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Foreword 

The bulk of the analysis of the data was carried out using the StReAMS (Davies and Mitten, 2023) 

Python package which is planned to be further worked on and made available after this thesis is 

submitted. StReAMS uses the novel methodology described in Chapter 3 for the determination of 

a search area by utilising standard deviation and periodicity analysis. This is useful for the 

determination of a statistically significant suite of three-dimensional stochastic fluvial reservoir 

models. The StReAMS beta can be found at: https://github.com/chesterdavies/StReAMS-Beta.  
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Abstract 

Fluvial systems, characterized by complex structures at multiple scales, often serve as excellent 

reservoirs for both hydrocarbons and carbon storage. Locating such reservoirs, and assessing their 

quality is challenging due to their sub-seismic nature. Reservoir modelling plays a crucial role in 

the prediction of distribution, and the consequent assessment of the reservoir’s viability. This 

study will focus on stochastic, geocellular reservoir models due to their industry usage and 

uncertainty associated with stochastic processes.  

Whilst current research employs ten to twenty realizations for developing stochastic three-

dimensional fluvial reservoir models, this is derived from two-dimensional experiments, and so 

the applicability is questionable given the extra complexity associated with a third dimension. 

Little research has been done surrounding how these two-dimensional results can be applied to 

three-dimensions. 

This novel methodology determines the optimal number of realizations by creating a sample 

reservoir model population. It compares the distribution of properties within this smaller 

population to the entire dataset, using two boundary conditions: the lower bound set by the 

number of realizations required to model the maximum standard deviation of the whole 

population, and the upper bound determined by the number of realizations required for reservoir 

property repetition. This search window identifies the size of the sample population that best 

matches the whole population, providing the total number of realizations for a statistically 

significant dataset. 

This methodology uses three different reservoir modelling algorithms with a wide range of input 

parameters to generate suites of synthetic reservoir models to develop and test the proposed 

methodology, which is then applied to a previously established example (Tuscher Canyon). Three 

output parameters are retrieved from the Schlumberger™ Petrel v.2020 software representing 

the properties of the modelled reservoir: target fraction, average geobody thickness, and 

standard deviation of geobody thickness. The average of all the synthetic reservoir model suites 



v 
 
indicated that an average of 32 realizations is required to sufficiently reduce the uncertainty of 

the models, independent of algorithm or model input parameters, but showed significant 

variability. When Tuscher Canyon is considered, the number of realizations for a statistically 

significant dataset is markedly different from that suggested by the synthetic dataset, meaning 

that there is no standardized number of realizations. The standard deviation of geobody thickness 

is important when reservoir modelling as it gives insight into the variation of how connected 

individual geobodies are and is highly variable between realizations, making it the most suitable 

reservoir property to be used for determining the number of realizations to use. This 

methodology will help to reduce uncertainty of fluvial reservoir models, resulting in better 

characterization, de-risking, and better assessment of economic viability.  
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1 Introduction 

A reservoir model is a simplified numerical representation of the geology and geometries in the 

subsurface. Reservoir models are useful for characterising the subsurface within an area of 

interest. One of the common uses for reservoir modelling is to predict the geometry and 

distribution of facies (heterogeneity) in the subsurface in order to model fluid migration. 

Modeling the reservoir in this way is a particularly useful approach when applied to the strata of 

depositional settings in which the heterogeneity of facies (and, by inference, reservoir quality) 

varies over a range of scales that are below that of which can be imaged seismically (sub-seismic). 

One such example is strata deposited by fluvial systems.  

Reservoir models can either be stochastic or deterministic. Stochastic models are models that are 

based upon a set of input parameters, but have a random variable incorporated into them. This 

variable is randomised each time a model is developed, creating a different version of the model 

for each realisation1 (Renard et al., 2013). For stochastically developing a reservoir model, the 

input parameters will describe the general shapes of the architectural elements2 within the 

reservoir model, and the random variable is used to describe the spatial distribution of the 

elements. This creates models comprising of comparable geobody shapes, but with different 

spatial positioning, which can lead to variation in the amount of channel stacking3 across 

realisations. A deterministic model produces a result that is directly determined on the input 

parameters used (Renard et al., 2013). The same result will be generated regardless of the 

number of realisations developed (Renard et al., 2013). Well-to-well correlations can be used for 

deterministically developing a simple layer-cake reservoir model (Weber and van Geuns, 2005). 

Well-to-well correlations can be used to create deterministic reservoir models, but this is only 

possible with very close well spacing, which can be very expensive (Weber and van Geuns, 2005). 

 
1 Within this work, a realisation is described as being an individual representation of a model developed 
using a set of input parameters. 
2 When referring to a reservoir model, these architectural elements can be referred to as geobodies. 
3 Channel stacking represents the autogenic process of avulsion events within the reservoir model. 
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Where this close well spacing is not possible, probabilistic models can be made. These models 

‘bridge the gap’ between stochastic and deterministic modelling processes, and create a variety of 

equiprobable scenarios (Weber and van Geuns, 2005). The wells can be used to create a 

framework for the model, where these act as pre-defined spatial anchors. Correlation between 

the wells is stochastically developed to create the reservoir model (Weber and van Geuns, 2005). 

The realisations developed from this approach will be different, but will preserve the spatial 

positioning of the pre-defined well positions. Probabilistic methods provide more accurate 

reservoir models than those created through stochastic models due to more information being 

known about the reservoir. 

Reservoir models can also either be geocellular or surface models. Geocellular models are 

composed of a grid-like system of cells, whereby each cell represents a specified volume of a 

reservoir (this volume will depend on the cells dimensions) (Shepherd, 2009). Each cell contains 

information about that spatial position within the reservoir model (e.g., grainsize, and porosity 

and permeability characteristics). Geocellular models are particularly useful for producing 

petrophysical models, such as fluid flow and porosity-permeability models. This means that 

reservoirs can be better characterized and assessed for hydrocarbon extraction or carbon storage. 

Surface models are typically used to portray geological features such as horizons, faults and folds 

(de Kemp, 2021), which are useful for understanding the structural deformation history, and 

evolution of the flow field due to fracturing (Andersson and Hudson, 2004). This makes it ideal for 

exploration of minerals affected by dissolution and precipitation processes (Andersson and 

Hudson, 2004). Surface models are composed of layers that can bend, rather than cells that do 

not represent a continuous surface and cannot inherently bend, unless making use of an 8 corner 

point geocellular model. This makes surface models useful for representing structure within the 

subsurface, which makes them ideal for palinspastic reconstruction4.  

 
4 Restoring the cross-section of the subsurface to how it was prior to structural deformation (Vidal-Royo et 
al., 2015). 
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This study will focus on stochastic geocellular reservoir modelling, whereby all cells will represent 

the same volume, and use a center-point geometry since this is most commonly used within 

reservoir modelling. The high uncertainty of these stochastic three-dimensional geocellular 

reservoir models means that realisations generated with the same input parameters, are 

extremely unlikely to be identical. Each realisation may predict a variety of different reservoir 

volumes and quality, which will impact the economic viability of the reservoir. The generation of 

larger suites of reservoir models5 typically decreases the uncertainty and increases the statistical 

significance6 of the model suite. This decrease in uncertainty and increase in statistical 

significance enables a more informed decision to be made on the economic viability of a reservoir. 

Current research shows that twenty realisations are required to develop a statistically significant 

two-dimensional reservoir simulation (Goovaerts, 1999), and consequently, twenty realisations 

are typically used to three-dimensionally model fluvial reservoir strata (Caers, Srinivasan and 

Journel, 2000; Tureyen and Caers, 2005; Benetatos and Giglio, 2021; Montero et al., 2021). A 

large number of studies make use of just ten realisations (Haldorsen and Damsleth, 1990; Seifert 

and Jensen, 1999; Liu et al., 2004; Falivene et al., 2006; Nordahl and Ringrose, 2008; Daly and 

Caers, 2010; Mitten et al., 2020), because ten realisations is the minimum number required to 

avoid ergodic fluctuations7 (Falivene et al., 2006). The problem is further compounded by the fact 

that studies use several popular, and very different, methods for generating reservoir models. 

These reservoir modelling algorithms have been shown to develop realisations with differing 

characteristics using the same input values obtained from outcrop (e.g., Falivene et al., 2006).  

One geological setting in which stochastic modelling in particular has been used extensively to 

predict the subsurface distribution of facies for economic appraisal, is the fluvial setting. The 

strata of fluvial systems comprise distinct elements each with distinct facies and very different 

 
5 Within this study, a suite of reservoir models (or suite of models) is described as a group of multiple 
realisations created with the same set of input parameters. 
6 In this study, statistical significance refers to a set of realisations (model suite) being representative of the 
reservoir being modelled. 
7 Variations between stochastic realisations (Falivene, 2006). 



4 
 
facies. The spatial distributions and geometries of the elements varies greatly over a range of 

scales and is governed primarily by the style of the fluvial system and by large-scale allogenic 

controls (e.g., basin subsidence rate, climatic variation, base level and sediment supply rate 

(Colombi, Limarino and Alcober, 2017)) and basin-scale autogenic controls (e.g., avulsion rates, 

grainsize and sediment load (Postma, 2014)). All fluvial systems share the common characteristic 

that the variation of elements is below seismic resolution (sub-seismic).  

Low sinuosity, bedload dominant (braided) systems are dominated by highly mobile sinuous- and 

straight-crested ripple- and dune-forms. Commonly, superimposition of these dunes can form 

barforms. Generally, this high channel mobility forms limited overbank deposits, however, mid-

channel bars can become vegetated. In the subsurface, low sinuosity, bedload dominant systems 

are characterised by the dominance of planar and trough-crossbedded and cross-laminated 

sandstone fining-upwards sets. These systems will have an erosive base, with outsized clasts and 

larger, granule to cobble-sized clasts in the lowermost set, representing lower flow regime 

thalweg deposits. These systems are typically capped with upper flow regime ripples (from wash-

over on top of the mid-channel bars. It is also possible, but unlikely to see overbank deposits 

preserved at the top of the succession, due to high channel mobility.  

High Sinuosity, mixed load dominant systems are dominated by sinuous- and straight-crested 

dune-forms. These systems are generally stable, with the meanders generally getting steeper over 

time, and the formation of vegetated banks and levees. This leads to migratory point bars forming 

on the inside of meanders. The high channel stability leads to lateral accretion of the point bars, 

whereby sediment is deposited on the slope of the point bar, which is preserved as scroll bars in 

plan view. Ripples are likely to form on top of these point bars from wash-over. During times of 

higher discharge, chute channels may appear to cut through the point bars, and the levees can be 

breached, with crevasse splays forming. In the subsurface, high sinuosity, mixed load dominant 

systems are characterised by the dominance of planar and trough-crossbedded and cross-

laminated sandstone fining-upwards sets. These systems will have an erosive base, with outsized 
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clasts in the lowermost section. Low-angle sets can appear throughout the succession and 

represent the lateral accretion from the point bars. The top of the channel fill succession is 

overlain by upper flow regime deposits due to gradual shallowing of the water. Typically, these 

are overlain by overbank deposits that may contain bioturbation and vegetation. It is also possible 

to find desiccation cracks, where floodwater has dried.  

Whilst sediments deposited in fluvial systems don’t necessarily always form the most productive 

hydrocarbon reservoirs, they can still be useful for the recovery of hydrocarbons (Tyler and Finley, 

1991). When exploring the potential for carbon storage, channel interconnectivity and the ability 

for fluid flow within the preserved rock is important (Ringrose and Bentley, 2015). For an effective 

reservoir, the internal characteristics of the preserved structure must be known, and as this is 

highly variable (Ringrose and Bentley, 2015), stochastic reservoir modelling methods can be 

useful. 

The research aims to determine the number of realisations required to model heterogeneity of 

elements in three-dimensional fluvial reservoir to a statistically significant level. Synthetic 

realisations are developed using three reservoir modelling algorithms and a range of realistic 

input parameters, and tested for statistical significance. Following analysis of the synthetic 

scenarios, a previously published three-dimensional reservoir model, from the fluvial strata of the 

Castlegate Sandstone formation exposed in Tuscher Canyon, Utah (Mitten et al., 2020) is used to 

determine the validity of the results obtained from this study.  

1.1 Research aims and objectives 

The overall goal of this project is to determine the number of realisations required for a 

statistically significant three-dimensional fluvial reservoir model suite. This project will be deemed 

a success if the two core aims are met: 

Aim 1: Determine the average number of realizations required to develop a set of synthetic 

statistically significant three-dimensional fluvial reservoir models. 
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Objective 1: Develop a suite of synthetic reservoir models using a range of realistic, and 

non-realistic input parameters using a variety of modelling algorithms. 

Objective 2: Determine the upper and lower limits of the search window. 

Objective 3: Model the distributions of the sample population and compare it to the 

whole population to determine the optimal size of the sample population. 

Aim 2: Determine the validity of the synthetic results in a real-world scenario. 

Objective 1: Apply the developed methodology to a previously published geological 

model, specifically the model of Tuscher Canyon (with supplementary data supplied from 

the modern analogue of Jamuna River) as previously studied by Mitten et al., 2020. 

Objective 2: Determine the repeatability of the results from the synthetic dataset when 

applied to a real-world scenario.  

Objective 3: Suggest any improvements or alterations needing to be made to the 

methodology.  

1.2 Thesis signposting 
This thesis details the creation of a representative suite of fluvial reservoir models along with their 

analysis using a novel methodology in order to determine the number of realisations required for 

a statistically significant three-dimensional reservoir model suite to be generated, along with a 

recommendation on how this research effects how fluvial reservoir modelling is carried out.  

1.2.1 Chapter 2 – Literature Review  

This chapter provides a comprehensive literature review on reservoir modelling, along with the 

techniques, and the challenges that are currently faced. This chapter will discuss: 1) the types of 

reservoir models available, 2) the types of fluvial rock model algorithms (SIS, OBM and MPS), 3) 

the uses of rock models for determining the characteristics or reservoirs, 4) general information 

about fluvial reservoir models, and 5) the current state of what is known about fluvial reservoir 

modelling.  
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1.2.2 Chapter 3 – Methodology 

This chapter provides a detailed overview of methods by which the suites of reservoir models 

were generated, along with the methods and techniques used to analyze the properties that 

characterise the model suites. This is done by: 1) detailing the generation of the reservoir suites of 

models, and examining the input parameters and the different modelling algorithms used, 2) 

detailing the methods used to statistically model the properties characterising the reservoir 

models, 3) detailing the methods and workflow used to determine the optimal number of 

realisations required for a statistically significant three-dimensional reservoir model suite to be 

developed.  

1.2.3 Chapter 4 – Analysis and Interpretation  

This chapter provides analysis of the results achieved by applying the methodology outlined in 

Chapter 3 to synthetically generated suites of reservoir models. The chapter details the average 

number of realisations required for a statistically significant three-dimensional reservoir for the 

discrete variables produced from creating a large variety of synthetic fluvial reservoir models. 

1.2.4 Chapter 5 – Application: Tuscher Canyon 

This chapter provides application of the methodology and consequent results to the Tuscher 

Canyon reservoir model. The chapter details the: 1) geological background of the Lower 

Castlegate Sandstone, 2) results specific to the Tuscher Canyon models, with comparison to the 

suites of synthetic reservoir models 3) similarity percentages when a suite of 100 realisations are 

compared to suites of reservoir models containing: 20, 32 (average recommended number of 

realisations for the synthetic suites of reservoir models), and the recommended number of 

realisations for specific architectural elements of the Tuscher Canyon model, 4) recommended 

workflow for further three-dimensional fluvial reservoir modelling. 
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1.2.5 Chapter 6 – Discussion 

The differences between the extensive suite of synthetic reservoir models and the application to 

the Tuscher Canyon model are discussed, with a final recommendation as to the best workflow to 

use. The limitations of the study are also considered. 

1.2.6 Chapter 7 – Conclusion 

This chapter covers the key points of the thesis and presents the further work that can be 

undertaken in the field of study. A short summary of the thesis is also provided.  
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2 Literature Review 

Reservoir modelling enables geologists and reservoir engineers to generate three-dimensional 

representations of the subsurface (Ringrose and Bentley, 2015). These models can incorporate 

reservoir properties from two-dimensional reservoir simulators (Jacks, Smith and Mattax, 1973; 

Nilsen, Lie and Andersen, 2016). The type of reservoir model being used is dependent on several 

factors that need to be accounted for before it can be created. The first of these is the purpose for 

developing the model (e.g., visualisation, determining volumes, as an input for (fluid-flow) 

simulation, well planning, seismic modelling, enhanced oil recovery, or for carbon storage 

(Ringrose and Bentley, 2015)). Good reservoir design calls for a fit-for-purpose model, whereby 

flexible, faster, and tailored models are developed to solve a specific problem (Ringrose and 

Bentley, 2015). After this, the scale of the model is decided, followed by the amount of data (both 

hard and soft) that is required for a representative enough model to be developed (also known as 

determinism8). The required amount of determinism is strongly dependent on the purpose of the 

model (Ringrose and Bentley, 2015). The resolution of the model is important. Higher resolution 

models can incorporate significantly more geological detail and complexity than lower resolution 

models, but will also take significantly longer, and require far more computational power to 

construct (Gomez-Hernandez and Cassiraga, 1994). Higher resolution models will also take 

significantly longer to run computations on them (e.g., fluid flow) than other, lower resolution 

models. The user must consider both the size of the reservoir and the coarseness of the grid of 

cells being used to create the model as this will affect the computational demand to generate the 

model (Gomez-Hernandez and Cassiraga, 1994). In coarser gridded models, this usually means 

that smaller features will need to be re-scaled and representative, rather than being detailed 

(Nordahl and Ringrose, 2008). 

 
8 Increased amounts of hard and soft data will increase the determinism, but unless the geospatial 
distribution of the data is small, these models will be probabilistic and incorporate aspects of stochastic 
modelling. 
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2.1 Types of reservoir models 

Reservoir modelling encompasses a range of properties related to the structural, stratigraphic, 

lithological and petrophysical properties of subsurface rocks (Mallet, 2002; Sacchi et al., 2016). 

Reservoir modelling has been used extensively to help predict the location, shape, and viability of 

hydrocarbon reservoirs or carbon sequestration potential, (Hosseini et al., 2013; Vo Thanh et al., 

2019). There are three major types of reservoir model: rock models, petrophysical models 

(porosity and permeability), and stratigraphic forward models. 

Rock models are a way of characterising the various relationships of subsurface structures, and 

facies present within a specific area of interest. These models are either ‘conceptual’, whereby 

the general characteristics (e.g. geometries and spatial distribution of facies) of the reservoir are 

modelled or ‘conditioned’ by making use of measured data (e.g., core logs), and interpreted data 

(e.g., seismic, drillers logs, geophysical logs or geological interpretations) inputs (e.g., Falivene et 

al., 2006; Martinius et al., 2017; Mitten et al., 2020; Carle and Fogg, 2020). This conditioning 

develops more realistic, and constrained reservoir models due to fewer cells needing to be 

determined.  

Petrophysical models are developed from petrophysical data being applied to a facies model 

(Schlumberger Limited, 2022). They are used to calculate various reservoir characteristics e.g., 

shale volume, water saturation, porosity, effective porosity, and permeability (Schlumberger 

Limited, 2022). Porosity is a measure of the pore space to bulk volume ratio of a source rock and 

enables calculation of the total storage volume of a reservoir (Fisher et al., 2017), permeability is 

a measure of the ability of the flow of a fluid through a porous material (Fisher et al., 2017; 

Cannon, 2018; Ferguson, 2019), and effective permeability is the interconnected pore volume 

(Schlumberger Limited, 2022). Petrophysical models enable fluid-flow analysis (Pranter, Reza and 

Budd, 2006), volumetric calculations (Qadri, Islam and Shalaby, 2019) and production viability to 

be assessed (Jacobi et al., 2008), provide a visual representation of porosity-permeability 
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(Soleimani, Shokri and Rafiei, 2017), and are important for the determination of economic 

viability of a reservoir for hydrocarbon recovery, or carbon storage. 

2.2 Rock model algorithms 

Geostatistical methods of modelling rock models have previously fallen into three main groups: 

Pixel-based, Object-based, and Optimization methods (Tahmasebi, 2018), with methods making 

use of deep learning being recently added. Pixel-based methods are based on a set of points with 

defined properties (Tahmasebi, 2018). The methods are used to model both discrete (e.g., facies 

types) and continuous variables (e.g., porosity, permeability, fluid saturation) (Seifert and Jensen, 

2000), and they aim to generate models that honor the input data to create a variogram which 

represents these values as a spatial two-point correlations (Strebelle and Journel, 2001). Object-

based methods are considered as a group of stochastic objects defined by a specific statistical 

distribution (Haldorsen and Damsleth, 1990; Deutsch and Wang, 1996; Holden et al., 1998; 

Skorstad et al., 1999; Tahmasebi, 2018). Finally, Optimization methods rely on altering a model 

point-by-point, to iteratively produce a final model (Tahmasebi, 2018).  

2.2.1 Neural Network Based Methods: GAN’s 

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a type of deep learning 

algorithm to generate new content through competition between two neural networks called the 

generator and the discriminator (Sun, Demyanov and Arnold, 2023b). The generator is responsible 

for taking random noise and generating data that is representative of real data. The discriminator 

evaluates the data created by the generator alongside real data to determine which is real, and 

which is fake. Based on the response from the discriminator (and consequent feedback of 

whether the discriminator won or lost) both neural networks are trained using the loss function to 

minimize a ‘loss’ for both the generator and discriminator (Figure 2.1) (Sun, Demyanov and 

Arnold, 2023b). After multiple iterations, both neural networks can be trained to the point that 

the generator produces data that the discriminator finds indistinguishable from the real, training 

dataset.  



12 
 
 

 

Figure 2.1: Flowchart of the GAN workflow, showing the generator create realistic data from an input vector 

(a set of elements with a uniform or normal distribution) which is then compared to the training dataset by 

the discriminator. The loss function is then used to train the neural networks until the discriminator is unable 

to distinguish between training data and the generated data (Sun, Demyanov and Arnold, 2023a) 

GAN’s have widespread usability, with them having such applications as image processing (Gu, 

Shen and Zhou, 2019), face detection and recognition (Zhao et al., 2019), medical image 

recognition (Kazemina et al., 2021), searching for new molecules (Blanchard, Stanley and 

Bhowmik, 2021), and reservoir modelling (Sun, Demyanov and Arnold, 2023a). GAN’s such as 

FluvalGAN_3DR (Sun, Demyanov and Arnold, 2023b) have successfully been used to model fluvial 

systems from stacking together multiple two-dimensional slices to create a three-dimensional 

volume.  

Currently, the biggest benefits provided by using GAN’s for reservoir modelling revolve around 

the increased realism between layers (when in a purely aggrading scenario) as previous layers can 

be used to condition subsequent layers, whilst also having a lower computational requirement 

due to the stacking of two-dimensional layers (Sun, Demyanov and Arnold, 2023b). The main 

drawback currently is the lack of application to any environment that is not purely aggradational 

since layers are stacked, and changes to previously modelled layers is not yet possible (Sun, 

Demyanov and Arnold, 2023b).  
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2.2.2 Pixel Based Methods: The Sequential Indicator Simulation 

Sequential Indicator Simulation (SIS) is a type of modelling algorithm that uses variograms to 

populate a three-dimensional grid volume (Seifert and Jensen, 1999). A variogram (Figure 2.2, 

Equation 2.1) is a graphical depiction of the variance of a variable over a spatial random process, 

and it is composed of three main components: the nugget, the range, and the sill (Ringrose and 

Bentley, 2015). The nugget is the Y-intercept value of the graph and acts as a discontinuity value 

from below which values do not appear (Gill, 2009), and is a measure of the overall uncertainty in 

the variogram, the higher the value, the more uncertainty (Camana and Deutsch, 2019). The sill of 

the variogram is the point at which the variance of the values reaches 0 (Gringarten and Deutsch, 

2003); and the range is the total lag distance required for the dataset to reach this sill, at which 

point the values of the variogram only incrementally increase (Li and Zhao, 2014).  

 

Figure 2.2: Synthetic variogram showing range, nugget, and sill. A variogram is a graphical depiction of the 

spatial variance of a variable. Variograms like this function as the basis for developing reservoir models 

using the sequential indicator simulation (SIS) algorithm after Ringrose and Bentley, 2015.  

𝛾(ℎ) =  
1

2𝑛
∑(𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ))2

𝑛

𝑖=1

 

Equation 2.1: Semi-Variogram Equation, where 𝛾 is the variance of the dataset at a given lag (h), n is the 

number of values within a given lag distance, 𝑧(𝑥𝑖) is the value with no lag distance, and 𝑧(𝑥𝑖  +  ℎ) is the 
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value with lag distance of ℎ. This 𝛾 value acts as the Y-value, and h denotes the lag distance (X-position) for 

the variogram (Figure 2.2). 

The SIS algorithm uses both the indicator approach (Figure 2.3) and Monte Carlo simulation 

(Metropolis and Ulam, 1949) within its workflow (Deutsch, 2006; Zhou et al., 2018). The indicator 

approach (Figure 2.3) is where a random sequence of cells is selected rather than a more orderly 

row-by-row approach (Doyen, Psaila and Strandenes, 1994). For the Monte Carlo simulation, a 

CCDF (conditional cumulative distribution function) is used, meaning that after a cell within the 

model is determined, the new cell data is added to the dataset, and the probabilities are all 

recalculated (known as a backtransformation) (Journel and Alabert, 1990; Seifert and Jensen, 

1999; Soares, 2001; Emery, 2004; Zhang, Switzer and Journel, 2006; Pyrcz and Deutsch, 2014; 

Ringrose and Bentley, 2015; Tahmasebi, 2018; Jika et al., 2020). This reliance of the distribution 

on the values regarding the distribution of values in the CCDF means that this backtransformation 

of data is crucial to the indicator approach used by the SIS algorithm (Figure 2.3) (Caers, 2000).  
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Figure 2.3: Graphical depiction of the indicator approach to the random nature of the selection of a cell for 

the SIS algorithm, with the random order of cells being visited, starting at X1 (circled). Once the cell has been 

visited, and its facies decided, in this case sand or shale, a backtransformation is applied to the conditional 

cumulative distribution function (CCDF). The next cell would then be randomly selected (X2), with this 

process repeating until all cells in the model have been visited. 
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Figure 2.4: A generic flowchart for the SIS algorithm (adapted from Juang, Chen and Lee, 2004), detailing the 

workflow for the determination of the facies of each cell, backtransformation, and subsequently the creation 

of the reservoir model. 

The SIS algorithm (Figure 2.4), has been used to model turbidites (Alabert and Massonnat, 1990), 

the Wilmington sand-shale sequence (Gomez-Hernandez and Journel, 1989), heavy-metal soil 

contamination (Juang, Chen and Lee, 2004), as a facies background of shallow marine, coastal 

plains and sheetflood bodies (MacDonald et al., 1992) and to model various rivers (Seifert and 

Jensen, 2000) such as the Jamuna River and Tuscher Canyon (Mitten et al., 2020). An example of 

an SIS-created reservoir model can be seen in Figure 2.5a.  
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Figure 2.5: Comparison of equivalent synthetic reservoir models developed with the A) SIS, B) OBM, and C) 

MPS algorithm. The SIS model (A) was created using input parameters of 250 width, 2000m length, 10 

vertical thickness, a nugget value of 0.0001, and target fraction of 50:50. The OBM model (B) was created 
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using the input parameters of 250 amplitude, 500 wavelength, 250 width, 10 vertical thickness and target 

fraction of 50:50. The MPS model (C), was created using the OBM model (B) as a training image, and so 

effectively has the same input parameters. Models generated with the different modelling algorithms show 

distinct differences in both the representation, and style of the modelled geometries. The pixel-based 

algorithms (SIS – A and MPS – C) appear less clean than the object-based algorithm (OBM – B), with the 

individual cells being more prominently displayed. The SIS method appears far less realistic than the models 

generated with the other algorithms, and lacks any proper curvilinear, or naturality. The OBM algorithm 

produces almost idealised geobodies, and represents nature, and curvilinear features better than the SIS 

algorithm. The models produced using the MPS algorithm are far more realistic, and enable both 

curvilinearity, and the randomness and chaos of nature to be captured within the model, producing by far 

the best, most realistic models. 

The main benefit of using this method for reservoir modelling is the ability to reproduce 

geological texture (Caers, 2000). SIS generated reservoir models also incredibly useful when there 

are either no clear genetic architectural shapes, or overly complex geobodies or facies 

interactions, that the OBM algorithm would struggle to model allow for the textural capabilities of 

the SIS algorithm to be fully utilised (Deutsch, 2006; Strebelle, 2012). Some models developed 

with the OBM algorithm have been used as a framework to create geological structure, with the 

facies distribution and texture being modelled using the SIS algorithm to provide a better 

distribution model (Cao, Zee Ma and Gomez, 2014). In comparison to OBM and the MPS 

algorithms, SIS more accurately represents the mean element proportions along with the mean 

element thickness and variability of downstream accretion elements (Mitten et al., 2020), and 

when the variograms are properly setup, better structure, and heterogeneity of inclined 

heterogeneous strata (IHS) can also be developed (Martinius et al., 2017). The SIS method also 

produces realisations that reproduce the mean element proportions far better than other 

methods (Mitten et al., 2020). With a large dataset (created from many model realisations being 

created), it is possible to assess the uncertainty within the resultant dataset, also allowing it to be 

quantified through analysis of standard deviation, mean geobody thickness and target fraction 

analysis. Usually this would be very time consuming, but pre-calculation of values is possible, for 
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them to be stored in a look-up table and called upon when required, consequently leading to 

shorter computational time (Tahmasebi, 2018; Gomez-Hernandez and Srivastava, 2021). Typically, 

the best usage of this model occurs when the architectural elements being recreated is unclear, 

when there are few curvilinear features, or when there is a high density of hard datapoints, such 

as close well spacing, or dense three-dimensional seismic data (Deutsch, 2006; Pyrcz and Deutsch, 

2014; Zhou et al., 2016). Finally, the SIS method benefits from a robust algorithm that is 

particularly easy to understand and can have the required statistical parameters being inferred 

from limited data (Deutsch, 2006) and can allow for better geological interpretation into reservoir 

modelling for flow simulation or reservoir management (Journel and Alabert, 1990).  

The main drawback of the SIS algorithm comes with a lack of ability to accurately model complex 

geometries such as the sinuosity in fluvial channels (Seifert and Jensen, 1999, 2000), with this also 

extending to secondary fluvial channels, when misaligned from the main channel, ultimately 

becoming structureless blobs (Zhou et al., 2018). With the lack of being able to properly model 

channels in a direction differing from the main directions of the channels, lateral amalgamation of 

several channels is over-predicted, and subsequently skews data that could be returned from such 

models, such as net connectivity of the reservoir (Strebelle, 2012). Patchy and unstructured 

models also form due to the two-dimensional nature of the semi-variograms that are used to 

create the model, this can subsequently also lead to geologically unrealistic facies boundaries and 

transitional zones (Deutsch, 2006). The random sequence of the cells being visited can introduce 

ergodic periodicity into the dataset (Deutsch and Journel, 1992). SIS was also used as a training 

image for MPS modelling, but this proved to influence the resultant model too heavily with the 

removal of the ability to produce sinuosity (Ortiz and Deutsch, 2004; Ortiz and Emery, 2005).  

2.2.3 Object-based Methods: Object Based Modelling 

Object Based Modelling (Haldorsen and Chang, 1986; Haldorsen and MacDonald, 1987; Haldorsen 

and Damsleth, 1990; Deutsch and Wang, 1996; Lia et al., 1996; Holden et al., 1998; Visseur, 1999) 

represents different facies and objects distributed in space, using specific input parameters, such 
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as shape, channel size (width and thickness) and orientation (Dubrule, 1993, Holden et al., 1998; 

Manzocchi et al., 2007; Rezaee et al., 2013; Vevle, Skorstad and Vonnet, 2018). This allows 

naturally occurring curvilinear features (Liu et al., 2004) to be better modelled than some other 

methods. A drawback of this technique is that it is notoriously difficult to condition to data 

(Strebelle and Cavelius, 2014). OBMs are used solely for modelling discrete geological features 

such as facies types (Seifert and Jensen, 2000). OBMs tend to yield well confined channels, values 

such as lateral connectivity can be found to be reduced (unless a high net-gross is present, which 

is the total percentage of productive hydrocarbon volume within the model), hybrid methods of 

SIS and OBM methods have been utilized to counteract this. These hybrid methods create far 

more realistic, and natural models (Seifert and Jensen, 2000). The OBM method has been used to 

model the distribution of channels within fluvial reservoirs (Clemetsen et al., 1990; Henriquez et 

al., 1990; Pranter, Vargas and Davis, 2008), the distribution of crevasses and channels in the 

fluvio-deltaic Ness formation (Gundesø and Egeland, 1990), the Triassic Red Beds of Iberian 

Meseta (Yeste et al., 2021), the Upper Cretaceous Blackhawk Formation, Utah (Villamizar et al., 

2015), the Beckwith Plateau, Utah, using the Mitchell Delta, Australia as a modern analogue 

(Nyberg et al., 2019), and to model partially dolomitized remobilized carbonates, in the Gulf of 

Suez, Egypt (Corlett et al., 2021). 

An example of modeling software that utilizes the OBM algorithm is FLUVSIM (Deutsch and Tran, 

2002), and it works through the following workflow. Sufficient channels to match the global 

proportions of each facies are placed randomly throughout the three-dimensional grid, with the 

number of crevasses attached to each channel dependent on the relative size of the channels 

being created, and the target proportions applied to crevasse splays. The sizes of the levees are 

also calculated and scaled to achieve the assigned proportion. Following this, four operations are 

defined: replace a channel object, add a channel object, remove a channel object, and correct a 

well interval. One of these operations is randomly called and applied to the model, and where it is 

involving the manipulation of a channel, it is picked randomly, and the various proportions are 

recalculated (Deutsch and Tran, 2002). This leads to the update of the model, whereby the 
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acceptance or rejection of that operation is decided by a simulated annealing schedule (Deutsch 

and Cockerham, 1994; Deutsch and Tran, 2002). Finally, the second step is repeated until the 

proportions match the user inputted values (Deutsch and Tran, 2002).  

The process of creating the channels is iterated upon, with the multiple versions being used to 

constantly improve on the previous object, subsequently leading to the longer run times required 

(Figure 2.6) (Caers, 2001; Strebelle and Journel, 2001; Strebelle, 2002; Caers and Zhang, 2004; Liu 

et al., 2004). After the channels, and other objects are put into the three-dimensional model, the 

background fills any remaining cells. 

 

Figure 2.6: Aerial and cross-sectional view of the parameters used to define the channel structure within the 

object based modelling (OBM) algorithm. A) presents the aerial view, relating to channel direction and the 

central line of the channel, along with the width, whereas B) presents the cross-sectional view of the channel 

being presented in geocellular form, with relation to width, thickness, and position of the maximum 

thickness (dependent on the channel curvature) after Deutsch and Tran, 2002. 

Whilst the OBM method is ideal for simulating realistic, curvilinear, geological structures (Figure 

2.6b), there are some drawbacks, notably with the most realistic models requiring some sort of 

conditioning data, either hard well data or exhaustive secondary, but this proves to be a critical 
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limitation (Strebelle, 2012), as using hard data is very computationally taxing and requires a lot of 

time to simulate (Liu et al., 2004). This is also compounded by the fact that three-dimensional 

seismic cannot be used as a framework, with only two-dimensional seismic being compatible (Liu 

et al., 2004).  

2.2.4 Pixel Based Methods: Multiple-Point Statistics 

The MPS (Multiple-Point Statistics) (Guardiano and Srivastava, 1993, and later developed upon by 

Strebelle, 2000, 2002) algorithm of modelling was developed to better model the complex 

curvilinear features found within nature (e.g., meanders and oxbow lakes), which previous 

modelling algorithms, such as SIS were unable to produce (Strebelle, 2002; Caers and Zhang, 

2004; Strebelle and Cavelius, 2014; Tahmasebi, 2018). It combines the ability to realistically model 

curvilinear shapes (like object-based techniques) with the speed and ease of use of variogram-

based techniques (such as SIS) (Strebelle, 2012). The MPS algorithm simultaneously uses multiple 

datapoints, which enable the modelling of complex shapes. Typically, since datasets are sparse 

and incomplete (Strebelle, 2012; Tahmasebi, 2018), a conceptual model of the expected 

structures found within the reservoir can be substituted in the form of a two- or three-

dimensional numerical representation (Guardiano and Srivastava, 1993; Liu et al., 2004; Daly and 

Caers, 2010; Tahmasebi, 2018). These are referred to as TIs (training images) (Liu et al., 2004; 

Tahmasebi, 2018).  

Typically, TIs are generated from process-based models, object-based models or from observed 

outcrop examples (Tahmasebi, 2018), but research has also created them from digital object 

models (DOM) originally created from Lidar scans, such as the work carried out in the Westwater 

Canyon Member of the Morrison Formation in New Mexico, USA (Pickel et al., 2015). Whilst it is 

common for these TIs to be images, they can also take the form of statistical properties 

(Tahmasebi, 2018), but these TIs must be representative of all of the possible shapes, dimensions, 

and relationships of geobodies thought to be present in the model (Strebelle and Journel, 2001; 

Caers and Zhang, 2004; Zhang, Switzer and Journel, 2006; Strebelle, 2012; Strebelle and Cavelius, 
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2014; Pickel et al., 2015). The biggest issue with the MPS algorithm is the lack of available training 

images, consequently, software such as TiGenerator was developed to create training images 

from the techniques used by the OBM algorithm (Maharaja, 2008), though it is still common that 

OBM models are used (Strebelle, 2002; Vevle, Skorstad and Vonnet, 2018). Notably, some 

examples of the usage of the MPS method include the Vadose zone of the Komadugu-Yobe River 

valley, southeastern Niger (Le Coz, Genthon and Adler, 2011), and Tuscher Canyon, Utah (Mitten 

et al., 2020). 

Firstly, the algorithm searches for any available conditioning data (well data or previously 

simulated cell values) closest to the grid node that is currently being determined (Strebelle, 2000; 

Strebelle, 2012, Strebelle and Cavelius, 2014). A data event is then fully characterised by its 

geometrical configuration and its facies code (Strebelle, 2000; Strebelle, 2012). The training image 

is then scanned to find all similar structures within it (same geometric structure and facies code), 

and upon finding these will record the facies value at the central point of the training replicate 

(Figure 2.7) (Strebelle, 2000; Feyen and Caers, 2006; Zhang, Switzer and Journel, 2006; Strebelle, 

2012; Strebelle and Cavelius, 2014). 

After this, the estimated conditional probability is calculated for each facies at this point by the 

proportion of training replicates holding the same facies at the central location (Strebelle, 2000; 

Strebelle, 2012; Strebelle and Cavelius, 2014). Finally, the value of the specific cell being simulated 

is defined and determined from Monte Carlo sampling (Metropolis and Ulam, 1949) and assigned 

to the cell (Strebelle, 2000; Strebelle, 2012; Strebelle and Cavelius, 2014). Simply put, the method 

is a way of determining the probabilities of the occurrence of patterns (Okabe and Blunt, 2004), 

by using each of the various filters (Figure 2.7a), which then assign a probability to the cell (which 

is also added to a local conditional probability density function (CPDF) (Figure 2.7b) (Caers and 

Zhang, 2004; Zhang, Switzer and Journel, 2006). This process is repeated until all filters have been 

used, and the cell has a final probability (Caers and Zhang, 2004; Zhang, Switzer and Journel, 

2006). This captures local patterns of the TIs, and enables points to be anchored onto the model 
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being built (Liu et al., 2004; Caers and Zhang, 2004; Zhang, Switzer and Journel, 2006). The 

indicator approach to this simulation is done by visiting each node in the current grid along a 

random path Liu et al., 2004), with the gridding eventually getting finer and finer, to refine the 

value obtained in the coarser grid (Zhang, Switzer and Journel, 2006). 

 

Figure 2.7: A) shows a variety of filters used on the local scale within the Multiple-Point Statistics (MPS) 

algorithm in order to transfer the general trends of the training image (TI) into the reservoir model. B) shows 

a worked example using the first filter presented in A) to provide a probability value to the cell, after Zhang, 

Switzer and Journel, 2006 

One of the most notable variants of the MPS method is called SNESIM (Strebelle, 2000), where 

the MPS moments are stored within a search tree data structure allowing for quicker simulation, 

where the scanning phase is performed prior to simulation (Feyen and Caers, 2006; Strebelle, 
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2012). Sub-grids were also implemented to increase the relative proportion of previously 

simulated nodes in each nested grid (Strebelle, 2012). An example of a model generated using the 

MPS algorithm can be seen in Figure 2.5c (using an OBM model as a training image, Figure 2.5b), 

this has also been done to model the Triassic Red Beds of Iberian Meseta (Yeste et al., 2021), 

which used the OBM method to create a training image of the outcrop/ behind outcrop (OBO) 

representation for the MPS algorithm to use. This helps to create geologically realistic models that 

honour the geostatistics created from the initial input parameters to be created (Caers and Zhang, 

2004; Strebelle and Levy, 2008; Le Coz, Genthon and Adler, 2011; Hu et al., 2014; Zhou et al., 

2018; Yeste et al., 2021).  

Whilst the MPS method is great at simulating the curvilinear geometry of natural formations, 

there are some drawbacks. A lack of similarity between internal patterns in the TI (Tahmasebi, 

2018) is commonplace, but this can be solved by using OBM methods to develop the TI. Initially, 

the MPS algorithm made use of assuming homogenous distributions of facies proportions, 

geometries, and associations throughout the model, which doesn’t work when applied to natural 

formations due to a lack of stationarity (Strebelle, 2012). Sparse well environments, or clustering 

of wells leads to a bias within the training image that would need to be corrected for (Strebelle, 

2012), meaning that any TIs used must be densely populated (Strebelle and Journel, 2001; 

Tahmasebi, 2018). This subsequently means that there is a large strain on computational power 

when both analyzing TIs and informing the model based off of the results of the local CPDF 

(Strebelle and Journel, 2001). Finally, it is used slightly less than other methods due to increased 

complexity, run time and practical limitations, which include non-stationarity9 (Strebelle and 

Zhang, 2004; Eskandari and Srinivasan, 2010; Zhou et al., 2018), uncertainty in the geological 

scenario, and subjectivity in TI selection (Strebelle, 2002). The increased run time could be 

improved upon by using bunch simulation rather than pixel simulation, so as to increase the 

 
9 The mean and variance change throughout the modelled area due to a local conditional probability 
density function being constantly updated when using the filters to determine the probability of points in 
the TIs 
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efficiency of the entire simulation by a factor of the total bunch size (Figure 2.8) (Rezaee et al., 

2013).  

 

Figure 2.8: Pixel and Bunch Based approaches to the simulation process of Object Based Modelling (OBM). 

The top depicts the original grid, with the left showing a 3x3 grid of cells being simulated at the same time 

(bunch processing), and the right showing a singular cell being simulated. This can improve the 

computational time required for the MPS algorithm to develop models, after Rezaee et al., 2013. 

2.3 Rock model analysis 

In terms of a reservoir, connectivity is the concept of the existence of a path-like structure within 

the subsurface of the same rock composition, through which fluids can migrate (Renard and 

Allard, 2013). This is essential for drainage of an oil or gas field, to the point where, if part of a 

reservoir is not connected to a producing well, then no hydrocarbons will be recovered (Larue and 

Hovadik, 2006; Hovadik and Larue, 2010). The connectivity structure of heterogeneous facies 

strongly influences the fluid flow (Renard and Allard, 2013), and ultimately the effectiveness, and 

efficiency of a reservoir. This property is split into two distinct versions – static and dynamic 

(Renard and Allard, 2013). The former of these cannot describe the connectivity, but instead 
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should be seen as more of a two-point statistical method of defining the probability of having a 

specific connectivity at a point (Renard and Allard, 2013) (such as how a semivariogram is used to 

describe the probability of a facies being present within a cell in the SIS modelling algorithm). 

Dynamic connectivity is instead reliant on a process-based approach, where the physics behind 

the creation of the sedimentary structures is considered. This requires knowledge about the 

geometry, and additional physical parameters, such as boundary types and reservoir saturation 

(Renard and Allard, 2013).  

Geobody (also known as sand-body) connectivity is also used to describe the connectivity of a 

reservoir and is done by analyzing the structure of the geobody in its entirety rather than an 

instantaneous point (Renard and Allard, 2013), and is a measure of the total percentage of a 

reservoir that can be drained from a single well (Larue and Hovadik, 2006). In fluvial systems, 

there is usually low connectivity between the point-bar sand bodies, with far higher connectivity 

being found within the sand-rich (channel infill) intervals, where amalgamated sand bodies 

become more common (Pranter et al., 2007).  

It has also been found that after the proportion of sand within a system surpasses 50%, the 

degree of connectivity rises steeply, within a two-dimensional model (Allen, 1978). In a three-

dimensional model, percolation theory has been used with a link to connectivity, from which, it 

was found that the percolation threshold occurs at approximately 25% net-to-gross ratio of sand 

(King, 1990; Allard and HERESIM Group, 1993), meaning that the connectivity of geobodies found 

within a modelled space is very low, until 25% net to gross, at which point connectivity 

dramatically increases. In models where net-to-gross is being incrementally increased, 

connectivity has been described to form a ‘cascade zone’, where the connectivity against net to 

gross ratio forms an S-curved graph (Figure 2.9) (Larue and Hovadik, 2006). This was also deemed 

to be the case for a two-dimensional slice (Figure 2.9a), but in a three-dimensional model (Figure 

2.9b), the percolation threshold occurred at ~25%, the two-dimensional slice required ~60% net 

to gross (Larue and Hovadik, 2006). 
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Figure 2.9: A) shows the two-dimensional representation of the connectivity-net to gross relationship, with 

the cascade zone appearing between 50% and 80%, whereas B) shows the same connectivity-net to gross 

relationship, with results being significantly shifted towards the left in the three-dimensional model. The 

drastic shift of the cascade zone of the connectivity of a three-dimensional model in comparison to a two-

dimensional model suggests that two- and three-dimensional reservoir models should be treated as 

separate entities, with different characteristics (from Larue and Hovadik, 2006). 

2.4 Fluvial reservoir models  

When modelling fluvial systems, there are several characteristics that are needed to keep in mind 

to develop a representative model. Specifically, there are the: type of fluvial system, channel 

density, channel sinuosity, typical channel dimensions, single or multi-channel and the internal 

channel architecture (proportion of sand to mud within the main channel), though depending on 

the use of the reservoir, the model may neglect to show the internal channel architecture 

(Ringrose and Bentley, 2015). Such models as that of the Lower Castlegate Sandstone, Utah, 

describe the internal channel architecture (Mitten et al., 2020). The Lower Castlegate Sandstone 

is composed of eight facies (one structureless conglomerate, six sandstone facies and one fine 

grained siltstone), along with four major geobodies (cut and fill channel elements, thalweg 

bedform complexes, downstream and laterally accreting barforms) (Miall, 1993, 1994; Yoshida, 

2000; Mitten et al., 2020).  
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Connectivity is arguably the most important property when it comes to fluvial reservoirs, and this 

can be modelled by the percolation theory, where channel connectivity is modelled based on 

probability (Ringrose and Bentley, 2015). The point at which the percentage of cells within a 

model needing to be filled (by a channel) in order to be connected is different for different models 

(Ringrose and Bentley, 2015), for example, the percolation threshold for overlapping sandstone 

object (as boxes in three-dimensional models) was seen to be approximately 0.25 (King, 1990), 

whereas stochastic models of intersecting sinuous channels has this value at between 

approximately 0.2 and 0.6 (Larue and Hovadik, 2006), ultimately suggesting that connectivity is 

proportional to channel sinuosity. Connectivity can be hampered by vertical or horizontal 

compartmentalization, arising from either a laterally extensive permeable depositional layer, 

faulting or even just from channel avulsions not linking up with previous channel deposits (Larue 

and Hovadik, 2006).  

Alongside net to gross, reservoir architecture is also incredibly important for determining the total 

connectivity of the reservoir. For example, smaller, more sinuous channel deposits reduce the 

variance in connectivity of a reservoir (Larue and Hovadik, 2006). Higher channel sinuosity 

ultimately means that a channel occupies a larger horizontal width of the reservoir (Figure 2.10), 

consequently increasing the probability of vertical channel overlap, and ultimately the 

connectivity of a reservoir. The increase in reservoir connectivity is so large that the variation in 

connectivity is consequently decreased as connectivity reaches its upper limit of 100%.  
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Figure 2.10: the effect of sinuosity on two channels of the same width. Channel A has far lower sinuosity 

than Channel B, and as such has a smaller effective channel width. Effective channel width in this case is the 

total width that the channel occupies. A higher effective channel width results in higher probability of 

channel stacking, and consequently a higher channel connectivity.  

2.5 Model realisations – answers and problems 

There are four main considerations to be made when rock models are developed: the statistical 

significance, the reproducibility, efficiency, and the detail and resolution of the models being 

simulated. a statistically significant rock model in a two-dimensional section is produced when 

there are approximately 20 realisations/ realisations created (Figure 2.9). More realisations than 

this this decrease the size of the uncertainty marginally, meaning that a larger dataset will 

produce diminishing returns after a certain point (Goovaerts, 1999). This approach was used to 

predict flow properties for water cuts and oil recovery, with 80 sample permeabilities being 

randomly selected from a possible 1600 minipermeater measurements to act as conditioning data 

(40 x 40 minipermeater measurements taken from a 2 by 2-foot vertical section of Berea 

sandstone), with 100 realisations developed from this, making use of p-field, sequential Gaussian, 

and sequential indicator simulation (Goovaerts, 1999).  

A B 
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Figure 2.11: The minipermeater data being used to create porosity permeability models, and the standard 

deviation of these models being plotted against number of realisations (lag), to produce variograms. The 

standard deviation values plateau at approximately 20 realisations, suggesting diminishing returns, when it 

comes to total variation of the models past this number of realisations (after Goovaerts, 1999). 

The time taken to generate reservoir models is not the only concern, another major factor is the 

accuracy of the resultant rock model. A larger pool of data will create more reliable and realistic 

reservoir models, since these hard data acts as a framework to condition surrounding values 

(Falivene et al., 2006). Any soft data uncertainties, such as those presented from using geologic 

interpretation, driller’s logs, geophysical logs, or imaging (Carle and Fogg, 2020) are minimal over 
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an average of 10 realisations (Falivene et al., 2006). The workflow (Figure 2.12) centered around 

the use of as much hard and soft data that could be extracted from a sandstone filled turbidite 

channel, from a Quarry outcrop in the Ainsa basin (Falivene et al., 2006). The analysis of the 

results (Figure 2.12) showed that the SIS, TGS (truncated Gaussian simulation) and OBM 

algorithms struggled to represent the three-dimensional nature of the undulating beds, with the 

MPG (also known as MPS) algorithm representing these undulations well (Falivene et al., 2006).  
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Figure 2.12: Flowchart showing the processes used to develop reservoir models from outcrop behind outcrop 

(OBO) models (after Falivene et al., 2006) 

Where the algorithm was set up to expect undulations, very realistic models were produced, with 

continuous sandstones being modelled when unaccounted for (Falivene et al., 2006). Even though 

this was carried out on a two-dimensional section, the results from this study show that the 

discrepancies between outcrop and the models appeared to be algorithm based rather than data 

dependent, variogram based methods struggling to represent sinuosity or undulations (Falivene 
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et al., 2006). 

 

Figure 2.13: Examples of the different two-dimensional panels achieved from the workflow in Figure 2.12, 

displaying the variation of different algorithms using similar input parameters. This hints at discrepancies in 

model representation being present (Falivene et al., 2006). 

What is currently not know, is how many realisations are required to create a statistically 

significant three-dimensional reservoir model suite, with a variety of algorithms, and with various 

parameters, such as target fractions, major and minor directions, and vertical values.  

2.6 Summary and Discussion 

Previous work focuses on a variety of different modelling types and methods, with the earlier, and 

more primitive, methods paving the way for huge advancements in the field of reservoir 

modelling. Prior work in the fields of statistical significance, and realism of reservoir models 

(Goovaerts, 1999; Falivene et al., 2006), coupled with the differences in static connectivity 

between two-dimensional and three-dimensional models (Larue and Hovadik, 2006), suggests 

that the approximate 20 realisations required for a statistically significant two-dimensional 

reservoir model may not be correct for an equivalent three-dimensional model. The difference in 

static connectivity between two-dimensional and three-dimensional models suggests that the 
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three-dimensional nature of reservoir modelling completely changes a model’s fundamental 

properties, and as such, suggests that the number of realisations required for a statistically 

significant three-dimensional reservoir model suite should also change - this is the focus of this 

research.  
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3 Methodology 

This chapter will outline three main sections of the methodology being used within this study: 

• The creation of suites of fluvial reservoir models; 

• The initial statistical modelling methods of the generated reservoir models; 

• The statistical analysis of the datasets obtained from the initial statistical modelling. 

3.1 Data Collection 

The synthetic suites of reservoir models used in this study were created by using the 

SchlumbergerTM Petrel v.2020 software. The models were developed within a 2,000m x 2,000m x 

50m grid, composed of 320,000 cells per model, with a cell resolution of 25m x 25m x 1m to 

reflect the homogeneity in the X and Y direction in sedimentary systems, with more of a focus to 

capture high resolution detail in the Z axis (Enge et al., 2007). This grid design provides a balance 

between the duration of time for the models to be developed, whilst also providing a large 

enough area to effectively visualise heterogeneity.  

The focus of this study is to determine the number of realisations required in order to develop a 

statistically significant three-dimensional reservoir model suite. One hundred realisations (as 

previously used by Goovaerts, 1999) were generated for each set of input parameters for each of 

the SIS, OBM and MPS algorithms. The realisations were repeated across a range of sand to shale 

ratios of 20:80, 30:70, 40:60, 50:50, 60:40, 70:30 and 80:20, presented as a percentage target 

fraction of the total model volume. Together, the realisations provide a representative sample of 

model suites that ensure wider ranging applicability of the study.  

3.1.1 Reservoir Models 

To provide wider scale applicability of this study, three of the most popular reservoir modelling 

algorithms are used: 

• Sequential Indicator Simulation (SIS) 

• Object Based Modelling (OBM) 
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• Multiple-point Statistics (MPS) 

Each of these modelling algorithms requires a distinct set of input parameters, which can make it 

difficult to compare results from different algorithms. Since the suite of models will be analysed 

with respect to each other, it is important that the input parameters used with each algorithm 

create realistic models of fluvial systems, with a mixture of bedload and suspended load styles, 

that are comparable across algorithms. 

Sequential Indicator Simulation - SIS 

In order to develop the synthetic suites of models, the SIS algorithm requires input values for: 

• Major Direction (fluvial channel length) 

• Minor Direction (fluvial channel width) 

• Vertical Height (fluvial channel thickness) 

• Nugget value (the y-intercept of the variogram used to create the model and effects the 

variability of the models being produced) (see Figure 2.2) 

The proposed variogram parameters for the SIS modelling algorithm were selected to provide a 

wide range of both ‘realistic’, ‘fringe-case’, and ‘unrealistic’ fluvial reservoir models. Realistic input 

parameter values provide proof that the methodology has real-world viability; fringe-case and 

non-realistic input parameter models provide proof of widescale applicability, whilst also 

increasing the pool of test-cases. Channel width to thickness (W/T) ratios of fluvial systems is very 

variable dependent on the style of fluvial system, and the characteristics of the channel (e.g. 

discharge rate, sediment load, and slope steepness) (Gibling, 2006). Generally, braided and low-

sinuosity rivers will have a W/T value between 50-1000, meandering rivers will have a W/T ratio 

between 30-250, and distributary systems will have a W/T ratio between 5-30 (but this becomes 

more variable at 1-250 for distal alluvial fans and aprons) (Gibling, 2006). Whilst the generation of 

sinuosity is a limitation of the SIS algorithm, the wide range of channel width to thickness ratios 

(given by the variation of the channel width and channel thickness input parameters) should 
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provide a good compromise for modelling a wide range of fluvial systems, whilst also providing 

comparison to the OBM and MPS modelling algorithms.  

To create a represented suite of models a wide range of input parameters is required. The ranges 

of parameters used in this work are detailed in Table 3.1 below. 

Major Direction Minor Direction Vertical Height Nugget 

500 125 5 0.0001 

1000 250 10  

1500 375 15  

2000 500 20  

3000    

Table 3.1: SIS input values showing major direction, minor direction, vertical height, and nugget values used 

to create the suite of fluvial reservoir models. 

The range of major directions (Table 3.1) is defined such that it will not produce models with 

channels lengths extend beyond the model. This was done to see what affect, if any, major 

direction had upon the reproducibility of such models. To account for more realistic geological 

features, the major direction value of 3000m is also included. This enables channels to be 

projected beyond the 2000m reservoir model grid, providing a continuous geobody, thus a more 

realistic comparison to the OBM and MPS algorithms can be made, where the channels are more 

readily projected through the grid.  

The ranges of values used for the minor and vertical directions (Table 3.1) are designed to 

generate a wide variety of channels with realistic properties. These geometric input parameters 

together with target fractions generating 560 different model sets being generated.  

The wide ranges of values for both the channel width (125 to 500) and the vertical thickness (5 to 

20) are summarised within Figure 3.1, where all other input parameters are the same. The 

channel width and vertical thickness values lead to large variations in the generated models. It is 
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important to use a wide range of input parameters to encompass the broad range of possible 

real-world scenarios.  
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Figure 3.1: Example synthetic fluvial reservoir models generated using the SIS modelling algorithm, using the 

same input parameters for the major direction (3000) and the nugget value (0.0001), with the width (minor 

direction) and the vertical thickness being altered (125 and 500, and 5 and 20 respectively), showing the 

differences between the models generated using the edge cases of some of the input values. 

Object Based Models - OBM 

In order to develop the synthetic suites of models, the OBM algorithm needs input values for: 

• Channel Width (fluvial channel width) 

• Wavelength (distance between meanders of the fluvial channel) 

• Amplitude (the extent of the meander of the fluvial channel) 

• Vertical Height (fluvial channel thickness) 

The proposed variogram parameters for the OBM modelling algorithm were selected to provide a 

wide range of both ‘realistic’, ‘fringe-case’, and ‘unrealistic’ fluvial reservoir models. Realistic input 

parameter values provide proof that the methodology has real-world viability; fringe-case and 

non-realistic input parameter models provide proof of widescale applicability, whilst also 
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increasing the pool of test-cases. Channel width to thickness (W/T) ratios of fluvial systems is very 

variable dependent on the style of fluvial system, and the characteristics of the channel (e.g. 

discharge rate, sediment load, and slope steepness) (Gibling, 2006). Generally, braided and low-

sinuosity rivers will have a W/T value between 50-1000, meandering rivers will have a W/T ratio 

between 30-250, and distributary systems will have a W/T ratio between 5-30 (but this becomes 

more variable at 1-250 for distal alluvial fans and aprons) (Gibling, 2006). Whilst the sinuosity 

(given by the amplitude and wavelength parameters) is highly variable for a wide range of channel 

width to channel thickness ratios, this should help to capture the wide variation of W/T ratios for 

a given sinuosity.   

To create a represented suite of models a wide range of input parameters is required. The ranges 

of parameters used in this work are detailed in Table 3.2 below. 

Channel Width Wavelength Amplitude Vertical Height 

125 250 125 5 

250 500 250 10 

375 750 375 15 

500 1000 500 20 

Table 3.2: OBM input values showing channel width, wavelength, amplitude, and vertical height values used 

to create the suite of fluvial reservoir models. 

The range of channel widths (Table 3.2) will produce models with channels of various sizes and 

represent more classical mature and immature fluvial systems respectively. The range of values 

used for the wavelength and amplitude (Table 3.2) generate models with varying degrees of 

sinuosity. The vertical height (Table 3.2) was selected so that the Z-value (lower vertical extent) of 

the model wouldn’t be exceeded, nor too easily connected by the stacking of just a few modelled 

channels.  

This array of input parameters generates 256 different models for each of the 7 sand to shale 

ratios (target fractions) used within this study. This generates 1,792 different models. The wide 
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ranges of values for both the amplitudes of the sinuosities of the channels (125 to 500) and their 

vertical thicknesses (5 to 20) are summarised within Figure 3.2, where all other input parameters 

are the same. This leads to large variations in the models being developed. It is important to use a 

wide range of input parameters during the generation of a suite of synthetic reservoir models 

since outcrops used to create the models will have varying channel parameters. Consequently, 

this suite of synthetic reservoir models study is required to be as comprehensive as possible, to 

ensure applicability to real-world examples. 
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Figure 3.2: Example synthetic fluvial reservoir models generated using the OBM modelling algorithm, using 

the same input parameters for the channel width (125) and the wavelength (250), with the amplitude 

(minor direction) and the vertical thickness being altered (125 and 500, and 5 and 20 respectively), showing 

the differences between the models generated using the edge cases of some of the input values. 

Multiple-Point Statistics - MPS 

In order to develop the synthetic suites of models, the MPS algorithm requires an input in the 

form of a training image (TI). Typically, these are generated from OBMs that are in turn generated 

from the input parameters that are intended to be modelled by the MPS algorithm. Subsequently, 

the same input parameters are required as with the OBM models: 
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• Channel Width (fluvial channel width) 

• Wavelength (distance between meanders of the fluvial channel) 

• Amplitude (the extent of the meander of the fluvial channel) 

• Vertical Height (fluvial channel thickness) 

To create a represented suite of models a wide range of input parameters is required. The ranges 

of parameters used in this work are detailed in Table 3.2 below. 

Channel Width Wavelength Amplitude Vertical Height 

125 250 125 5 

250 500 250 10 

375 750 375 15 

500 1000 500 20 

Table 3.3: MPS input values showing channel width, wavelength, amplitude, and vertical height values used 

to create the suite of fluvial reservoir models. 

In order to prevent bias when selecting the OBM realisation being used as the MPS TI, a random 

number generator was used to select a random number between 1 and 100. This number was 

selected to be 77, meaning that the 77th realisation of each model suite is used as the TI for that 

suite of MPS models. 

This array of input parameters used to create the OBM models created 256 different MPS models 

for each of the 7 sand to shale ratios (target fractions) used within this study, generated 1,792 

different models. The wide range of values for both the amplitude of the sinuosity of the channel 

(125 to 500) and the vertical thickness (5 to 20) is summarised within Figure 3.3, where all other 

input parameters are the same, leading to relatively large variations in the models being 

developed. It is important to use a wide range of input parameters since models developed to 

portray actual reservoirs will have a bespoke set of input parameters, with no two reservoirs 

being the same. Consequently, this study is required to be as wide-reaching as possible, to ensure 

applicability to real-world examples. 
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Figure 3.3: Example synthetic fluvial reservoir models generated using the MPS modelling algorithm, using 

the same input parameters for the channel width (125) and the wavelength (250), with the amplitude 

(minor direction) and the vertical thickness being altered (125 and 500, and 5 and 20 respectively), showing 

the differences between the models generated using the edge cases of some of the input values. 

3.2 Statistical Modelling 

The Schlumberger™ Petrel v.2020 software returns a set of values for each of the realisation 

within the synthetic suite of models. The outputs can be seen within Figure 3.4, and include Code 

(Facies Code), Name (Facies Name), % (Target Fraction), N (Number of cells), Intervals (Number of 

discrete groups of cells described by the same facies), Min (Minimum interval thickness), Mean 

(Average interval thickness), Max (Maximum interval thickness) and Std (Standard Deviation of 

geobody thickness within the model). 
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Figure 3.4: Example Petrel Output File showing all of the possible characteristics to analyse within the study, 

whilst also showing the output format. 

From these outputs the following are of relevance to this study:  

• The target fraction (directly informs the number of cells that are assigned to each facies, 

and in theory shouldn’t deviate much from the input target fraction data). Whilst the 

broad value (i.e., approximately 30) is informed by the inputted target fraction, the actual 

value (i.e., 29.62) is determined by the random property values assigned to the channel 

element (i.e., channel thickness, channel width, and the sinuosity values), with the cells 

representing each facies summed and divided by the total number of cells to derive the 

total percentage of each facies within the model. 
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• The average geobody thickness defines the overall static connectivity of the model. In a 

real-world scenario, it would help to define the economic viability of a hydrocarbon 

reservoir. This average geobody thickness is the average geobody thickness of all 

geobodies of each of the facies represented within the model. Not only does this account 

for and represent channel stacking (which can help to represent the overall connectivity 

of the reservoir model), but it also helps to represent the values for the channel thickness, 

since an average values is given as an input, along with ± 20% of that value (i.e., an 

average of 15 would have a minimum of 12 and a maximum of 18). 

• The standard deviation of geobody thickness is also important as it demonstrates the 

distribution of the geobody thickness data and helps to illustrate the variety of results 

found within the models. The spread of data for the geobody thickness values is 

important since two realisations modelled with the same input parameters could have the 

same average geobody thickness (i.e., 12.5), but could have completely different ranges 

of values (i.e., 10-15 and 5-35). These distributions are widely varied and will create 

completely different reservoir models, but looking at just the outputted target fraction 

and the average geobody thickness would suggest otherwise. 

The other outputs provided by the Schlumberger™ Petrel v.2020 were deemed to either be 

irrelevant or repetitive of other values. For example, the % column is the percentage equivalent of 

N, and both give a representation of the target fraction. The intervals column shows the number 

of geobodies, which would be a weaker measure of channel connectivity than the average 

geobody thickness (mean thickness). Finally, min thickness (minimum geobody thickness) is too 

heavily influenced by the input vertical thickness, and max thickness is usually 50, and is too 

heavily influenced by the height of the three-dimensional grid. Both of these values show minor 

variation to be useful within this study, and the average geobody thickness has been selected 

instead. 
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The histogram, periodogram and Goovaerts plot have been selected to analyse the trends of the 

target fraction, average geobody thickness and standard deviation of geobody thickness values. 

This enables us to understand the spread of results, and ultimately determine the statistical 

significance of model sets, and how many model realisations this occurs at. This work follows the 

generalised workflow shown in Figure 3.5.  
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Figure 3.5: Generalised workflow of the methodologies for this study, starting with the creation of 

histograms a) to highlight dataset distributions. This is followed by the creation of a periodogram b) and 

Goovaerts plot c) in order to find the PERG and GOO values to be used when comparing restricted model 
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suite distributions to the initial model suite of 100 realisations d) overlain distribution histogram of all three, 

e) initial model suite of 100 realisations compared to 20 realisations, and f) similarity plot between the initial 

model suite of 100 realisations and GOO (top) and the initial model suite of 100 realisations and the PERG 

(bottom)). Finally, finding the optimal realisations and comparing this restricted model suite to the initial 

model suite of 100 realisations (g). 

3.2.1 Histograms 

The Kernel Density Estimations (KDE) of histograms (Figure 3.6) is used in this study to show the 

general distribution, spread of data, mean, skew and kurtosis (how flat or peaked the curve is) can 

be quantified. Kernel Density Estimation (KDE) has been used rather than the Probability Density 

Function (PDF) as the KDE provides a smoother curve when estimating the PDF of a random 

variable since the entire distribution is broken down into smaller segments based on a sliding 

window and modelled as a Gaussian distribution (bell curve). This later enables a more reliable 

data overlap to be quantified when comparing dataset results. 
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Figure 3.6: synthetic histogram showing the dataset distribution of target fraction values. 

3.2.2 Periodogram 

The Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) (Figure 3.7) is a method of time-series 

analysis, for detecting periodicity within unevenly sampled signal data (Lomb, 1976; Scargle, 

1982). This requires that the dataset is treated as a timeseries, where the discrete statistic 

undergoing analysis (outputted target fraction, average geobody thickness or standard deviation 

of geobody thickness) provides the amplitude variation (Lomb-Scargle Power), and the realisation 

number provides the time (frequency). This resultant timeseries is then smoothed and detrended, 

removing the any trends or cyclicity occurring past 100 realisations. This enables the amplitude of 

the ergodic fluctuation to be: 1) more obvious and 2) more statistically significant. A white noise 

model (linear least squares) has been used for measuring probable noise-ergodic signal as it is 

both computationally inexpensive, and commonly used when measuring noise significance in 

Lomb-Scargle periodograms. The plotted graph should show some peaks occurring at specific 
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frequencies – these frequencies are caused by an increased power spectral density value (PSD), 

which is the total contribution of a specific frequency to the entire signal (VanderPlas, 2018).  

 

Figure 3.7: synthetic Lomb-Scargle periodogram showing one predominant peak (showing short-term 

periodicity), with a few smaller peaks which show longer term cyclicity within the dataset. 

A heightened PSD is usually common of either background noise, or periodicity within a dataset. 

Within this study, the periodicity here is provided by the random variable being used when 

creating a set of stochastic reservoir models. As such, the periodicity of this random variable is 

useful to estimate at which point repeat sampling of data begins to occur. The frequency at the 

peak PSD value can be returned as a realisation number, when the equation: 

𝑃𝑒𝑟𝑖𝑜𝑑 =
1

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

Equation 3.1: Periodicity equation used to determine the cyclicity of the random variable used to create the 

reservoir models (PERG value). 

is applied. This periodicity is referred to as the PERG within this study and is the periodicity of the 

ergodic nature of the random variable for the stochastic reservoir models, which is the total 
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number of realisations required for repeat sampling of the analytical value (outputted target 

fraction, average geobody thickness or standard deviation of geobody thickness). 

3.2.3 Goovaerts Plot 

The Goovaerts plot (Figure 3.8) is based off of the work of Goovaerts (1999), where the standard 

deviations of an ever-growing dataset were plotted in order to find the point at which an increase 

in the number of values being analysed leads to only an incremental improvement to the spread 

of data. In variograms, this is referred to as a sill, which is the plateauing of the dataset. When 

fitted with a spherical variogram fit, the Goovaerts plot allows for a specific point at which this 

incremental improvement in the spread of data occurs. The point at which this point occurs is 

called the GOO value. This is important as it depicts the point at which the standard deviation of 

the dataset is large enough to encapsulate the true value of the analytical value (outputted target 

fraction, average geobody thickness and standard deviation of geobody thickness). If fewer 

realisations were used, then it is possible that the true value would not be represented, and 

would lead to an unrepresentative reservoir model suite being developed.  
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Figure 3.8: synthetic Goovaerts plot showing the creation of a sill when the standard deviations of an ever-

increasing dataset (lag) is plotted, showing negligible changes to the distribution of the dataset. 

3.3 Analytical Statistical Modelling 

In addition to the statistical modelling techniques mentioned within Chapter 3.2, the following 

additional methods are used to build upon and make use of the previous results of the methods 

already used. These analytical methods utilise the values for the GOO and the PERG, to determine 

the number of realisations are actually required to return a statistically significant sample. In 

order for the GOO and the PERG values to be used, they must be determined to be independent 

of one another, that is, the value of one of the GOO or the PERG does not rely on, or show 

correlation to the value of the other. If this is the case, then these values are not independent, 

and as such cannot be used to find the recommended number of realisations for a statistically 

significant three-dimensional synthetic suite of reservoir models. 
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3.3.1 Comparison Plot 

The comparison plot (Figure 3.9) is a slight variation of the histogram and differs by overlaying the 

initial model suite of 100 realisations with two restricted model suites. These restricted model 

suites are based on the values of the PERG and the GOO retrieved from the periodogram and 

Goovaerts plot respectively. This is done to provide a visual comparison of the distribution of data 

from the first X number of values within the dataset. This comparison makes a good reference 

point on the way to finding the optimal number of realisations required for a restricted input 

dataset to still show the same general data distributions as that of the initial model suite of 100 

realisations.  

 

Figure 3.9: synthetic comparison plot of the initial model suite of 100 realisations with the restricted ones 

created when using the PERG (periodic ergodicity) and GOO (point at which the standard deviation of an 

increasing dataset forms a plateau) values. 
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3.3.2 Similarity Plot 

The similarity plot (Figure 3.10) is also similar to the histogram, but with extra steps – the main 

difference being that the GOO and the PERG restricted model suites are being directly compared 

to the distribution of the entire dataset. This is done by finding the intersectional area (overlap) of 

the two distributions, and provides not only a visual approximation, but an accurate numerical 

value to quantify the ‘goodness of fit’.  

 

Figure 3.10: synthetic similarity plot using a restricted model suite (in this case, the first 35 realisations) to 

be compared to the initial model suite of 100 realisations (100 realisations), with the intersectional 

percentage being calculated. This is a numerical representation of how well a restricted model suite 

represents the variety of reservoir models present within a larger suite of models.  

3.3.3 Previously Used Realisations 

To properly compare and demonstrate the need for a tailored approach to fluvial reservoir 

modelling, the industry standard value (20 realisations) is used as the restricting factor to the 
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entire dataset. This is plotted as a similarity plot and compared to the distribution of the initial 

model suite of 100 realisations, where the intersection percentage can be calculated (Figure 3.11).  

 

Figure 3.11: synthetic similarity plot comparing the initial model suite of 100 realisations (100 realisations) 

to the restricted model suite of the previously used number of realisations used (the first 20 realisations), 

with the intersection percentage being plotted. This is a numerical representation of how well a restricted 

model suite represents the variety of reservoir models present within a larger suite of models. 

3.3.4 Realisations Required 

In order to find the required number of realisations of a model for it to be classified as statistically 

significant, we must first consider the constraints upon which this value is found within.  

1. The value must be below the total number of realisations being run within the dataset 

2. The value must not exceed the point at which resampling of data is occurring – i.e., it 

must be lower than the PERG 
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3. The value must exceed the sill created by the Goovaerts plot since the standard deviation 

becomes negligibly different as the number of values held within the dataset is increased 

4. The intersectional percentage of the dataset must be the closest fit to the entire dataset 

as is possible within the constraints above 

From this set of ‘rules’, the workflow described in Figure 3.12 is then followed to produce a 

meaningful analytical procedure for the recommended number of realisations to be determined.  

 

Figure 3.12: generalised workflow for finding the PERG (a and c) and GOO (b) values, and then these being 

used to compare restricted model suites with the initial model suite of 100 realisations (d) to then find the 

intersection percentages of increasing realisations numbers (e), until the optimal value is found (f) which is 

the largest intersectional percentage, giving the best representation of variety of reservoir models.  
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Once the PERG value (Figure 3.12a and c) and the GOO value (Figure 3.12b) have been 

determined, these values can then be used as ‘limits’ that are used to restrict the dataset to the 

first X10 number of realisations. These datasets are then compared to the initial model suite of 100 

realisations by way of a histogram, allowing for the distribution and values held within the 

restricted model suites to be further compared to the initial model suite of 100 realisations 

(Figure 3.12d).  

The number of required realisations must fall between the point at which repetition of the 

random variable used when creating the suites of models (PERG) and the point at which the 

spread of data between an ever-increasing dataset becomes insignificant (GOO). For this ‘ideal’ 

value to be determined, the overlap percentage (intersection) of a restricted model suite, and the 

initial model suite of 100 realisations can be calculated. First, this is done with the PERG (Figure 

3.13 bottom) and GOO (Figure 3.13 top) values, and then for all of the values within the search 

area. This allows for an iterative search to occur between the bounds of the GOO and the PERG, 

 
10 X is classified as a dynamic value, which is wholly dependent on the number of realisations that produces 
the best intersectional (similarity) percentage when compared to the original model suite of 100 
realisations in the search area between the GOO and the PERG. This number represents the point at which 
the variability of the model suite is best represented. 
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whereby the restricted model suite will incrementally increase (Figure 3.12e), and the intersection 

percentage can be compared to previous values, to determine the new ‘best fit’ distribution. 

 

Figure 3.13: synthetic version of the similarity plot comparing the distributions of the restricted model suite 

to the first 18 realisations as given by the GOO value (top) and the first 38 realisations as given by the PERG 

value (bottom) to the initial model suite of 100 realisations, and then finding the intersection percentage of 

both to the initial model suite of 100 realisations.  

Once all values between the GOO and the PERG inclusive have been queried, it will be deemed 

that the number of realisations being used within the highest intersectional percentage value is 

the best fitting dataset (Figure 3.12f and Figure 3.14), and as such is the optimal number of 

realisations to represent the entire dataset, whilst preventing resampling.  
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Figure 3.14: synthetic similarity plot of the initial model suite of 100 realisations compared to the 

recommended number of realisations (35), showing the highest intersection percentage of all of the values 

for realisations between the GOO and the PERG. This produces the largest variety of reservoir models from 

the initial model suite of 100 realisations.  

This recommended number of realisations can be compared to the standard 20 realisations 

(Figure 3.15), to demonstrate the increased accuracy and the need for this increased number of 

realisations to be carried out to develop a better, more statistically significant, and more accurate 

end result. This value is representative of the number of realisations that produces the optimal 

variety of reservoir models found within the initial suite of 100 realisations, whilst not repeating 

characteristic properties, or being below the point at which the standard deviation of the dataset 

is still increasing, and has not formed a plateau.   
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Figure 3.15: synthetic similarity plot comparing the initial model suite of 100 realisations to the restricted 

model suite of the previously used number of realisations used (the first 20 realisations), with the 

intersection percentage being plotted, giving a numerical value to the representation of the variety of 

reservoir models within the initial model suite of 100 realisations. 

3.4 Summary 

The workflows and methods detailed in this chapter determine the number of realisations 

required to produce a statistically significant three-dimensional reservoir model suite. This 

workflow provides solid statistical reasoning, and numerical expression as to why that many 

models are required in the form of intersection percentage, which can be later compared to the 

current industry standard to provide another level of evidence to support a more tailored 

approach to the number of models run.  
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4 Analysis and Interpretation 

The input parameters outlined within Chapter 3 led to the generation of a variety of synthetic 

model suites. Upon processing the raw statistical data returned from these suites of reservoir 

models. There are trends and patterns that can be seen across the results from all three modelling 

algorithms. This chapter will analyse the following relationships: 

1. The average number of realisations required to produce a statistically significant three-

dimensional reservoir model suite for each modelling algorithm, and how this value 

changes with the mean geobody thickness values, standard deviation of geobody 

thickness values, and outputted target fraction, across a variety of input target fractions. 

2. The spread (standard deviation) of the suites of reservoir models, and consequently their 

reproducibility.  

3. How well the recommended number of realisations represents the initial 100 realisations 

of the suite of reservoir models for each set of input parameters for the generated 

reservoir models. 

Within this chapter, these trends and patterns will be explored and explained, and a number for 

the number of realisations required for a statistically significant suite of fluvial reservoir models to 

be developed.  

4.1 Number of realisations  

The number of realisations refers to three different values: 

• The number of realisations required for the standard deviation of values to become 

negligibly different in an ever-increasing dataset, following the same methodology as 

Goovaerts (1999), so is referred to as the ‘GOO’ value, 

• The number of realisations at which point the resampling of data occurs, also known as 

the Periodic Ergodicity, or ‘PERG value’, 
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• The number of realisations that gives the optimal representation (highest intersectional 

percentage) of 100 realisations, leading to this being the Recommended number of 

Realisations to be used by the end user, or ‘RR’ value.  

Analysed within this section are the values for: 

• The mean geobody thickness of the sand geobody, 

• The standard deviation of the thicknesses of sand geobodies within the realisations, 

• The outputted target fraction represented within the models. 

The aim of this analysis is to find the number of realisations required to develop a ‘representative 

suite of realisations’ for a specific set of input parameters across all three of the modelling 

algorithms. The analysis of these parameters will help to pinpoint how many realisations, on 

average, are required for a statistically significant three-dimensional reservoir model suite to be 

generated. Within this chapter, the opaque lines are representative of the raw average values for 

the PERG (green), GOO (blue) and RR (red). The faint lines are representative of the average 

values with the residuals removed (values outside of ± 2 standard deviations) for the PERG 

(green), GOO (blue) and RR (red). 

4.1.1 Mean geobody thickness 

For the SIS (Figure 4.1a), OBM (Figure 4.1b) and MPS (Figure 4.1c) algorithms, different values and 

trends are produced for the PERG, GOO and RR values across all input target fractions. For the 

majority of PERG values fall within the values of 35 to 38 realisations, with the only exceptions 

being 42, 40 and 33 realisations for the SIS algorithm (within the 50, 60 and 80 input target 

fractions respectively). When the residuals are removed, all PERG values drop by a single 

realisation, and the peak at the 50 input target fraction is lost for the SIS algorithm. This marginal 

change suggests that the values for the PERG are representative and include few anomalous or 

boundary values. The GOO values are also consistent, and all are found within the range of 11 to 

14 realisations irrespective of the input target fraction or modelling algorithm, with values 

dropping by an insignificant amount (less than a realisation) when the residuals are removed. 
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Finally, the RR values also stay consistent, with values ranging from 30 to 34 for the majority of 

values, with this peaking at 35 realisations for the SIS algorithm at the 60 input target fraction. 

Upon the residuals being removed, all RR values drop by a single realisation. All the RR values 

mimic the PERG values that correlate with the same input target fraction.  

 

Figure 4.1: Comparison of the PERG, GOO and RR values for the mean geobody thickness values (bold lines), 

with the outlier values (residuals) removed (faint lines), across the (a) SIS, (b) OBM, and (c) MPS modelling 

algorithms, with values shown for all input target fractions. 
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4.1.2 Standard deviation of geobody thickness – StDev Thickness 

For the SIS (Figure 4.2a), OBM (Figure 4.2b) and MPS (Figure 4.2c) algorithms, different values and 

trends are produced for the PERG, GOO and RR values across all input target fractions. All PERG 

values fall within the values of 35 to 38 realisations, and when the residuals are removed, all PERG 

values drop by a single realisation. This marginal change suggests that the values for the PERG are 

representative and include few anomalous or boundary values. The GOO values are also 

consistent, and all are found within the range of 12 to 14 realisations irrespective of the input 

target fraction or modelling algorithm, with values dropping by an insignificant amount (less than 

a realisations) when the residuals are removed. Finally, the RR values also stay consistent, with 

values ranging from 30 to 35 for all values, with this being limited to 33 realisations for the MPS 

algorithm. Upon the residuals being removed, all RR values drop by a single realisations. All the RR 

values mimic the PERG values that correlate with the same input target fraction.  
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Figure 4.2: Comparison of the PERG, GOO and RR values for the standard deviation of geobody thickness 

values (bold lines), with the outlier values (residuals) removed (faint lines), across the (a) SIS, (b) OBM, and 

(c) MPS modelling algorithms, with values shown for all input target fractions. 

4.1.3 Target Fraction 

For each the SIS (Figure 4.3a), OBM (Figure 4.3b) and MPS (Figure 4.3c) algorithms, different 

values and trends are produced for the PERG, GOO and RR values across all input target fractions. 

For the most part, all PERG values fall within the values of 33 and 38 realisations, with the only 
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exceptions being 42 realisations at the 50 input target fraction for the SIS algorithm. When the 

residuals are removed, all PERG values drop by a single realisation, and the peak at the 50 input 

target fraction is lost for the SIS algorithm, dropping to 37 realisations. This marginal change 

suggests that the values for the PERG are representative and include few anomalous or boundary 

values. The GOO values are also consistent, and all are found within the range of 10 to 15 

realisations irrespective of the input target fraction or modelling algorithm, with values dropping 

by an insignificant amount (less than a realisations) when the residuals are removed. Finally, the 

RR values also stay consistent, with values ranging from 30 to 34 for the majority of values, with 

the SIS algorithm having values as low as 28 realisations at the 70 input target fraction. Upon the 

residuals being removed, all RR values drop by a single realisations. All the RR values mimic the 

PERG values that correlate with the same input target fraction.  
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Figure 4.3: Comparison of the PERG, GOO and RR values for the output target fraction values (bold lines), 

with the outlier values (residuals) removed (faint lines), across the (a) SIS, (b) OBM, and (c) MPS modelling 

algorithms, with values shown for all input target fractions. 

4.1.4 PERG, GOO and RR Values 

Direct comparison of the PERG (Figure 4.4a, Figure 4.5a and Figure 4.6a), GOO (Figure 4.4c, Figure 

4.5c and Figure 4.6c) and RR (Figure 4.4e, Figure 4.5e and Figure 4.6e) values highlight the general 

similarity of values across each of the modelling algorithms, and whilst the different algorithms 
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show differing trends, the generally tight grouping of each of the average values for each input 

target fraction suggests that there is more of a statistical similarity than is immediately suggested 

by the produced suites of fluvial reservoir models. The relatively consistent (and large) standard 

deviation values for the PERG (Figure 4.4b, Figure 4.5b and Figure 4.6b) and RR (Figure 4.4f, Figure 

4.5f and Figure 4.6f) values, suggests a relatively large dispersion of the values that contribute to 

this average value, and would suggest a high degree of variability. This is to be expected from 

what is essentially a random value, such as the PERG, where the value is controlled by the 

periodicity of the random variable being used to create the suites of fluvial reservoir models, and 

since the PERG heavily influences the RR value (as can be seen in Figure 4.4, Figure 4.5 and Figure 

4.6), this also extends to the RR value. The GOO (Figure 4.4d, Figure 4.5d and Figure 4.6d) values 

have a much lower standard deviation however (approximately 8), which is likely the effect of the 

GOO value representing the number of values required for the standard deviation of a group of 

values to form a plateau in the dataset.  
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Figure 4.4: Comparison of the (a) PERG, (c) GOO and (e) RR values for the mean geobody thickness values, 

for each of the SIS, OBM, and MPS modelling algorithms, with values shown for all input target fractions. 

The standard deviations of these average results (detailing how spread out the values are) is given for the 

(b) PERG, (d) GOO, and (f) RR values. 
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Figure 4.5: Comparison of the (a) PERG, (c) GOO and (e) RR values for the standard deviation of geobody 

thickness values, for each of the SIS, OBM, and MPS modelling algorithms, with values shown for all input 

target fractions. The standard deviations of these average results (detailing how spread out the values are) 

is given for the (b) PERG, (d) GOO, and (f) RR values. 
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Figure 4.6: Comparison of the (a) PERG, (c) GOO and (e) RR values for the outputted target fraction values, 

for each of the SIS, OBM, and MPS modelling algorithms, with values shown for all input target fractions. 

The standard deviations of these average results (detailing how spread out the values are) is given for the 

(b) PERG, (d) GOO, and (f) RR values. 

Illustrated within Figure 4.7, Figure 4.8 and Figure 4.9 are the total distributions of the PERG 

values for the SIS, OBM and MPS modelling algorithms respectively. These figures demonstrate 

the approximate 20 standard deviation as shown in Figure 4.4b, Figure 4.5b and Figure 4.6b. 

Whilst a standard deviation of about 20 would be considered to be large for the dataset, the 
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actual spread of data shows that the main core of PERG values is focussed rather centrally to 

values near to 30 for each the mean geobody thickness (Figure 4.7a, Figure 4.8a and Figure 4.9a), 

standard deviation of geobody thickness (Figure 4.7b), and outputted target fraction (Figure 4.7c, 

Figure 4.8c and Figure 4.9c) for each the SIS (Figure 4.7), OBM (Figure 4.8) and MPS (Figure 4.9) 

algorithms. 

The PERG values for the SIS algorithm (Figure 4.7) shows two distinct peaks in values, occurring at 

the 15 and 65 bins. The first of these peaks (15 realisations) is generally much larger at a 

frequency of approximately 30, in comparison to the second discrete peak (65 realisations), which 

generally has a frequency of 10, which is a significant decrease from the frequency of the largest 

peak. Furthermore, immediately after the 15 realisations bin, there is a constant decrease in 

frequency across the 30 (frequency of 25), 40 (frequency of 10) and 55 (frequency of 5) bins. 

Inclusive of the 15 realisations bin, this equates to approximately 87.5% of the entire dataset for 

the SIS algorithm having a PERG value of less than 65 realisations, with the approximate average 

being found within the 30 realisations bin.  
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Figure 4.7: Distribution of the PERG values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the SIS algorithm. 

The PERG values for the OBM algorithm (Figure 4.8) shows two distinct peaks in values, occurring 

at the 20 and 65 bins. The first of these peaks (20 realisations) is generally much larger at a 

frequency of approximately 90, in comparison to the second discrete peak (65 realisations), which 

generally has a frequency of 30, which is a significant decrease from the frequency of the largest 

peak. Furthermore, immediately after the 20 realisations bin, there is a constant decrease in 

frequency across the 35 (frequency of 60) and 50 (frequency of 25) bins. Inclusive of the 10 and 
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20 realisations bins, this equates to approximately 77% of the entire dataset for the SIS algorithm 

having a PERG value of less than 65 realisations, with the approximate average being found within 

the 30 realisations bin.  

 

 

Figure 4.8: Distribution of the PERG values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the OBM algorithm. 
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The PERG values for the MPS algorithm (Figure 4.9) shows two distinct peaks in values, occurring 

at the 18 and 65 bins. The first of these peaks (18 realisations) is generally much larger at a 

frequency of approximately 70, in comparison to the second discrete peak (65 realisations), which 

generally has a frequency of 30, which is a significant decrease from the frequency of the largest 

peak. Furthermore, immediately after the 18 realisations bin, there is a constant decrease in 

frequency across the 30 (frequency of 70), 40 (frequency of 40) and 55 (frequency of 20) bins. 

Inclusive of the 18 realisations bin, this equates to approximately 78% of the entire dataset for the 

SIS algorithm having a PERG value of less than 65 realisations, with the approximate average 

being found within the 30 realisations bin.  
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Figure 4.9: Distribution of the PERG values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the MPS algorithm. 

The CDF graph of the average PERG values (Figure 4.10) corresponds to the histogram plots 

(Figure 4.4d, Figure 4.5d, and Figure 4.6d). The effect of the modelling algorithm is relatively 

negligible (as seen within the CDF), with the different reservoir modelling algorithms all showing 

the same general trends for the discrete variable being analysed. This similarity also extends to 

the general distribution of values. Across all of the plotted lines, 20 realisations (Goovaerts, 1999) 

only encompasses one quarter of all results (25th percentile), and as such is high unlikely to create 
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a representative sample of values. Furthermore, the median value occurs at approximately 30 

realisations, whilst the 60th percentile occurs at 35, and the final 20 percent of results fall above 

50 realisations. Notably, just 5% of all values occur at values over and inclusive of 80 realisations. 

 

Figure 4.10: Cumulative distribution function (CDF) of the PERG values for the mean geobody thickness, 

standard deviation of geobody thickness, and outputted target fraction, for each the SIS, OBM and MPS 

modelling algorithms, with the previously used 20 realisations marked on the graph. 

Illustrated within Figure 4.11, Figure 4.12 and Figure 4.13 are the total distributions of the GOO 

values for the SIS, OBM and MPS modelling algorithms respectively. These figures demonstrate 

the approximate 20 standard deviation as shown in Figure 4.4d, Figure 4.5d and Figure 4.5d. A 

standard deviation of about 8 would be considered to be relatively average for a dataset of this 

size. The spread of data shows that the main core of GOO values is focussed rather centrally to 

values near to 10 for each the mean geobody thickness (Figure 4.11a, Figure 4.12a and Figure 

4.13a), standard deviation of geobody thickness (Figure 4.11b, Figure 4.12b and Figure 4.13b), and 

outputted target fraction (Figure 4.11c, Figure 4.12c and Figure 4.13c) for each the SIS (Figure 

4.11), OBM (Figure 4.12) and MPS (Figure 4.13) algorithms. 
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The GOO values for the SIS algorithm (Figure 4.11) shows a singular peak at the 8 realisations bin. 

After this peak (with an approximate frequency of 40-45), is an immediate decrease in frequency 

across the other bins, with approximately half of the frequency of the previous bin being 

represented. Approximately 70% of all GOO values are held across the first two bins for each the 

mean geobody thickness, standard deviation of geobody thickness and output target fraction. This 

leads to the mean value being found within the 8 realisations bin. 

 

Figure 4.11: Distribution of the GOO values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the SIS algorithm. 
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The GOO values for the OBM algorithm (Figure 4.12) shows a singular peak at the 8 realisations 

bin. After this peak (with an approximate frequency of 150), is an immediate decrease in 

frequency across the other bins, with approximately half of the frequency of the previous bin 

being represented (excluding the output target fraction graph, Figure 4.12c), which shows this as 

a quarter rather than half. Approximately 85% of all GOO values are held across the first two bins 

for each the mean geobody thickness, standard deviation of geobody thickness and output target 

fraction, suggesting that a very strong bias for lower realisations results. The average value is 

located within the 8 realisations bin. 
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Figure 4.12: Distribution of the GOO values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the OBM algorithm. 

 

The GOO values for the OBM algorithm (Figure 4.13) shows a singular peak at the 8 realisations 

bin. After this peak (with an approximate frequency of between 125 and 175), is an immediate 

decrease in frequency across the other bins, with approximately half of the frequency of the 

previous bin being represented (excluding the outputted target fraction graph, Figure 4.13c), 
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which shows this as a quarter rather than half. Approximately 90% of all GOO values are held 

across the first two bins for each the mean geobody thickness, standard deviation of geobody 

thickness and output target fraction, suggesting that a very strong bias for lower realisations 

results. The average value is located within the 8 realisations bin.  

 

Figure 4.13: Distribution of the GOO values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the MPS algorithm. 
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The CDF graph of the average GOO values (Figure 4.14) corresponds to the histogram plots (Figure 

4.11, Figure 4.12 and Figure 4.13). The effect of the modelling algorithm is relatively negligible (as 

seen within the CDF), with the different modelling algorithms all showing the same general 

trends, along with roughly the same distribution of values. Across all of the plotted lines, 20 

realisations (Goovaerts, 1999) encompasses 85 percent of all results, and as such is high likely to 

include a representative sample of values. Furthermore, the median value occurs at 

approximately 10 realisations, whilst the 60th percentile occurs at 12, and the final 20 percent of 

results fall above 20 realisations. Notably, just 5% of all values occur at values over and inclusive 

of 30 realisations. 

 

Figure 4.14: Cumulative distribution function (CDF) of the GOO values for the mean geobody thickness, 

standard deviation of geobody thickness, and outputted target fraction, for each the SIS, OBM and MPS 

modelling algorithms, with the previously used 20 realisations marked on the graph. 

Illustrated within Figure 4.15, Figure 4.16 and Figure 4.17 are the total distributions of the RR 

values for the SIS, OBM and MPS modelling algorithms respectively. These figures demonstrate 

the approximate 20 standard deviation as shown in Figure 4.4f, Figure 4.5f and Figure 4.6f. Whilst 
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a standard deviation of about 20 would be considered to be large for the dataset, the actual 

spread of data shows that the main core of PERG values is focussed rather centrally to values near 

to 30 for each the mean geobody thickness (Figure 4.15a, Figure 4.16a and Figure 4.17a), standard 

deviation of geobody thickness (Figure 4.15b, Figure 4.16b and Figure 4.17b), and output target 

fraction (Figure 4.15c, Figure 4.16c and Figure 4.17c) for each the SIS (Figure 4.15), OBM (Figure 

4.16) and MPS (Figure 4.17) algorithms. 

The RR values for the SIS algorithm (Figure 4.15) shows two distinct peaks in values, occurring at 

the 15 and 65 bins. The first of these peaks (15 realisations) is generally much larger at a 

frequency of approximately 25, in comparison to the second discrete peak (65 realisations), which 

generally has a frequency of approximately 8, which is a significant decrease from the frequency 

of the largest peak. Furthermore, immediately after the 15 realisations bin, there is a relatively 

stable decrease in frequency across the 25 (frequency of 20), 40 (frequency of 10) and 55 

(frequency of 5) bins. This equates to approximately 75% of the entire dataset for the SIS 

algorithm having a PERG value of less than 65 realisations, with the approximate average being 

found within the 25 realisations bin.  
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Figure 4.15: Distribution of the RR values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the SIS algorithm. 

The RR values for the OBM algorithm (Figure 4.16) shows two distinct peaks in values, occurring at 

the 15 and 65 bins, with the 25 peak being almost identical to the 15 peak. The first of these 

peaks (15 realisations) is generally much larger at a frequency of approximately 70, in comparison 

to the second discrete peak (65 realisations), which generally has a frequency of 20, which is a 

significant decrease from the frequency of the largest peak. Furthermore, immediately after the 

15 realisations bin, there is a constant decrease in frequency across the 25 (frequency of 70), 40 



85 
 
(frequency of 40) and 55 (frequency of 10) bins. Inclusive of the 15 realisations bin, this equates to 

approximately 75% of the entire dataset for the OBM algorithm having a RR value of less than 65 

realisations, with the approximate average being found within the 30 realisations bin.  

 

 

Figure 4.16: Distribution of the RR values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the OBM algorithm. 
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The RR values for the MPS algorithm (Figure 4.17) shows two distinct peaks in values, occurring at 

the 15 and 65 bins, with the 25 peak almost mimicking the 15 peak. The first of these peaks (15 

realisations) is generally much larger at a frequency of approximately 80, in comparison to the 

second discrete peak (65 realisations), which generally has a frequency of 20, which is a significant 

decrease from the frequency of the largest peak. Furthermore, immediately after the 15 

realisations bin, there is a constant decrease in frequency across the 25 (frequency of 80), 40 

(frequency of 40) and 55 (frequency of 20) bins. Inclusive of the 15 realisations bin, this equates to 

approximately 86% of the entire dataset for the MPS algorithm having a RR value of less than 65 

realisations, with the approximate average being found within the 30 realisations bin.  
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Figure 4.17: Distribution of the RR values for the (a) mean geobody thickness, (b) standard deviation of 

geobody thickness, and (c) output target fraction, for the MPS algorithm. 

The CDF graph of the average RR values (Figure 4.18) corresponds to the histogram plots (Figure 

4.15, Figure 4.16 and Figure 4.17). The effect of the modelling algorithm is relatively negligible (as 

seen within the CDF), with the majority of the different modelling algorithms along with what is 

being plotted (mean geobody thickness, standard deviation of geobody thickness and outputted 

target fraction) all showing the same general trends, along with roughly the same distribution of 

values. Across all the plotted lines, 20 realisations (Goovaerts, 1999) only encompasses about 40% 
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of all results, and as such is about as likely as unlikely to create a representative sample of values. 

Furthermore, the median value occurs at approximately 26 realisations, whilst the 60th percentile 

occurs at 30, and the final 20 percent of results fall above 45 realisations. Notably, just 5% of all 

values occur at values over and inclusive of 75 realisations. 

 

 

Figure 4.18: Cumulative distribution function (CDF) of the RR values for the mean geobody thickness, 

standard deviation of geobody thickness, and outputted target fraction, for each the SIS, OBM and MPS 

modelling algorithms, with the previously used 20 realisations marked on the graph. 

Generally, the SIS (Figure 4.19a), OBM (Figure 4.19b) and MPS (Figure 4.19c) CDFs show almost 

identical trending, with the first 20 being almost identical to eachother. Whilst the OBM (Figure 

4.19b and Figure 4.19c) show very little difference as the cumulative distribution function 

increases (due to the OBM’s acting as training images for the MPS models), there is some slight 

deviation of the SIS (Figure 4.19a) mean geobody thickness between approximately 25 and 55 

realisations. The resultant discrepancy is a lack of grouping of the mean geobody thickness, 
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standard deviation of geobody thickness, and outputted target fraction, and is seen in both the 

PERG and RR values. This is likely due to the reduced number of models (560 compared to 1,792 

for both the OBM and MPS algorithms). 

 

Figure 4.19: Comparison of cumulative distribution function (CDF) of the RR values for the mean geobody 

thickness, standard deviation of geobody thickness, and outputted target fraction, for each the (a) SIS, (b) 

OBM and (c) MPS modelling algorithms. 
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4.2 Percentage Similarity 

The average percentage similarities for each the SIS, OBM and MPS algorithms (Figures 4.20a, 

Figure 4.20b and Figure 4.20c respectively), show a strong variation between the similarity from 

the RR value, and the similarity of the first 20 realisations (Goovaerts, 1999). For the SIS 

algorithm, there is, on average a 4.5% variation between the two, which is relatively consistent 

across each the mean geobody thickness (4.5%), standard deviation of geobody thickness (5%) 

and outputted target fraction values (4.5%). For the OBM algorithm, this variation rises to 

approximately 5%, which is also relatively consistent across each the mean geobody thickness 

(4.7%), standard deviation of geobody thickness (5.3%) and output target fraction (5%). Finally, 

the MPS algorithm, there is, on average a 5% increase on the variation between the RR value and 

the first 20 realisations. This is also consistent across each the mean geobody thickness (5%), 

standard deviation of geobody thickness (5%) and outputted target fraction (5%). Overall, on 

average there is an approximate 6% increase on the total representation of a much larger dataset 

(100), whilst also not including duplication of model property values for each of the modelling 

algorithms used, and as such suggests that this increase in models needing to be run is 

substantiated.  



91 
 

 

Figure 4.20: Comparison of the total similarity (intersectional percentages) of the first 20 realisations 

compared to the RR value across all input target fractions, for each the (a) SIS, (b) OBM, and (c) MPS 

modelling algorithm. 
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4.3 Summary 

Overall, whilst all three modelling algorithms give very similar values for each the GOO, PERG and 

RR values for the mean geobody thickness, standard deviation of geobody thickness and output 

target fraction, there is still deviation between the results obtained for the SIS algorithm in 

comparison to the OBM and MPS algorithm. Since the SIS algorithm has fewer total runs (due to 

only having 3 variables to alter with every input target fraction, as seen in Table 3.1), the results 

appear refined, and more sporadic, with some large variations forming (Figure 4.6b). By contrast, 

realisations using the OBM and MPS algorithms, have 4 variables (wavelength, amplitude, width, 

and vertical height), which leads to far more realisations (which leads to a more refined values, 

and smoother graphs (and subsequent trends). Whilst this could be the result of averaging fewer 

realisations, it could also be due to the inherent uncertain nature of the SIS modelling algorithm, 

with the realisations tending to be more varied than both the OBM and MPS algorithms. The OBM 

and MPS algorithms both had very similar results across all graphs, which is probably due to one 

of the OBM realisations acting as a training image to inform the MPS algorithm about the model 

parameters. In turn, this causes the resultant values for the MPS algorithm to be similar to the 

OBM values. Interestingly, the standard deviations for both the PERG and RR values are very large 

(20), for what is a relatively small (and confined) dataset of 100 values. This would suggest that 

the resultant averaged values are not entirely representative. However, they do provide a good 

indication of the number of realisations required for a statistically significant three-dimensional 

reservoir model suite (32 realisations), the number of realisations for the standard deviation of 

values to plateau (13 realisations), and the number of realisations for the property values of the 

realisations to start to repeat (38 realisations). This synthetic study highlights the statistical 

insignificance of using just 20 realisations, with the average recommended number of realisations 

being 50% larger than this. These average values do not provide a ‘one answer fits all’ solution to 

the question of ‘How many models do I need to generate?’, but it does provide a framework, and 

provides significant evidence as to why developing just 20 realisations generates a statistically 

insignificant suite of three-dimensional stochastic reservoir models.   
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5 Application: Tuscher Canyon 

Synthetic models give a general benchmark as to how a large suite of realisations is likely to 

respond to the methodology developed within this study. However, when a specific model is 

generated through values obtained from outcrops such as Jamuna River and Tuscher Canyon 

(Mitten, 2020), the resultant PERG, GOO and RR values tend to deviate from the averaged values 

that synthetic realisations indicate (Figure 4.4, Figure 4.5, and Figure 4.6). 

The two study locations (Cretaceous Lower Castlegate Sandstone of Tuscher Canyon, Utah, and 

the Jamuna River, northern India) used to create the depositional conditioned fluvial reservoir 

models were selected due to their similarity (Mitten et al., 2020), with both representing sand-

dominated, low- to intermediate-sinuosity fluvial environments (Miall, 1993; 1994; Ashworth et 

al., 2000; McLaurin and Steel, 2007). Both of these fluvial systems show variable discharge rates 

(Ashworth et al., 2000), and approximately at the same global latitude, and similar, warm, humid 

climate throughout deposition (Kauffman and Caldwell, 1993; Hampson et al., 2005). 

In this chapter, the methodology described in Chapter 3 is applied to the depositional conditioned 

model of the Tuscher Canyon section, with measurements for the generated reservoir models 

coming from Mitten et al. (2020). The model combines outcrop photogrammetric models 

(Tuscher Canyon, Utah), and satellite imagery (Jamuna River, northern India) to determine the 

parameters for fluvial reservoir models to be generated. The values used to create the variograms 

(Figure 5.1) required to generate reservoir models using the SIS algorithm for the Tuscher Canyon 

model (vertical height, major direction and minor direction as described in Section 3.1). The 

values used to stochastically generate the various geobodies for the OBM and MPS algorithms for 

the Tuscher Canyon model (length, width, depth, amplitude and wavelength as described in 

Section 3.1) can be found within Table 5.1 when generating models using the OBM algorithm. 

These OBM models are then used as training images to inform the generation of models 

developed using the MPS algorithm. Four geobodies are used to create these models: channel 

element, thalweg bedform, lateral accretion element and downstream accretion element.  
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Figure 5.1: variogram input data for the downstream accretion, lateral accretion, thalweg beform and 

channel element geobodies for the Tuscher Canyon SIS reservoir model (using data from the modern 

analogue of Jamuna River for the major and minor direction values) (from Mitten et al., 2020). 
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Table 5.1: input values for the downstream accretion, lateral accretion, thalweg bedform and channel 

element geobodies for the Tuscher Canyon OBM model (also acting as the training image conditioning data 

for the MPS algorithm), using data from Tuscher Canyon, with supplementary data about channel 

dimensions provided from the Jamuna River mdoern analogue (after Mitten et al., 2020) 
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5.1 Geological Background 

The Tuscher Canyon and Jamuna River outcrops are not the same (Section 5), but the similarities 

between the two (Mitten et al., 2020) enable the satellite imagery from Jamuna River to be used 

to inform any missing values to help to create a fluvial reservoir model from the outcrop found at 

Tuscher Canyon.  

5.1.1 Lower Castlegate Sandstone, Tuscher Canyon, Utah 

The Upper Cretaceous Lower Castlegate Sandstone (Figure 2, Mitten et al., 2020) is part of the 

Mesaverde Group (Fouch et al., 1983; Miall, 1993; Olsen et al., 1995; Miall and Arush, 2001; 

McLaurin and Steel, 2007), which represents an eastward prograding clastic wedge into the 

Western Interior Basin during the Late Cretaceous (Miall, 1993). The Castlegate Sandstone is 

composed of three lithostratigraphical units (Chan and Pfaff, 1991; Olsen et al., 1995; McLaurin 

and Steel, 2007): the Lower Castlegate Sandstone, Middle Castlegate Sandstone and the 

Bluecastle Tongue. The Lower Castlegate Sandstone is a sandy, low-sinuosity, bedload-dominated 

fluvial system (Olsen et al., 1995; McLaurin and Steel, 2007). The Middle Castlegate Sandstone is 

representative of an isolated channel fluvial system with high preservation of overbank material 

(McLaurin and Steel, 2007). Finally, the Bluecastle Tongue is genetically similar to the Lower 

Castlegate Sandstone (Olsen et al., 1995). A thinner succession of the Lower Castlegate Sandstone 

crops out at Tuscher Canyon, close to Green River, where six architectural elements are present 

(Miall, 1993) (with the four most important for this study being the channel element, downstream 

accretion element, lateral accretion element and the thalweg bedform).  

5.1.2 Jamuna River, northern India 

Jamuna River (situated between Bangladesh and Bhutan in northern India) is a bar complex fluvial 

system (Figure 3, Mitten et al., 2020), and acts as a modern analogue to the Lower Castlegate 

Sandstone. It represents a sandy, low sinuosity, bedload dominated fluvial system and has been 

extensively studied as a modern analogue (Coleman, 1969; Bristow, 1993; Bristow, 1999; 
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Ashworth et al., 2000; Best et al., 2003). The river transports material down from the Himalayas 

down to the Bay of Bengal and feeds the Brahmaputra-Ganges river-deltaic system (Best et al., 

2007). The bar form used within this study is a predominantly downstream accreting system with 

secondary channels reworking the top of the barform, preventing stabilization through soil 

formation and growth of vegetation (Bristow, 1993; Ashworth et al., 2000; Best et al., 2003). 

5.2 Results 

Concordant with the methodology and workflow outlined in Chapter 3, the discrete variables 

obtained from 100 realisations generated for the example Tuscher Canyon SIS, OBM and MPS 

models were analysed for their PERG, GOO and RR values for each the mean geobody thickness, 

standard deviation of geobody thickness and outputted target fraction. These values were then 

compared against the result from the synthetic model suites (Chapter 4), in an attempt to 

determine the accuracy and applicability of the developed methodology to a real-world scenario.  

5.2.1 Mean geobody thickness 

The Tuscher Canyon mean geobody thickness values for the SIS (Figure 5.2a), OBM (Figure 5.2b) 

and MPS (Figure 5.2c) algorithms are generally representative (albeit relatively loosely in places) 

when compared to the average PERG, GOO and RR values obtained from analysing numerous 

suites of reservoir models (Chapter 3). For the SIS algorithm (Figure 5.2a), the GOO values appear 

to be distributed approximately where expected and given by the average GOO values. This is also 

the same for the PERG and RR values, and whilst higher than the average values obtained from 

running an extensive suite of SIS reservoir models, they fall within the range of values that were 

retrieved. This is also the case for the OBM algorithm (Figure 5.2b), where the GOO values are 

distributed much closer to the average value. This also carries through to the PERG and RR values, 

which show much more consistent results than the SIS algorithm. Notably, the lowest input target 

fraction (the thalweg bedform) has a GOO, PERG and RR value of 1, which is due to the mean 

geobody thickness being consistent at 1.5m across all realisations. The MPS algorithm (Figure 

5.2c) has no visible GOO values due to the nature of the model being created, whereby each of 
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the realisations is modelled based on the training image. From this, the various geobodies 

(channel element, downstream accretion, lateral accretion, and the thalweg bedform) are 

modelled based upon the mean geobody thickness values. As such, this means that the mean 

geobody thickness is largely the same for each of the geobodies (excluding the channel element, 

which is modelled separately), and consequently leads to each of these elements having GOO, 

PERG and RR values of 1. The channel element has a GOO value of 21, a PERG of 27, and an RR of 

21. Whilst considerably different to the expected values from the suite of reservoir models, this is 

to be expected as each separate version of the 100 realisations generated has different output 

values, and whilst these do not reflect the average, they would sit within the range of GOO, PERG 

and RR values retrieved from the suite of models. 
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Figure 5.2: Comparison of the PERG, GOO and RR values for the mean geobody thickness values (bold lines), 

with the outlier values (residuals) removed (faint lines) for all values modelled in the developed suite of 

reservoir models, across the (a) SIS, (b) OBM, and (c) MPS modelling algorithms, with values shown for all 

input target fractions. The plots have then been overlayed with the actual PERG, GOO and RR values from 

the Tuscher Canyon model at each of the input target fractions for the specific architectural element 

(downstream accretion, lateral accretion, channel element, and thalweg bedform). 
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5.2.2 Standard Deviation of Geobody Thickness – StDev Thickness 

When the Tuscher Canyon standard deviation of geobody thickness values for the SIS (Figure 

5.3a), OBM (Figure 5.3b) and MPS (Figure 5.3c) algorithms are compared to those of the average 

PERG, GOO and RR values obtained from running an extensive suite of synthetic reservoir models 

(Chapter 3), there is a closer representation of the average PERG, GOO and RR values 

representing a similar value across the four target fractions when compared to the values for the 

mean geobody thickness. For the SIS algorithm (Figure 5.3a), the GOO values appear to be 

distributed approximately where expected and given by the average GOO values. This is also the 

same for the PERG and RR values, and whilst the channel and lateral accretion elements are 

significantly higher than the values obtained from the mean geobody thickness, and the average 

values obtained from running an extensive suite of synthetic SIS reservoir models, they do fall 

within the range of values that were retrieved. This is also the case for the OBM algorithm (Figure 

5.3b), where the GOO values are distributed much closer to the average value. This also carries 

through to the PERG and RR values, which show much more consistent results than the SIS 

algorithm. Notably, the lowest input target fraction (the thalweg bedform) has a GOO, PERG and 

RR value of 1, which is due to the mean geobody thickness being consistent at 1.5m across all 

realisations. Notably, the MPS algorithm (Figure 5.3c) actually has values when compared to the 

mean geobody thickness. The various geobodies have a wide range of values for each the PERG, 

GOO and RR, but appears to show a closer distribution than the SIS and OBM algorithm values. 

Whilst considerably different to the expected values from the suite of reservoir models, this can 

be expected as each separate version of the 100 realisations generated has different output 

values, and whilst these do not reflect the average, they would sit within the range of GOO, PERG 

and RR values retrieved from the suite of models. 
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Figure 5.3: Comparison of the PERG, GOO and RR values for the standard deviation of geobody thickness 

values (bold lines), with the outlier values (residuals) removed (faint lines) for all values modelled in the 

developed suite of reservoir models, across the (a) SIS, (b) OBM, and (c) MPS modelling algorithms, with 

values shown for all input target fractions. The plots have then been overlayed with the actual PERG, GOO 

and RR values from the Tuscher Canyon model at each of the input target fractions for the specific 

architectural element (downstream accretion, lateral accretion, channel element, and thalweg bedform). 
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5.2.3 Target Fraction 

When the Tuscher Canyon output target fraction values for the SIS (Figure 5.4a), OBM (Figure 

5.4b) and MPS (Figure 5.4c) algorithms are compared to those of the average PERG, GOO and RR 

values obtained from running a vast suite of reservoir models (Chapter 3), there appears to be a 

better representation of the average PERG, GOO and RR values representing similar values 

compared to the values for the mean geobody thickness and standard deviation of geobody 

thickness. For the SIS algorithm (Figure 5.4a), the GOO values are distributed very close to where 

expected and given by the average GOO values, and shows the closest distribution when 

compared to the mean geobody thickness and standard deviation of geobody thickness. This is 

also the same for the PERG and RR values, with all geobodies showing far lower values than the 

values obtained from the mean geobody thickness. This means that these PERG, GOO and RR 

values are much closer to the average values obtained from running an extensive suite of 

synthetic SIS reservoir models. This is also the case for the OBM algorithm (Figure 5.4b), where 

the GOO values are distributed much closer to the average value. This also carries through to the 

PERG and RR values, which show much more consistent results than the SIS algorithm, and also 

lower PERG and RR values than the standard deviation of geobody thickness values. Notably, the 

lowest input target fraction (the thalweg bedform) has a GOO, PERG and RR value of 1 due to an 

underrepresentation of the architectural element within the generated realisations. The MPS 

algorithm (Figure 5.4c) has far more consistent values when compared to the mean geobody 

thickness. The various geobodies have a narrower range of values for each the PERG, GOO and 

RR, and seemingly a closer distribution than the SIS and OBM algorithm values. These values more 

closely represent the expected values from the suite of reservoir models than the previous output 

values and modelling algorithms.  
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Figure 5.4: Comparison of the PERG, GOO and RR values for the outputted target fraction values (bold lines), 

with the outlier values (residuals) removed (faint lines) for all values modelled in the developed suite of 

reservoir models, across the (a) SIS, (b) OBM, and (c) MPS modelling algorithms, with values shown for all 

input target fractions. The plots have then been overlayed with the actual PERG, GOO and RR values from 

the Tuscher Canyon model at each of the input target fractions for the specific architectural element 

(downstream accretion, lateral accretion, channel element, and thalweg bedform). 
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5.3 Tuscher Canyon Similarity 

When the data from the similarity plots (Chapter 4.2) using the RR (recommended number of 

realisations) are averaged and compared to the similarity of the first 20 realisations (Goovaerts, 

1999), for the SIS (Figure 5.5a), OBM (Figure 5.5b) and MPS (Figure 5.5c) algorithms, there is also 

significant improvement in the representation of a much larger dataset (100 realisations in this 

case), as has also been seen with the average RR values for each of the modelling algorithms. 

Across all geobodies modelled for the Tuscher Canyon section, and across all modelling 

algorithms, when the recommended number of realisations is used, there is an approximate 90-

97% similarity percentage to 100 realisations, which suggests that a much larger dataset is being 

modelled extremely well, and effectively able to model the skew, kurtosis, and other features of 

100 realisations, for all the modelling algorithms. In comparison, the similarity of the first 20 

realisations to that of 100 realisations is approximately only 72-88%, meaning that the 

recommended number of realisations is approximately 18% more accurate. This also aligns with 

the Law of Large numbers (Bernoulli, 1713), since a larger sample size more accurately represents 

the whole population. The SIS algorithm (Figure 5.5a) shows the lowest average RR similarity 

values, with most values being approximately 94-96%, and as such is approximately a 10% 

improvement on using 20 realisations. The OBM algorithm (Figure 5.5b) has results between 88-

98% which is approximately a 5% increase on using just 20 realisations. This is also the case for 

the MPS algorithm (Figure 5.5c), with a 4% increase on using 20 realisations, with the average RR 

similarity being approximately 90-91%. Whilst these results are not representative of the average 

similarity values discussed in Section 4.2, they are a good indicator as to how effective the 

methodology is for consistently returning a value for the number of realisations required for a 

statistically significant three-dimensional reservoir model suite to be developed, as is seen from 

the disparity between the similarity values for the RR number and 20 realisations.  
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Figure 5.5: Comparison of the total similarity (intersectional percentages) of the first 20 realisations 

compared to the RR value across the input target fractions of the downstream accretion, lateral accretion, 

channel element and thalweg bedform geobodies, for the mean geobody thickness, standard deviation of 
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geobody thickness and outputted target fraction, for each the (a) SIS, (b) OBM, and (c) MPS modelling 

algorithm. 

Comparison of the model suites generated with 20 (Goovaerts, 1999), 32 (average RR value 

obtained from the generated suite of fluvial reservoir models), RR (the specific recommended 

number of realisations for the model suite, restricted from 100 realisations), and 100 (all of the 

realisations generated for the model suite) realisations for the Tuscher Canyon reservoir models 

(Figure 5.6) clearly show increasing similarity percentage values with an increasing numbers of 

realisations. Ultimately, this was best represented by the specific RR for each of the geobodies 

within the model. In this case, the 100 realisation bins act as a control, to show the ‘best case’ 

similarity values.  

Generally, the SIS algorithm produces a distribution most comparable to 100 realisations when 

the lower input target fraction geobodies are considered (thalweg bedform and the lateral 

accretion elements), whereas the larger input target fraction geobodies (channel element and 

downstream accretion element) are generally less comparable to 100 realisations for each the 20, 

32 and individual RR (best case scenario between the GOO and PERG values) bins. It should be 

noted that the disparity between the four geobodies became negligible if the number of 

realisations being displayed was large enough, and seemingly, if too high (RR bin for the thalweg 

bedform in Figure 5.6b), the distributions would be over-modelled and consequently lead to 

overfitting and a lower similarity percentage. Generally, the same trend is present for the OBM 

algorithm (Figure 5.6d and Figure 5.6e), with the thalweg bedform consistently being represented 

as 100% similarity due to the highly constrained nature of the input vertical thickness, leading to 

the discrete statistics of the thalweg bedforms being the same for all realisations. The MPS 

algorithm however does not show these same results, with the mean geobody thickness similarity 

percentages being modelled at 100% for all geobodies (excluding channel element) across all 

realisation values, with only the channel element changing. Due to the nature of the MPS 

algorithm, there is a high degree of influence on the modelled mean geobody thickness values, 
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and consequently, all geobodies (excluding channel element) have a 100% similarity with the 

distributions as compared to all 100 realisations developed. Notably, the same general upward 

trend is present for both the standard deviation of geobody thickness and outputted target 

fraction, with the highest percentage similarity being present at the RR value. 
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Figure 5.6: Comparison of the total similarity (intersectional percentages) of the first 20, 32 (RR for the suite 

of generated models), specific RR value for the Tuscher Canyon models, against 100 realisations. This is 

shown for the (a, d and g) mean geobody thickness, (b, e and h) standard deviation of geobody thickness, 
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and (c, f and i) outputted target fraction, for each the (a, b and c) SIS, (d, e and f) OBM, and (g, h and i) MPS 

modelling algorithms. 

In this instance, since the RR value is variable for each architectural element, and for each the 

mean geobody thickness, standard deviation of geobody thickness and output target fraction, one 

overall best-case value is difficult to suggest without compromising somewhere. For the applied 

use of these models, two of the three factors analysed are less important (mean geobody 

thickness and output target fraction) due to these factors being controlled to some extent 

through the input parameters to generate the models (vertical thickness and input target fraction 

respectively). The most important discrete variable is the standard deviation of geobody thickness 

due to it not being directly controlled by an input, whilst also allowing for more variation of the 

other discrete variables to be included. This is important since realisations with the same geobody 

thickness could produce completely different models, which is important for developing a 

restricted suite of reservoir models with the largest amount of variation between each of the 

realisations.  

An important factor for risk analysis of a reservoir model is that a representative sample is taken, 

which is why the standard deviation of geobody thickness is important to consider, as it enables 

multiple realisations with the same mean geobody thickness to be considered, whilst also 

enabling more extensive model variation to be accounted for. The other main factor for fluvial 

reservoir risk analysis is static connectivity, in this case, of the channel elements. Consequently, it 

would be suggested that the recommended number of realisations used is the value determined 

for the RR value for the standard deviation of geobody thickness for the channel element. When 

this is used for the Tuscher Canyon example (Figure 5.7), there is still significant improvement on 

the similarity percentage for both 20 (Goovaerts, 1999) and 32 realisations (average RR from the 

suite of developed models) being used. For the SIS algorithm, this value is 68 (Table 5.2), for the 

OBM this is 27 (Table 5.3), and for the MPS, this is 29 (Table 5.4).  
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Architectural Element Mean Geobody 
Thickness RR 

Standard deviation of 
geobody thickness RR 

Output Target 
Fraction RR 

Channel Element 40 68 60 

Lateral Accretion 52 70 60 

Downstream Accretion 52 70 60 

Thalweg Bedform 21 15 45 
Table 5.2: Recommended number of realisations required for a statistically significant three-dimensional 

reservoir model suite to be developed for each the mean geobody thickness, standard deviation of geobody 

thickness and output target fraction for each of the studied geobodies for the Tuscher Canyon model using 

the SIS modelling algorithm. This shows significant variation across the different geobodies, with 68 

realisations being shown to be the value for the channel elements standard deviation of geobody thickness 

value.  

Architectural Element Mean Geobody 
Thickness RR 

Standard deviation of 
geobody thickness RR 

Output Target 
Fraction RR 

Channel Element 27 27 26 

Lateral Accretion 15 27 20 

Downstream Accretion 20 99 18 

Thalweg Bedform 1 1 1 
Table 5.3: Recommended number of realisations required for a statistically significant three-dimensional 

reservoir model suite to be developed for each the mean geobody thickness, standard deviation of geobody 

thickness and output target fraction for each of the studied geobodies for the Tuscher Canyon model using 

the OBM modelling algorithm. This shows significant variation across the different geobodies, with 27 

realisations being shown to be the value for the channel elements standard deviation of geobody thickness 

value.  

Architectural Element Mean Geobody 
Thickness RR 

Standard deviation of 
geobody thickness RR 

Output Target 
Fraction RR 

Channel Element 21 29 19 

Lateral Accretion 1 70 21 

Downstream Accretion 1 43 61 

Thalweg Bedform 1 7 23 
Table 5.4: Recommended number of realisations required for a statistically significant three-dimensional 

reservoir model suite to be developed for each the mean geobody thickness, standard deviation of geobody 

thickness and output target fraction for each of the studied geobodies for the Tuscher Canyon model using 

the MPS modelling algorithm. This shows significant variation across the different geobodies, with 29 
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realisations being shown to be the value for the channel elements standard deviation of geobody thickness 

value.  

Whilst the similarity results for these newly used RR values (Figure 5.8) are comparable to the 

previously suggested best case RR values (Figure 5.7), there does appear to be more consistency 

of the representation of all geobodies. This is in comparison to the previously used best case RR 

value, where larger variations could be seen across geobodies. This increased consistency also 

leads to better, more representative results, which should lead to a better, more statistically 

significant three-dimensional reservoir model suite.  
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Figure 5.7: Comparison of the total similarity (intersectional percentages) of the first 20, 32 (RR for the 

standard deviation of geobody thickness of the channel element for the suite of generated models), specific 

RR value for the Tuscher Canyon models, against 100 realisations. This is shown for the (a, d and g) mean 
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geobody thickness, (b, e and h) standard deviation of geobody thickness, and (c, f and i) outputted target 

fraction, for each the (a, b and c) SIS, (d, e and f) OBM, and (g, h and i) MPS modelling algorithms. 
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5.4 Summary 

Overall, when 100 realisations of the Tuscher Canyon model are developed using the SIS, OBM 

and MPS modelling algorithms, there is a significant difference to the results gained from the 

synthetic suite of models generated and analysed (Chapter 4). This variation is probably caused by 

a single set of input parameters used to generate the single suite of reservoir models rather than 

an average of an extensive set of synthetic reservoir model suites being developed with a range of 

input parameters, which probably would have viewed this set of 100 realisations as a residual 

case that would have been averaged out. Whilst not a perfect representation of the suite of 

models, the Tuscher Canyon example does show good general trending for each of the PERG, 

GOO and RR values with SIS algorithm being the most representative, and the MPS algorithm 

showing the most variation. This example highlights just how much variation is possible for a 

model set (a specific set of parameters) to have. Consequently, this would suggest that instead of 

developing a model suite of 32 realisations, a larger suite of reservoir models should be 

developed, with the excess models11 being removed.  

Depending on the use of this suite of reservoir models, it would be recommended that 100 

realisations are developed initially, with the workflow then followed to reduce this model suite 

prior to fluid-flow, or other computationally heavy tasks being modelled. If the reservoir models 

are larger, or higher resolution, then this number could be reduced to 50 (50% larger than the 

average RR for the synthetic model suites), and the methodology being followed. If there is no 

repetition (PERG) of the standard deviation of geobody thickness for the channel element, then 

more realisations should be added onto the previous 50, and the methodology followed again. 

This should be repeated until a PERG value can be found to be used as an upper bound, for the 

recommended number of realisations to then be determined. Development of a larger initial suite 

of realisations is preferred since there would be a larger sample of variation of the standard 

 
11 Realisations larger than the recommended number of realisations for the standard deviation of geobody 
thickness for the channel element for the suite of reservoir models (e.g., if this number was 32, then all 
realisations after this would be removed from the model suite). 
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deviation of geobody thickness values. This would lead to a better, more representative 

comparison between the initial suite of reservoir models and the prospective RR value, leading to 

a much more accurate recommended number of realisations being suggested. This in turn will 

lead to a more representative suite of three-dimensional stochastic reservoir models being 

developed, and used for the determination of economic viability of hydrocarbon recovery, or 

carbon storage reservoirs.   
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6 Discussion 

This discussion will focus on the applicability to other sedimentological environments, 

uncertainties within the methodology and possible mitigation, the number of realisations 

required to develop a statistically significant three-dimensional reservoir model suite for the 

generated suite of fluvial reservoir models, and then will focus on the application of the 

methodology developed on a model representing Tuscher Canyon, and finally will look at the 

limitations of this study. 

6.1 Application to other environments 

Whilst this methodology has only been applied to fluvial systems within this study, it is likely that 

it has wider scale applicability to any clastic sedimentary environment where multiple facies are 

interacting and modelled using a non-deterministic algorithm. This is due to the methodology 

focussing on the characteristics and properties of the reservoir rather than individual geobodies 

or specific facies. The main challenges of applying this methodology to other environments will 

arise from the ability to create both viable and realistic reservoir models. Without a good quality 

set of inputs (reservoir models), any uncertainty analysis would be unproductive as whilst it will 

undoubtedly create a better set of reservoir models, they would not be representative of the 

reservoir. 

6.2 Methodology uncertainties and potential mitigation 

The main uncertainty with the proposed methodology will be introduced when selecting the 

initial sample of reservoir models to be analysed. The uncertainty arises from an unrepresentative 

selection of facies models being created within the reservoir modelling stage. Whilst this cannot 

be completely mitigated it would be recommended for the reservoir models to be visually 

checked over before they are analysed to ensure they are representative of the reservoir being 

modelled. It is also suggested that a larger initial sample of reservoir models is more likely to 

represent the total population (Law of Large Numbers). It is suggested that an initial sample size 

of at least 30 is used so that the distribution of values for the sample is approximately normal 
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(according to the Central Limit Theorem), consequently reducing the impact of bias appearing 

within the sample population. 

6.3 Number of Realisations 
The number of realisations used typically to develop three-dimensional fluvial reservoir models is 

inherently flawed. Whilst it is commonplace for between 10 and 20 realisations to be developed 

for a three-dimensional fluvial reservoir model for any modelling algorithm (Haldorsen and 

Damsleth, 1990; Seifert and Jensen, 1999; Caers, Srinivasan and Journel, 2000; Liu et al., 2004; 

Tureyen and Caers, 2005; Falivene et al., 2006; Nordahl and Ringrose, 2008; Daly and Caers, 2010; 

Mitten et al., 2020; Benetatos and Giglio, 2021; Montero et al., 2021), these values were originally 

intended for use for two-dimensional permeability models using the SIS algorithm (among others) 

(Goovaerts, 1999), rather than three-dimensional fluvial reservoir models across all modelling 

algorithms. Alternatively, 10 realisations are used commonly to reduce the effect of ergodic 

fluctuation within the fluvial reservoir models (Falivene et al., 2006). The extensive suite of 

synthetic fluvial reservoir models developed using the SIS, OBM and MPS modelling algorithms 

serves to confirm that even 20 realisations isn’t sufficient enough to develop a statistically 

significant three-dimensional reservoir model suite.  

6.3.1 Test Suite of Models 

The relatively large standard deviations of the test suites of reservoir models (Figure 6.1b, Figure 

6.1d and Figure 6.1f) even whilst there is a consistent average of 32 for the SIS (Figure 6.1a, Figure 

6.1c and Figure 6.1f), OBM (Figure 6.1a, Figure 6.1c and Figure 6.1f) and MPS (Figure 6.1a, Figure 

6.1c and Figure 6.1f) algorithms, there is still a high degree of uncertainty. The standard deviation 

of 20 for the values in the dataset (Figure 6.1b, Figure 6.1d and Figure 6.1e) is incredibly large for 

what is a relatively small set of data for each input target fraction (80 values for each input target 

fraction for the SIS algorithm, and 256 for each input target fraction for the OBM and MPS 

algorithms). This standard deviation highlights the variation of the returned values for each of the 
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modelling algorithms and suggests that regardless of how large that the suite of fluvial reservoir 

models is, there is still an incredible amount of uncertainty associated with modelling algorithms.  

Two possible answers exist for this problem, the first of these is the generation of 32 realisations 

regardless of the input parameters. This solution provides enough realisations for the standard 

deviation of the discrete variables returned from the models to plateau off and is similar to the 

solution proposed for a two-dimensional reservoir model of 20 realisations (Goovaerts, 1999). 

However, this does not address the problem of oversampling that could arise when using a 

specific number of realisations. For example, since 32 is the average number of required 

realisations for a statistically significant three-dimensional reservoir model suite to be developed 

(Figure 6.1), that would mean that there are ~50% of models that have a value of less than 32, 

which would imply that 50% of the time there would be duplication in the properties of the 

realisations generated. In turn this would lead to oversampling of these property values, and 

consequently lead to either too much, or too little, de-risking. This could then lead to a project 

deemed to be too risky, or not profitable enough.  

The other case would be that the project is deemed to be extremely profitable, and the actual 

reservoir is disappointing (false-positive). Irrespective of this, both are possibilities when a non-

specific solution is used. The second solution involves far less risk and uses a bespoke number for 

each model developed. In this case, 100 realisations are developed, and then the discrete 

variables obtained from this are then analysed using the methodology described in Chapter 3. 

This would then return a bespoke value (RR) for that specific dataset. The user would then 

remove all of the excess realisations (if the RR was 28, then the realisations of 29 to 100 inclusive 

would be disregarded), and the remaining realisations would be analysed. This process can be 

automated using a software application such as StReAMS (Davies and Mitten, 2023),where a 

result would be returned in seconds. Whilst this second solution does not reduce the time 

expended on creating the realisations, it does lead to the de-risking of using fluvial reservoir 

models for industrial use, and ultimately producing a better and more consistent three-
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dimensional stochastic fluvial reservoir modelling process. 

 

Figure 6.1: Comparison of the (a) PERG, (c) GOO and (e) RR values for the mean geobody thickness values, 

for each of the SIS, OBM, and MPS modelling algorithms, with values shown for all input target fractions. 

The standard deviations of these average results (detailing how spread out the values are) is given for the 

(b) PERG, (d) GOO, and (f) RR values. 

6.3.2 Tuscher Canyon Model 

Whilst the test suite of models recommends an average of 32 realisations to be used to generate 

a statistically significant three-dimensional reservoir model suite, further analysis (Chapter 4) 
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demonstrates discrepancy as to the distribution of the datasets used to arrive at this number. 

Consequently, a straightforward approach of using just 32 realisations is unlikely to create a 

statistically significant three-dimensional reservoir model suite. When the usage of fluvial 

reservoir models is considered, it becomes clear that some factors are more appropriate and 

important than others. The most important of these, when considering static connectivity, would 

be the channel element connectivity. Whilst connectivity data haven’t been used within this 

study, it can be approximated by using the standard deviation of geobody thickness. This method 

allows repetition of the mean geobody thickness, whilst also representing the spread of data for 

the entire dataset. When the RR value is used for the channel elements standard deviation of 

geobody thickness (Figure 6.2), there is a significant increase in the overall similarity percentage 

(Chapter 5.3) when compared to 100 models in comparison to both the 20 realisations 

(Goovaerts, 1999) (approximately a 7.5% increase), and the 32 realisations given by the test suite 

of models (approximately a 2.5% increase). This dynamic approach to statistical significance of 

fluvial reservoir modelling incorporates flexibility with statistical certainty, and overall combines 

efficiency with statistical accuracy, leading to more reliable results, and consequently, de-risking 

of three-dimensional fluvial reservoir modelling.  

It would be recommended that 100 realisations are developed initially, with the workflow then 

followed to reduce this model suite prior to fluid-flow, or other computationally heavy tasks being 

modelled. If the reservoir models are more computationally intensive, or less accuracy is required 

then this number could be reduced to 50 (50% larger than the average RR for the synthetic model 

suites), and the methodology being followed. If no repetition (PERG) of the standard deviation of 

geobody thickness for the channel element is detected, then more realisations should be added 

onto the previous 50, and the methodology followed again. This should be repeated until a PERG 

value can be found to be used as an upper bound, for the recommended number of realisations 

to then be determined. Development of a larger initial suite of realisations is preferred since there 
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would be a larger, and more representative sample of reservoir models12 to use when 

determining the RR value during comparison of distributions. This in turn will lead to a more 

representative and statistically significant suite of three-dimensional stochastic reservoir models 

being developed. 

 
12 Law of large numbers (Bernoulli, 1713) states that a larger sample will be more representative of an 
entire population 
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Figure 6.2: Comparison of the total similarity (intersectional percentages) of the first 20, 32 (RR for the 

standard deviation of geobody thickness of the channel element for the suite of generated models), specific 
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RR value for the Tuscher Canyon models, against 100 realisations. This is shown for the (a, d and g) mean 

geobody thickness, (b, e and h) standard deviation of geobody thickness, and (c, f and i) outputted target 

fraction, for each the (a, b and c) SIS, (d, e and f) OBM, and (g, h and i) MPS modelling algorithms. 

6.4 Limitations 

Whilst steps have been taken in the work presented here to ensure that the models are as 

representative as possible, the reproducibility of the individual model suites will vary (even when 

the same input parameters are used), due to the inherent stochastic nature of the modelling 

algorithms. To reduce the effect of this on the entire dataset, a large suite of models was carried 

out (4,144 models across three different modelling algorithms), thereby reducing the total impact 

of non-standard cases, and overall increasing the reliability of the study. It should also be noted 

that for this reason, no two datasets will have the same GOO, PERG or RR values, and as such 

presents the need for more a tailored approach to determine these values, such as StReAMS 

(Davies and Mitten, 2023), which was developed to bulk analyze Petrel outputs to determine 

these values. Other limitations of this study are that the suite of models developed were 

completely synthetic, as such, models with hard data inputs (such as well logs) have not been 

considered, nor have the number of input parameters, or the relative effect of the different input 

parameters.  

Due to the nature of reservoir exploration, real world scenarios are more likely to be probabilistic 

rather than stochastic. Since probabilistic reservoir models have a strong stochastic element to 

them, this study should still be applicable. The methodology suggested within Section 5.3 would 

be ideal for the determination of the number of realisation required for a statistically significant 

suite of probabilistic three-dimensional reservoir models. This would involve creating a model 

suite of 100 realisations, and determining the GOO and the PERG values for the channel element 

standard deviation of thickness. After this, all realisations between the GOO and the PERG would 

be iteratively used to search for the realisation number with the highest intersection percentage. 

Once found, the original suite of reservoir models would be restricted to the first X amount of 
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realisations to create a statistically significant suite of realisations. This model suite can then be 

used to determine the economic viability of the reservoir for either hydrocarbon recovery, or 

carbon storage.     

Overall, the novel methodology proposed within this study is a useful workflow for the 

determination of the number of realisations required for the suite of three-dimensional fluvial 

reservoir models to be deemed as statistically significant. This is a significant advancement from 

the previously used two-dimensional work in this field (Goovaerts, 1999), and its application to 

real-world models such as Tuscher Canyon verifies its validity. The usage of the StReAMS (Davies 

and Mitten, 2023) software package is ideal for determining the PERG, GOO and RR values for 

either a singular model, or a set of models that have been developed. The methodology proposed 

within this study is ideal for both saving time when analyzing the generated fluvial reservoir 

models, and leads to the de-risking of generated reservoir models (through the use of 

periodograms to eliminate repetition of model properties, and the use of the Goovaerts plot to 

ensure that the range of values used represents a wide enough range of results), leading to 

increased accuracy of the models, and better, more informed decisions based on these models. 

When using the workflow, the RR value for the standard deviation of geobody thickness of the 

channel element should be used to produce the most accurate, and representative fluvial 

reservoir models to be generated and used.  
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7 Conclusion 

Presented within this research is sufficient evidence to demonstrate a new methodology for the 

determination of a minimum number of realisations required for a statistically significant three-

dimensional fluvial reservoir model suite to be developed, and subsequent application to a 

previously studied geological model through the completion of the aims and objectives proposed 

in Chapter 1.1. 

7.1 Research aims and objectives 

A suite of reservoir models (4,144 total) of a range of input parameters was developed in Chapter 

3, enabling the three modelling algorithms used (SIS, OBM and MPS) to be analysed and 

compared. This search area is then analysed to return the number of realisations required for the 

best representation (intersectional percentage) of 100 realisations.  

Compilation and analysis of the synthetic suites of reservoir models, the recommended number of 

realisations required for a statistically significant three-dimensional fluvial reservoir model suite 

is, on average, 32. This is the same for the SIS, OBM and MPS algorithms (Chapter 4), regardless of 

which discrete variable (mean geobody thickness, standard deviation of geobody thickness and 

outputted target fraction) from the synthetic suite of reservoir models is used. Application of this 

to previously studied examples (such as Tuscher Canyon, Utah), leads to a discrepancy in the RR 

value across the discrete variables, which also extends into the different geobodies being 

modelled. When more than two geobodies are modelled, the RR value for the standard deviation 

of geobody thickness of the largest connecting body (for fluvial reservoir models, channel element 

should be used). Application of this methodology to the Tuscher Canyon model proves its validity, 

and provides the basis for a statistically significant three-dimensional reservoir model suite to be 

generated for any three-dimensional fluvial reservoir model.  
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7.2 Further Work 

Significant advancement has been made from the initial work of Goovaerts (1999), but there are 

still so many unknowns about three-dimensional fluvial reservoir modelling that still need to be 

quantified and determined. For example, how does model size, a larger initial suite of realisations, 

analysis of the static connectivity, and the nugget effect (for the SIS algorithm) alter the GOO, 

PERG and RR values?  

7.2.1 Probabilistic Reservoir Models 

Since probabilistic models are heavily influenced by stochastic processes, it is likely that this work 

would also be applicable to them. This could be tested by creating various suites of probabilistic 

models, with varying degrees of determinism in order to suggest how applicable this methodology 

would be. This would provide sufficient evidence for this methodology to be used for industrial 

application.  

7.2.2 Model Size 

It is possible that the alteration of the dimensions of the reservoir model would lead to alterations 

in the discrete statistics that would be used to analyze the generated models. This would probably 

lead to higher values for larger reservoirs due to the increased volume being represented (and 

consequently more chance for variation), and probably the opposite for smaller scaled models. It 

is also important to consider how a change in the ratio of the X, Y or Z axis would affect the 

results. It is possible this too would lead to an increase in model variation, and consequently 

larger PERG, GOO and RR values.  

7.2.3 Static Connectivity 

Whilst only the direct discrete statistics generated from the realisations have been used within 

this study, there is also the opportunity for individual connected geobodies to be evaluated. This 

would produce better insight into the variation of static connectivity of the models, and help to 

better characterise the effect of the various input parameters on reservoir performance. Finally, it 

is also important to consider the effect of using the discrete statistics for the static connectivity 
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values. The reduced (and focused) sampling is likely to lead to far higher GOO, PERG and RR 

values, and would likely be unrepresentative of the entire model – but it is still worth exploring to 

see if this is the case.  

7.2.4 Nugget Effect 

When developing models using the SIS modelling algorithm, along with the vertical thickness, and 

major and minor directions, the nugget value can also be changed. This nugget value is the y-

intercept on the semi-variograms used to develop the models, and act as the input parameters for 

the model. The nugget value is the overall uncertainty in the variogram, the higher the value, the 

more uncertainty (Camana and Deutsch, 2019). A higher nugget effect would typically lead to A 

smoother estimated variogram used for developing the models (Camana and Deutsch, 2019). For 

this study, the nugget was kept at 0.0001 due to time constraints, but further work could show 

large variation for the PERG, GOO and RR values. 

7.2.5 Input Parameters 

The number of input parameters, nor the relative effect of the different input parameters were 

considered during this study. The uncertain nature of stochastic reservoir modelling means that 

either of these would have a noticeable effect on the reservoir models. Preliminary primary 

component analysis (PCA) showed that there was no discernible connection between the 

recommended number of realisations for any of the input parameters, but more in-depth analysis 

could prove to be useful for overall understanding of three-dimensional stochastic reservoir 

modelling.   
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