
This work is protected by copyright and other intellectual property rights and 
duplication or sale of all or part is not permitted, except that material may be 
duplicated by you for research, private study, criticism/review or educational 

purposes. Electronic or print copies are for your own personal, non-commercial 
use and shall not be passed to any other individual. No quotation may be 

published without proper acknowledgement. For any other use, or to quote 
extensively from the work, permission must be obtained from the copyright 

holder/s.

https://www.keele.ac.uk/library/specialcollections/


 

 

 

Evaluation of chemometric software for analysis of complex 

mixtures for biologically derived samples analysed using liquid-

chromatography mass spectrometry 

 

Megan Rose Scott 

 

Thesis submitted for the degree of Doctor of Philosophy 

 

June 2024 

 

Keele University 

 

 

 

 

 

 

 

  





i 

 

Abstract 

There is a risk of losing important information when choosing the best metabolomic workflow for 

untargeted chemometric analysis. Choosing the best software for conducting this analysis is crucial as 

wrong parameters with the wrong software could lead to false negatives, as well as over-saturating 

the data analysis with false positives. Over the course of this study, the intention was to show how a 

robust untargeted liquid chromatography-mass spectrometry method, followed by deconvolution 

then performing statistical analysis can determine consistent, concise and accurate markers that 

explain differences between datasets. Different software packages were used throughout to 

determine whether the chosen software affects the results.  

 

Software packages for deconvolution and statistical analysis were compared over a range of different 

samples to evaluate the workflow over a range of sample types; plant samples, solid human products 

(hair samples) and liquid human products (blood samples) were used. The different deconvolution 

software packages used showed different results through the studies showing that the software used 

will affect the outcome. Though some markers were consistent in the statistical analysis performed 

with the same deconvolution, a lot of the results were different which shows that conducting the 

analysis in different types of software, results in different biomarker detection. This could lead to a 

potential oversight and loss of important information. 

 

The data showed that deconvolution worked best in Mass Profinder then statistical analysis in MPP 

gave the most reliable results whilst being the easiest to navigate. However, where possible, it was 

concluded that more than one type of software should be used for reliable biomarker detection to 

reduce the risk of losing important information through the software choice.  
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1 Introduction to Metabolomics 

1.1 What is Metabolomics? 

Metabolomics is a new approach used in different fields of analytical science, such as forensic, food 

authentication and clinical applications 1. It is defined as the ‘quantitative measurement of the 

dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or 

genetic modification’ 2-3. A more simplistic definition would be ‘the comprehensive analytical 

approach for the study of all low-molecular-weight species (metabolites) present in a given biological 

system of interest’ 4. Low molecular weight species are those typically less than 1000 Da, with the 

purpose of a metabolomics experiment being observing the effect of both intrinsic and extrinsic 

factors on the metabolome 1,4-8. The metabolites that collectively make up the metabolome are 

generally organic species such as fatty acids, amino acids, carbohydrates, lipids and vitamins 9. 

 

Together with the other “omics” approaches, metabolomics provides a complete picture of a living 

organism’s chemical and functional signature 10. The ‘omics’ technology includes genomics, 

transcriptomics, proteomics and metabolomics. Each ‘omic’ is a study of specific areas; the genome, 

gene expression, protein expression and the metabolism, respectively 11. The term metabolome was 

first described by Oliver et al. as the ‘complete set of low molecular weight compounds present in a 

cell that are required for its maintenance, growth and normal function and contributes to the 

metabolic reactions of a cell in a particular physiological or development stage’; it is a collection of 

small molecules in cells, tissues, urine, plasma etc., that shows what is currently happening in the 

system 12-13. Therefore, metabolomics represents the small molecules that can be objectively and 

quantitatively measured in biofluids. As metabolites are immediate down-stream products of 

protein/gene transcription and translation, metabolomics provides a clearer picture of the 

phenotype in a biological system in comparison to genomic and proteomics. The genome tends to 

show what might happen and therefore it is not easy to change where-as the metabolites are easy to 
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change through diet, supplements, drugs etc. Overall, this makes metabolomics highly complex, yet 

gives a fully comprehensive overview of the system being investigated.  

 

Genomics and transcriptomics do not tend to use much mass spectrometry as other techniques are 

preferable when determining the gene sequencing efficiently 14. With proteomics and metabolomics 

however, mass spectrometry has a very central role. Mass Spectrometry (MS) and Nuclear Magnetic 

Resonance (NMR) spectroscopy have both been used in metabolomics however NMR poses some 

limitations when it comes to sensitivity, ease of access, cost and how it only looks at the sum of 

compounds in the mixture; it does not work well with complex mixtures. NMR is often used for 

structural confirmation on simple samples, such as the final stages of structural identification on a 

biomarker alongside MS-MS. Over the past decades, mass spectrometry has become the technique 

that many would choose for an untargeted approach to characterise complex biological systems. The 

improvements in technology in the past few years have shown that large sample sets can be 

analysed due to the increased sensitivity of detection and faster chromatographic separation. Due to 

the increased sample load in a short space of time, data processing has become a crucial step that 

limits productivity and potentially the quality of interpretation in raw mass spectrometer data. 

Determining a workflow with software that can reliably and rapidly process and produce accurate 

information is essential for the quality of analytical results and interpretation 15-17. Commonly used 

commercially available software includes Mass Profiler / Mass Profiler Professional by Agilent, 

Progenesis QI by Waters, Compound Discoverer by Thermo Fisher Scientific and Bruker 

Metaboscape. However, since metabolomics is a fast-progressing area, the development of freely 

available software tools is also on the increase 18-19. Popular open-source software programs such as 

MetaboAnalyst, XCMS online, MZmine2 and MS-Dial are providing the advanced tools to manage, 

explore, process, and annotate the increasingly complex data generated from mass spectrometry 

tools 20-24. Some of these packages can perform statistical analysis, such as MetaboAnalyst and XCMS 

online, though some do not have the ability to deconvolute the data, i.e., MetaboAnalyst 25-27. 
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The goals of metabolomic studies when using LC-MS are: 

• To collect highly reproducible chromatographic separations with a retention time error of +/- 

0.02 min 

• To use a high-resolution instrument to collect highly accurate, exact mass spectra defined by 

4 decimal place m/z values, meaning that possible empirical formulas can be deduced 

• To observe multiple levels of bioinformatics and multivariate statistics – 2000 to 20,000 

features are the ideal number to compare 

• Develop a therapy, develop a diagnostic test, or obtain new biochemical information 

(potentially through the use of biomarkers). 

 

There are two different approaches that can be taken when looking at metabolomic studies: targeted 

or untargeted (Figure 1.1 and 1.2, respectively) 28-29. 

 

 

1.1.2 Targeted studies are where a specific compound, or a small set of compounds can be 

quantitatively identified and examined. These are useful when the biological pathway is known to be 

affected by the investigated factor, and the targeted compound, or class of compounds, can be 

studied in detail with tailored preparation methods 28-29. This typically uses triple quadrupole mass 

spectrometry (QQQ) which is not as data intensive as Q-ToF work and gives more accurate 

quantitation results, although it does make it more difficult to identify unknown metabolites given 

that it does not collect to 4 decimal places and so unknowns cannot have potential formulae 

deduced 30. Targeted metabolomics is also known as metabolic profiling 31. 

Sample 
Preparation 

Data 
Acquisition 

Peak 
Integration 

Quantitative 
Analysis 

Figure 1-1. Targeted Metabolomics Workflow. 

Sample 
Preparation 

Data 
Acquisition 

Data 
Processing 

Qualitative 
Analysis 

Figure 1-2. Untargeted Metabolomics Workflow. 
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1.1.3 Untargeted studies, or metabolic profiling, use a compiled combination of high resolution, 

mass accuracy and chromatography to extract features. It aims to acquire and measure as many 

metabolites as possible, looking at any potential changes without focusing on the identification of 

every single feature 32-33. It is used when it is not known if a biological pathway will be affected by 

factors (such as pH, storage or temperature) or not, and so as many small molecules/metabolites are 

profiled as possible to get a more holistic overview of the entire metabolome so the data can be 

investigated 31. This type of experiment generates a large amount of data due to the vast amount of 

information gathered on the number of metabolites that may be present within a sample; many 

different sample classes can be captured in a single sample. Untargeted analysis is a useful starting 

point for investigations due to the ability to look at significant trends in the data using statistical 

workflows, however it is highly data intensive and is software dependent. It is possible to determine 

the identity of the compound(s) of interest, then further targeted studies can be conducted, and it 

may become a biomarker of interest for the factor that was investigated. Many different metabolites 

can be observed, and metabolic changes due to disease, environment or diet can be investigated 

over time 34. Since untargeted metabolomics can be applied to a wide variety of different matrices 

and metabolites, the only limitation being the analytical instrument chosen, it is considered a true 

omics approach and a great starting point for metabolomics projects given the simple sample 

preparation 31. 

 

1.2 Scientific Workflow 

For untargeted metabolomics to be successful, a scientific workflow needs to be well structured and 

planned out. It should consist of several different stages, including sample collection/preparation, 

compound identification and targeted studies to ensure that high quality, reliable results can be 

obtained. Figure 1.3 shows a generalised workflow for untargeted metabolomic studies. 
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1.2.1 Experimental Design 

The experimental design is the determining step of the study; if the initial setup of the experiment is 

flawed, then the results can be disregarded along with any interpretations made from this data. It is 

important that any potential variables in the study are controlled so that confidence can be had that 

the changes in the metabolic profiles are due to the factor that is being investigated, rather than a 

different uncontrolled variable 35. To ensure the results are reliable, a minimum of three biological 

replicates are proposed, with five stated as preferable, where possible 36. A biological replicate is 

where individual samples are prepared once; these are distinct samples that show biological 

variation 37. A technical replicate is one sample prepared multiple times, however due to the high 

precision in LC-MS, this is not important unless you are developing a method and would like to 

determine instrument validation. 

 

To monitor the drift throughout analysis, quality control (QC) samples should be added consistently 

throughout. These are usually pooled QC samples made up of aliquots of each individual sample 

adjusted with equal volumes that is used as a standard at the beginning, end and periodically 

throughout the sequence 38-39. This gives the analyst an indication as to whether the results are 

reliable by identifying any potential changes in the QC throughout the analytical run. In most 

experiments, the LC column needs to be conditioned prior to analysis and so the QC sample is 

Experimental Design Sample Selection & 
Collection 

Sample Preparation/ 
Metabolite Extraction 

Chemical Analysis 

Data Pre-Processing and 
Analysis 

Compound 
Identification 

Targeted Studies 

Biochemical 
Interpretation 

Figure 1-3. Generalised Untargeted metabolomics workflow 
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injected till the results are consistent and reproducible. This is an ideal sample to condition the 

column as it consists of all the compounds in the analysis, and therefore you can be sure that the 

entire compound polarity extremes and mass ranges are covered.  

 

The more replicates of samples in each sample set, the better. This is because the results are seen as 

more reliable if multiple replicates give the same answer and it reduces variation. There should also 

be a balanced number of samples from each group compared to one another and these should be 

fully randomised during the data acquisition, with a blinded sample list if possible. 

 

1.2.2 Sample Selection and Collection 

Sample selection is a critical step in the metabolomic workflow as all results depend on the suitability 

of the samples selected. The biological sample chosen depends on the aim of the project as different 

biological materials will be more suited to different analytical problems. There are plenty of 

biological samples available for experimental studies, though each one will be significantly different 

chemically 40. For example, urine will have polar metabolites present within the short excretion 

window though the hair will store both the parent compound and its metabolites for months and 

years to come, respective to the length of the hair.  

 

Sample collection is an important aspect of the metabolomic workflow as it can cause major changes 

to the results of a study, if not handled consistently. They should all be exposed to the same 

materials and temperatures etc., to prevent external factors influencing the results of metabolite 

profiles between samples. To minimalize metabolite degradation, samples should be stored at -80°C 

in the dark where possible, however this depends on numerous factors including sample matrix and 

length of time before sample preparation will occur 41. 
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1.2.3 Sample Preparation / Metabolite Extraction 

Sample preparation and the extraction of metabolites is the next step of the scientific workflow, with 

the main purpose of releasing any metabolites present but removing interferences (i.e., proteins). 

The choice of the sample preparation method is important as it affects both the observed metabolite 

consistency and the biological interpretation 4. This needs to be done in a consistent way across the 

samples so each sample can be compared directly to another using the proposed analytical 

technique 42. Each different laboratory across the world will do their preparation differently, with 

different brands and/or grades of solvents, different consumables etc., all which may slightly affect 

the metabolite extraction 10. For untargeted studies, the class of compounds is unknown and 

therefore a generalised extraction procedure is used to release as many small molecules for analysis, 

whilst removing as many large molecules as possible 43. Once the experiment becomes targeted 

towards the compounds of interest, a more selective, tailored technique can be adopted for the 

compound groups being investigated. The sample preparation technique used is dependent on the 

matrix of the sample and the desired final sample type. The ideal method would be robust, 

reproducible and simple, but also be as non-selective as possible to ensure it covers the whole 

metabolomic consistency 10. Ideally, it would also consist of a metabolism-quenching step to ensure 

the sample represents the true metabolome composition at the time of sampling 4. Due to sample 

variability, using MS for data acquisition will not be the most robust technique; the analysis may 

retrieve different results on different days, even different results on different instruments. 

Therefore, in metabolomics studies the samples from all groups in a study should be extracted and 

analysed at the same time, keeping conditions as consistent as possible 10. 

 

1.2.4 Chemical Analysis 

Chemical analysis is the next step, where various analytical techniques have been used to gain insight 

into the metabolite profile. The different techniques vary from spectroscopic methods to mass 

spectrometry and other chromatographic techniques. An ideal scenario would involve simple, or 

even no, sample preparation, be rapid and have a high sensitivity equal for all compound classes that 
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may be available in the sample. It would ideally produce reproducible results with enough molecular 

information for metabolite identification but also be inexpensive and non-destructive to allow the 

sample to undergo further investigation when needed 44. 

 

The two most common analytical techniques used for chemical analysis in metabolomic studies are 

NMR and MS due to the reproducibility and high precision, respectively.  

 

1.2.4.1 Nuclear Magnetic Resonance  

NMR is a non-destructive spectroscopic technique, producing highly reproducible results that are rich 

in molecular information, leading to identification of metabolites 5-6,45. It is non-selective and 

therefore can detect multiple different compound classes, with little sample preparation. The 

analysis is relatively fast, meaning it is a high throughput technique desired for metabolomic studies. 

However, the instrumentation is expensive, and the low sensitivity means it can only detect a limited 

number of metabolites during the analysis. It is also a technique that shows everything in the sample 

all at once and therefore with more than one compound present, it will be very difficult to determine 

the structures of each separate metabolite. Figure 1.4 shows a very simplified version of 3 separate 

compound NMR spectra. It then shows what the spectra would look like if these 3 simple sample 

spectra were all in one sample; it becomes very complicated and difficult to analyse. 
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Figure 1-4. Simplified diagrams of NMR spectra showing what the spectra would look like if three compounds were 
analysed in one sample. It would be incredibly difficult to deduce any important information from the spectra. 

 

1.2.4.2 Liquid Chromatography – Mass Spectrometry 

Liquid Chromatography – Mass spectrometry (LC-MS) is used to analyse non-volatile analytes. The 

samples are usually diluted in an appropriate solvent before being introduced to the LC where 

analytes are separated based on their polarity. LC is beneficial due to the large variation of 

separations systems that can be used, such as normal phase (silica based), reversed phase 

(hydrophobic to non-polar molecules), ion exchange and hydrophilic interaction liquid ion 

chromatography (HILIC).  

 

Metabolites are then ionised in the source, where Electrospray Ionisation (ESI) is typically used. ESI is 

a relatively soft, sensitive ionisation technique that has brought many new features to mass 

spectrometry, including the ability to use it with HPLC, and particularly for the identification of a 

range of analytes, from small molecules to proteins 46. ESI is described as a soft ionisation technique 

since it provides little fragmentation, however it can produce ions from non-volatile, thermally liable 

compounds with multiple charged states 47. The source, as seen in Figure 1.5, works by forcing the 

1 2 3 

1, 2 & 3 
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analyte solution through a very fine capillary into an electric field creating charged droplets. The 

droplets will each possess a positive or negative charge, depending on the polarity of the capillary. 

The drying gas causes the droplets to decrease in size by evaporating the solvent, consequently 

increasing the charge density. As the droplet size decreases, repulsive forces between the charged 

ions increases and eventually, many smaller droplets are formed 48. These repulsive forces are known 

as Coulomb force, where the surface tension attempts to keep the shape of the droplet but the 

charges on the surface of the droplet are repelling one another. The Coulomb explosion, or Coulomb 

fission, occurs when the Coulomb force becoming greater than the surface tension 14. This causes the 

ions at the surface of the droplet to be released into the gaseous phase, allowing them to pass 

through the skimmer cone and onto the mass analyser, where it’s mass to charge ratio is determined 

14. 

 

ESI is often used to analyse biomolecules where the charge is generated from protonation of a basic 

site, [M+H]+, or deprotonation of the acid group, [M-H]-. Other adducts can be formed, such as a 

sodium, potassium or ammonium adduct when the compound is analysed in positive ionisation 

mode, i.e., [M+Na]+. In negative mode, other adducts include the chlorination of an acidic site, or 

more complicated adducts such as formic acid, [M+CH3COOH]-. Since ESI produces little 

fragmentation, limited structural information can be obtained, although this means that the parent 

molecular ion is almost always observed 48. This can be overcome by using other techniques such as 

tandem mass spectrometers (LC-MS/MS) which provide structural information.  

FLOW 

Fine 
Capillary SOLVENT 

EVAPORATION 

To MS 
analyser 

Analyte 
Molecules 

Multiply 
Charged 
Droplet 

Analyte 
Ions 

Figure 1-5. Simplified diagram of how ESI works.  

Adapted from deHoffman and Stroobant 14. 

COULOMB 
EXPLOSION 
(FISSION) 
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The Quadrupole – Time of Flight (Q-ToF) mass spectrometer is a popular instrument. It is a tandem 

mass analyser is useful for determining structural information about unknown compounds. The ToF 

can screen for all possible compounds where-as the quadrupoles can be fragmenting and 

determining more structural information about any specific compounds at a given RT. Due to its 

sensitivity and high resolution, Q-Tof is considered a useful and powerful metabolomics tool 49-51. 

 

Overall, Mass Spectrometry (MS) is more sensitive than NMR, meaning it can detect a larger number 

of metabolites. MS can be used either by direct infusion where it is infused directly into the detector, 

or it can first go through chromatographic separation before being detected. Direct infusion can, 

however, lead to ion suppression or enhancement which affects the reliability of the analysis and 

therefore, chromatographic separation of the compounds is advised in most cases 7,28. MS is a 

destructive technique; however, the results are reproducible and give enough information to identify 

each metabolite. It is also relatively non-selective and can detect multiple different compound 

Reflectron 

Beam of 
ions 

Ion 
optics 

Accelerating 
column 

Ion 
optics Ion 

modulator 

Flight tube 

Detector 

Q1 q2 

Figure 1-6. Diagram representative of a Q-ToF mass spectrometer. Q-ToF works by accelerating a beam of ions 
through the ion optics into Q1 (a mass filter that allows only ions of a certain m/z to be transmitted through to q2 
(collision cell for fragmentation). Ions are pulsed and they accelerate into the flight tube. The ions are separated 
depending on m/z due to the difference in time taken to reach the detector. The reflectron is used to extend the 

flight path. 

Diagram based on the diagram from Hoffman and Stroobant, and Chernushevich et al 14,52. 
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classes, but this is highly dependent on the volatility and polarity of each compound class. As the 

analytes are easily separated with chromatography columns, it means that the separate compounds 

can be identified easier than it would be using NMR. For all these reasons, this project uses MS and 

not NMR. 

 

1.2.5 Pre-Processing and Analysis of Data 

The main steps for data analysis in metabolomics are pre-processing, pre-treatment, processing, 

post-processing, validation, and interpretation 53. Such information-rich, complex raw LC-MS data 

needs extensive processing to interpret the results properly 33. With untargeted metabolomics there 

will be thousands of features detected, many of which will be not biologically interesting for many 

reasons. They may represent background ions from sample processing, or multiple different adducts, 

isotopes and/or fragmentation from the same ion, all of which do not add anything to the data 

analysis if they are not from biologically interesting parent ions 54. In addition, the software used for 

feature detection can lead to false positives or negatives if incorrect filtering parameters are used, or 

imperfect integration may mean that noise signals have been integrated and falsely identified as 

features. If this step isn’t carried out correctly, this can consequently affect the statistical analysis. If 

features of high quality are filtered out, they will not be considered as features for a potential 

biomarker when doing univariate statistical analysis. Conversely, insufficient filtering of noise may 

lead to false positives. Therefore, pre-processing of data must include filtering methods that remove 

noise before further investigation of the data. The process of how this is done depends on the 

personal preferences of the analyst. Programs such as MetaboAnalyst have valuable methods for 

performing this however many of them rely on the default cut-offs for filtering of such features, such 

as basing it upon the mean/median values, instead of determining appropriate thresholds based 

upon the specific dataset. This may lead to inappropriate filtering out of biologically interesting 

features or lead to incorrect ‘missing values’ in samples 54. 
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Chemometrics is about extracting the maximum information from the experiment to find 

discriminating features that can also show potential classification patterns in the dataset. There are a 

growing number of different software tools used for the data processing and analysis, however each 

tool has varied level of ‘useful-ness’ within the field. Each piece of software is created with different 

aims in mind and each one has different ranges of depth to the analysis. Some basic packages have 

been created by practitioners who have little software development experience but know a lot about 

the different forms of analysis needed in metabolomics. There are other packages that are more 

limited in the types of analysis but have more visual tools due to the more experienced developers 

involved. There are many instrument manufacturers who develop generic processing tools to meet a 

wide range of customer needs, such as Agilent Profinder. Waters Q-ToF’s have their own software 

version called UNIFI which has some processing tools included in the package, however a lot of these 

vender software packages are fairly limited in the analysis they can conduct. Therefore, it is often 

necessary to create your own niche workflow by combining a sequence of different tools depending 

on your desired outcome and usage requirements. 

 

Due to the large amounts of data that’s produced, it needs to be pre-processed to convert it into a 

user-friendly format, ready for the data analysis. The end goal of the analysis needs to be determined 

before deciding on the software to use. The data pre-processing can sometimes be carried out using 

the same software as the statistical analysis, depending on the software being used. Other times, one 

piece of software may need to be used in conjunction with another depending on several factors, 

such as the data format, statistical analysis required and the resources available. Some overall types 

of software include: 

− Data pre-processing software (peak picking, de-convolution, alignment of peaks/signals, 

smoothing, filtering, peak isotopes etc.) 

− Molecular structure identification software (annotation software, matches processed peaks 

with known databases to present evidence for the presence of a specific compound, or 

predict a chemical structure) 
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− Statistical analysis software (univariate or multivariate analysis, identification, and 

comparison of features across the sample set, e.g., ANOVA, PCA, PLS-DA etc.) 

− Functional analysis software (uses annotated peaks and their properties to infer biological 

interpretation, e.g., Analysing peak intensities across multiple samples to determine the 

changes in metabolic pathways) 

− Chemical property prediction software (building libraries of chemical properties that can be 

measured to monitor in metabolomics analysis, i.e., m/z, retention time, chemical shift, 

relative intensity, fragments etc.) 

− Metabolic modelling software (development of kinetic/flux models of metabolic networks to 

enable prediction of metabolic fluxes from metabolomics measurements) 55. 

 

Different types of software each have a different type of programming language. The most common 

types are C-family (Java, C#, C, C++, PHP), Python and R. These all have specific coding language and 

so when picking the software to use, it is important to take into consideration the resources available 

for learning how to use each one sufficiently. This can be especially difficult when programs such as 

R, MatLab and Python are used due to their niche coding techniques rather than typical looking ‘easy 

to navigate’ software many analysts will be used to. The training is important; if the wrong code is 

recorded, then accurate results will not be obtained when used by other scientists in the future. Full 

training on programming needs to be conducted to avoid making some of the common mistakes. The 

import and export options also need to be considered as they are tailored towards their own needs, 

however there is usually a generic format such as ‘.cef’ or ‘.csv’ files. This is something to bear in 

mind if data will be transferred between different analysis tools. It is also important to keep a copy of 

the raw data in the instruments proprietary format as most of the generic exported files do not 

capture the entirety of the data. 
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1.2.5.1 Statistical Analysis 

In metabolomics, both univariate and multivariate statistics are used to explore the data for different 

trends and variables of statistical significance. Untargeted metabolomics can be difficult given the 

thousands of features that need to be reviewed and therefore ‘plug and play’ software has been 

designed by various different companies to aid the analysis. Such platforms are freely available (e.g., 

XCMS online, MetaboAnalyst), while others are commercial products (e.g., Progenesis, Mass Profiler 

Professional [MPP]). At the higher level, this software has three basic functions: feature detection, 

feature alignment and statistical analysis.  This allows a feature to be detected and compared across 

the sample run. Each performance, however, is parameter dependent. This means that even though 

the software does look simple to use, a substantial understanding of each parameter is required 

otherwise the processing will not be done properly, leading to false findings and unreliable results. 

Each different piece of software has its own limitations, and the desired outcome of the research 

means the optimal result may be needed to be performed on more than one piece of software. Due 

to the different parameters and the way each piece of software works, the same analysis may lead to 

different outcomes depending on which piece of software is used. However, if the parameters are 

set correctly, the same outcome should be produced each time 7,56. One aim of this project is to 

determine whether the same results are obtained from each piece of software. 

 

1.2.5.1.1 Univariate Statistics 

Univariate analysis is where only one variable is observed at a time. It compares each individual 

compound between different sample sets to see whether there is a significant difference between 

the sample sets, or not 7,57. Such tests include t-tests, ANOVA, Welch’s test etc. They help to identify 

compounds that show significant differences across data to discriminate between different sample 

groups. Such compounds have potential to be a biomarker for the factor under investigation. When 

doing high throughput data analysis, multiple testing corrections can be applied to correct for 

potential ‘flukes’ in the raw p-value data as even when true differences are present, there are still 

chances that false positives will contaminate the data and significant findings may be missed. There 
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are different ways to correct, or adjust p-values for multiple testing such as Bonferroni corrections or 

Benjamini-Hochberg False Discovery Rate procedures. 

 

1.2.5.1.2 Multivariate Statistics 

Lots of different types of multivariate statistics are available; however, these tend to depend on 

the software you are using. For most experiments, advanced multivariate statistical analysis software 

is often required due to the large amount of data collected. Multivariate analysis (MVA) compares 

data from multiple different sample groups to visualise which features are significant to each sample, 

identify the potential patterns and how they vary throughout an experiment sample set, with more 

variable features than samples 55. Each feature is a potential metabolite. There are two types of 

multivariate statistical analyses: supervised and unsupervised. Partial Least Squares Discriminant 

Analysis (PLS-DA) is the most popular type of supervised MVA, with the purpose of making 

predictions about the samples with unknown sample sets, based upon variables in the samples with 

known sample sets 29. Principal Component Analysis (PCA) is the most popular type of unsupervised 

MVA, it explores and discovers any potential trends/patterns within the data, without prior labelling 

of the sample groups 58. It is one of the most useful and powerful tools within chemometrics, hence 

why it is the most common multivariate statistic used 59. It condenses multiple variables from large 

datasets into smaller Principal Components (PCs). There are no assumptions made about the 

distribution of the data and therefore is a general method used for data reduction 60. 

 

Principal Component Analysis works by finding the lowest possible number of dimensions needed 

to describe the largest data variation. It is used to explore interrelations across the data to see if 

there are any potential classifications, along with identifying outliers from the dataset 53,61. If the 

entities were all plotted on a single graph, the longest line that could possibly be drawn would be the 

eigenvector with the largest eigenvalue and 1st principal component. The 2nd component is the 

eigenvector that has the next largest eigenvalue, orthogonal to the 1st principal component. The 3rd 

component is the one with the next largest eigenvalue that is orthogonal to the 2nd component 62. An 
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example graph is shown in Figure 1.7 where the principal component (first component) is 

represented as ‘u’ and the second principal component is represented as ‘v’. 

 

PCA generates scores which provide the coordinates of samples in space to allow visualisation of 

similarities and differences in samples and/or sample groups. It also generates loading values which 

show the amount each variable contributes to the PCs 63. There are different ways that these plots 

can be visualised, and different parameters can be chosen when using different types of software. 

Sometimes the data can be standardised, which allows the scale to be converted to a measurement 

relative to each data group. The precision within the data can also be examined by looking at the QC 

samples and seeing whether they are tightly clustered or if they’re more spread. QC samples assess 

the data quality and so if the dataset is reliable and has high precision, then the QC samples will be 

tightly clustered and sit in the middle of all the other groups. If the QC samples are more spread, this 

suggests that there has been an instrumental drift which has affected the results 53. 

 

Figure 1.8 shows a simple, yet ideal PCA scores plot where all the QC samples are tightly grouped in 

the middle of all the sample groups. They should be injected from the same solution in the analytical 

run, hence why they are so tightly grouped; if the instrument is robust, each QC should be identical 

to another. Any deviations from this would indicate instrumental drift or an error, therefore showing 

that it should be investigated in more depth. There will always be small changes across an analytical 

v 

u 

y 

x 

Figure 1-7. First two components on a 2D PCA plot, example graph. 

The longest eigenvector is ‘u’, the principal component whereas ‘v’ is orthogonal to ‘u’ and is therefore the second 
component with the second longest eigenvector. 
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run, hence why tightly clustered rather than identical scores clustered points are accepted. Arrow 1 

on the Figure 1.8 represents the instrumental drift seen in the QC samples. Arrow 2 shows the 

difference between group 1 and group 2, and as arrow 2 is longer than arrow 1, it can be assumed 

that the differences between the sample groups is due to chemical differences seen by the 

instrument rather than instrumental instability. Group 2 and 3 on the PCA scores plot have less 

separation than to group 1, however due to the consistent QC injections showing tight clustering, 

and the grouping of all the groups it can be assumed the differences are genuine chemical 

differences in the composition. PCA plots offer an alternative means for visualising data to identify 

such patterns that may not be obvious from the raw data. However, to investigate these trends 

further, the raw data needs to be examined 64. 

 

If the PCA plot shows good separation in different sample groups, they can be used going forward to 

give indication of potential biomarkers by looking at the features that are responsible for the 

separation. If the PCA plot does not show significant separation, then other statistical tests can be 

used to identify which features are most discriminating and could therefore be potential biomarkers. 

Figure 1-8. PCA Scores Plot.  

Arrow 1 to indicate QC spread for instrumental drift, Arrow 2 indicates separation of two groups. 
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Some other types of multivariate analysis that can be performed include cluster analysis and volcano 

plots: 

Cluster analysis is an independent method that groups together variables based on their 

similarities or differences, forming ‘clusters’ 65. The variables in one cluster should be more 

similar to each other than to variables in alternate clusters; the intra-cluster distance should 

be small whereas the inter-cluster distance should ideally be large. This type of cluster 

analysis can identify patterns in the data and helps to understand the data distribution. 

 

Volcano Plots are a type of scatterplot that shows statistical significance (p-value) plotted 

against the magnitude of change (fold change). It is a visual way to determine features with 

a large fold change that are also statistically significant, identifying the most meaningful 

features that change between datasets 66. 

 

1.2.6 Compound Identification, Targeted studies and Biochemical Interpretation 

Once the statistical analysis is complete, any features of significant difference need to be identified, 

then targeted studies can be carried out to focus on just these compounds of interest 7,41. Reliable 

identification is often said to be one of the most difficult steps in metabolomics. Target compounds 

are usually investigated using Q-ToF and once an annotation is given to the target, a standard can be 

purchased (where possible) and the analysis can be transferred over to a triple quadrupole mass 

analyser, QqQ, for confirmatory identification. This technique is targeted as it only focuses on the 

m/z values requested, at the retention time you specify. It is a tandem MS method where the first 

and third quadrupoles act just like mass filters, but the second quadrupole causes fragmentation of 

the targeted analyte by colliding with a neutral gas, typically argon or nitrogen. QqQ is a nominal 

(unit) mass analyser and so only masses to 1 d.p. are used but structural information can be obtained 

through some of the different modes available.  

 



20 

 

Once the identity of said compound has been confirmed, an analytical standard of known purity can 

be purchased and further targeted studies can be carried out, confirming the statistical significance 

between groups and obtain further quantitative information 7. To complete the study, metabolic 

pathways involved in biosynthesis and degradation of these significant compounds need to be 

studied in further detail, through interpretation of the results 41,58. The validation of the use of these 

novel biomarkers for the investigated factor can then be completed 67.  

 

Figure 1.9 shows the pathway to creating the potential biomarkers. The validation step takes the 

longest time to complete due to the vigorous tests to be completed to ensure it is a validated 

biomarker. It is estimated that only 1% of ‘hits’ are followed through to be confirmed biomarkers. 

The objectives of such biomarkers are that they are consistent, reliable, and quantifiable; these 

objectives are what make it more difficult to validate each potential biomarker. They should be 

accurate at defining the ‘disease’ that they are a marker for and are defined from observational 

research. 

 

 

  

Discovery 
of 

biomarker 
Qualification Verification Validation 

10 

Samples 

“HIT” “CANDIDATE” 

BIOMARKER 

1000 

Samples 
100 
Samples 

“LEAD” 

Figure 1-9. Pathway for creating biomarkers. 
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1.3 Software Packages for data analysis and comparison 

To compare LC-MS data sets, the data needs to be extracted using retention time alignment and 

accurate mass; each retention time and mass that are aligned is named as a feature or entity 68.  

 

1.3.1 Mass Profinder (Agilent) 

Data extraction software includes MassHunter Profinder; a standalone software program that has 

been developed for feature extraction (including batch feature extraction) and alignment of data. It is 

compatible with data collected using Gas Chromatography-Mass Spectrometry (GC-MS), Liquid 

Chromatography-Mass Spectrometry (LC-MS), Capillary Electrophoresis-Mass Spectrometry (CE-MS), 

when coupled to a ToF or Q-ToF instrument. It also works for GC-MS nominal mass data. Good 

quality data needs to be collected to produce good results in Profinder, ideally this includes Gaussian 

peak shapes that have good chromatographic separation, and each sample set should be highly 

reproducible. Bad quality raw data may lead to increased false peak detection, incorrect 

identifications and/or completely missed peaks, hence leading to incorrect potential biomarker 

analysis. Feature extraction within data is an important step is ensuring that the number of false 

positives and negatives are kept to a minimum. This step also significantly reduces data file size by 

removing information that is not useful to the user 69. 

 

Profinder can be used in both a targeted and non-targeted way for batch feature extraction. For non-

targeted analysis, either ‘molecular feature extraction’ (MFE) or ‘recursive feature extraction’ (RFE) 

can be used. MFE extracts the feature and combines the different charged states, isotopes and 

adducts in one group with an assigned neutral mass. A sum of all the ions associated to the neutral 

mass is then put onto a compound chromatogram 70. With RFE, the user can set different thresholds 

for batch molecular feature extraction, which repeats each feature extraction across the whole batch 

of samples. The files are then re-extracted using the additional information given which reduces the 

number of compounds that are missed. Once the features have been re-extracted into Profinder, a 

list of compound groups found in the samples is displayed. One compound can be selected at a time 



22 

 

so that its details can be displayed as a chromatogram/spectrum or in a table and the ability to do 

this allows each compound to be checked, ensuring the correct filtering parameters have been used 

and that each peak is “real”. It is also possible to manually integrate peaks that have been missed, or 

to delete compounds that aren’t suitable. Should the filtering parameters that have been used not 

give suitable results, the extraction can be repeated using revised parameters. 

 

Profinder can also be used as more of a visual way to check for potential biomarkers if there are not 

too many samples. An example of two features in Profinder can be seen in Figure 1.10. The sample 

names can be seen in the top line of each chromatogram, along with the m/z of the feature shown. 

The scale can be linked if this is something of use, though it can then make it difficult to see the peak 

shape in each sample. The chromatograms show the Extracted Ion Chromatogram, EIC, of the 

selected feature across all samples, in which you can see whether it is present in every sample or 

missing in some. The features shown in Figure 1.10 are some that increase and decrease overtime. 

This example shows samples that have undergone microwave digestion across multiple different 

temperatures; the temperature is highlighted on each chromatogram. These particular features 

shown by the m/z are seen to decrease as the temperature increases, which highlighted these 

features as useful information for optimal microwave temperatures in this project. Profinder is a 

useful tool when looking for potential biomarkers in a small selection of samples; however it can be 

very time consuming when looking at more than 50 features, as well as checking the integration for 

every feature and sample. 
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1.3.2 MassHunter Profiler (Agilent) 

Data extraction software also includes MassHunter Profiler (Agilent). This works in a very similar was 

to Profinder, however it can only be used for group one vs group two, or disease vs control. This 

software gives a table showing a feature summary, with the option for graphs showing entities that 

are unique to only one group. It shows a comparison of each feature against the control group, with 

a log score for the fold change. This is useful for seeing potential biomarkers, or those features that 

Scale of 
response 

Sample Name m/z of 
selected 
feature 

Figure 1-10. Screenshots from MassHunter Profinder 10.0 showing the EIC diagrams. 

This shows how the software can be useful for seeing trends across datafiles. It is not possible to change the order of 
chromatograms, hence the miss-matched order. This example shows that these compounds decrease in abundance as 

temperature increases which is a useful trend to know as they are not present in samples above 120 degC. 
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are causing the largest differences between the groups. It is also possible to export the features for 

identification using databases (e.g. NIST) or personal preference of libraries.  

 

1.3.3 Mass Profiler Professional 

Once the data extraction files have been checked and deconvoluted in Mass Profinder, Mass Profiler 

or MassHunter Qualitative Analysis, the data can be exported as ‘.cef files’ to compress the file to 

easily transfer it into Mass Profiler Professional (MPP). This is a powerful chemometrics platform 

which is specially designed to handle highly complex mass spectrometer data, giving the options for 

statistical analysis and visualisation tools. It can be used for any mass spectrometry based differential 

analysis that has two or more sample groups (and/or variables) and is compatible with GC-MS, LC-

MS, CE-MS and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) which makes it a great tool 

for use in metabolomic studies. It also has an automated ‘sample class predictor’ for qualitative 

analysis of unknown samples across many different applications 71. Like in Profinder, the user can set 

thresholds throughout for different filters and this can be used in conjunction with each other; 

lenient filters can be used in Profinder to create the data files and then stricter filtering can be 

applied in MPP. It is possible to filter the results by frequency or by flags which is useful as it allows 

‘one hit wonders’ to be filtered out across the repeat sample sets. Because the data extraction is 

completed first in another type of software, the results given by MPP depend on the quality of the 

data extraction data. Good quality data and data extraction should give reliable statistical results in 

MPP. 

 

As an example, the changes occurring in an herbal remedy sample over the period of 3 months on 

stability trials. There are 14 samples; 1-4 represents 1 month, 5-6 is 28 days in use, 7-10 is 2 months 

and 11-14 represents 3 months. ‘In use’ means that it is an opened bottle of the herbal remedy, the 

other samples are all unopened bottles. Each horizontal line represents a different entity, and the 

different colours show the abundance of that particular entity with the lowest abundant entities 

represented as a blue line and the highest abundance shown as a red line. The large number of 
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entities found in these samples are making the graphics look very complex. The type of graphic image 

shown in Figure 1.11 can look very complicated due to the large number of compounds present in 

each sample.  

 

There is a filter available in which you display only a few selected compounds. In Figure 1.12, only 

compounds with a fold change of 8.0 or above, in reference to ’28 days in Use’ initial time scale 

group have been chosen. This is a useful visualisation tool that can show trends in the data quickly by 

eye. Any obvious issues with stability will be shown by these lines as the compounds in the sample 

will change dramatically, showing a huge increase or decrease in some entities. It is important to 

note that when the line touches the x-axis, this means that a value is absent. However, the ‘missing’ 

value may be due to the abundance of this entity falling below the peak height cut-off parameter 

used for the initial data extraction or the parameters selected in MPP. Of course, it is also possible 

that the entity is completely missing from those samples also.  

Figure 1-11. The abundance of each entity across all compounds, grouped by sample group type. Each line represents a 
single entity, with blue showing the lower abundant entities and red showing those of highest abundance. The lines 

reaching 0 show that the entity is not present in that sample group, or has a very low abundance and those across the 
top show those that are present in high abundance in the sample groups. It is a great way to see trends in the data. 
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In Figure 1.12, there is one feature line highlighted by the yellow dots to show why these plots can 

be useful. These yellow dots show the normalised abundance at each of these time scales though 

unfortunately it is not possible to change the order of the groups and therefore, they do not go in 

time order. It is still easy to see that the highlighted feature is highest at ’28 days in use’, then of 

similar abundance in the ‘1 month’ group. It then decreases in 2 months and further decreases to 

near 0 at 3 months. This identifies that the selected feature possibly degrades overtime, showing 

that this compound in the sample is unstable. 

 

1.3.3.1 Principal Component Analysis Plots 

The three-dimensional principal component analysis (3D-PCA) plot is one of the most controversial 

features that MPP produces. It allows quick and easy data visualisation though can force differences 

on the 3rd component (z-axis) that may make samples look more different than they are. It can be 

useful for seeing if there is further grouping between samples other than the initial 2 components. A 

Figure 1-12. Filtered entity list based on fold change of 8.0, in reference to '28 Days in Use' time scale group. 

Each continuous line represents a single entity across all samples, averaged by group type. The yellow dots are highlighting 
one entity and showing the difference in normalised abundance across the different sample groups. The sample groups are 

not in order, though it is possible to visualise that the abundance of this entity creeps down over time till it reaches the 
lower cut off in ‘3 months’ sample group. This plot highlights the trends in entities across the groups. 
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two-dimensional principal component analysis plot (2D-PCA) is the most widely used plot in 

metabolomics which only shows the first two components on the x- and y-axes. 

 

When the selected files are loaded into MPP, each data file contains information on each entity 

present in each sample. Each entity is characterised by its retention time, mass and the ion types 

present therefore, it can detect whether the same entity is present in more than one sample. Ion 

abundance is recorded for each entity, therefore up or down regulated entities can also be 

examined. Good reproducibility is shown by tight clustering within each sample group with the 

pooled QC samples in the middle of all the other samples. This would also show that there is no 

instrumental bias and that the instrument is working well. 

 

1.3.3.2 Venn Diagram 

Another useful feature of MPP is to display the as a Venn diagram, allowing entities to be identified 

as similar to, or different, to a particular group. This can be a useful tool to find entities that are in 

only one group and therefore could be used as an identifying biomarker for that particular group. To 

do this kind of interpretation, the sample grouping is inputted into the software and then the entities 

are filtered either by frequency, or by flags. This filter allows the user to select how many samples in 

the group an entity must be in, or if it can be accepted though it is potentially missing in a few 

samples. Below, Figure 1.13 shows an example of a Venn diagram with 3 sample groups, labelled A, B 

and C. Overlapping segments show entities that are common to the segments, those not overlapping 

are entities that are unique to that group. The entity lists can be exported and identified. This makes 

it a great tool for identifying potential biomarkers in metabolomic analysis. 
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1.3.3.3 Clustering 

Another useful tool in MPP is clustering, there are various different ways to cluster your samples 

however hierarchical clustering is a great way to visually see any overall similarities or differences 

between samples. Figure 1.14 shows a diagram for hierarchical clustering on 3 different batches of 

an herbal remedy, and a QC sample. It shows which samples are most similar to each other, then 

confirms that the intra-batch samples are most similar to each other than to those of a different 

batch. 

B 

1030 entities common 
to all groups 

8 entities unique to B 

C 

12 entities unique to C 

14 entities unique to A A 

24 entities 
common to 
A and C 

10 entities 
common to 
B and C 

11 entities 
common to 
A and B 

Figure 1-13. Example of a Venn diagram showing the entities common and/or unique to sample groups. The overlapped 
circles show features similar to only the groups overlapping. Therefore, it is possible to visualise features unique to sample 

group, or features similar in two sample groups or three sample groups. 
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The coloured lines on the right-hand side are similar to the complex plot in the Figure 1.11. The red 

coloured lines show entities of the highest abundance, through to the blue lines which show no 

abundance, 0. Therefore the blue lines indicate that the entity is missing from that sample. The 

colours in the middle (orange/yellow/green) show the abundances in between highest and lowest. 

 

Overall, MPP is a great tool as it lets you easily classify, compare, and analyse sample groups. 

Something to watch out for is the authenticity of the entities that it highlights. These are highly 

dependent on many of the customised parameters and therefore if just one value isn’t optimised 

correctly, such as lower abundance cut off value, then it is possible to get false positives, or even 

false negatives. Once the parameters are optimised, it is not only able to find the ‘needle in the 

haystack’, but it can also characterise each potential feature. 

  

Heat Map 
Each coloured line represents 
an entity.  
Red = high abundance 
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name 
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lines 
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Figure 1-14. Hierarchical cluster map example. 

This map consists of different batches of an herbal remedy with one QC sample (grey). The arches on the left-hand side 
show which sample is most similar to another. 
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1.3.4 R 

‘R’ is a popular statistical programming language originating from ‘S’; R is a dialect of S. The term ‘R’ 

is used for both the programming language to write scripts, and the software that interprets said 

scripts. R is a lot more in depth than other software, with a lot more training required to do basic 

commands. A long string of written commands is needed to do analysis, but also means that the 

same scripts can be used if the data was altered 72. For example, if you collect more data then you 

can just run the script again on the data without having to remember what exactly had been done for 

each step of obtaining the results. The script enables clear steps in the analysis so that another 

person can review and possibly give feedback on how to improve the analysis. Each step is shown in 

code so that it can be reviewed in depth should a mistake occur, giving a deeper understanding of 

what you are doing, furthering the user’s knowledge. This is known as open source, meaning there’s 

less chance for a mistake given that it is completely transparent. If mistakes are found, there are 

places to report and fix these bugs 72. 

 

Reproducibility is a main advantage of R: the same results can be obtained when any person 

conducts analysis on the same data set. This is due to the same code that can be used and providing 

a good data set is obtained, the analysis cannot be miss-interpreted. An increasing number of 

journals understand how reproducible R is and knowingly give you an edge should you include R 

analysis to back up any findings. R works on a large range of data sets, whether there is tens or 

thousands of lines, there will not be a noticeable difference on time or efficiency with the software. R 

can connect many data formats, such as spreadsheets or databases, on either a web or from 

personal computer files. 

 

As well as all the advantages to R, there are obviously some limitations. The main limitation is that it 

is based upon 50-year-old technology 72. There have been significant updates to the software as 

previously it was unable to handle the graphics that are now available. It also advanced in areas of 

memory: each statistical analysis package is now available to download so that R does not take up all 
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the computer memory with large data sets. Another limitation could be that the scripts are based on 

customer demand made by voluntary users and therefore is no one has made the script that you 

need for your analysis, then you will have to create it yourself. However, the R community is forever 

growing and so there are always plenty of other users who would be more than happy to help in any 

of the online forums should any difficulties arise. 

 

As well as statistical analysis, high quality graphics are also available in such a way that conveys the 

best message about the data. This can be adapted in many ways to get the most efficient plots, such 

as colours, shapes, labels etc. An example of a PCA plot made by coding in R is shown in Figure 1.15 

where the different objects represent a sample, and the group with the ellipse represents a group 

type. The details can be seen in the key on the right-hand side of the Figure. 
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Not only is R a piece of software available for free, but it is also available across all platforms 

(Windows, Mac and Linex). R has a large community of people, most of which will help if there’s any 

problems encountered, and typical websites such as Stack Overflow show solutions to these 

problems. 

 

1.3.5 MetaboAnalyst 

There are other software packages available that give also statistical information, though are freely 

available online. There is a website called ‘MetaboAnalyst’ which also gives statistical features like 

volcano plots and PCA plots as well as univariate statistical analysis. It also allows the building of 

Figure 1-15. An example PCA plot made in R.  

Ellipses of 95% confidence are around each sample group. The key on the right-hand side shows the sample 
groups, plus the QC sample, with a distinct colour used for each. It is therefore possible to quickly determine that 

the three sample groups are different to each other, and each sample within the group are clustered closely to 
those with its own sample type. It shows that Bx33 is very different to the other batches with the 44.6% spread 

along the x-axis from Bx31 and Bx34, which are clustered more closely together. These are separated by the y-axis, 
with a 20% spread. The pooled QC shown by the orange cross sitting in the middle of the plot shows that the 

instrument and method are both working sufficiently as it is sitting in between them all. 
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sample group predictions, as well as metabolite identification and metabolic pathway analysis 73. To 

use MetaboAnalyst, the raw data must first be analysed in peak picking software such as XCMS 

online, giving results in a format that is readable by MetaboAnalyst (i.e. .txt, mzXML, .csv, mzData). 

The peak intensity table obtained from raw data is not interpretable for most researchers, however it 

can be exported and uploaded straight into MetaboAnalyst where through a series of steps, it can 

convert the data into visual features so that it can be understood by many 67. It is also possible to 

combine MetaboAnalyst with R to give a more tailored data analysis, of which can be downloaded in 

R as an R package 74. 

 

1.3.6 XCMS online 

Over the past years, software has evolved and XCMS has become one of the most popular open-

source tools for processing raw data, with it currently being the most cited pre-processing software 

used to date in the metabolomics literature 33. XCMS online picks the peaks, filters them, matches 

them across samples and corrects the retention times to align each data file accordingly. Any missing 

values are filled with a small number that does not affect the analysis in any way as statistical 

analysis cannot be performed if there are any missing values. The aligned data files are grouped and 

the reported peaks are displayed as a peak table, ready for statistical analysis. Visual tools such as 

EICs, PCA plots and metabolomic cloud plots are available. A cloud plot is a visual graphic where the 

features are displayed on a plot, separated by m/z on the y-axis and RT on the x-axis. Each feature is 

represented by a circle, where the larger the circle, the larger the average abundance within a 

sample group. It shows up and down regulated features, with the different sample groups 

represented by a different colour. Figure 1.16 shows an example plot of this metabolomic cloud plot, 

the green circles representing up regulated compared to the control group and red circles showing 

the down regulated features compared to the control group. 
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Figure 1-16. Example of a metabolomic cloud plot in XCMS online 

 

1.4 Comparison of Software 

During untargeted metabolomics projects, the software used to analyse data is another added 

variable to consider for the analysis. Several studies have compared the differences of feature and 

biomarker detection across the different untargeted data processing software but each one has 

discovered that there are several differences in the results. A comparison of MetAlign, XCMS and MZ 

Mine by Coble et al. showed that there are significant differences in feature detection and 

quantification 75. Rafiei et al. discovered that less than 10% of compound peaks were common to all 

four types of software that was compared: Peakview, Markerview, Metabolite Pilot and XCMS Online 

76. Myers et al. recently reported several problems in the peak detection algorithm, centWave, used 

in both XCMS and MZ Mine 2 that are partly responsible for many false positives and negatives 

throughout datasets 77. Li et al. more recently observed significant differences in the true features 

detected, and quantified, by using MS-Dial, MZ Mine 2, XCMS, MarkerView and Compound 

Discoverer 33. All these mentioned studies only analyse a small number of samples within type of 

dataset, which is significantly below the complexity of real metabolomic samples.  
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It is key when doing non-targeted metabolomics to use a reproducible and reliable method and 

therefore a fully validated method must be developed to ensure the variability is from only the data 

itself, not from the method being used. QC’s should be used to ensure that the instrument is working 

sufficiently and signal is repeatable across the batch and allow signal correction. Samples should be 

injected in a random order to ensure that there is no instrumental bias. Pre-validation can save data 

analysis problems down the road as you can trust the instrument, hence trust the data set. In 

chemometric analysis with a non-targeted approach, the large data sets can be presented by class 

prediction in multivariate statistical analysis. There are multiple different ways that this can be 

produced, though it is important that this is done reliably. Validation of such statistical models can be 

done to avoid overfitting the model, though this is out of the scope for this work. This is something 

that could be investigated in the future. 

 

1.5 Roadmap of this Thesis 

This thesis consists of five chapters, including an introduction and an overall conclusion with any final 

remarks and future work. All chapters highlight the fact that good datasets are the most fundamental 

parts of achieving reliable results. Deconvolution is the next step that is shown to be very important, 

as without the right peaks being picked consistently throughout the data available, reliable statistical 

analysis cannot be conducted. Chapters 2 and 3 show that XCMS online does not provide accurate 

results, with little to no accurate statistical analysis being performed. The same datasets showed that 

potential biomarkers for different types of tea (Chapter 2) and biomarkers for bleached hair (Chapter 

3) are available, using Mass Profinder or Mass Profiler for deconvolution. Chapter 4 includes data 

that showed with a standard C18 column on RP-LC, no differences are found between the dried 

blood spots of major depressive disorder (MDD) patients and ‘healthy’ patients. However, further 

work showed that it is likely that the data was collected in a way that does not capture everything as 

it was later found that there are multiple lipid-type molecules found to be of different concentrations 

in the blood of these patients, possibly highlighting the discovery of a potential biomarker for MDD in 
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blood. Chapter 5 summarises all the findings discovered throughout the thesis, followed by opinions 

on the software and recommendations on future work that could be considered.  

 

1.6 Aims and Objectives 

There is a major risk of losing important data when choosing the best deconvolution and statistical 

analysis software packages to create a metabolomic workflow for untargeted LC-MS analysis. 

Theoretically, if the same parameters are chosen, it shouldn’t matter which software is used as they 

should all give the same results. However, recreating analysis in different software packages has 

been seen to give contradicting results and therefore a full investigation into how different these 

results are, and which give the most reliable results is of great interest to those in the metabolomics 

community to minimise the risk of losing important information. To ensure that the software 

packages can be used reliably throughout the metabolomics community, it would be ideal to use 

datasets across a range of disciplines so it doesn’t continue to hinder the application of a 

chemometric approach. 

 

The objectives of this thesis include: 

• Investigate the current approaches for statistical analysis used in metabolomics. 

• Investigate the influence on using different deconvolution packages using different datasets 

from multiple disciplines. 

• Investigate the use of different statistical analysis software packages using different datasets 

from multiple disciplines. 

• Use the deconvolution and statistical analysis software packages to create a robust, reliable 

workflow for discovery of biomarkers. 

• Compare the different software packages to determine which combined workflow gives the 

most reliable results and creates the biggest impact on the user’s experience through ease of 

use, cost and reliability. 
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2  - The Development and Evaluation of an Untargeted 

Metabolomic Workflow on a Range of Tea Samples 

2.1 Aims 

The aims of this experiment were to develop and evaluate an untargeted metabolomic workflow for 

tea samples. An investigation using liquid chromatography-mass spectrometry and comparison 

software techniques was conducted, with the objective to determine whether potential significant 

features that are unique, or up regulated to a sample group could be obtained. Using tea samples 

with simple sample preparation, instrumental methods could be developed and the workflow could 

be evaluated. Furthermore, the untargeted chemometric software techniques were then evaluated 

to compare whether the same biomarkers are determined throughout. 

 

2.2 Introduction 

2.2.1 Tea Plant 

Tea, brewed from leaves of the plant Camellia sinensis, is one of the most popular beverages in the 

world with about three billion kilograms produced and consumed yearly 1. This plant is native to 

Southeast Asia however it is currently cultivated in more than 30 countries around the world. Once 

the leaves are picked from camellia sinensis, they can be made into black tea by allowing them to 

fully oxidise under controlled temperature and humidity until the leaves turn fully black or brown, 

then they are dried. During the oxidation process, the oxygen interacts with the tea plant’s cell walls, 

turning them into the brown to black colour whilst also altering the flavour profile 1. This process is 

also called fermentation, however no actual fermentation takes place and the active enzyme is 

polyphenol oxidase which is found naturally in plants 2. The same tea leaves can be made into green 

tea by heating them to halt the oxidation process immediately after harvesting them. This is usually 

done by steaming or pan-firing the leaves to ensure the leaves do not undergo fermentation, and 
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therefore they will stay bright green. Tea is produced and consumed in different forms but 78% is 

produced as black tea usually in Western countries, where-as Asian countries tend to drink green tea, 

correlating to roughly 20% of all tea consumed. In Asia, besides water, tea is the most consumed 

beverage 2. Southern China tend to partially ferment their tea producing oolong tea, which is the 

remaining 2% of tea consumed across the world. Within the last few centuries, white tea has also 

come onto the market after been harvested primarily in China. There is little agreement on a 

definition on what white (albino) tea is, though it is currently referred to tea that has no additional 

processing after it has been dried and is usually only the tips of the leaves that are picked 3. Yellow 

tea is not very well known, though it is gradually getting more recognition in the Western countries 

due to its unique flavour and apparent health-promoting properties 4. It is made by a similar 

procedure to green tea; however, it undergoes light fermentation before drying, a step that is often 

referred to as “sealed yellowing”. This step gives the tea the bright yellow appearance with a sweet, 

mellow taste in comparison to the grassy taste that green tea gives 4. Purple tea has also recently 

come into the market, providing potentially greater health benefits than those documented about 

green tea. This type of tea is slightly different in that although it originates from the same Camellia 

sinensis plant, the purple appearance is caused by a genetic mutation which produces anthocyanins. 

These anthocyanins are the same powerful compound class that are found in blueberries and cause 

the colourfulness of many fruits and vegetables. It was originally found in small quantities in China, 

however a partnership with Kenya to isolate the mutation has seen the tea being mass produced in 

Kenya due to the high altitude causing very high levels of antioxidants being produced, protecting the 

leaves from damage. Figure 2.1 shows a simplified pathway of how each of the different types of tea 

are made. After this end point of the graph, the leaves can be oxidised with potassium hydroxide 

(KOH) to produce tea extracts. 
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Figure 2-1. Simplified pathway of how different types of teas are made.  

Adapted from reference 22 
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2.2.2 Brewed Tea 

Brewed tea is known to contain many different chemical compounds but is constituted primarily of 

polyphenols which account for the aroma but also several studies have shown that they reduce the 

risk of a variety of diseases 5-7. Green tea is often credited with the most health benefits and 

antioxidant properties as the polyphenols are available in much higher concentrations than they are 

in black or oolong tea 8. It can be noted that studies on purple tea comparison to the green teas are 

more difficult to come across due to the more recent discovery of purple tea. The different types of 

polyphenols in tea include catechins (flavan-3-ols), tannins and flavonoids. In green tea, the content 

of the catechin epigallocatechin-3-gallate (EGCG) is higher than it is in other teas and is the 

polyphenol that is often the main subject of the health studies with regards to tea. Some other 

catechins that are present in tea include epigallocatechin, epicatechin gallate and epicatechin, a 

general structure of catechins can be seen in Figure 2.2. Alternate flavanols found in tea include 

kaempferol, quercetin and myricetin. Flavonoids that are found in black tea include theaflavin (TF-1), 

theaflavin-3-gallate (TF-2) and theaflavin-3,3-digallate (TF-3), of which a general simplified structure 

can be seen in Figure 2.2. Tannins are bitter polyphenolic compounds that hold the ability to bind 

and precipitate organic compounds, making them typically much larger than other polyphenols 9. An 

example of a tannin found in tea is ellagitannin, an example of a hydrolysable tannin that can be seen 

in Figure 2.2. Condensed tannins, also known as proanthocyanidins, are often formed from two or 

more molecules of flavan-3-ols (catechins), hence their present in teas.  

 

Due to the various reported health benefits, polyphenol rich food and drink is of interest to many 

researchers and therefore further investigation into different tea products was conducted to gather 

more information about the levels of polyphenols in tea beverages, as well as any other compounds 

with potentially great health benefits. 
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Figure 2-2. Chemical Structures of some simplified structures of common tea compounds 

 

2.2.1.1 Anthocyanins 

Anthocyanins, a type of polyphenol, are of interest as these also have potentially great health 

benefits for humans. In tea, anthocyanidin glycosides (anthocyanidins) are often present, though 

these originate from their parent anthocyanin, of which the basic structure can be seen in Figure 2.3. 

These compounds are analysed in positive mode.  

 

Anthocyanins give the coloured pigment to fruits and vegetables when in their glycosylated forms, 

such as in berries. Pelargonidin is an example of an anthocyanin that potentially gives the red-purple 

colour to a purple tea, as well as blackberries, blueberries and raspberries. Polyphenols have many 

Simplified flavonoid 
(Theaflavin) 

Catechin 

(Flavan-3-ol) 

Condensed Tannin 
(simplified monomer) 

Hydrolysable Tannin 
(simplified monomer) 

Figure 2-3. Basic chemical structure of an anthocyanin. 
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health benefits and so the higher the concentration, the ‘better’ the tea would be as it would be 

more beneficial for the consumer. The health benefits are something that many people around the 

world are searching for, especially given the increase in heart disease, obesity and other diseases. 

 

2.3 Materials 

Water, methanol (MeOH), acetonitrile (ACN) and formic acid of optima LCMS grade were obtained 

from Fisher Scientific (Loughborough, U.K.). ESI-L low concentration tuning mix and reference peak 

markers were purchased from Agilent Technologies (California, USA). The samples were provided by 

Finlay Beverages Ltd. The analysis was performed using Agilent Technologies 1290 Infinity II UHPLC 

system, coupled to an Agilent Technologies 6550 Accurate-Mass Quadrupole-Time-of-Flight mass 

spectrometer with iFunnel. 

 

2.4 Experimental 

The difference between different coloured tea extracts and leaves is something that was also under 

investigation. It was also interesting to determine whether there is any benefit to the newly 

discovered purple tea, or whether it is too similar to green and yellow tea. Tea extracts and tea leaf 

samples were provided for sample comparison analysis. There were 11 green tea extracts, 1 black tea 

extract, 1 purple tea extract, 4 yellow tea extracts, 6 purple tea leaf, 19 green tea leaf and 1 albino 

tea leaf. Each tea extract was prepared in the same way, then the method was adapted for the tea 

leaf samples due to the change in concentration of compounds present. 

 

Approximately 100 mg (± 5 mg) of each tea extract sample was weighed into separate 50 mL 

volumetric flasks in duplicate. 25 mL of hot water (< 60 °C) was added and mixed to dissolve the 

sample. This was then left to cool to room temperature. To this, 5 mL of LCMS-grade acetonitrile was 

added and LCMS water was used to fill to the mark and the solution was mixed well. Approximately 1 
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mL of the sample solution was taken and centrifuged at 9800 RCF for 10 minutes, and then the 

supernatant was transferred to an LC vial for LCMS analysis.  

 

Approximately 20 mg of tea leaf sample was weighed into a 1.5 mL Eppendorf tubes in duplicate 

then 1.0 mL of a 70% v/v LCMS methanol in LCMS water solution was pipetted into each tube. They 

were shaken well, placed in the oven at 70 °C for 10 min with shaking. The tubes were removed from 

the oven, allowed to cool and centrifuged at 9800 RCF for 10 minutes. The supernatants were 

decanted into 5 mL volumetric flasks. A further 1.0 mL aliquot of 70 %v/v methanol in water solution 

was pipetted into each tube, shaken and placed in the oven again at 70 °C for 10 min with shaking. 

The tubes were removed from the oven, cooled to room temperature and centrifuged at 9800 RCF 

for 10 minutes. The supernatants were combined with the first extractions by decanting them into 

the same 5 mL volumetric flask. The volumetric was made to the line with LCMS water and 1 mL of 

each solution was filtered through a 0.45 µm PTFE syringe filter into LC vials for analysis. 

 

Two different LC-MS methods were used for this analysis. The first method shown in Table 2.1 was 

used for all samples, all tea extract and tea leaf samples. This was developed and optimised using 

some polyphenol standards, along with a randomly selected extract and leaf sample, and no 

compounds of interest were extracted after a mobile phase B composition of 38%. 
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Table 2.1. LC-MS Method for All Tea Extract and Tea Leaf samples. 

This was conducted in positive and negative ionisation modes. 

HPLC-MS 

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Agilent Eclipse Plus C18 2.1mm x 100mm, 1.8µm 

Oven (ºC) 40°C 

Pump Mobile Phase A 0.1% Formic Acid in Water 

  

  

  

  

  

  

  

  

  

Mobile Phase B 0.1% Formic Acid in Acetonitrile 

Flow Rate 0.4 mL/min  

Gradient 

  

  

  

  

  

Time / (min) %A %B 

0.0 99 1 

7.0 62 38 

9.0 1 99 

10.0 1 99 

10.1 99 1 

Runtime (min) 14.0 

Injector Volume (µL) 2 

MS               

  

  

  

  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve & -ve 

Source –Dual Jet 

Stream ESI  

Gas temp 280°C Gas flow 14  L/min 

Sheath Gas temp 350°C Sheath gas flow 11  L/min 

  

  

Nebuliser pressure 310 kPa Nozzle Voltage 100 V 

VCap 4000 V Fragmentor 380 V 

 

A further LC-MS method was developed to focus on the anthocyanin type compounds that can cause 

the differences between purple tea leaf samples. This LC-MS method can be found in Table 2.2 

where it was conducted only in positive mode. 
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Table 2.2. LC-MS Method for Purple Tea Leaf samples. 

This was conducted in positive ionisation mode only. 

HPLC-MS 

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Agilent Eclipse Plus C18 2.1mm x 100mm, 1.8µm 

Oven (ºC) 40°C 

Pump Mobile Phase A 0.1% Formic Acid in Water 

  

  

  

  

  

  

  

  

  

Mobile Phase B 0.1% Formic Acid in Acetonitrile 

Flow Rate 0.4 mL/min  

Gradient 

  

  

  

  

  

Time / (min) %A %B 

0.0 95 5 

20.0 80 20 

30.0 10 90 

32.0 10 90 

33.0 95 5 

Runtime (min) 35.0 

Injector Volume (µL) 5 

MS               

  

  

  

  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve 

Source –Dual Jet 

Stream ESI  

Gas temp 200°C Gas flow 14  L/min 

Sheath Gas temp 350°C Sheath gas 

flow 

11  L/min 

  

  

Nebuliser pressure 241 kPa Nozzle 

Voltage 

0 V 

VCap 3500 V Fragmentor 380 V 
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2.5 Results 

There are more than two sample groups and therefore Mass Profiler cannot be used as it only 

investigates ‘1 vs 1’ sample groups. 

 

2.5.1 All Tea Extract and Tea Leaf Samples 

The analysis was checked and negative ionisation mode showed the most compounds of interest 

therefore became the focus of this part of the experiment. The samples shown in Table 2.3 were all 

run on the method shown in Table 2.1. 

Sample Table: 

Table 2.3. Different tea samples used throughout. 

Sample Name Reference Number 

Green Tea Extract Std 604 (3 Repeats) 

Green Tea Extract Std 101 

Green Tea Extract Std 607K (4 

Repeats) 

Green Tea Extract DF302 (3 Repeats) 

Black Tea Extract Std 652K 

Purple Tea Extract FEI 8000 

Green Tea Leaf LA1 : CA 635 pearl 

Green Tea Leaf LA2 : CA 635 60% 

Green Tea Leaf LA3 : CA 635 30% 

Green Tea Leaf LA4 : CA 635 open 

Green Tea Leaf LB1 : CA 609 pearl 

Green Tea Leaf LB2 : CA 609 60% 

Green Tea Leaf LB3 : CA 609 30% 

Green Tea Leaf LB4 : CA 609 open 

Green Tea Leaf LC1 : CG 29W8 

pearl 

Green Tea Leaf LC2 : CG 29W8 60% 

Green Tea Leaf LC3 : CG 29W8 30% 

Green Tea Leaf LC4 : CG 29W8 

open 

Green Tea Leaf SC1 : SC 12/28 

Green Tea Leaf SC2 : SF 32/186 

Green Tea Leaf SC3 : S 15/10 

Green Tea Leaf SC4 : CHM61/60 

Green Tea Leaf SC5 : U864 

Green Tea Leaf SC6 : SMK 30/52 

Green Tea Leaf SC7 : KPT 7/124 

Purple Tea Leaf PURP : TRI 306 

Albino Tea Leaf ALB : Albino Tea 

Purple Leaf TRI 306 (5 Repeats) 

Purple Leaf JFK CG1 (5 

Repeats) 

Purple Leaf JFK 27/1 (5 

Repeats) 

Purple Leaf JFK 27/4 (5 

Repeats) 

Purple Leaf JFK 27/6 (5 

Repeats) 

Yellow Tea Extract Lot CN18-37 

Yellow Tea Extract Lot CN18-50 

Yellow Tea Extract Lot CN18-103 

Yellow Tea Extract Lot CN19-06 
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2.5.1.1 Mass Profinder 

Mass Profinder was conducted to extract the data as .cef files for use in MPP, however given the 

many sample groups, it is not ideal to conduct this comparison analysis using the data tables. 

Recursive Feature Extraction (RFE) was performed on the batch of all data files in Mass Profinder. It 

first performs Molecular Feature Extraction, which involves chromatographic deconvolution and 

aligning the features across the selected data files using mass and retention time. It then uses the 

mass and retention time of each feature to perform targeted feature extraction across the whole 

batch of samples to compare each file against each other. 

 

The generalised parameters include picking peaks with a height above 500 counts and a charge state 

of 1 – 2. It aligns each feature with an across the batch allowance of +/- 0.3 min retention time 

difference and 20 ppm mass difference, but only those features with a height of >1% of the relative 

height from the largest peak. Each feature must be present in at least 2 files in at least 1 sample 

group. 

 

2.5.1.2 MPP 

Using the sample data from Mass Profinder, the deconvoluted samples were exported as .cef files 

and entered into MPP. Some further filtering of samples was conducted but this was minimal. The 

minimum abundance of peaks used was raised to minimum of 1500 counts but still used only those 

features present in 100% of samples in at least one sample group. The feature had to be present in at 

least one sample due to some samples only having one data file in the group. 
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PCA Plot 

The PCA plot can be seen in Figure 2.4 with a key for the diagnosis of the three sample groups for 

each different colour. 

 

Figure 2-4. 2D PCA plot showing all tea samples.  
The x-axis shows the largest variance of 20.06% and the y-axis shows the next largest variance at 14.78%. The samples 

have 95% confidence ellipses round them and can be seen to be clustered into distinct groups corresponding to their 
sample types. 

 

Figure 2-5. Labelled 2D PCA plot showing all tea samples. 

As visible in the PCA plots in Figures 2.4 – 2.5, the repeats of the same ‘type’ of tea are all tightly 

grouped and therefore show stability in the instrument and method. There are clear clusters within 

some of these groups showing differences between different groups and growing conditions. Even 

Green 
Extract 

Purple 
Leaf 

Green 
Leaf 

Yellow 
Extract 

Purple 
Extract 

Black 
Extract Albino 

Leaf 



Megan Scott 

56 

 

the green extracts and leaf samples overlap showing that they’re similar, despite the changes in 

chemical processes between them and concentrations of the compounds between the extract and 

leaf. This is the same for the purple tea leaf and extracts. 

 

There is a difference within the green extract groups and 4 groups within the purple leaves, even 

though the purple leaves are 5 repeats of 5 samples. The green tea extracts have two different clone 

names in the sample names also, suggesting the reason for this split within the blue dots. The PCA 

shows that each of these repeats are tightly grouped showing that the difference in genuine within 

the samples, not from the instrument or method. The differences between clones are due to factors 

such as concentrations of contents (i.e., polyphenol content, catechins) which can be caused by 

differences like soil contents and shading. 

 

The main difference seen along the x-axis is between the purple leaf and the green leaf, with the 

greatest variance of 20.06%. The y-axis, representing the next largest variance of 14.7%, shows the 

spread between the yellow extract and the purple leaf. The PCA plot shows distinct grouping of each 

sample type however, the leaf and extracts are prepared in slightly different ways. Hence, the 

comparison between them cannot be truly determined. Therefore, MPP was repeated but only 

looking at the tea leaf samples. 

 

2.5.2 Only Tea Leaf Samples 

The samples used are those from Section 2.5.1, which were run on the LC method from Table 2.1. 

2.5.2.1 MPP 

PCA Plot 

The PCA plot can be seen in Figure 2.6 with a label of the three sample groups for each different 

colour. The samples are only the tea leaves, looking at the differences between purple tea leaves, 

green tea leaves and the one albino tea leaf. 

 



Megan Scott 

57 

 

 

Figure 2-6. MPP PCA Plot of all tea leaf samples. 

It shows that the samples are all distinctly grouped, with some further separation within the purple tea leaf sample 
group also. The key is shown in this figure that relates each coloured dot to the sample group. The x-axis represents 

30.05% variance and y-axis 11.96%. 

 

The PCA plot shows that the largest variance, represented along the x-axis (principal component 1), is 

the difference between the purple and green leaf sample groups. The albino tea leaf is also shown on 

these plots directly in between the two sample groups, however, this cannot be confirmed without 

repeat samples. The green and purple tea leaf groups form its own cluster. 
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Figure 2.7 shows a PCA plot of only the purple and green tea leaf samples.  

 

Figure 2-7. PCA Plot, labelled, of only purple and green tea leaf samples. 

It shows the separation within the purple tea leaf samples, all of which are clustered into individual groups, with some 
sample groups showing closer relation than others. 

 

The green leaf samples do not cluster into distinct groups as the purple tea leaf samples do. The 

purple tea leaf samples seem to form three groups, of which group 3 seems to be multiple clones 

similar to each other (JFK 27/1, JFK 27/4 and JFK 27/6). Group 1 is one sample group of five repeats, 

and group 2 is also one sample group of five repeats. The compounds causing this difference is of 

interest due to the nature of the sample’s potential worth, it would be a disadvantage to have less 

polyphenols and anthocyanins in some clones in comparison to others. 

 

2.5.3 Further Investigation into the Difference Between Purple Tea Leaf Samples 

It was of interest to determine how different the clones of purple tea are to each other to see which 

one holds the most value for the tea market, with respect to the health benefits. Using the 

comparison software platforms, the objective is to create a list of compounds that show the 

differences between the purple tea leaf clones. This will hopefully give more insight into which 

sample contains the most compounds that give the most interesting health benefits. Two repeats of 

Group 1 

Group 2 

Group 3 
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each sample were run on the LC method shown in Table 2.2 in positive ionization mode to 

investigate whether the anthocyanin content is as different between the samples. 

 

For this analysis, a Yorkshire tea sample and a purple tea extract were also added to see how 

different they are from each other in the preliminary analysis. 

2.5.3.1 MPP  

PCA Plot 

The Figure 2.8 shows the 2D PCA plot. 

 

Figure 2-8. 2D PCA plot of all samples run in positive mode. PC1 represents 27.03% variance and PC2 represents 
21.62% variance. 

The purple tea leaves are clustered closer together, with the Yorkshire tea sample spread to the right on the x axis. The 
purple tea extract is spread up the y-axis. There are some very small 95% ellipses barely visible on the plot due to only 
two repeat samples in each group. The samples were run in a random order and show close clustering within sample 

group. 

 

The PCA plot from Figure 2.8 is repeated below in Figure 2.9 however is now labelled. The software 

does not allow for zoomed labelling; therefore, the labels are extremely difficult to read, hence the 

need for hand labelling. This then allows for the differences between the types of tea to be seen 

more, and view how they are grouped. 
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Figure 2-9. MPP 2D PCA Plot on all purple tea leaf, extract and Yorkshire tea samples.  

The purple tea can be seen to be clustered within one large group but are spread from the Yorkshire tea sample along 
the x-axis. The purple tea is separated up the y-axis, separated into the tea leaf and the tea extract. 

Figure 2.9 shows the most different samples are the Yorkshire tea compared to all the purple tea 

samples. This is due to Yorkshire tea being black tea, where-as across the x-axis, the purple tea 

samples are all fairly close together. They are spread up PC2 which is representing nearly 22% 

difference between the purple tea leaves and the purple tea extract.  
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Figure 2.10 shows a zoom of the purple tea leaf samples on the 2D PCA scores plot. 

 

Figure 2-10. MPP 2D PCA plot zoom on only the purple samples.  

It shows the two extremes along both x and y-axes are CG1 and Tri306 meaning they’re the most different to each 
other. 

Figure 2.10 focuses only on purple tea leaves and shows the two extremes on PC2 are CG1 and 

Tri306, which are the two parent clones. The JKP samples are blends of these two samples which is 

why they sit in the middle of the two parents. It also makes sense that the purple extract is most 

different to the purple tea leaves as due to the difference in sample preparation, they will have 

different concentrations of the content. The extract is thought to be 4 times more concentrated than 

the leaf. 
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Hierarchical Clustering 

Cluster analysis is another way to determine which sample groups are most similar to each other. 

Figure 2.11 shows the overview of the hierarchal clustering.  

 

Figure 2-11. MPP Hierarchical Clustering on purple tea – large overview. 

The Figure 2.11 shows the hierarchal clustering of the samples. The red – blue lines on the right hand 

side each represent a feature, with the red lines showing high abundance and blue lines showing 

absence of the feature. It can be seen that the Yorkshire extract has about half of the features absent 

that is present in all the other samples, which emphasizes the difference between the black and 

purple tea samples.  
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Figure 2.12 shows a zoom of the clustering tree on the left-hand side of the hierarchal cluster plot. 

 

Figure 2-12. MPP Hierarchical Clustering on purple tea. 

This shows that the JKP27/1 and Tri306 samples are clustered, the JKP27/4 and JKP27/6 samples are clustered and the 
CG1 sample is closer related to the JKP27/4 and JKP27/6 samples than to the others. 

 

The clustering in Figure 2.12 (which is a zoom of the cluster tree from Figure 2.11) can be useful to 

use to back up the PCA plot analysis on the similarities on sample grouping and therefore, you can be 

more confident in the conclusions of the analysis. This cluster plot in Figure 2.12 does not give any 

extra information than what the PCA plots have given. It confirms that the samples JKP27/4 and 

JKP27/6 are most like each other, and then cluster together with CG1. This leaves JKP27/1 and Tri306 

to be grouped together. This clustering is the same as they cluster in the PCA plots also. The 

Yorkshire tea and extract are furthest from the other samples, as also shown on the PCA plots. This 

matches the assumptions made that the differences are due to the Yorkshire tea being a black tea 
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where-as the others are all purple, and the extract is more spread as it will have different 

concentrations of components to the tea leaves. 

 

Venn Diagram of Unique Compounds 

When there are more than 4 sample groups, the Venn diagram for unique compounds turns into a 

chart. The basis is still the same, though it is not as visual. Below in Figure 2.13 it can be seen that the 

extract has most unique features, then Yorkshire tea and Tri306. The other sample groups are fairly 

similar to each other with 5 or less unique features. 

 

Figure 2-13. Chart for Unique Compounds to Each Sample Group 
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Feature Finding Graphs 

Figure 2.14 shows a feature finding graph on significant features with a p-value less than or equal to 

0.01, and a fold change above 30. 

 

Figure 2-14. MPP Finding Feature Graphs on all features with a p-value ≤ 0.01 and fold change > 30. There are >1000 
features shown on the graph and this will make it difficult to retrieve useful information from this chart.  

As shown in the graph in Figure 2.14, there are many features that fit into this category and it looks 

messy and hard to interpret. The features can be further filtered by abundance where only the 

features above a normalised abundance of 25 are included. The most abundant feature in this 

analysis has a normalised abundance of 28.5 and therefore this is a highly filtered selection. 
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Figure 2.15 shows the feature finding graph but only with features that have a maximum normalised 

abundance of 25. 

 

Figure 2-15. MPP Finding Feature Graphs of features with a p-value ≤ 0.01 and fold change > 30 AND a maximum 
normalised abundance of 25. This is a lot more simplified than Figure 2.15 and is better to see useful trends in the 

data. 

Though this is a highly filtered selection of the significant features, it is clearer to see patterns in the 

data. The red lines are those that are of highest abundance in at least one group, and there is one 

particular red line that can be seen to be in high abundance in all sample groups though it is not 

present in the purple extract and Tri306. Hovering over this feature gives the mass, RT and the 

identification assigned, of which is shown in Figure 2.16. Unfortunately, there are no better ways to 

visualise what feature the line represents than this; the next best way to determine which features 

are of significance is exporting the data as a feature table. The identification has originated from the 

ID browser identification where the Metlin 8.0 database was used. This graph is a useful tool for an 

overview of trends in data; however it is still difficult to see the full trends with so many lines on the 

same plot. 
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Figure 2-16. MPP Feature identification of selected line from Figure 2.52. 

This feature is present in all samples except Tri306 and the purple tea extract.  

 
The MPP software can also give a table of the features from the selected plot in Figure 2.15. For 

example, each line on the graph that has a positive identification in Figure 2.15 is represented in 

Table 2.4. The limitation is that the table does not show feature abundances in the different groups, 

and therefore it is only saying that these features are significantly different between the sample 

groups and not in which group it is most significant in. It also means that the features cannot be 

ordered by significance. 

 

Table 2.4 shows a list of features that have been annotated by Metlin 8.0 database using MS only 

results with a Metabolomics Standard Initiative (MSI) reporting level of 2. These features are those 

that show significant difference between the sample groups. For identifications, standards would be 

needed for confirmation. 

  



Megan Scott 

68 

 

Table 2.4. MPP Annotations on filtered compounds in Figure 2.15. PubChem Compound CID is given for each 
annotation. 

Putatively Annotated Compounds 
Compound 

CID 
Retention 
Time (min) 

Mass 
(Da) 

Quercetagitrin 5320826 7.918 480.0902 

Dihydroferulic acid 4-O-glucuronide 190069 3.349 372.1055 

3'-Galloylprodelphinidin B2 15593122 2.582 762.1442 

Styrene 7501 1.139 104.0624 

Myricetin 5281672 7.916 318.0376 

Pelargonidin 3-(2glu glucosylrutinoside) 131751479 12.774 740.2158 

Leucodelphinidin 3-O-alpha-L-rhamnopyranoside 44257158 6.229 468.1245 

(-)-Epigallocatechin 3-(4-methyl-gallate) 401129 8.135 472.1000 

Delphinidin 3-glucoside 443650 2.563 464.0953 

Kaempferol 5280863 15.308 286.0470 

Coronarian 441560 2.222 382.0877 

Kaempferol 3-O-β-D-glucosyl-(1-2)-β-D-glucoside 6325460 10.196 610.1541 

Kaempferol 3-[2''-(6'''-coumaroylglucosyl)-rhamnoside] 7-glucoside 131752764 21.302 902.2471 

Kaempferol 7-O-glucoside 10095180 4.379 448.1003 

Kaempferol 3-[2''-(6'''-coumaroylglucosyl)-rhamnoside] 7-glucoside 131752764 21.302 902.2469 

Kaempferol 7-O-glucoside 10095180 3.615 448.1006 

3-Caffeoylpelargonidin 5-glucoside 131752292 14.059 594.1372 

Epigallocatechin gallate 65064 6.437 458.0842 

3-Caffeoylpelargonidin 5-glucoside 131752292 15.776 594.1365 

3,3'-Di-O-galloylprodelphinidin B5 13270037 4.649 914.1534 

3-Caffeoylpelargonidin 5-glucoside 131752292 12.335 594.1369 

 

Fold-Change Differences 

The major differences are between CG1 and TRI306 as these are the two parent clones. The top 10 

differences with the largest fold change are shown below with some possible identifications. These 

differences are done via an export of the fold change features of Tri306 vs CG1, using those features 

with a fold change greater than 30 only. These fold change features have then been exported into ID 

browser to search for possible identifications using Metlin 8.0 database. These possible 

identifications can be seen alongside the neutral mass and RT in Table 2.5 – 2.6 below. 
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Table 2.5 shows compounds up regulated in Tri306 sample group: 

Table 2.5. MPP Compounds up regulated in Tri306 compared to CG1. PubChem Compound CID is given for each 
annotation. 

Up Regulated in Tri306 Putatively Annotated Compounds Formula 
Compound 

CID 

616.0695@6.855 - - - 

448.1003@4.379 Kaempferol 7-O-glucoside C21 H20 O11 10095180 

372.1055@3.349 Dihydroferulic acid 4-O-glucuronide C16 H20 O10 190069 

594.1369@12.335 - - - 

594.1365@15.776 - - - 

658.0768@6.044 - - - 

456.1045@12.546 Epicatechin 3-O-(4-methylgallate) C23 H20 O10 467297 

302.0428@13.261 Melanoxetin C15 H10 O7 15560442   

610.1298@14.327 Theasinensin C C30 H26 O14 467317 

288.0634@8.134 Fustin C15 H12 O6 5317435 

 

Table 2.6 shows compounds up regulated in CG1 sample group: 

Table 2.6. MPP Compounds up regulated in CG1 compared to Tri306. PubChem Compound CID is given for each 
annotation. 

Up regulated in CG1 Putatively Annotated Compounds Formula 
Compound 

CID 

610.1541@10.196 
Kaempferol 3-O-β-D-glucosyl-(1->2)-β-D-

glucoside 
C27 H30 O16 

10652679 

1066.1957@6.694 - - - 

470.2119@21.369 - - - 

1064.1833@2.966 - - - 

430.162@10.015 8-Acetoxy-4'-methoxypinoresinol C23 H26 O8 73830447 

388.169@3.148 Asn Gln Gln C14 H24 N6 O7 145454081 

286.0475@12.769 Kaempferol C15 H10 O6 5280863 

450.1147@6.023 - - - 

302.0423@11.556 Quercetin C15 H10 O7 5280343 

320.0514@3.459 
2,2',3-Trihydroxy-3'-methoxy-5,5'-

dicarboxybiphenyl 
C15 H12 O8 

15608168 

 

Compounds that are of interest are anthocyanins or polyphenols, particularly flavonoids such as 

quercetin, myricetin and kaempferol. Parent anthocyanin compounds are those such as pelargonidin 

and delphinidin, with the anthocyanidin glucosides/galactosides being a known component of tea. 

These classes of compounds are of interest due to their extensive research on their health benefits. 

The following polyphenol compounds in Table 2.7 – 2.8 are some of those that significantly different 

between Tri306 and CG1. 
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Table 2.7 shows compounds up regulated in CG1 sample group: 

Table 2.7. MPP Compounds up regulated in CG1 compared to Tri306 

Putatively Annotated Compounds 
[Tri306] avg peak 

area 
[CG1] avg peak 

area 
Log 
FC  

Kaempferol 3-O-β-D-glucosyl-(1-2)-β-D-
glucoside 

0 44925584 -25.4 

Kaempferol 0 6256529 -22.6 

Quercetin 0 5397569 -22.4 

Catechin 7-O-gallate 0 3780085 -21.8 

Myricetin 3-galactoside 0 3137302 -21.6 

3'-Galloylprodelphinidin B2 0 2620951 -21.3 

Quercetin 0 1088238 -20.1 

Rhamnocitrin 3-glucosyl-(1-2)-galactoside 0 643951 -19.3 

(-)-Epicatechin 7-O-glucuronide 0 559682 -19.1 

Pelargonidin 3-(6-malonylglucoside)-7-
glucoside 

0 403666 -18.6 

Quercetin 0 369446 -18.5 

Isotheaflavin 3'-gallate 0 340725 -18.4 

Quercetin 3-sulfate-7-alpha-
arabinopyranoside 

0 280951 -18.1 

Myricetin 3-sambubioside 0 222831 -17.8 

Ellagic acid  0 173595 -17.4 

Delphinidin 3-(6''-malonylglucoside) 5-
glucoside 

0 146480 -17.2 

Quercetin 3-(3'',6''-di-p-coumarylglucoside) 0 132249 -17.0 

Luteolin 7-O-glucuronide 0 100685 -16.6 

Theasinensin C 0 73513 -16.2 

Theaflavin digallate 0 63372 -16.0 

Pelargonidin 3-(2glu glucosylrutinoside) 375981 52910792 -7.1 
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Table 2.8 shows compounds up regulated in Tri306 sample group: 

Table 2.8. MPP Compounds up regulated in Tri306 compared to CG1 

Putatively Annotated Compounds 
[Tri306] avg peak 

area 
[CG1] avg peak 

area 
Log 
FC 

Kaempferol 7-O-glucoside 50297004 0 25.6 

Dihydroferulic acid 4-O-glucuronide 47968340 0 25.5 

Epicatechin 3-O-(4-methylgallate) 17845418 0 24.1 

6-Hydroxydelphinidin 3-glucoside 4643779 0 22.1 

Myricetin 3,7,3',4'-tetramethyl ether 1797311 0 20.8 

Quercetin 3-rutinoside-3'-apioside 1107615 0 20.1 

Prodelphinidin A2 3'-gallate 1007481 0 19.9 

Quercetin 3-rhamnoside-3'-sulfate 855103 0 19.7 

Quercetin 3-(2''-p-hydroxybenzoyl-4''-p-
coumarylrhamnoside) 

832081 0 19.7 

Catechin 4'-O-gallate 524921 0 19.0 

Quinoline 508374 0 19.0 

Procyanidin C1 3,3',3''-tri-O-gallate 397035 0 18.6 

Gallic acid 384691 0 18.6 

Epicatechin-(2beta-5,4beta-6)-ent-epicatechin 317048 0 18.3 

Kaempferol 3-(2''-rhamnosylgalactoside) 7-rhamnoside 256849 0 18.0 

Urolithin C 230221 0 17.8 

Petunidin 3-(6''-p-coumarylglucoside)-5-glucoside 225994 0 17.8 

Myricetin 3-(2''-p-hydroxybenzoylrhamnoside) 224016 0 17.8 

3,5-Digalloylepicatechin 217149 0 17.7 

Quercetin 3-rhamnoside-3'-sulfate 203495 0 17.6 

Quercetin 3-(2G-rhamnosylgentiobioside) 166468 0 17.3 

Kaempferol 3-glucuronide-7-sulfate 164815 0 17.3 

Petunidin-3,5-diglucoside 141336 0 17.1 

Quercetin 3-(2'''-feruloylsophoroside) 115477 0 16.8 

Malvidin 3-(6-coumaroylglucoside) 5-glucoside 114577 0 16.8 

Myricetin 3,7-diglucuronide 111044 0 16.8 

Malvidin 3-(6-acetylglucoside) 99990 0 16.6 

Quercetin 3-(2''-galloyl-alpha-L-arabinopyranoside) 92251 0 16.5 

Delphinidin 3-(2''-galloylgalactoside) 69593 0 16.1 

Quercetagetin 7-methyl ether 3-(2'''-caffeoylglucosyl)-(1-
2)-glucuronide 

48895 0 15.6 

Epigallocatechin 3-O-(4-hydroxybenzoate) 40195 0 15.3 

Peonidin 3-(6''-acetylglucoside) 34560 0 15.1 

Quercetagetin 4'-methyl ether 7-(6-(E)-caffeylglucoside) 162823 2469 6.0 

Pelargonidin 3-(6-p-coumaroyl)glucoside 34483204 798276 5.4 

 

Overall, it seems that the Tri306 has a larger concentration of interesting polyphenols as there is a 

larger variation of the different anthocyanidin glucosides and catechins etc. Other analysis confirms 
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that Tri306 has more beneficial ‘tea compounds’, hence why the JKP clones have more Tri306 than 

CG1, explaining why they sit closer to Tri306 on the cluster analysis and PCA plots. 

 

2.5.3.2 Mass Profinder 

Mass Profinder is great for seeing visual changes in the samples. The table can be useful to see 

features present in only one sample group. Some examples of compounds that are showing 

significant differences throughout the samples are shown below throughout Figures 2.17 – 2.19. 

  

Figure 2.17 shows EIC (373.1131) - neutral Mass (372.1055) & RT (3.339min) – Absent from CG1 

only. 

 

Figure 2-17. Profinder EIC (373.1131) example plot 
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This Figure 2.17 shows that the feature with a neutral mass of 372.1055 at 3.3 minutes is present in 

all samples except CG1 repeats. The mass spectra with the protonated, sodiated mass and 

corresponding dimer masses, are seen on the right-hand side of the plot. 

 

Figure 2.18 shows EIC (315.0129) - neutral Mass (314.0058) & RT (13.668 min) – Absent from 

JKP27/1 and JKP27/6 

 

Figure 2-18. Profinder EIC (315.0129) example plot 

This Figure 2.18 shows that the feature with a neutral mass of 314.0058 at 13.7 minutes is present in 

all samples except JKP27/1 and JKP27/6 repeats. The mass spectra with the assumed protonated 

mass isotopes can be seen on the right-hand side of the plot. 

 

  



Megan Scott 

74 

 

Figure 2.19 shows EIC (171.0284) - neutral Mass (170.0212) & RT (6.011 min) – Absent from CG1, 

JKP27/4 and JKP27/6 

 

Figure 2-19. Profinder EIC (171.0284) example plot 

This Figure 2.19 shows that the feature with a neutral mass of 170.0212 at 6.0 minutes is present in 

all samples except CG1, JKP27/4 and JKP27/6 repeats. The mass spectra with the assumed 

protonated mass isotopes can be seen on the right-hand side of the plot. 

 

Without a target, comparison of all 5 purple samples is difficult in Mass Profinder using the table of 

results. This is because of the large amount of data present and that no statistical analysis can be 

conducted, only the abundance of each feature in each sample is given. This means that when 1 vs 1 

sample group is analysed, it is easy to get an average abundance within each sample group and 

determine which features are present or absent, however with 5 sample groups it means that the 

data analysis is very heavy without a specific target aim. 
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2.5.3.3 XCMS Online 

XCMS used different deconvolution to the data analysis given by Mass Profinder and MPP as XCMS 

conducted the deconvolution by Isotopologue Parameters Optimization (IPO) processing. Multiple 

different parameters were tested and those closest to the ones chosen by Mass Profinder were 

selected where possible 23. 

PCA Plot 

Figure 2.20 shows the PCA scores plot from XCMS online. 

 

Figure 2-20. PCA Scores plot XCMS online on all purple tea leaf samples. 

This shows that the largest difference is between the Tri306 and CG1 samples along the x-axis representing 24% 
change and 20% is shown up the y-axis that represents the difference between JKP276 and CG1. Each repeat sample is 

tightly clustered within each sample group.  

The PCA scores plot in Figure 2.20 shows that the repeat samples are all repeatable, therefore the 

instrument and extraction parameters have worked reliably. There is no real clustering within the 

sample types, though the closest samples are JKP27/4 and JKP27/6 on the x-axis which represents 

24% difference. The two JKP samples are closest to JKP27/1, and all sit in between Tri306 and CG1 at 

the two extremes. The y-axis represents the second biggest change, which is 20%. The two extremes 

on this second principal component are between the JKP27/6 and CG1 samples. The two samples 
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that sit furthest away are the CG1 dots, suggesting that the Tri306 samples are closest related to the 

JKP samples. There are no obvious changes in the diameter of the dots, representing the distance to 

model ratio. There seems to be some slight possible changes, hinting that the repeat samples may 

have slight variation on what would be the third dimension, though this is not a significant difference 

and is barely visible. According to the statistical analysis within the software, there are no features 

with a p-value ≤ 0.01 and therefore suggesting there is no real difference between the sample 

groups.  

 

2.6 Discussion 

2.6.1 Conclusion of Data Analysis 

In conclusion, purple tea is different to the other types of tea that has been compared against in the 

analysis. This is shown throughout with the differences shown on the PCA plots, with the purple tea 

sitting in its own cluster when compared to the other types of tea, not sitting within another group of 

tea samples. This indicates that it will have additional value than the tea that is already on the 

market as it is different to the yellow and green tea shown. It offers something different with the 

presence of anthocyanins. 

 

The different clones of purple tea offer different concentrations of features, some of which have 

been identified. The difference in abundance of polyphenols has been highlighted, with Tri306 

looking to have more significant polyphenol content insinuating it holds more value than the CG1 

clone. 

 

2.6.2 Software Comparison of Results 

The results given in MPP gave possible identifications of compounds that were causing the 

differences seen on the PCA plots between the samples, particularly between the purple tea leaf 

samples. These features were extracted using Mass Profinder, then exported as .cef files and 
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inputting into MPP for statistical analysis. The results given by XCMS stated that there were no 

significant features found with a p-value less than or equal to 0.01, despite these features being 

discovered in MPP and positively checked in the raw data. The PCA plot in XCMS and MPP were 

similar showing that the data agrees with each other through the different platforms, despite the 

statistical analysis being different. The deconvolution parameters were slightly different but the main 

parameters were the same and should’ve been picking the same main features throughout the 

different packages. The difference in statistical analysis shows that the same data files give different 

results depending on the software and despite the deconvolution parameters been similar, the 

analysis cannot be repeated. 

 

2.6.2.1 Summary  

Overall, the PCA plots have helped distinguish between the differences of the different types of tea 

samples, along with the knowledge that the clones of purple tea are different to each other. MPP 

helped decipher the compound masses that were up regulated in certain sample groups, as did the 

Mass Profinder plots. Despite the PCA plots giving the same conclusions, the statistical analysis 

provided by XCMS and MPP do not agree with one another. MPP gave the most positive results as 

the data analysis compounds stated to be providing a difference between the samples, did show to 

be different in the raw data files. This suggests that the XCMS online results are false, providing all 

false negatives for the statistical analysis provided. 

 

2.6.3 Limitations 

The limitations of this project include the lack of QC samples used throughout. This was because of 

the low sample numbers, for some parts of this project only 5 samples were run at one time. For the 

larger project comparing all different types of tea colours, a QC sample could have been beneficial if 

the intention was to find markers for each tea, however the overall aim was to just compare the 

samples and so the randomised worklist, combined with the repeat injections would have 

highlighted any problems throughout the run time as they would not be grouped tightly on the PCA 
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plots. The instrument is also calibrated before and after each run and there is a reference solution 

used continuously, which enables the re-calibration of the whole run to some selected masses. For 

example, re-calibrating it all to 121.0509 m/z and 922.0098 m/z in positive ionisation mode would 

correct for any calibration problems that possibly occur throughout the run. 

 

There was a lack of samples used for parts of the project, a larger sample set from a larger range of 

samples may have added benefits such as a wider range of possible differences within the same 

clone of tea. This may show that some differences are because of the different lighting and shade 

two of the same tea plants are grown in rather than differences within the actual tea clones. There 

was also a lack of repeat injection in some part of the project, the analysis would benefit from three 

repeats per sample. The samples were only analysed using a C18 column therefore the analysis may 

benefit from a different column or phase, such as HILIC. This would enable some different types of 

compounds to be analysed that are not visible on the RPLC phase used.  

 

2.7 Conclusion 

Overall, using this untargeted LCMS metabolomics workflow, the conclusion can be made that 

different types of tea are significantly different to each other, and further differences can be seen 

within the clones of the same type of tea. The statistical approach used was able to discover markers 

that are statistically different between groups. These markers can be used in future analysis should a 

marker for each type of tea clone be of interest in the future. The multivariate statistics showed most 

successful throughout this study, where all groups were clustered into distinct groups. Therefore, this 

technique could be used to identify which clone or tea type sample an unknown sample is. The 

different experiments conducted have all provided different learning interpretations. 

 

This experiment investigated whether there were any differences between the types of tea, green, 

purple, yellow etc. A further investigation was conducted into the different clones of purple tea leaf 

to determine whether there are any differences between them that can be seen by the chemometric 
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software. Overall, it was determined that Tri306 purple tea leaf has the highest number of 

compounds that have the best health benefits, such as polyphenols/anthocyanins. Purple tea leaf is 

different to green and albino tea leaves, with it being most significantly different to green tea leaves. 

There are large differences between these clones that are shown on the PCA plots. The objective was 

to get a list of compounds causing the differences within the purple tea. The use of MPP and 

Profinder enabled this accurate list to be compiled, further showing that the combination of MPP 

and Profinder is the most preferable for this metabolomic workflow. 

 

This untargeted metabolomic workflow using Agilent’s MPP and Profinder enabled each objective to 

be accomplished, something that could not be done without the comparison software. The other 

pieces of software were not as concise and accurate, with XCMS online showing particularly limited 

results.  

 

2.7.1 Future Work 

For future work, there are other pieces of software that are free to use and may provide results as 

accurate as Profinder and MPP which could be tested. This would enable others to use the 

comparison software where money may be an issue and cannot purchase a license for MPP. It is also 

expected that more samples will arrive in the future that need to be compared and therefore the 

same workflow can be repeated, using the more streamlined version with only Profinder and MPP. 

Should markers for each type of clone or type/colour of tea be of interest in the future, this 

untargeted workflow can be used for the investigation. 
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3 - Evaluation of Statistical Analysis Through the Detection of 

Possible Biomarkers for Bleached Human Hair 

3.1 Aims 

The aim of this experiment was to produce a reliable and accurate list of potential biomarker masses 

that are unique to bleached hair sample groups through the use of liquid chromatography-mass 

spectrometry and comparison software with univariate and multivariate statistical analysis. The 

different software techniques should all produce the same potential biomarker masses if the same 

deconvolution and multivariate statistics parameters are used. Using these human hair samples, the 

untargeted comparison software techniques were evaluated to compare whether the same 

biomarkers are determined throughout. 

 

3.2 Introduction 

Industrial companies are in need a confirmative measure to determine whether hair has been 

cosmetically altered with bleach. By using a metabolomic workflow, a biomarker exclusively for 

bleach in hair would confirm whether the hair has been purposely altered. 

 

Hair from a range of volunteers of different hair colours, sex and ethnicities, that have never had 

their hair dyed or bleached, were to be collected. This produced various bleached samples, with the 

corresponding control (un-bleached) samples so the data analysis can be focused on the direct 

comparison between the bleached and control samples only. Any potential biomarkers will only be 

present in the bleached samples and through further investigation, identification of the compound 

could lead to a commercially available standard being purchased and used as a biomarker for 

cosmetically bleached hair. 
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The intention is to use these potential markers in routine Drugs of Abuse (DoA) hair analysis so it can 

be declared whether any drug results may be misleading due to the presence of bleach. To find any 

possible altered, stable compounds that are of significantly different concentrations between the 

untreated and oxidated hair samples, the untargeted hair metabolic approach was taken. 

 

3.2.1 The Current Problem 

Hair analysis is becoming more popular in forensic toxicology for the analysis of alcohol and Drugs of 

Abuse (DoA) markers since it can determine the of concentration of drug marker in each section of 

hair. This gives retrospective consumption information as to whether the subject is potentially a drug 

or alcohol abuser and is therefore routinely used for assessment of DoA or alcohol abstinence, child 

custody cases or workplace drug testing 1-2. However, these DoA and alcohol marker concentrations 

can be significantly affected through the use of cosmetic hair treatments, with the most effective 

being oxidative hair bleaching with hydrogen peroxide 3-4. These affect the concentration of the 

markers so significantly that it may potentially result in a false negative drug and/or alcohol test 

result 5. Unfortunately, this makes it a popular adulteration avenue for those looking to avoid a 

positive result. Objective markers used to improve confidence that the hair has being manipulated 

with bleach, particularly when in court would be useful as so far only visual inspection of the hair 

gives rise to suspicion of adulteration attempts. 

 

3.2.2 Hair Anatomy 

Hair is often seen as an expression of a person’s personality; however, it also has functional 

purposes. The hair on the scalp helps to keep sun rays off the scalp, the eyelashes and eyebrows 

keep dust and sweat out of our eyes, the hairs in our nose and ears keep germs out and the body hair 

helps regulate temperature 6.  

 

Each hair has a hair shaft and a root, with the shaft being the visible part that sticks out above the 

skin 7. The hair root extends down into the layers of skin and is surrounded by the hair follicle, which 
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is a tube-like pore that surrounds each root and strand of hair. Each follicle is connected to a 

sebaceous gland, with a lot of nerve endings surrounding the follicle 8. At the hair root, there is the 

‘dermal papilla’ which supplies each hair bulb with blood 6,9. This anatomy is shown in Figure 3.1. 

 

Figure 3-1. Labelled diagram of the outer hair structure. 

Figure adapted from ‘Rejuvenate Hair Transplant Centre - Hair Structure, Everything You Need to Know’ 10 

 

When looking at the cross section of a hair strand, several layers made up of various substances 

make up the hair anatomy. The outer layer is the cuticle, which makes up about 10% of the structure. 

It has a protective function formed of ‘keratin scales’ and a layered cell structure, therefore, the 

smoothness of this layer determines the appearance of the hair 10-11. The middle of the hair is the 

cortex, which dictates how thick the hair is. It is made entirely of keratin and contains a colouring 

pigment called melanin, which is what determines the hair colour 10. This section makes up 85% of 

the hair anatomy 9. The core of the hair is named the medulla, which is present is long head hair. This 

part makes up only 5% of the anatomy 7,10. This cross-sectional analysis of the hair is shown in Figure 

3.2. 
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Figure 3-2. Labelled diagram of the cross section of the hair structure. 

Figure adapted from ‘Rejuvenate Hair Transplant Centre - Hair Structure, Everything You Need to Know’ 10 

 

Within the cortex, it is the two different types of melanin (eumelanin and pheomelanin) that cause 

the differences in pigmentation of hair colour 12. Generally, the more melanin present, the darker the 

hair colour and vice versa. Table 3.1 shows the types of melanin with the persons hair colour. 

Table 3.1. Shows relation of hair colour to presence of melanin types. 

Hair Colour 
Appearance 

Type of Melanin 

Black Large amount of eumelanin 

Brown Moderate amount of eumelanin 

Blonde Small amount of eumelanin 

Strawberry Blonde A mixture of pheomelanin and eumelanin 

Red Mostly pheomelanin with a small amount of eumelanin 

Grey Absence of both pheomelanin and eumelanin 

 

The natural toning of the hair is due to the ratio of black/brown eumelanin to yellow/red 

pheomelanin 12. It is possible to have more than one colour hair follicle on someone’s head and it is 

also possible for one’s hair colour to change overtime due to varying levels of melanin throughout 

their lifetime. Melanin goes through a pigmentation change and therefore a blonde-haired child may 

become a brunette in their teen/early adult years however, the change of colour may also be 

affected by external factors such as toxins, pollutants, and climate also. Darker hair tends to be more 

resistant to UV rays and decay than lighter coloured hair due to the lower photostability of 

pheomelanin compared to eumelanin. Melanin also plays part in protecting the hair against high 
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levels of sun exposure consequences, such as drying out and brittleness 7. Albino hair is where there 

is no melanin present at all in either form, hence the white colour. Geographical regions and/or 

certain ethnicities are often associated with a particular hair colour due to the higher frequency of 

observed hair colours within that region, e.g., straight, dark hair in East Asians; curly, dark hair with 

Africans but a large variety of dark/light, curly/wavy/straight amongst Europeans 7,11. Grey/white hair 

is not caused by a grey/white pigment but from a lack of pigmentation and melanin 12. The light 

bouncing off the hair causes it to look the certain shade of grey or white, depending on the natural 

hair colour. It is often associated with growing older but can be caused by various factors other than 

age including stress, thyroid and vitamin B12 deficiencies. As the high levels of melanin in the hair 

protects it against it drying out and becoming brittle, grey hair often has a dry, brittle texture due to 

the absence of melanin. The different levels of melanin in hair can cause different enhancements of 

compounds in the hair shaft, therefore someone with dark hair will have different incorporation of 

compounds in the hair to someone with light hair. 

 

3.2.3 Hair Analysis Background 

The reason why hair analysis has become increasingly popular over the past few years when 

assessing alcohol and drug abstinence, is due to the advantage of its stability over other analytical 

specimens and easy transportation. The usual forensic analytical specimens for metabolomics, such 

as urine and blood, are highly dynamic leading to variable compositions dependent on daily activities, 

diet changes and stress, to name a few 13. Hair analysis not only has greater stability over these 

specimens, but also has a non-invasive collection, easy-storage, and a long detection window for 

chemical substances therefore, making it possible for retrospective analysis for the months previous, 

depending on the length of the hair. Chemicals from the blood are distributed into the hair from the 

capillaries to the hair follicle during hair formation 14-15. These substances are then retained in the 

matrix and cannot be easily removed by general day to day hygiene practises, such as washing and 

brushing 15. Substances of exogenous origin are also incorporated into the hair shaft 13. Despite the 

differences in each person’s hair, it is assumed to grow at a rate of around 1 cm per month and so 
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segmental analysis of the hair can pinpoint the consumption, or exposure, of the target chemicals 15-

16. This also means that the longer the section of hair taken for analysis, the further back the analysis 

can go. For example, a 6 cm section of hair can look at approximately 6 months of history. The hair 

furthest from the scalp is the oldest, and therefore looks at the history furthest back in time. 

 

3.2.4 Bleaching Hair 

People often use bleach to lighten their hair colour. The bleach and melanin react, removing the 

colour through an irreversible chemical reaction; the bleach oxidizes the melanin molecule. The 

melanin is still present, but the oxidised molecule is colourless even though bleached hair tends to 

have a yellow tint to it. This is due to the structural protein in hair, keratin, having a naturally yellow 

colour to it. Bleach also reacts more readily with eumelanin than with pheomelanin, so some 

gold/red colour tints may remain after the bleaching procedure. The different levels of eumelanin 

and pheomelanin in people’s hair is what makes each bleaching procedure give a slightly different 

finishing colour amongst different people. Hydrogen peroxide is commonly used as a lightening agent 

for hair, the peroxide in an alkaline solution opens the hair shaft to allow the peroxide bleach to 

react with the melanin. As the hair shaft is opened up, it is probable that this will also adversely 

affect the incorporation of drugs, alcohol and other compounds in the hair by decreasing their 

concentration significantly.  

 

3.2.5 Drug Testing  

Hair analysis is fairly new in the analytical industry, though it has recently emerged as a valuable 

analytical technique for retrospective analysis 14. Hair analysis is often used in workplace drug testing 

and childhood custody cases to determine whether drugs of abuse (DOA) or alcohol has been 

ingested however, this can be difficult to determine an accurate concentration as the differences in 

hair colours and types lead to different uptake of drugs/alcohols in the hair. This is then made even 

more difficult as these concentrations can be significantly altered in by cosmetic hair treatments 1. 

The treatments include hair straightening, dyeing, tinting, bleaching and “detox shampoos” 1,16-21. 
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The most effective treatment for altering the drug/alcohol concentrations are those treatments that 

contain hydrogen peroxide (H2O2) under alkaline conditions, which are most often what is used in 

permanent hair dye and bleach 3. The use of such treatments can alter the concentrations of alcohol 

or DOA markers to the extent that they may potentially result in a false negative test, making it a 

popular technique for those looking to actively avoid a positive result 5. The Society of Hair Testing 

(SoHT) has a different lower limit for each drug in which they use as the cut off limit; anything above 

this level will be classed as a “drug abuser” and anything below this level will be classed as “not 

detected (N.D.)”, even if it has a peak on the LC-MS. The diagram in Figure 3.3 shows the possibility 

of a drug falling below the cut off limit when the hair is cosmetically altered and therefore declared 

as not detected, where-as, if the hair was natural, it would be of significant concentration and they 

would be classed as a drug abuser. 

 

At present, the only way to determine any dyeing or bleaching treatments is by visual inspection, 

often looking for lines on the hair that could indicate a cosmetic change. Confidence on these 

assumptions can be improved by the presence of chemical markers and can be used in court to show 

that the levels of any drugs that present may be under-estimated. Such markers are not yet available 

to be detected through LC-MS yet, though this would be ideal as it can be processed at the same 

time as the routine procedure for the drugs. In a previous study, oxidation compound cysteic acid, 

SoHT cut off limit 
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Figure 3-3. Diagram showing the decrease in concentration of drug in dyed hair. 

When this is compared to natural hair levels, the presence of dye causes the drug to be declared as not detected, 
even though it was in fact present at a high concentration before alteration. 
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formed by oxidation of cysteine when bleached, was found to be a marker for hair damage by bleach 

22. However, this is also a compound that is present in control hair samples, therefore it is not 

indicative of bleached hair only and tedious cut off Experiments would have to be conducted 22-25. In 

another previous study, 1H-pyrrole-2,3,5-tricarboxylic acid (PTCA) was described as a marker for 

oxidative hair treatments (bleaching) however the need cut-off values for PTCA are essential due to 

the presence in other products and in natural hair also 26. Therefore, the presence of PTCA does not 

solely indicate a presence of bleach. A study also showed the varied levels of PTCA in the hair if the 

hair is repeatedly treated or washed differently. These limitations make it more difficult to determine 

whether treatment has occurred and therefore, something more exclusive to bleach is desired. 

During the course of this project, a paper was published where 1H-Pyrrole-2,3,4,5-tetracarboxylic 

acid (PTeCA) has been discovered as a compound that is more exclusively formed by oxidative hair 

treatments 27. As it is exclusive to oxidative treatments, the cut-off values are not necessary 

however, its melanin dependency still hinders the current use of it in routine settings, alongside the 

lack of commercially available reference standards 2,27. There is the possibility of using the oxidated 

product of each DOA, however this would require further evaluation of every drug due to the lack of 

knowledge on what each product would be, and the impact of treatment on each one. Therefore, 

there is a need for further reliable, drug-independent marker(s) to indicate the use of cosmetic hair 

treatment. A study has looked at the effects bleach has on amino acids, lipids and proteins in the hair 

however these studies were only on a small selection of compounds therefore no biomarkers were 

determined, only that bleaching had a significant impact on each studied compound 22-23.  

 

Applying an untargeted metabolomics approach would widen the number of potential differences in 

the treated/untreated hair samples and detect possible biomarkers that indicate hair bleaching. Any 

biomarkers found can be combined with the routine screening of hair samples and therefore 

providing increased confidence as to whether the hair has been purposely manipulated: it will be no 

longer left to human interpretation. With further studies, the confirmed presence of bleach and/or 

dye could be used in to determine what the “real” concentrations of drugs should be in the hair.  
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3.3 General Workflow 

Figure 3.4 shows the generalised workflow for each stage of the hair analysis. Each stage is 

important and is explained further in each section below, 3.3.1 to 3.3.6.  

 

3.3.1 Sample Collection 

Ethical approval was sought from ‘Keele University FNS Non-psychology Faculty Research Ethics 

Committee’ and approved under reference NS-200085. Hair samples were to be cut from volunteers 

0.5 cm from the scalp to ensure that no DNA could be retrieved from the samples. These samples 

were received by volunteers who had never previously dyed or bleached their hair and is therefore 

known as ‘blank’ hair and can be used as control samples. Sectioning each of these samples into two 

means that half can be bleached (diseased samples) and the rest can be kept as blank (control 

samples). Each sample was anonymised and therefore was given a number. After the samples were 

prepared, they could then be referred to as MRS_n and MRS_ nC, where the ‘C’ is the control sample 

from each person numbered n. For example, MRS_1 would be the bleached sample and MRS_1C is 

the control sample, both from person 1.  

 

  

Sample 
Collection 

Bleaching Washing 
Sample 
Preparation 

Figure 3-4. Generalised workflow for this hair analysis 

Analysed using an LC-
MS instrument 

Data Analysis 
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3.3.2 Bleaching 

Bleaching of the hair was conducted in a manner similar to what someone may do themselves at 

home to try replicate the real samples that may occur in drug testing. Only one type of bleach was 

used throughout the course of this Experiment; ‘Jerome Russell B-Blonde High Lift Powder Bleach’ 

which was mixed with ‘Jerome Russell 12% cream peroxide’, both purchased from Boots UK. The 

instructions from the box were followed. Only one type of product was tested at this time as it was 

difficult to come across this product available to buy in the shops, without needing to be a trained 

hairdresser. Looking into the different bleach available in the shops whilst considering it is the 

hydrogen peroxide that causes the chemical change, the highest % peroxide solution was chosen to 

enable a noticeable change in the hair physically and chemically. The typical products available range 

from 2 – 12% peroxide and therefore the product chosen falls within the up-most range for this study 

10,28. 

 

3.3.3 Washing 

The purpose of the washing procedure is to decontaminate the samples from surface oils, like sweat, 

sebum, dirt, residue shampoo/conditioner etc., to ensure it does not lead to misinterpretation of 

results or interfere with any analytical procedures 1. It improves the recovery of any metabolites or 

drugs incorporated in the hair and reduce the analytical background noise on the instrumentation. 

The washing procedure also removes potential external contaminants that may mislead any drug 

interpretations in the results 24. Different solvents are effective at removing different compounds, for 

example organic solvents are largely effective for removing THC contaminants whereas aqueous 

solvents are better at removing ionisable drugs such as cocaine. It needs to be noted; however, not 

all hair decontamination procedures are 100% effective at removing external contamination to less 

than the reportable levels for all drug analytes, reported by the SoHT 30.  
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3.3.4 Sample Preparation 

The sample preparation, including wash procedure, for this Experiment followed the approved 

Standard Operating Procedure (SOP) that a hair drug testing lab uses for their general routine 

screening procedure. The samples were all washed with 3 solvents to remove any potential 

interference from products, such as conditioner, hair gel or contamination from the air. Firstly, they 

were washed with water to remove ionisable contaminants, then with methanol to remove other 

potential contaminants and finally with dichloromethane. The DCM removes other contaminants, 

but the low boiling point also ensures the hair is left dry and clean. 

 

The samples were then ready for sectioning into approximately 1 cm sections to cover a month per 

section, with the proximal end of the hair covering the most recent time, which is closest to the 

scalp. The distal end covers the oldest section of hair, with this being the furthest from the scalp. For 

this project, the distance from the scalp was not questioned, only knowledge that it is over 1 cm 

away from the scalp to ensure no DNA collection is possible. These 1 cm sections were then further 

chopped into small ca. 1mm sections. This gives the hair as much surface area as possible to allow 

the solvents to get into the hair for metabolite extraction. The solvent used is ‘30:30:40 MeOH: ACN: 

0.1% Formic Acid in Water’, which has been found to be the best overall solvent for metabolite 

extraction with least preparation time and cleanest MS background spectra. The samples were 

extracted whilst shaking at heat and the supernatant is analysed by MS.  

 

To note, the sample preparation methods need to be kept as close to the routine procedures used by 

the drugs lab as possible. It would be un-productive and time consuming to need a different sample 

preparation and mass spectrometry method, in addition to the ones they already perform and 

therefore, the potential biomarkers need to integrate with their current sample workflow. It is of 

interest to see what additional information that could be obtained by keeping the sample 

preparation as close to this routine sample preparation and method. 
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3.3.5 Run on LC-MS Instrument 

For this untargeted screening project, the samples were screened on the QTOF using LC conditions 

that are like the final MS method that will be used routinely, with the same mobile phases and 

column. The QTOF used was an Agilent 1290 Infinity II UHPLC + 6550 Q-ToF. These mobile phases, 

along with the chosen ‘Agilent poroshell phenyl hexyl’ column, have been shown to give good peak 

resolution and separation, without too much peak interference from the matrix. The gradient was 

broad to allow full separation of compounds in the preliminary Experiments. The samples were all 

run in positive and negative mode for initial screening.  

 

Full parameters of the LC-MS instrument and method can be seen in Table 3.2 below. 

Table 3.2. LC-MS parameters for QTOF Hair Screening Analysis 

HPLC-MS  

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Agilent Poroshell Phenyl Hexyl 2.1 x 100mm, 2.7µm 

Oven (ºC) 40°C 

Pump Mobile Phase A 5mM Ammonium Formate 0.02% Formic Acid in Water 

  

  

  

  

  

  

  

  

  

  

Mobile Phase B 5mM Ammonium Formate 0.05% Formic Acid in Methanol 

Flow rate 0.4 mL/min  

Gradient 

  

  

  

  

  

  

Time / (min) %A %B 

0.0 99 1 

2.0 99 1 

11.0 1 99 

12.0 1 99 

12.1 98 1 

14.5 98 1 

Runtime (min) 14.5 

Injector Volume (µL) 3 

MS               

  

  

  

  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve (-ve) 

Source –Dual Jet 

Stream ESI  

Gas temp 200°C Gas flow 11  L/min 

Sheath Gas temp 350°C Sheath gas flow 12  L/min 

  

  

Nebuliser pressure 207 

kPa 

Nozzle Voltage 100 V (1000 V 

in -ve) 

VCap 3500 V Fragmentor 380 V 
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3.3.6 Data Analysis 

Different pieces of software will be used to determine whether there may be a possible biomarker 

indicating the use of bleach. Each one will have different functions, some more useful than others 

but the result should be the same, and ideally each one should give the same possible list of 

biomarkers available. This would give confidence in the data analysis, and the potential biomarkers 

chosen. The different pieces of software to be used are the following: 

• Mass Profiler 

• Mass Profinder 

• Mass Profiler Professional 

• XCMS Online 

• MetaboAnalyst 

 

In Chapter 2, the analysis was conducted using XCMS online. However, the conclusions were that this 

data analysis did not seem to be the most accurate and reliable. For this reason, a further piece of 

data analysis software was used for this Chapter analysis, called MetaboAnalyst, as well as XCMS 

Online. It is available online for free and can both perform statistical analysis as well as give visual 

analysis is required. However, this software cannot perform deconvolution and the deconvoluted 

data from Profinder was exported as csv file and inputted into MetaboAnalyst. 

 

3.4 Materials 

Water, methanol (MeOH), acetonitrile (ACN), formic acid and ammonium formate of optima LCMS 

grade were obtained from Fisher Scientific (Loughborough, U.K.). Dichloromethane (DCM) of HPLC 

grade was also obtained from Fisher Scientific (Loughborough, U.K).ESI-L low concentration tuning 

mix and reference peak markers were purchased from Agilent Technologies (California, USA). The 

bleach used was a mix of ‘Jerome Russell B-Blonde High Lift Powder Bleach’ and ‘Jerome Russell 12% 

cream peroxide’, both purchased from Boots UK. The analysis was performed using Agilent 
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Technologies 1290 Infinity II UHPLC system, coupled to an Agilent Technologies 6550 Accurate-Mass 

Quadrupole-Time-of-Flight mass spectrometer with iFunnel. 

 

3.5 Experimental 

The sample preparation methods need to be kept as close to the drug testing lab’s routine 

procedures as possible. It would be un-productive and time consuming to need a different sample 

preparation and mass spectrometry method, in addition to the ones they already perform and 

therefore, the potential biomarkers need to integrate with their current sample workflow. 

Preliminary Experiments were conducted to determine the best way to prepare the bleached 

samples and ensure that the method is successful. 

 

3.5.1 Preliminary Experiment 1 – Investigation into Bleaching Procedure 

Seven samples of hair were taken and each one was duplicated in a glass vial. One of each sample 

was taken and chopped into small sections. The bleach was mixed in a glass beaker, as per 

instructions on the box, 1 part liquid to 1 part powder bleach. Vials were labelled up with chosen 

Experimental initials of MRS, followed by numbers 1 – 7 corresponding to the original hair sample 

bag. One of each duplicate vial were labelled ‘C’ for control, leaving seven vials labelled MRS_1 – 

MRS_7, and seven vials labelled MRS_1C – MRS_7C. An aliquot was coated onto the hair in each vial 

that has labels MRS_1 to MRS_7 only. The bleach was left for 45 minutes, then washed off with 

water. The samples were filtered using filter paper and funnel, then washed again with water and left 

to dry for 24 hours at room temperature. All of the remaining samples, control and bleached, were 

then taken and washed with roughly 1 mL of water then decanted off. The process of washing then 

decanting off was repeated with methanol and finally with dichloromethane. The samples were then 

left to dry for 24 hours at room temperature.  
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3.5.2 Preliminary Experiment 2 – Investigation into Sample Preparation 

Three samples were chosen for this Experiment. The hair was kept at length before bleaching, all 

with the proximal end of the hair held at the top, no chopping, split into two sections and one 

portion was bleached. The same bleach as Experiment 1 was used and it was also left on the hair for 

45 minutes. It was then washed twice with water and left in the large 28 mL vial to dry for 24 hours. 

All samples, control and bleached, were washed with a 1 mL portion of solvent which were each 

decanted off; the solvents used were water, methanol then dichloromethane in order. The samples 

were left to dry for 24 hours at room temperature to ensure all solvents were removed. Each sample 

was then finely chopped into roughly 1 mm pieces and approximately 20mg of each sample was 

weighed out into a small 7mL vial, exact weights can be seen in Table 3.3. The bleached sample was 

prepared in duplicate (x and xa), but only single preparation for the control sample was conducted 

(xC), therefore resulting in 9 samples in total. 1 mL of ‘30:30:40 MeOH/ACN/0.01% formic acid in 

water’ was added to each sample and then placed in the incubator at 60°C for 1 hour, whilst shaking 

at 200 rpm. The solvent was then transferred to a centrifuge tube, spun at 9800 RCF for 5 minutes 

then the supernatant was transferred to an LC vial for analysis. 

Table 3.3. Table of sample weights for Experiment 2. 
Repeats are shown by ‘a’ and ‘b’ where-as ‘C’ refers to a Control sample. 

Sample Weight (mg) 

1a 1b 19.20 21.12 

1C 20.66 

2a 2b 19.80 21.48 

2C 19.86 

3a 3b 20.92 20.46 

3C 20.76 

 

3.5.3 Experiment 3 – Discovery of Potential Biomarkers 

3.5.3.1 Overview 

This experiment was conducted with more concentrated extracts so that the screening is more 

accurate, and the masses of interest are not lost in the noise. Once potential biomarkers are 

determined, the identification of the compound can be deduced, and a standard can be obtained. 
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The method can then be transferred over QqQ (MS/MS) where the standard will be run to determine 

its fragments and overall, the QqQ analysis will give more sensitive detection of the target 

compound(s) than QToF, therefore determining whether the compound is present within the 

samples or not by looking at the parent mass along with the transitions. The QqQ is more sensitive 

due to the increased time spent on the specific retention time and mass and therefore when the 

samples are less concentrated in the routine analysis, the biomarker may still be able to be detected 

at low levels. The potential biomarker(s) will be added into the routine drugs panel to give a 

conclusive result as to whether any potential drug concentrations may have been adulterated by the 

presence of bleach. 

 

3.5.3.2 Sample Preparation 

The same samples, control and bleached, from Experiment 2 were washed with a 1 mL portion of 

solvent which were each decanted off; the solvents used were water, methanol then 

dichloromethane respectively. Into a vial, 40 mg (±2 mg) of each sample were weighed out and the 

bleached samples were weighed in duplicate (x and xa), as seen in Table 3.4. 750 L of ‘30:30:40 

MeOH/ACN/0.01% formic acid in water’ was added to each sample and then placed in the incubator 

at 60C for 1 hour, whilst shaking at 200 rpm. The solvent was then transferred to a centrifuge tube, 

spun at 9800 RCF for 5 minutes then the supernatant was transferred to an LC vial for analysis. The 

analysis method used can be found in Table 3.2.  

Table 3.4. Sample Weight Table for Experiment 3. 
Repeats are shown by ‘a’ and ‘b’ where-as ‘C’ refers to a Control sample. 

Sample Weight (mg) 

1a 1b 39.61 40.33 

1C 40.77 

2a 2b 40.01 40.79 

2C 40.85 

3a 3b 40.63 39.55 

3C 40.02 
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Sample MRS1 was injected twice to test for repeatability of the instrument, as well as duplicate 

bleached hair preparation. Samples MRS2 and MRS3 bleached hair samples were prepared in 

duplicate, but the controls were only prepared once, with MRS1 injected twice hence why it appears 

as 001 and 002.  

 

3.5.4 Experiment 4 – Secondary Check of Potential Biomarker Masses 

3.5.4.1 Sample Preparation 

More samples were prepared and tested, to ensure that the previously selected biomarkers are also 

present in other bleached hair samples of different starting colours, the hair colours of each sample 

can be seen in Table 3.5. Each hair sample was also re-bleached to ensure that repeat analysis can 

be conducted, giving confidence that the bleaching procedure gives the same biomarkers each time.  

Table 3.5. Hair colour of samples used in Experiment 4. 

Sample Hair Colour 

MRS4_1 Warm, light brown 

MRS4_2 Warm, mid-brown 

MRS4_3 Warm, dark blonde 

MRS4_4 Grey/White/Black mix 

MRS4_5 Grey and black mix 

MRS4_6 Ashy light brown and grey mix 

 

Using the original collected hair at the start of the project, 6 of these were taken and a portion was 

put into a vial in duplicate. One of each duplicate was taken and bleached using the same brand of 

bleach as Experiment 1. The hair was not chopped before bleaching, leaving the strands as long as 

possible. The bleach was left on for 45 minutes, then washed thoroughly with water and left to dry at 

room temperature for at least 24 hours. The samples, control and bleached, were washed with a 1 

mL portion of solvent which were each decanted off; the solvents used were water, methanol then 

dichloromethane respectively. The hair was chopped, and 40 mg was weighed into small glass vials in 

duplicate (all samples in duplicate resulting in 12 samples for the control and 12 for the bleached), 
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the weights can be seen in Table 3.6. 750 L of ‘30:30:40 MeOH/ACN/0.01% formic acid in water’ 

was added to each sample and then placed in the incubator at 60C for 1 hour, whilst shaking at 200 

rpm. The solvent was then transferred to a centrifuge tube, spun at 9800 RCF for 5 minutes then the 

supernatant was transferred to an LC vial for analysis. The analysis method can be seen in Table 3.2. 

Table 3.6. Sample Weights Table for Experiment 4. 
The columns of ‘a’ and ‘b’ represents repeat preparations. The first 6 samples are bleached, where-as those with 

sample names ending with ‘C’ show control samples (non-bleached). 

Sample 
Sample Weights (mg)  

a b 

MRS4_1 39.75 41.51 

MRS4_2 39.09 41.12 

MRS4_3 40.27 39.92 

MRS4_4 40.50 38.85 

MRS4_5 38.95 38.25 

MRS4_6 39.92 39.58 

MRS4_1C 40.90 41.01 

MRS4_2C 41.38 39.03 

MRS4_3C 40.25 40.22 

MRS4_4C 38.16 40.35 

MRS4_5C 38.38 40.19 

MRS4_6C 40.54 41.54 

 

3.6 Results 

3.6.1 Experiment One – Investigation into Bleaching Procedure 

Four of the samples were found to be pre-chopped too small and so they were dissolved by the 

bleaching process. All samples were discarded, and the Experiment was conducted again but with an 

adopted bleaching procedure. 

 

3.6.2 Experiment Two – Investigation into Sample Preparation 

The sample analysis worked fine, however the concentration of the peaks looked weak and this 

made it difficult to discover unique compounds at low concentration levels. For this reason, it was 

decided that the analysis needed to be repeated using more concentrated samples for the discovery 

of biomarkers. Once the biomarkers have been discovered, the analysis can then be repeated on less 

concentrated extracts to ensure that they are still detectable at a decent abundance. With higher 
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concentration of the potential biomarkers, more accurate masses can be determined hence making it 

easier to gather more structural information to determine possible identifications. 

 

3.6.3 Experiment Three – Discovery of Potential Biomarkers 

Despite the bleached samples being prepared in duplicate, MRS3a was injected twice. During the 

incubation stage of the sample preparation, the vial for MRS3b cracked, resulting in the loss of all the 

sample and solvent. Therefore, MRS3a was injected twice instead. 

 

3.6.3.1 Traditional Analysis 

In positive mode, the raw data TICs overlay perfectly and show no differences. On inspection of raw 

negative mode data, there are peaks in the bleached samples that are not as prominent in the 

control samples. The TIC overlay of all samples in Figure 3.5 shows this difference, with an annotated 

zoom in Figure 3.6. 

 

Figure 3-5. TIC Overlay of all samples Negative Mode. 
One peak can be seen at around 5 minutes that appears different in some samples than others. 
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The mass was extracted from this peak and showed to have an accurate m/z of 297.0379. This was 

then extracted in all samples to see if it is present in any of the control samples. The EICs can be seen 

in Figures 3.7 - 3.8 for all samples overlaid on one plot. 

 

  

All bleached 
samples 

All control 
samples 

Figure 3-6. TIC Overlay zoom of difference in abundance Negative Mode. 

Control samples do not show a peak present at the same retention time that the bleached samples show a peak.  

Figure 3-7. EIC (297.0379) m/z in all samples Negative Mode 
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Figure 3.8 shows a zoom on peak of interest with the bleached and control samples annotated: 

 

Figure 3.9 shows the EIC (297.0379) m/z in the control samples only. The blue and green peaks are 

the sample MRS1 repeats, with the black peak representing sample MRS2. Sample MRS3 control 

does not have the peak present. Figure 3.10 shows the EIC (297.0379) m/z in all bleached samples. 

The abundance of the peak differs slightly throughout the samples; however, it is still a peak in every 

bleached sample at a substantially higher concentration than the control samples. 

 

Figure 3-8. Zoom on EIC (297.0379) m/z from Figure 3.7. 

Bleached samples show a large peak extracted. A small peak is also present in some control samples. 

Bleached Samples 

Control Samples 

Figure 3-9. Only control Samples EIC (297.0379) m/z Negative Mode. 

Positive peak present in MRS1 control and MRS2 control. Lack of a peak extracted in MRS3 control. 
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This compound has a retention time of 4.973 minutes and a neutral mass of 298.0452 Da. No 

identifications can be made using the ‘Metlin 8.0’ database, nor the ‘Metlin Metabolites’ PCDL 

database. An empirical formula of C12H6N6O4 has been suggested from the neutral mass in 

MassHunter Qualitative Analysis software. 

 

The abundances of this compound can be seen in Table 3.7 across all samples, ‘a’ is a duplicate 

preparation of the sample (i.e., 1 and 1a are duplicate preparations corresponding to the 1C - control 

sample). This peak would not be an ideal biomarker since it is present in some control samples, 

though there is a large difference between the two sample sets. 

  

Figure 3-10. Only Bleached Samples EIC (297.0379) m/z Negative Mode. 

Peak extracted in all bleached samples. 
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Table 3.7 shows the abundance of the peak across the samples, with an average of 1a, 1b and 

1control.  

Table 3.7. Table of peak areas of EIC (297.0379) m/z Negative Mode. 

The average abundance of each sample group, fold change and p-values are also included. 

Sample Peak Area of EIC (297.0379) m/z 

1a 16910492 

1b 16169902 

1Control 639379 

2a 11480197 

2b 12302284 

2Control 115478 

3a 21579022 

3b 21764552 

3Control 0 

Median Bleached 
Abundance 

16540197 

Median Control 
Abundance 

115478 

Fold Change 143.23 

p-value (Two-Tailed) 0.0291 

 

Using the median values, the fold change has been calculated. This FC value is 143 showing that 

there is a significant difference between the two groups. Using t-test, the p-value was calculated 

using two-tailed test and can be found to be 0.0291, which is larger than the significant p-value of 

0.01 that is used to test significance. Therefore, this shows that there is not a significant difference 

between the sample groups when a p-value of 0.01 is used. This shows that the compound is not a 

potential biomarker, despite the traditional analysis looking different to the eye on the extracted ion 

chromatograms. This shows the need for software that can look further into the chromatograms to 

determine if there are any differences not visible on the TIC. 

 

3.6.3.2 Mass Profinder 

Mass Profinder was used to follow the same type of metabolomic workflow that has previously 

shown promise in Chapter 2. The visual aspect in this software allows checking of the EICs quickly, 

without having to check them in the raw data like Profiler requires which should reduce the overall 

analysis time, whilst maintaining the required level of accuracy. The exported tables give this data in 
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an excel format that can be easily read to determine the most abundant features that are potentially 

unique to one sample group. 

 

3.6.3.2.1 Positive Mode 

There are 227 features that Mass Profinder highlights as unique to bleached hair. Table 3.8 shows 

the top 10 markers identified in positive mode that were found to be unique to the bleached 

samples. 

Table 3.8. Mass Profinder – Top features unique to bleached 

Top 10 Mass (neutral Da) RT (min) Ave peak area in Bleached 
1 523.3513 10.920 36565286 

2 431.2876 7.770 12587497 

3 519.3193 10.570 12241327 

4 435.3192 8.180 9308439 

5 177.1264 5.080 5362560 

6 365.2892 10.150 4815890 

7 431.2884 7.620 4296880 

8 433.3045 8.920 4061533 

9 379.2708 10.050 2572259 

10 241.1672 6.610 2444113 

 

The top feature in Table 3.8 has an m/z of 524.3584 at 10.9 min and Figure 3.11 shows the 

Profinder results where the peak integrated correlates to the bleached samples only.  
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The raw data confirms the Mass Profinder results, which can be seen in Figure 3.12 (bleached 

samples showing presence the peak at the correct retention time) and Figure 3.13 (control samples 

showing absence of a peak). 

Figure 3-11. EIC (524.3584) screenshot from Mass Profinder. 

It shows the presence of an integrated peak in the bleached samples only. The control samples do not have a peak at the 
correct retention time with the correct m/z. 
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The raw data shows the presence of a compound with the m/z 524.3584 at 10.91 minutes in the 

bleached samples (Figure 3.12) however, in the control samples there are no peaks except for the 

outline of one red trace in one control sample, MRS3 control, as seen in Figure 3.13. This slight trace 

may be the presence of a compound too low in concentration to be detected, or it may be noise 

coincidentally at the same retention time.  

 

  

Figure 3-12. EIC (524.3584) in bleached samples from raw data. 

 Integrated peak present in all bleached samples. 

Figure 3-13. EIC (524.3584) in control samples from raw data. 

No integrated peaks present in any control samples. 
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3.6.3.2.2 Negative Mode 

There are 91 features that Mass Profinder highlights as unique to bleached hair. Table 3.9 shows the 

top 10 markers identified in negative mode that were found to be unique to the bleached samples. 

Table 3.9. Profinder – Top features unique to bleached 

Top 10 Mass (neutral Da) RT (min) Ave peak area in bleached 
1 531.3003 9.200 1803687 

2 519.3184 10.550 1312605 

3 417.3075 8.860 830533 

4 563.2897 6.790 690126 

5 529.2842 8.450 494262 

6 417.3074 8.760 482833 

7 433.3022 7.620 426369 

8 480.3604 11.490 388337 

9 549.3104 8.180 373278 

10 553.8638 0.660 362564 

 

Table 3.9 shows the most abundant feature at 9.20 min with a m/z of 530.2937 and can clearly be 

seen to be present only in bleached samples. Figure 3.14 shows the Profinder chromatograms where 

an integrated peak can be seen in only the bleached samples (the top 8 chromatograms). 
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Looking at the raw data analysed in MassHunter Qualitative, the bleached samples showed presence 

of a peak in each sample however, there were no peaks in the control samples. The Figure 3.15 

Figure 3-14. EIC (530.2937) in Mass Profinder. 

It shows an integrated peak in each of the bleached samples, yet the absence of a peak in the control samples 
at the same RT. 
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shows the bleached samples only, with 530.2937 m/z extracted, and Figure 3.16 shows the control 

samples with same mass extracted yet there are no peaks present, only traces relating to noise. 

 

 

Other Compounds 

The compound PTCA was found at 0.8 minutes, present in all samples though the area of the peaks 

varies throughout. There is a significant difference seen between the bleached and control samples, 

with a further difference seen between each different person which is highlighted in Figure 3.17. 

This is not an ideal marker due to the presence in the control samples, but also due to the large 

difference seen within the samples group due to the different hair colours. The peak areas can be 

seen in Table 3.10 where the grey boxes show the control samples. These peak areas are lower than 

those in the white boxes which are the bleached samples. Sample 3 has an overall higher 

concentration than samples 1 and 2, showing inconsistent concentrations of PTCA between the 

different hair colours and/or types. 

Figure 3-15. EIC (530.2937) extracted in bleached samples, raw data. 

Integrated peaks present in all bleached samples. 

Figure 3-16. EIC (530.2937) extracted in control samples, raw data. 

No integrated peaks present in any control samples. 
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Figure 3-17. PTCA peak in Mass Profinder. 

The left-hand side shows the peak with the y-axis linked therefore showing the significantly higher peak in sample 
MRS3. Right-hand side shows the zoom on the peak, with the y-axis not linked and so showing the varying abundance 

in more detail. 
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Table 3.10 shows the table of PTCA areas from Mass Profinder, along with the fold change and p-

values associated with the bleached and control sample groups. 

 
Table 3.10. Table of PTCA peak area in Profinder 3.6.3 Negative Mode 

Sample Peak Area [PTCA] 

1a_001 30024 

1a_002 30481 

1b_001 30770 

1b_002 28520 

2a_001 21172 

2b_001 21744 

3a_001 168925 

3a_002 170047 

1C_001 1343 

1C_002 3421 

2C_001 923 

3C_001 8734 

Median Bleached Abundance 29949 

Median Control Abundance 2382 

Fold Change 12.6 

p-value (Two-Tailed) 0.2665 

 

The fold change is only 12.6, therefore is lower than the value of 30 that is typically used to show 

significant difference between the two sample groups. The p-value in Table 3.10 is 0.2665 which is 

higher than the 0.01 value used for p-value significance. Therefore, this shows that PTCA is not a 

potential biomarker according to this analysis using Profinder. 

 

3.6.3.3 Mass Profiler 

Mass Profiler compares two datasets directly against each other only, giving the possibility to view 

plots of features that are unique to one dataset only. It deconvolutes the data and gives full 

statistical analysis based on the ‘.d’ raw data file. It gives the results in a table, with the RT, neutral 

mass and abundance, therefore allowing features that are unique to one dataset to be determined 

by a table.  
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In Mass Profiler, the data was inputted as raw data file and the software conducted Molecular 

Feature Extraction. A method was created to set parameters for feature finding, alignment, 

normalisation, statistics and filtering. For this work, the default values are already optimised for small 

organic molecules and so were kept to only those ions with peak intensity above 600 counts and a 

charge state of 1-1 as only small molecules are of interest at this stage. The RT tolerance was +/- 

0.1% min and a mass tolerance of +/- 20 ppm. Only features occurring in 100% of at least one group 

would be shown if the feature has a score above 70 (score is set by the software based on 

expected/observed mass and isotope ratios). A group difference with a fold change of more than 4 

was also set. 

 

In positive ionisation mode, out of 561 features that Mass Profiler identifies as unique to bleached 

hair, 92 of them are the same as those identified in Mass Profinder. Majority of the features, 469, are 

different. Some of these are due to the deconvolution of peaks where it can be seen that some peaks 

have not been deconvoluted efficiently giving two features the same mass and retention time of 0.01 

min difference, and some are completely different masses and retention times than those in the 

original Profinder analysis. 

 

In negative ionisation mode, out of 289 features that Mass Profiler identifies as unique to bleached 

hair, 56 of them are the same as those identified in Mass Profinder (19.4%). Majority of the features, 

233, are different. As with positive ionisation mode, some of these are due to the deconvolution of 

peaks where it can be seen that some peaks have not been deconvoluted efficiently giving two 

features the same mass and retention time of 0.01 min difference, and some are completely 

different masses and retention times than those in the original Profinder analysis. 
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3.6.3.4 MPP 

3.6.3.4.1 Positive Mode 

PCA Plots 

In the PCA plot, MRS3 samples all sit separately to MRS1 and MRS2. This could be due to the colour 

of the natural hair as MRS1 and MRS2 are dark blonde where-as MRS3 is black in colour and this 

difference is known to incorporate different compounds in the hair due to the melanin differences. 

The first component shows a 36.46% variance for the PCA plot shown in Figure 3.18. The second 

component has a 29.30% variance. The samples are distinctly grouped into bleached and non-

bleached samples, even before filtering the features by p-value and fold change. 

 

Figure 3-18. MPP 2D PCA plot on all features. 

Red represents bleached samples, yellow represents control samples. This shows that the samples are separated by sample 
group, and further separation within the groups, likely to be due to natural hair colour differences. 

Control Samples 

Bleached Samples 
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The PCA plot shown in Figure 3.18 and the coloured 95% confidence ellipses shows that the samples 

are grouped distinctly into bleached and control samples. However, the sample groups have further 

clustering within these groups, which can be seen in Figure 3.19 for the control samples and Figure 

3.20 for the bleached samples. The zooms in Figure 3.19-3.20 both show that the sample MRS3 is 

Figure 3-19. MPP Zoom on control samples in 2D PCA from Figure 3.27. 

The separation between the MRS1, MRS2 control and MRS3 control samples can be seen spread along the x-axis (1st 
principal component) therefore representing a large variance in the samples. 

MRS1 & MRS2 
Control Samples 
Samples 

MRS3 Control 
Sample 

Figure 3-20. MPP Zoom on bleached samples in 2D PCA plot Figure 3.27. 

The separation between the MRS1, MRS2 bleached and MRS3 bleached samples can be seen spread along the x-axis (1st 
principal component) therefore representing a large difference in the samples. 

MRS1 & MRS2 
Bleached Samples 

MRS3 Bleached 
Sample 
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different to the MRS1 and MRS2 samples, in both bleached and control, and this difference is a 

significant difference as they’re spread along both the x and y axes. This difference is most likely due 

to the alternate hair colours or types as MRS1&MRS2 are both dark blonde/light brown of European 

ethnicity, where-as MRS3 is black in colour and of Asian ethnicity. The difference between the 

control and bleached group within each hair sample (i.e., between MRS1 bleached and MRS1 

control) is spread along the y-axis mainly, but also the x-axis showing that there is still a significant 

difference between the groups.  

 

Overall, it can be deduced that there is a difference between bleached and control samples, but also 

a large difference within the samples potentially due to hair colour and ethnicity. This is further 

represented by the negative ionisation mode giving the same clustering of samples and groups. 

 

Feature Finding Graph 

Data filtering was conducted on all the features so that only features of significance are shown, 

which means they have a p-value less than or equal to 0.01 and a fold change greater than 30. For 

ease, the log fold change (log FC) is shown in the tables. 

 

The Feature Finding Graph in Figure 3.21 shows the significant features with a significant difference 

between the control and bleached samples: 
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Figure 3-21. MPP Feature Finding Graph on significant features with filtering by p-value and fold change. 

Each line represents a feature that has a p-value ≤ 0.01 and fold change greater than 30. The red lines have the largest 
abundance in bleached samples and the blue lines have the lowest abundance in bleached samples. The colours fade 

from red, orange, yellow, green to blue with decreasing abundance. 

 

There is some variance of abundances in each sample within each sample group, though the red lines 

are features of most significance which show the features of significant change between the groups, 

with the largest abundance in the bleached samples. The red lines are those showing the highest 

abundance in bleached samples, the gradient of colour to blue shows decreasing of abundance. The 

orange – yellow lines represent features of lower abundance than the red features, and these seem 

to be present in some of the control samples as well as in all the bleached samples. The green lines 

on the left are features present in only some bleached samples, though present in 100% of control 

samples. 

 

The raw data are deconvoluted in Mass Profinder and exported as .cef files. Data are then re-

analysed by MPP where this MPP significance plot gives 94 features that are the same as those given 

by Profinder out of 336 total features deemed unique to bleached hair. 
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In negative ionisation mode gives 58 features that are the same as those given by Profinder out of 

276 total features deemed unique to bleached hair. This means 21% of the features are the exact 

same as those given by Profinder but majority are different. 

 

Venn Diagram of Unique Compounds 

The Venn diagram in Figure 3.22 shows those which are unique to each group. It also shows the 

number of features that are common to both. For this biomarker discovery, ideally the potential 

biomarker needs to only be present in the bleached samples.  

 

Figure 3-22. MPP Venn Diagram on Unique Compounds in Positive Mode. 

There are 183 entities that are unique to bleached samples, and 38 that are unique to control samples. 

 
In positive mode, out of the 183 features the Venn diagram says are unique, only 112 of these 

features are real features that give peaks in the mass spectrometry data. Of these 112, 21 of them 

are the same as those masses given in Mass Profinder, leaving 91 masses (81.25%) that it deems to 

be unique that Mass Profinder has not picked out. 
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Figure 3-23. MPP Venn Diagrams of Unique Compounds in Negative Mode. Out of 264 features, 84 are found to be 
unique to bleached hair samples.  

 

In negative ionisation mode, out of the 84 features the Venn diagram says are unique in Figure 2.23, 

only 50 of these features are real features that give peaks in the mass spectrometry data. Of these 

50, only 2 of them are the same as those masses given in Mass Profinder. This is highly significant 

that majority of the compounds are different, even though the deconvolution only occurred once in 

Mass Profinder. This shows that analysis of the same compounds in different pieces of software, or 

even in the same software just by different techniques, gives different results. 

 
 
3.6.3.5 XCMS Online 

XCMS Online is a different type of software that is accessible online. The same parameters were 

used, as close as possible to those done in Agilent’s software so that the end results are directly 

comparable though deconvolution is done by XCMS online rather than in Agilent software. The 

parameters have not been optimised to each data file, and have been left to the default settings that 

XCMS claim to have optimised themselves for general QTOF data files. 
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The features are those with a fold change greater than 30, with a p-value less than, or equal to 0.01. 

Only features after 1 minute are of significance in order not to be analysing those compounds in the 

solvent front. 

 

In positive ionisation mode, 303 features are exported but give only 212 real features. A questionable 

2 features are the same as those found by Mass Profinder, leaving 210 features that have been found 

unique to bleached hair by XCMS that are not present in Profinder data. A lot of these features can 

be seen to be a result of bad deconvolution in the software as there are 18 features that are all 

between 471.3577 – 471.4878 m/z, with retention time of either 6.8 or 7.2 minutes. 

 

The negative ionisation mode showed better analysis results than positive mode ionisation, though 

majority of features are still different from those found by Mass Profinder. Out of 126 analytes that 

XCMS posed to be unique to bleached hair samples, 21 of these compounds are the same as those 

from Mass Profinder. The deconvolution parameters are tried to be the same where possible, yet 

only 16.7% of compounds are shown to be the same for features that are unique to bleached hair. 

 
3.6.3.5.1 MetaboAnalyst 

A new different website was discovered online which seems to give the same type of analysis that is 

provided by MPP. MetaboAnalyst, however, is free and therefore offers benefits to companies who 

will not have access to MPP, if it gives the accurate results. The data analysis gives the feature 

(neutral mass and RT), fold change (FC), log fold change (log2(FC), raw p-value (raw.pval) and the log 

value of the p-value (log10(p)). 

 

Data can be inputted as a product of Mass Profinder and therefore the deconvolution has already 

been conducted. MetaboAnalyst re-analyses the data to give the features it believes are truly unique 

to bleached hair. 
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Out of 146 features, 36 features are present in the ‘unique to bleached hair’ category that was also 

found to be unique by Mass Profinder. This leaves nearly 75% of the features different between the 

different software packages despite the same deconvolution being conducted on the data. 

Performing analysis using the different software packages would give different results to the user, 

with even the top hits from both software packages being different.  

 

This can be seen in both positive and negative ionisation modes, with only 49 features out of 192 

unique to bleached hair being the same in negative ionisation mode. This means that 25.5% of 

features are the same, but the majority of features are different despite the deconvolution occurring 

only once in Mass Profinder. The differences occur in the second analysis conducted by 

MetaboAnalyst which has filtered out many false positives, but also seems to have filtered out some 

true positives as well. 

 

3.6.4 Overall Results within Experiment Three 

A compilation of the biomarkers that were determined to be present in more than one piece of 

software were taken, and a table of compounds for both positive and negative mode were made. 

The list of compounds was examined, and the top 15 were selected based upon the mass and RT. A 

wide range of masses were selected (between 100 – 800 Da) and the RT was between 0.8 – 11 min to 

stay clear of the solvent front and wash regions. Those compounds with the largest abundances were 

chosen first, then the gaps between the masses were filled with the next most abundant compounds. 

3.6.4.1.1 Positive Mode: 

 

The significance test in MPP proves to have the greatest number of features the same in Profinder 

and MPP, giving 62.7% of the same features. XCMS Online has different deconvolution parameters 

and is done by a different software provider and only gives 0.7% of the total features the same as 

Mass Profinder Mass Profiler XCMS Online MetaboAnalyst MPP Venn MPP Significance

Total Features 150 561 268 146 112 336

Features same as Mass Profinder - 92 2 36 21 94

% Same - 16.4 0.7 24.7 18.8 28.0

% of 150 features from Profinder - 61.3 1.3 24.0 14.0 62.7
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Profinder proving to be the most dissimilar. Mass Profiler is also good, giving 61.3% of features that 

are the same as the 150 features given by Mass Profinder, and given that different deconvolution has 

occurred in the different software packages, it shows that these features are of high reliability to be 

truly unique features for bleached hair. 

 

Of all the features that are present in Mass Profinder and at least one other software package, Table 

3.11 shows a list of the top 15 compounds that Experiment 3 determines to be possible biomarkers 

in positive mode. These have been selected based upon the highest abundance throughout the 

samples and the best spread of variability of mass and retention time. 

Table 3.11. Potential biomarkers found in Experiment 3 Positive Mode 

RT (min) Mass (Da) Predominant m/z 

6.839 132.0683 133.0754 

2.600 145.1467 146.1545 

 5.889 177.1262 178.1340 

5.090 211.1307 212.1383 

10.659 222.0647 223.0743 

10.662 240.0784 241.0855 

10.667 283.0838 284.0905 

6.631 299.1808 300.1967 

0.897 315.1466 316.1625 / 338.1417 

9.019 399.2977 400.3033 

9.244 421.2903 422.3058 

7.662 431.2874 432.2965 

3.331 544.2704 545.2782 

4.027 588.2959 589.3034 

5.285 646.3201 647.3279 

 
 

3.6.4.1.2 Negative Mode: 

 

Table 3.12 shows a list of the top 15 compounds that Experiment 3 determines to be possible 

biomarkers in negative mode. The mass 243.0016 was selected due to its known presence as a 

Mass Profinder Mass Profiler XCMS Online MetaboAnalyst MPP Venn MPP Significance

Total Features 91 289 126 192 50 276

Features same as Mass Profinder - 56 21 49 2 58

% Same - 19.4 16.7 25.5 4.0 21.0

% of 91 features from Profinder - 61.5 23.1 53.8 2.2 63.7



Megan Scott 

124 

 

potential biomarker for bleached hair in the literature, PTeCA, despite its absence from the results in 

most of the software types. 

Table 3.12. Potential biomarkers found in Experiment 3 Negative Mode 

RT (min) Mass (Da) Predominant m/z 

6.825 160.0636 159.0561 

4.851 243.0016 241.9938 

4.970 320.0131 319.0049 

4.982 374.0389 373.0311 

9.909 403.3286 402.3205 / 448.3254 

9.937 411.3147 410.3068 

8.751 417.3069 416.2994 / 462.3051 

9.393 447.3178 446.3099 

1.975 459.1556 458.3269 

8.570 463.3125 462.305 

10.545 519.3184 518.3099 

 8.857 531.3003 530.2925 

6.843 563.2899 562.2819 

4.971 594.0312 593.0230 

 9.928  669.4841   668.4763  

 

3.6.5 Experiment Four – Secondary Check of Potential Biomarker Masses 

The biomarkers determined in Experiment 3 were extracted in this dataset to investigate whether 

they are also present in the repeat dataset, and present across a larger range of hair 

colours/ethnicities/genders. These were extracted using MassHunter Qualitative Analysis within the 

raw data and the results can be seen in Table 3.13 - 3.14 for positive and negative ionisation mode, 

respectively. 
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3.6.5.1 Positive Mode: 

Table 3.13 shows the potential biomarker masses for positive ionisation mode with the results from 

Experiment 4. 

Table 3.13. Comments on Potential Biomarker Masses Experiment 4 Positive Mode 

RT (min) Mass (Da) Predominant m/z Comments 

6.839 132.0683 133.0754 Present 

2.600 145.1467 146.1545 Not present in bleached samples MRS5 or MRS6 

 5.889 177.1262 178.1340 Present 

5.090 211.1307 212.1383 Present 

10.659 222.0647 223.0743 Present 

10.662 240.0784 241.0855 Present 

10.667 283.0838 284.0905 Present 

6.631 299.1808 300.1967 Present 

0.897 315.1466 316.1625 / 338.1417 Present 

9.019 399.2977 400.3033 Present 

9.244 421.2903 422.3058 Present 

7.662 431.2874 432.2965 Present in grey control hair too 

3.331 544.2704 545.2782 Not present in bleached samples MRS5 or MRS6 

4.027 588.2959 589.3034 Not Present 

5.285 646.3201 647.3279 Not Present 

 

Out of the 15 compounds that were searched for in the positive ionisation mode analysis, only 10 of 

them were also present only in the bleached samples throughout these 6 hair samples. There were 

two compounds with neutral mass of 588.2959 Da (4.027 min) and 646.3201 Da (5.285 min) that 

were not present in any of the bleached samples. Compounds 145.1467 Da (2.600 min) and 544.2704 

Da (3.331 min) were not present in MRS5 or MRS6 bleached samples, of which were a mixed colour 

of grey/black and brown/grey, respectively. Compound 431.2874 Da (7.662 min) showed presence of 

the peak in samples MRS4, MRS5 and MRS6 control samples, all of which have grey hair mixed with 

another colour. This suggests that the compound is present in grey hair as well as bleached hair. 
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3.6.5.2 Negative Mode: 

Table 3.14 shows the potential biomarker masses for negative ionisation mode with the results from 

Experiment 4. 

Table 3.14. Comments on Potential Biomarker Masses Experiment 4 Negative Mode 

RT (min) Mass (Da) Predominant m/z Comments 

6.825 160.0636 159.0561 Present 

4.851 243.0016 241.9938 Present 

4.970 320.0131 319.0049 Not Present 

4.982 374.0389 373.0311 Not Present 

9.909 403.3286 402.3205 / 448.3254 Present 

9.937 411.3147 410.3068 Present 

8.751 417.3069 416.2994 / 462.3051 Present 

9.393 447.3178 446.3099 Present 

1.975 459.1556 458.3269 Not Present 

8.570 463.3125 462.3050 Present 

10.545 519.3184 518.3099 Present 

 8.857 531.3003 530.2925 Present in grey control hair 

6.843 563.2899 562.2819 Not Present 

4.971 594.0312 593.0230 Not Present 

 9.928 669.4841 668.4763 Present 
  

3.7 Discussion 

3.7.1 Discussion on Experiment 1 – Investigation into Bleaching Procedure 

The bleach dissolved the hair samples, therefore leaving little, to no bleached samples left for 

weighing out. The bleaching procedure needed to be re-designed. Not chopping the hair samples 

before bleaching and leaving them with longer hair strands would be more ideal as it does not leave 

small sections vulnerable to the bleach. 

 

3.7.2 Discussion on Experiment 2 – Investigation into Sample Preparation 

Looking into the preliminary results, the concentration of the compounds present in the hair strands 

looked weak. There were concerns that it may not be ideal to try and gather structural information 

on a potential biomarker for bleached hair with samples that are weak. It was thought that more 

concentrated samples would be more ideal for the determination of biomarkers as more accurate 
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masses can be determined, enabling structural information to be gathered for accurate 

identifications. 

 

3.7.3 Discussion on Experiment 3 – Discovery of Potential Biomarkers 

Looking at the raw data, the peaks are looking good however they could be narrower and sharper. 

This may be due to the column particle size and therefore a 1.8uM diameter would give better 

resolution. The run time is also a little longer than it needs to be, there could be at least a minute 

saved from the wash at the end as it already reaching equilibrium before the run is completed. 

 

Looking at the data analysis results, there are a few false positives and some that have identified the 

wrong isotope as the parent ion, leading to the wrong mass declared as the neutral mass with all the 

software types. There are also several features picked out at the wrong RT and some that seem to 

have multiple masses at the same RT, however they all have multiple isotopes leading to the 

conclusion that they are co-eluting compounds rather than fragments of one larger compound. 

These have been corrected and a list of 15 significant potential biomarkers are listed in Table 3.15 - 

3.16. These are the most abundant masses that are present in more than one type of software, 

giving confidence that it is the best choice of biomarker since multiple pieces of software determined 

the compounds to be unique to bleached samples, minimising the chance that it is a one hit wonder 

or inaccurate mass or RT. It is of best interest for the biomarkers to elute during the middle of the 

run, staying away from the solvent front and the washes and so only the range 0.8 – 11.0 minutes 

have been included. The instrument that the potential biomarkers will be targeted on is used within 

the range 80 – 1000 m/z and therefore only compounds up to 800 Da have been chosen, though 

most compounds that are present in more than one piece of software seems to be between 400 – 

600 Da. 

 

The sample number for this Experiment was limited and so a wider range of hair types, across a 

larger sample set needed to be examined. The compounds shown in Tables 3.15 – 3.16 are to be 
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extracted in this wider sample range, to determine whether they are truly biomarkers for bleached 

hair samples. 

 

Positive Mode: 

Table 3.15. Potential biomarkers found in Experiment 3 Positive Mode 

RT (min) Mass (Da) Predominant m/z 

6.839 132.0683 133.0754 

2.600 145.1467 146.1545 

 5.889 177.1262 178.1340 

5.090 211.1307 212.1383 

10.659 222.0647 223.0743 

10.662 240.0784 241.0855 

10.667 283.0838 284/0905 

6.631 299.1808 300.1967 

0.897 315.1466 316.1625 / 338.1417 

9.019 399.2977 400.3033 

9.244 421.2903 422.3058 

7.662 431.2874 432.2965 

3.331 544.2704 545.2782 

4.027 588.2959 589.3034 

5.285 646.3201 647.3279 
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Negative Mode: 

Table 3.16. Potential biomarkers found in Experiment 3 Negative Mode 

RT (min) Mass (Da) Predominant m/z 

6.825 160.0636 159.0561 

4.851 243.0016 241.9938 

4.970 320.0131 319.0049 

4.982 374.0389 373.0311 

9.909 403.3286 402.3205 / 448.3254 

9.937 411.3147 410.3068 

8.751 417.3069 416.2994 / 462.3051 

9.393 447.3178 446.3099 

1.975 459.1556 458.3269 

8.57 463.3125 462.305 

10.545 519.3184 518.3099 

 8.857 531.3003 530.2925 

6.843 563.2899 562.2819 

4.971 594.0312 593.0230 

 9.928 669.4841  668.4763  

 
3.7.4 Discussion on Experiment 4 – Secondary Check of Potential Biomarker Masses 

The results show that there are compounds that have potential as biomarkers in Experiment 3 but 

lacked potential when analysed in Experiment 4. This could be for various reasons, though a major 

reason is the presence of the compound in the grey control hair, or the lack of a potential biomarker 

in the hair colours that weren’t used in Experiment 3 (mostly grey). There are some other 

compounds that are not present in Experiment 4 bleached samples, despite their strong presence in 

samples from Experiment 3. This shows that there is a need for repeat Experiments as these may be 

from instrument and/or solvent contamination. 

 

A compilation of the masses that are present in both Experiment 3 and Experiment 4 have been 

listed in Tables 3.17 & 3.18. This is a great start to determine possible biomarkers as these are 

shown to be present in a range of different hair types, only in the bleached samples and not in any 

control samples. 
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The following compounds in Table 3.17 are potential biomarkers determined in positive ionisation 

mode.  

Table 3.17. Biomarkers in Experiment 3 & 4 Positive Mode 

RT (min) Mass (Da) Predominant m/z 

6.839 132.0683 133.0754 

5.889  177.1262  178.1340 

5.090 211.1307 212.1383 

10.659 222.0647 223.0743 

10.662 240.0784 241.0855 

10.667 283.0838 284/0905 

6.631 299.1808 300.1967 

0.897 315.1466 316.1625 / 338.1417 

9.019 399.2977 400.3033 

9.244 421.2903 422.3058 

 

The following compounds in Table 3.18 are potential biomarkers determined in negative ionisation 

mode.  

Table 3.18. Biomarkers in Experiment 3 & 4 Negative Mode 

RT (min) Mass (Da) Predominant m/z 

6.825 160.0636 159.0561 

4.851 243.0016 241.9938 

9.909 403.3286 402.3205 / 448.3254 

9.937 411.3147 410.3068 

8.751 417.3069 416.2994 / 462.3051 

9.393 447.3178 446.3099 

8.570 463.3125 462.3050 

10.545 519.3184 518.3099 

 9.928 669.4841  668.4763  

 

The compounds in Tables 3.17 – 3.18 are to be taken forward for further investigation in possible 

future work to determine structural information and identifications. Using the current data, any 

possible annotations that have been found by using the Metlin 8.0 database have been listed below 

in Tables 3.19 & 3.20, however confirmation of these identifications has not been completed. This 

would require the standards of each to be ordered and MS/MS analysis to be completed by 

determining transitions of each compound and checking these create the same fragmentation 
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patterns in the spectrum. If there is no identification possible, then the empirical formula suggested 

in MassHunter Qualitative Analysis has been given instead. 

 
Table 3.19 shows possible annotations of the potential biomarkers determined in positive ionisation 

mode. Where annotations couldn’t be determined, a possible formula has been suggested from the 

accurate mass. 

Table 3.19. Identifications of biomarkers in Experiment 3 & 4 Positive Mode 

RT (min) Mass (Da) 
Putatively Annotated Compounds or 

Formula 
PubChem Compound 

Identifier (CID) 

6.839 132.0683 4-Methylpyrrolo[1,2-a]pyrazine 583433 

5.889 177.1262  C10H15N3 - 

5.090 211.1307 C7H20ClN4O - 

10.659 222.0647 Threoninyl-Cysteine 18218245 

10.662 240.0784 Chrysophanic acid 9-anthrone 68111 

10.667 283.0838 (E)-Avenanthramide D 15607909 

6.631 299.1808 C12H25N7S - 

0.897 315.1466 C10H19N8O4 - 

9.019 399.2977 C20H39N4O4 - 

9.244 421.2903 C22H46ClN2OS - 

 

Table 3.20 shows possible annotations of the potential biomarkers determined in positive ionisation 

mode. Where annotations couldn’t be determined, a possible formula has been suggested from the 

accurate mass. 

Table 3.20. Identifications of biomarkers in Experiment 3 & 4 Negative Mode 

RT (min) Mass (Da) 
Putatively Annotated Compounds or 

Formula 

PubChem Compound 
Identifier (CID) 

6.825 160.0636 3-methyl-2-Quinoxalinone 26384 

4.851 243.0016 
1H-pyrrole-2,3,4,5-tetracarboxylic acid  

(PTeCA) 
19377973 

9.909 403.3286 C20H43N4O4 - 

9.937 411.3147 Cyclopamine 442972 

8.751 417.3069 C18H39N7O4 - 

9.393 447.3178 C21H43N4O6 - 

8.570 463.3125 C20H37N11O2 - 

10.545 519.3184 C33H47NP2 - 

 9.928 669.4841 C30H67N7O7S - 
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3.7.5 Summary of Experiments 

Overall, there are several compounds in both positive and negative ionisation mode that have great 

potential as biomarkers for bleach in hair. These have been present throughout different samples, 

different sample preparations, different LC runs on different days etc., which shows that they are 

consistent so far. There are some possible identifications for these masses, though these are only 

preliminary from the neutral mass; no standards or MS/MS Experiments have been run/conducted. 

 

3.7.6 Limitations 

There are many limitations when determining possible biomarkers that need to be evaluated. Some 

of these limitations have been considered but were limited in this project due to the availability of 

resources and volunteers. 

 

The types and colours of hair available were limited to the range of volunteers. This means that 

despite the types of hair including fine, medium, thick, wavy, coiled and straight, only a small range 

were tested, with no samples of coiled or thick hair included. Fine, straight hair described most of the 

samples used; thick coiled hair may not include some of the potential biomarkers determined. Hair 

types are determined with genetics. The different type of hair may affect the uptake of bleach, and 

they will have different compounds in the hair meaning that the compounds present in the hair after 

cosmetic alteration may be different depending on the hair type. Hence, a range of different hair 

types was tested, though a wider range should be tested with multiple repeats of each. Ethnicity also 

plays a part in hair type, but it is unknown as to whether the ethnicity of a person may affect the 

potential biomarkers. Only three different ethnicities were tested during this project, which is clearly 

a very limited range and other volunteers should be sought, where possible. 

 

Similarly, the natural hair colour of a person affects the bleach biomarker availability. This is known 

through the discovery that some potential biomarkers that were discovered during Experiment Three 

in Section 3.6.3 were found to be present in grey control hair in Section 3.6.4. The differing levels of 
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melanin amongst the different hair colours mean that the bleach uptake is variable. Therefore, 

different concentrations of compounds will be present after bleaching different coloured hair. For 

example, light blonde hair will go extremely light blonde/white where-as black hair will only lighten 

to an orange/yellow colour. Therefore, a range of hair colours were tested, although a more 

extensive range is needed. Hair colours like auburn, strawberry blonde and albino were not tested 

which limits the reliability since these markers may not be present on these hair colours. 

 

It is known that compounds are present in different levels up and down the hair shaft. For example, 

PTCA is present throughout the hair but in varying concentrations therefore it may fall below a cut 

off value at one section of the hair, where-as it will be in significant concentration at another section. 

This is due to the different exposure time the hair has had to the atmosphere and UV light especially. 

Other compounds are likely to be affected like this also and therefore, the test needs to be 

conducted on a range of hair lengths with testing at each section from the proximal end to the distal 

end of a long section of hair. In this project, a variety of different hair lengths were used however it 

was unknown how far from the scalp the sections were on and therefore a more in-depth 

Experiment would need to be conducted to determine whether the concentrations are significantly 

different along the hair shaft. 

 

It has not been tested to see what happens chemically if someone was to dye their hair, then bleach 

it. This experiment was conducted only with completely untreated control hair, which was then 

bleached. A further Experiment with a wide selection of hair dye before bleaching could also be 

conducted. It is interesting to determine whether the markers are the same with both bleach and 

dye, or whether the presence of dye alters the biomarkers. It is also known that cosmetic procedures 

such as heat styling, affects the chemical compounds in hair and therefore it would need to be 

testing that these potential biomarkers are still present after bleaching and repeated heat styling. 

Effects of how the cosmetic bleaching procedure is conducted may alter the concentration also. The 

biomarkers need to be present in a range of different bleaching products, including products from 
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the high street shops and hair salons. When hair is bleached in a salon, a cosmetic solution called a 

‘toner’ is often used after bleaching to cover the yellow created by the bleach. It is unknown whether 

the toner affects the biomarker presence, and/or concentration, and so this needs to be investigated.  

 

A study on how any potential biomarker behaves over time would need to be conducted. It may 

decrease in concentration throughout the lifetime, or increase. Any changes need to be determined, 

which may be natural decrease from UV light. This also includes the effects of pollution and repeated 

washing of the hair throughout the lifetime. Certain brands of shampoo may remove the biomarker 

quicker than another and if it does, it is interesting to know whether this rate of decrease is 

comparable to the rate that drug incorporation in the hair shaft also decreases. 

 

Another thing to consider is that any biomarkers declared would need to be unique to bleached hair, 

so it needs to be confirmed that it is not present naturally in anything else, such as certain foods or 

drinks. It cannot be prescribed for any reasons in legal drugs or produced in illegal drugs as a bi-

product. There shouldn’t be any other reason that the biomarker can be in the hair other than bleach 

itself. 

 

Some other limitations of this project have made parts more difficult to determine a biomarker. The 

aim was to determine what additional information could be obtained whilst keeping the sample 

preparation and LC-MS analysis as closely related to the SoHT approved procedures as possible. 

Alternate potential biomarkers may have come to light if using different solvents, columns, different 

phases, such as HILIC based methods or ionic exchange. The databases that are accessible are also 

limited and therefore not many identifications have been possible. There was also no QC sample 

used which could’ve improved the Experiment as this would’ve given more confidence that the 

instrument was working at the same level consistently and no issues occurred mid analysis. The 

instrument is monitored daily with independent standards to ensure that the sensitivity and 
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resolution is maintained. This is run before and after each run so that any deterioration within the 

instrument parameters is detected and records the overall performance over time.  

 

3.8 Software Comparison and Discussion 

Data analysis of untargeted metabolomics studies presents a key challenge as it requires extensive 

processing of thousands of features from the raw MS data. There are multiple pieces of software that 

have been developed to handle this data processing, however it has not yet been studied whether 

the different pieces of software give the same results, or which one is best in terms of feature 

detection and unique compound analysis. It’s also interesting to discover which piece of software is 

the easiest to use, giving the most accurate results in the most simple, quickest way. 

 

The different pieces of software compared throughout Chapter 3 are: 

• XCMS Online 

• Mass Profiler (Agilent) 

• Mass Profinder (Agilent) 

• Mass Profiler Professional, MPP (Agilent) 

• MetaboAnalyst (Online) 
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Biomarker Detection 

In Tables 3.21 – 3.22, the presence of each potential biomarker across the different pieces of 

software is described in both positive and negative ionisation mode. 

Table 3.21. Table of biomarkers with description of presence (+) or absence (-) across the different pieces of software, 

in positive ionisation mode 

RT (min) Mass (Da) XCMS Online Mass Profiler Mass Profinder MPP MetaboAnalyst 

6.839 132.0683 - + + + + 

5.889 177.1262 + - + + + 

5.090 211.1307 - + - + - 

10.659 222.0647 + - - + - 

10.662 240.0784 - + + + - 

10.667 283.0838 - + + - - 

6.631 299.1808 - - - + + 

0.897 315.1466 - + + - - 

9.019 399.2977 + + - + + 

9.244 421.2903 + - - + + 

 

Table 3.22. Table of biomarkers with description of presence (+) or absence (-) across the different pieces of software, 

in negative ionisation mode 

RT (min) Mass (Da) XCMS Online Mass Profiler Mass Profinder MPP MetaboAnalyst 

6.825 160.0636 + - - - + 

4.851 243.0016 - + - - - 

9.909 403.3286 + + - + + 

9.937 411.3147 - + + + + 

8.751 417.3069 + + + + + 

9.393 447.3178 + + - + + 

8.570 463.3125 + + - + + 

10.545 519.3184 + - + + + 

 9.928 669.4841  + - - + + 

 

Looking at the Tables 3.21 – 3.22 there is one biomarker that is consistently present throughout all 

the different pieces of software, 417.3069 Da at 8.7 min in negative ionisation mode. There are no 

other masses that are extracted in all the software analysis results. There is a particular absence of 

243.0016 Da in the software results, despite it being published as a potential biomarker. Looking at 

the raw data, this is an up-regulated compound in bleached hair consistently, though compared to 

other features in the data it is low abundance. Therefore, it may have fallen through below the cut 

off level within the parameters in Mass Profinder, hence its absence in MPP and MetaboAnalyst as 

well. 
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All these masses in Tables 3.21 – 3.22 have been extracted in the raw data and give positive results 

for biomarker potential, showing that each piece of software has some issues since they are showing 

false negatives, as well as the false positives previously seen. Positive and negative ionisation mode 

give different reliability results, though overall MPP seems to be the most accurate as it has only 

missed 2 of the selected biomarker masses in positive mode and 2 masses in negative mode. Table 

3.23 shows the number of biomarkers, across both positive and negative mode, detected out of a 

possible 19 biomarkers, 10 in positive mode and 9 in negative mode. The table shows MPP gives an 

overall accuracy of 79% for the selected biomarker masses, which is the highest % overall. 

Table 3.23. Number of biomarkers detected overall in each piece of software, compilation of both positive and 
negative ionisation mode. 

Features Detected XCMS Online Mass Profiler Mass Profinder MPP MetaboAnalyst 

Overall Accuracy 
(Out of 19) 

11 12 8 15 13 

Overall Accuracy 
% 

58 63 42 79 68 

 

Mass Profinder analysis gives the least accurate results of only 42%. It can be assumed that this is 

due the data only having the one processing method, compared to MPP and MetaboAnalyst which 

get re-processed in the software after the Mass Profinder results are exported, with further 

statistical analysis. Looking into the raw tabulated data produced by Mass Profinder, all the 

biomarker masses from Tables 3.21 – 3.22 are present, however they also have a significant value in 

the ‘control’ column, suggesting that there is a sample with the compound present in the control 

group, hence it has not been flagged as a unique compound. These are not real peaks in the control 

samples when looking into the raw data and so the re-processing within MPP and MetaboAnalyst has 

captured the false positive within the control samples. Hence, they then appear as unique markers 

present only in bleached samples for the secondary data analysis in MPP and MetaboAnalyst. 

 

Overall Feature Detection 

Table 3.24 shows the number of features detected by each piece of software overall. The data are 

filtered so that the features must be present in 100% of samples, within at least one group, however 
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this was not possible to filter by this parameter in XCMS online, hence the large difference in features 

detected. 

Table 3.24. Number of features detected overall in each piece of software, with no filtering. 

Features Detected XCMS Online Mass Profiler Mass Profinder (MPP) (MetaboAnalyst) 

Positive Mode 27033 7471 5216 (5216) (5216) 

Negative Mode 8219 4387 3698 (3698) (3698) 

 

The overall features detected are the same for Mass Profinder, MPP and MetaboAnalyst because the 

data files were exported as .cef and .csv files from Mass Profinder for the data analysis in MPP and 

MetaboAnalyst. Therefore, the overall features detected from the raw data were not conducted 

using MPP and MetaboAnalyst. It is important to note that using the .cef and .csv files from Mass 

Profinder, the data are then re-analysed in MPP and MetaboAnalyst with statistical analysis. Hence, 

the results from each are different to each other with different presence of unique features.  

 

When comparing XCMS online, Mass Profiler and Mass Profinder, the most features were detected in 

XCMS online, then Mass Profiler followed by Mass Profinder. However, XCMS online did not give the 

ability to filter the features detected by ‘present in 100% samples in at least one sample group’ as the 

other pieces of software did. It can also be seen that the features detected in XCMS online are false 

positives as when the mass is checked in the raw data, a lot of these masses do not agree with the 

XCMS online results. Some of the peaks that it has picked are not ‘real’ as only the noise is 

integrated. The peak picking parameters have already been optimised and so it was determined that 

the software detects a significant number of false positives. Looking at the paper by Myers et al., 

there seems to be a several known problems with the peak detection algorithm in XCMS online, 

centWave, which causes many false positives 31-32.  
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Software Comments 

Looking at the individual pieces of software, Mass Profinder is a standout piece of software that 

would make the analysis more difficult without its use. It gives the ability to conduct peak picking 

with a wide range of parameters that can be adapted to the user’s needs, then exported as various 

formats (i.e., csv and cef files) that can be taken forward into other pieces of software. The visual 

details of the EICs and mass spectra given within the software means that the data can be checked 

internally. This enables the detection of retention time drift or other issues that may be occurring, 

such as decrease of abundance of one peak over the analysis run time, which suggests potential 

instability of the samples. The data can be filtered in many ways, such as ‘present in only 2 samples’ 

or ‘max abundance greater than 50,000’, all of which are customisable. The data can be exported and 

analysed directly in excel, though the results show that it is more beneficial to use another piece of 

software after Mass Profinder. The platform is free to use for those who purchase the Agilent 

MassHunter suite. 

 

Mass Profiler Professional (MPP) uses the .cef files generated from Mass Profinder and re-analyses 

the data with narrower constraints on each parameter, for example a 10 ppm mass error window 

rather than the 15 ppm window given in Mass Profinder. This enables the abundance of each feature 

can be checked, allowing further filtering of samples. This checking of the features means that there 

are some additional features that may be unique, or up/down regulated, to one sample group that 

was missed in the Mass Profinder analysis, but it also means that some features are filtered out that 

were previously tagged as potential biomarkers due to the narrower alignment or altered abundance 

filters. The use of the .cef files does mean that the results are dependent on those provided by Mass 

Profinder and so if the initial collected data isn’t accurate or is too constricted, the MPP results will 

also be inaccurate and potentially important data will be missed. The visual techniques available in 

MPP are very useful, especially the PCA plots that give a nice overview of the analysis results. The 

results tables can be filtered to the user’s needs, allowing features of a specified p-values or fold 

changes to be extracted into a separate table. This, along with the Venn diagrams and feature graphs 
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of unique and up/down regulated compounds, is a useful technique used for the determination of 

potential biomarkers. From the results, this software is shown to be reliable and accurate with its 

results, though it does have some false negatives. For academic purposes, MPP comes at a one off 

charge of £20,500 and updates within the version you buy are provided at no extra cost. If you wish 

to upgrade to the newest version, it comes at a cost of £11,600 and the license key is moved across 

so only one version can work at a time. E.g., if you purchase MPP 12, then 12.1, 12.2, 12.3 etc., can 

be used for free, but an upgrade fee for MPP 15.1 would be required. Given the accurate information 

that it provides in the simplest ways and the large range of analysis that can be conducted, the cost is 

justified.  

 

MetaboAnalyst provides the next most accurate results overall, after MPP. It uses the .csv files 

generated from Mass Profinder and is therefore dependent on the results from this, though there 

are other ways that the data can be inputted. It is a free website available to anyone online, and 

therefore is useful for many who do not have the means to cover the cost of MPP. It is possible to do 

multivariate statistical analysis, along with many other functions provided by MPP however it is not 

always as detailed with the plots given. It gives the basic plots but it is not able to customise each 

one, therefore showing it is more basic than MPP which is expected given the cost difference. It may 

also be more difficult to provide highly complex graphics using an online website, in comparison to 

the software provided by Agilent for MPP version 15.1. Each graphic and table provided within 

MetaboAnalyst online can however be downloaded as individual plots, images and pages, or the full 

analysis can be exported as a pdf report. MetaboAnalyst can also be used in conjunction with R, 

something that has not been investigated during this project due to time constraints and learning 

resources available.  

 

Mass Profiler can be used by inputting .cef files, or as the raw .d data files. The raw data files were 

used in this project and it shows that there are some inconsistencies compared to the other software 

used, however it gives some accurate results. It is quicker to get the results than it is using Mass 
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Profinder, however there are less graphics and it is more difficult to assess the results given. It gives a 

graph of compounds unique to a sample group which is useful, however it requires further checking 

of the data as a lot of times the results were inaccurate when the raw data was checked in 

MassHunter Qualitative. The parameters were optimised however, the results still showed a peak as 

absent in control samples when the raw data showed that it was in fact present. The reasoning 

behind this is unknown but assumed to be a clash within the chosen parameters not working for 

each feature selected. The platform is free to use for those who purchase the Agilent MassHunter 

suite although it is limited in the statistical analysis possible. It can only look at 1 vs 1 sample groups, 

so QC samples or blanks cannot be assessed at the same time as sample groups which is a limitation. 

It is useful for a quick overview of the data whilst waiting for more in-depth analysis conducted using 

Mass Profinder. 

 

XCMS online is the least accurate software used, and it has the most false positive features 

discovered, despite being the most cited pre-processing tool used in the literature 31. This has 

showed to be a problem with the peak picking conducted and potentially someone with more 

computer programming knowledge may know how to adapt all the parameters to optimise them 

further than the default settings. It has a variety of techniques and statistical analysis available, 

though these are basic and limited, with no ability to zoom or customise each one. There is a ‘help’ 

function on the website, though this never generates any response from the developers or experts. 

The website was free to use, though there is a way to pay for XCMS Plus at a yearly cost of 

approximately £7300 for a company, with renewals costing £3000 per year. Without access to the 

paid version, it cannot be determined whether it will be any more accurate or reliable than the free 

version. 

 

Overall, the best software program seems to be Profinder combined with MPP as it has a wide range 

of opportunities for feature extraction, biomarker discovery with visual features and reliable results. 

As someone who has access to Profinder and MPP, it is a combination of software techniques that 
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provide accurate results with visual ways to display the data in a simple way. It can be applied to a 

various range of samples and is easy to use, once you have acquired knowledge of the best 

parameters that work for your dataset. 

 

3.9 Conclusion 

3.9.1 Summary of Biomarker Results 

The data that has been gathered in this work has shown overall to be reproducible and reliable since 

there are multiple masses that have repeatedly been determined as potential biomarkers. A QC 

sample would’ve improved the Experiment and should be considered in the future. 

 

The statistical approach taken in this research has shown to provide a range of potential biomarkers, 

though also has provided with a significant number of random masses that are not of interest due to 

the lack of presence in repeat Experiments. The multivariate statistical analysis has shown some 

group separation however, it shows that the clustering also occurs within the samples taken from a 

person where the control and bleached samples from one person sometimes cluster closer than the 

overall bleached and control samples. This could be for a multitude of reasons including the 

cosmetics, diet, pollution, hair colour or ethnicity of a person being closely related to that of another, 

though being completely different to another person. The levels of melanin in hair will significantly 

affect the uptake of bleach and therefore it is more likely that those of similar hair colours will be 

clustered closer to those of similar natural hair colour than someone who has a totally opposite 

colour, especially albino or grey hair compared to black or blonde. 

 

Overall, this untargeted study has confirmed that there are differences between bleached and 

control hair samples in LC-MS analysis and a range of potential biomarkers have been given.  
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3.9.2 Summary of Software Comparison 

More than one processing software should be used to avoid missing the presence of a potential 

biomarker or missing the overall chemical signature of a sample group. Overall, the best software 

program pair is Profinder combined with MPP as it has a wide range of opportunities for feature 

extraction, biomarker discovery with visual features and the most reliable results. The statistical 

approach used shows a range of potential biomarkers in all the software types, though each one has 

provided a significant number of false positives, false negatives and several masses that lack 

consistency throughout repeat Experiments. Some software seems more reliable and accurate than 

others. The Mass Profinder and MPP results combined are the most accurate with most of them 

positively checked against the raw data. Mass Profiler provides significantly more false positives than 

the other platforms used, and Mass Profinder when used as a standalone piece of software also has 

many false positives. 

 

3.9.3 Future Work 

Now that there are some potential masses that could lead to be a biomarker for bleached hair, the 

next step would be to try and find out the identification of these compounds. The masses also need 

confirming on an even larger scale, with multiple different hair types. A wider selection of ethnicities 

and hair colours are needed, including albino and red hair, with a range of ages from children to 

elderly adults. This is to ensure that the compound isn’t present at any stage of a person’s life. The 

study on whether these masses occur in natural hair in any section along the hair shaft would need 

to be determined to ensure it is truly unique to bleached hair. The compounds would also need to be 

tested across a wide time scale to see how long it is detectable in the hair for, and if the rate in which 

it decreases is similar to the rate that the drug concentration also decreases.  
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4 – Differences in the Metabolite Profile Between a Control and 

Diseased Sample Set of Dried Blood Spots 

4.1 Aims 

This study investigated the difference in metabolic content between a control and diseased group to 

determine a biomarker for Major Depressive Disorder in people. The objective was to develop a 

reliable, repeatable and accurate workflow to determine if there are any possible biomarkers. The 

results obtained by the different types of comparison software packages used were assessed to 

determine if there are any differences between them; ideally, they should all give the same results. 

Using these liquid human blood samples, the untargeted comparison software techniques were 

evaluated to compare whether the same biomarkers are determined throughout. 

 

4.2 Introduction 

4.2.1 Use of Dried Blood Spot Analysis 

Dried blood spot (DBS) analysis is not over popular within the metabolomics industry with only few 

people using this technique. Blood based biofluids, such as serum and plasma, tend to have more 

extensive studies however they require stringent storage conditions and require specialist healthcare 

professionals to collect the samples. Metabolite degradation can occur when the samples are not 

stored in the correct conditions which can lead to false results 1.  

 

In 1913, Ivar Bang first described the use of dry blood spots however it wasn’t until 1963 that Robert 

Guthrie described the concept that blood, obtained by pricking the finger or heel and blotting it onto 

some filter paper, could be used to screen for different metabolic diseases in neonates in Scotland 2. 

Following this, dried blood spots have been used routinely since the 1960s for new-born child 

screening 3. Screening for phenylketonuria in neonates became a nationwide task in 1969-70 but 

since then, Guthrie cards have been collected routinely to screen for other disorders in infants 3. 
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More recently, the sample cards have been collected in over 20 countries to screen for congenital 

hypothyroidism, sickle cell disorders and HIV infections also 3. Previously, the use of dried blood 

spots has been restricted by the lack of sensitivity and specificity given the small volumes of blood 

however, recent advances in knowledge and instrumentation have overcome many of these 

problems. Given this, dried blood spot analysis is now a well-known technique used throughout the 

world 2.  

 

Dry blood spots are collected and stored on filter paper cards and therefore are an attractive 

alternative when it comes to storage, shipment and analysis of liquid blood samples. Collection of the 

blood spot sample can be done in various ways, however, one of the most common methods for the 

preparation is the use of fingerstick lancets. It is minimally invasive in comparison to other sample 

collection techniques, such as venepuncture where a specially trained healthcare professional 

(phlebotomist) takes whole blood. DBS collection also is beneficial as it only requires a small amount 

of blood, which can be collected by the patients themselves by following a set of instructions. This 

can then be sent back to the labs by regular mail therefore only requiring low cost 4. The lancet is 

therefore a great method of choice given that it is easy to sample, painless, cheap and gives a large 

representation of a person in one small drop of blood. The risk of bacterial contamination is minimal 

also and the storage time of DBS sample cards is relatively long in comparison to liquid blood samples 

due to their stability of analytes when dried and kept in a packet with a desiccator. They also can be 

kept at room temperature (with a desiccant in the packet with the card) without worsening the 

results of the analysis. Unlike the use of blood plasma, the sample does not need preparing 

immediately 5. DBSs are also less dangerous to handle than other biofluids, such as blood and plasma 

as the dried blood inactivates pathogens, lowering the biohazard risk 5.  

 

However, due to the small volume of blood collected in DBS techniques, the potential target analyte 

may be of a rather low concentration, potentially less than 1 ng/L. This would require an extremely 

sensitive method for the detection and quantification of the substance; mass spectrometry is the 
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most common method used for such analysis 6-8. Another problem is that it is difficult to know how 

much blood is collected on the filter card each time, therefore direct comparison with another 

sample may be difficult. When the blood is spotted, there is a procedure to follow which includes 

letting the 2nd drop of blood flow onto the card itself with no direct contact of the finger with the 

card. It is difficult to know whether the same amount of blood drops each time since the diameter of 

the spot will be different each time and the loading of the spot will be different. The diameter can be 

overcome by using the same width-sized hole punch each time, but the height of the spot is not 

controlled. The viscosity of each person’s blood will also be different and therefore assessing 

whether the method is working correctly can be difficult.  

 

It is difficult to obtain accurate assessment of analyte recovery due to factors such as storage 

conditions and haematocrit levels, which affects the viscosity of blood with resulting effects on the 

blood droplet diameter and height. This will in turn affect the distribution of analytes on the paper, 

consequently affecting the potential analyte recovery. Haematocrit (HCT) level is the volume of red 

blood cells in the blood, higher HCT level results in a small, dried blood sample and a lower HCT level 

results in a larger dried blood sample. This is a problem as when a hole punch of the same diameter 

is used on all samples, there is varying amounts of blood being extracted due to the differences in 

height caused by the HCT level.  

  



Megan Scott 

150 

 

Figure 4.1 shows the difference that the HCT level of a person can cause when spotting blood onto 

the card.  

 

These HCT issues are partly why DBS analysis isn’t as widely accepted in the clinical world, despite 

the various attempts to overcome the problems 9. Some of these attempts include: 

1. Using volumetric DBS in combination with whole-spot analysis (e.g., 20 µL spots as well) 

2. Pre-assessing the donor’s haematocrit level before sampling, using calculations post-analysis 

to counter for the differences 

3. Analysis of the relationship between the HCT level in combination with the spreading of DBS 

sample area. 

 

The use of an internal standard (ISTD) in the analysis can help this if it is sampled at an early stage of 

the process. The ISTD can help with assessing the recovery of analyte from DBS and the analysis of 

the analyte by the LC-MS method. Collection cards that are pre-treated with ISTD to ensure that the 

blood and ISTD are both subjected to the same extraction effects are available. However, this is not 

feasible in many different studies with the difficulty of getting the cards pre-treated. It is possible to 

treat the spots with the ISTD at the solution preparation stage, ready for the elution/extraction. In 

this case, it is still subjected to the same extraction as the metabolites getting eluted from the DBS 5. 

The process of sample punching with either manual or semi-automatic punchers on the card can lead 

to carryover between samples, therefore it is important to ensure that adequate ‘cleaning’ is done in 

between samples. It is suggested that punching two blank cards in between each spot prevents any 

cross-contamination from occurring 10. 

Spot Height 

High HCT level Low HCT level 

Figure 4-1. Figure showing the differences in blood spot depending on the HCT levels within a person. 

High HCT levels means the blood makes a smaller spot with a larger spot height. Low HCT levels 
creates a larger spot with a smaller spot height. 
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Storage conditions affect the samples, with the use of a desiccator and temperatures part of the 

questions as to how each one effects the metabolite concentration over time. As well as these 

practical difficulties, there are also several other difficulties to do with the sample contents. These 

include the possible differences of the metabolome for people with varying sex, age, body mass 

index (BMI), diet, metabolism pathways. Two people with the same diseased state will have varying 

compounds in the blood for many factors such as a different diet, and different time passed between 

their last food and drink intake. Other factors such as disease states each person may already have 

can also cause differences, such as someone who has diabetes may have differences in the 

metabolism pathway as well as differences within the blood. All these factors are difficult to control 

and therefore, only age and gender matched samples tend to be used, with a large sample set that 

should hopefully cover a range of different personal states.  

 

In recent years, the use of DBS has significantly increased into new, diverse fields of applications such 

as therapeutic drug monitoring, forensic toxicology, toxic and pharmacokinetic studies and 

environmental pollution control 11-12. 

 

4.2.2 Use of DBS Analysis with Mental Health Conditions 

According to World Health Organisation, Mood disorders affect approximately 400 million people 

worldwide with bipolar disorder (BD) and MDD being in the top 20 disorders responsible for the loss 

of years lived, both being characterised by low energy and mood levels 13. In the general primary care 

setting, only half of patients are correctly diagnosed with MDD and therefore there is a need to 

develop a diagnostic test for more accurate, early diagnosis 14-16. Individuals suffering with MDD 

often experience debilitating, recurrent symptoms along with a high level of psychiatric and somatic 

comorbidities resulting in the decreased quality of life and increased mortality 14-16. Those suffering 

often find there are further implications of the disease by experiencing a heavy burden in many other 

areas of their lives and expanding the direct impact of the disease 17. It is predicted that by 2030, 

MDD will be the most debilitating disorder across the world and the largest burden of global disease 
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with associated costs of approximately £85 billion (US $102.9 billion) 13,18. MDD currently has no 

objective tests; it relies on the clinical evaluation of self-reported symptoms due to a limited 

biological understanding. The diagnosis is outlined in formal classification systems, such as the 

Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) 19-20. The clinical 

evaluations given by general practitioners (GPs) are usually time restricted and can be subjective; 

each GP may diagnose something different and therefore MDD is often over-, under-, or 

misdiagnosed. Based on a study of over 50,000 people, only 47% of MDD patients are correctly 

diagnosed by GPs 21. Patients with BD often are miss-diagnosed with MDD due to the initial 

depressive episodes that can be mistaken for the depressive episodes associated with MDD 22. There 

is often an 8-10 year delay in a BD diagnosis, including the initial symptom manifestation until the 

psychiatric evaluation, until the correct diagnosis 23. These current issues also overlap with the 

reluctance a patient may feel to seek help, the shortage on mental health practitioners and limited 

focus on mental health in primary care 24. Due to the wrong diagnosis, patients often do not receive 

the adequate treatment which is detrimental on the following years of their lives. This outlines the 

clear need for an accurate and reliable test for early diagnosis of MDD, resulting in more effective 

treatment and care for the patients.  

 

Despite the various studies into biomarkers, at the current time there are no diagnostic biomarkers 

currently implemented in routine clinical practices for psychiatric disorders 25. There is an interest 

into blood-based biomarkers of MDD due to growing evidence that disease-related alterations can be 

detected by the peripheral system 19. Hence, various studies have been conducted into looking at the 

blood-based biomarkers of such conditions, but these have largely relied on the use of 

serum/plasma. Dried blood spots offer a novel sampling technique given the multiple advantages 

when it comes to the implementation of a possible diagnostic test, including the ease of home-

testing, which is important when thinking about the context of the mental condition the patients will 

be subject to. Given the complexity of psychiatric disorders, there is a high threshold for identifying 

and validating any possible biomarkers and therefore, rather than one, a panel of multiple 
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biomarkers would be preferable. The changes in the protein concentration of the blood have been 

investigated however the metabolite changes are yet to be explored but DBS sampling for biomarker 

discovery holds promise for the development of a rapid, cost-effective diagnostic tests, especially 

given the challenges for patient recruitment in psychiatric disorders 26-27. The strengths of mass 

spectrometry make it an ideal technique for psychiatric diagnosis due to the ability to quantify many 

analytes, the high specificity, high sensitivity and reproducibility. 

 

4.2.2.1 Introduction into the Project 

The samples collected in this study were from a project started by a group at the University of 

Cambridge, with the intention to develop molecular diagnostics for major neuropsychiatric disorders. 

The idea is to determine the cellular mechanisms that regulate the expression of possible biomarkers 

which are altered when in individual is subjected to a depressive or uplifted state, with a further plan 

to develop novel therapeutic strategies. Over the years, this group has conducted many studies 

relating to different neuropsychiatric disorders and recently focused on trying to differentiate 

between major depressive disorder (MDD) and bipolar. They have collected a range of dry blood 

spots (DBSs) of people either diagnosed with either of the two disorders, or completely healthy. 

There is an interest is trying to differentiate people with low mood from those with MDD and 

therefore they performed a proteomics study, combined with a digital mental health assessment, on 

DBS samples collected. The results were greatly promising, with 5 proteins showing important 

predictors of MDD along with 4 sociodemographic, clinical and personality characteristics 19. These 

characteristics were poor self-rated mental health, high BMI, reduced daily experiences with positive 

emotions and tender-minded 19. As proteomics is only based on larger molecules requiring heavy 

sample preparation and running times, a metabolomics study of the same raw samples to determine 

whether there is a possible change in the blood when the person is subjected to MDD, is of interest.  

 

The study is part of a larger ‘Delta Study’ launched in 2018 by Cambridge Centre for Neuropsychiatric 

Research (CCNR) in collaboration with Psyomics Ltd. The overall aim of the study was to develop 
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tests based upon DBS samples and novel digital mental health assessments, to be used to diagnose 

individual patients presenting with subclinical low mood with either BD or MDD, with a secondary 

objective of achieving earlier, and more accurate diagnosis of MDD. A total of 5422 participants were 

recruited through various means, with strict recruitment inclusion criteria. However, after the 

psychiatric assessment through digital and telephone interviews and DBS sample collection, whilst 

fasting at the time of sample collection and presenting with at least a low mood, only 495 

participants were eligible for the study. The others were excluded were for various reasons such as 

wrongly diagnosed, no sample collection provided, not fasting during sample collection and/or not 

presenting with low mood at the time of sampling. Of these, 232 patients had a previous MDD 

diagnosis, where-as 263 had no previous MDD diagnosis. A further 174 participants were excluded at 

this point having no major depressive episodes (MDE) within the past 1-6 months. Consequently, 130 

participants were then declared to have subclinical low mood, 40 patients with new current MDD 

(MDE within the past month), 53 with already established current MDD (MDE within the past month) 

and 72 with established non-current MDD (MDE within the past 6 months, but not within the past 1 

month). Within this study, Mann-Whitney U tests were conducted to determine whether the use of 

antidepressant medication were associated with the proteomic biomarkers determined to be 

indicative of MDD, but with p-values of 0.05, these were shown to not be significantly different. A 

PCA plot also showed minimal separation between the antidepressant users and non-users, showing 

that the use of these medications does not affect the results. 

 

It is to be noted that this work with dried blood spots was conducted at the University of Cambridge 

following the guidance from the Human Tissue Authority. This Delta Study was approved by the 

University of Cambridge Human Biology Research Ethics Committee, approval number ‘HBREC 

2017.11’. Hep B immunisation was taken by Keele University Occupational Health Service, with 

completion by August 2019. 
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4.3 Materials 

Water, methanol (MeOH), acetonitrile (ACN), formic acid and ammonia solution (25% in water) of 

optima LCMS grade were obtained from Fisher Scientific (Loughborough, U.K.). ESI-L low 

concentration tuning mix and reference peak markers were purchased from Agilent Technologies 

(California, USA). The analysis was performed using Agilent Technologies 1290 Infinity II UHPLC 

system, coupled to an Agilent Technologies 6550 Accurate-Mass Quadrupole-Time-of-Flight mass 

spectrometer with iFunnel source. The samples were obtained by the group at University of 

Cambridge. 

 

4.4 Method Development 

The dried blood spots were collected by Cambridge Centre for Neuropsychiatric Research (CCNR) by 

getting a fasted participant to prick their fingertip with a lancet. The first drip is wiped away with 

cotton ball and the following 3 – 5 drips are collected by the supplied DBS filter paper. These are left 

to dry and then put into a small pouch with a desiccator for storage till they are ready for analysis. 

4.4.1 Sample Preparation and Chromatographic Methods 

Different sample preparation methods were trialled to determine which is the most effective at 

extracting small molecules from the DBS samples. Random volunteer-DBS cards were used for the 

method development as to not waste the study samples. For metabolomics, a short, simple sample 

preparation method is required as to not change the metabolome and make the procedure as quick 

as possible. Therefore, four methods were chosen based on a literature search. The blood samples 

were prepared in duplicate, and a blank card was also prepared to match each preparation.  

• Sample Preparation 1 

A 3mm hole punch was used to punch a hole in the blood spot (or an empty blood spot card for the 

blank) which was placed in the centrifuge tube. To this, 40 L of LCMS grade water was added and 

placed on the incubator at 40 °C, whilst shaking at 200 rpm for 10 minutes. Into this tube, 160 L of 

50:50 v/v methanol: acetonitrile was added, and the samples were incubated at 40 °C, whilst shaking 
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at 200 rpm for 50 minutes. The samples were then centrifuged for 5 minutes at 9800 RCF and 

transferred to an LC vial for analysis.  

• Sample Preparation 2 

A 3mm hole punch was used to punch a hole in the blood spot (or an empty blood spot card for the 

blank) which was placed in the centrifuge tube. To this, 200 L of 30:30:40 v/v/v methanol: 

acetonitrile: 0.01% formic acid in water was added, and the samples were incubated at 40 °C, whilst 

shaking at 200 rpm for 1 hour. The samples were then centrifuged for 5 minutes at 9800 RCF and 

transferred to an LC vial for analysis.  

• Sample Preparation 3 

A 3mm hole punch was used to punch a hole in the blood spot (or an empty blood spot card for the 

blank) which was placed in the centrifuge tube. To this tube, 200 L of methanol was added, and the 

samples were incubated at 40 °C, whilst shaking at 200 rpm for 1 hour. The samples were then 

centrifuged for 5 minutes at 9800 RCF and transferred to an LC vial for analysis.  

• Sample Preparation 4 

A 3mm hole punch was used to punch a hole in the blood spot (or an empty blood spot card for the 

blank) which was placed in the centrifuge tube. 200 L of LCMS grade acetonitrile was added, and 

the samples were incubated at 40 °C, whilst shaking at 200 rpm for 1 hour. The samples were then 

centrifuged for 5 minutes at 9800 RCF and transferred to an LC vial for analysis.  

 

The samples were analysed using Agilent 1290 Infinity II UHPLC system, coupled to a 6550 Q-ToF with 

iFunnel source. The column used was an Agilent Eclipse Plus C18 (2.1 x 100mm, 1.8 µM particle size) 

as a starting point for reversed-phase analysis. The mobile phases were chosen to keep it a simple 

procedure, as they are the solvents that the sample is dissolved in. The formic acid is added to aid 

ionisation of molecules in the mass spectrometer.  
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Table 4.1 shows the LC-MS method used for the initial analysis given the shallow gradient, which is 

repeated in positive and negative ionisation mode. 

Table 4.1. RP-LC-MS Method, with gradient for development 

HPLC-MS  

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Agilent Eclipse Plus C18 RRHD. 2.1 x 100mm, 1.8 m 

Oven (ºC) 40°C 

Pump 
  
  
  
  
  
  
  
  
  
  

Mobile Phase A 0.1% Formic Acid in LCMS Water 

Mobile Phase B 0.1% Formic Acid in 50/50 LCMS Acetonitrile/Methanol 

Flow Rate 0.4 mL/min  

Gradient 
  
  
  
  
  
  

Time / (min) %A %B 

1.0 95 5 

11.0 5 95 

11.1 2 98 

12.0 2 98 

12.1 95 5 

15.0 95 5 

Runtime (min) 15 

Injector Volume (µL) 2 

MS               
  
  
  
  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve & -ve 

Source –Dual Jet 
Stream ESI  
  
  

Gas temp 200°C Gas flow 14  L/min 

Sheath Gas temp 350°C Sheath gas flow 11  L/min 

Nebuliser 
pressure 

241 kPa Nozzle Voltage 100 V 

VCap 3500 V Fragmentor 380 V 

 

Table 4.2 and Table 4.3 shows two methods for HILIC analysis which are to be compared and 

optimised for these DBS samples. The gradient method was optimised though the most 

advantageous column and mobile phase combination are to be determined. The first method uses an 

Agilent HILIC-Z column with ammonia used as an additive in the mobile phases. 
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Table 4.2 showing the HILIC method 2: 

Table 4.2. HILIC_LC-MS Method 1. 

The gradient is for development and column/mobile phases for comparison 

HPLC-MS _ HILIC 1 

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Agilent InfinityLab Poroshell 120 HILIC-Z. 2.1 x 150mm, 2.7 m 

Oven (ºC) 40°C 

Pump 
  
  
  
  
  
  
  
  
  
  

Mobile Phase A 0.3% NH3 in LCMS Optima Water 

Mobile Phase B 0.3% NH3 in LCMS Optima Acetonitrile 

Flow Rate 0.4 mL/min  

Gradient 
  
  
  
  
  

Time / (min) %A %B 

1.5 15 85 

14.0 20 60 

16.0 40 60 

16.1 15 85 

20.0 15 85 

Runtime (min) 20 

Injector Volume (µL) 2 

MS               
  
  
  
  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve (-ve) 

Source –Dual Jet 
Stream ESI  
  
  

Gas temp 200°C Gas flow 14  L/min 

Sheath Gas temp 350°C Sheath gas 
flow 

11  L/min 

Nebuliser 
pressure 

241 kPa Nozzle 
Voltage 

100 V (1000 V) 

VCap 3500 V Fragmentor 380 V 
 

The second method for comparison with the HILIC method in Table 4.2 is seen in Table 4.3 where the 

column and mobile phases are changed. The column for comparison is Waters XBridge Amide 

column, used with ammonium formate as a buffer in the mobile phases. 
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Table 4.3 showing the HILIC method 2: 

Table 4.3. HILIC_LC-MS Method 2. 

The gradient is for development and column/mobile phases for comparison 

HPLC-MS _ HILIC 2 

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Waters XBridge Amide 3.5µm, 2.1 x 150 mm 

Oven (ºC) 35°C 

Pump 
  
  
  
  
  
  
  
 
  

Mobile Phase A 10mM Ammonium Formate at pH 3 in 90:10 Water:MeCN 

Mobile Phase B 10mM Ammonium Formate at pH 3 in 90:10 MeCN:Water 

Flow Rate 0.4 mL/min  

Gradient 
  
  

Time / (min) %A %B 

1.5 0 100 

10.0 40 60 

12.0 40 60 

12.1 0 100 

18.0 0 100 

Runtime (min) 20 

Injector Volume (µL) 2 

MS               
  
  
  
  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve (-ve) 

Source –Dual Jet 
Stream ESI  
  
  

Gas temp 225°C Gas flow 11  L/min 

Sheath Gas temp 350°C Sheath gas 
flow 

10  L/min 

Nebuliser 
pressure 

241 kPa Nozzle 
Voltage 

100 V (1000 V) 

VCap 3000 V Fragmentor 380 V 

 

4.4.2 Sample Repeatability 

During this Experiment, the procedure followed is one that the group adhere to where Volunteer 

DBSs are used as QC samples. This is due to the low volume of actual DBS samples available; a pooled 

QC sample could not be made accurately and efficiently. Volunteer DBS (VDBS) cards are sample 

cards that have been made by a volunteer in the lab, this can be anyone involved the group at 

Cambridge and the identity of the volunteer is kept anonymous on the card. These are usually 

sampled, left to dry for 24 hours then stored at RT in a small bag with desiccators in, away from light 

and heat. For this short Experiment, VDBS cards were used to test the repeatability of the instrument 

and the sample preparation. This Experiment used 3 different dried blood spots for the extraction 

procedure. Alongside these samples, 4 standards were also used for compounds that are assumed to 

be in the blood; these are tryptophan, theobromine, theophylline and caffeine but these were only 

used as peak markers, therefore the concentration of the standard is unknown. The sample 
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preparation was kept the same for each of them, using the same sample preparation and LC methods 

chosen in Section 4.4.1.  

Inter-sample Repeatability 

Each dried blood spot card has space for 5 spots from the same one person, therefore inter-sample 

repeatability can be examined. Peak markers from the 4 chosen standards were run on the method 

to accurately extract the compound from the blood spot. This ensures that compounds are extracted 

from the spot, as well as determining how repeatable the chosen workflow is. Using the sample 

preparation chosen from Section 4.4.1, 3 samples were extracted and run on the same LC method 

stated in Table 4.1. 

Intra-sample Repeatability 

The same sample vial was injected 6 times to determine whether the instrument and method were 

working well. This intra-sample variance needs to be kept to a minimum given the larger inter-

sample variance. If this was kept to the minimum, then this allows for more variation within the 

sample preparation. 

 

4.4.3 Sample Stability 

The final analysis would take multiple days to complete and therefore would be in the autosampler 

for multiple days at room temperature. Therefore, the stability of the samples was assessed. 

Randomly selected samples were run four days apart to see if there are any changes over time. These 

samples were run on the LC method in Table 4.1 and were samples prepared as best determined in 

Section 4.4.1.  

 

  



Megan Scott 

161 

 

4.5 Results 

4.5.1 Sample Preparation and Chromatographic Methods 

Since the components of the blood were unknown, it was assumed that the “best” sample 

preparation method and LC-MS method was the one that found the greatest number of features 

when using Agilent’s ‘Find by Molecular Feature’ in ‘Agilent MassHunter Qualitative Analysis’ 

software. For consistency, the blank card samples were also analysed using this feature extraction 

method for each sample preparation to ensure that the features were genuinely extracted from the 

blood spot, and not from the card matrix. The molecular feature extraction (MFE) results are given in 

the Table 4.4 and Table 4.5 for positive and negative ionisation mode, respectively. The overall 

number represents the average of A and B repeats, minus the number of features found in the blank 

card. 

Table 4.4. Molecular Feature Extraction for Positive Ionisation Mode showing the number of features found in each 
sample and an average number of features found, minus the card blank 

  No. of Features 
Average No. of Features  

(minus Card Blank) 

Prep Method 1 

A 3578 

385.5 B 3609 

Card Blank 3208 

Prep Method 2 

A 3498 

278.0 B 3566 

Card Blank 3254 

Prep Method 3 

A 3188 

305.5 B 3133 

Card Blank 2855 

Prep Method 4 

A 3045 

355.5 B 3164 

Card Blank 2749 
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Table 4.5. Molecular Feature Extraction for Negative Ionisation Mode showing the number of features found in each 
sample and an average number of features found, minus the card blank 

    No. of Features 
Average No. of Features  

(minus Card Blank) 

Prep Method 1 

A 2393 

844.0 B 2533 

Card Blank 1619 

Prep Method 2 

A 1996 

255.0 B 1882 

Card Blank 1684 

Prep Method 3 

A 1946 

651.0 B 2112 

Card Blank 1378 

Prep Method 4 

A 2090 

718.5 B 2229 

Card Blank 1441 

 

In the tables, both positive and negative ionisation mode showed that the method that gave the 

greatest number of features consistently is sample preparation method 1. This is thought to be due 

to the wetting of the DBS card before using the extraction solvents. 

 

The HILIC method development compared the two different column phases and mobile phases. The 

aim was to determine the method that gave the best separation and the greatest number of 

features. In positive ionisation mode, method HILIC 1 in Table 4.2 showed overall 1681 features 

compared to only 1134 features extracted using method HILIC 2 (Table 4.3). Therefore, the method 1 

was determined to be most appropriate going forward. 
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Figure 4.2 shows the compounds extracted using HILIC method 1: 

 

Figure 4-2. All 1681 compounds extracted using HILIC method 1 

The compounds are spread across the whole run time, with the last compound eluting at 17 minutes 

where the wash period is. There are 1681 compounds extracted from sample 1 on this method. 

Figure 4.3 shows the compounds extracted using HILIC method 2: 

 

Figure 4-3. All 1134 compounds extracted using HILIC method 2 

The compounds are not spread across the whole run time, they are only within the first 9 minutes of 

a 20 minute run analysis time. There are no significant peaks except those at 1 minute and therefore 

shows this method is not ideal. 

 

The comparison of the extracted compounds was repeated with other samples, which all showed 

that the HILIC method 1 extracted a greater number of features with a better spread across the 

whole analysis time. Therefore, it was decided that HILIC method 1 is the best method. 
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4.5.1.1 Summary of Method Decisions 

• The sample preparation method conducted was as follows: 

A 3mm hole punch was used to punch a hole in the blood spot (or an empty blood spot card 

for the blank) which was placed in the centrifuge tube. To this, 40 L of LCMS grade water 

was added to the sample and placed on the incubator at 40 °C, whilst shaking at 200 rpm for 

10 minutes. 160 L of 50:50 v/v methanol: acetonitrile was added, and the samples were 

incubated at 40 °C, whilst shaking at 200 rpm for 50 minutes. The samples were then 

centrifuged for 5 minutes at 9800 RCF and transferred to an LC vial for analysis.  

• The reversed phase liquid chromatography (RP-LC) method used is shown in Table 4.6. There 

is a slight development from the previous method to create an even shallower gradient than 

previously shown.  

Table 4.6. RP-LC Method to use 

HPLC-MS  

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Agilent Eclipse Plus C18 RRHD. 2.1 x 100mm, 1.8 m 

Oven (ºC) 40°C 

Pump 
  
  
  
  
  
  
  
  
  
  

Mobile Phase A 0.1% Formic Acid in LCMS Water 

Mobile Phase B 0.1% Formic Acid in 50/50 LCMS Acetonitrile/Methanol 

Flow Rate 0.4 mL/min  

Gradient 
  
  
  
  
  
  

Time / (min) %A %B 

1.0 98 2 

11.1 2 98 

12.0 2 98 

12.1 98 2 

15.0 98 2 

Runtime (min) 15 

Injector Volume (µl) 2 

MS               
  
  
  
  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve (-ve) 

Source –Dual Jet 
Stream ESI  
  
  

Gas temp 200°C Gas flow 14  l/min 

Sheath Gas temp 350°C Sheath gas 
flow 

11  l/min 

Nebuliser 
pressure 

241 kPa Nozzle 
Voltage 

100 V (1000 V) 

VCap 3500 V Fragmentor 380 V 

 

• The HILIC method to be used, which should show the compounds that are not eluting in the 

main analysis region on the RP-LC method, is shown in Table 4.7. 
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Table 4.7. HILIC Method to use 

HPLC-MS 

Instrument Agilent 1290 Infinity II UHPLC + 6550 Q-ToF with iFunnel 

Column Agilent InfinityLab Poroshell 120 HILIC-Z. 2.1 x 150mm, 2.7 m 

Oven (ºC) 40°C 

Pump 
  
  
  
  
  
  
  
  
  
  

Mobile Phase A 0.3% NH3 in LCMS Optima Water 

Mobile Phase B 0.3% NH3 in LCMS Optima Acetonitrile 

Flow Rate 0.4 mL/min  

Gradient 
  
  
  
  
  
  

Time / (min) %A %B 

1.5 15 85 

14.0 20 60 

16.0 40 60 

16.1 15 85 

20.0 15 85 

Runtime (min) 20 

Injector Volume (µL) 2 

MS               
  
  
  
  

QTOF/QQQ/TOF Mass Spec Type: QTOF Mode +ve (-ve) 

Source –Dual Jet 
Stream ESI  
  
  

Gas temp 200°C Gas flow 14 L/min 

Sheath Gas temp 350°C Sheath gas 
flow 

11 L/min 

Nebuliser 
pressure 

241 kPa Nozzle 
Voltage 

100 V (1000 V) 

 

4.5.2 Sample Repeatability 

Inter-sample Repeatability 

Figure 4.4 shows the overlaid TIC of three different samples from one person.  

 

Figure 4-4. Overlay TIC of three different samples from one person. 

TIC traces overlay perfectly with no additional or absent peaks therefore repeatable preparation. 

The trace looks repeatable and therefore each of the masses were extracted in the samples to 

determine the area of each peak. Table 4.8 shows the peak areas, with the mean, standard deviation 

(SD) and the percentage relative standard deviation (%RSD). 
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Table 4.8. Table showing peak areas throughout three repeat samples. 

The table includes the mean, standard deviation and %RSD of peak areas of theobromine, theophylline, caffeine and 
tryptophan. 

 Theobromine Area Theophylline Area Caffeine Area Tryptophan Area 

A 1738884 889906 2848514 340245 

B 1437570 788448 2486777 281758 

C 1512551 851487 2780422 295411 

Mean 1563002 843280 2705238 305805 

SD 156864 51224 192232 30597 

RSD% 10.0 6.10 7.10 10.0 

 

At a parts per billion (ppb) level, an acceptable %RSD is approximately 10% or below, though FDA 

guidance shows accepted RSD up to 30% depending on sample matrix and analyte chemistry, in 

metabolomic analysis. The FDA also states that ±15% RSD is good for targeted analysis, though the 

target for repeatable analysis is below 5. It is assumed that these compounds are present in ppb 

levels and therefore each %RSD is accepted, although they are on the upper limits. This variance can 

be expected from 3 separate preparations from 3 spots on one card for compounds at such low 

levels on a difficult sample matrix. 

Intra-sample Repeatability 

To test the repeatability of the injections, one sample was injected multiple times. Figure 4.5 shows a 

TIC overlay of 6 repeated injections from one sample.  

 

Figure 4-5 TIC overlay of 6 repeated injections. 

TIC overlay perfectly, with no additional or absent peaks therefore repeatable injections. 

The traces were repeatable, and no differences can be seen suggesting the method was working 

well. The same 4 masses from the inter-sample repeatability Experiment were extracted to 

determine if these compounds are repeatable across the 6 injections. The abundance of each 
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compound across the six repeated injections in tabulated in Table 4.9. Again, the mean, SD and %RSD 

can also be found in this table for each compound. The %RSD should be below 2% for a highly 

reproducible method.  

Table 4.9. 6 Repeat injections showing the mean, SD and %RSD also of peak areas of theobromine, theophylline, 
caffeine and tryptophan. 

  Theobromine Area Theophylline Area Caffeine Area Tryptophan Area 

1 1764945 893474 3297069 374251 

2 1728562 889798 3177846 403920 

3 1728664 900283 3144723 363836 

4 1718662 913916 3217220 359664 

5 1761691 905124 3204252 376069 

6 1733707 870933 3244004 364843 

Mean 1739372 895588 3214186 373764 

SD 19207 14797 52938 16074 

RSD% 1.10 1.65 1.65 4.30 

 

Tryptophan has the largest RSD however it is still below 5% which is the ‘good’ acceptance for ppb 

level compounds. Three of the four compounds have a %RSD of less than 2 which shows the 

instrument and LC method are highly reproducible and reliable. 

 

4.5.3 Sample Stability 

To check the sample stability over four days, randomly selected samples were run and the TIC was 

overlaid to check for any changes over time. Figure 4.6 shows the TIC overlay of the samples, the red 

trace being the original and the black trace showing the same sample four days later.  

 

Figure 4-6. TIC Overlay on sample stability. 

No additional or absent peaks therefore passes sample stability on TIC eye level. 
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There are very little differences in the TIC traces, except for the baseline noise level and the wash 

section at the end. This shows some difference and therefore reiterates the need for a QC sample to 

be used throughout the run to check for any sample instability, as well as instrumental drift. 

 

4.5.4 Overview of Samples from the Cambridge Group Results 

A set of 106 dried blood spot samples were received anonymously from the clinic run by Professor 

Sabine Bahn. These include 50 samples from patients diagnosed with Major Depressive Disorder 

(MDD), 50 age, sex and BMI matched control samples and 6 volunteer DBS (VDBS) samples as QC 

controls. The samples were prepared as tested and described in Section 4.5.1 and were run of the Q-

ToF in positive and negative ionisation mode on RP-LC method in Table 4.6 and the HILIC method 

described in Table 4.7. 
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4.5.4.1 Traditional Analysis and QC Check 

One QC sample (VDBS) was injected multiple times throughout the analysis to monitor the method 

and instrument, enabling to see if there’s instrumental drift and check that it was working 

consistently throughout the analysis. 

Figure 4.7 shows a QC Check on RP-LC Positive Mode: 

 

Figure 4-7. TIC overlay of RP-LC Positive Mode QC samples. 

No additional or absent peaks therefore QC passes tests by traditional analysis on TIC. 

 

The slightly elevated background is the first QC sample run pre analysis. There are no additional or 

missing peaks and the samples chromatograms are overlaid, showing that the instrument and 

method is working sufficiently. 

Figure 4.8 shows a QC Check on RP-LC Negative Mode: 

 

Figure 4-8. TIC overlay of RP-LC Negative Mode QC samples. 

No additional or absent peaks therefore OK. 
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The trace showing an elevated background throughout, particularly in the wash region, is the first QC 

sample run in negative mode. There are no additional or missing peaks and the samples 

chromatograms are overlaid, showing that the instrument and method is working sufficiently. 

 

Figure 4.9 shows a QC Check on HILIC Positive Mode: 

 

Figure 4-9. TIC overlay of HILIC Positive Mode QC samples. 

No additional or absent peaks therefore OK. 

The trace shows that the background throughout the run decreases. This could be due to multiple 

reasons, including a long equilibrium of the column in HILIC mode over time. There are over 100 

samples run between the first and last QC sample from Figure 4.9 meaning that there is over 30 

hours in between these samples Despite this uncertainty, there are no additional peaks in any 

samples, and the large peak in the wash region at the end, and the retention time of the solvent 

front peaks at the beginning are overlaid, despite the difference in background. There are no peaks in 

the analysis to check any retention time drift other than these. The lack of peaks shows the need for 

software that can extract any possible compounds in the data. 
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QC Check on HILIC Negative Mode: 

 

Figure 4-10. TIC overlay of HILIC Negative Mode QC samples. 

No additional or absent peaks therefore OK. 

The trace in Figure 4.10 shows that the background throughout the run decreases again. However, 

there are no additional peaks in any samples, and the large peak in the wash region at the end, and 

the solvent front peaks at the beginning are overlaid, despite the difference in background. The lack 

of peaks shows the need for software that can extract any possible compounds in the data. 

 

4.5.4.2 Mass Profinder 

Whether the difference between control and MDD samples are significant was determined on the 

fold change between the two. If the mass is significant, the fold change will be greater than 30. Any 

fold change above the value of 10 was investigated. 

 

RP-LC Positive Mode 

Using Mass Profinder, differences between the two sample groups were investigated. As the 

intention was to discover a biomarker that is present in MDD samples and absent from control group 

samples, the results will look at the average abundance across the groups and discover is any of them 

have an abundance close to 0. Table 4.10 shows the average abundance of the masses that are less 

than 10,000.  
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Table 4.10. Table of average abundance in Profinder RP-LC positive mode. Only one shows a fold change above 2 with 
a mass 662.4479 Da. The crossed-out features show those with a fold change less than 2 as these are insignificant for 

the data analysis. 

Mass (Da) RT (min) 
Average Abundance 

Fold Change 
Control MDD 

188.0393 2.660 3075 4889 1.59 

127.0985 0.890 1600 2277 1.42 

127.0993 1.250 648 191 0.29 

375.2525 9.010 329 1 0.00 

662.4479 12.240 0 3608690 3608690.00 

420.3099 9.000 0 1 1.00 

 

It can be seen in the table that most of the masses are not significantly different between the two 

sample groups, hence they have a strike through. There is one mass of 662.4479 at 12.240 min that 

seems to have a significant difference, however when this mass is reviewed in Profinder, it does not 

appear to be a real compound and only a shoulder of the peak at 12.6 min with a neutral mass of 

662.4476 Da. These peaks can be seen in Figure 4.11 where the left-hand side shows the peak at 

12.24 min, though only two of these have an extracted peak and there is the trace of a larger peak 

that is not integrated. On the right-hand side, there is a peak extracted that is consistent throughout 

and seems to be the peak that should’ve been extracted originally. 
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Figure 4-11. Peak with neutral mass of 662.447 Da in Profinder positive mode. 

Shows the peak on the left wrongly extracted at 12.3 minutes, where-as it should be the peak extracted on the right at 
12.6 minutes. Therefore, this is a false positive and is the same abundance throughout all samples. 

RP-LC Negative Mode 

As previous, compounds that are potentially biomarkers have been searched in Profinder and Table 

4.11 shows the lowest average abundance of the masses that are less than 10,000. 

Table 4.11. Table of average abundance in Profinder RP-LC negative mode. Only one mass at 327 Da has a fold change 
above 2. The crossed-out features are those that have a fold change less than 2. 

Mass (Da) RT (min) 
Average Abundance 

Fold Change 
Control MDD 

327.0958 2.900 3650 47874 13.12 

375.2507 9.040 568 310 0.55 

347.3022 9.350 1 1 1.00 

 

The compound average masses in Table 4.11 are not significantly different, except for 327.0958 at 

2.9 minutes. This mass shown in Profinder averages, however, does not cooperate what the raw data 
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shows. Figure 4.12 shows some selected samples in Profinder where there is a peak in 2 MDD 

samples, but there is also a peak in a control sample which shouldn’t be present at such a high 

abundance according to the Profinder data. There is a peak missing from 5 MDD samples showing it 

is not an ideal biomarker.  

 

Figure 4-12. Profinder of peak with neutral mass 327.0958. 

The red dashed lines show the wrongly absent/present peaks and therefore showing that it is a random mass that 
does not show a trend of present in only MDD group. This is a false positive. 

There are no other masses that show a significant difference between the two groups that also check 

out in the raw data when checked. The compound with neutral mass 823.7592 Da at 12.92 minutes 

does not appear in this data. 

 

The analysis conducted in HILIC mode also showed no differences between control and disease data. 

MDD 

Control 

MDD 

Control 

Control 

MDD 

MDD 

MDD 

MDD 

MDD 
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4.5.4.3 MPP 

Any differences between the control and MDD group should be visible on a PCA plot. They would 

cluster into distinct groups or show some trend within the data. 

RP-LC Positive Mode 

PCA Plots 

Figure 4.13 shows the PCA plot for the RP-LC positive ionisation mode data. 

 

Figure 4-13. 2D PCA plot on RP-LC Positive Mode. 

The PCA plot shows the lack of clustering in MDD and control samples. The QC VDBS samples are clustered into one 
group (blue), then MDD and control samples are clustered into one group (red & yellow). The largest variance is shown 

on the x-axis with 37.90% and the next largest variance on the second component is 13.66% (y-axis). 

 

The PCA plot in Figures 4.13 shows that the biggest variance in the data is the difference between 

the QC samples (VDBS) and the rest of the samples. There is no difference between the MDD and 

control sample groups in this PCA plot, they are all mixed with some slight spread along the 3 axes. 

They are very tightly clustered, but sit far away from the QC samples, spread along the x-axis with a 

variance of only 38%. The sample ‘100QC’ was injected 5 times and these are clustered together, 

with some slight spread along the x- and y-axes seen in the PCA plot. The other QC samples spread 

along the y-axis mainly, with only 14% variance from the extremes, showing that the instrument is 

working OK. These QC samples act lot like quality assurance (QA) samples. The purpose of these is to 
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check whether there are any plate effects, for example if the samples all go in one line with the QC’s 

in numerical order of injection, then this shows that there is potentially a problem with sample 

stability or a problem with the sample injector, causing plate effects within the autosampler 

positions. 

 

Unique Compounds 

Looking at the Venn diagrams of unique compounds to each group, there are multiple masses that 

are incorrectly labelled as unique. These correlate to the Profinder results, therefore showing that as 

the Profinder results are not entirely accurate, the MPP results are also not entirely accurate. There 

are some masses that show some differences but none of these are absent in only one sample group, 

and none are showing a significant difference. No compounds with a p-value of less than, or equal to, 

0.01 and a fold change of greater than 30, between the MDD and control groups. 

RP-LC Negative Mode 

Figures 4.14 shows the PCA plots for the RP-LC negative ionisation mode data. 

PCA Plot 

 

Figure 4-14. PCA plot on RP-LC Negative Mode. 

The PCA plot shows the lack of clustering in MDD and control samples. The QC VDBS samples are clustered into one 
group (blue), then MDD and control samples are clustered into one group (red & yellow). 
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The PCA plot in Figures 4.14 shows the same that the positive ionisation mode shows, which is that 

the biggest variance shown in the data is the difference between the QC samples (VDBS) and the rest 

of the samples. There is no difference between the MDD and control sample groups in this PCA plot, 

they are all mixed with some slight spread along the 3 axes. They are very similarly clustered as they 

were in the positive mode since the samples sit far away from the QC samples by the spread along 

the x-axis showing a 38% variance. The QC samples are grouped together, with some spread along 

the three dimensions, however the 5 repeat injections are grouped closer together than the rest of 

the QC samples. 

Unique Compounds 

Along with the positive ionisation mode, there are multiple masses that are incorrectly assigned as 

unique to one group in the Venn diagrams within MPP. The masses have a difference up to 30% 

between the two groups overall on average however this is not significant. There are no compounds 

with a p-value of less than, or equal to, 0.01 and a fold change of greater than 30, between the MDD 

and control groups. 

 

4.5.4.4 Mass Profiler 

RP-LC Positive Mode 

Using Mass Profiler, the method was to look for the compounds with a fold change larger than 30 

between the MDD and control groups. However, there were no compounds with a FC above 10. 

When the method was repeated with FC above 5, one compound showed up, which is shown in 

Table 4.12.  

Table 4.12. Table of fold change masses in Profiler RP-LC positive mode 

RT (min) Mass (Da) 
Peak Abundance 

Log2(A1/A2) FC 
MDD Control 

12.300 564.6546 115652 15858 2.87 7.31 

 

However, when this mass is extracted in the raw data the difference is due to the poor peak shape 

causing the integration not to be consistent. Some samples it is shown to be small, other times it is a 
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wide ‘peak’. This is shown in Figure 4.15 below on the right-hand side. The left-hand side of Figure 

4.15 shows the different samples with very similar abundances and areas, despite the MDD and 

control sample groups. 

 

Figure 4-15. Raw data showing presence of neutral mass 564.6546 compound throughout selected samples. It shows 
that there is no  

  

RP-LC Negative Mode 

The method is Mass Profiler brought up no compounds with a fold change larger than 5 for this mode 

and HILIC positive and negative mode. The method was adapted to a fold change larger than 2 and 

some features were extracted. 
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However, for this RP-LC negative mode, the results were still only bringing compounds that were up-

regulated in control mode compared to the MDD sample groups. This can be seen in Table 4.13.  

Table 4.13. Table of fold change masses in Profiler RP-LC negative mode 

RT (min) Mass (Da) 
Peak Abundance 

Log2(A1/A2) FC 
MDD Control 

11.990 434.3268 54262 270712 -2.32 -4.99 

12.585 434.3340 92914 275327 -1.57 -2.97 

 

These are therefore not ideal markers as the fold change is less than 30. These compounds are also 

eluting close to the wash in the run and therefore the mass may be slightly in-accurate due to the 

busy spectra with possible ion suppression. They are also of very similar neutral mass and suggest 

that they are the same compound eluting over the wash region. 

 

4.5.4.5 MetaboAnalyst 

RP-LC Positive Mode 

Fold Change Results 

When looking at the fold change results between the two sample groups, the following two features 

have a fold change between 4 – 7, Figure 4.16. However, looking at the samples showing this 

difference in the MDD groups, there are only a few samples that possess the increased 

concentration. Therefore, these are not potential biomarkers. There are no other features with a 

significant fold change showing that the sample groups are not significantly different to each other. 
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Figure 4-16. MetaboAnalyst Fold Change results for RP-LC Positive mode. FC 4-7. 

The figure shows that the compounds with neutral mass of 564.6546 and 662.4479 Da both have less than 5 samples 
with a positive abundance in MDD sample group.  

  

 T-Test Results: 

There are no significant features with a p-value of 0.01, this was increased to 0.05 and there were 

still no significant features. Therefore, it can be deduced that there is no significant difference 

between the two sample groups according to MetaboAnalyst. 

 

There are other tests that can be performed in MetaboAnalyst, however since it is consistent with 

the other analysis software of bringing up no significant differences, these tests were not performed. 

 

RP-LC Negative Mode 

Fold Change Results: 

There is one feature with a fold change of 5.3 in Figure 4.17. This means there are some differences 

between the mean averages of MDD and Control groups. However, this was not consistent and can 

be seen to be at the same increased level in some of the control patients, as well as in the MDD. 

There are also a lot of samples where the compound concentration is at/near 0. This is again, not a 
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potential biomarker for MDD due to the lack of consistency in all samples. A biomarker needs to be 

present at a significant concentration in all samples within one group, and at a significantly lower 

concentration in all samples within the opposite sample group. 

 

Figure 4-17. MetaboAnalyst Fold Change results for RP-LC Negative mode. FC 5.3. 

The figure shows that the compound with mass of 494.0090 Da has varying abundance in both sample groups which 
makes it a non-ideal biomarker due to the inconsistencies across the control and disease group. 

  

T-Test Results: 

There are no significant features with a p-value of 0.01, this was increased incrementally to 0.1 and 

there were still no significant features. Therefore, it can be deduced that there is no significant 

difference between the two sample groups. 

 

Due to the lack of consistent differences between the datasets, no other tests were performed in 

MetaboAnalyst. 

 

4.5.4.6 R 

Using R, Mann Whitney T tests and Chi Squared tests were performed to determine the p-value, q-

value (corrected p-value) and fold change results for each feature. R was then used to determine 
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how many of these features have a q-value of significance; less than, or equal to 0.05. To continue 

with the analysis conducted in other software, features with p-values ≤ 0.01 are of significance. The 

chi squared tests determine how many missing values are present in each group, with the test stating 

how many features are only present in one group.  

 

RP-LC Positive Mode 

The Mann Whitney test declared there are 0 features of significance. The Chi-Squared test also 

declared 0 features that are missing in only one sample group. 

The top 5 features with the lowest p-values, alongside the fold change results are shown in Table 

4.14. 

Table 4.14. Top features of significance with lowest p-value, fold change also listed.  

Ordered by significance of p-value. 

Mass_RT Fold Change p-value 

380.3245_12.01 0.77 0.021 

641.5642_12.25 0.79 0.056 

166.0058_2.39 23.23 0.058 

300.0563_12.87 1.07 0.086 

343.3015_9.65 1.09 0.086 

 

The Table 4.14 shows that no features have a p-value of significance, and the fold change results are 

also all less than 30, with only 1 feature with a value higher than 1.1. This shows that these features 

are very similar abundance in both sample groups and therefore are not biomarkers. 

 

RP-LC Negative Mode 

The Mann Whitney test declared there are 0 features of significance. The Chi-Squared test also 

declared 0 features that are missing in only one sample group. 
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The top 5 features with the lowest p-values, alongside the fold change results are shown in Table 

4.15. 

Table 4.15. Top features of significance with lowest p-value, fold change also listed.  

Ordered by significance of p-value. 

Mass_RT Fold Change p-value 
345.8688_12.94 1.05 0.017 
752.5888_12.02 0.71 0.018 
769.0609_8.93 0.52 0.019 

303.8325_13.17 0.62 0.020 
527.1302_11.98 0.76 0.035 

 

The Table 4.15 shows that no features have a p-value of significance, and the fold change results are 

also all less than 30, with the highest fold change of 1.05. This shows that these features are very 

similar abundance in both sample groups and therefore are not potential biomarkers of MDD. 

 

Overall, R shows that there are no features of significance in any of the phases or polarities. 

 

4.6 Discussion 

4.6.1 Results Discussion 

Overall, there are no potential biomarkers that are consistent in more than one software analysis 

package. When one software package claims a potential compound that can be used as a marker, the 

raw data in Qualitative analysis software shows it is a false positive.  

 

The QC samples are VDBS, which means that they are freshly spotted within the months leading up 

to the analysis. The MDD and control samples are older, spotted as early as 2017. A stability 

Experiment was conducted at the start of the Delta Study by University of Cambridge and some 

minor differences were seen, though it was concluded that majority of the sample remained 

unchanged due to the strict storage of the samples 28. Within the literature, the stability of DBS 

samples hasn’t been examined for much longer than 100 days, with some exceptions. However, 

these samples have been stored for 5 years and therefore there is most likely some decay occurring 
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within the samples. There is one paper which shows the decrease in abundance of a randomly 

selected small molecule from an average of 1000 to 250 over the space of 5 years, indicating that 

even when the DBS cards are stored at low temperature, the compounds are unstable from one year 

to the next 29. This paper does not mention the use of a desiccator within the DBS packet, which has 

shown to be essential for keeping moisture from hydrolysing the compounds within the samples 29. 

Therefore, this is possibly why the compounds were not stable over the years due to hydrolysis 

occurring. The PCA plots throughout Chapter 4 show that the QC samples sat away from the rest of 

the samples. A possible reasoning for this would be the age of the samples, showing that there is 

some decay within the samples overtime that is leading to this difference seen by the first principal 

component throughout all the modes of analysis. However, all the samples used have been taken 

within the same time-period, there are no samples later than 2017 and therefore it may be assumed 

that the potential decay of some compounds within the samples have all occurred at a similar rate, 

so they can be compared against each other directly. The QC samples can still be used to test for 

plate effects and instrument stability. 

 

The same project but using more fresh samples would be ideal, giving more of an overview of the 

compounds within the patient’s blood at the time of sampling, rather than allowing the 

concentrations to potentially fall over time. Any potential differences within the sample groups could 

be missed by allowing this change to occur before analysing the samples. It would also be ideal if the 

same volume of blood could be collected each time as some spots of the same diameter will have a 

different volume of blood due to the people’s different haematocrit levels. Volumetric absorptive 

microsampling (VAMS) is an advanced technique that overcomes this issue as it uses capillary action 

to take a fixed volume of blood, regardless of haematocrit level, in less than 4 seconds 31. The VAMS 

are then dried at room temperature and can be sent through mail 32. This simple dried blood 

collection technique is user friendly and is more reliable than DBS cards for use of blood biomarker 

studies due to the fixed volume of blood taken each time. This technique was used during COVID-19 

clinical trials due to easy sampling, delivery and storage 32.  
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It is also possible that blood is not the most ideal sample for this analysis. It is possible that another 

matrix like cerebrospinal fluid would be more suited, however this is more invasive technique and 

would require professionals to take the samples. The fact that people can sample their own blood in 

their own time and send the samples through the post makes the DBS analysis ideal, cheap and easy 

to get more willing volunteers, than if they were to need a hospital appointment to take a portion of 

their cerebrospinal fluid. 

 

4.6.2 Software Discussion 

Each piece of software has given the same results; that there are no biomarkers present. There have 

been some false positives throughout in every piece of software, particularly in MPP. XCMS online 

was not used in this project due to the false positives and false negatives it has given in the previous 

Chapters and due to the large number of files that would need to be uploaded, there was a lack of 

data space to have all 112 sample files. R was used, however this required the input of a .csv file and 

so the deconvolution was conducted in Mass Profinder first. Therefore, it is just the statistical 

analysis that is compared to MPP and MetaboAnalyst as they will all have the same deconvolution 

parameters. R is a free programming language software that is widely used; however, it is the most 

complicated software used throughout this project due to its language. R scripts are needed to be 

written, which is in a different language and lacks visual techniques. It is possible to create simple 

graphics, which are customisable, however these do not compare to those provided in MPP as they 

are so simple. Once a script for some analysis is written, the analysis is simpler as the same script can 

be used and adapted slightly for each different .csv data file. Though, the fold change values were 

limited after 10,000 as it describes this value as infinite, therefore these cannot be ordered more 

than this. It also didn’t give an option to export the average abundances and so the whole list could 

only be ordered by the limited FC. The p-value or q-values were determined by median of group 

abundances and rounded to a set value, giving the same values for multiple features. It is a free 

software platform and given that the results can be exported as simple lists, it is useful to use for 
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metabolomics. There are support platforms online where other users share scripts and offer help, 

making it a nice helpful community for quick analysis time.  

 

Due to the results of this analysis, it is difficult to see which software was the most accurate since 

there are no lists results to look at, though the fact that they all consistently gave no results is a 

positive result, showing consistency throughout. However, there were false positives that appeared 

throughout that needed to be confirmed in the raw data. 

 

The reasoning behind Mass Profinder showing so many false positives could be because there were 

significantly less QC files than group sample files, the parameters had to be set to a compound 

showing consistently in ‘at least 5 samples within at least one group’ since there were 5 repeat QC 

samples. Without the QC samples, it could be set to a higher value, possibly showing in a minimum of 

‘40 out of 50 samples within at least one group’. Though, when this Experiment was performed, only 

compounds that were in both groups showed and therefore this was disregarded. The reason that 

only 80% of the files needed to have a possible marker in it is to allow for possible miss-diagnosis of 

patients. MDD is hard to diagnose, given that it is based upon a GP asking the patient open ended 

questions with very little time to listen to the answers. This limited time is what often leads to bipolar 

being diagnosed with MDD, causing problems with any potential biomarkers present only in MDD 

patients 30. 
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4.6.3 Overall Discussion 

There is no difference between the control and MDD sample groups. This could be due to a lot of 

different factors, but the main one assumed was the sample preparation stage or the age of the 

samples. During the project, it came to light that it is not ideal to look at ‘control vs disease’ datasets 

as it is then unknown whether any potential markers found are due to the MDD diseased state, or 

general stress markers due to MDD. Two diseased states directly compared would be more ideal as 

both would produce stress on the body and therefore the markers determined would be due to the 

individual state only. Once these are determined, a control set can then be used to see whether 

these markers are also present, leading to whether they may be up or down regulated in the 

diseased state compared to the control state. 

 

The sample preparation step could be a reason behind the lack of differences between the sample 

groups as any lipid type molecules could be missed with the current preparation. The most simple, 

effective procedure was previously used to try capture the whole picture of the blood sample, 

though further research shows that the current method is not ideal for lipids due to the presence of 

water, where-as a lot of lipids associated with psychiatric disorders are hydrophobic molecules. If the 

major differences between MDD and control groups happen to be a hydrophobic, lipid molecule, 

then this would have been missed in this analysis as it would have not been extracted from the DBS 

sample card. 

 

4.7 Conclusions 

The data throughout this study has shown to be repeatable confirmed by using the QC samples. The 

RP-LC method showed to be most reproducible and the QC samples had minimal variability. The 

HILIC method showed a drop in the baseline which needs to be investigated further, but still no new 

peaks appeared showing some success.  
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The statistical approach used were not able to find significant differences in this data, with no 

markers discovered, though each piece of software used agreed that there were no statistically 

significant differences, which shows that they are all working well with each other. The multivariate 

statistics employed for this study were successful in proving this lack of differences. The PCA plots did 

not cluster into groups, except showing that the fresh VDBS QC samples are different to the older 

MDD and control samples.  

 

Additional investigations need to be conducted to confirm no changes within the sample groups. This 

would entail changing the sample preparation and LC methods to cover the molecules that were 

potentially not extracted from the DBS card, or not visible on the TIC due to incompatibility with the 

LC columns chosen. For example, the methods (both sample preparation and LC method) are not 

optimised for lipid profiles and therefore potential important data may be missed. 

 

4.7.1 Future Work 

Following on from this, the next step was to go back with the analysis results to the University of 

Cambridge and tell them that there seemed to be no difference within the groups for the data 

collected, using this sample preparation and the two LC methods. 

 

A study was conducted by another research group, though this time the study focused on bipolar vs 

MDD. This solved the issue of looking at control vs disease, as both bipolar and MDD are seen as 

‘diseased’, ensuring that this study cannot lead to discovery of a “stress” biomarker rather than an 

MDD or bipolar biomarker. The study focused on the lipidomics with more concentrated samples and 

a potential difference between two sample groups was found. This data analysis was conducted 

using a QQQ which means that the data was not of high accuracy as only masses to 1 decimal place 

were collected, whereas the Q-ToF collects data up to 5 decimal places. Their study showed that 

there were differences in some lipids between the two sample groups, with one thought to be a hex-

ceramide. The external company sent over the samples in 96 well plates, dried and stored under 
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nitrogen. These were re-constituted in 50:50 methanol:chloroform and a method more suited to 

lipids was developed using a C8 column. Results showed a difference in the levels of 

glucosylceramide, with elevated levels in patients with MDD. The standards of galactosylceramide 

and glucosylceramide were ordered and separated using a polymer column, hence the positive 

identification of glucosylceramide using MSMS and retention time confirmation. It is possible that if 

this one ceramide compound is showing differences in the dried blood spots, then other lipids or 

ceramide compounds may also show differences that were missed in the original analysis conducted 

on RP-LC or HILIC columns. Therefore, in future work the project would be adapted to look at the 

new sample sets on the untargeted screening method using the Q-ToF, with the sample preparation 

and LC methods optimised for lipid type compounds using chloroform that dissolves these 

ceramides. Using the workflow with the deconvolution in Mass Profinder then using the comparison 

software packages seen previously (MPP, R, Profiler and MetaboAnalyst), these differences should be 

observed.  
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5 – Overall Concluding Remarks 

5.1 Summary 

This research has resulted in the development and evaluation of different comparison software 

platforms for deconvolution and statistical analysis across a range of sample types, including plant 

and different human samples. Each study showed the same overall results of the software, giving 

confidence that the conclusions are accurate. The studies show how this workflow can be applied to 

any samples and by using Mass Profinder in combination with Mass Profiler Professional, accurate 

and reliable results can be produced. Results provided by Mass Profinder combined with 

MetaboAnalyst are just as reliable and provides a great alternate platform for those who cannot 

justify the cost of MPP, however the multivariate statistics are not as high in quality as those 

provided in MPP. During this work, XCMS online did not provide any reliable or accurate results 

which could be due to a lack of optimisation of the parameters since they were tried to be kept 

similar to the deconvolution parameters used in the other deconvolution software. R is focused more 

on the statistical analysis with complicated coding skills required that makes it more difficult to use 

than MPP and MetaboAnalyst. The same results can be obtained in R and therefore could be used as 

a backup in order to provide confirmation of results after MPP or MetaboAnalyst.  

 

It’s a common belief that the different results that are obtained throughout the different pieces of 

software are a part of a large issue that needs further examination across metabolomics. There may 

be companies trusting the software is giving the best results and potential research science changing 

biomarkers may be missed, should the wrong software be used. Analysis should be repeatable and 

reliable, yet the same data gives different results using the same parameters with the same vendor 

specific software programs, Mass Profinder and Mass Profiler, from Agilent. A wider range of 

software needs to be tested in order to get the most reliable answers, but from those tested 

throughout this thesis, Mass Profinder followed by MPP is a personal favourite that will be continued 
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to be used in the future for comparison work. This is due to its simplicity and ease of looking back at 

the raw data, as well as providing the most reliable results that have been found so far.  

 

One step which has increased difficulty is identification, and/or annotations, of metabolites. These 

need to be evidence based, but there is an increased concern in the validity of proposed identities in 

metabolomics that do not seem to exist in other areas such as genomics and proteomic data analysis 

due to the potential easier identification procedure, with some exceptions i.e., protein post-

translational modifications 8. Improving the identification reporting procedure is crucial for 

metabolomics to maintain its value. At present, there are many poor, biologically plausible 

identifications in the literature with proposed molecules that do not comply with chromatographic 

data, including the physicochemical properties (hydrophobicity/hydrophilicity) 8. To identify, or 

annotate, compounds reliably, database searches are often conducted which use retention times, 

accurate masses and in some cases, fragmentation patterns. The rest of the identification validity 

needs to be done by the user, in which the likeliness of an identification being plausible needs to be 

considered before claiming confirmed identity of a compound. The reporting procedure should stay 

compliant to the minimum reporting standard rules from Metabolomics Standards Initiative (MSI) to 

keep the community informed of how reliable an annotation or identification may be 10. 

 

5.2 Conclusions 

The work aimed to address the issues that can arise by using different software analysis platforms for 

the same analysis. The software a user chooses for chemometric analysis is another added variable 

for each experiment and therefore, it is of interest to determine whether by using the same 

parameters, the same biomarkers can be determined with each platform. These studies aimed to 

develop a data processing and statistical analysis workflow that’s suitable for untargeted 

metabolomic studies. A comparison of results to see which software platform gives the most 

accurate, reliable and comprehensive results are important to enhance the understanding of the 

untargeted metabolomic workflow of choice. Although the software needs to be easy to use, it 
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should never be the case to totally remove the need for an expert to use the software as this can 

lead to flawed studies due to the non-expert solely basing parameters on the default settings 4. Most 

scientists are not trained in programming or chemometrics, nor is it easy to find assistance in training 

to a substantial level unless you know who to ask, therefore this problem may also influence the 

output of data analysis. This problem is well known in the literature, however it continues to hinder 

application of chemometric approaches in deconvolution and statistical analysis 5-7.  

 

The first study was used to develop and evaluate an untargeted LCMS workflow, whilst comparing 

the different software types to see what the benefits are of using each one using tea plant samples. 

Each piece of software used showed that differences between the tea samples could be determined, 

with MPP giving the best multivariate statistics to determine which samples were most similar and 

most different to each other. The statistical approach in MPP also gave accurate masses that causes 

the differences between each sample, with some putatively annotations provided for those 

compounds with matches database. The untargeted metabolomic workflow using Agilent’s Profinder 

for deconvolution, then MPP for statistical analysis enabled each objective to be accomplished, 

something that could not be done without the comparison software. XCMS online and Mass Profiler 

were also used to deconvolute the data however the results were not as good as those provided by 

Profinder as a lot of false positives and negatives were found. 

 

Following on from this, a different type of sample matrix was analysed in the next study. Human hair 

was now used to determine what additional information could be obtained by using the same sample 

preparation and LC method procedures currently followed by a company. The data that have been 

gathered in this work has shown overall to be reproducible and reliable with multiple masses that 

have repeatedly appeared in the results for potential biomarkers, despite the lack of a QC sample 

used. Using a statistical approach in each piece of software, a wide selection of masses was 

determined as potential biomarkers for bleached hair, with some of these appearing in multiple 

comparison software results. XCMS online showed multiple random masses that appear to be false 
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positives and in positive ionisation mode and many of the final chosen biomarkers did not appear in 

the results, despite the raw data confirming the presence in only the bleached samples, showing 

false negatives. The best combination of software used was the same as the first study, with Mass 

Profinder and MPP giving the most accurate results in the easiest format. MetaboAnalyst and R also 

gave accurate and reliable results however these do not conduct deconvolution and therefore Mass 

Profinder should also be used. The experiment needs to be repeated on a larger sample selection, 

with a more varied range of hair colours. Tests also need to be conducted to determine whether the 

potential biomarker is produced consistently, and the levels along the hair shaft should be examined.  

 

Moving onto a different sample type in the next study, a liquid human blood sample through the use 

of dried blood spots was used with the untargeted LCMS metabolomic workflow proved to be 

repeatable. The VDBS QC samples showed minimal variability however the statistical analysis showed 

that there were no compounds of significant difference between the two sample groups, MDD and 

control (age, gender and BMI matched). This does not mean that no differences occur, only that the 

samples provided, with the simple sample preparation and the RP-LC / HILIC methods used do not 

show differences. The multivariate statistics also showed no difference between the sample groups 

which adds to the reliability of the statistical analysis. Further work is to be conducted looking at 

disease vs disease sample sets, with the focus moved onto lipid compounds with alternate sample 

preparation and potentially a more focused LC method. 

 

Despite the determination of biomarkers in studies, there are clear differences in the results 

obtained from each software package. Each study showed that Mass Profinder is a key part of the 

comparison analysis. It comes with the ‘Agilent MassHunter Suite’ and therefore, if the instrument 

used is already an Agilent one, it is possible that this software is free. Without Mass Profinder, 

analysis in MPP, MetaboAnalyst and R is not possible as they do not have deconvolution ability in 

their software. They need the raw Agilent data files (.d) to be converted into another format for 

reading, such as .cef or .csv files. However, statistical analysis and multivariate analysis cannot be 
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conducted in Mass Profinder. Due to random noise present in untargeted LCMS data, it is important 

to visually inspect the data in Mass Profinder to ensure the correct peak is selected prior to exporting 

the data to ensure that false positives or negatives are kept to a minimum. I appreciate that this may 

take time to go through each feature and sample, however it will greatly improve the quality of data 

and in turn, improve the quality of statistical analysis in the next steps. This will then least to more 

reliable and robust findings. 

 

MPP was overall the best secondary analysis, which can perform both in depth statistical analysis, 

and high-resolution graphics for multivariate statistics. The biomarkers declared were reliable and 

accurate throughout the studies. However, Table 5.1 shows the cost of MPP to be starting at £20,500 

for one licence code, meaning that it can be used on one device only. Each time you request an 

upgrade to a ‘newer/better’ version, there is an upgrade cost of £11,600 and therefore there is a 

high cost that comes with the great statistical analysis. 

Table 5.1. Cost of each software used in the studies. 

This shows that MPP is the most expensive, with MetaboAnalyst and R cheapest due to no cost to download. 

 XCMS 
Online 

Mass 
Profiler 

Mass 
Profinder 

MPP 
Metabo- 
Analyst 

R 

Cost of 
Software 

Free / 
Purchasable 
for £7300 a 
year 

Free with 
Agilent 
MassHunter 
suite 

Free with 
Agilent 
MassHunter 
suite 

Starts at 
£20500 

Free – online 

Free – 
download 
app 

 

Depending on how often this type of analysis is conducted, the price may not be worth the large cost 

since other software platforms give results just as accurate, but for free. The same type of statistical 

and multivariate analysis can be conducted in MetaboAnalyst, which also provides a high level of 

reliable biomarkers. The multivariate statistics graphics are not as high quality as those shown in 

MPP and are not customisable, however since MetaboAnalyst is free to use and run, it comes at a 

great advantage and severely reduces the need for purchasing MPP if it is used only sparingly. It 

would also depend on what the aim of the experiment is, for those only wanting to determine 

potential biomarker masses with retention times, the high-quality graphics are not needed and 
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therefore reduces the need for MPP since MetaboAnalyst can be used and provides accurate results, 

but does not include data validation. R can also be used, providing highly accurate and 

comprehensive results that are customisable, providing that you are able to understand and adapt 

the coding language. Using R, a large amount of statistical analysis can be conducted also, however 

this requires a large amount of training to determine how to conduct the analysis in the best, and 

easiest way. The graphics for the multivariate statistics, such as PCA scores plot, are not great 

however they are easy to read and can be customised, such as labels and colours. MetaboAnalyst 

provides results as accurate and reliable as R, but MetaboAnalyst is more user friendly.  

 

XCMS online provided many false positives and the website online is more difficult to navigate than 

MetaboAnalyst. A large amount of the features it detected had poor peak shape or a high amount of 

noise, giving little confidence that they are true features. True features refer to the features that 

have a matching m/z value across multiple samples, and the RT is within the defined window. These 

values tend to be within 5 ppm mass error and 0.1 minute RT window. There seems to be ‘bugs’ on 

the website where various buttons/functions do not work, and when ‘help’ is contacted there is no 

reply. The multivariate statistics are basic and non-customisable, and the statistical analysis is not as 

accurate as MPP when the raw data are examined. However, only the free version of XCMS online 

was used and perhaps the upgraded version that is available may be more developed and easier to 

navigate. In contrast to this, there are multiple papers in the literature that use XCMS online and 

have succeeded in producing credible results. The reasoning behind the difference in experiences 

may be down to the optimisation of parameters as slightly different parameters can lead to different 

outcomes within data analysis. With significant time spent on manually optimising each parameter 

and selection criteria, deeper knowledge on programming languages and parameter interpretation is 

needed, but in turn provides better fine-tuning of the data and thus more robust deconvolution 3.  

 

Mass Profiler can only be used for 1 vs 1 analysis, therefore it is not ideal when analysing the QC 

samples as well as the sample sets, as well as when there are more than 2 sample groups to be 
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compared. With that said, it is ideal for finding major differences between two datasets and can 

perform basic statistical analysis. Multivariate statistics are not able to be performed in this software 

which is a limitation. Despite this, the software can determine reliable and accurate biomarkers for 

diseased datasets. 

 

To summarise, this research has successfully developed and evaluated a data processing and 

statistical workflow for the detection of markers in a sample group by using an untargeted 

metabolomic workflow with the Q-ToF, with software programs Mass Profinder and MPP giving the 

best results. The use of QC samples in some studies ensured that the methods were robust prior to 

statistical analysis. The studies show that different results can be obtained by using different 

comparison software platforms, hence the need for more than one software to be used at a time to 

ensure that no important information is lost. Using Mass Profinder and MPP for a project, only the 

practical sample preparation and LC methods need to be developed and optimised for each sample 

set; the statistical and multivariate analysis can stay consistent with few parameters needing 

optimising for each data set. 

 

The results that have been obtained show that good results firstly depend on the quality of data 

obtained. Good chromatographic separation on a column phase that is suited to the needs of the 

analysis is crucial, i.e., lipid compounds that showed differences in DBS samples in chapter 4 were 

overlooked due to the methods used not being suited for lipids and therefore they were not a part of 

the initial data analysis. However, for full metabolomic profiling, no single method will be sufficient 

as in complex matrices, there are more than likely going to be a lot of metabolites belonging to 

various chemical groups that require multiple analytical techniques. Not only does this mean 

different column phases are required, but it also means that different chromatographic techniques 

should be considered such as liquid chromatography and gas chromatography. One technique is not 

the best for all sample sets. 
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There needs to be a significant understanding of statistical analysis in order to turn the large 

amounts of data collected during metabolomics experiments, into something that is easily 

understood and consistent throughout. Improper parameters can largely affect the analysis that 

software provides. For example, PCA plots can be manipulated to make it look like there are 

differences in the datasets if the parameters are not optimal. There are ways in MPP that PCA plots 

can be made on data with only a fold change above a selected value, and therefore will skew the 

data to make it look like there is a difference between datasets, when if all data was used, there 

would be no significant difference seen in the clusters 3. This is the same with improper use of partial 

least squares discriminant analysis (PLS-DA) plots. This is a multi-variate statistical tool that is widely 

available in most software packages and using the default settings, is an easy tool to implement into 

data analysis. It is particularly useful for noisy data and can provide a lot of useful information such as 

scores and loading plots 9. However, when it is used by those not fully trained in programming and 

chemometric analysis, there are many potential limitations when used alongside metabolomic data. 

Gromski et al., discuss the alternatives to PLS-DA in which other functions can be used in conjunction 

with PLS, or as an alternative supervised learning method, such as support vector machines (SVM) 

and random forests (RF) which are seen to sometimes out-perform PLS-DA 9.   

 

Overall, small variations in processing parameters can lead to different conclusions from the data 

analysis and potentially jeopardize the integrity, and reliability of the results. The thesis highlights the 

need for proper optimisation and a deeper understanding of statistical methods for robust results to 

be accomplished.  
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5.3 Future Work 

Of the large number of comparison software available, only a small selection was studied and 

compared and an even smaller group of deconvolution software programs. Other platforms are 

available which should also be considered, i.e., MS-Dial and MZMine2. There is also a platform that 

combines MetaboAnalyst and R, to be used in conjunction with one another, which would be of 

interest to discover if it gives any additional information to what they give when the analysis is 

conducted separately. Each one would require extensive training from someone who has experience. 

It would also be of interest to determine if there are any differences between the results obtained on 

the XCMS online (free) and the XCMS that requires payment.  

 

During these studies, any different unsupervised multivariate statistical approaches were taken, i.e., 

PCA plots and clustering. However, no supervised analysis approached were conducted, such as 

Partial Least Squares (PLS), despite its capability to build training set models with the ability of 

predicting sample groups of unknown samples 1-2. These are some tests that could be conducted in 

further work to determine whether they give the same results throughout the different software 

programs, or if they differ largely. 

 

Even though these studies determined some potential biomarker masses for sample groups, it has 

not been fully determined how reliable and accurate these software packages are. It would be 

interesting to determine how many markers each software could determine when used in a targeted 

study. Two solutions with some unique mixed standards with known concentrations could be run on 

the Q-ToF to determine whether the differences could be obtained in each piece of software.  

 

The analytical techniques used, coupled with the data processing and statistical workflow, proved 

successful for differentiating the difference in sample groups. It helped discover compounds that 

have potential for use as biomarkers in hair bleaching and identification of tea clones/types and 

showed that there were no differences within the control and MDD groups in dried blood spots 
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supplied. The most useful pieces of software used for the untargeted metabolomic analysis overall 

were Mass Profinder for deconvolution, then MPP and MetaboAnalyst for a wide range of statistical 

analysis available, in the most comprehensive, yet simple ways. The application of the same 

techniques in other areas could be used, showing the further usefulness of these methods such as 

using gas chromatography, or in other disciplines such as environmental sciences. 
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