5,C0

mCtot

m2
Ctot

+m2
C,2

p5,B(mB) = p5,B0

mB

m2
B +m2

B,2

CC,max(m) = CC,max0

(
1− m

mmax

)
.

(3)

The dependence of p5 on the total matrix density is represented by p5,m(m). A density-weighted formula (similar

to the effective cell migration/diffusion coefficient) is used to model the effective proliferation rate based on the cell

proliferation rate in the presence of cartilage (represented by p5,C) and bone (represented by p5,B). The depen-

dence of (p5,C , p5,B) on the matrix density (mCtot
,mB) are chosen so that (p5,C , p5,B) = 0 when (mCtot

,mB) = 0,

(p5,C , p5,B) → 0 for large (mCtot ,mB) and (p5,C , p5,B) attain a maximum at some intermediate matrix density,

(mCtot ,mB) = (mC,2,mB,2). The coefficients, (p5,C0 , p5,B0), represent chondrocyte proliferation rates in the pres-

ence of cartilage and bone, respectively. We assume that p5,C depends on the total cartilage matrix density,

mCtot
= mC +mCa and not on the cartilage type, i.e., whether regular or calcified cartilage. The dependence of p5

on the chondrocyte density is assumed to follow a logistic growth model with the proliferation rate decreasing as

the chondrocyte density approaches its maximum value, CC,max. This maximum chondrocyte density is assumed to

decrease linearly with total matrix density, m, because the presence of matrix will limit the space for cells. CC,max0

is a reference maximum chondrocyte density.

The third term on the right of Eq. (1) models chondrocyte maturation (hypertrophic state). This is assumed to

be proportional to the chondrocyte density and is regulated by the hypertrophy-inducing and suppressing signaling

molecules gHI and gHS , respectively, and the critical cartilage density mC,crit. The maturation rate is p6 and

assumed constant. The dependence on these signaling molecule concentrations is modelled using the Heaviside

function, H(gHI − gHI0
) and H(gHS0

− gHS), where gHI0
and gHS0

are a threshold hypertrophy-inducing and

suppressing molecule concentration, respectively. The first Heaviside function promotes hypertrophy once the

hypertrophy-inducing signaling molecule concentration exceeds its threshold value, gHI0
, and the second suppresses

hypertrophy once the hypertrophy-suppressing signaling molecule concentration exceeds its threshold value, gHS0 .

The Heaviside function, H(mC −mC,crit), initiates chondrocyte hypertrophy only if mC > mC,crit at any location

in the defect.

The last term in Eq. (1) represents cell death due to lack of adequate nutrients. This process starts when the

nutrient concentration falls below the critical value, n1, and is modelled using the Heaviside function, H(n1 − n),

which takes the unit value when n < n1 and zero otherwise. The cell death rate is p7, and is assumed constant.
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The rate of change of mature hypertrophic chondrocyte density is modelled as:

∂CH

∂t
=

∂

∂x

(
DCH

(m)
∂CH

∂x

)
− p8CH + p6CCH (gHI − gHI0

)H (gHS0
− gHS)H (mC −mC,crit) , (4)

where DCH
is the migration (diffusion) coefficient and p8 is the death rate. We use similar expressions as in Eq.

(2) for

1

DCH
(m)

=
(mC

m

)α 1

DCH,C
(mC)

+
(mB

m

)α 1

DCH,B
(mB)

+
(mCa

m

)α 1

DCH,Ca
(mCa)

, α ≥ 2

DCH,C
(mC) = DCH,C0

mC

m2
C +m2

C,1

DCH,B
(mB) = DCH,B0

mB

m2
B +m2

B,1

DCH,Ca
(mCa) = DCH,Ca0

mCa

m2
Ca +m2

Ca,1

,

(5)

where (DCH,C0
, DCH,B0

, DCH,Ca0
) are reference diffusion rates of hypertrophic chondrocytes through cartilage, bone

and calcified cartilage, respectively. The last term in Eq. (4) models formation of hypertrophic chondrocytes

modulated by the hypertrophy-inducing and suppressing signaling molecule concentrations, and the critical cartilage

densiyt, mC,crit.

The rate of change of osteoblast density is modelled as:

∂CB

∂t
=

∂

∂x

(
DCB

(m)
∂CB

∂x

)
+ p9

(
m,

CB

CB,max(m)

)
CB

n

n+ n0
H (n− n1)

− p10CBH (n1 − n) ,

(6)

where DCB
is the osteoblast migration (diffusion) coefficient, p9 is the osteoblast proliferation rate and p10 is the

osteoblast death rate. We use similar expressions as in Eqs. (2,3,5) for the matrix-dependent osteoblast diffusion

and proliferation coefficients, given by

1

DCB
(m)

=
(mC

m

)α 1

DCB,C
(mC)

+
(mB

m

)α 1

DCB,B
(mB)

+
(mCa

m

)α 1

DCB,Ca
(mCa)

, α ≥ 2

DCB,C
(mC) = DCB,C0

mC

m2
C +m2

C,1

DCB,B
(mB) = DCB,B0

mB

m2
B +m2

B,1

DCB,Ca
(mCa) = DCB,Ca0

mCa

m2
Ca +m2

Ca,1

p9

(
m,

CB

CB,max(m)

)
= p9,m

(
1− CB

CB,max(m)

)
1

p9,m(m)
=

(mCtot

m

)α 1

p9,C(mCtot
)
+

(mB

m

)α 1

p9,B(mB)
, α ≥ 2

p9,C(mCtot
) = p9,C0

mCtot

m2
Ctot

+m2
C,2

p9,B(mB) = p9,B0

mB

m2
B +m2

B,2

CB,max(m) = CB,max0

(
1− m

mmax

)
,

(7)

where (DCB,C0
, DCB,B0

, DCB,Ca0
) are reference osteoblast migration rates through cartilage, bone and calcified

cartilage, respectively, and (p9,C0
, p9,B0

) are reference osteoblast proliferation rates in the presence of cartilage and

bone, respectively. The maximum osteoblast density, CB,max, is assumed to decrease linearly with total matrix

density, m. CB,max0
is a reference maximum osteoblast density. We choose the reference maximum stem cell, normal
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and mature chondrocyte and osteoblast densities, CS,max0 , CC,max0 , CH,max0 , CB,max0 , respectively, such that

CS,max0
+CC,max0

+CH,max0
+CB,max0

= Ctotal,max0
, where Ctotal,max0

is a reference maximum total cell density.

Hence, using the expressions for CS,max, CC,max and CB,max in Eqs. (2,7) gives, (CS,max+CC,max+CB,max)(m) =

(Ctotal,max0 − CH,max0)(1−m/mmax).

The rate of change of cartilage matrix density is modelled as:

∂mC

∂t
= DmC

∂2mC

∂x2
+ p11(mC)

n

n+ n0
CC − p12(mC)CH , (8)

where DmC
is the cartilage matrix diffusion coefficient (assumed constant), p11 is the cartilage matrix synthesis

rate and p12 is the rate of localized cartilage matrix degradation. We choose

p11(mC) = p110 − p111mC , (9)

where p110 is a cartilage matrix production rate and p111 is its degradation rate. This assumes that the cartilage

matrix synthesis rate decreases linearly with increasing cartilage matrix density (Olsen et al. (1997), Bailón-Plaza

and Vander Meulen (2001)). The last term in Eq. (8) models localized degradation of cartilage matrix and is

assumed to be proportional to the hypertrophic chondrocyte density. We choose

p12(mC) = p120mC , (10)

where p120 is a cartilage matrix degradation rate. This assumes that the degradation is proportional to the cartilage

matrix density. We allow cartilage degradation to occur once m̄C has reached the critical density mCcrit
and to

cease when mCa and mB have reached the maximum matrix density.

The rate of change of calcified cartilage matrix density is modelled as:

∂mCa

∂t
= p12(mC)CH − p20mCaCB . (11)

The first term on the right of Eq. (11) describes the formation of calcified cartilage as the cartilage matrix degrades

in the presence of hypertrophic chondrocytes. This term is switched on only whenmC has reached the critical density

mCcrit . The second term describes degradation of calcified cartilage matrix and is assumed to be proportional to its

density and the osteoblast density, and p20 the degradation rate. Here, we do not distinguish between osteoblasts

and osteoclasts which are responsible for converting calcified cartilage into bone.

The rate of change of bone matrix density is modelled as:

∂mB

∂t
= DmB

∂2mB

∂x2
+ p13(mB)

n

n+ n0
CB + p20mCaCB , (12)

where DmB
is the bone matrix diffusion coefficient (assumed constant) and p13 is the bone matrix synthesis rate.

We choose

p13(mB) = p130 − p131mB , (13)

where p130 is a bone matrix production rate and p131 is its degradation rate. The last term in Eq. (12) models

bone matrix formation from calcified cartilage matrix.
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The rate of change of hypertrophy-inducing signaling molecule concentration is modelled as:

∂gHI

∂t
= DgHI

∂2gHI

∂x2
− p25gHI , (14)

where DgHI
is the hypertrophy-inducing signaling molecule diffusion coefficient (assumed constant) and p25 is the

rate of degradation (assumed constant).

The rate of change of hypertrophy-suppressing signaling molecule concentration is modelled as:

∂gHS

∂t
= DgHS

∂2gHS

∂x2
+ p21CCH (x− 90%d) + p15gHMCCH (x− 90%d) − p22gHS , (15)

where DgHS
is the hypertrophy-suppressing signaling molecule diffusion coefficient (assumed constant), p21 is the

production rate by surface chondrocytes, p15 represents its production rate, and p22 is the degradation rate (assumed

constant). The second term in Eq. (15) models the production of a hypertrophy-suppressing signalling molecule

from chondrocytes and is assumed to be proportional to the chondrocyte density. We assume here that this signalling

molecule is produced only by the chondrocytes at the upper 10% of the defect (denoted by x = 90%d). The third

term models the production of hypertrophy-suppressing signalling molecule via the stimulation of chondrocytes

by the hypertrophy-modulating signalling molecule, and is assumed to be proportional to hypertrophy-modulating

signalling molecule concentration and the chondrocyte density (only chondrocytes in the upper 10% of the de-

fect). The fourth term represents the degradation of this signalling molecule (assumed to be proportional to the

hypertrophy-suppressing signalling molecule concentration).

The rate of change of hypertrophy-modulating signalling molecule concentration is modelled as:

∂gHM

∂t
= DgHM

∂2gHM

∂x2
+ p23CH − p26gHM , (16)

where DgHM
is the hypertrophy-modulating signalling molecule diffusion coefficient (assumed constant), p23 is the

production rate by hypertrophic chondrocytes, and p26 represents its degradation rate (assumed constant). The

production of the hypertrophy-modulating molecule is assumed to be proportional to the hypertrophic chondrocyte

density (second term in Eq. (16)).

Finally, the rate of change of nutrient concentration is modelled as

∂n

∂t
= Dn

∂2n

∂x2
− n

n+ n0
(p17CC + p18CB + p19CH) , (17)

where Dn is the nutrient diffusion coefficient (assumed constant), p17, p18 and p19 represent the nutrient uptake

rate by chondrocytes, osteoblasts and mature chondrocytes, respectively (assumed constant).

2.2. Boundary conditions

We need to specify two boundary conditions for each species (except mCa, which does not require spatial boundary

conditions). These are specified at either end of the defect domain. We assume x = 0 at the subchondral bone

interface (“base” of the defect) and x = d at the interface with the opposing normal cartilage (“top” of the defect,

see Fig. 2b). The boundary conditions chosen at x = 0 are:

−DCC
(m)

∂CC

∂x
= −DCH

(m)
∂CH

∂x
= −DmC

∂mC

∂x
= −DmB

∂mB

∂x
= 0

CB = CB0
n = N0 gHI = gHI1

gHS = gHS1
gHM = gHM1

(18)
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The first four boundary conditions represent no flux of chondrocytes, hypertrophic chondrocytes, cartilage matrix

and osteoblasts from the subchondral bone. We assume that a reservoir of osteoblasts from the underlying intact

bone, with uniform cell density, CB0
, and nutrients from the underlying vascular network, with uniform concen-

tration, N0, are always available at this end. This is represented by the sixth and seventh boundary conditions,

respectively. The last three boundary conditions represent a constant supply of hypertrophy-inducing, suppressing

and modulating signalling molecules from the underlying vascular network, with uniform concentration, gHI1
, gHS1

and gHM1
, respectively.

At x = d, we impose:

−DCC
(m)

∂CC

∂x
= −DCB

(m)
∂CB

∂x
= −DCH

(m)
∂CH

∂x
= −DmC

∂mC

∂x
= −DmB

∂mB

∂x
= 0

n = N1 gHI = gHI2
−DgHS

∂gHS

∂x
= γ1(gHS − gHS2

) −DgHM

∂gHM

∂x
= γ2(gHM − gHM2

)

(19)

The first four boundary conditions represent no flux of chondrocytes, osteoblasts, hypertrophic chondrocytes and

matrix, respectively, from the normal cartilage interface. We assume that a reservoir of nutrients with uniform

concentration, N1, is always available at this end. A constant supply of hypertrophy-inducing signalling molecule,

with uniform concentration, gHI2 is available at this boundary. We allow the hypertrophy-suppressing and mod-

ulating molecules to permeate (diffuse) through this boundary, represented by the eight and ninth boundary con-

ditions, respectively, with the diffusive flux proportional to the signalling molecule concentration, and constant of

proportionality γ1,2, respectively (assumed constant). Here, gHS2,HM2
represent the concentrations of the hypertro-

phy-suppressing and modulating signalling molecules in the overlying articular cartilage (assumed constant)

2.3. Initial conditions

We need to prescribe profiles for each species at time t = 0. We are interested in one implantation scenario, related

to Autologous Chondrocyte Implantation (ACI). Initially, chondrocytes are implanted into a nutrient-filled defect

with a small amount of matrix present. The initial conditions chosen for this case are:

CC = C
(0)
C h(x) CB = CB0h1(x) CH = 0 n = N0 − (N0 −N1)

x

d
mC = mC,3

mB = mB,3 mCa = 0 gHI = gHI1
− (gHI1

− gHI2
)
x

d
gHS = gHS1

gHM = gHM1

(20)

Here, C
(0)
C , h(x) and h1(x) are an initial chondrocyte density, and specified initial spatial profiles for chondrocytes

and osteoblasts, respectively.

There are several parameters appearing in the model. Their estimated values and the references from which they

are obtained are provided in Table 1. All approximated parameters are disclosed in this table and references are

provided where available.

dimensional parameters estimated value

defect depth d 3-5 mm - 1-2 mm cartilage, 2-3 mm bone (Ahern et al. (2009) for sheep)
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maximum chondrocyte migration (or diffusion) 3.6 × 10−4 mm2/hr

coefficient in cartilage, DCC,C
Obradovic et al. (2000), in silico

maximum chondrocyte migration (or diffusion) 3.6 × 10−4 mm2/hr

coefficient in bone, DCC,B
(assumed same as DCC,C

)

maximum chondrocyte migration (or diffusion) 3.6 × 10−4 mm2/hr

coefficient in calcified cartilage, DCC,Ca
(assumed same as DCC,C

)

maximum mature chondrocyte migration (or diffusion) 10−5 mm2/hr (guess)

coefficient in cartilage, DCH,C

maximum mature chondrocyte migration (or diffusion) 10−5 mm2/hr (assumed same as DCH,C
)

coefficient in bone, DCH,B

maximum mature chondrocyte migration (or diffusion) 10−5 mm2/hr (assumed same as DCH,C
)

coefficient in calcified cartilage, DCH,Ca

maximum osteoblast migration (or diffusion) 10−6 - 10−5 mm2/hr (guess)

coefficient in cartilage, DCB,C

maximum osteoblast migration (or diffusion) 10−4 - 10−3 mm2/hr (guess)

coefficient in bone, DCB,B

maximum osteoblast migration (or diffusion) 10−4 - 10−3 mm2/hr (guess)

coefficient in calcified cartilage, DCB,Ca

chondrocyte migration (or diffusion) 7.2 × 10−9 (mm2/hr) (g/mm3)

coefficient, DCC,C0
= 2mC,1DCC,C

(assuming mC,1 = 10−5 g/mm3 )

chondrocyte migration (or diffusion) 7.2 × 10−9 (mm2/hr) (g/mm3)

coefficient, DCC,B0
= 2mB,1DCC,B

(assuming mB,1 = 10−5 g/mm3 )

chondrocyte migration (or diffusion) 7.2 × 10−9 (mm2/hr) (g/mm3)

coefficient, DCC,Ca0
= 2mCa,1DCC,Ca

(assuming mCa,1 = 10−5 g/mm3 )

mature chondrocyte migration (or diffusion) 10−10 (mm2/hr) (g/mm3)

coefficient, DCH,C0
= 2mC,1DCH,C

(assuming mC,1 = 10−5 g/mm3 )

mature chondrocyte migration (or diffusion) 10−10 (mm2/hr) (g/mm3)

coefficient, DCH,B0
= 2mB,1DCH,B

(assuming mB,1 = 10−5 g/mm3 )

mature chondrocyte migration (or diffusion) 10−10 (mm2/hr) (g/mm3)

coefficient, DCH,Ca0
= 2mCa,1DCH,Ca

(assuming mCa,1 = 10−5 g/mm3 )

osteoblast migration (or diffusion) 10−11 - 10−10 (mm2/hr) (g/mm3)

coefficient, DCB,C0
= 2mC,1DCB,C

(assuming mC,1 = 10−5 g/mm3 )

osteoblast migration (or diffusion) 10−9 (mm2/hr) (g/mm3)

coefficient, DCB,B0
= 2mB,1DCB,B

(assuming mB,1 = 10−5 g/mm3 )

osteoblast migration (or diffusion) 10−9 (mm2/hr) (g/mm3)

coefficient, DCB,Ca0
= 2mCa,1DCB,Ca

(assuming mCa,1 = 10−5 g/mm3 )
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nutrient diffusion coefficient, Dn 4.6 mm2/hr Zhou et al. (2004), mathematical model

cartilage matrix diffusion coefficient, DmC
0-2.5 × 10−5 mm2/hr Obradovic et al. (2000), in silico

bone matrix diffusion coefficient, DmB
0-10−6 mm2/hr (guess)

hypertrophy-inducing signalling molecule 0.8 mm2/hr Williams et al. (2007), in vitro, in vivo

diffusion coefficient, DgHI

hypertrophy-suppressing signalling molecule 0.18 mm2/hr Fasano et al. (2010), mathematical model,

diffusion coefficient, DgHS
in vivo

hypertrophy-modulating signalling molecule 0.18 mm2/hr Fasano et al. (2010), mathematical model,

diffusion coefficient, DgHM
in vivo

maximum chondrocyte proliferation rate in cartilage, p5,C 2 × 10−4/hr (guess)

maximum chondrocyte proliferation rate in bone, p5,B 2 × 10−4/hr (assumed same as p5,C)

chondrocyte proliferation rate, p5C,0
= 2mC,2p5,C 4 × 10−9 g/mm3/hr (assuming mC,2 = 10−5 g/mm3 )

chondrocyte proliferation rate, p5B,0
= 2mB,2p5,B 4 × 10−9 g/mm3/hr (assuming mB,2 = 10−5 g/mm3 )

chondrocyte hypertrophic differentiation rate, p6 2 × 10−2/hr Wilsman et al. (1996), in vivo

chondrocyte death rate, p7 3.75 × 10−3/hr (guess)

mature chondrocyte death rate, p8 6 × 10−3/hr Wilsman et al. (1996), in vivo

maximum osteoblast proliferation rate in cartilage, p9,C (10−3-10−2)/hr (guess)

maximum osteoblast proliferation rate in bone, p9,B (10−3-10−2)/hr (assumed same as p9,C)

osteoblast proliferation rate, p9,C0
= 2mC,2p9,C 2 × (10−8-10−7) g/mm3/hr

(assuming mC,2 = 10−5 g/mm3 )

osteoblast proliferation rate, p9,B0
= 2mB,2p9,B 2 × (10−8-10−7) g/mm3/hr

(assuming mB,2 = 10−5 g/mm3 )

osteoblast death rate, p10 10−3/hr (guess)

cartilage matrix production rate, p110 3.75 × 10−13(g/mm3)/((NC/mm3) hr)

Obradovic et al. (2000), in silico

cartilage matrix degradation rate, p111 3.75 × 10−9/((NC/mm3) hr) Obradovic et al. (2000),

in silico

cartilage matrix degradation rate by 4 × 10−5 /((NC/mm3) hr) Wilsman et al. (1996), in vivo

hypertrophic chondrocytes, p120

bone matrix production rate, p130 5 × 10−12 (g/mm3)/((NC/mm3) hr)

bone matrix degradation rate, p131 10−12/((NC/mm3) hr) (guess)

nutrient uptake rate by chondrocytes, p17 1.5 × 10−14 mol/(NC hr) Zhou et al. (2004),

mathematical model

nutrient uptake rate by osteoblasts, p18 1.5 × 10−14 mol/(NC hr) (assumed same as p17)

nutrient uptake rate by mature chondrocytes, p19 1.5 × 10−14 mol/(NC hr) (assumed same as p17)

calcified cartilage matrix degradation rate, p20 8 × (10−3-10−2)/((NC/mm3) hr)
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Bailón-Plaza and Vander Meulen (2001), mathematical model

hypertrophy-inducing signalling molecule 5.78× 10−2 /hr (assuming half-life 12 hours,

degradation rate, p25 Rayon et al. (2020))

hypertrophy-suppressing signalling molecule 3.3× 10−22 mol/(NC hr) Garzón-Alvarado et al. (2009),

production rate by surface chondrocytes, p21 mathematical model

hypertrophy-suppressing signalling molecule 10−6/((NC/mm3) hr) (guess)

production rate by proliferating chondrocytes, p15

hypertrophy-suppressing signalling molecule 5.78× 10−2 /hr (assuming half-life 12 hours,

degradation rate, p22 Rayon et al. (2020))

hypertrophy-modulating signalling molecule 2.6× 10−21 mol/(NC hr) Garzón-Alvarado et al. (2009)

production rate, p23 mathematical model

hypertrophy-modulating signalling molecule 5.78× 10−2 /hr (assuming half-life 12 hours,

degradation rate, p26 Rayon et al. (2020))

maximum total cell density, Ctotal,max0
106 NC/mm3 (assuming 10µm cell diameter)

maximum chondrocyte density, CC,max0
0− 106 NC/mm3

maximum mature chondrocyte density, CH,max0 0− 106 NC/mm3

maximum osteoblast density, CB,max0 0− 106 NC/mm3

maximum cartilage matrix density, 10−4 g/mm3

mC,max Bailón-Plaza and Vander Meulen (2001), mathematical model

maximum bone matrix density, mB,max 1× 10−3 g/mm3 (based on density of cortical bone)

maximum calcified cartilage matrix density, mCa,max (1− 2)× 10−3 g/mm3

(assumed same as mB,max)

maximum matrix density, (2.1− 4.1)× 10−3 g/mm3

mmax = mC,max +mB,max +mCa,max

maximum total cartilage matrix density, (1.1− 2.1)× 10−3 g/mm3

mCtot,max
= mC,max +mCa,max

initial chondrocyte cell density, C
(0)
C 2.5× 105 NC/mm3 (based on 106 cells in

20mm x 20mm x 10µm volume)

reference cartilage matrix density, mC,1 10−5 g/mm3 (assumed mmax/100)

intermediate cartilage matrix density, mC,2 10−5 g/mm3 (assumed mmax/100)

reference calcified cartilage density, mCa,1 10−5 g/mm3 (assumed mmax/100)

reference bone matrix density, mB,1 10−5 g/mm3 (assumed mmax/100)

intermediate bone matrix density, mB,2 10−5 g/mm3 (assumed mmax/100)

initial cartilage/bone matrix density, mC,3,mB,3 10−8 g/mm3 (assumed mmax/10
5)

initial nutrient concentration, N1 (2.85 - 9.5) × 10−11 mol/mm3 (3-10% oxygen tension)

Zhou et al. (2004), mathematical model

initial nutrient concentration, N0 9.5 × 10−11 mol/mm3 (Kiaer et al. (1989), human
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threshold nutrient concentration, n0 2.3× 10−11 mol/mm3 Zhou et al. (2004),

mathematical model

critical nutrient concentration, n1 9.5× 10−12 mol/mm3 (assumed N0/10)

threshold hypertrophy-inducing signalling molecule (0.5− 1)× 10−15 mol/mm3

concentration, gHI0

threshold hypertrophy-suppressing signalling molecule 40× 10−18 mol/mm3 (guess)

concentration, gHS0

initial hypertrophy-inducing signalling molecule 2× 10−15 mol/mm3 Rovensky et al. (2005)

concentration, gHI1

initial hypertrophy-inducing signalling molecule 2× 10−15 mol/mm3 Rovensky et al. (2005)

concentration, gHI2

hypertrophy-suppressing signalling molecule 2× 10−18 mol/mm3 Okano et al. (1995)

concentration, gHS1

hypertrophy-suppressing signalling molecule 2× 10−18 mol/mm3 Okano et al. (1995)

concentration, gHS2

hypertrophy-modulating signalling molecule 3× 10−16 mol/mm3 Zhang et al. (2014)

concentration, gHM1

hypertrophy-modulating signalling molecule 3× 10−16 mol/mm3 Zhang et al. (2014)

concentration, gHM2

initial osteoblast cell density, CB0
9 × 103 NC/mm3 Martin and Burr (1984), human

hypertrophy-suppressing signalling molecule 0 mm/hr (no flux - guess)

flux parameter, γ1

hypertrophy-modulating signalling molecule 0 mm/hr (no flux - guess)

flux parameter, γ2

critical cartilage density, mC,crit 95% mC,max

Table 1: Estimated values of dimensional parameters. In the above,

NC represents number of cells.

3. Non-dimensionalisation of model equations, boundary and initial conditions

It is instructive to non-dimensionalise (make dimensionless) the above equations, boundary and initial conditions.

One can then compare (or measure) the variables against their corresponding characteristic quantities. We introduce
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the following dimensionless variables based on characteristic quantities for each variable:

x̄ = x/d t̄ = t(p110Ctotal,max0
/mC,max) (C̄C , C̄H , C̄B) = (CC , CH , CB)/Ctotal,max0

(m̄, m̄C , m̄Ca, m̄B , m̄Ctot
) = (m/mmax,mC/mC,max,mCa/mCa,max,mB/mB,max,mCtot

/mCtot,max
)

n̄ = n/N1 ḡHI = gHI/gHI1 ḡHM = gHM/gHM1 ḡHS = gHS/gHS1 ,

(21)

where the overbars represent dimensionless quantities. The characteristic quantities used to measure the spatial

variable, x, cell densities, matrix densities, nutrient concentration and the hypertrophy-inducing, suppressing and

modulating signalling molecule concentrations are the defect depth, d, the reference maximum total cell density,

Ctotal,max0
, the maximum cartilage and bone matrix densities, mC,max, mCa,max, mB,max, respectively, the total

matrix density, mmax = mC,max +mCa,max +mB,max, the total cartilage matrix density, mCtotal,max = mC,max +

mCa,max, the initial nutrient concentration at x = d, N1, and the initial hypertrophy-inducing, suppressing and

modulating signalling molecule concentrations at x = 0, gHI1
, gHS1

and gHM1
, respectively. We choose to measure

time, t, based on the cartilage matrix production time scale, mC,max/(p110Ctotal,max0
). Using the parameter values

in Table 1, we estimate this time scale to be approximately 11 days (a unit of time corresponds to approximately

11 days).

Using the above dimensionless variables, the non-dimensional equations can be written as:

∂C̄C

∂t̄
=

∂

∂x̄

(
D̄CC

(m̄)
∂C̄C

∂x̄

)
+ p̄5

(
m̄,

C̄C

C̄C,max(m̄)

)
n̄

n̄+ n̄0
C̄CH(n̄− n̄1)

− p̄6C̄CH(ḡHI − ḡHI0
)H(ḡHS0

− ḡHS)H(m̄C − m̄C,crit)− p̄7C̄CH(n̄1 − n̄) (22a)

∂C̄H

∂t̄
=

∂

∂x̄

(
D̄CH

(m̄)
∂C̄H

∂x̄

)
+ p̄6C̄CH(ḡHI − ḡHI0

)H(ḡHS0
− ḡHS)H(m̄C − m̄C,crit)− p̄8C̄H (22b)

∂C̄B

∂t̄
=

∂

∂x̄

(
D̄CB

(m̄)
∂C̄B

∂x̄

)
+ p̄9

(
m̄,

C̄B

C̄B,max(m̄)

)
n̄

n̄+ n̄0
C̄BH(n̄− n̄1)− p̄10C̄BH(n̄1 − n̄) (22c)

∂m̄C

∂t̄
= D̄mC

∂2m̄C

∂x̄2
+ p̄11(m̄)

n̄

n̄+ n̄0
C̄C − p̄12(m̄C)C̄H (22d)

∂m̄Ca

∂t̄
=

p̄12
Γ1

(m̄C)C̄H − p̄20m̄CaC̄B (22e)

∂m̄B

∂t̄
= D̄mB

∂2m̄B

∂x̄2
+ p̄13(m̄)

n̄

n̄+ n̄0
C̄B + p̄20

Γ1

Γ
m̄CaC̄B (22f)

∂ḡHI

∂t̄
= D̄gHI

∂2ḡHI

∂x̄2
− p̄25ḡHI (22g)

∂ḡHS

∂t̄
= D̄gHS

∂2ḡHS

∂x̄2
+

(
p̄21C̄C + p̄15ḡHM C̄C

)
H (x̄− 0.9) − p̄22ḡHS (22h)

∂ḡHM

∂t̄
= D̄gHM

∂2ḡHM

∂x̄2
+ p̄23C̄H − p̄26ḡHM (22i)

∂n̄

∂t̄
= D̄n

∂2n̄

∂x̄2
− n̄

n̄+ n̄0

(
p̄17C̄C + p̄18C̄B + p̄19C̄H

)
, (22j)
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where

p̄5

(
m̄,

C̄C

C̄C,max(m̄)

)
= p̄5,m(m̄)

(
1− C̄C

C̄C,max(m̄)

)
C̄C,max(m̄) = C̄C,max0

(1− m̄)

1

p̄5,m(m̄)
= (β + ϵ)α

(m̄Ctotal

m̄

)α 1

p̄5,C(m̄Ctotal
)
+ ηα

(m̄B

m̄

)α 1

p̄5,B(m̄B)
, α ≥ 2

p̄5,C(m̄Ctotal
) = p̄5,C0

m̄Ctotal

m̄2
Ctotal

+ m̄2
C,2

p̄5,B(m̄B) = p̄5,B0

m̄B

m̄2
B + m̄2

B,2

p̄9

(
m̄,

C̄B

C̄B,max(m̄)

)
= p̄9,m(m̄)

(
1− C̄B

C̄B,max(m̄)

)
C̄B,max(m̄) = C̄B,max0

(1− m̄)

1

p̄9,m(m̄)
= (β + ϵ)α

(m̄Ctotal

m̄

)α 1

p̄9,C(m̄Ctotal
)
+ ηα

(m̄B

m̄

)α 1

p̄9,B(m̄B)
, α ≥ 2

p̄9,C(m̄Ctotal
) = p̄9,C0

m̄Ctotal

m̄2
Ctotal

+ m̄2
C,2

p̄9,B(m̄B) = p̄9,B0

m̄B

m̄2
B + m̄2

B,2

p̄11(m̄C) = 1− p̄111m̄C p̄12(m̄C) = p̄120m̄C p̄13(m̄B) = p̄130 − p̄131m̄B

D̄CC,C
(m̄C) = D̄CC,C0

m̄C

m̄2
C + m̄2

C,1

D̄CC,B
(m̄B) = D̄CC,B0

m̄B

m̄2
B + m̄2

B,1

D̄CC,Ca
(m̄Ca) = D̄CC,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

1

D̄CH
(m̄)

= βα
(m̄C

m̄

)α 1

D̄CH,C
(m̄C)

+ ηα
(m̄B

m̄

)α 1

D̄CH,B
(m̄B)

+ ϵα
(m̄Ca

m̄

)α 1

D̄CH,Ca
(m̄Ca)

D̄CH,C
(m̄C) = D̄CH,C0

m̄C

m̄2
C + m̄2

C,1

D̄CH,B
(m̄B) = D̄CH,B0

m̄B

m̄2
B + m̄2

B,1

D̄CH,Ca
(m̄Ca) = D̄CH,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

1

D̄CB
(m̄)

= βα
(m̄C

m̄

)α 1

D̄CB,C
(m̄C)

+ ηα
(m̄B

m̄

)α 1

D̄CB,B
(m̄B)

+ ϵα
(m̄Ca

m̄

)α 1

D̄CB,Ca
(m̄Ca)

D̄CB,C
(m̄C) = D̄CB,C0

m̄C

m̄2
C + m̄2

C,1

D̄CB,B
(m̄B) = D̄CB,B0

m̄B

m̄2
B + m̄2

B,1

D̄CB,Ca
(m̄Ca) = D̄CB,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

C̄C,max0 + C̄B,max0 = 1− C̄H,max0

(23)
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The non-dimensional boundary and initial conditions are:

− D̄CC
(m̄)

∂C̄C

∂x̄
= −D̄CH

(m̄)
∂C̄H

∂x̄
= −D̄mC

∂m̄C

∂x̄
= −D̄mB

∂m̄B

∂x̄
= 0 (24a)

C̄B = C̄B0
n̄ = N̄0 ḡHI = 1 ḡHS = ḡHM = 1 at x̄ = 0

− D̄CC
(m̄)

∂C̄C

∂x̄
= −D̄CH

(m̄)
∂C̄H

∂x̄
= −D̄CB

(m̄)
∂C̄C

∂x̄
= −D̄mC

∂m̄C

∂x̄
= −D̄mB

∂m̄B

∂x̄
= 0 (24b)

n̄ = 1 ḡHI = ḡHI2
− D̄gHS

∂ḡHS

∂x̄
= γ̄1(ḡHS − ḡHS2

)

−D̄gHM

∂ḡHM

∂x̄
= γ̄2(ḡHM − ḡHM2

) at x̄ = 1

C̄C = C̄
(0)
C h̄(x̄) C̄B = C̄B0

h̄1(x̄) C̄H = 0 (24c)

n̄ = N̄0 − (N̄0 − 1)x̄ m̄C = m̄C,3 m̄B = m̄B,3 m̄Ca = 0

ḡHI = 1− (1− ḡHI2
)x̄ ḡHS = ḡHM = 1 at t̄ = 0.

The dimensionless parameters and their estimated values are provided in Table 2.

dimensionless parameters estimated value

chondrocyte migration (or diffusion) D̄CC,C0
= DCC,C0

/(p110Ctotal,max0
d2) 10−3

coefficient (cartilage)

chondrocyte migration (or diffusion) D̄CC,B0
= DCC,B0

/(p110Ctotal,max0
d2Γ) 10−3

coefficient (bone)

chondrocyte migration (or diffusion) D̄CC,Ca0
= DCC,Ca0

/(p110Ctotal,max0
d2Γ1) 10−3

coefficient (calcified cartilage)

hypertrophic chondrocyte migration D̄CH,C0
= DCH,C0

/(p110Ctotal,max0
d2) 10−5

(or diffusion) coefficient (cartilage)

hypertrophic chondrocyte migration D̄CH,B0
= DCH,B0

/(p110Ctotal,max0
d2Γ) 10−5

(or diffusion) coefficient (bone)

hypertrophic chondrocyte migration D̄CH,Ca0
= DCH,Ca0

/(p110Ctotal,max0
d2Γ1) 10−5

(or diffusion) coefficient (calcified cartilage)

osteoblast migration (or diffusion) D̄CB,C0
= DCB,C0

/(p110Ctotal,max0
d2) 10−6

coefficient (cartilage)

osteoblast migration (or diffusion) D̄CB,B0
= DCB,B0

/(p110Ctotal,max0
d2Γ) 10−4

coefficient (bone)

osteoblast migration (or diffusion) D̄CB,Ca0
= DCB,Ca0

/(p110Ctotal,max0
d2Γ1) 10−4

coefficient (calcified cartilage)

cartilage matrix diffusion D̄mC
= DmC

mC,max/(p110Ctotal,max0
d2) 10−3
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coefficient

bone matrix diffusion D̄mB
= DmB

mC,max/(p110Ctotal,max0
d2) 10−5

coefficient

nutrient diffusion D̄n = DnmC,max/(p110Ctotal,max0
d2) 100

coefficient

hypertrophy-inducing signalling D̄gHI
= DgHI

mC,max/(p110Ctotal,max0
d2) 2

molecule diffusion coefficient

hypertrophy-suppressing signalling D̄gHS
= DgHS

mC,max/(p110Ctotal,max0
d2) 0.5

molecule diffusion coefficient

hypertrophy-modulating signalling D̄gHM
= DgHM

mC,max/(p110Ctotal,max0
d2) 0.5

molecule diffusion coefficient

chondrocyte proliferation rate (cartilage) p̄5,C0
= p5,C0

/(p110Ctotal,max0
/τ) 10−3

chondrocyte proliferation rate (bone) p̄5,B0
= p5,B0

/(p110Ctotal,max0
Γ) 10−3

chondrocyte hypertrophic p̄6 = p6mC,max/(p110Ctotal,max0) 5

differentiation rate

chondrocyte death rate p̄7 = p7mC,max/(p110Ctotal,max0) 1

hypertrophic chondrocyte p̄8 = p8mC,max/(p110Ctotal,max0) 1.6

death rate

osteoblast proliferation rate (cartilage) p̄9,C0 = p9,C0/(p110Ctotal,max0/τ) 5.3× 10−2

osteoblast proliferation rate (bone) p̄9,B0
= p9,B0

/(p110Ctotal,max0
Γ) 5.3× 10−2

osteoblast death rate p̄10 = p10mC,max/(p110Ctotal,max0
) 0.2

cartilage matrix degradation rate p̄111 = p111mC,max/p110 1

cartilage matrix degradation rate p̄120 = p120mC,max/p110 104

bone matrix production rate p̄130 = p130/(p110η) 13

bone matrix degradation rate p̄131 = p131mC,max/p110 3× 10−4

nutrient uptake rate by chondrocytes p̄17 = p17mC,max/(p110N1) 104

nutrient uptake rate by osteoblasts p̄18 = p18mC,max/(p110N1) 104

nutrient uptake rate by hypertrophic p̄19 = p19mC,max/(p110N1) 104

chondrocytes

calcified cartilage matrix p̄20 = p20mC,max/p110 105

degradation rate

hypertrophy-suppressing signalling molecule p̄21 = p21mC,max/(p110gHS1
) 4× 104

production rate by surface chondrocytes

hypertrophy-suppressing signalling molecule p̄15 = p15mC,maxgHM1
/(p110gHS1

) 4× 104

production rate by hypertrophy-modulating

signalling molecule

hypertrophy-suppressing signalling molecule p̄22 = p22mC,max/(p110Ctotal,max0
) 15.47
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degradation rate

hypertrophy-modulating signalling molecule p̄23 = p23mC,max/(p110gHM1
) 2.3× 103

production rate by hypertrophic chondrocytes

hypertrophy-modulating signalling molecule p̄26 = p26mC,max/(p110Ctotal,max0
) 15.47

degradation rate

hypertrophy-inducing signalling molecule p̄25 = p25mC,max/(p110Ctotal,max0
) 15.47

degradation rate

maximum mature chondrocyte density C̄H,max0
= CH,max0

/Ctotal,max0
0-1

maximum osteoblast density C̄B,max0
= CB,max0

/Ctotal,max0
0-1

initial chondrocyte density C̄
(0)
C = C

(0)
C /Ctotal,max0 0.25

initial nutrient concentration N̄0 = N0/N1 1-3

threshold nutrient concentration n̄0 = n0/N1 0.24-0.81

critical nutrient concentration n̄1 = n1/N1 0.1

reference cartilage matrix density m̄C,1 = mC,1/mC,max 0.1

intermediate cartilage matrix density m̄C,2 = mC,2/mCtot,max 0.1

reference calcified cartilage density m̄Ca,1 = mCa,1/mCa,max 0.1

reference bone matrix density m̄B,1 = mB,1/mB,max 10−2

intermediate bone matrix density m̄B,2 = mB,2/mB,max 10−2

initial cartilage matrix density m̄C,3 = mC,3/mC,max 10−5

initial bone matrix density m̄B,3 = mB,3/mB,max 10−5

threshold hypertrophy-inducing signalling ḡHI0
= gHI0

/gHI1
0.5

molecule concentration

threshold hypertrophy-suppressing signalling ḡHS0
= gHS0

/gHS1
20

molecule concentration

initial hypertrophy-inducing signalling molecule ḡHI2
= gHI2

/gHI1
1

concentration

hypertrophy-suppressing signalling molecule ḡHS2
= gHS2

/gHS1
1

concentration

hypertrophy-modulating signalling molecule ḡHM2
= gHM2

/gHM1
1

concentration

initial osteoblast density C̄B0
= CB0

/Ctotal,max0
10−2

maximum cartilage matrix density β = mC,max/mmax 0.1

maximum bone matrix density η = mB,max/mmax 1

maximum calcified matrix density ϵ = mCa,max/mmax 1

ratio maximum bone to cartilage density Γ = mB,max/mC,max 10

ratio maximum calcified cartilage to cartilage density Γ1 = mCa,max/mC,max 10

ratio maximum calcified cartilage τ = mCa,max/mCtot,max
1
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to total cartilage density

exponent α 2

hypertrophy-suppressing signalling γ̄1 = γ1d/DgHS
0

molecule flux parameter

hypertrophy-modulating signalling γ̄2 = γ2d/DgHM
0

molecule flux parameter

critical cartilage matrix density m̄C,crit/mC,max 0.95

Table 2: Estimated values of dimensionless parameters.

3.1. Implementation and simulated case

We use a second order accurate finite-difference discretisation scheme to discretise the spatial variable x in Eqs.

22-24, keeping the time derivative t continuous. The resulting ordinary differential equations are solved in MATLAB

(Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United States) using the stiff ODE solver ode15s.

The time step was controlled within the solver to maintain the stability of the numerical solutions. The accuracy

and convergence of the numerical scheme are formally checked by systematically reducing the mesh size ∆x and

measuring the error in the solution. Based on this, we choose the mesh size ∆x = 5× 10−3 (200 mesh points) to

present the numerical solutions below. We confirm that for this choice of ∆x the solutions are an accurate reflection

of the evolution process and also practical with respect to the computational time taken to run simulations to time

equivalent to 48 months.

The dimensionless parameters and their estimated baseline values are provided in Table 2. Initially we have a

population of chondrocytes, C̄
(0)
C , implanted at the base of the defect at the subchondral bone interface (x̄ = 0),

corresponding to an ACI procedure (Lutianov et al. (2011); Campbell et al. (2019a,b)). The initial chondrocyte

cell density spatial profile is C̄C(x, 0) = C̄
(0)
C [1− tanh(A(x̄− x̄0))]/2, with A = 104 and x̄0 = 0.1. We also include

an initial population of bone cells, C̄B0 , assumed to be constant at the subchondral bone interface. The bone cell

density spatial profile is C̄B(x, 0) = C̄B0 [1− tanh(A(x̄− x̄1))]/2, with A = 104 and x̄1 = 10−3. Dimensionally, this

corresponds to a chondrocyte density, 2.5× 105 cells/mm3, seeded within a region of thickness 500µm near x = 0,

and zero everywhere else. The initial bone cell density corresponds to 9× 103 cells/mm3 present within a region of

thickness 5nm near x = 0, and zero everywhere else.

We simulate the evolution of chondrocytes, CC , hypertrophic chondrocytes, CH , bone cells, CB , cartilage matrix,

mC , calcified matrix, mCa, bone matrix, mB , and nutrients, n, along with signalling molecules, gHS,HM .

4. Results and parameter sensitivity analysis

4.1. Numerical results

Figures 4-6 show the evolution of osteochondral defect healing following an ACI procedure, for time ranging from

1 month to 48 months post implantation. As early as 1 month chondrocytes produce cartilage matrix, mC , and
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Figure 4: Evolution of cell and matrix densities, and nutrient concentration at (a) t =0 days, (b) t = 1 month and (c) t = 3 months,

following implantation of chondrocytes.

migrate through the matrix towards the top of the defect (Lutianov et al. (2011)). Due to the low proliferation rate

of chondrocytes (p̄5,C0
= 10−3), migration is their main means of evolution and by 3 months they have extended

and deposited cartilage matrix in the bottom half of the defect. These results replicate those of our previous

chondral regeneration model, with evolution of cartilage deposition occurring at a fast pace due to high availability

of nutrients (Lutianov et al. (2011)). During this initial stage of the regeneration process, a purely chondral

regeneration mechanism takes place. At 6 months, mC is steadily increasing from the base of the defect, with

chondrocyte hypertrophy and matrix calcification not yet initiated. As time progresses to 12 months, we observe the

defect continuing to fill, with chondrocytes and new cartilage matrix having reached the top of the defect and with

a cartilage density over 90% at the defect base (Fig. 5(b)). At the defect base, the critical cartilage matrix density,

assumed 95%, is reached at 18 months (Fig. 5(c)). The chondrocytes here start to convert from a proliferative

to a hypertrophic state, converting cartilage matrix into calcified matrix, ready to initiate bone production via

endochondral ossification (Fig. 5(c)). The hypertrophic chondrocytes convert cartilage matrix at the defect base

entirely into calcified matrix, mCa. Osteoblasts at the defect base further convert this matrix to bone matrix,

mB . The conversion rate of mC to mCa and mCa to mB is very rapid owing to the large values of p̄120 = 104 and

p̄20 = 105, therefore mCa levels observed are very low. This signifies the end of cartilage formation at this location

and the beginning of the endochondral ossification process. The modulating and suppressing signalling molecules

regulate chondrocyte hypertrophy and cartilage calcification from this time on. At 24 months, our simulations show

an upward moving narrow zone where chondrocytes are undergoing hypertrophy and converting cartilage matrix

into calcified matrix (Fig. 6(a)). The base of the defect is filled with bone matrix, mB , with a narrow middle zone of

calcified cartilage and a top layer of cartilage that has not yet reached its full density across the top of the defect. As

bone matrix was deposited from the defect base, bone cells such as osteoblasts and osteoclasts are able to migrate

within this matrix towards the top of the defect. At 36 months, more of the defect has been filled with mB (Fig.
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Figure 5: Evolution of cell and matrix densities, and nutrient concentration at (a) t = 6 months, (b) t = 12 months and (c) t = 18

months.

Figure 6: Evolution of cell and matrix densities, and nutrient concentration at (a) t = 24 months, (b) t = 36 months and (c) t = 48

months.
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6(b)). The middle zone of active endochondral ossification has moved towards the top, with mC being remodelled

into mCa, ready for conversion into mB where bone cells are present (Fig. 6(b)). At the top of the defect, there is

a section of cartilage that has not calcified (Fig. 6(b)). This is due to a flux of hypertrophy-suppressing signalling

molecule, gHS , diffusing downwards from the top of the defect where it is produced by the surface chondrocytes,

both directly and through gHM stimulation of these cells.

Figure 7: Evolution of the concentration of (a) hypertrophy-suppressing, gHS and (b) hypertrophy-modulating, gHM , signalling

molecules from t = 0− 48 months.

Throughout the simulation (t = 0− 48 months), the hypertrophy-inducing molecule gHI concentration remains con-

stant (gHI = 1) along the defect height, above its threshold value ḡHI0 = 0.5. Hypertrophy is nevertheless suppressed

until t = 18 months because the cartilage matrix density is below its critical level mCcrit = 0.95, combined with the

activity of hypertrophy modifying and suppressing signalling molecules gHS,HM at later times. Figure 7(a, b) show

the evolution of gHS,HM . The threshold gHS concentration above which hypertrophy is suppressed is ḡHS0 = 20,

and we assume no-flux of signalling molecules out of the top of the defect (γ̄1 = γ̄2 = 0). We observe a progressive

build-up of gHS at the top of the defect which diffuses downwards. The region corresponding to gHS > gHS0
is

where hypertrophy is suppressed resulting in the formation of non-calcified cartilage. In this zone, chondrocytes are

prevented from hypertrophying and endochondral ossification cannot take place. At 36 months the defect is mostly

filled with full or near-full-density matrix, whether bone, calcified or cartilage (Fig. 6(b)). As time progresses to

48 months, the defect is now entirely filled with full-density bone and cartilage matrix, signifying the endochondral

ossification process has ended and the defect has been repaired (Fig. 6(c)).

4.2. Sensitivity of parameters

The model uses a large number of dimensionless parameters. Their values were derived from literature where pos-

sible, but often had a wide range and sometimes values were assumed or guessed. The simulation results may be

sensitive to some of these values, potentially indicating their biological significance. On the other hand, if the solu-

tion is not sensitive to the exact value of a parameter whose value has been approximated, then this indicates that
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the exact value is not important and an approximation suffices. We therefore conducted a sensitivity analysis on

parameters deemed to be important for the model, exploring specifically the sensitivity to parameters describing the

endochondral ossification process, namely those relating to the signalling molecules and chondrocyte hypertrophy,

including the critical cartilage density. In addition, we investigated sensitivity to the parameters whose values were

assumed or guessed.

The concentration of hypertrophy-inducing signalling molecule gHI is essentially a linear interpolation between its

values at the two boundaries, and as a consequence its effects are very simple. If its concentration is below the

threshold gHI0 , hypertrophy is completely suppressed. If its concentration is however above the threshold, as in the

base case, hypertrophy is governed by the critical cartilage density and the hypertrophy-suppressing molecule gHS

concentration.

Figures 8(a, b, c) show the cell and matrix densities at t = 6 months for varying critical cartilage matrix densities,

mCcrit
= 10%, 50%, 95%, respectively. Decreasing mCcrit

from 95% to 50% activates chondrocyte hypertrophy much

earlier resulting in early calcified matrix and bone formation (Fig. 8(b). The initial fill-up of the defect with car-

tilage is suppressed (Fig. 8, compare (b) and (c)). Further decreasing the critical density to 10%, however, stops

Figure 8: Cell and matrix densities at t = 6 months for varying the critical cartilage density, mC,crit, at t=6 months. (a) mC,crit = 0.1,

(b) mC,crit = 0.5 (b) and (c) mC,crit = 0.95 (baseline value).

the initial fill of the defect with cartilage, with chondrocytes undergoing hypertrophy as soon as mC,crit > 0.1 (Fig.

8(a)). Bone formation begins almost immediately.

Figures 9(a, b) show the cell and matrix densities at t = 48 months for varying hypertrophy-suppressing signalling

molecule threshold concentrations, ḡHS0=20 (baseline), 80, respectively. We observe that increasing ḡHS0 , decreases

the thickness of the cartilage layer remaining at the top of the defect. This can be explained using Fig. 11(a),

where increasing the threshold concentration restricts the region where gHS > ḡHS0
to the top of the defect. Here,

chondrocyte hypertrophy is suppressed and the endochondral ossification pathway is switched off.
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Figure 9: Cell and matrix densities for varying the hypertrophy-suppressing signalling molecule threshold concentration, ḡHS0
, at t = 48

months. (a) ḡHS0 = 20 (baseline value) and (b) ḡHS0 = 80.

Figures 10(a, b, c) show the cell and matrix densities at t = 48 months for varying hypertrophy-suppressing sig-

nalling molecule diffusion coefficients, D̄gHS
=0.5 (baseline), 1 and 5, respectively. We observe that increasing D̄gHS

marginally increases the thickness of the cartilage layer remaining at the top of the defect. As D̄gHS
is increased,

gHS produced by the chondrocytes at the top of the defect can diffuse further into the defect to suppress endochon-

dral ossification. Figures 11(a, b, c) show the corresponding evolution of gHS from t = 0− 48 months for D̄gHS
=0.5

(baseline), 1 and 5, respectively. gHS produced by the chondrocytes at the top of the defect diffuses rapidly through

the entire defect as D̄gHS
increases, suppressing endochondral ossification.

Figures 12(a, b, c) show the cell and matrix densities at t = 48 months when varying the gHS flux (via γ̄1) leaking

from the defect surface. Figures 13(a, b, c) show the corresponding gHS concentration for t = 0− 48 months. If the

flux from the surface is not too large, then the production of gHS by the surface chondrocytes offsets its removal,

and the concentration of gHS is observed to gradually increase (Fig. 13(b)) albeit much slower than the baseline

case (Fig. 13(a)). This results in the endochondral ossification process continuing until it reaches the top of the

defect (Fig. 12(b)) before the gHS concentration exceeds the threshold concentration to suppress hypertrophy (Fig.

13(b)). For larger values of the flux, the leaking out of gHS exceeds its production there, and as time progresses

its concentration falls below the threshold value (Fig. 13(c)). This promotes chondrocyte hypertrophy and the

osteochondral ossification pathway leading to bone formation right up the top of the defect (Fig. 12(c)); eventually

the defect will fill-up entirely with bone. In this case, at t = 48 months there is no longer an intact layer of cartilage

at the top of the defect, unlike the baseline case shown in Fig. 12(a).

Figures 14(a, b) show the cell and matrix densities at t = 48 months for varying hypertrophy-suppressing signalling

molecule production rates by surface chondrocytes, both the default rate p̄21 and its modification via the hypertro-

phy-modifying molecule gHM , namely p̄15. Figures 15(a, b) show the corresponding evolution of gHS concentration

for t = 0− 48 months. For lower values of p̄15 and p̄21 compared to the baseline value, the production of gHS by
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Figure 10: Cell and matrix densities for varying hypertrophy-suppressing signalling molecule diffusion coefficients, D̄gHS , at t = 48

months. (a) D̄gHS = 0.5 (baseline value), (b) D̄gHS = 1 and (c) D̄gHS = 5.

Figure 11: Evolution of gHS for varying hypertrophy-suppressing signalling molecule diffusion coefficients, D̄gHS , between t = 0− 48

months. (a) D̄gHS = 0.5 (baseline value), (b) D̄gHS = 1 and (c) D̄gHS = 5.
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Figure 12: Cell and matrix densities at t = 48 months for varying gHS flux via γ̄1 out of the top of the defect at x = 1. (a) γ̄1 = 0

(baseline value), (b) γ̄1 = 102 and (c) γ̄1 = 103.

Figure 13: Evolution of gHS between t = 0− 48 months for varying gHS flux via γ̄1 out of the top of the defect at x = 1. (a) γ̄1 = 0

(baseline value), (b) γ̄1 = 102 and (c) γ̄1 = 103.
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the surface chondrocytes is not sufficient to overcome its degradation (p22 = 15.47), hence gHS stays below the

threshold value at all times (Fig. 15(a)) promoting hypertrophy and osteochondral ossification with bone filling-up

the defect (Fig. 14(a)). Increasing p̄15 and p̄21 above a threshold value results in the production of gHs offsetting its

degradation, allowing it to cross the threshold concentration to suppress hypertrophy and osteochondral ossification

to form a cartilage layer at the top of the defect. Increasing (decreasing) the hypertrophy-suppressing signalling

Figure 14: Cell and matrix densities for varying the hypertrophy-suppressing signalling molecule production rates by surface chondro-

cytes, p̄15 and p̄21, at t = 48 months. (a) p̄15 = p̄21 = 102 and (b) p̄15 = p̄21 = 4× 104 (baseline).

molecule degradation rate, p̄22, relative to p15 and p21 results in lower (higher) concentrations of ḡHS within the

defect. The results are similar to the behaviour observed in Figs. 14,15, hence we do not report them here in more

detail.

Similarly, increasing (decreasing) the hypertrophy-modulating signalling molecule degradation rate, p̄26, results in

lower (higher) concentrations of ḡHM within the defect. This modulates the production of gHS by surface chon-

drocytes. The behaviour is again similar to that shown in Figs. 14,15. Figures 16(a, b, c) show the cell and matrix

densities at t = 48 months when varying the chondrocyte hypertrophic differentiation rate, p̄6. This parameter does

not significantly influence the results, except a visible increase in CH (Fig. 16(b, c)). Figures 17(a, b, c) show the

cell and matrix densities at t = 48 months when varying the osteoblast proliferation rate, p̄9. Increasing p̄9 increases

the bone cell density although the bone matrix density does not increase as much. Decreasing p̄9 results in less

bone matrix due to lower bone cell density. Figures 18(a, b) show the cell and matrix densities at t = 48 months

when varying the cartilage matrix degradation rate, p̄120 . Increasing p̄120 results in rapid mC degradation into mCa,

although bone production remains relatively unchanged.Decreasing p̄120 leads to low mCa levels due to less cartilage

degradation. The bone matrix levels remaining fairly unchanged since mCa conversion to mB pathway is unaffected

by varying p̄120 .

Figures 19(a− d) show the cell and matrix densities at t = 48 months when varying the calcified cartilage matrix

degradation rate, p̄20. Increasing p̄20 enhances bone production, resulting in lower mCa, as bone remodelling is
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Figure 15: Evolution of gHS for varying the hypertrophy-suppressing signalling molecule production rates by surface chondrocytes, p̄15

and p̄21, between t = 0− 48 months. (a) p̄15 = p̄21 = 102 and (b) p̄15 = p̄21 = 4× 104 (baseline).

Figure 16: Cell and matrix densities for varying the chondrocyte hypertrophic differentiation rate, p̄6, at t = 48 months. (a) p̄6 = 0.1,

(b) p̄6 = 5 (baseline) and (c) p̄6 = 10.
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Figure 17: Cell and matrix densities for varying the osteoblast proliferation rate, p̄9 at t = 48 months. (a) p̄9 = 10−3, (b) p̄9 = 5.3× 10−2

(baseline) and (c) p̄9 = 0.1.

Figure 18: Cell and matrix densities for varying the cartilage matrix degradation rate, p̄120 at t = 48 months. (a) p̄120 = 10 and (b)

p̄120 = 104 (baseline).
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increased (Figs. 19(c, d)). Decreasing p̄20 results in higher mCa, but bone matrix levels appear unchanged. In

this case, bone is predominantly being produced by CB . Figures 20(a, b, c) show the cell and matrix densities at

Figure 19: Cell and matrix densities for varying the calcified cartilage matrix degradation rate, p̄20 at t = 48 months. (a) p̄20 = 1, (b)

p̄20 = 10, (c) p̄20 = 102 and (d) p̄20 = 105 (baseline).

t = 48 months when varying the chondrocyte proliferation rate, p̄5,C0 . For smaller values of p̄5,C0 , the proliferation

of chondrocytes is not sufficient to trigger hypertrophy and osteochondral ossification, therefore the bone repair

process is delayed (Fig. 20(a). In comparison, for larger values of p̄5,C0
, there is an adequate supply of proliferating

chondrocytes to trigger the pathways for bone and cartilage production (Figs. 20(b, c). However, if p̄5,C0
is very

large then production of chondrocytes is also extremely high as observed in Fig. 20c, which seems biologically

unrealistic. Figures 21(a, b, c) show the cell and matrix densities at t = 48 months for varying the hypertrophic

chondrocyte death rate, p̄8. Increasing p̄8 results in lower CH levels as they degrade faster (Fig. 21(b, c)), leading

to less conversion of mC to mCa. We observe slightly higher bone density at the base of the defect and more car-

tilage remaining in the defect. Decreasing p̄8 results in higher CH levels and slightly higher mCa, but mB appears

unaffected.

5. Discussion

This paper aims to formulate a reaction-diffusion mathematical model describing the osteochondral defect healing

process in large animals such as humans after ACI. The two specific questions to be addressed by the model are

(a) Can the PTHrP-Ihh feedback loop control endochondral ossification in the healing process in large animals,

and (b) Which key parameters most influence the healing process, in particular controlling the thickness of the

articular cartilage in the repaired defect? Our model achieved the overall aim and simulated the key stages of

natural osteochondral defect healing as observed in a large animal experiment, namely an initial fill of the defect

by cartilage, followed by a process of endochondral ossification starting at the base of the defect that resulted in

bone formation from the base upwards, eventually leaving a layer of articular cartilage at the top of the defect
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Figure 20: Cell and matrix densities for varying the chondrocyte proliferation rate, p̄5,C0 at t = 48 months. (a) p̄5,C0 = 10−3, (b)

p̄5,C0
= 0.012 (baseline) and (c) p̄5,C0

= 0.1.

Figure 21: Cell and matrix densities for varying the hypertrophic chondrocyte death rate, p̄8 at t = 48 months. (a) p̄8 = 0, (b) p̄8 = 0.5

(baseline) and (c) p̄8 = 1.
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separated from the bone by a thin layer of calcified cartilage (Lydon et al. (2019)). Our model thus demonstrates

how an osteochondral defect, when treated by implanting chondrocytes under a patch covering the defect, heals in

a way that bone and cartilage are regenerated. In doing so, the model therefore suggests that the PTHrP-Ihh feed-

back loop can indeed control endochondral ossification in large animals. The parameters most strongly influencing

the healing process were the local factor relating to hypertrophy induction (critical cartilage density) and those

related to the hypertrophy suppressing signalling molecule (PThRP), namely its baseline production rate and the

modification of that production rate by the hypertrophy modifying signalling molecule (Ihh) and its surface flux.

In formulating our mathematical model, we made extensive use of the qualitative insights from a series of experiments

based around an ovine model of natural osteochondral defect healing in skeletally mature animals (Lydon et al.

(2019)). We did so for two main reasons. Firstly, the sheep is a relatively large animal with a knee anatomy

comparable to that of humans, which makes this animal model closer to the clinical situation than for instance

murine or laprine models (Ahern et al. (2009); Chu et al. (2010)). Secondly, Lydon et al. (2019) analysed 5 separate

time points (1-2 weeks, 4-8 weeks, 8-12 weeks, 18 weeks and 26 weeks). Such a detailed study of the healing

process over time is not uncommon when conducted using small animals (e.g. Shapiro et al. (1993); Anraku et al.

(2008)), but is unique when conducted in large animals. Of course, we realise that the process by which a freshly

created osteochondral defect naturally heals is not necessarily the same as that by which a clinical osteochondral

defect in humans, treated using autologous chondrocytes, heals. Nevertheless, the key stages observed are also seen

following chondrocyte implantation. Filling of the complete defect by cartilage or cartilage-like tissue, followed by

bone forming from the base of the defect upwards, has been observed in large-animal models of ACI therapy (e.g.

Munirah et al. (2007); Jurgens et al. (2013)). After one year, osteochondral defects up to 1 cm deep in humans

and treated with ACI demonstrate new bone formation at the base and a layer of mature (hyaline) or immature

cartilage at the top (Bentley et al. (2003)).

Our chondral defect healing models (Campbell et al. (2019a,b)) simulate the filling of a defect with cartilage, but do

not simulate the conversion of cartilage into bone at the base of the defect. Lydon et al. (2019) observed that this

process occurs via endochondral ossification, similar to the process observed during bone formation in the growth

plate or during fracture healing. The current work therefore primarily focused on the endochondral ossification

process. In this process, cartilage converts into bone via chondrocyte hypertrophy, where the hypertrophic chon-

drocytes form a primary spongiosa which is then invaded and remodelled by osteoblasts and osteoclasts (Lydon

et al. (2019)). Crucially, not all chondrocytes hypertrophy and form primary spongiosa; a layer of hyaline cartilage

is left in the top section of the defect, forming articular cartilage.

In our mathematical model we approached this by concentrating on key regulatory pathways that control chondro-

cyte hypertrophy during growth. Specifically, we concentrated on factors that initiate and suppress this process.

Chondrocyte hypertrophy is known to be initiated by systemic factors (hormones) and locally produced signalling

molecules (Mackie et al. (2011); Kozhemyakina et al. (2015)). The hypertrophy-inducing factor in our model rep-

resents the systemic factors, a prime example of which is thyroid hormone (Mackie et al. (2011)). We modelled

these systemic factors as a flux coming in from the top and base of the defect. We assumed that this hypertrophy-

inducing systemic factor would have to reach a threshold value before initiating hypertrophy. The local factors
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were represented in our model as a critical or threshold cartilage density, below which hypertrophy is not initiated.

This implementation of local factors is similar to that used in models of endochondral ossification during fracture

healing (Carlier et al. (2016); Geris et al. (2008)). We chose the critical density to be around 95%, but also inves-

tigated other values in our sensitivity analysis. Both critical values would need to be reached before chondrocyte

hypertrophy was initiated. In our model, the process was dominated by the local factor (critical cartilage density):

once this density was reached, chondrocytes started to hypertrophy and produce calcified matrix from the cartilage

model. These two processes would also halt local chondrocyte proliferation and cartilage matrix formation.

Further regulation of hypertrophy, once initiated, was implemented in our model as the Ihh-PTHrP pathway (Kro-

nenberg (2003); Kozhemyakina et al. (2015)). The Ihh-PTHrP pathway is not only a key regulator of chondrocyte

hypertrophy, but also important in relation to the question what controls the thickness of the eventual articular

cartilage layer at the top of a healed osteochondral defect. PTHrP, a suppressor of hypertrophy, is produced by

proliferating chondrocytes in the growth plate and restricted to chondrocytes in the superficial zone of articular

cartilage (Chen et al. (2008); Jiang et al. (2008); Kronenberg (2003)). In articular cartilage, the primary regulation

of PTHrP is in the form of mechanical loading (Chen et al. (2008)). Its production is also stimulated by Ihh, which

is produced by pre-hypertrophic chondrocytes. In our model, we called Ihh a hypertrophy-modulating signalling

molecule and assumed it would be produced by hypertrophic chondrocytes. To simulate the production of PTHrP

specifically by superficial zone chondrocytes, we restricted its production to the upper 10% of the defect. The effects

of PTHrP at the top of the defect were the main factor regulating the remaining cartilage layer. The hypertrophic

chondrocytes produced calcified matrix, which then was converted to bone by osteoblasts and osteoclasts, simply

referred to as ’osteoblasts’ in our model. Finally, we assumed the underlying bone at the base of the defect and

the surrounding synovial fluid at the top of the defect to provide nutrients within the model. This was unlike our

previous mathematical model of a healing chondral defect treated by ACI, where we assumed the flux of nutrient

from the base equals zero because subchondral bone is left intact in this treatment, preventing nutrient flow from

the defect base.

In combination, this relatively simplistic approach captivates the key mechanisms driving osteochondral healing

after ACI via an endochondral ossification-like process. Our model would not be valid for deep osteochondral

defects where a bone-plug may be a more appropriate treatment strategy (de Windt and Saris (2014)). However,

osteochondral defects with a bone defect up to 1cm in depth can be treated using cell therapy alone (Bentley et al.

(2003)). Data from the German Cartilage Registry suggest that using cell therapy alone for osteochondral defects

is indeed common practice: although over 60% of defects in this registry are osteochondral defects only 1 in 9 ACI

cases use bone graft augmentation (Niemeyer et al. (2016)).

During the initial phase of regeneration, a purely chondral healing mechanism took place. These results corresponded

to our chondral defect healing model (Campbell et al. (2019a,b)), with slightly improved matrix formation due to

the nutrients available from the base of the defect. These models of chondral defect healing assumed no nutrients

would flow in from the base, leading to a lack of nutrients constraining cell proliferation and matrix deposition. By 1

year, cartilage filled the osteochondral defect, with low-density cartilage matrix at the top of the defect and a high-

density matrix covering the base. By 18 months the critical cartilage density required for initiation of chondrocyte
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hypertrophy was reached at the defect base, initiating the conversion of cartilage to calcified matrix by hypertrophic

chondrocytes followed by formation of bone. As time continued, cartilage continued to be converted into calcified

matrix with bone subsequently being produced, progressing as a traveling wave upwards to the top. This pattern

of conversion predicted by our model qualitatively mirrored the formation of bone and cartilage in sheep observed

by Lydon et al. (2019). By 2 years the layer of cartilage that would remain at the top of the defect became more

evident, with bone entirely covering the base of the defect and cartilage degradation to calcified matrix occurring

in the midsection. This trend continued until 48 months, when the defect was entirely filled with new bone, aside

from a section of calcified matrix and a thin layer of cartilage remaining at the top of the defect. The thickness

of this layer was mainly regulated by the parameters related the the hypertrophy-suppresing signalling molecule

(PThRP), in particular its production rate (partly influenced by Ihh), its threshold level and its leakage from

the top of the healing defect into the synovial fluid.. Including a population of superficial zone chondrocytes (at

x̄=0.9-1) producing hypertrophy-suppressing molecules was based on experimental observations in vitro by Jiang

et al. (2008) and in vivo by Chen et al. (2008), who found that superficial zone chondrocytes in articular cartilage

produce PThRP, which suppresses mineralisation of chondrocytes in deeper zones. Chen et al. (2008) also showed

that mechanical loading is an important regulator of PTHrP expression in articular cartilage, but this is something

we did not consider here.

The main conclusion from this work is that the Ihh-PThRP feedback loop can play a role in osteochondral healing

in large animals, and that the main determinant of the resulting cartilage is related to the hypertrophy-suppressing

molecule PThRP. So far, research on the role of PTHrP in post-natal osteochondral healing has been restricted to

transgenic mice, needed to visualise its expression levels Chen et al. (2008). However, with the recent rapid advance

in spatial transcriptomic and proteomic profiling techniques Moffitt et al. (2022), studying the expression of PThRP

should now also be possible in large animals.

The assumptions we made in this model do simplify the biological process occurring during osteochondral healing,

potentially limiting conclusions we can draw from this work. An important factor we do not consider directly

in our model is the influence of mechanical forces on cells, in particular on cell proliferation, differentiation and

matrix synthesis, which earlier mathematical models suggest to be important in chondral defect repair (Lacroix

and Prendergast (2002)). Mechanical loading is also thought to influence the patterns of endochondral ossification,

specifically in the formation of long bones (Wong and Carter (1990)). However, by assuming that superficial zone

chondrocytes produced a hypertrophy-suppressing signaling molecule (PTHrP), we did implicitly include the effect of

mechanical loading. We also excluded the effects of other local signalling molecules, in particular the influence of the

fibroblast growth factor (FGF18) and C-type natriuretic peptide (CNP), which together with PTHrP and Ihh control

the initiation of hypertrophy, and insulin-like growth factor (IGF1), epidermal growth factor receptor (EGFR) and

reactive oxygen species (ROS), which control the later phases of chondrocyte hypertrophy (Kozhemyakina et al.

(2015)). We completely ignored the latter three and simply assumed that once initiated, chondrocyte hypertrophy

would proceed autonomously. We consider this assumption justified in light of our main aim to capture the main

characteristics of the repair process. Instead of FGF18/CNP signaling we used the critical cartilage density mC,crit

as an extra local hypertrophy initiating factor, following earlier mathematical models of healing bone fractures
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(Carlier et al. (2016); Geris et al. (2006)). Although this simplifies the model, the effect is probably similar. FGF18

and CNP have an antagonistic effect on chondrocytes, with FGF18 produced by superficial zone chondrocytes and

maintaining chondrocyte proliferation versus CNP produced by proliferating and pre-hypertrophic chondrocytes.

There is no feedback control between these two molecules and hypertrophy is assumed to start once CNP levels

are high enough relative to FGF18 (Kozhemyakina et al. (2015)). Effectively, our model used cartilage density as a

proxy for CNP concentration. Although modelling FGF18 and CNP separately might affect the results, the change

is most likely minor due to the lack of feedback. Lydon et al. (2019)describe initial cartilage formation occurring

at the top edges of the defect adjacent to damaged cartilage. The reason cartilage first forms here is unknown, but

could possibly be related to chondrocytes attaching preferentially to damaged cartilage rather than bone. In our

1-dimensional model we had to omit this preferential attachment to top edges of the defect because these edges

were not represented. This simplification meant we also did not include the invasion of cells from the sides of the

defect. In addition, when an osteochondral defect is created, damaged blood vessels nested within bone at the site

of the defect are damaged. These damaged vessels produce blood which coagulates and forms a fibrous clot within

the defect. This fibrous clot will act as a nutrient source at the beginning of regeneration, as well as acting as a

scaffold for cells to travel along. These functions of a clot were not explicitly modelled in our work, and neither was

clot formation.

We also did not consider mesenchymal stem cells to be present in this model, despite their well-documented role

in osteochondral defect healing (Madry et al. (2011); Farmer et al. (2001); Getgood et al. (2012)). Lutianov et al.

(2011) explore the effects of autologous chondrocyte implantation (ACI) and articular stem cell implantation (ASI)

in chondral defects, which are surgical procedures where either chondrocytes or MSCs are inserted into a defect

with the hope to promote healing. In that work, despite MSCs achieving higher cartilage formation at early

time, overall healing time did not significantly change (Lutianov et al. (2011)). In Campbell et al. (2019a,b), we

explored the effects of signalling molecules on the chondral healing process, and also how a co-implantation of

MSCs and chondrocytes could promote an earlier healing time. Our work demonstrated that within the first year

an enhanced rate of healing was observed when a co-implantation procedure was carried out, with an increase

of up to 136% at 3 months when compared with ACI cartilage healing alone, but despite this, an earlier healing

time was not achieved; the conclusion of this work was that a co-implantation procedure could have benefits by

allowing a patient to become mobile sooner after surgery. The consideration of MSCs in our model could lead

to MSC differentiation into chondrocytes or osteoblasts and having trophic effects, requiring extra assumptions

around the control of their differentiation into osteoblasts and the mutual effect of osteoblasts and MSCs. However,

based on our models of co-implanting MSCs and chondrocytes, it is doubtful whether the effects on the amount

of cartilage formation would be large. MSCs may also influence the healing environment via their production of

paracrine factors such as transforming growth factor /beta (TGF/beta), insulin-like growth factor 1 (IGF1), and

vascular endothelial growth factor (VEGF), among others, which may influence cell function and survival and

subsequent tissue regeneration (Fontaine et al. (2016); Linero and Chaparro (2014)). It is thought MSCs may be

most effective within tissue regeneration via their paracrine signalling, not their direct contribution to extracellular

matrix production via differentiation to osteoblasts and chondrocytes. Based on the findings in Campbell et al.
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(2019a,b) on the paracrine effect of MSCs, we think it is instructive to start the modelling process by including

only chondrocytes and osteoblasts.

Finally, our 1-dimensional model may capture the essential features of osteochondral healing but it is probably too

simplistic for proper parameter identification. We regard this model as a first step to get these essential features

in place, but a comparison to animal or human experiments will probably require a geometrically more realistic

model, for instance a 2-dimensional axi-symmetric model. Given the crucial importance of the hypertrophy-sup-

pressing signalling molecule PThRP, further work should include determining its concentration or expression levels

in large animal models. Thanks to modern spatial proteomic or transcriptomic techniques this should be feasible

(Moffitt et al. (2022)).

In future work, the inclusion of the modulatory effects of MSCs via their paracrine signalling would more accurately

simulate the cell environment, such as the chondrocyte-MSC interaction modulated by FGF-1 and BMP-2 modeled

in Campbell et al. (2019a,b).

In conclusion, our mathematical model suggests that repair of osteochondral defects following chondrocyte implan-

tation relies on endochondral ossification processes similar to the growth plate. The reaction diffusion-type model

presented here is a first step towards better understanding of osteochondral defect regeneration after cell therapy

techniques.

Declaration of Competing Interest

The authors declare that there are no known competing interests that could have influenced the work reported in

this paper.

Acknowledgements

This work was a part of KC’s PhD research at Keele University (Campbell (2019)) supervised by SN and JH-

K. Kelly gratefully acknowledges financial support from Keele University. JH-K gratefully acknowledges financial

support from the Medical Research Council (MR/L010453/1 and MR/N02706X/1) and Versus Arthritis (Grants

18480 and 21156).

Author Contributions

JH-K conceptualized the work. KC, SN and JH-K contributed to developing the mathematical model. KC per-

formed the simulations, analysed the model output, and wrote the original draft of the manuscript. SN and JH-K

contributed to reviewing and editing the draft. .

References

Ahern, B., Parvizi, J., Boston, R., Shaer, T., 2009. Preclinical models in single site cartilage defect testing: A

systematic review. Osteoarthritis and Cartilage 17, 705–713.

39



Allen, K., Thoma, L., Golightly, Y., 2022. Epidemiology of osteoarthritis. Osteoarthritis and cartilage 30, 184–195.

Anraku, Y., Mizuta, H., Sei, A., Kudo, S., Nakamura, E., Senba, K., Takagi, K., Hiraki, Y., 2008. The chondrogenic

repair response of undifferentiated mesenchymal cells in rat full thickness articular cartilage defects. Osteoarthritis

and Cartilage 16, 961–964.

Bailón-Plaza, A., Vander Meulen, M., 2001. A mathematical framework to study the effects of growth factor

influence on fracture healing. Journal of Theoretical Biology 212, 191–209.

Bentley, G., Biant, L., Carrington, R., Akmal, M., Goldberg, A., Williams, A., Skinner, J., Pringle, J., 2003. A

prospective, randomised comparison of autologous chondrocyte implantation versus mossaicplasty for osteochon-

dral defects in the knee. Journal of Bone and Joint Surgery 85, 223–230.

Biant, L., Bentley, G., Vijayan, S., Skinner, J., Carrington, R., 2014. Chondrocyte implantation in the knee for

chronic chondral and osteochondral defects. The American Journal of Sports Medicine , 2178–2183.

Brittberg, M., 2008. Autologous chondrocyte implantation - technique and long-term follow up. Injury 39, 40–49.

Campbell, K., 2019. Mathematical modelling of cartilage and bone defect healing after cell implantation. Ph.D.

thesis. Keele University.

Campbell, K., Naire, S., Kuiper, J., 2019a. A mathematical model of cartilage regeneration after chondrocyte and

stem cell implantation - I: The effects of growth factors. Journal of Tissue Engineering 10, 2041731419827791.

Campbell, K., Naire, S., Kuiper, J., 2019b. A mathematical model of cartilage regeneration after chondrocyte and

stem cell implantation - II: The effects of co-implantation. Journal of Tissue Engineering 10, 204173141982770.

Carlier, A., Brems, H., Ashbourn, J., Nica, I., Legius, E., Geris, L., 2016. Capturing the wide variety of impaired

fracture healing phenotypes in neurofibromatosis type I with eight key factors: A computational study. Sci Rep.

7, 20010.

Chen, X., Macica, C., Nasiri, A., Broadus, A., 2008. Regulation of articular chondrocyte proliferation and differ-

entiation by indian hedgehog and parathyroid hormone-related protein in mice. Arthritis and Rheumatism 58,

3788–3797.

Chu, C., Szczodry, M., Bruno, S., 2010. Animal models for cartilage regeneration and repair. Tissue Engineering

Part B: Reviews 16, 105–115.

Dahmen, J., Lambers, K., Reilingh, M., van Bergen, C., Stufkens, S., Kerkhoffs, G., 2018. No superior treatment

for primary osteochondral defects of the talus. Knee Surgery, Sports Traumatology, Arthroscopy 26, 2142–2157.

De Bari, C., Roelofs, A., 2018. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Current

Opinion in Pharmacology 40, 74–80.

Einhorn, T., 1998. The cell and molecular biology of fracture healing. Clinical Orthopaedics and Medical Research

355, S7–S21.

40



Falah, M., Nierenberg, G., Soudry, M., Hayden, M., Volpin, G., 2010. Treatment of articular lesions of the knee.

International Orthopaedics 34, 621–630.

Farmer, J., Martin, D., Boles, C., Curl, W., 2001. Chondral and osteochondral injuries. Clinics in Sports Medicine

20, 299–320.
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