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Abstract

We use Hopf-Galois theory to study the structure of rings of algebraic integers

in some non-normal extensions of number fields which are tamely ramified, gener-

alising results of Del Corso and Rossi for tamely ramified Kummer extensions.

Firstly we study tamely ramified non-normal extensions of number fields of the

form L = K( p
√
a1, ..., p

√
ar) for some prime number p and a1, ..., ar ∈ OK . We show

that extensions of this form admit a unique almost classical Hopf-Galois structure

and that if r = 2 then this is the only Hopf-Galois structure on the extension.

We then obtain explicit OK,p-bases of OL,p for each prime ideal p of OK . Using

these, we show that OL is locally free over its associated order in the unique almost

classical Hopf-Galois structure on the extension. To obtain criteria for OL to be

free over this associated order we use an idèlic description of the locally free class

group of the maximal order.

Secondly we conduct an analogous study of tamely ramified non-normal exten-

sions of number fields of the form L = K( m
√
a) for some odd square-free number

m = p1...pr and a ∈ OK . Once again, we find that extensions of this form admit

a unique almost classical Hopf-Galois structure. Once again we show that if r = 2

then this is the only Hopf-Galois structure on the extension. We again use explicit

OK,p-bases of OL,p for each prime ideal p of OK to show that OL is locally free over

its associated order in the almost classical Hopf-Galois structure on the extension.

Once again, to obtain criteria for OL to be free over this associated order we use

an idèlic description of the locally free class group of the maximal order.

In both cases, the criteria we obtain are identical to those obtained by Del

Corso and Rossi in the Galois case.
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Chapter 1

Introduction

The module theoretic result perspective on Galois theory began with the normal

basis theorem (see Theorem 2.3.9): if L/K is a Galois extension of fields with

Galois group G then L is a free K[G]-module of rank one. (Equivalently: L has a

K-basis of the form {g(x)|g ∈ G} for some x ∈ L.) If L/K is a Galois extension

of local or global fields then it is natural to ask an analogous question at integral

level: is OL a free module (necessarily of rank one) over the integral group ring

OK [G]? (Equivalently: does OL have an OK-basis of the form {g(x)|g ∈ G} for

some x ∈ OL?) The study of questions of this form is part of Galois module theory.

The answer to this question is connected to the ramification of prime ideals in the

extension.

The Hilbert-Speiser theorem gives a criterion for freeness in the particular case

that the base field is Q: if K = Q, the group G is abelian and L/Q is tamely

ramified, then OL is a free ZG-module of rank one (see Theorem 132 of [Hil13]).

In general working directly with rings of integers in number fields is difficult: if the

class number of K is not equal to one then OK is not a principal ideal domain, so

OL might not have an OK-basis at all.

One way to address this problem is to work with completions. For each prime

ideal p of OK we can form the completion of K at p, by completing K with respect

to the absolute value arising from p, denoted Kp which is a local field. If L/K

is a Galois extension of number fields with Galois group G, then the Kp-algebra

7



CHAPTER 1. INTRODUCTION 8

Lp = Kp ⊗K L is a free Kp[G]-module of rank one. To see this, since L is a module

over K[G] the Kp algebra Lp is a module over Kp⊗K[G] which identifies naturally

with the group algebra Kp[G]. Since L is a free K[G]-module of rank one there

exists x ∈ L such that the set {σ(x)|σ ∈ G} is a K-basis of L which implies

that the set {1 ⊗ σ(x)|σ ∈ G} is a Kp-basis of Lp which implies that Lp is a free

Kp[G]-module of rank one. In general Lp is isomorphic to a product of local fields.

Inside Kp we have the completed ring of integers OK,p which is a principal ideal

domain. Since OK,p is a principal ideal domain, this means that the OK,p-algebra

OL,p = OK,p ⊗OK
OL has an OK,p-basis and we can study the structure of OL,p as

a module over OK,p[G]. We say that OL is a locally free OK [G]-module to mean

that OL,p is a free OK,p[G]-module for each p. This is a weaker condition than OL

being a free OK [G]-module.

Noether’s theorem gives a criterion for local freeness: OL is a locally freeOK [G]-

module if and only if L/K is at most tamely ramified (see Theorem 2.3.15). Since

Noether’s theorem provides a necessary and sufficient condition for OL to be locally

free over OK [G], other techniques are required to study extensions that are wildly

ramified. One of these is to replace the integral group ring OK [G] with a larger

subring of K[G], called the associated order of OL in K[G]:

AK[G] = {z ∈ K[G]|z · x ∈ OL for all x ∈ OL}.

As before, we say that OL is a locally free AK[G]-module to mean that OL,p is a

free AK[G],p-module for each p. If OL is a locally free AK[G]-module then we can

obtain criteria for it to be free by using idèles, which allow us to collect together

detailed information about the structure of OL,p for each p.

Returning to tamely ramified extensions, a natural class of extensions to study

are tamely ramified Kummer extensions L/K. Various authors have studied certain

families of these and obtained criteria for OL to be a free OK [G]-module. These

results all revolve around certain ideals of OK , defined as follows: If L/K is a

Kummer extension of degree N and exponent m and α1, ..., αr are a set of integral

Kummer generators for L/K then we write ai = αm
i ∈ OK for each i. To ease

notation we denote a list of indices j1, ..., jr ∈ Nr by jjj (where N denotes the
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natural numbers including zero) and write ajajaj as a shorthand for aj11 ...a
jr
r . We then

define the ideals associated to aaaOK to be the ideals

bjjj =
∏
p

p⌊
vp(a

jajaj)

m
⌋.

Gómez-Ayala studies tamely ramified Kummer extensions L/K of prime degree

p in [GA94]. He shows that OL is a free OK [G]-module if and only if there exists an

integral Kummer generator α for L/K such that the ideals bj associated to aOK

are principal with generators bj such that

p−1∑
j=0

αj

bj
≡ 0 (mod pOL).

Furthermore, in this case the element

1

p

p−1∑
j=0

αj

bj

is a free generator of OL as an OK [G]-module.

Ichimura studies the case in which L/K is a tamely ramified cyclic Kummer

extension of arbitrary degree in [Ich04] and a criterion for the freeness of OL over

OK [G] in this case is given by Del Corso and Rossi in [DCR10].

The most general result in this area is also due to Del Corso and Rossi (see

Theorem 11 of [DCR13]). They show that if L/K is a tamely ramified Kummer

extension of degree N and exponent m then OL is a free OK [G]-module if and only

if there exists a set of integral Kummer generators α1, ..., αr for L/K such that

the ideals bjjj associated to aaaOK are principal with generators bjjj such that∑
jjj

αjαjαj

bjjj
≡ 0 (mod NOL).

Furthermore, in this case the element

1

N

∑
jjj

αjαjαj

bjjj

is a free generator of OL as an OK [G]-module.

Hopf-Galois theory generalises the situation described above. The group al-

gebra K[G] is an example of a K-Hopf algebra and the action of K[G] on L is
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an example of a Hopf-Galois structure on the extension. In general, a Hopf-Galois

structure on a finite extension of fields consists of a K-Hopf algebra H of dimension

[L : K] as a K-vector space and an action of H on L satisfying certain technical

conditions (see Definition 2.6.6). Hopf-Galois structures can be used to generalise

the concepts from Galois theory, such as the Galois correspondence, to extensions

that are inseparable or non-normal. A given extension may admit a number of

different Hopf-Galois structures which raises the possibility of making comparisons

between them. If H gives a Hopf-Galois structure on a finite (potentially non-

normal) extension of number fields L/K then we may define the associated order

of OL inside H

AH = {h ∈ H|h · x ∈ OL for all x ∈ OL}

and study the structure of OL as an AH-module.

This approach has been fruitfully applied to wildly ramified extensions of local

fields (see for example [Byo00], [Byo02] and [BCE18]). The application of these

ideas to global fields is less well developed. In [Tru11], Truman uses Hopf-Galois

theory to study the structure of rings of algebraic integers in tamely ramified Kum-

mer extensions of number fields and in [GMR22] Gil-Muñoz and Rio do the same

for both tamely and wildly ramified quartic extension of Q.

In [Tru20], Truman studies tamely ramified radical extensions of number fields

L/K of prime degree p in which K does not contain a primitive pth root of unity.

This is a non-normal analogue of the situation considered by Gómez-Ayala. Exten-

sions of this form admit exactly one Hopf-Galois structure. Under the assumption

that the prime number p is unramified in K, Truman shows that OL is locally

free over its associated order in this Hopf-Galois structure and determines criteria

for it to be free. Interestingly, these criteria are identical to those obtained by

Gómez-Ayala for the Galois case.

In this thesis we generalise Truman’s results to two large families of non-normal

tamely ramified extensions of number fields: those of the form L = K( p
√
a1, ..., p

√
ar)

for some prime number p and a1, ..., ar ∈ OK and those of the form L = K( m
√
a) for

some odd square-free number m and a ∈ OK . Extensions of these forms potentially
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admit many Hopf-Galois structures, but we show that they admit a unique Hopf-

Galois structure with the additional property of being so-called almost classical.

We show that in both cases OL is locally free over its associated order in this Hopf-

Galois structure and determine criteria for it to be free. In the same way that the

criteria in Truman’s paper are identical to those obtained by Gómez-Ayala for the

Galois case, our criteria are identical to those obtained by Del Corso and Rossi in

the Galois case.

In Chapter 2 we give formal statements of the definitions and results that we

shall use in what follows including ramification theory, completions, idèles and

locally free class groups and Hopf algebras and Hopf-Galois theory. As a worked

example of the theory in action we provide a new proof of a special case of the

result of Del Corso and Rossi, based upon a theorem of Bley and Johnston, that

makes use of the unique maximal order in K[G] in place of the associated order.

We also give an outline of the proof of Truman’s result for tamely ramified radical

extensions of prime degree which is based on many of the same ideas.

In Chapters 3 and 4 we study tamely ramified non-normal extensions of number

fields of the form L = K( p
√
a1, ..., p

√
ar) for some prime number p and a1, ..., ar ∈

OK . We show that extensions of this form admit a unique almost classical Hopf-

Galois structure and that if r = 2 then this is the only Hopf-Galois structure on

the extension. We then obtain explicit OK,p-bases of OL,p for each prime ideal p of

OK . Using these, we show that OL is locally free over its associated order in the

unique almost classical Hopf-Galois structure on the extension. To obtain criteria

for OL to be free over this associated order we use a result of Bley and Johnston,

which allows us to work with the maximal order in place of the associated order

and then use an idèlic description of the locally free class group of this maximal

order. The criteria we obtain are identical to those obtained by Del Corso and

Rossi in the Galois case.

In Chapters 5 and 6 we conduct an analogous study of tamely ramified non-

normal extensions of number fields of the form L = K( m
√
a) for some odd square-

free number m and a ∈ OK . Once again, we find that extensions of this form
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admit a unique almost classical Hopf-Galois structure. Our approach is essentially

the same: using explicit OK,p-bases of OL,p for each prime ideal p of OK we show

that OL is locally free over its associated order in the almost classical Hopf-Galois

structure on the extension. Once again, we combine the result of Bley and Johnston

with idèlic machinery to obtain criteria for OL to be free over this associated order

and once again we find that these criteria are identical to those obtained by Del

Corso and Rossi in the Galois case.



Chapter 2

Background material

2.1 Algebraic number theory and ramification

Throughout this section we suppose that L/K is a finite extension of number

fields with rings of integers OL and OK respectively.

Definition 2.1.1. Let p be a prime ideal of OK and P be a prime ideal of OL.

We say P lies above p if P|pOL.

Remark 2.1.2. Since OL is a Dedekind domain pOL factorises uniquely into prime

ideals of OL.

A reference for the following is page 110 of [FT91].

Definition 2.1.3. Suppose the unique prime factorisation of pOL is Pe1
1 ...P

eg
g

where each Pi is distinct. The integer ei denotes the ramification index of Pi over

p.

For each i, OL/Pi is an extension of OK/p, fi denotes the degree of this exten-

sion which is called the residue class degree.

Theorem 2.1.4.
∑g

i=1 eifi = [L : K].

Proof. See pages 46 and 47 of [Neu13].

Corollary 2.1.5. In the case of Galois extensions we have e1 = ... = eg = e and

f1 = ... = fg = f hence the previous result simplifies to efg = n.

13
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Definition 2.1.6. A prime ideal p is unramified in L if ei = 1. If g > 1, p splits

in L. If g = 1 and e1 = 1, p is inert in L.

A prime ideal p is ramified in L if ei > 1 for some i. Let p denote the residue

characteristic of p. The extension L/K is tamely ramified if gcd(ei, p) = 1 for all

i. The extension L/K is wildly ramified if gcd(ei, p) > 1 for some i.

Remark 2.1.7. Henceforth we will say simply “ tame” to mean at most tamely

ramified.

Proposition 2.1.8. Let K ⊆ F ⊆ L be field extensions. The extension L/K is

tame if and only if the extensions L/F and F/K are both tame.

Proof. See Corollary 7.8 of [Neu13].

Proposition 2.1.9. Let F1/K and F2/K be field extensions and let L be the com-

positum i.e. L = F1F2. The extension L/K is tame if and only if the extensions

F1/K and F2/K are both tame.

Proof. See Corollary 7.9 of [Neu13].

Proposition 2.1.10. Let L/K be a Galois extension. The extension L/K is tame

if and only if the trace map Tr : OL → OK is surjective.

Proof. See Chapter I, Section 3, Corollary 2 of [Frö83].

Proposition 2.1.11. Let F = K(ζ) for ζ some primitive pth root of unity. We

have an equality of ideals (ζ − 1)p−1OF = pOF and F/K is tame.

Proof. See 1.15 in Section VI.1 on page 210 of [FT91].

2.2 Completions

For a general extension of number fields L/K, the ring of integers OK need

not be a principal ideal domain, so OL won’t necessarily have an integral basis

over OK . When we complete at a prime ideal p of OK , the ring OK,p is a principal

ideal domain, and OL,p is a finitely generated torsion free OK,p-module, so it does
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have an integral basis over OK,p (see 4.1 in Section II.4 on page 88 of [FT91]). For

a ∈ OK we get an ideal aOK = ⟨a⟩. For each prime ideal p of OK , set vp(a) to be

the exact power of p in the factorisation of aOK . A typical element of K is x = a
b

where a, b ∈ OK .

Definition 2.2.1. Define the valuation vp : K → Z∪{∞} by vp(x) = vp(a)−vp(b)

with x, a and b as defined above.

Remark 2.2.2. The valuation has the following properties.

1. vp(xy) = vp(x) + vp(y).

2. vp(x+ y) ≥ min(vp(x), vp(y)).

Using this valuation, we define an absolute value on K as follows.

Definition 2.2.3. We can now define the p-adic absolute value | · |p : K → Q≥0

by |x|p = p−fvp(x) for x ∈ K with f defined as in Definition 2.1.3.

If we complete K with respect to the p-adic absolute value, we get a local field

Kp. If V is a K-vector space we write Vp for the Kp-vector space Kp ⊗K V . In

particular, we write Lp = Kp ⊗K L. Note, however, that Lp will not be a field in

general. We have an isomorphism of Kp-algebras Lp
∼=
∏

P|p LP where the product

is taken over the prime ideals of OL lying above p, and each LP is a local field

(see [FT91]). Inside Kp we have its ring of integers OK,p which is a valuation ring

defined as

Definition 2.2.4. OK,p = {x ∈ Kp | vp(x) ≥ 0} = {x ∈ Kp | |x|p ≤ 1}.

OK,p is a local ring, it has a unique maximal ideal p = {x ∈ OK,p|vp(x) ≥ 1}.

OK,p is a principal ideal domain since p = ⟨πp⟩ with vp(πp) = 1. Just like for

number fields, OK,p/p is a finite field of characteristic p, called the residue field kp

and p is called the residue characteristic.

LetK be a number field such that its ring of algebraic integersOK is a Dedekind

domain and let V be a finite dimensional vector space over K. An OK-lattice in

V is a finitely generated OK-submodule M of V that contains a K-basis of V . Let
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M and N be OK-lattices in an n dimensional vector space V . For each prime p,

Mp and Np are free OK,p-modules of rank n. Let x1, ..., xn be an OK,p-basis of Mp

and let y1, ..., yn be an OK,p-basis of Np. Let Vp denote the ambient vector space

Vp := V ⊗K Kp. In this space, we can write yj =
∑n

i=1 cijxi with cij ∈ Kp and

let C = [cij]. Then [Mp : Np] = det(C) ∈ Kp and in particular, if Mp = Np, then

[Mp : Np] ∈ O×
K,p.

Theorem 2.2.5. There exists a unique fractional ideal I of K such that Ip = [Mp :

Np] for all p. Also note that vp(I) = vp([Mp : Np]) for all p.

Proof. See Chapter 2, Section 4 of [FT91].

Definition 2.2.6. We define the index [M : N ] to be this fractional ideal I.

We now define the discriminant. Suppose V has a symmetric non-degenerate

bilinear form b : V × V → K. For example, if V is a number field, we can take the

bilinear form to be the trace pairing b(x, y) = Tr(xy). Let M be an OK-lattice in

V . For each p, Mp is a free OK,p-module of rank n. Define the discriminant of Mp

(with respect to b) to be d(Mp) = det(b(xi, xj)) ∈ Kp where the elements xi and xj

come from a basis of V . Note that the discriminant does not depend on the choice

of basis.

Theorem 2.2.7. There exists a unique fractional ideal d(M) of K with the property

that vp(d(M)) = vp(d(Mp)) for all p.

Proof. See Chapter 3, Section 2 of [FT91]..

Definition 2.2.8. We define the discriminant d(M) to be this fractional ideal.

Lemma 2.2.9. If M and N are lattices, then d(N) = d(M)[M : N ]2.

Proof. See Chapter 3, Section 2, result 2.4 of [FT91].

We now focus on the OK-lattice OL, and record some tools for finding local

integral bases of OL,p over OK,p.
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Theorem 2.2.10. Let L/K denote a finite separable extension, let p be a prime

ideal of OK and let P be a prime ideal of OL that lies above p (then LP/Kp is an

extension of local fields).

� The following conditions are equivalent

– LP = Kp(λ) for λ a root of some Eisenstein polynomial g(X).

– LP/Kp is totally ramified.

– OL,P = OK,p[λ] for a uniformising parameter λ of L.

� If the first condition above is satisfied, then λ is a uniformising parameter

and deg(g) = [LP : Kp] and so g is irreducible in Kp.

� the minimal polynomial over Kp of a uniformising parameter of a totally

ramified separable extension LP of Kp is an Eisenstein polynomial over Kp.

Proof. See Theorem 24 in Section III.3 of [FT91].

Definition 2.2.11. Let L/K be a finite extension with intermediate fields F1 and

F2. We say that F1 and F2 are linearly disjoint if any K-basis of F1 remains

linearly independent over F2.

Lemma 2.2.12. If F1 and F2 are linearly disjoint, then F1 ∩ F2 = K. If at least

one of the extensions F1/K and F2/K is Galois, then the converse holds.

Proof. See 2.13 in Section III.2 on page 125 of [FT91].

Definition 2.2.13. Let L/K be a finite extension of number fields with intermedi-

ate fields F1 and F2. We say that F1 and F2 are arithmetically disjoint if they are

linearly disjoint and d(OF1) and d(OF2) are coprime. Note that in general, these

discriminants are ideals, as defined in Definition 2.2.8 and in this case the bilinear

form is given by the trace.

Theorem 2.2.14. Let L/K be a finite extension of number fields with intermediate

fields F1 and F2. If F1 and F2 are arithmetically disjoint and L is equal to their

compositum F1F2, then {xy|x ∈ OF1 , y ∈ OF2} = OL.
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Proof. See 2.13 in Section III.2 on page 125 of [FT91].

Remark 2.2.15. The previous theorem also applies locally.

Remark 2.2.16. If the extensions aren’t arithmetically disjoint, then {xy|x ∈

OF1 , y ∈ OF2} ⫋ OL.

2.3 Galois module theory

Definition 2.3.1. Let R be a commutative ring with unity. An R-algebra is an

R-module A with a multiplication map µ : A⊗A→ A which is associative i.e. the

following diagram commutes

A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗1

1⊗µ µ

µ

and a unit map ι : R → A which is unitary i.e. the following diagrams commute.

A⊗R A⊗ A

A

1⊗ι

scalar multiplication
µ

R⊗ A A⊗ A

A

ι⊗1

scalar multiplication
µ

Remark 2.3.2. In this thesis we will mainly consider the specific case of K-

algebras where K is a field. All of the K-algebras that we will consider have finite

dimension as K-vector spaces.

Example 2.3.3. Let K be a field and G be a finite group. The group algebra K[G]

is an example of a K-algebra.

Definition 2.3.4. Let K be a number field and let A be a K-algebra. An OK-order

in A is a subring Λ of A containing OK such that Λ is finitely generated over OK

and K ⊗ Λ ∼= A i.e. Λ contains a K-basis of A.
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Example 2.3.5. OK [G] is an OK-order in K[G].

Definition 2.3.6. An order is said to be maximal if it is not properly contained

in another order.

Theorem 2.3.7. Let K be a number field with ring of integers OK and let A be a

K-algebra. OK-orders have the following properties.

1. Every order in A is contained in some maximal order.

2. The K-algebra A has at least one maximal order.

3. If A is commutative, then A has a unique maximal order M. Also, M is the

integral closure of OK in A.

Proof. See Theorem 26.5, Corollary 26.6 and Proposition 26.10 of [CR81a].

We will now discuss the normal basis theorem which can be viewed as a module

theoretic interpretation of Galois theory.

Definition 2.3.8. Let L/K be a finite Galois extension of number fields with Galois

group G. A normal basis of L/K is a basis of the form {σ(x)|σ ∈ G}.

Theorem 2.3.9 (Normal Basis Theorem). For Galois extensions, it is always

possible to find a normal basis.

Proof. See Chapter VI, Section 13 of [Lan04].

Remark 2.3.10. The existence of a normal basis is equivalent to saying that L

is a free K[G]-module of rank one and the Normal Basis Theorem says that for

Galois extensions, this is always the case.

Given an extension L/K of number fields a common problem in Galois module

theory is to attempt to determine an integral analogue of the normal basis theorem

i.e. whether OL is a free OK [G]-module. A problem here is that OK [G] often isn’t

large enough for this to be the case. This motivates the definition of the associated

order. The following definition and remark are based on Definition 24.3 of [CR81a].
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Definition 2.3.11. The largest subring of K[G] for which OL is a module is

AK[G] = {z ∈ K[G]|z · x ∈ OL for all x ∈ OL}.

This is called the associated order of OL in K[G].

Remark 2.3.12. AK[G] is an order in K[G] because it is finitely generated and

projective as an OK-module and it contains a basis of K[G] i.e. K ⊗OK
AK[G] =

K[G].

Lemma 2.3.13. The associated order is the only order in K[G] over which OL

can possibly be free.

Proof. See Chapter 3 of [Chi00].

Proposition 2.3.14. OK [G] ⊆ AK[G].

Proof. Let x ∈ OL, then g(x) ∈ OL for all g ∈ G, since g(x) is a root of the minimal

polynomial of x over K. Hence if z =
∑

g∈G cgg ∈ OK [G] (with cg ∈ OK for each

g ∈ G) then

z · x =
∑
g∈G

cgg(x) ∈ OL,

and so z ∈ AK[G]. Thus OK [G] ⊆ AK[G].

Theorem 2.3.15 (Noether). If L/K is a tame Galois extension with Galois group

G, then OL,p is a free OK,p[G]-module (of rank one) for each p.

Proof. See Theorem 1.2 of [Tho10].

Definition 2.3.16. In this case, we say that OL is locally free over OK [G].

2.4 Idèles and Class Groups

Let K be a number field, A be a commutative K-algebra and Λ be an OK-order

in A. Recall (from Section 2.2) that if p is a prime of OK we write Ap = Kp ⊗K A

and Λp = OK,p ⊗OK
Λ; then Λp is an OK,p-order in Ap. Also we define a Λ-lattice

to be a finitely generated projective OK-module which is also a Λ-module. If X is

a Λ-lattice then for each prime p of OK we write Xp = OK,p ⊗OK
X, and then Xp

is a Λp-lattice.
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Definition 2.4.1. We say that X is a locally free Λ-lattice if Xp is a free Λp-module

for each p.

We say that two locally free Λ-lattices of rank one are stably isomorphic if

X ⊕ Λk ∼= Y ⊕ Λk for some k ≥ 0. Let [X] denote the stable isomorphism class

of X and let Cl(Λ) denote the set of these classes. It can be shown (see Section

51 of [CR81b]) that X ⊕ Y ∼= Λ⊕ Z for some locally free Λ-lattice Z of rank one;

using this we define a binary operation on Cl(Λ) by [X] + [Y ] = [Z] whenever

X ⊕ Y ∼= Λ⊕ Z. this binary operation gives a group structure on Cl(Λ).

Definition 2.4.2. The set Cl(Λ) with the binary operation described above is called

the locally free class group of Λ.

Theorem 2.4.3. Since A is commutative, a Λ-lattice X has trivial class in Cl(Λ)

if and only if it is a free Λ-module.

Proof. See Theorem 24 in Section 51 of [CR81b].

Remark 2.4.4. In full generality X having trivial class is only a necessary con-

dition for it to be a free Λ-module (see Section 51 of [CR81b]). Since we are

specialising to cases where A is a commutative algebra, in our case this condition

is also sufficient.

Next, we obtain a more concrete description of Cl(Λ) and a method for describ-

ing the class of a locally free Λ-lattice in Cl(Λ). This material is based on Section

49A of [CR81a].

Definition 2.4.5. For each prime ideal p of OK, let ap ∈ A×
p . An idèle is an

infinite sequence of these elements ap indexed by the prime ideals p of OK, written

as (ap)p.

Definition 2.4.6. The idèle group of A is a subgroup of the direct product
∏

pA
×
p ,

defined as

J(A) :=

{
(ap)p ∈

∏
p

A×
p |ap ∈ Λ×

p for all but finitely many p

}
.
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Remark 2.4.7. This definition appears to depend on the choice of order Λ, but it

can be shown to be independent of this choice.

Definition 2.4.8. The subgroup of unit idèles of Λ is defined as

U(Λ) =
∏
p

Λ×
p =

{
(ap)p|ap ∈ Λ×

p for all p
}
.

Definition 2.4.9. A principal idèle of A is an idèle of the form (a)p where a ∈ A×.

The principal idèles of A form a subgroup of J(A) denoted by A×.

Theorem 2.4.10. With the notation established above, we have

Cl(Λ) ∼=
J(A)

A×U(Λ)
.

Proof. See Theorem 22 in Section 49 of [CR81a].

Remark 2.4.11. Note that in Theorem 2.4.10 since all groups involved are abelian,

all the subgroups are normal so the product of subgroups in the denominator is again

a subgroup and is normal, so the quotient is well defined.

In order to describe the class of a locally free Λ-lattice in Cl(Λ), we make an

additional assumption. Since X is a Λ-module, K⊗OK
X is a module over K⊗OK

Λ

which is equal to A. We assume that K⊗OK
X is actually a free A-module of rank

one.

For example we can take A to be K[G], X to be OL and K ⊗OK
OL = L which

is a free K[G]-module of rank one by the normal basis theorem.

Let x be a free generator of K ⊗OK
X as an A-module and for each p let xp be

a generator of Xp as a Λp-module. Then for each p, there exists a unique element

ap ∈ Ap such that ap · x = xp.

Proposition 2.4.12. With the notation established above, the class of X in Cl(Λ)

corresponds to the class of the idèle (ap)p in the quotient group

J(A)

A×U(Λ)
.

Proof. See Theorem 49.22 of [CR81b].
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Definition 2.4.13. Let A be a commutative algebra. Then we denote its unique

maximal order by M.

Proposition 2.4.14. The class group of the maximal order is isomorphic to a

product of class groups of finite extensions of the field K.

Proof. Suppose that A ∼=
∏r

i=1 Fi, where each Fi is a finite extension of K. Then

the unique maximal order in A is M ∼=
∏r

i=1 OFi
. We have

A× ∼=
r∏

i=1

F×
i ,

J(A) ∼=
r∏

i=1

J(Fi)

and

U(M) ∼=
r∏

i=1

U(OFi
)

so

Cl(M) ∼=
J(A)

A×U(M)

∼=
r∏

i=1

J(Fi)

F×
i U(OFi

)

∼=
r∏

i=1

Cl(Fi)

where Cl(Fi) denotes the ideal class group of Fi. See also pages 359 and 360 of

[Neu13].

Corollary 2.4.15. Applying the isomorphism in the previous proposition, the idèle

(ap)p gets mapped to
∏

p p
vp(ap). This allows us to obtain a tuple of ideals from an

idèle.

We can often obtain criteria for an M-module to be free in terms of certain

ideals of the rings of integers OFi
being principal. In general the locally free class

group of an order Λ in A will not admit a decomposition of this form, but we have

the following result of Bley and Johnston.
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Theorem 2.4.16. Let X be a Λ-lattice and let

MX =

{∑
finite

z · x|z ∈ M, x ∈ X

}
⊂ KX.

Then X is a free Λ-module of rank one if and only if

� X is a locally free Λ-module of rank one

� MX is a free M-module with a generator lying in X

Proof. See Theorem 2.1 of [BJ08].

Thus we can obtain criteria for a Λ-module X to be free by first obtaining

criteria for X to be a locally free Λ-module and then obtaining criteria for MX to

be a free M-module with a generator lying in X. As noted above, this second task

is facilitated by the decomposition of Cl(M) as a product of ideal class groups.

2.5 An example of Galois module theory - Tamely

ramified Kummer extensions of prime power

degree

The aim of this section will be to reprove a particular case of the result of Del

Corso and Rossi using the result of Bley and Johnston (Theorem 2.4.16). We will

focus on certain tame Kummer extensions of prime-power degree. We first recall

the result of Del Corso and Rossi. If L/K is a tamely ramified Kummer extension

of degree N and exponent m then OL is a free OK [G]-module if and only if there

exists a set of integral Kummer generators α1, ..., αr for L/K such that the ideals

bjjj associated to aaaOK are principal with generators bjjj such that∑
jjj

αjαjαj

bjjj
≡ 0 (mod NOL).

Furthermore, in this case the element

1

N

∑
jjj

αjαjαj

bjjj

is a free generator of OL as an OK [G]-module.
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2.5.1 Setup

Let p be an odd prime number and let K be a number field containing a

primitive pth root of unity ζ. Let L/K be a Galois extension with G = Gal(L/K) ∼=

Cr
p . By Kummer theory L = K(α1, ..., αr) with αp

i ∈ K for each i, and G =

⟨σ1, ..., σr⟩ where σi(αi) = ζαi and σi(αj) = αj for i ̸= j. For more details on

Kummer theory see [Rom05].

K

K(αi)

L = K(α1, ..., αr)

pr

pr−1

p

G

⟨σi⟩

Definition 2.5.1 (Bold notation). If i1, ..., ir ∈ {0, ..., p− 1} write iii for the vector

of exponents (i1, ..., ir) ∈ Zr. Then the notation αiαiαi denotes αi1
1 ...α

ir
r ∈ L and aiaiai

denotes ai11 ...a
ir
r ∈ K.

Remark 2.5.2. This notation is compatible with componentwise multiplication in

Zr: if iii, jjj ∈ Zr then

(αiαiαi)jjj = (αi1
1 ...α

ir
r )

j1...jr = αijαijαij.

We can write sums of the form
∑

iii · where we again assume 0 ≤ ik ≤ p−1 for each

k. We can also use this notation in subscripts e.g. for orthogonal idempotents eiii.

Remark 2.5.3. This notation will also be valid when we study extensions of square

free degree in Chapters 5 and 6, but in that case the natural ranges for the exponents

will be 0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ r.

2.5.2 Properties of the group algebra

Proposition 2.5.4. We have K[G] ∼= Kpr via orthogonal idempotents.
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Proof. First fix k ∈ {1, ..., r} and for each i = 0, ..., p− 1 define

ek,i =
1

p

p−1∑
j=0

ζ−ijσj
k ∈ K⟨σk⟩.

Then the ek,i are a basis of mutually orthogonal idempotents in K⟨σk⟩ so K⟨σk⟩ ∼=

Kp. Now given i1, ..., ir ∈ {0, ..., p− 1} define

eiii =
r∏

k=1

ek,ik =

p−1∏
k=0

1

p

p−1∑
j=0

ζ−ikjσj
k ∈ K[G].

Then the eiii are a basis of mutually orthogonal idempotents in K[G], so K[G] ∼=

Kpr .

Corollary 2.5.5. The unique maximal order in K[G] is

M = OK⟨eiii⟩ ∼= Opr

K .

Proposition 2.5.6. The action of the eiii on L is given by

eiii(α
jαjαj) =

α
jαjαj if iii = jjj

0 otherwise.

Proof. We have

eiii(α
jαjαj) =

p−1∏
k=0

1

p

p−1∑
j=0

ζ−ikjσj
k(α

jαjαj)

=

p−1∏
k=0

1

p

p−1∑
j=0

ζj(ik−jk)αjαjαj

= δiii,jjjα
jαjαj.

2.5.3 Ramification

We ensure that the extension is tame in two steps. Firstly we determine con-

ditions for a degree p subextension to be tame and secondly we apply Proposition

2.1.9 to ensure that the full extension is tame.
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Lemma 2.5.7. An extension of the form K(α)/K with α ̸∈ K and αp = a ∈ K is

tame if and only if a can be chosen to satisfy a ≡ 1 (mod (ζ − 1)pOK).

Proof. Since ζ ∈ K and α ̸∈ K, the polynomial xp − a is irreducible over K and is

therefore the minimal polynomial of α over K. Hence K(α)/K has degree p. Since

K(α)/K is Galois, each prime ideal p of OK factorises in K(α) as (P1...Pg)
e with

e|p. Therefore K(α)/K is tame if and only if each prime ideal p lying above p is

unramified in K(α). By Theorem 119 of [HGK81] this occurs if a can be chosen to

satisfy a ≡ 1 (mod ppvp(ζ−1)) for each p lying above p. By the Chinese remainder

theorem, this is equivalent to requiring a ≡ 1 (mod (ζ − 1)pOK).

Lemma 2.5.8. The extension L/K is tame if and only if all ai can be chosen to

satisfy ai ≡ 1 (mod (ζ − 1)pOK).

Proof. The field L is the compositum of the fields K(αi) for each i. Hence applying

Proposition 2.1.9, L/K is tame if and only if K(αi)/K is tame for each i. By the

previous lemma this occurs if and only if all ai can be chosen to satisfy ai ≡ 1

(mod (ζ − 1)pOK).

Henceforth we will assume that these congruences hold.

2.5.4 Local integral bases for p ∤ pOK

Definition 2.5.9. For x ∈ K× and p a prime of OK define rp(x) by

rp(x) = ⌊vp(x)
p

⌋.

Remark 2.5.10. This notation will also be valid when we study extensions of

square free degree m in Chapters 5 and 6, but in that case the denominator in the

above definition will be m.

Proposition 2.5.11. Suppose p ∤ pOK. Then an OK,p-basis of OK(α),p is given by

B =

{
αi

π
rp(ai)
p

|i = 0, ..., p− 1

}
.
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Proof. By Theorem 118 of [HGK81], p is unramified in K(α) if p|vp(a) and totally

ramified in K(α) if p ∤ vp(a). Note that each element of B is integral over OK,p

since ( αi

π
rp(ai)
p

)p = ai

π
prp(ai)
p

and prp(a
i) ≤ vp(a

i). First suppose that p|vp(a). Then

vp(a) = prp(a) and rp(a
i) = irp(a) for each i. Using the trace formulation of the

discriminant we find that

d(B) = π
−p(p−1)rp(a)
p

∣∣∣∣∣∣∣∣∣∣∣∣

p 0 ... 0

0 0 ... ap

... ... ... ...

0 ap ... 0

∣∣∣∣∣∣∣∣∣∣∣∣
= ppap−1π

−p(p−1)rp(a)
p

= pp

which is a unit of OK,p. Therefore B is an OK,p-basis of OK(α),p in this case. Now

suppose that p ∤ vp(a). Then p is totally ramified in K(α), say pOK(α) = Pp. We

have vP(α
p) = pvP(α) and also vP(α

p) = vP(a) = pvp(a), so vP(α) = vp(a). Hence

for each i = 0, ..., p− 1 we have

vP(
αi

π
rp(ai)
p

) = vP(α
i) = vP(π

rp(ai)
p )

= vp(a
i)− prp(a

i)

This expression is the principal remainder in the division of vp(a
i) by p. Since

p ∤ vp(ai) these remainders cover all residues modulo p as i varies. Hence B contains

an element of each P-valuation 0, ..., p−1 and so by Theorem 2.2.10 B is an OK,p-

basis of OK(α),p.

Proposition 2.5.12. Suppose that p is a prime ideal of OK that does not lie above

p. Then an OK,p-basis of OL,p is given by{
αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all k

}
.

Proof. If p|vp(ak) for all k then p is unramified inK(αk) for each k, so the extensions

K(αk)/K are pairwise arithmetically disjoint. Therefore in this case (applying the
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previous proposition and Theorem 2.2.14) an OK,p basis of OL,p is given by αi1
1

π
rp(a

i1
1 )

p

...
αir
r

π
rp(a

ir
r )

p

|0 ≤ ik ≤ p− 1 for all k

 .

Since rp(a
ik
k ) =

vp(a
ik
k )

p
for each k, we see that rp(a

i1
1 ) + ... + rp(a

ir
r ) = rp(a

i1
1 ...a

ir
r )

giving the description in the statement of the proposition. If p ∤ vp(ak) for some k

then without loss of generality suppose that p ∤ vp(a1). For each k = 2, ...., r choose

nk ∈ {0, ..., p − 1} such that vp(a
nk
1 ak) ≡ 0 (mod p). Then L is the compositum

of the fields K(α1), K(αn2
1 α2), ..., K(αnr

1 αr) and these are pairwise arithmetically

disjoint as extensions of K. By the first part of the proof an OK,p-basis of OL,p is

given by αi1
1 (α

n2
1 α2)

i2 ...(αnr
1 αr)

ir

π
rp(a

i1
1 (a

n2
1 a2)i2 ...(a

nr
1 ar)ir )

p

|0 ≤ ik ≤ p− 1 for all k


=

 αi1+n2i2+...+nrir
1 αi2

2 ...α
ir
r

π
rp(a

i1+n2i2+...+nrir
1 a

i2
2 ...airr )

p

|0 ≤ ik ≤ p− 1 for all k


=

{
αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all k

}

To explain the last equality above in more detail, we first note that since vp(a1) is

the only term which is not congruent to 0 modulo p, we do not get a “carry” in

the floor function and we can combine the exponents of πp as expected. Now we

must be able to reach a typical element,{
αs1
1 ...α

sr
r

π
rp(a

s1
1 ...asrr )

p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}

We can do this by first choosing each ik to be the unique element in {0, ..., p− 1}

such that nkik ≡ sk (mod p) for 2 ≤ k ≤ r and finally choosing i1 to be the unique

element in {0, ..., p−1} such that
∑r

k=1 ik ≡ s1 (mod p). By doing this, we extract

a unit power of each ai but since these are in K already, this does not affect the

extension. We can relabel the indices to rewrite the integral basis in terms of the
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original elements and get a basis of the following form.{
αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}

This completes the proof.

2.5.5 Local integral bases for p|pOK

Proposition 2.5.13. Suppose that p|pOK. Then an OK,p-basis of OK(α),p is given

by

B =

{(
α− 1

ζ − 1

)i

|i = 0, ..., p− 1

}
.

Proof. First note that p is unramified in K(α) since K(α)/K is tamely ramified.

Next we show that α−1
ζ−1

is integral. If x = α−1
ζ−1

then

(ζ − 1)x+ 1 = α

⇒((ζ − 1)x+ 1)p = a

⇒
p−1∑
j=0

(
p

j

)
(ζ − 1)jxj = a

⇒
p−1∑
j=1

(
p

j

)
(ζ − 1)jxj + (1− a) = 0

⇒
p−1∑
j=1

(
p

j

)
(ζ − 1)j−pxj +

1− a

(ζ − 1)p
= 0

Since a ≡ 1 (mod (ζ − 1)p), this is a monic polynomial in x with coeffcients in

OK,p. Therefore x is integral and it follows that the elements of B are integral.

We have d(B) = (
∏p−1

i=0 (ζ − 1)−i)2d(B′) where B′ = {(α − 1)i|i = 0, ..., p − 1}

and d(B′) = d(1, α, ..., αp−1) = (−1)
p−1
2 ppap−1. Hence up to units of OK,p we have

d(B) = (ζ − 1)−2
∑p−1

i=0 ipp = (ζ − 1)p(p−1)pp and since (ζ − 1)p and p differ by a unit

of OK,p this discriminant is trivial. Therefore B is an OK,p-basis of OK(α),p.
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Proposition 2.5.14. Suppose that p is a prime ideal of OK that lies above p. Then

an OK,p-basis of OL,p is given by{
r∏

k=1

(
αk − 1

ζ − 1

)ik

|0 ≤ ik ≤ p− 1 for all k

}
.

Proof. In this case p is unramified in K(αk)/K for each k, so these extensions are

pairwise arithmetically disjoint at p. The result now follows from the previous

proposition and Theorem 2.2.14.

2.5.6 Local generators

By Noether’s theorem, OL is a locally free OK [G]-module. We seek explicit

generators of OL,p over OK,pG for each p.

Proposition 2.5.15. Suppose that p ∤ pOK. Then a free generator of OL,p as an

OK,pG-module is

xp =
1

pr

∑
iii

αiαiαi

π
rp(aia

iai)
p

.

Proof. In this case we have p ∈ O×
K,p, so each idempotent eiii lies in OK,pG, so

OK,pG = Mp = OK,p⟨eiii⟩. For each iii we have

eiii · xp =
1

pr
αiαiαi

π
rp(aia

iai)
p

so the set {eiii · xp|0 ≤ ik ≤ p − 1 for all k} forms an OK,p-basis of OL,p (note that

pr ∈ OK,p and compare wth the basis from Proposition 2.5.12). Hence xp is a free

generator of OL,p as an OK,p-module.

Proposition 2.5.16. Suppose that p|pOK. Then a free generator of OL,p as an

OK,pG-module is

xp =
1

pr

r∏
k=1

(1 + αk + ...+ αp−1
k ).

We will discuss some preliminary p-group theory before proving this proposition.

We note that the theory we will now discuss only requires the assumption thatG is a

p-group. For prime ideals p|pOK , the orthogonal idempotents are not available (1
p
̸∈

O×
K,p so eiii ̸∈ OK,p[G]), so the argument we used to prove the previous proposition
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cannot be applied. Since the Galois group of this extension is a p-group, this gives

the group ring OK,pG some special properties which can be used as an alternative

method to obtain a local generator of OL,p as an OK,p-module. Since p is a maximal

ideal of OK,p, the quotient OK,p/p is a finite field of characteristic p. In fact p is

the unique maximal ideal of OK,p so OK,p is a local ring. This allows us to use

Nakayama’s Lemma.

Lemma 2.5.17 (Nakayama’s Lemma). If M is a finitely generated OK,p-module

and m1, ..., mk generate M/πM (where π is a uniformiser) as an OK,p/p-module,

then they generate M over OK,p.

Proof. See Lemma 4.3 on page 425 of [Lan04].

Here OK,p/p is a field, so M/πM is a vector space. In our case, M = OL,p and

OL,p = OK,p⟨x1, ..., xn⟩ for some OK,p basis x1, ..., xn.

M = {
n∑

i=1

cixi|ci ∈ OK,p}

and

πM = {
n∑

i=1

cixi|ci ∈ p = πOK,p}

so

M/πM = {
n∑

i=1

cixi|ci ∈ OK,p/p}.

Hence an integral basis ofOL,p overOK,p becomes a basis of OL,p/πOL,p overOK,p/p

which is a field. Similarly, OK,p[G]/πOK,p[G] is the set

OK,p[G]/πOK,p[G] = {
n∑

i=1

ciσi|ci ∈ OK,p/p} = OK,p/p[G] = kp[G]

and since kp is a field, this set (OK,p/p)[G] is a group algebra. For this particular

extension, kp[G] is a group algebra of a group of order pr over a field of characteristic

p. This gives the group algebra some nice properties, one of which is the following.

Proposition 2.5.18. The group algebra kp[G] has a unique minimal (left) ideal,

generated by θ =
∑n

i=1 σi.

Proof. See Proposition 6 on page 3816 of [Tho08].
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Another property of the group algebra is the following, taken from Proposition

5.1 on page 7 of [Joh15].

Proposition 2.5.19. If x ∈ OL,p/πOL,p is such that θ · x ̸= 0 in kp (i.e. θ ·

x ̸∈ πOK,p) i.e. Tr(x) ∈ O×
K,p, then x is a free generator of OL,p/πOL,p as a

kp[G]-module. And hence by Nakayama’s lemma x is a free generator of OL,p over

OK,p[G].

Proof. We are looking for x ∈ OL,p/πOL,p such that OL,p/πOL,p = kp[G] · x. Given

x, we get a linear map f : kp[G] · x → OL,p/πOL,p given by f(z) = z · x. We want

to choose x such that f is bijective. Since the domain and codomain are vector

spaces of the same dimension, f is bijective if and only if it is injective if and only

if ker(f) = {0}. In addition, note that ker(f) is a (left) ideal since if f(z) = 0 and

y ∈ kp[G], then f(yz) = yz · x = y · (z · x) = 0. So ker(f) ̸= {0} if and only if

θ ∈ ker(f) if and only if θ · x = 0 in kp. Therefore if we choose x ∈ OL,p such that

θ · x ∈ O×
K,p then θ · x ̸= 0 in kp and so x is a free generator of OL,p/πOL,p as a

kp[G]-module.

We will now complete the proof of Proposition 2.5.16 by calculating the trace

of the element xp and showing that xp ∈ OL,p.

Proof of Proposition 2.5.16. Proposition 2.5.14 implies that (αk−1)p−1

p
∈ OL,p for

each k. Using the fact that
(
p−1
n

)
≡ (−1)n (mod p), we have 1

p
(1+αk+ ...+α

p−1
k ) ∈

OL,p for each k, hence their product is in OL,p and xp ∈ OL,p.

Now note that the trace of αjαjαj is zero unless jjj = 000 in which case it is pr. This

implies that xp has trace 1 and then the result follows from Proposition 2.5.19.

2.5.7 Using idèlic theory to move from local to global free-

ness

Having obtained a complete set of local information in the previous section, in

this section, we apply Theorem 2.4.16 to determine criteria for global freeness.
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Proposition 2.5.20. The class of MOL in Cl(M) corresponds to the class of the

idèle (zp)p where

zp =
∑
iii

eiii

π
rp(aia

iai)
p

.

Proof. Let x = 1
pr

∏r
k=1(1 + αk + ... + αp−1

k ) ∈ OL. Then x generates L as a free

K[G]-module. For each prime p of OK , let xp be the free generator of OL,p as an

OK,p-module found in Propositions 2.5.15 and 2.5.16. That is

xp =


1
pr

∏r
k=1(1 + αk + ...+ αp−1

k ) if p|pOK

1
pr

∑
iii

αiαiαi

π
rp(a

iaiai)
p

otherwise

For each p, the element zp ∈ KpG is defined by zp ·x = xp. It is now straightforward

to see that

zp =
∑
iii

eiii

π
rp(aia

iai)
p

,

which gives the idèle (zp)p in the statement of the proposition.

Now we use the isomorphism from Proposition 2.4.14

J(K[G])

K[G]×U(M)
∼= Cl(K)m

to interpret the class of (zp)p as a p
r-tuple of classes of fractional ideals of K.

Proposition 2.5.21. The idèle (zp)p corresponding to the class of MOL in Cl(M)

corresponds to the pr-tuple of classes of fractional ideals a−1
iii , where

aiii =
∏
p

prp(a
iaiai).

Proof. Recall from Proposition 2.4.14 and Corollary 2.4.15 that to obtain the tuple

of ideal classes corresponding to an idèle (zp)p we write zp =
∑

iii ciii,peiii with ciii,p ∈ Kp

for all iii. Then the idèle (zp)p is mapped to the pr-tuple of classes of fractional ideals

(ciii), where

ciii =
∏
p

pvp(ciii,p).
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Applying this to the idèle (zp)p corresponding to the class of MOL in Cl(M)

(constructed in the previous proposition) we see that

ciii,p =
1

π
rp(aia

iai)
p

for all iii and p. Hence (zp)p corresponds to the pr-tuple of ideal classes (a−1
iii ) where

aiii =
∏
p

prp(a
iaiai)

for all iii.

Definition 2.5.22. The ideals aiii are called the ideals associated to aaaOK.

Corollary 2.5.23. The M-module MOL is free if and only if the ideals associated

to aaaOK are principal for all iii.

Proposition 2.5.24. The M-module MOL has a free generator lying in OL if

and only if the ideals biii are principal with generators biii such that

1

pr

∑
iii

αiαiαi

biii
∈ OL.

Proof. By the previous proposition MOL is a free M-module if and only if each

ideal biii is principal. Suppose that this is the case and write biii = ciiiOK for some

ciii ∈ OK . Then a free generator for MOL as an M-module is

y =
1

pr

∑
iii

αiαiαi

ciii
.

The set of free generators of MOL as an M-module is precisely the set {z · y|z ∈

M×}. Since M ∼= Opr

K via orthogonal idempotents and eiii ·αjαjαj = δiii,jjjα
jαjαj, we see that

an element y′ ∈ L is a free generator for MOL as an M-module if and only if it

has the form

y′ =
1

pr

∑
iii

uiiiα
iαiαi

ciii

for some uiii ∈ O×
K . Therefore MOL has a free generator lying in OL if and only

if there exist elements uiii ∈ O×
K such that the corresponding element y′ lies in OL.

Writing biii = u−1
iii ciii for each iii this is equivalent to the existence of elements biii as in

the statement of the proposition.
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By combining the results of this section, we obtain a criterion for OL to be a

free OK [G]-module.

Theorem 2.5.25. Let p be an odd prime number and let K be a number field

containing a primitive pth root of unity ζ. Let L/K be a Galois extension with

G = Gal(L/K) ∼= Cr
p . Let OK and OL be the rings of algebraic integers of K

and L respectively. Then OL is a free OK [G]-module if and only if there exist

β1, ..., βr ∈ OL such that

1. L = K(β1, ..., βr)

2. bi = βp
i ∈ OK for each i

3. The ideals biii =
∏

p p
rp(bib

ibi) are principal with generators ciii such that y =

1
pr

∑
iii
βiβiβi

ciii
∈ OL.

Furthermore in this case the element y is a free generator of OL as an OK [G]-

module.

Proof. IfOL is a freeOK [G]-module then by Theorem 2.4.16 we haveMOL = M·x

for some x ∈ OL. Therefore by the previous proposition the ideals
∏

p p
rp(aia

iai) are

principal for all iii with generators biii satisfying

1

pr

∑
iii

αiαiαi

biii
∈ OL.

Therefore the elements βi = αi for each i satisfy 1., 2. and 3. Conversely suppose

that for each 1 ≤ i ≤ r the elements βi satisfy 1., 2. and 3. Then we can write

βββ = αlcαlcαlc for some lll ∈ Zr with p ∤ li for each i and some ccc ∈ (K×)r. Define ttt ∈ Zr

by tili ≡ 1 (mod p) for each i. Then for each jjj ∈ Zr we have

alalal = ccc−pbbb

⇒ altaltalt = ccc−ptttbtbtbt

⇒ ajltajltajlt = ccc−pjtjtjtbjtbjtbjt
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Now given nnn ∈ Zr let nnn denote the least positive residues of the elements of nnn

modulo p, so that

nnn = p⌊n
nn

p
⌋+ nnn.

Then we have

ajltajltajlt = ccc−pjtjtjtbjtbjtbjt

⇒ ajajajaaap⌊
jltjltjlt
p
⌋ = ccc−p2⌊jtjtjt

p
⌋ccc−pjtjtjtbbbp⌊

jtjtjt
p
⌋bjtbjtbjt

⇒ ajajajaaaplll⌊
jtjtjt
p
⌋aaap⌊

ljtljtljt
p
⌋ = ccc−p2⌊jtjtjt

p
⌋ccc−pjtjtjtbbbp⌊

jtjtjt
p
⌋bjtbjtbjt

⇒ ajajaj = ccc−p2⌊jtjtjt
p
⌋bbbp⌊

jtjtjt
p
⌋aaa−plll⌊jtjtjt

p
⌋bjtcbjtcbjtc−pjtjtjtaaa−p⌊ ljtljtljt

p
⌋

⇒ ajajaj = bjtcbjtcbjtc−pjtjtjtaaa−p⌊ ljtljtljt
p
⌋

By our hypotheses the ideals biii associated to bbbOK are principal with generators

xiii say. From the above, we see that the ideals ajjj associated to aaaOK are principal

with generators

yjjj = xjtjtjtccc
−jtjtjtaaa−⌊ ljtljtljt

p
⌋.

Moreover, there is an equality of sets{
αjαjαj

yjjj

}
=

{
βiβiβi

xiii

}
,

so
1

pr

∑
jjj

αjαjαj

yjjj
=

1

pr

∑
iii

βiβiβi

xiii
∈ OL

and so OL is a free OK [G]-module.

Note that as expected, the criterion that we obtained for OL to be a free OK [G]-

module is identical to that obtained by Del Corso and Rossi in Theorem 11 of

[DCR13].

2.6 Hopf algebras and Hopf-Galois structures

This section will introduce Hopf algebras which are the appropriate objects to

use to generalise classical Galois theory.
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Definition 2.6.1. Let R be a commutative ring with unity. An R-coagebra is an

R-module A with a comultiplication map ∆ : A→ A⊗A which is coassociative i.e.

the following diagram commutes.

A A⊗ A

A⊗ A A⊗ A⊗ A

∆

∆ ∆⊗1

1⊗∆

and a counit map ϵ : A → R which is counitary i.e. the following diagrams com-

mute.
A A⊗ A

A⊗R

∆

1⊗ϵ
scalar multiplication

A A⊗ A

R⊗ A

∆

ϵ⊗1
scalar multiplication

Definition 2.6.2. An R-module A is an R-bialgebra if it is both an R-algebra

and an R-coalgebra and the multiplication and comultiplication maps satisfy the

compatibility condition given by the following commutative diagram.

A⊗ A
µ //

∆⊗∆
��

A ∆ // A⊗ A

A⊗ A⊗ A⊗ A
1⊗τ⊗1 // A⊗ A⊗ A⊗ A

µ⊗µ

OO

where τ is the switch map defined by τ(x⊗ y) = y ⊗ x for all x, y ∈ A.

Definition 2.6.3. An R-Hopf algebra, H, is an R-bialgebra with an R-module

homomorphism s : H → H called the antipode map which is both an R-algebra and

an R-coalgebra antihomomorphism and also satisfies the antipode property

µ(1⊗ s)∆ = µ(s⊗ 1)∆ = ιϵ.

Definition 2.6.4. Sweedler notation is a shorthand for representing the comulti-

plication of an element h ∈ H as a sum of simple tensors. It is written as

∆(h) =
∑
(h)

h(1) ⊗ h(2).
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Example 2.6.5. Let R be a commutative ring with unity and let G be a finite

group. The group ring RG is an example of a Hopf algebra. For σ ∈ G the maps

are defined as ∆(σ) = σ ⊗ σ, ϵ(σ) = 1 and s(σ) = σ−1.

Definition 2.6.6. Let R be a commutative ring with unity. Let H be an R-Hopf

algebra and let S be an R-algebra such that

1. S is an H-module

2. h · 1 = ϵ(h) for all h ∈ H

3. h · (st) =
∑

(h)(h(1) · s)(h(2) · t) for all s, t ∈ L

then S is an H-module algebra.

Definition 2.6.7. Let L/K be a finite extension of fields and let H be a finite

cocommutative K-Hopf algebra. L is an H-Galois extension of K, or alternatively

H gives a Hopf-Galois structure on the extension L/K, if L is an H-module algebra

and the K-linear map

j : L⊗H → EndK(L)

defined by

j(s⊗ h)(t) = s(h · t)

for h ∈ H, s, t ∈ L is bijective.

Remark 2.6.8. The previous concept can be defined for extensions of commutative

rings however in this thesis we shall only be concerned will applying it to finite

extensions of fields. Also in the previous concept, it is implicit that K is viewed as

a trivial H-module i.e. the action of H on K is via the counit map ϵ.

All the field extensions that we will consider in this thesis will be finite and

separable. The Hopf-Galois structures on such an extension are classified by a

theorem of Greither and Pareigis. Before we can state the theorem we fix some

notation. Assume that L/K is a finite separable extension of fields with Galois

closure E. Let G = Gal(E/K), let G′ = Gal(E/L).
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Definition 2.6.9. We define X to be the left coset space of G′ in G, G/G′. Ex-

plicity X = {xG′|x ∈ G}.

We write x for the coset xG′ and Perm(X) for the group of permutations on

the set X.

Definition 2.6.10. The left translation map λ : G → Perm(X) is defined by

λ(g)(x) = gx for g ∈ G and x ∈ Perm(X).

Definition 2.6.11. A subgroup N ≤ Perm(X) is called a regular subgroup if it

satisfies any two of the following three properties.

1. N has the same order as X.

2. N acts transitively on X (i.e. for all x and y ∈ X, there exists η ∈ N such

that ηx = y).

3. For all cosets x ∈ X, StabN(x) = {1}.

Lemma 2.6.12. Any two of the above conditions imply the third.

Proof. The proof of this lemma consists of applications of the Orbit-Stabiliser the-

orem.

Firstly, suppose that |N | = |X| and that N acts transitively on X. Now

assume that there is x ∈ X with StabN(x) ̸= {1}. Since by definition we always

have 1 ∈ StabN(x), we must have | StabN(x)| > 1. Since |N | = |X| and the group

action is well defined, there is now some y ̸∈ OrbN(x). This contradicts N acting

transitively on X hence our assumption that there is x ∈ X with StabN(x) ̸= {1}

is false and that StabN(x) = {1} for all x ∈ X.

Secondly, suppose that |N | = |X| and that StabN(x) = {1} for all x ∈ X.

Now assume that N does not act transitively on X. Then there are x, y ∈ X

such that y ̸∈ OrbN(x). Since |N | = |X|, there is an element z ̸= x ∈ X and

distinct η, ν ∈ N such that z = ηx = νx. Then η−1ν = ν−1η = 1 ∈ N , so η = ν

which contradicts η and ν being distinct hence our assumption is false and N acts

transitively on X.
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Thirdly, suppose that N acts transitively on X and that StabN(x) = {1} for

all x ∈ X. Choose x ∈ X. Since N acts transitively on X, OrbN(x) = X and we

have |OrbN(x)| = |X|. Since StabN(x) = {1} we have | StabN(x)| = 1. Now if we

multiply these together as numbers, we get |OrbN(x)|| StabN(x) = |X|, also the

Orbit-Stabiliser theorem tells us that |OrbN(x)|| StabN(x) = |N |, hence we must

have |N | = |X|.

Definition 2.6.13. A subgroup N of Perm(X) is normalised by λ(G) if λ(g)ηλ(g−1) ∈

N for all g ∈ G, η ∈ N .

Theorem 2.6.14 (Greither-Pareigis Theorem). There is a bijection between the

Hopf-Galois structures on L/K and regular subgroups of Perm(X) that are nor-

malised by λ(G).

Proof. See Theorem 6.8 on page 52 of [Chi00].

To obtain the Hopf-Galois structure from the subgroup of Perm(X) we perform

Galois descent on the group algebra E[N ]. Let G act on E[N ] by acting on E

as Galois automorphisms and acting on N by the the conjugation action gη =

λ(g)ηλ(g)−1. Explicitly, the action of G on E[N ] is given by

g(
∑
η∈N

cηη) =
∑
η∈N

g(cη)
gη =

∑
η∈N

g(cη)λ(g)ηλ(g)
−1,

where cη ∈ E. This gives a semi-linear action of G on the E-Hopf algebra E[N ]

and by Galois descent, the fixed ring E[N ]G is a K-Hopf algebra of dimension |N |.

Now we define an action of E[N ]G on L by

(
∑
η∈N

cηη).t =
∑
η∈N

cηη
−1[1GG

′](t)

where (
∑

η∈N cηη) ∈ E[N ]G, t ∈ L and η−1[1GG] = σG′ for some σ ∈ G. With this

action, the Hopf algebra E[N ]G gives a Hopf-Galois structure of L/K.

Definition 2.6.15. The group G′ has a normal complement S in G if there exists

some normal subgroup S ⊴ G such that we can write G = SG′ with S ∩G′ = {e}.
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Definition 2.6.16. An extension is almost classically Galois if the group G′ has a

normal complement S in G. For other equivalent conditions see Definition 4.2 of

[GP87].

In this case λ(S) ⊆ λ(G) ⊆ Perm(X).

Proposition 2.6.17. The subgroup λ(S) is regular on X and normalised by λ(G).

Proof. Since S is normal in G, we have λ(g)λ(s)λ(g)−1 ∈ λ(S) for all g ∈ G and

s ∈ S hence λ(S) is normalised by λ(G). Since we can write G = SG′ with

S ∩G′ = {e}, we have |S| = |G|
|G′| = |X|. Recall that the map λ : G → Perm(X) is

given by λ(g)[xG′] = gxG′. Since S is a normal complement of G′, the elements of

S form a set of coset representatives for G′ in G, so we can write X = {xG′|x ∈ S}.

Now for s ∈ S look at λ(s)[eG′] = seG′ = sG′. As s varies, we reach all of the

cosets in X, so as sets {λ(s)[eG′]|s ∈ S} = {sG′|S ∈ S} = X and we conclude that

λ(S) is transitive on X. For completeness we will also show that the stabiliser of

every element is trivial. Let xG′ ∈ X, and s ∈ S. Then λ(s)[xG′] = xG′ if and only

if sxG′ = xG′ if and only if x−1sxG′ = G′ if and only if x−1sx ∈ G′. But because

S is a normal subgroup of G, we have x−1sx ∈ S, and we get λ(s)[xG′] = xG′ if

and only if x−1sx ∈ S ∩G′ = {e} if and only if s = e.

In Section 1 of [Koh98] Kohl discusses almost classical Hopf-Galois structures

defined as follows.

Definition 2.6.18. A Hopf-Galois structure on a separable extension L/K is called

an almost classical Hopf-Galois structure if the corresponding regular subgroup N

of Perm(X) is the opposite of a subgroup of the form λ(S), with S a normal com-

plement to G′ in G. (That is N is the centraliser in Perm(X) of λ(S).)

Note that if L/K admits an almost classical Hopf-Galois structure then G′ has a

normal complement in G, so L/K is necessarily an almost classically Galois exten-

sion. However, not every Hopf-Galois structure admitted by an almost classically

Galois extension is an almost classical Hopf-Galois structure.
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Remark 2.6.19. In this thesis we will consider almost classically Galois extensions

with the additional property that each normal complement S of G′ in G is abelian.

In this case the subgroup λ(S) is equal to its own opposite in Perm(X), and so

we can characterise almost classical Hopf-Galois structures as those for which the

corresponding regular subgroup N of Perm(X) has the form λ(S) with S a normal

complement to G′ in G.

Definition 2.6.20. The type of a Hopf-Galois structure is the isomorphism class

of the corresponding group N .

Studying regular subgroups of X directly can be difficult when X is large.

Byott’s translation theorem addresses this problem by instead working with the

holomorph of N . We will now see that this is often a much smaller group.

Definition 2.6.21. The holomorph of N is the normaliser in Perm(N) of the

image of the left regular representation of N , i.e. Hol(N) = NormPerm(N) λ(N).

Proposition 2.6.22. Concretely, the holomorph can be described as the semidirect

product Hol(N) = ρ(N)⋊ Aut(N), where ρ is the right regular representation. As

a set,

Hol(N) = {ρ(η)θ|η ∈ N, θ ∈ Aut(N)},

with multiplication given by

ρ(η)θρ(η′)θ′ = ρ(η)ρ(θ(η′))θθ′ = ρ(ηθ(η′))θθ′.

Proof. See Proposition 7.2 of [Chi00].

Remark 2.6.23. When considering the holomorph, we view N as an abstract group

rather than a subgroup of Perm(X).

An important consequence of the fact that Hol(N) is a semidirect product is

that |Hol(N)| = |ρ(N)||Aut(N)|. This is usually much smaller than |Perm(N)|.

We can now state Byott’s Translation Theorem.

Theorem 2.6.24 (Byott’s Translation Theorem). There is a bijection between

N = {regular embeddings α : N ↪→ Perm(X)}
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and

G = {embeddings β : G ↪→ Perm(N) such that β(G′) = Stabβ(G)(eN)}.

Furthermore, if α corresponds to β and α′ corresponds to β′, then α(N) = α′(N)

if and only if β′ = γβγ−1 for some γ ∈ Aut(N) (explicitly this means β′(σ)[η] =

γβ(σ)γ−1[η] for all η ∈ N) and α(N) is normalised by λ(G) if and only if β(G) ⊆

Hol(N).

Proof. See Theorem 7.3 of [Chi00].

2.7 Hopf-Galois module theory

In order to study the rings of algebraic integers in non-normal extensions we

wish to study OL relative to a Hopf algebra H. We have a Hopf-Galois analgoue

of the normal basis theorem.

Theorem 2.7.1. If H is a Hopf algebra giving a Hopf-Galois structure on a finite

extension of fields L/K, then L is a free H-module of rank one.

Proof. See Theorem 2.16 of [Chi00].

We explicitly construct the largest subring of H over which OL is a module in

the following way.

Definition 2.7.2. The associated order of OL in H is defined as

AH := {h ∈ H|h · x ∈ OL for all x ∈ OL}.

This is a very natural generalisation of the corresponding definition for K[G].

In the context of Greither-Pareigis theory, in which H = E[N ]G, the following

result relates the associated order to the fixed ring OE[N ]G.

Proposition 2.7.3. OE[N ]G ⊆ AH .

Proof. See Proposition 2.5 of [Tru11].
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Recall the material on completions (Section 2.2). This allows us to study AH,p

for each prime ideal p of OK rather than studying AH directly. The following result

determines the associated order and freeness for primes which do not divide the

degree of the extension.

Proposition 2.7.4. Let L/K be a finite extension of number fields with Galois

closure E and let G = Gal(E/K). Suppose that L/K is H-Galois for some com-

mutative Hopf algebra H = E[N ]G. Suppose that p is a prime of OK lying above a

prime number p ∤ [L : K]. Then AH,p = OE,p[N ]G and OL,p is a free AH,p-module.

Proof. See Theorem 5.8 of [Tru11].

The natural approach to determining the associated order is to first describe

the structure of the associated order AH,p as a ring, then determine whether OL,p

is a free AH,p-module. The following proposition combines these, allowing us to do

these “all in one” and will be useful for determining the associated order for prime

ideals which lie above the degree of the extension.

Theorem 2.7.5 (All in one approach). Let L/K be a finite extension of number

fields of degree n, let H be a Hopf algebra giving a Hopf-Galois structure on L/K

and let AH denote the associated order of OL in H. Let p be a prime ideal of OK

and let x1, ..., xn be an OK,p-basis of OL,p. Suppose that there exists x ∈ OL,p and

elements a1, ..., an ∈ AH,p such that ai · x = xi for each i. Then a1, ..., an form

an OK,p-basis of AH,p and OL,p is a free AH,p-module.

Proof. First we show that a1, ..., an form a Kp-basis of Hp and that x is a free

generator of Lp as an Hp-module. Suppose that c1a1 + ... + cnan = 0 for some

ci ∈ Kp. Then

(c1a1 + ...+ cnan) · x = 0

⇒ c1(a1 · x) + ...+ cn(an · x) = 0

⇒ c1x1 + ...+ cnxn = 0

⇒ c1 = ... = cn = 0
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since x1, ..., xn form a Kp-basis of Lp. Hence a1, ..., an are linearly independent

over Kp. Since Hp has dimension n over Kp, these elements form a Kp-basis of Hp.

Now given y ∈ Lp there exist unique d1, ..., dn ∈ Kp such that

y = d1x1 + ...+ dnxn

= d1(a1 · x) + ...+ dn(an · x)

= (d1a1 + ...+ dnan) · x

Thus y = h · x for some unique h ∈ Hp and so x is a free generator of Lp as an

Hp-module. Now let a ∈ AH,p. Then a · x ∈ OL,p, so there exist unique c1, ...,

cn ∈ OK,p such that

a.x = c1x1 + ...+ cnxn

= c1(a1 · x) + ...+ cn(an · x)

= (c1a1 + ...+ cnan) · x

Since x is a free generator of Lp as an Hp-module, this implies that a = c1a1+ ...+

cnan. Hence a1, ..., an form an OK,p basis for AH,p. Finally let y ∈ OL,p. Then

there exist unique d1, ..., dn ∈ OK,p such that

y = d1x1 + ...+ dnxn

= d1(a1 · x) + ...+ dn(an · x)

= (d1a1 + ...+ dnan) · x

Thus y = a · x for a unique element a ∈ AH,p and so x is a free generator of OL,p

as an AH,p-module.

2.8 An example of Hopf-Galois module theory -

Tamely ramified radical extensions of prime

degree

This section will summarise the approach and results of Truman’s 2020 paper

“Hopf-Galois module structure of tamely ramified radical extensions of prime de-
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gree”, [Tru20]. We will apply the same strategy to extensions of prime power and

square free degree later. The motivation of Truman’s paper is to use Hopf-Galois

theory to study tame radical extensions of prime degree and obtain an analogue

of Gómez Ayala’s criterion for freeness. A field diagram for the class of extensions

studied by Truman is the following:

K

L = K(α) F = K(ζ)

E = L(ζ) = F (α)

not Galois, degree p

Galois, degree p− 1 Galois, degree p

Galois, degree p− 1

An important hypothesis used in [Tru20] is that the prime number p is unram-

ified in K. Consequences of this assumption are the following.

Lemma 2.8.1. Let F = K(ζ) and suppose that p is unramified in K. Then

1. The extension F/K has degree p− 1

2. Each prime ideal p of OK lying above p is totally ramified in F/K

3. The set {1, ζ, ..., ζp−2} is an integral basis of F over K

Proof. See Lemma 3.1 of [Tru20].

Note also that F/K is tamely ramified since it is a Galois extension of degree

p − 1 and it is ramified only at prime ideals lying above pOK . The following

proposition gives a criterion for the extension to be tame.

Proposition 2.8.2. The extension L/K is tame if and only if there exists α ∈ OL

such that

1. L = K(α)

2. αp ≡ 1 (mod p2OK)

Proof. See Proposition 3.3 of [Tru20].
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Compare these criteria to those required in the Galois case where we had αp ≡ 1

(mod (ζ−1)pOK), here ζ ̸∈ K so we require a slightly stronger condition. In order

to assist in determining local intergal bases for the extension we first state a lemma.

Lemma 2.8.3. In the extension K(α)/K, prime ideals that do not lie above pOK

are either unramified or totally ramified.

Proof. See Proposition 3.4 of [Tru20]

The following propositions give local integral bases at prime ideals which do

not and do lie above p respectively.

Proposition 2.8.4. Let p be a prime ideal of OK that does not lie above p and let

πp be a uniformiser of Kp. An integral basis of OL,p over OK,p is given by{
αj

π
rp(aj)
p

|j = 0, 1, ..., p− 1

}
.

Proof. See Proposition 3.4 of [Tru20].

Proposition 2.8.5. Let p be a prime ideal of OK that lies above p. An integral

basis of OL,p over OK,p is given by{
1, α, ..., αp−2,

1

p
(1 + α + ...+ αp−1)

}
.

Proof. See Proposition 3.5 of [Tru20].

Section 4 of [Tru20] studies the Hopf-Galois structure admitted by the extension

and its properties.

Proposition 2.8.6. The extension L/K admits exactly one Hopf-Galois structure.

Proof. See Proposition 4.1 of [Tru20]

Remark 2.8.7. Although it is not explicitly mentioned in [Tru20], this Hopf-Galois

structure is almost classical.

Remark 2.8.8. Proposition 4.2 of [Tru20] determines the regular subgroup of

Perm(X) that corresponds to this Hopf-Galois structure.
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Proposition 2.8.9. We have H ∼= Kp as K-algebras.

Proof. See Proposition 4.3 of [Tru20].

Proposition 2.8.10. For i, j = 0, 1, ..., p − 1 we have ei · αj = δi,jα
j (where the

idempotents ei are analogous to the ek,i defined earlier).

Proof. See Proposition 4.4 of [Tru20].

The following result shows that OL is a locally free AH-module, that AH =

OE[N ]G and gives explicit generators.

Theorem 2.8.11. We have AH = OE[N ]G and OL is a locally free AH-module.

For each prime ideal p of OK a free generator of OL,p as an AH,p-module is given

by

xp =


1
p

∑p−1
j=0 α

j if p|pOK

1
p

∑p−1
j=0

αj

π
rp(aj)
p

otherwise.

Proof. See Theorem 5.1 of [Tru20].



Chapter 3

A family of non-normal extensions

of prime power degree - Field

theory and Hopf-Galois structures

3.1 Setup for a non-normal extension of degree

pr

Let p be an odd prime, let K be a number field such that p is unramified in K

and let ζ be a primitive pth root of unity. Let L = K(α1, ..., αr) where α
p
i = ai ∈ K,

note that αi ̸∈ K so that [K(αi) : K] = p. Then the extension L/K is separable.

We will assume that [L : K] = pr.

Proposition 3.1.1. The Galois closure of L/K is E = L(ζ).

Proof. By adjoining ζ to form the field E = L(ζ) the extension E/K is Galois

because the minimal polynomial of each αi (for 0 ≤ i ≤ r) is xp − ai ∈ K[x]

which has roots ζjαi for j = 0, ..., p − 1. Hence E is the splitting field over K of

the product of these r polynomials,
∏r

i=1(x
p − ai). On the other hand, the Galois

closure must contain ζ because all roots of the minimal polynomials of all αi over

K must lie in the Galois closure, so the Galois closure is indeed E = L(ζ).

Lemma 3.1.2. The extension K(ζ)/K has degree p− 1.

50
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Proof. Since p is unramified in K, the polynomial xp−1 + ... + x + 1 is irreducible

over K and is therefore the minimal polyomial of ζ over K. See also Lemma 3.1

of [Tru20].

Note that [E : K] = pr(p − 1) since E is the compositum of F = K(ζ) and L

and their degrees [F : K] = p− 1 and [L : K] = pr are coprime. The Galois group

of E/K is G = ⟨σ1, ..., σr, τ⟩ where

σi(αi) = ζαi, σi(αj) = αj for j ̸= i, σi(ζ) = ζ for all i,

τ(αi) = αi for all i and τ(ζ) = ζd where d is a primitive root modulo p.

This has relations

σiσj = σjσi for all i and j and τσi = σd
i τ for all i

hence

⟨σ1, ..., σr⟩ ∼= Cr
p and G = ⟨σ1, ..., σr⟩⋊ ⟨τ⟩.

Note that T = Gal(E/L) = ⟨τ⟩ with order p− 1. Hence |X| = |G|
|T | = pr, where X

is the left coset space G/T . In the next section, we will discuss the possibilities for

N .

K

K(αi)

L = K(α1, ..., αr)

E = L(ζm)

p

pr−1

pr

ϕ(pr) = pr(p− 1)T

G

⟨σi⟩
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3.2 The almost classical Hopf-Galois structure

for the extension of degree pr

Proposition 3.2.1. The extension L/K has a unique almost classical Hopf-Galois

structure.

Proof. In the notation of the Greither-Pareigis theorem (Theorem 2.6.14) we have

T = ⟨τ⟩. Let S = ⟨σ1, ..., σr⟩ ∼= Cr
p be the unique Sylow p-subgroup of G. Then

because S is the unique Sylow p-subgroup of G, it is normal in G and we have

S ⊴ G, ST = G and S ∩ T = {e}. Since S is the unique Sylow p-subgroup of G,

the extension has a unique almost classical Hopf-Galois structure (given by λ(S))

as claimed.

Remark 3.2.2. Note that the normal complement S is abelian as promised in

Chapter 2.

We will construct the embedding β which gives rise to the unique almost clas-

sical Hopf-Galois structure. Let N ∼= Cr
p = ⟨η1, ..., ηr⟩, let θ ∈ Aut(N) be defined

by θ(ηi) = ηdi for all i and let β : G ↪→ Hol(N) ∼= N ⋊ Aut(N) be defined by

β(σi) = (ηi, 1) for all i and β(τ) = (1, θ). In order to verify that this map β is a

suitable embedding, there are various checks that we have to perform.

Proposition 3.2.3. The map β as defined above is a suitable embedding.

Proof. To show that β(σi) has order p for all i, note that β(σi) = (ηi, 1) and since

ηi is one of the generators of C
r
p , it has order p. To show that β(τ) has order p− 1,

note that θj(ηi) = ηd
j

i and since d is a primitive root modulo p this implies that

β(τ) has order p− 1. To show that β respects the relations that define G, we have

β(σiσj) = β(σi)β(σj) = (ηi, 1)(ηj, 1) = (ηiηj, 1),

β(σjσi) = β(σj)β(σi) = (ηj, 1)(ηi, 1) = (ηjηi, 1),

β(τσi) = β(τ)β(σi) = (1, θ)(ηi, 1) = (ηdi , θ),

β(σd
i τ) = β(σd

i )β(τ) = (ηdi , 1)(1, θ) = (xηdi , θ).
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To show that β has a trivial kernel, note that β(eG) = (1, 1). To show that no

other element of G is contained in the kernel, note that β(σi) = (ηi, 1) for all i and

since ηi has order p for all i, no combination of the elements σi can be mapped to

the identity. Similarly, since β(τ) = (1, θ) and θ has order p − 1, no power of τ

can be mapped to the identity. To show that β(⟨τ⟩) is the stabiliser of eN , since

β(⟨τ⟩)[eN ] = (1, ⟨θ⟩)[eN ] = eN , eN is stabilised by β(⟨τ⟩), to show that no other

element is contained in the stabiliser, note that β(σi)[eN ] = (ηi, 1)[eN ] = ηi for all

i. Hence β is a suitable embedding of G into Hol(N) as claimed.

Proposition 3.2.4. For i = 1, ..., r, let η′i ∈ Perm(X) be defined by η′i(σ
j1
1 ...σ

jr
r ) =

σj1
1 ...σ

ji−1
i ...σjr

r . Then N ′ = ⟨η′1, ..., η′r⟩ is the regular subgroup of Perm(X) that

corresponds to the unique almost classical Hopf-Galois structure on L/K.

Proof. Recall that by construction the map α(η) is given by b−1λN(η)b for some

η ∈ N . In this case the map b is given by b(g) = β(g)eN . Hence if we write η =

ηi11 ...η
ir
r and consider a typical element of G σj1

1 ...σ
jr
r τ

k, we have α(η)[σj1
1 ...σ

jr
r ] =

b−1λN(η)b[σ
j1
1 ...σ

jr
r ] = b−1λN(η)(η

j1
1 ...η

jr
r ) = b−1(ηi1+j1

1 ...ηir+jr
r ) = σi1+j1

1 ...σir+jr
r =

η′−i1
1 ...η′−ir

r (σj1
1 ...σ

jr
r ). Hence α(N) = {η′inn |1 ≤ n ≤ r, 0 ≤ i ≤ p− 1} = N ′.

The following remark is a consequence of Proposition 3.2.1.

Remark 3.2.5. In other words, we have α(N) = λG(⟨σ1, ..., σr⟩) as a subgroup of

Perm(X). This is the image of the unique Sylow p-subgroup S of G under the map

λ hence this will give rise to the unique almost classical Hopf-Galois structure on

the extension.

3.3 Hopf-Galois structures when r = 2

In this section, our main aim is to prove the following proposition.

Proposition 3.3.1. The unique almost classical Hopf-Galois structure is the only

Hopf-Galois structure on the extension in the case where r = 2.
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Our strategy for the proof will be firstly to show that there are no suitable

embeddings when N ∼= Cp2 . We then proceed to show that all suitable embeddings

when N ∼= Cp × Cp fall under one equivalence class.

Proposition 3.3.2. There are no suitable embeddings β : G ↪→ Hol(N) in the case

where N ∼= Cp2.

We will prove this proposition in stages. Recall that by “suitable” we mean the

condition that β(⟨τ⟩) = Stabβ(G)(eN) from the translation theorem. The reason

there are no suitable subgroups is connected to the structure of the subgroups of

the Sylow p-subgroup of Hol(N).

If there were such an embedding, then β(⟨σ1, σ2⟩) would be a subgroup of

Hol(N) isomorphic to Cp×Cp. In fact since Cp×Cp has order p
2, it would have to

be contained in the unique Sylow p-subgroup of Hol(N), which is N ⋊ T , where T

is the unique subgroup of Aut(N) of order p. Note that Aut(N) is a cyclic group

here, so it has a unique subgroup of each order dividing its order.

Proposition 3.3.3. N ⋊ T has a unique subgroup isomorphic to Cp ×Cp, but this

is not suitable (i.e, it does not satisfy the conditions of the translation theorem).

We will prove this proposition in stages. The generators of T are the auto-

morphisms of N that have order p, since because T has order p as a subgroup,

any non-identity element of T will be a generator. The automorphisms of N are

precisely the homomorphisms defined by η 7→ ηr with gcd(r, p2) = 1.

Proposition 3.3.4. Define θ ∈ Aut(N) by θ(η) = ηp+1. Then θ has order p.

Proof. If we consider θ2, we have θ2(η) = θ(ηp+1) = η(p+1)2 = ηp
2+2p+1 = η2p+1.

If we proceed inductively, we get θk(η) = ηkp+1 so θk(η) = η if and only if k ≡ 0

(mod p) so θ has order p.

Now, we can write the Sylow p-subgroup N⋊T as ⟨η⟩⋊⟨θ⟩ with typical elements

written as ordered pairs (ηi, θk), with i = 0, ..., p2 − 1 and k = 0, ..., p− 1. We wish

to determine more information about the orders of the elements in this subgroup.

First, note that the element (ηp, 1) has order p.
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Proposition 3.3.5. The subgroup generated by (ηp, 1) is precisely the centre of

N ⋊ T .

Proof. Let (ηi, θk) be a typical element of N ⋊ T and let (ηjp, 1) be a typical

element of the subgroup. Then (ηjp, 1)(ηi, θk) = (ηjpηi, θk) = (ηjp+i, θk) and

(ηi, θk)(ηjp, 1) = (ηiηjp(p+1)k , θ) = (ηi+jp, θk). To verify that no other elements

of the group are in the centre, since the centre of a non-abelian group of order p3

has order p and since the subgroup generated by (ηp, 1) has order p, it is precisely

the centre.

Now, note that (1, θ) also has order p and because the element (ηp, 1) is in the

centre, it commutes with all other elements. Hence ⟨(ηp, 1), (1, θ)⟩ ∼= Cp × Cp. We

have two elements of order p and they commute with each other and they generate

different subgroups of N ⋊ T so the group that they generate is isomorphic to

Cp×Cp. Hence we have found an example of a subgroup of N⋊T that is isomorphic

to Cp×Cp. To show that this is unique, we will show that there are no more elements

of order p. Recall that the elements of the semidirect product N ⋊ T are of the

form (ηi, θk), with i = 0, ..., p2 − 1 and k = 0, ..., p− 1. The elements that we have

not accounted for are those of the form (ηi, θk), with i = 0, ..., p2 − 1, p ∤ i and

k = 0, ..., p− 1.

Proposition 3.3.6. These elements all have order p2. Hence they each generate

some cyclic subgroup of order p2.

Proof. We will first prove the case k = 1 by considering the element x = (ηi, θ).

We have

x2 = (ηi, θ)(ηi, θ) = (ηiηi(p+1), θ2), x3 = (ηi, θ)(ηiηi(p+1), θ2) = (ηiηi(p+1)ηi(p+1)2 , θ3)

and so on. Inductively, we get

xr = (ηi(1+(p+1)+(p+1)2+...+(p+1)r−1), θr) = (ηi
(p+1)r−1

p , θr).
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Since η has order p2, if we study the exponent modulo p2, we get

i

p
((p+ 1)r − 1) =

i

p
(pr +

(
r

1

)
pr−1 + ...+

(
r

r − 2

)
p2 +

(
r

r − 1

)
p)

= i

(
pr−1 + ...+

(
r

r − 2

)
p+

(
r

r − 1

))

≡ i

(
r(r − 1)

2
p+ r

)≡ 0 (mod p2) if r ≡ 0 (mod p2).

̸≡ 0 (mod p2) otherwise.

Hence xr = (1, 1) if and only if r ≡ 0 (mod p2) so x has order p2. We will now

generalise this argument by considering the other cases. Now let x = (ηi, θk) ∈

N ⋊ T be such that p ∤ i and k ̸= 1. Then

x2 = (ηi, θk)(ηi, θk) = (ηiηik(p+1), θ2k),

x3 = (ηi, θk)(ηiηik(p+1), θ2k) = (ηiηik(p+1)ηi(k(p+1))2 , θ3k)

and so on. Inductively, we get

xr = (ηi+...+i(k(p+1))r−1

, θrk) = (ηi
(k(p+1))r−1
k(p+1)−1 , θrk).

We now aim to study the exponent of η modulo p2. To do this, we write B =

i (k(p+1))r−1
k(p+1)−1

. Then multiplying up gives

B(kp+ k − 1) = i(kr(pr + ...+

(
r

r − 1

)
p+ 1)− 1),

taking congruences modulo p2 gives

B(kp+ k − 1) ≡ i(kr(
r(r − 1)

2
p+ 1)− 1) (mod p2)

and dividing out gives

B ≡
i(kr( r(r−1)

2
p+ 1)− 1)

kp+ k − 1
(mod p2).

Now we need to determine when B ≡ 0 (mod p2). Since B is a fraction, this

happens if and only if the numerator is congruent to zero modulo p2, i.e. if and

only if i(kr( r(r−1)
2

p + 1) − 1) ≡ 0 (mod p2). Since we assumed that p ∤ i, this

happens if and only if (kr( r(r−1)
2

p + 1) − 1) ≡ 0 (mod p2), which happens if and

only if r ≡ 0 (mod p2). Hence, we again conclude that xr = (1, 1) if and only if

r ≡ 0 (mod p2) so x has order p2.
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Combining Propositions 3.3.4 to 3.3.6 we can now prove Proposition 3.3.3.

Proof of Proposition 3.3.3. We have shown that the subgroup A := ⟨(ηp, 1), (1, θ)⟩

is the unique subgroup of Hol(N) isomorphic to Cp×Cp. Hence, if β : G ↪→ Hol(N)

is an embedding, then β(⟨σ1, σ2⟩) = A. But then some element of ⟨σ1, σ2⟩ is mapped

to (1, θ) ∈ A and this element stabilises eN because (1, θ)[eN ] = eNθ[eN ] = eN since

θ ∈ Aut(N). Hence Stabβ(G)(eN) ⫌ β(⟨τ⟩). The translation theorem says that the

stabiliser of the identity should be precisely the image of T under β, but here we

get a set that is too large because some combination of σ1 and σ2 gets mapped

to (1, θ) and this stabilises the identity eN . Therefore this β is not a suitable

embedding.

Combining all of the above, we can now prove Proposition 3.3.2.

Proof of Proposition 3.3.2. If β is any embedding ofG into Hol(N), then β(⟨σ1, σ2⟩) =

A so ⟨σ1, σ2⟩, the unique Sylow p-subgroup of G, is mapped to this unique subgroup

A which is the only elementary abelian subgroup of order p2 in the holomorph. If

this is this case, then the embedding β is not suitable to be used in the translation

theorem. We conclude that there are no suitable embeddings of G into Hol(N)

when N is cyclic of order p2.

We now return to the case in which N ∼= Cp × Cp and show that any suitable

embedding of G into Hol(N) is equivalent to the one we found in Proposition 3.2.3.

If β : G ↪→ Hol(N) is a suitable embedding, then T := β(⟨σ1, σ2⟩ ∼= Cp × Cp is

a subgroup of Hol(N) and is regular on N because Stabβ(G)(eN) = β(⟨τ⟩), so by

the Orbit-Stabiliser theorem, β(G).eN = N and so T is transitive on N . Since T

also has the same order as N , it is a regular subgroup of Hol(N) isomorphic to

Cp × Cp. Since the order of T is a power of the prime p, it must be contained

in some Sylow p-subgroup of Hol(N). Note that Aut(N) ∼= GL2(Zp) (where Zp

denotes the field of p elements) and |Aut(N)| = p(p− 1)2(p+ 1). It can be useful

to identify Aut(N) with GL2(Zp) to make explicit calculations easier. The group

Aut(N) does not have a unique Sylow p-subgroup in this case. One example of

a Sylow p-subgroup is the group S := ⟨x, y, π⟩ where π(x) = x and π(y) = xy.



CHAPTER 3. FIELD THEORY AND HOPF-GALOIS STRUCTURES 58

Our first aim is to determine equivalence classes of suitable embeddings β such

that T ⊆ S. One example is the particular embedding β which we defined in

Proposition 3.2.3. Henceforth we will refer to this particular embedding as β0. In

order to understand if there are any other embeddings, we will try to describe all

subgroups of the particular Sylow p-subgroup S that are isomorphic to Cp × Cp.

Proposition 3.3.7. The subgroups of S that are isomorphic to Cp ×Cp are Tk :=

⟨(x, 1), (y, πk)⟩ for k = 0, ..., p − 1 and T∗ := ⟨(x, 1), (1, π)⟩. Each of the Tk is

regular but T∗ is not.

Proof. Firstly, we seek elements of S of order p. If we consider a typical element

of S, s = (xiyj, πk), we have

s2 = (xiyj, πk)(xiyj, πk) = (xiyjxixkjyj, π2k) = (xkjx2iy2j, π2k),

s3 = (xkjx2iy2j, π2k)(xiyj, πk) = (xkjx2iy2jxix2kjyj, π3k) = (x3kjx3iy3j, π3k).

Inductively, we get

(xiyj, πk)r = (x
r(r−1)

2
kjxriyrj, πrk), where 0 ≤ i, j, k ≤ p− 1 and r ∈ Z.

Hence, every element of S except for the identity element has order p.

Now consider subgroups generated by elements of order p,

S1 := ⟨(xIyJ , πK)⟩ and S2 := ⟨(xI′yJ ′
, πK′

)⟩.

For these to yield a subgroup isomorphic to Cp × Cp, we need the generators to

commute but because these groups have order p, every element except for the

identity is a generator, so we need all elements in S1 to commute with all elements

in S2.

If J ′ = 0 and J ̸= 0 (the reverse is similar), then we can write S2 as ⟨(xI
′
, πK′

)⟩

and we can rewrite S1 as ⟨(xiy, πk)⟩ by taking a suitable power of the generator such

that the exponent of y is congruent to 1 modulo p. Then, considering multiplication

of the generators, we have on the one hand

((xiy, πk)(xI
′
, πK′

) = (xi+I′y, πk+K′
)
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and on the other hand

(xI
′
, πK′

)(xiy, πk) = (xi+I′xK
′
y, πk+K′

).

These agree if and only if K ′ = 0, so in this case we have S2 = ⟨(xI′ , 1)⟩ which

is equal to Z(S) if I ′ ̸= 0 and by taking a power of the generator, we can rewrite

S2 = ⟨(x, 1)⟩. Then S1 and S2 generate ⟨(x, 1), (xiy, πk)⟩ and by using suitable

negative powers of the first element, we can remove the xi factor from the second

element and hence rewrite the subgroup as ⟨(x, 1), (y, πk)⟩ = Tk.

Now if J ̸= 0 and J ′ ̸= 0 we rescale by taking powers of the generators so that

the exponent of y is congruent to 1 modulo p in both cases. This allows us to

rewrite the subgroups as S1 = ⟨(xiy, πk)⟩ and S2 = ⟨(xi′y, πk′)⟩. Then, considering

multiplication of the generators, we have on the one hand

(xiy, πk)(xi
′
y, πk′) = (xi+i′xky2, πk+k′)

and on the other hand

(xi
′
y, πk′)(xiy, πk) = (xi+i′xk

′
y2, πk+k′).

These agree if and only if k = k′, so in this case our subgroups of order p are

⟨(xiy, πk)⟩ and ⟨(xi′y, πk)⟩ so if we assume that i ̸= i′, these generate the sub-

group S∗ := ⟨(xiy, πk), (xi
′
y, πk)⟩ ∼= Cp × Cp. Now notice that we can write the

second generator as (xi
′−i, 1)(xiy, πk) so this implies that (xi

′−i, 1) ∈ S∗, so since

we assumed that i ̸= i′, we can take a power of this element to get that (x, 1) ∈ S∗

which means that S∗ = ⟨(x, 1), (xiy, πk)⟩ and as before we can use suitable negative

powers of the first element, we can remove the xi factor from the second element

and hence rewrite the subgroup as ⟨(x, 1), (y, πk)⟩ = Tk.

Now if J = J ′ = 0, then we have S1 = ⟨(xI , πK)⟩ and S2 = ⟨(xI′ , πK′
)⟩. Then,

considering multiplication of the generators, we have on the one hand

(xI , πK)(xI
′
, πK′

) = (xI+I′ , πK+K′
)

and on the other hand

(xI
′
, πK′

)(xI , πK) = (xI+I′ , πK+K′
).
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These generators commute regardless of the values of I, I ′, K and K ′. Hence S1

and S2 generate the subgroup ⟨(xI , πK), (xI
′
, πK′

)⟩. Now note that we can take

powers of the generators in the following way to obtain

((xI , πK)K
′
(xI

′
, πK′

)−K)(IK
′−I′K)−1

= (x, 1) ∈ ⟨(xI , πK), (xI
′
, πK′

)⟩,

((xI , πK)−I′(xI
′
, πK′

)I)(IK
′−I′K)−1

= (1, π) ∈ ⟨(xI , πK), (xI
′
, πK′

)⟩.

Hence we see that S1 and S2 generate the subgroup ⟨(x, 1), (1, π)⟩ = T∗.

Note that if I = I ′ = 0, then we have S1 = ⟨(yJ , πK)⟩ and S2 = ⟨(yJ ′
, πK′

)⟩.

Then, considering multiplication of the generators, we have on the one hand

(yJ , πK)(yJ
′
, πK′

) = (xKJ ′
yJ+J ′

, πK+K′
)

and on the other hand

(yJ
′
, πK′

)(yJ , πK) = (xK
′JyJ+J ′

, πK+K′
).

These agree if and only if KJ ′ = K ′J but if this is the case then (yJ , πK) ∈

⟨(yJ ′
, πK′

)⟩ so these elements only generate a subgroup of order p which is not

what we require.

Above we have shown that the subgroups Tk are isomorphic to Cp × Cp. This

implies that they have the required order to be regular. To complete the proof that

they are regular, we let the subgroups act on the identity. A typical element of

Tk is (x, 1)a(y, πk)b = (xa+k
b(b−1)

2 yb, πk). If we let this act on the identity, we have

(xa+k
b(b−1)

2 yb, πk)[eN ] = σ
a+k

b(b−1)
2

1 σb
2. As a and b vary we reach the whole of ⟨σ1, σ2⟩

so the subgroups Tk are transitive and hence regular as claimed.

To show that T∗ the last subgroup mentioned in the proposition is not regular, if

β : G ↪→ Hol(N) is an embedding such that β(⟨σ1, σ2⟩) = ⟨(x, 1), (1, π)⟩, then some

element of ⟨σ1, σ2⟩ is mapped to (1, π) ∈ ⟨(x, 1), (1, π)⟩ and this element stabilises

eN because (1, π)[eN ] = eNπ[eN ] = eN since π ∈ Aut(N). Hence Stabβ(G)(eN) ⫌

β(⟨τ⟩). The translation theorem says that the stabiliser of the identity should be

precisely the image of T under β, but here we get a set that is too large because

some combination of σ1 and σ2 gets mapped to (1, π) and this stabilises the identity

eN . so this β is not a suitable embedding.
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Proposition 3.3.8. If β(⟨σ1, σ2⟩) is a regular subgroup of S, then β is equivalent

to β0.

Proof. In this case β(⟨σ1, σ2⟩) = Tk for some k and we have β(G) = ⟨(x, 1), (y, πk), (1, ϕ)⟩

with ϕ ∈ Aut(N) satisfying (1, ϕ)(x, 1) = (xd, ϕ) and (1, ϕ)(y, πk) = (y, πkϕ)d ∈

Hol(N). This is because in G, we have τσ1 = σd
1τ and τσ2 = σd

2τ so τ behaves

“uniformly” on the subgroup i.e. τσ = σdτ for all σ ∈ ⟨σ1, σ2⟩. Hence ϕ(x) = xd.

To find ϕ(y), we need to find the “N -component” of hd where h = (y, πk) ∈ Hol(N).

We have

h2 = (y, πk)(y, πk) = (y2xk, π2k),

h3 = (y, πk)(y2xk, π2k) = (yx2ky2xk = (y3x3k, π3k)

and

h4 = (y, πk)(y3x3k, π3k) = (yx3ky3x3k, π4k) = (y4x6k, π4k).

Inductively, we get

hd = (ydx
kd(d−1)

2 , πkd),

hence ϕ(y) is given by the “N -component” of this, which is ϕ(y) = x
kd(d−1)

2 yd. Since

some power of ϕ is the image of τ , ϕ should have order p − 1. We now calculate

ϕr for some r. We have ϕr(x) = xd
r
and ϕr(y) = xd

r rk(d−1)
2 yd

r
. If k = 0, then ϕ has

order p− 1 but in fact ϕ = θ in this case. If k ̸= 0 then ϕr is equal to the identity.

p− 1|r (to ensure that the multiplier dr ≡ 1 (mod p)) and p|r (to ensure that the

top right entry of the matrix is zero) which is if and only if p(p − 1)|r. Hence in

this case, ϕ does not have order p − 1. Hence if β is an embedding that satisfies

β(⟨σ1, σ2⟩) ⊆ S, then in fact β(G) = ⟨x, y, θ⟩ so β(σ1) = xiyj for some i and j,

β(σ2) = xi
′
yj

′
for some i′ and j′ and β(τ) = θt with gcd(t, p − 1) = 1. Using the

relations in the group, we have that

β(τσ1) = β(τ)β(σ1) = (1, θ)(xiyj, 1) = (xitdyjtd, θ),

β(σd
1τ) = β(σd

1)β(τ) = (xidyjd, 1)(1, θ) = (xidyid, θ).

Since these elements are both equal, this forces t = 1 (where t is as previously

defined).
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Proposition 3.3.9. Let γ : N → N be defined by γ(x) = xiyj and γ(y) = xi
′
yj

′
.

Then γ is such that β = γβ0γ
−1.

Proof. First, to verify that γ ∈ Aut(N), note that γ ∈ Aut(N) if and only if

ij′ ̸= i′j. If ij′ = i′j, then Im(γ) ⫋ N so γ−1 would not be well defined. To

show that γ satisfies β(g) = (1, γ)β0(g)(1, γ
−1) for all g ∈ G, it is sufficient to

check this for the generators of G, σ1, σ2 and τ , because the maps β and β0 are

homomorphisms. Hence, we have

(1, γ)β0(σ1)(1, γ
−1) = (1, γ)(x, 1)(1, γ−1) = (γ(x), 1) = xiyj = β(σ1).

similarly

(1, γ)β0(σ2)(1, γ
−1) = (1, γ)(y, 1)(1, γ−1) = (γ(y), 1) = xi

′
yj

′
= β(σ2)

and finally

(1, γ)β0(τ)(1, γ
−1) = (1, γ)(1, θ)(1, γ−1) = (1, γθγ−1) = (1, θ) = β(τ)

where the penultimate equality follows from the fact that θ ∈ Z(Aut(N)).

We conclude that there is one equivalence class of embeddings satisfying β(⟨σ1, σ2⟩) ⊆

S. It remains to understand how this interacts with conjugating S. More generally

if β is any suitable embedding, then β(⟨σ1, σ2⟩) ⊆ hSh−1 for some h ∈ Hol(N).

Proposition 3.3.10. The conjugate subgroups of S can be written as (1, ψ)S(1, ψ−1)

for some ψ ∈ Aut(N).

Proof. Let P = ⟨π⟩ be the Sylow p-subgroup of Aut(N) discussed previously.

Then Sylow theory tells us that the other Sylow p-subgroups of Aut(N) are given

by ψPψ−1 for some elements ψ ∈ Aut(N). If we now consider “lifting” this to

Hol(N) (by considering Hol(N) as N ⋊ Aut(N)) we see that only the “Aut(N)-

component” changes when we conjugate the subgroup and the “N -component”

remains fixed i.e. we have that S = N ⋊ P and hSh−1 = N ⋊ ψPψ−1 so the

elements h which conjugate S are precisely the elements (1, ψ) where ψ are the

elements which conjugate P .
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Corollary 3.3.11. If β : G ↪→ Hol(N) is any embedding, then β is equivalent to

β0.

Proof. Here we are concerned with embeddings such that Im(β) ⊆ hSh−1, where

hSh−1 is a conjugate Sylow p-subgroup of S (the case β(⟨σ1, σ2⟩) ⊆ S was dealt

with in Proposition 3.3.8). If Im(β) ⊆ hSh−1, then using the previous proposition,

we can write h = (1, ψ) for some ψ ∈ Aut(N). Now conjugating by h−1 ensures

that Im(ψ−1βψ) ⊆ S and we can now apply the arguments in Proposition 3.3.8 to

show that β is equivalent to β0.

In conclusion, we have now completed the proof of Proposition 3.2.1 having

successfully shown that the unique almost classical Hopf-Galois structure is the

only Hopf-Galois structure on the extension in the case where r = 2.

3.4 Properties of the almost classical Hopf-Galois

structure

We now return to the case in which L = K(α1, ..., αr) and study the unique

almost classical Hopf-Galois structure on L/K, corresponding to the regular sub-

group N = λ(S) of Perm(X).

Proposition 3.4.1. We have H ∼= Kpr as K-algebras.

Proof. Since ζ ∈ E, the group algebra E[N ] has a basis of mutually orthogonal

idempotents given by

eiii =
1

pr

r∏
k=1

p−1∑
n=0

ζ−iknλ(σk)
n

for 0 ≤ ik ≤ p− 1 so E[λ(S)] ∼= Epr as E-algebras. We now study the action of G

on λ(S). We have

σi(λ(σj)) = λ(σi)λ(σj)λ(σ
−1
i ) = λ(σiσjσ

−1
i ) = λ(σj)

for all i and j and

τ (λ(σj)) = λ(τ)λ(σj)λ(τ
−1) = λ(τσjτ

−1) = λ(σj)
d
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for all j. This implies that each idempotent eiii is fixed by each element of G and so

lies in E[λ(S)]G = H. Therefore H has a K-basis consisting of mutually orthogonal

idempotents and so H ∼= Kpr as K-algebras.

Corollary 3.4.2. The Greither-Pareigis theorem implies that the action of H on

L is given by

r∏
n=1

p−1∑
i=0

cinη
in
n · z =

r∏
n=1

p−1∑
i=0

cinη
−in
n [1G](z) =

r∏
n=1

p−1∑
i=0

cinσ
in
n (z)

for all z ∈ L.

Proof. This is a consequence of Theorem 2.6.14.

Proposition 3.4.3. The orthogonal idempotents detect the elements of L in the

following way.

eiii(α
jαjαj) =

1

pr

r∏
k=1

p−1∑
n=0

ζ iknσn
k (α

jk
k ) =

α
jαjαj if ik = jk for all k.

0 otherwise

Proof. This is a consequence of Proposition 3.4.1 and Corollary 3.4.2. Also note

that the proof of this is similar to the proof of Proposition 2.5.6.



Chapter 4

A family of non-normal extensions

of prime power degree -

Ramification and rings of integers

4.1 Ramification

Recall that K is a number field in which p is unramified, and L is a degree pr

extension of K of the form L = K(α1, ..., αr) with ai = αp
i ∈ K for each i = 1, ...,

r.

Proposition 4.1.1. The extension L/K is tame if and only if the elements ai can

be chosen to satisfy ai ≡ 1 (mod p2OK) for each i.

Proof. To ensure that L/K is tame, applying Proposition 2.1.9 (which states that a

compositum of extensions is tame if and only if each of the subextensions is tame),

then applying Proposition 2.8.2 (which states that K(αi)/K is tame if and only

if ai can be chosen to satisfy ai ≡ 1 (mod p2OK)) we get that it is necessary and

sufficient to assume that ai ≡ 1 (mod p2OK) for all i.

Henceforth we will assume that these congruences hold.

65
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4.2 Local integral bases for p ∤ pOK

Proposition 4.2.1. For p ∤ paiOK for all i an OK,p-basis of OL,p is{
αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}
.

Proof. In this case p is unramified in each of the subextensions so we can apply

arithmetic disjointness and induction to combine copies of the local integral basis

from Proposition 2.8.4 and obtain the result. Note that in this case we have

rp(a
iaiai) = 0 but writing the integral basis in this form allows for a more unified

description of the integral bases for different prime ideals p.

We are now left with the case p ∤ pOK and p|aiOK for some i.

Proposition 4.2.2. For p ∤ pOK and p|aiOK for some i an OK,p-basis of OL,p is

given by {
αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}
Proof. First suppose that p|vp(ai) for all i. Then p is unramified in K(αi) for all i

and an OK,p-basis of OL,p is given by the set of products αi1
1 ...α

ir
r

π
rp(a

i1
1 )

p ...π
rp(a

ir
r )

p

|0 ≤ ik ≤ p− 1 for 1 ≤ k ≤ r


In this case rp(a

ik
k ) =

vp(a
ik
k )

p
for each k so we may combine the exponents obtaining{

αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}

Now suppose that p ∤ vp(ai) for some i. Without loss of generality suppose that

p ∤ vp(a1). Then there exist n2, ..., nr ∈ {0, ..., p − 1} such that vp(a
ni
1 ai) = 0 for

i = 2, ..., r. We can write L as the compositum of the fields K(α1), K(αn2
1 α2), ...,

K(αnr
1 αr) and these fields are arithmetically disjoint at p so an OK,p-basis of OL,p

is given by  αi1
1

π
rp(a

i1
1 )

p

r∏
k=2

(αnk
1 αk)

ik

π
rp((a

nk
1 ak)

ik )
p

 .
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We can simplify as before obtaining an OK,p-basis of OL,p of the form{
αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}

More specifically, we first note that since vp(a1) is the only term which is not

congruent to 0 modulo p, we do not get a “carry” in the floor function and we can

combine the exponents of πp as expected. Now we must be able to reach a typical

element, {
αs1
1 ...α

sr
r

π
rp(a

s1
1 ...asrr )

p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}
We can do this by first choosing each ik to be the unique element in {0, ..., p− 1}

such that nkik ≡ sk (mod p) for 2 ≤ k ≤ r and finally choosing i1 to be the unique

element in {0, ..., p−1} such that
∑r

k=1 ik ≡ s1 (mod p). By doing this, we extract

a unit power of each ai but since these are in K already, this does not affect the

extension. We can relabel the indices to rewrite the integral basis in terms of the

original elements and get a basis of the following form.{
αiαiαi

π
rp(aia

iai)
p

|0 ≤ ik ≤ p− 1 for all 1 ≤ k ≤ r

}

4.3 Local integral bases for p|pOK

To get an OK,p- basis of OL,p we find an OK,p-basis of OE,p and take traces

from Ep to Lp. Recall that since E/L is tame, the trace map from OE to OL is

surjective (see Proposition 2.1.10). Since an OK,p- basis of OL,p and an OK,p-basis

of OE,p has p
r(p−1) elements, when we have taken traces of our basis of OE,p it will

certainly span OL,p but there will be too many elements so we must resolve linear

dependencies. Consequences of p being unramified in K are that [F : K] = p − 1

and that there is a unique prime ideal P lying above p (see Lemma 2.8.1 which is

based on Lemma 3.1 of [Tru20]). Note that here we are using P to refer to a prime

ideal of F (rather than L) lying over p. By the Galois case, an OF,P-basis of OE,P
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is given by {
r∏

i=1

(
αi − 1

ζ − 1
)ji |0 ≤ ji ≤ p− 1 for all 1 ≤ i ≤ r

}
.

(Since E/F is Galois, the subextensions F (αi) are actually arithmetically disjoint

at P for all i.) Recall that since pOF = (1− ζ)p−1OF (see Proposition 2.1.11), we

can rewrite the OK,p-basis of OE,p as{
r∏

i=1

(αi − 1)ji

p
(1− ζ)p−1−jiζk|0 ≤ ji ≤ p− 1 for all 1 ≤ i ≤ r, 0 ≤ k ≤ p− 2

}
.

Proposition 4.3.1. An OK,p-basis of OL,p is given by the following elements,

r∏
i=1

αji
i for

r∑
i=1

ji < p− 1∏r
i=1(αi − 1)ji

pQ
for p− 1 ≤

r∑
i=1

ji < r(p− 1)

1

pr
(1 + α1 + ...+ αj1

1 )...(1 + αr + ...+ αjr
r ) for j1 + ...+ jr = r(p− 1)

where Q is a function of j1, ..., jr obtained by using the Euclidean division algorithm

to write j1 + ...+ jr = Q(p− 1) +R with 0 ≤ R < p− 1.

Proof. In this proof we will write Tr as a shorthand for TrE/L. We wish to calculate

Tr(

∏r
i=1(αi − 1)ji

p
(1− ζ)p−1−jiζk)

Since
∏r

i=1(αi−1)ji

p
∈ L, we can simplify the trace as follows.∏r

i=1(αi − 1)ji

p
Tr((1− ζ)r(p−1)−

∑r
i=1 jiζk)

Using binomial expansion and linearity of the trace, this becomes the following.∏r
i=1(αi − 1)ji

p

r(p−1)−
∑r

i=1 ji∑
n=0

(
r(p− 1)−

∑r
i=1 ji

n

)
(−1)nTr(ζk+n)

An OF,P- basis of OE,P consists of elements of the form∏r
i=1(αi − 1)ji

(ζ − 1)
∑r

i=1 ji
.
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We can use the Euclidean division algorithm to write j1 + ...+ jr = Q(p− 1) + R

with 0 ≤ R < p− 1. This allows us to rewrite the OF,P- basis of OE,P (up to units

of OF,p) as ∏r
i=1(αi − 1)ji

pQ+1
(1− ζ)p−1−R.

To get an OK,p-basis of OE,p, we observe that an OK,p-basis of OF,P is given by

{1, ζ, ..., ζp−2} (see Lemma 3.1 of [Tru20]). Hence an OK,p-basis of OE,p is given by{∏r
i=1(αi − 1)ji

pQ+1
(1− ζ)p−1−Rζk|1 ≤ i ≤ r, 0 ≤ j ≤ p− 1, 0 ≤ k ≤ p− 2

}
.

As we expected, there are pr(p− 1) elements here. We now proceed to take traces.

First suppose that j1 + ...+ jr < r(p− 1). In this case we obtain the following.

Tr(

∏r
i=1(αi − 1)ji

pQ+1
(1− ζ)p−1−Rζk)

Since
∏r

i=1(αi−1)ji

pQ+1 ∈ L, we can simplify the trace as follows∏r
i=1(αi − 1)ji

pQ+1
Tr((1− ζ)p−1−Rζk)

Using binomial expansion and linearity of the trace, this becomes the following∏r
i=1(αi − 1)ji

pQ+1

p−1−R∑
n=0

(
p− 1−R

n

)
(−1)nTr(ζk+n)

Evaluating the trace, this becomes∏r
i=1(αi − 1)ji

pQ+1
((

(
p− 1−R

p− k

)
(−1)p−kp−

p−1−R∑
n=0

(
p− 1−R

n

)
(−1)n)

= (−1)p−k

(
p− 1−R

p− k

)∏r
i=1(αi − 1)ji

pQ

Since (−1)p−k
(
p−1−R
p−k

)
∈ O×

K,p, the span of these traces is equal to the span of

r∏
i=1

αji
i for

r∑
i=1

ji < p− 1∏r
i=1(αi − 1)ji

pQ
for p− 1 ≤

r∑
i=1

ji < r(p− 1)
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Now we consider the case ji = p− 1 for all i. For any 0 ≤ k ≤ p− 2, we have

Tr

(∏r
i=1(αi − 1)p−1

pr
ζk
)

=


(p−1)

∏r
i=1(αi−1)p−1

pr
if k = 0

−
∏r

i=1(αi−1)p−1

pr
otherwise

Therefore
∏r

i=1(αi−1)p−1

pr
∈ OL,p and using the fact that

(
p−1
n

)
≡ (−1)n (mod p), we

have
1

pr

r∏
i=1

p−1∑
n=0

αn
i ∈ OL,p.

To prove linear independence, since we end up with pr elements if they span OL,p

over OK,p then they span Lp over Kp, so by a dimension argument they form a basis

of Lp over Kp, so they must be linearly independent over Kp, hence over OK,p. We

conclude that the set in the proposition is indeed an OK,p-basis of OL,p.

4.4 Associated order and local generators

The aim of this section is to prove the following theorem

Theorem 4.4.1. The ring of integers OL is locally free over AH in the unique

almost classical Hopf-Galois structure.

The proof of this theorem will take the form of a sequence of propositions. Recall

the information on orders from the background chapter, in particular Theorem 2.3.7

which gives some properties of maximal orders. We will study the associated order

by relating it to the fixed points of the group ring OE[N ]G. In fact, we will show

that AH = OE[N ]G. Recall from Proposition 2.7.3 that OE[N ]G ⊆ AH .

Proposition 4.4.2. If p ∤ pOK, then each eiii ∈ OE,p[N ]G so OE,p[N ]G = AH,p =

Mp and OL,p is a free AH,p-module.

Proof. See Proposition 2.7.4 which is based on Theorem 5.8 of [Tru11].

To determine the associated order for prime ideals p|pOK , we will use the “all

in one” approach (recall Theorem 2.7.5). We will denote the elements of the OK,p-

basis of OL,p by xjjj. That is,

for
r∑

i=1

ji < p− 1, we have xjjj =
r∏

i=1

αji
i ,
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for p− 1 ≤
r∑

i=1

ji < r(p− 1) we have xjjj =

∏r
i=1(αi − 1)ji

pQ
,

for
r∑

i=1

ji = r(p− 1) we have xp−1p−1p−1 =
1

pr
(1 + α1 + ...+ αp−1

1 )...(1 + αr + ...+ αp−1
r ).

Proposition 4.4.3. For p|pOK we have AH,p = OE,p[N ]G and OL,p is a free AH,p-

module.

Proof. Firstly, we will take

x = xp−1p−1p−1 =
1

pr
(1 + α1 + ...+ αp−1

1 )...(1 + αr + ...+ αp−1
r )

as a candidate generator. To check that x generates L as an H-module, note that

ejjj · x = αjαjαj and this sets spans L. To simplify notation, we will write Q(
∑
ji) for

Q(j1 + ...+ jr) and later we will write Q(
∑
lk) for Q(l1 + ...+ lr). Recall that we

can use the element x to define elements ajjj ∈ Hp by the rule ajjj ·x = xjjj. Explicitly

ajjj = prejjj for
r∑

i=1

ji < p− 1,

ajjj = pr−Q(
∑

jjj)

r∑
i=1

p−1∑
ni=0

r∏
i=1

(
ji
ni

)
(−1)ji−niennn for p− 1 ≤

r∑
i=1

ji < r(p− 1)

ajjj = 1 for
r∑

i=1

ji = r(p− 1).

To determine whether ajjj ∈ AH,p we will study the fixed group ring OE,p[N ]G. We

have H = E[N ]G where N = λ(S). Inside H we have the order OE[N ]G. We know

that OE[N ]G ⊆ AH or equivalently OE,p[N ]G ⊆ AH,p for all prime ideals p.

For p|pOK , we have written down elements ajjj ∈ Hp such that ajjj · x = xjjj. We

aim to determine whether these elements have integral coefficients i.e. whether the

coefficient of λ(σiσiσi) is in OE,p for each iii. If so(i. e. if ajjj ∈ OE,p[N ]G), then this is

sufficient to show that ajjj ∈ AH,p and we get AH = OE[N ]G (globally).

It is straightforward to see that ajjj ∈ OE,p[N ]G for
∑
jjj < p − 1 and

∑
jjj =

r(p− 1). Now note that for p− 1 ≤
∑
jjj < r(p− 1) we have

ajjj = pr−Q(
∑

jjj)

r∑
m=1

p−1∑
nm=0

r∏
i=1

(
ji
ni

)
(−1)ji−niennn.
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Substituting in the expression for the orthogonal idempotent, we get

ajjj = p−Q(
∑

jjj)

r∑
m=1

p−1∑
nm=0

r∏
i=1

(
ji
ni

)
(−1)ji−ni

p−1∑
s=0

r∏
k=1

ζ−nkskλ(σsσsσs)

We can rewrite this expression using the bold notation to obtain

ajjj = p−Q(
∑

jjj)
∑
nnn

r∏
i=1

(
ji
ni

)
(−1)ji−ni

r∏
k=1

∑
sss

ζ−nkskλ(σsσsσs)

We will move the sum over sss to the front of the expression to obtain

ajjj =
∑
sss

(p−Q(
∑

jjj)
∑
nnn

r∏
i=1

(
ji
ni

)
(−1)ji−ni

r∏
k=1

ζ−nksk)λ(σsσsσs)

For all possible values of sss = (s1, ..., sr), the coefficient of λ(σsσsσs) in the above

expression is equal to the expression in the brackets, which is

p−Q(
∑

jjj)
∑
nnn

r∏
i=1

(
ji
ni

)
(−1)ji−ni

r∏
k=1

ζ−nksk .

Observing that there are no cross terms, we can combine the two products in this

expression using a single index to get

p−Q(
∑

jjj)
∑
nnn

r∏
i=1

(
ji
ni

)
(−1)ji−niζ−nisi .

Now notice that for all i = 1, ..., r each individual term of the product can be

written as a binomial expansions as follows.

p−Q(
∑

jjj)

r∏
i=1

(ζ−si − 1)ji .

Now since ζ−si − 1 and ζ − 1 differ by a unit of OK,p and also p and (ζ − 1)p−1

differ by a unit of OK,p, the above expression is equal to (up to units)

(ζ − 1)
∑

jjj

(ζ − 1)(p−1)Q(
∑

jjj)
.

Since (p− 1)Q(
∑
jjj) ≤

∑
jjj by construction of Q, the above experssion lies in OE,p

and we have OE,p[N ]G = AH,p as claimed.

Since ajjj ∈ OE,p[N ]G for all jjj and OE,p[N ]G ⊆ AH,p, we have ajjj · xiii ∈ OL,p for

all iii and jjj (so we do not need to check this explicitly). Hence AH,p = OK,p⟨ajjj⟩ =

OE,p[N ]G but AH,p ̸= Mp = OK,p⟨ennn⟩.
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We have achieved our aim of proving Theorem 4.4.1, that the ring of integers

OL is locally free over AH in the unique almost classical Hopf-Galois structure.

We need explicit local generators of AH,p over OL,p in order to apply the idèlic

theory in the following section. We have shown that for prime ideals p|pOK , a free

generator ofOL,p overAH,p is given by xp =
1
pr
(1+α1+...+α

p−1
1 )...(1+αr+...+α

p−1
r )

(see Proposition 4.4.3).

Proposition 4.4.4. For prime ideals p ∤ pOK, the element xp =
1
pr

∑
iii

αiαiαi

π
rp(a

iaiai)
p

is a

free generator of OL,p over AH,p.

Proof. For prime ideals p ∤ pOK , since the associated order coincides with the

maximal order and we have AH,p = OK,p⟨eiii⟩. If we consider summing the basis

elements i.e. we take xp = 1
pr

∑
iii

αiαiαi

π
rp(a

iaiai)
p

as stated in the proposition, we can use

these orthogonal idempotents to detect each of the terms in the sum and recover

the local integral basis, hence our element xp as given above is a local generator.

4.5 Using idèlic theory to move from local to

global freeness

In the previous sections we have shown that OL is locally free over AH and

given an explicit generator of OL,p over AH,p for each prime p of OK . In this section

we determine a criterion for OL to be a free AH-module. Our main tool will be a

theorem of Bley and Johnston, Theorem 2.4.16. Recall from Proposition 3.4.1 that

we have an isomorphism of K-algebras H ∼= Kpr arising from the fact that H has

a K-basis of mutually orthogonal idempotents. This isomorphism implies that H

contains a unique maximal order M given by

M = OK⟨eiii|0 ≤ ik ≤ p− 1 for each 1 ≤ k ≤ r⟩.

We write MOL for the smallest M-module in L containing OL. Explicitly

MOL =

{∑
finite

z · x|z ∈ M, x ∈ OL

}
.
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Theorem 2.4.16 implies that OL is a free AH-module if and only if MOL is a free

M-module with a generator lying in OL. Our strategy will be to determine a

criterion for MOL to be a free M-module and then a further criterion for it to

have a generator in OL. For the first of these, note that MOL is a locally free

M-module and recall from Section 2.4 that since H is commutative, OL is a free

M-module if and only if it has trivial class in the locally free class group Cl(M).

Also recall from Theorem 2.4.10 that we have an isomorphism

Cl(M) ∼=
J(H)

H×U(M)
.

Proposition 4.5.1. The class of MOL in Cl(M) corresponds to the class of the

idèle (hp)p where

hp =
∑
iii

eiii

π
rp(aia

iai)
p

.

Proof. Let x = 1
pr
(1+α1+ ...+α

p−1
1 )...(1+αr+ ...+α

p−1
r ) ∈ OL. Then x generates

L as a free H-module. For each prime p of OK let xp be the free generator of OL,p

as an AH,p-module found in Propositions 4.4.3 and 4.4.4. That is

xp =


1
pr
(1 + α1 + ...+ αp−1

1 )...(1 + αr + ...+ αp−1
r ) if p|pOK

1
pr

∑
iii

αiαiαi

π
rp(a

iaiai)
p

otherwise

For each p, we have (MOL)p = MpOL,p = Mp(AH,p · xp) = Mp · xp so the element

xp given above is a free generator of (MOL)p as an Mp-module. Now, as described

in Section 2.4, the element hp ∈ Hp is defined by hp · x = xp. Recalling (from

Corollary 3.4.2) the formulae for the actions of the orthogonal idempotents on

elements of L, we find

hp =


1 if p|pOK∑

iii
eiii

π
rp(a

iaiai)
p

otherwise

Finally note that if p|pOK , then vp(ak) = 0 for all k and
∑

iii eiii = 1 so we may

combine the expressions above into the single expression in the statement of the

proposition.
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Since H ∼= Kpr as K-algebras we have M ∼= Opr

K as OK-orders and so

J(H)

H×U(M)
∼=
(

J(K)

K×U(OK)

)pr

.

Now
J(K)

K×U(OK)
∼= Cl(K)

the ideal class group of K via (zp)p →
∏

p p
vp(zp). Thus each element of

J(H)

H×U(M)

corresponds to a pr-tuple of fractional ideals of K.

Proposition 4.5.2. The idèle (hp)p corresponding to the class of MOL in Cl(M)

corresponds to the pr-tuple of classes of ideals a−1
iii where

aiii =
∏
p

prp(a
iaiai).

Proof. Recall from Proposition 2.4.14 and Corollary 2.4.15 that to obtain the tuple

of ideal classes corresponding to an idèle (zp)p we write

zp =
∑
iii

ciii,peiii

with ciii,p ∈ Kp for all i. Then the idèle (hp)p is mapped to the pr-tuple of classes of

fractional ideals (ciii) where

ciii =
∏
p

pvp(ciii,p).

Applying this to the idèle (hp)p corresponding to the class of MOL in Cl(M)

(constructed in the previous proposition) we see that

ciii,p =
1

π
rp(aia

iai)
p

for all iii and p. Hence (hp)p corresponds to the pr-tuple of ideal classes (aiii)
−1 where

aiii =
∏
p

prp(a
iaiai)

for all iii.
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Corollary 4.5.3. The M-module MOL is free if and only if the ideals aiii are

principal for all iii.

Proposition 4.5.4. The M-module MOL has a free generator lying in OL if and

only if the ideals aiii are principal for all iii with generators aiii such that

1

pr

∑
iii

αiαiαi

aiii
∈ OL.

Proof. By the previous proposition MOL is a free M-module if and only if each

ideal aiii is principal. Suppose that this is the case and write aiii = ciiiOK for some

ciii ∈ OK . Then a free generator for MOL as an M-module is

y =
1

pr

∑
iii

αiαiαi

ciii
.

The set of free generators of MOL as an M-module is precisely the set {z · y|z ∈

M×}. Since M ∼= Opr

K via orthogonal idempotents and eiii ·αjαjαj = δiii,jjjα
jαjαj we see that

an element y′ ∈ L is a free generator for MOL as an M-module if and only if it

has the form

y′ =
1

pr

∑
iii

uiα
i

iα
i

iα
i

ciii

for some uiii ∈ O×
K . Therefore MOL has a free generator lying in OL if and only

if there exist elements uiii ∈ O×
K such that the corresponding element y′ lies in OL.

Writing aiii = u−1
iii ciii for each iii, this is equivalent to the existence of elements aiii as

in the statement of the proposition.

By combining the results of this section, we obtain a criterion for OL to be a

free AH-module:

Theorem 4.5.5. Let p be an odd prime number, let K be a number field such that

p is unramified in K, and let L be a tamely ramified extension of K of degree pr for

some positive integer r having the form L = K(δ1, ..., δr) for some δi ∈ L such that

each δpi ∈ K. Let H be the Hopf algebra giving the unique almost classical Hopf-

Galois structure on L/K. The ring of algebraic integers OL is a free AH-module

if and only if there exist β1, ..., βr ∈ OL such that

1. L = K(β1, ..., βr)
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2. bi = βp
i ∈ OK for each i

3. The ideals biii =
∏

p p
rp(bib

ibi) are principal with generators ciii such that y =

1
pr

∑
iii
βiβiβi

ciii
∈ OL.

Furthermore in this case the element y is a free generator of OL as an AH-module.

Proof. If OL is a free AH-module then by Theorem 2.4.16 we have MOL = M· x

for some x ∈ OL. Therefore by the previous proposition the ideals
∏

p p
rp(aia

iai) are

principal for all iii with generators biii satisfying

1

pr

∑
iii

αiαiαi

biii
∈ OL.

Therefore the elements βi = αi for each i satisfy 1., 2. and 3. To prove the converse,

the same argument used in the proof of Theorem 2.5.25 applies here.



Chapter 5

A family of non-normal simple

radical extensions of square free

degree - Field theory and

Hopf-Galois structures

5.1 Setup for an extension of degree m

Let K be a number field and let m be an odd square free positive integer. Let

ζm be a primitive mth root of unity. Suppose that all primes p|m are unramified in

K. Note that this implies that ζm ̸∈ K and that [K(ζm) : K] = ϕ(m). Let d ∈ K

be such that xm − d is irreducible over K.

Proposition 5.1.1. The polynomial xm − d is irreducible over K if and only if

xp − d is irreducible over K for all p|m, i.e. d ̸∈ Kp for p|m.

Proof. See Theorem 13.1.5 of [Rom05].

Henceforth, we will write m = p1...pr for the prime factorisation of m and we

will write ζi for a p
th
i root of unity. Let δ be a root of xm − d, let L = K(δ) and let

F = K(ζm). For i = 1, ..., r, let αi = δ
m
pi (so αpi

i ∈ K but αi ̸∈ K).

Proposition 5.1.2. In this notation, we have L = K(α1, ..., αr).

78
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Proof. It is clear to see that K(α1, ..., αr) ⊆ K(δ). For the reverse inclusion, write

qi =
m
pi

for each i. Then there exist ui ∈ Z such that u1q1 + .... + urqr = 1. Then

αu1
1 ...α

ur
r δ

u1q1+...+urqr = δ which completes the proof.

Let E be the Galois closure of L/K. We will now aim to determine the degree

[E : K]. We show this by writing E = F (δ) = K(ζm)(δ). Firstly we aim to show

that the extension E/F has degree m. Note that the minimal polynomial of αi

over K is xpi − d. We can also write E = F (α1, ..., αr). Each of the extensions

F (αi)/F has degree dividing pi (i.e. either pi or 1).

Proposition 5.1.3. Each of the extensions F (αi)/F has degree pi.

Proof. If [F (αi) : F ] ̸= pi for some i, then xpi − d is not the minimal polymial of

αi over F . Hence x
pi − d is reducible over F . The polynomial xpi − d is reducible

over F if and only if it has a root in F . (see Theorem 13.1.5 of [Rom05]). Since

ζpi ∈ F , once xpi − d has a root in F , it splits into linear factors in F . Hence

[F (αi) : F ] = 1 and K(ζpi , αi) ⊆ F . However F/K is Galois with abelian Galois

group and K(ζpi , αi)/K is Galois with non-abelian Galois group (see [Rom05]).

Since it is impossible for an abelian group to have a non-abelian quotient, we have

a contradicition. Hence [F (αi) : F ] = pi as claimed.

Proposition 5.1.4. [E : K] = mϕ(m).

Proof. By Proposition 5.1.3 we have [E : F ] is divisible by p1, ..., pr, hence is

divisble by m and hence [E : F ] = m. We can now apply the tower law to conclude

that [E : K] = mϕ(m) as claimed.

Remark 5.1.5. Note that in the proof of Proposition 5.1.3, we showed that the

polynomials xpi−d are irreducible over F , hence the polynomial xm−d is irreducible

over F .

The Galois group of E/K is given by G = Gal(E/K) = ⟨σ1, ..., σr, τ1, ..., τr⟩ where

σi(αi) = ζiαi, σi(αj) = αj for i ̸= j, σi(ζj) = ζj for all i and j,

τi(αj) = αj for all i and j, τi(ζi) = ζdii where di is a primitive root modulo pi

and τi(ζj) = ζj for i ̸= j.
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K

K(αi)

L = K(α1, ..., αr)

E = L(ζm)

pi

qi =
m
pi

m

ϕ(m)T

G

⟨σi⟩

5.2 The almost classical Hopf-Galois structure

Henceforth, we will write S = ⟨σ1, ..., σr⟩ and T = ⟨τ1, ..., τr⟩.

Proposition 5.2.1. The extension L/K is almost classically Galois.

Proof. The field L is the fixed field ET and T has a normal complement in G

(namely S).

Hence λ(S) ⊆ Perm(X) gives an almost classical Hopf-Galois structure on the

extension.

To describe the corresponding embedding, write N ∼= Cp1 × ... × Cpr = ⟨η1⟩ ×

...× ⟨ηr⟩. In this case Aut(N) ∼= C×
m
∼= C×

p1
...× C×

pr via the description Aut(N) =

⟨ϕ1, ..., ϕr⟩ where ϕi(ηi) = ηdii where di is a primitive root modulo pi and ϕi(ηj) = ηj

for i ̸= j.

The corresponding embedding is given by β(σi) = (ηi, id), β(τi) = (e, ϕi).

Proposition 5.2.2. The embedding given above corresponds to the Hopf-Galois

structure given by λ(S).

Proof. For 1 ≤ i ≤ r let ηi ∈ Perm(X) be defined by ηi(σ
j1
1 ...σ

jr
r ) = σj1

1 ...σ
ji−1
i ...σjr

r .

Recall that by construction the map α(ηj11 ...η
jr
r ) is given by b−1λN(η

j1
1 ...η

jr
r )b. In

this case the map b is given by b(g) = β(g)eN . Hence if we consider a typical

element of G σs1
1 ...σ

sr
r we have α(ηj11 ...η

jr
r )[σs1

1 ...σ
sr
r ] = b−1λN(η

j1
1 ...η

jr
r )b[σs1

1 ...σ
sr
r ] =
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b−1λN(η
j1
1 ...η

jr
r )(ηs11 ...η

sr
r ) = b−1(ηj1+s1

1 ...ηjr+sr
r ) = η−s1

1 ...η−sr
r (σj1

1 ...σ
jr
r ). Hence α(N) =

⟨η1, ..., ηr⟩ ∼= λ(S).

5.3 Unique normal complement

In this section, we will prove that S is the unique normal complement of T in

G directly using group theory.

Lemma 5.3.1. For i = 1, ..., r, let Gi = ⟨σi, τi⟩. Then Gi ⊴ G and G ∼=

G1 ×G2 × ...×Gr.

Proof. It is clear that Gi ≤ G for each i and for j ̸= i the elements σj and τj

commute with all elements of Gi. Hence Gi ⊴ G and
∏r

i=1Gi ≤ G. We have

Gi ∩ Gj = {e} for i ̸= j, so |
∏r

i=1Gi| =
∏r

i=1 |Gi| =
∏r

i=1 pi(pi − 1) = |G|. Hence

G =
∏r

i=1Gi
∼= G1 × ...×Gr.

Lemma 5.3.2. For each i = 1, ..., r the subgroup ⟨σi⟩ is the unique normal

complement to ⟨τi⟩ in Gi.

Proof. It is clear to see that ⟨σi⟩ is a normal complement to ⟨τi⟩ in Gi. If Ui is

a normal complement to ⟨τi⟩ in Gi then |Ui| = pi, but ⟨σi⟩ is the unique Sylow

pi-subgroup of Gi, so Ui = ⟨σi⟩.

Proposition 5.3.3. The subgroup S = ⟨σ1, ..., σr⟩ is the unique normal comple-

ment to T = ⟨τ1, ..., τr⟩ in G.

Proof. It is clear to see that S is a normal complement to T in G. Now suppose

that U is a normal complement T in G. Then |U | = p1...pr = m. By Lemma 5.3.1

we have G ∼= G1 × ...×Gr. For each i, let πi : G → Gi be the natural projection.

Then for each i we have πi(T ) = ⟨τi⟩ and πi(U) is a normal complement to ⟨τi⟩ in

Gi. By Lemma 5.3.2, πi(U) = ⟨σi⟩. For each j the subgroup U contains an element

uj of order pj. Now for each i the order of πi(uj) divides pj. Since πi(uj) ∈ ⟨σi⟩

for each i we find that πi(uj) = e for i ̸= j and πj(uj) = σ
sj
j for some sj = 1, ...,

pj − 1. Hence uj = σ
sj
j and so σj ∈ U . Since this holds for each j = 1, ..., r we
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see that S ⊆ U and comparing orders gives S = U . Hence S is the unique normal

complement to T in G.

5.4 Classifying the Hopf-Galois structures on the

extension when r = 2

For this section we will change notation from p1 and p2 to p and q and assume

that p > q. The aim of this section is to classify all Hopf-Galois structures on the

extension of degree pq. More specifically we will prove the following proposition.

Proposition 5.4.1. The unique almost classical Hopf-Galois structure is the only

Hopf-Galois structure on the extension in the case where r = 2.

Since there are only two groups of order pq, there are only two possibilities

for the group N from Greither-Pareigis theory (up to isomorphism). The two

possibilities for N are N ∼= Cpq and N ∼= Cp⋊Cq. Note that the second possibility

can only occur when p ≡ 1 (mod q). Note that G ∼= S ⋊ T ∼= Cpq ⋊ Cp−1 × Cq−1.

We will apply Byott’s translation theorem. This tells us that we seek equivalence

classes of embeddings β : G ↪→ Hol(N) such that β(T ) = Stab(eN). We firstly show

that all suitable embeddings when N is cyclic fall under one equivalence class. We

then proceed to show that there are no suitable embedding when N is metabelian.

Proposition 5.4.2. There is exactly one equivalence class of embeddings in the

case that N is cyclic.

The proof of this will take the form of a sequence of propositions. We will

write N ∼= Cpq = ⟨µ, η|µp = ηq = e⟩. (Note that we use two generators for this

cyclic group to simplify the construction of the embeddings later.) In this case

Aut(N) ∼= C×
pq

∼= C×
p × C×

q via the automorphism (ϕk, ψl)[µη] = µkηl. A typical

element of Hol(N) is an ordered pair (µiηj, ϕkψl). Then |Hol(N)| = |N ||Aut(N)| =

pq(p− 1)(q − 1) = |G|. In this case since |G| = |Hol(N)|, the embeddings that we

are looking for are actually isomorphisms. Note that we will write σp for σ1 and

σq for σ2, which emphasises the fact that the automorohisms have orders p and
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q respectively. Recall that we require the embeddings to satisfy β(T ) ⊆ Aut(N),

β(σp) must have order p, β(σq) must have order q, β(τp) ∈ Aut(N) and must

have order p − 1 and β(τq) ∈ Aut(N) and must have order q − 1. Recall that

two embeddings β and β′ are equivalent if and only if β′(g) = γβ(g)γ−1 for all

g ∈ G and some γ ∈ Aut(N). A suitable embedding is given by β(σp) = (µ, id),

β(σq) = (η, id), β(τp) = (e, ϕc) and β(τq) = (e, ψd) with c a primitive root modulo

p and d a primitive root modulo q.

Proposition 5.4.3. The embedding given above corresponds to the Hopf-Galois

structure that we have already found.

Proof. Let µ ∈ Perm(X) be defined by µ(σi
pσ

j
q) = σi−1

p σj
q and let η ∈ Perm(X) be

defined by η(σi
pσ

j
q) = σi

pσ
j−1
q .

Recall that by construction the map α(µiηj) is given by b−1λN(µ
iηj)b. In this

case the map b is given by b(g) = β(g)eN . Hence if we consider a typical elenent

of G σr
pσ

s
qτ

t, we have α(µiηj)[σr
pσ

s
q ] = b−1λN(µ

iηj)b[σr
pσ

s
q ] = b−1λN(µ

iηj)(µrηs) =

b−1(µi+rηj+s) = σi+r
p σj+s

q = µ−rη−s(σi
pσ

j
q). Hence α(N) = ⟨µ, η⟩ ∼= λ(S).

We now aim to determine whether there are any inequivalent embeddings. Sup-

pose that β′ : G ↪→ Hol(N) is another suitable embedding.

Proposition 5.4.4. β′(τp) = β(τp)
u for some 1 ≤ u ≤ p − 1 such that gcd(u, p −

1) = 1.

Proof. A priori it is possible that β(τp) = (e, ϕiψj) for some i and j with ϕiψj having

order p−1, we will show that j = 1 (note that ϕ1 and ψ1 are the identity maps). InG

we have τpσq = σqτp, so β
′(τp)β

′(σq) = β′(σq)β
′(τp). If we write β

′(σq) = (µkηl, f) ∈

Hol(N), then the previous equation becomes (e, ϕiψj)(µ
kηl, f) = (µkηl, f)(e, ϕiψj).

If we let both sides of this equation act on eN , we get ϕiψj(µ
kηl) = µkηl. This

implies that µikηjl = µkηl, which in turn implies that ik ≡ k (mod p) and jl ≡ l

(mod q). We have i ≡ 1 (mod p) or k ≡ 0 (mod p) and j ≡ 1 (mod q) or l ≡ 0

(mod q). Note that one of the congruences modulo p has to hold and one of the

congruences modulo q has to hold. If i ≡ 1 mod p, then since ϕ1 is the identity

element of Aut(⟨µ⟩), β′(τp) = (e, ψj) but since ψj is an element of a group of order
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q − 1 and q − 1 < p− 1, this means that β′(τp) cannot have order p− 1. If k ≡ 0

(mod p) and l ≡ 0 (mod q), then β′(σq) = (eN , f) which cannot happen because

β′(σq) cannot be trivial in the N -component. Hence the only possibility is that

k ≡ 0 (mod p) and j ≡ 1 (mod q). So far we have shown that β′(τp) = (e, ϕi) for

some i. Now, the fact that β′(τp) has order p− 1 implies that i ≡ cu (mod p) with

gcd(u, p− 1) = 1, so β′(τp) = (e, ϕc)
u = β(τp)

u as claimed.

Remark 5.4.5. In the above proof, we determined that β′(σq) = (ηl, f).

Proposition 5.4.6. The subgroup generated by (µ, id) is normal in Hol(N).

Proof. The subgroup ⟨(µ, id)⟩ is normal in Hol(N) if and only if g(µ, id)g−1 =

(µr, id) for all g ∈ Hol(N) and some 0 ≤ r ≤ p− 1. It is sufficient to check this for

g the generators of Hol(N). We have

(µ, id)(µ, id)(µ, id)−1 = (µµµ−1, id) = (µ, id),

(η, id)(µ, id)(η, id)−1 = (ηµη−1, id) = (µ, id),

(e, ϕc)(µ, id)(e, ϕc)
−1 = (ϕc(µ), ϕcϕ

−1
c ) = (µc, id),

(e, ψd)(µ, id)(e, ψd)
−1 = (ψd(µ), ψdψ

−1
d ) = (µ, id).

Since all of these are of the form (µr, id), the subgroup generated by (µ, id) is

normal in Hol(N) as claimed.

Corollary 5.4.7. The subgroup generated by (µ, id) is the unique Sylow p-subgroup

of Hol(N).

Proposition 5.4.8. Further to Proposition 5.4.4, we have u = 1 so β′(τp) = β(τp).

Proof. Since the subgroup generated by (µ, id) is the unique Sylow p-subgroup of

Hol(N), this implies that β′(σp) = (µm, id) = β(σp)
m for some m with gcd(m, p) =

1. Now in G, we have τpσp = σc
pτp, which implies that β′(τp)β

′(σp) = β′(σc
p)β

′(τp),

which implies that β(τp)
uβ(σp)

m = β(σmc
p )β(τp)

u. Now writing these elements as

ordered pairs, we have (e, ϕu
c )(µ

m, id) = (µmc, id)(e, ϕu
c ). If we let both sides of this

equation act on eN , we get ϕu
cµ

m = µmc which impies that µmcu = µmc which tells

us that u = 1 as claimed.
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Proposition 5.4.9. In the previous proof, we can take m = 1 (i.e. β′(σp) =

(µ, id)).

Proof. Let γ : N → N be the automorphism defined by γ(µ) = µm−1
(where

the inverse is taken modulo p) and γ(η) = η. Let β′′ be the result of conju-

gating the embedding β′ by the automorphism γ. Then in particular, β′′(σp) =

(e, θ)(µm, id)(e, θ)−1 = (θ(µm), id) = (µ, id).

Remark 5.4.10. Henceforth, we will assume that we have conjugated the embed-

ding to ensure that m = 1 so we can write β′(σp) = (µ, id).

Proposition 5.4.11. β′(τq) = β(τq)
v for some 1 ≤ v ≤ q − 1.

Proof. In G, we have τqσp = σpτq, which implies that β′(τq)β
′(σp) = β′(σp)β

′(τq).

Writing these elements as ordered pairs, we have (e, ϕu
cψ

v
d)(µ, id) = (µ, id)(e, ϕu

cψ
v
d).

If we let both sides of this equation act on eN , we get ϕu
cψ

v
d(µ) = µ. This implies

that µcu = µ, which implies that cu ≡ 1 (mod p), which tells us that u ≡ 0

(mod p− 1) (as a primitive root nmodulo p the element u has order p− 1 modulo

p) hence the ϕ component in β′(τq) is just the identity. Hence β′(τq) = β(τq)
v as

claimed.

Proposition 5.4.12. β′(σq) = β(σq)
l for some 0 ≤ l ≤ q − 1.

Proof. In the proof of Proposition 5.4.4, we found that β′(σq) = (ηl, ϕx
cψ

y
d) for some

1 ≤ x, y ≤ p − 1. In G, we have σqσp = σpσq, which implies that β′(σq)β
′(σp) =

β′(σp)β
′(σq). Writing these elements as ordered pairs, we have (ηl, ϕx

cψ
y
d)(µ, id) =

(µ, id)(ηl, ϕx
cψ

y
d). Letting both sides of this equation act on eN gives ηlϕx

c (µ) = µηl.

This implies that µcxηl = µηl which tells us that x = p− 1 hence the ϕ component

in β′(σq) is just the identity. Now to prove that there is no ψ component, note

that β′(σq) must have order q which is prime. Let π : Hol(N) ↠ Aut(N) be the

projection given by π((x, f)) = f . Since β′(σq) must have order q, when we project

it onto the Aut(N) component we get π(β′(σq))
q = ψyq

d which must have order

dividing q. Since the element ψd has order q − 1, no power of ψd can have an

order which divides q except for the identity. Hence β′(σq) = (ηl, id) = β(σq)
l as

claimed.



CHAPTER 5. FIELD THEORY AND HOPF-GALOIS STRUCTURES 86

Proposition 5.4.13. Further to Proposition 5.4.11, we have v = 1, so β′(τq) =

β(τq).

Proof. In G, we have τqσq = σd
qτq, which implies that β′(τq)β

′(σq) = β′(σq)
dβ′(τq),

which implies that β(τq)
vβ(σq)

l = β(σq)
ldβ(τq)

v. Now writing these elements as

ordered pairs, we have (e, ψv
d)(η

l, id) = (ηld, id)(e, ψd)
v. If we let both sides of this

equation act on eN , we get ψv
dη

l = ηld which impies that ηld
v
= ηld which tells us

that v = 1 as claimed.

Proposition 5.4.14. Further to Proposition 5.4.12, we can take l = 1 (i.e. β′(σq) =

(η, id)).

Proof. Let γ : N → N be the automorphism defined by γ(µ) = µ and γ(η) = η−l.

Let β′′ be the result of conjugating the embedding β′ by the automorphism γ. Then

in particular, β′′(σq) = (e, θ)(ηl, id)(e, θ) = (θ(ηl), id) = (η, id).

To conclude, in all of the above we have shown that the embedding β′ turns out

to be equivalent to the embedding β. This tells us that there is only one equivalence

class of embeddings and this completes the proof of Proposition 5.4.2.

We will now determine the Hopf-Galois structures admitted by the extension

when N ∼= Cp ⋊ Cq. Now we will suppose that p ≡ 1 (mod q). Let

M = Cp ⋊ Cq = ⟨µ, η|µp = ηq = e, ηµη−1 = µg⟩

where g has multiplicative order q modulo p. (C×
p is cyclic of order p − 1. since

q|p − 1, there is an element in C×
p of order q. Concretely, we could take g = c

p−1
q

with c a primitive root modulo p.) We aim to use Greither-Pareigis theory to

determine whether there are any regular G-stable subgroups of Perm(X) that are

isomorphic to M . This is equivalent to seeking regular embeddings α : M ↪→

Perm(X) with a G-stable image. By Byott’s translation theorem, this is equivalent

to finding suitable embeddings β : G ↪→ Hol(M) with β(T ) = Stab(eN). Recall

that Hol(M) =M ⋊ Aut(M). We now determine what Aut(M) is as a group.

Proposition 5.4.15. Aut(M) has order p(p− 1).
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Proof. We first consider the orders of elements inM . Since µ has order p, ⟨µ⟩ is the

Sylow p-subgroup of M . It is unique because np|pq and np ≡ 1 (mod p) so np = 1

(where np denotes the number of Sylow p-subgroups ofM). Since η has order q, ⟨η⟩

is a Sylow q-subgroup of M . This is not unique. Note that all elements of M\⟨µ⟩

have order q. There are p Sylow q-subgroups given by ⟨µnη⟩ for 0 ≤ n ≤ p − 1.

The formula for taking powers of elements of M is

(µiηj)r = µi g
jr−1
g−1 ηjr.

To see this, we can view M as a semidirect product M ∼= ⟨µ⟩⋊ ⟨η⟩ where η acts on

µ by η ∗ µ = µg. This allows us to write the elements of M as ordered pairs with

multiplication given by

(µi, ηj)(µk, ηl) = (µi(ηj ∗ µk), ηl) = (µi+kgj , ηj+l).

As a consequence of this, the subgroup generated by a typical element of M µiηj

(with j ̸≡ 0 (mod q)) is the same as that generated by µnη since we can take the

rth power of the element where r is such that jr ≡ 1 (mod q). Now we return

to considering the automorphism group. If ϕ ∈ Aut(M) then ϕ(µ) has order p

so ϕ(µ) = µs for some 1 ≤ s ≤ p − 1. The map ϕ must send η to µtηu with

1 ≤ u ≤ q − 1.

Next we show that we have u = 1 (so ϕ(η) = µtη for some 0 ≤ t ≤ p− 1).

In M we have the relation ηµ = µgη. This implies that ϕ(ηµ) = ϕ(µgη). Since

ϕ is an automorphism, this implies that ϕ(η)ϕ(µ) = ϕ(µ)gϕ(η). Substituting in

the values for ϕ, we have µtηuµs = µsgµtηu. Rearranging the left hand side of this

using the group relation to move the powers of µ to the left gives µt+sguηu = µt+sgηu

which tells us that u = 1 as claimed.

We can now define ϕs,t to be a homomorphism that maps µ to µs and η to

µtη. To check that ϕs,t preserves the group relations, note that ϕs,t(ηµη
−1) =

ϕs,t(η)ϕs,t(µ)ϕs,t(η
−1) = µtηµsη−1µ−t = µsg = ϕs,t(µ

g). To check that ϕ is surjec-

tive, given a target µkηl we must be able to find i and j such that ϕs,t(µ
iηj) = µkηl.

We have ϕs,t(µ
iηj) = µsi+t g

j−1
g−1 ηj hence ϕs,t(µ

iηj) = µkηl if and only if j ≡ l (mod q)

and i ≡ s−1(k − tg
l−1
g−1

) (mod p). This tells us that as a set Aut(M) = {ϕs,t|1 ≤
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s ≤ p − 1, 0 ≤ t ≤ p − 1}, hence we conclude that Aut(M) has order p(p − 1) as

claimed.

Corollary 5.4.16. There are no suitable embeddings β : G ↪→ Hol(M) with M ∼=

Cp ⋊ Cq.

Proof. Note that since β is an embedding its image must be a subgroup of Hol(M)

of order |G|. The groupG has order pq(p−1)(q−1) and Hol(M) has order p2q(p−1).

Therefore Hol(M) does not have any subgroups of order pq(p − 1)(q − 1) and we

conclude that there are no suitable embeddings as claimed.

In conclusion, we have now completed the proof of Proposition 5.4.1 having

successfully shown that the unique almost classical Hopf-Galois structure is the

only Hopf-Galois structure on the extension in the case where r = 2.

5.5 Unique Hopf-Galois structure of abelian type

Previously we determined an almost classical Hopf-Galois structure admitted

by the extension. In this section, we will denote the corresponding embedding by

β. We now return to the case in which m is a positive odd square free number and

aim to use Byott’s translation theorem to determine whether there are any other

Hopf-Galois structures of abelian type. Recall that we have G ∼= S ⋊ T with S

cyclic of order m and |T | = ϕ(m) with m square free and N is a group of order m.

We seek inequivalent embeddings β′ : G ↪→ Hol(N) such that Stab(eN) = β′(T ).

Lemma 5.5.1. If β′ : G ↪→ Hol(N) is a suitable embedding, then β′(S) is a regular

subgroup of Hol(N).

Proof. We first observe that |β′(S)| = m. To show that β′(S) acts transitively,

since β′ is a suitable embedding, we know that Stab(eN) = β′(T ) so by the Orbit-

Stabiliser theorem |Orb(eN)| = |β′(G)|
|β′(T )| =

|G|
|T | = m and since Orb(eN) ⊆ N we have

that β′(G) acts transitively on N . For a typical element st ∈ G (where s ∈ S

and t ∈ T ), β′(st)[eN ] = β′(s)β′(t)[eN ] = β′(s)[eN ] where the last equality holds

because β′(t) stabilises eN , so in fact β′(S) acts transitively.
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Proposition 5.5.2. If N is cyclic, then Hol(N) contains a unique cyclic regular

subgroup, which is (N, id).

Proof. See Lemma 5.3 and Example 7.1 of [AB18].

Proposition 5.5.3. β′(σi) = β(σi)
ki for all i and some ki depending on i.

Proof. The previous lemma and proposition tell us that if β′ : G ↪→ Hol(N) is a

suitable embedding, then β′(S) = (N, id). Hence β′(σi) = (ηkii , id) for all i and

some ki depending on i.

Proposition 5.5.4. For all i we have β′(τi) = β(τi).

Proof. Firstly, note that β′(τi) ∈ (eN , Aut(N)) for each i (by the stabiliser condtion

in the definition of β′). Now, suppose that we fix i. For each j ̸= i, we have τjσi =

σiτj in G, so β
′(τiσj) = β′(σjτi), which implies that β′(τi)(η

kj
j , id) = (η

kj
j , id)β

′(τi).

Since the previous equation holds for all j ̸= i, this tells us that β′(τi) = (en, ϕ
li
i ) for

some li. Now (for j = i), in G we have τiσi = σdi
i τi hence β

′(τiσi) = β′(σdi
i τi). Writ-

ing these elements as ordered pairs, we have (eN , ϕ
li
i )(η

ki
i , id) = (ηkidii , ϕli

i ). Doing

the multiplication on the left hand side gives (η
kid

li
i

i , ϕli
i ) = (ηkidii , ϕli

i ). Comparing

the exponents of ηi, this tells us that li = 1.

Finally, we aim to show that β′ is equivalent to β. Recall that β(σi) = (ηi, id)

and β(τi) = (eN , ϕi) also recall that β and β′ are equivalent if and only if β′ = γβγ−1

for some γ ∈ Aut(N).

Proposition 5.5.5. The embedding β′ is equivalent to β.

Proof. Define γ ∈ Aut(N) by γ = ϕn1
1 ...ϕ

nr
r where dni

i = ki for all i. For each i, we

have γβ(τi)γ
−1 = (eN , ϕ

n1
1 ...ϕ

nr
r )(eN , ϕi)(eN , ϕ

−n1
1 ...ϕ−nr

r ) = (eN , ϕi) = β′(τi) where

the second equality holds because Aut(N) is abelian (since N is cyclic). Also, we

have γβ(σi)γ
−1 = (eN , ϕ

n1
1 ...ϕ

nr
r )(ηi, id)(eN , ϕ

−n1
1 ...ϕ−nr

r ) = (ϕni
i (ηi, id) = (ηkii , id) =

β′(σi). Hence β
′ is equivalent to β as claimed.

In conclusion, we have now shown that there is a unique Hopf-Galois structure

of abelian type admitted by the extension.
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5.6 Properties of the almost classical Hopf-Galois

structure

We now return to the case in which L = K(α1, ..., αr) with α
pi ∈ OK for each i

and study the unique almost classical Hopf-Galois structure on L/K, corresponding

to the regular subgroup N = λ(S) of Perm(X).

Proposition 5.6.1. We have H ∼= Km via orthogonal idempotents.

Proof. The orthogonal idempotents are given by

eiii =
1

m

r∏
k=1

pk−1∑
n=0

ζ−iknλ(σk)
n

These form an E-basis of E[N ]. Since G acts on N by σiλ(σj) = λ(σj) for all i and

j, τiλ(σi) = λ(σi)
di where di is a primitive root modulo pi and

τiλ(σj) = λ(σj) for

i ̸= j, we have that each idempotent eiii is fixed by each element of G and so lies in

E[N ]G = H. Therefore H has a K-basis of mutually orthogonal idempotents and

so H ∼= Km as K-algebras.

Corollary 5.6.2. The Greither-Pareigis theorem implies that the action of H on

L is given by

r∏
n=1

p−1∑
i=0

cinη
in
n · z =

r∏
n=1

p−1∑
i=0

cinη
−in
n [1G](z) =

r∏
n=1

p−1∑
i=0

cinσ
in
n (z)

for all z ∈ L.

Proof. This is a consequence of Theorem 2.6.14.

Proposition 5.6.3. The orthogonal idempotents detect the elements of L in the

following way.

eiii(α
jαjαj) =

1

m

r∏
k=1

pk−1∑
n=0

ζ iknσn
k (α

jk
k ) =

α
jαjαj if iii = jjj.

0 otherwise.

Proof. This is a consequence of Proposition 5.6.1 and Corollary 5.6.2. Also note

that the proof of this is similar to the proof of Proposition 2.5.6.



Chapter 6

A family of non-normal simple

radical extensions of square free

degree - Ramification and rings of

integers

6.1 Ramification

Recall that m = p1...pr is an odd square free number, K is a number field in

which each pi is unramified, and L is an extension of K of degree m and of the

form L = K(α1, ..., αr) with ai := αpi
i ∈ K for each i = 1, ..., r.

Proposition 6.1.1. The extension L/K is tame if and only if the elements ai can

be chosen to satisfy ai ≡ 1 (mod p2iOK) for each i.

Proof. To ensure that L/K is tame, applying Proposition 2.1.9 (which states that a

compositum of extensions is tame if and only if each of the subextensions is tame),

then applying Proposition 2.8.2 (which states that K(αi)/K is tame if and only

if ai can be chosen to satisfy ai ≡ 1 (mod p2iOK)) we get that it is necessary and

sufficient to assume that ai ≡ 1 (mod p2iOK) for all i.

Henceforth we will assume that these congruences hold. A consequence of this

91



CHAPTER 6. RAMIFICATION AND RINGS OF INTEGERS 92

assumption is that we can no longer assume that αpi
i = d for each i.

6.2 Local integral bases for p ∤ mOK

Recall Lemma 2.8.3 which states that for each i the prime ideals that do not lie

above piOK are either unramified or totally ramified in K(αi). First we consider

the case where p is totally ramified in K(αi) for all i. By Theorem 118 of [HGK81],

this case occurs if and only if vp(ai) ̸≡ 0 (mod pi) for all i.

Proposition 6.2.1. p is totally ramified in L.

Proof. Consider the ideal pOL = Pe1
1 ...P

eg
g , we know that

∑g
j=1 ejfj = [L : K] = m.

Let P be one of the Pj and write e = ej. Let Pαi
= P∩OK(αi). Then P is a prime

ideal of OL lying above Pαi
and Pαi

is a prime ideal of OK(αi) lying above p. The

ramification index e(P/p) = e(P/Pαi
)e(Pαi

/p) and we know that e(Pαi
/p) = pi

because p is totally ramified in K(αi)/K. Hence e(P/p) is divisible by pi. Since

this argument is valid for each i in turn, we obtain that e(P/p) is divisible by all

primes pi. Hence e(P/p) is divisible by m. Since P was an arbitrary Pj, one of

the ej is equal to m. Hence g = 1 and f1 = 1. Hence we have pOL = Pm and p is

totally ramified as claimed.

The prevous proposition allows us to apply Theorem 2.2.10. This says that

L/K is totally ramified if and only if OL,p = OK,p[x] where vP(x) = 1. In other

words, the elements 1, x, x2, ..., xm−1 cover all the valuations between 0 and m− 1

(at P). We could try to find such an x or alternatively we can try to find a set of

elements which cover all valuations from 0 to m− 1.

Definition 6.2.2. For 1 ≤ i ≤ r, we will use qi to denote the integer m
pi
. Also let

qqq denote the collection (q1, ..., qr).

Proposition 6.2.3. The set{
αiαiαi

π
rp(aiqaiqaiq)
p

|0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ r

}
covers all valuations from 0 to m− 1.
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Proof. Let P be the unique prime of L lying above p. Then pOL = Pm. For each

0 ≤ j ≤ r we have

mvp(aj) = vP(aj) = vP(α
pj
j ) = pjvP(αj),

so

vP(αj) = qjvp(aj) = vp(a
qj
j ).

Hence

vP

(
αiαiαi

π
rp(aiqaiqaiq)
p

)
= vP(α

iαiαi)− vP(π
rp(aiqaiqaiq)
p ) = vp(a

iqaiqaiq)−mrp(a
iqaiqaiq).

As noted above, this is the least positive remainder of vp(a
iqaiqaiq) modulo m, which

lies between 0 and m − 1. To show that every value in this range is achieved, it

is sufficient to show that the values vp(a
iqaiqaiq) are all distinct modulo m as iii varies.

Suppose that vp(a
iqaiqaiq) ≡ vp(a

nqanqanq) for some iii and nnn. Then vp(aaa
qqq(iii−nnn)) ≡ 0 (mod m)

and expanding the bold notation we have

vp(a
q1(i1−n1)
1 ...aqr(ir−nr)

r ) ≡ 0 (mod m)

⇒
r∑

k=1

qkvp(ak)(ik − nk) ≡ 0 (mod m).

Recalling that qk =
m
pk

for each k, we see that for each k we have

qkvp(ak)(ik − nk) ≡ 0 (pk).

Since pk ∤ qk by definition and pk ∤ vp(ak) by assumption, we find that ik − nk ≡ 0

(mod pk). Finally, since 0 ≤ ik, nk ≤ pk − 1, we obtain ik = nk and so iii = nnn. Thus

vp(a
iqaiqaiq) covers all residues modulo m as iii varies, so vP

(
αiαiαi

π
rp(a

iqaiqaiq)
p

)
covers the values

0, ..., m− 1 exactly once each as iii varies.

Corollary 6.2.4. If pi ∤ vp(ai) for all i then the set{
αiαiαi

π
rp(aiqaiqaiq)
p

|0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ r

}

forms an OK,p-basis of OL,p.
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Next we show that this set also forms an OK,p-basis of OL,p in the case that

pi|vp(ai) for some i.

Proposition 6.2.5. If pi|vp(ai) for at least one i then an OK,p-basis of OL,p is

given by {
αiαiαi

π
rp(aiqaiqaiq)
p

|0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ r

}
.

Proof. Relabelling if necessary there exists 1 ≤ s ≤ r such that pi ∤ vp(ai) for

i = 1, ..., s and pi|vp(ai) for i = s + 1, ..., r. Let Ls = K(α1, ..., αs). Applying

the preceeding proposition and corollary to the extension Ls/K, we find that an

OK,p-basis of OL,p is given by{
αiαiαi

π
rp(aiqaiqaiq)
p

|0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ s

}
.

Now consider Ls+1 = Ls(αs+1). Since p is unramified in K(αs+1), the extensions

Ls/K and K(αs+1)/K are arithmetically disjoint at p and so an OK,p-basis of OL,p

is given by αiαiαi

π
rp(aiqaiqaiq)
p

α
is+1

s+1

π
rp(a

is+1qs+1
s+1 )

p

|0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ s+ 1

 .

Since ps+1|vp(as+1) we have

rp(a
is+1qs+1

s+1 ) =
vp(a

is+1qs+1

s+1 )

m
,

so we may combine exponents in the denominator obtaining an OK,p-basis of the

form {
αiαiαi

π
rp(aiqaiqaiq)
p

|0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ s+ 1

}
.

Repeating this process yields the result.

6.3 Local integral bases for p|mOK

Henceforth we will assume that if p|pjOK for some pj|m, then p is unramified

in K(αi) for all i ̸= j. This assumption allows us to apply arithmetic disjointness

which will ease obtaining the integral bases. Since we have previously assumed

that each pj is unramified in K, we may choose πp = pj whenever p|pj.



CHAPTER 6. RAMIFICATION AND RINGS OF INTEGERS 95

Proposition 6.3.1. If p|pj for some j = 1, ..., r then an OK,p-basis of OL,p is

given by{
αiαiαi

p
rp(aiqaiqaiq)
j

|0 ≤ ik ≤ pk − 1 for 1 ≤ k ≤ r and ij ̸= pj − 1

}

∪

{
1 + αj + ...+ α

pj−1
j

pj

αiαiαi

p
rp(aiqaiqaiq)
j

|0 ≤ ik ≤ pk − 1 for 1 ≤ k ≤ r and ij = 0

}
.

Proof. Since we have assumed that p is unramified in K(αi) for all i ̸= j, the

extensions K(αj) and Lj = K(α1, ..., αj−1, αj+1, ..., αr) are arithmetically disjoint

at p. By Proposition 2.8.5, an OK,p-basis of OK(αj),p is{
1, αj, ..., α

pj−2
j ,

1

pj
(1 + αj + ...+ α

pj−1
j )

}
and by Section 6.2 an OK,p-basis of OLj ,p is{

αiαiαi

p
rp(aiqaiqaiq)
j

|0 ≤ ik ≤ pk − 1 for 1 ≤ k ≤ r and ij = 0

}
.

Hence an OK,p-basis of OL,p is the product of these two sets, which gives the set

described in the proposition.

6.4 Associated order and local generators

The aim of this section is to prove the following theorem

Theorem 6.4.1. The ring of integers OL is locally free over AH in the unique

almost classical Hopf-Galois structure.

The proof of this theorem will take the form of a sequence of propositions. Recall

the information on orders from the background chapter, in particular Theorem 2.3.7

which gives some properties of maximal orders. We will study the associated order

by relating it to the fixed points of the group ring OE[N ]G. In fact, we will show

that AH = OE[N ]G. Recall from Proposition 2.7.3 that OE[N ]G ⊆ AH .

Proposition 6.4.2. If p ∤ mOK then each eiii ∈ OE,p[N ]G, OE,p[N ]G = AH,p = Mp

and OL,p is a free AH,p-module.
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Proof. See Proposition 5.7 of [Tru11].

To determine the associated order for prime ideals p|mOK , we will use the “all

in one” approach (recall Theorem 2.7.5).

Proposition 6.4.3. Suppose that p|mOK. Then AH,p = OE,p[N ]G and OL,p is a

free AH,p-module.

Proof. Since p|mOK we have p|pjOK for exactly one j = 1, ..., r. Now fix j to be

the unique value such that p|pjOK . For each vector iii with 0 ≤ ik ≤ pk − 1 for each

k, let

iii(l) = (i
(l)
1 , ..., i

(l)
r ) where i

(l)
k =

 l if k = j

ik otherwise.

(Thus iii(l) agrees with iii in all but possibly the jth position where it is equal to

l.) Note that 0 ≤ l ≤ pk − 1. Label the OK,p-basis elements of OL,p found in

Proposition 6.4.2 as follows:

xiii =


αiαiαi

p
rp(a

iqaiqaiq)

j

if ij ̸= pj − 1

1+αj+...+α
pj−1

j

pj

αααiii(0)

p
rp

(
αααiii

(0)qqq
)

j

if ij = pj − 1.

Now let

xp =
1 + αj + ...+ α

pj−1
j

m

∑
iii(0)

αααiii(0)

p
rp(aaaiii

(0)qqq)
j

∈ OL,p.

This element generates Lp as an Hp-module: for each iii we have eiii · xp = ciiiα
iαiαi for

some nonzero ciii ∈ Kp. Therefore, following the method of Theorem 2.7.5, for each

iii there is a unique element aiii ∈ Hp such that aiii · xp = xiii. We can determine the aiii

explicitly. We have

eiii · xp =
αiαiαi

p
rp(aiqaiqaiq)
j

.

Hence

aiii =

meiii if ij ̸= pj − 1∑
l eiii(l) if ij = pj − 1.

To complete the proof we must show that aiii ∈ AH,p for all iii. In fact we show that

aiii ∈ OE,p[N ]G ⊆ AH,p for all iii. Recall that eiii =
1
m

∏r
k=1

∑pk−1
n=0 ζ

−iknλ(σk)
n. It is
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clear that meiii ∈ OE,p[N ]G and so aiii ∈ OE,p[N ]G for ij ̸= pj − 1. If ij = pj − 1 then

we have

aiii =
∑
l

eiii(l)

=
∑
l

1

m

r∏
k=1

pk−1∑
n=0

ζ−i
(l)
k nλ(σk)

n

=
pj
m

r∏
k=1,k ̸=j

pk−1∑
n=0

ζ−iknλ(σk)
n

∈ OE,p[N ]G.

Hence aiii ∈ OE,p[N ]G ⊆ AH,p for each iii, so the aiii form an OK,p-basis of OE,p[N ]G =

AH,p and OL,p is a free AH,p-module with generator xp.

We have achieved our aim of proving Theorem 6.4.1, that the ring of integers

OL is locally free over AH in the unique almost classical Hopf-Galois structure.

Proposition 6.4.4. For prime ideals p ∤ mOK, the element

xp =
1

m

∑
iii

αiαiαi

π
rp(aia

iai)
p

is a free generator of OL,p over AH,p.

Proof. For prime ideals p ∤ mOK we have

AH,p = Mp = OK,p⟨eiii|0 ≤ ik ≤ pk − 1 for each 1 ≤ k ≤ r⟩

Now

eiii · xp =
1

m

αiαiαi

π
rp(aia

iai)
p

for each iii. Refering to the OK,p-basis of OL,p constructed in Section 6.2 and noting

that 1
m

∈ O×
K,pin this case, we see that the set

{eiii · xp|0 ≤ ik ≤ pk − 1 for 1 ≤ k ≤ r}

forms an OK,p-basis of OL,p. Hence xp is a free generator of OL,p as an AH,p-

module.
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6.5 Using idèlic theory to move from local to

global freeness

In the previous sections, we have shown that OL is locally free over AH and

given an explicit generator of OL,p over AH,p for each prime p of OK . In this section

we determine a criterion for OL to be a free AH-module. Our strategy will be the

same as in Section 4.5. By Theorem 2.4.16 OL is a free AH-module if and only if

MOL is a free M-module with a generator in OL. (Here as before M denotes the

unique maximal order in H.) In this case we have

M = OK⟨eiii|0 ≤ ik ≤ pk − 1 for 1 ≤ k ≤ r⟩ ∼= Om
K .

As noted in Section 4.5, MOL is certainly a locally free M-module and it is a free

M-module if and only if it has trivial class in the locally free class group Cl(M).

As before there are isomorphisms

Cl(M) ∼=
J(H)

H×U(M)
∼= Cl(K)m.

We use these to determine a criterion for MOL to be a free M-module and then

obtain a further criterion for it to have a generator in OL.

Proposition 6.5.1. The class of MOL in Cl(M) corresponds to the class of the

idèle (hp)p, where

hp =
∑
iii

eiii

π
rp(aia

iai)
p

for all p.

Proof. Let x = 1
m
(1+α1+ ...+α

p1−1
1 )...(1+αr+ ...+α

pr−1
r ) ∈ OL. Then x generates

L as a free H-module. For each prime p of OK let xp be the free generator of OL,p

as an AH,p-module found in Propositions 6.4.3 and 6.4.4. That is

xp =


1+αj+...+α

pj−1

j

m

∑
iii(0)

αααiii(0)

p
rp(aaai

ii(0)qqq)

j

if p|pjOK for some j

1
m

∑
iii

αiαiαi

π
rp(a

iaiai)
p

otherwise.
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Noting that vp(aj) = 0 for p|pjOK , we may rewrite this as

xp =
1

m

∑
iii

αiαiαi

π
rp(aiqaiqaiq)
p

for all p. Then xp is also a free generator of (MOL)p as an Mp-module. For each

p the element hp ∈ Hp is defined by hp · x = xp. We find

hp =
∑
iii

eiii

π
rp(aiqaiqaiq)
p

for all p. this gives the idèle (hp)p in the statement of the proposition.

Now we use the isomorphism

J(H)

H×U(M)
∼= Cl(K)m

to interpret the class of (hp)p as an m-tuple of classes of fractional ideals of K.

Proposition 6.5.2. The idèle (hp)p corresponding to the class of MOL in M

corresponds to the m-tuple of classes of ideals a−1
iii where

aiii =
∏
p

prp(a
iaiai).

Proof. Recall from Proposition 2.4.14 and Corollary 2.4.15 that to obtain the tuple

of ideal classes corresponding to an idèle (zp)p we write

zp =
∑
iii

ciii,peiii

with ciii,p ∈ Kp for all iii. Then the idèle (hp)p is mapped to the m-tuple of classes of

fractional ideals (ciii), where

ciii =
∏
p

pvp(ciii,p).

Applying this to the idèle (hp)p corresponding to the class of MOL in Cl(M)

(constructed in the previous proposition) we see that

ciii,p =
1

π
rp(aiqaiqaiq)
p

for all iii and p. Hence (hp)p corresponds to the m-tuple of ideal classes (a−1
iqiqiq ) where

aiqiqiq =
∏
p

prp(a
iqaiqaiq)
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for all iii. Finally, since qqq is fixed, all of these ideals are principal if and only if the

ideals

aiii =
∏
p

prp(a
iaiai)

are principal for all iii with 0 ≤ ik ≤ pk − 1 for 1 ≤ k ≤ r.

Corollary 6.5.3. The M-module MOL is free if and only if the ideals aiii are

principal for all iii.

Proposition 6.5.4. The M-module MOL has a free generator lying in OL if and

only if the ideals aiii are principal for all iii with generators aiii such that

1

m

∑
iii

αiαiαi

aiii
∈ OL.

Proof. By the previous proposition MOL is a free M-module if and only if each

ideal aiii is principal. Suppose that this is the case and write aiii = ciiiOK for some

ciii ∈ OK . Then a free generator for MOL as an M-module is

y =
1

m

∑
iii

αiαiαi

ciii
.

The set of free generators of MOL as an M-module is precisely the set {z · y|z ∈

M×}. Since M ∼= Om
K via orthogonal idempotents and eiii ·αjαjαj = δiii,jjjα

jαjαj we see that

an element y′ ∈ L is a free generator for MOL as an M-module if and only if it

has the form

y′ =
1

m

∑
iii

uiα
i

iα
i

iα
i

ciii

for some uiii ∈ O×
K . Therefore MOL has a free generator lying in OL if and only

if there exist elements uiii ∈ O×
K such that the corresponding element y′ lies in OL.

Writing aiii = u−1
iii ciii for each iii, this is equivalent to the existence of elements aiii as

in the statement of the proposition.

By combining the results of this section, we obtain a criterion for OL to be a

free AH-module:

Theorem 6.5.5. The ring of algebraic integers OL is a free AH-module if and only

if the ideals biii are principal for all iii with generators biii such that

1

m

∑
iii

αiαiαi

biii
∈ OL.
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Proof. This follows immediately from the previous proposition.

6.6 Obtaining conditions for freeness that are in-

dependent of the choice of generators

The conditions for freeness from the paper of Del Corso and Rossi are indepen-

dent of the choice of Kummer generators. Currently our conditions for freeness in

the non-normal case are dependent on our specific initial choice of radical genera-

tors. We can resolve this by rewriting the extension using a single radical generator.

It would be more natural to view the extension as L = K(δ) with the minimum

polynomial of δ being xm − d (where m is odd and square free). This would be

more like the Del Corso and Rossi “cyclic” paper [DCR10] where they study a

cyclic Kummer extension using a single Kummer generator. In order to rewrite the

extension using a single generator, we will first link α1, ..., αr to a specific δ, then

afterwards we will vary δ.

To link α1, ..., αr to a specific δ we first let si be the inverse of qi modulo pi.

Then we choose δ =
∏r

i=1 α
si
i .

Proposition 6.6.1. L = K(δ).

Proof. To prove this we will show thatK(α1, ..., αr) ⊆ K(δ) andK(δ) ⊆ K(α1, ..., αr).

It follows from the construction of δ that K(δ) ⊆ K(α1, ..., αr). For the reverse

inclusion we will take specific powers of δ to show that α1, ..., αr are in K(δ). We

have δqi = a
⌊ siqi

pi
⌋

i

∏
j ̸=i a

siqi
pi

j αi which shows that αi ∈ K(δ). Since this holds for all

i, we have shown that K(α1, ..., αr) ⊆ K(δ) which completes the proof.

Proposition 6.6.2. Let

Dk =
∏
p

p⌊
vp(d

k)

m
⌋

be the ideals associated to d. These ideals are principal if and only if the ideals biii

associated to b are principal.

Proof. Given 1 ≤ k ≤ m, write k =
∑r

j=1 qjij, then δ
k =

∏r
j=1 δ

qjij = c
∏r

j=1 α
ij
j

for some c ∈ OK . In particular we have d = δm =
∏r

j=1 a
sjqj
j . Similarly writing k =
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∑r
j=1 qjij again, we can take powers of d and write dk in the form dk = cm

∏r
j=1 a

qjij
j

for some c ∈ OK . Henceforth, we will use the bold notation and denote
∏r

j=1 a
qjij
j

by aqiaqiaqi. Now the ideals associated to d are Dk =
∏

p p
⌊ vp(d

k)

m
⌋. To connect these to

the ideals biii associated to a1, ..., ar, we examine the exponents. We have

⌊vp(d
k)

m
⌋ = ⌊vp(c

maqiaqiaqi)

m
⌋ = ⌊mvp(c) + vp(a

qiaqiaqi)

m
⌋ = vp(c) + ⌊vp(a

qiaqiaqi)

m
⌋,

so for 0 ≤ k ≤ m− 1 we have

Dk =
∏
p

p⌊vp(c)+
vp(a

qiaqiaqi)

m
⌋ =

∏
p

pvp(c)
∏
p

p⌊
vp(a

qiaqiaqi)

m
⌋ = ⟨c⟩biqiqiq.

Hence the ideals Dk are all principal if and only if the ideals biii are all principal.

Proposition 6.6.3. The ideals Dk are principal with generators dk satisfying

1

m

m−1∑
k=0

δk

dk
∈ OL

if and only if the ideals biii are principal for all iii with generators biii such that

y =
1

m

∑
iii

αiαiαi

biqiqiq
∈ OL.

Furthermore in this case the element y is a free generator of OL as an AH-module.

Proof. If biii = ⟨biii⟩ then Dk = ⟨cbiii⟩. (Recall that k is connected to i1, ..., ir

via k =
∑r

j=1 qjij.) Hence if the biii satisfy 1
m

∑
iii
αiαiαi

biii
∈ OL, then

1
m

∑m−1
k=0

δk

cbiii
=

1
m

∑m−1
k=0

cαiαiαi

cbiii
= 1

m

∑m−1
k=0

αiαiαi

biii
∈ OL and the converse also holds.

Del Corso and Rossi address the issue of varying the generator in Remark 1

of their “cyclic” paper [DCR10]. Their result will also turn out to be valid in our

case. Here we expand on Del Corso and Rossi’s remark and provde full detail in

the calculations. Suppose there exists δ ∈ OL such that L = K(δ) and δm ∈ OK

i.e. the minimum polynomial of δ over K is xm − d (where d = δm) and the ideals

assocated to d (given by Di =
∏

p p
⌊ vp(d

i)

m
⌋) are prinicipal with generators xi such

that 1
m

∑m−1
i=0

δi

xi
∈ OL. Now suppose that β is another integral radical generator

(i.e. b = βm ∈ OK and L = K(β)).

Proposition 6.6.4. The ideals associated to b are all principal.
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Proof. Following the remark from Del Corso and Rossi, we write δ = βlc with

gcd(l,m) = 1 and c ∈ K. Let t be the inverse of l modulo m. For each 0 ≤

j ≤ m − 1, write kj for the class of jt modulo m. Let yj = xkjc
−kjb−⌊

lkj
m

⌋. Then

we claim that for each j, yj generates bj. We first study bj. We have δ = βlc

which implies that d = blcm which implies that bl = c−md which implies that

blt = c−mtdt. Recalling that lt ≡ 1 (mod m) we can write lt = m⌊ lt
m
⌋ + 1. This

allows us to write the previous expression as bm⌊ lt
m
⌋+1 = c−mtdt which implies that

b = bm⌊ lt
m
⌋c−mtdt and hence bj = bmj⌊ lt

m
⌋c−mjtdjt. Now we write jt = m⌊ jt

m
⌋+kj and

use this expression to remove as many powers of m as we can from the previous

expression to obtain bj = bmj⌊ lt
m
⌋c−mjtdm⌊ jt

m
⌋dkj . Now we use d = blcm to replace

the first d in the previous expression to obtain

bj = bmj⌊ lt
m
⌋c−mjtblm⌊ jt

m
⌋cm

2⌊ jt
m
⌋dkj = bm(l⌊ jt

m
⌋−j⌊ lt

m
⌋)cm(m⌊ jt

m
⌋−jt)dkj .

Since jt = m⌊ jt
m
⌋ + kj the bracket in the exponent of c in the previous expression

is equal to −kj. Hence the previous expression becomes bm(l⌊ jt
m
⌋−j⌊ lt

m
⌋)c−mkjdkj .

To simplify the bracket in the exponent of the b term, we first note that lt ≡ 1

(mod m), so lt = um + 1, so jlt = jum + j, since 0 ≤ j ≤ m − 1, we get

⌊ jlt
m
⌋ = ju = j⌊ lt

m
⌋. Since lt ≡ 1 (mod m), this allows us to bring the j inside the

floor function without introduing “carries”. Hence we obtain bm(l⌊ jt
m
⌋−⌊ jlt

m
⌋)c−mkjdkj .

Now write jt = m⌊ jt
m
⌋ + kj, which implies that jlt = ml⌊ jt

m
⌋ + lkj, which imples

that ⌊ jlt
m
⌋ = l⌊ jt

m
⌋+⌊ lkj

m
⌋. Hence the bracket in the exponent of the b term becomes

−⌊ lkj
m
⌋ and we obtain b−m⌊

lkj
m

⌋c−mkjdkj . Hence taking valuations, we have

⌊vp(b
j)

m
⌋ = vp|(b−⌊

lkj
m

⌋c−kj) + ⌊vp(d
kj)

m
⌋,

hence ∏
p

p⌊
vp(b

j)

m
⌋ = ⟨b−⌊

lkj
m

⌋c−kjxkj⟩ = ⟨yj⟩.

Proposition 6.6.5. The generators of the ideals associated to b satisfy 1
m

∑m−1
j=0

βj

yj
∈

OL.
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Proof. Following Del Corso and Rossi, we prove this by showing that there is an

equality of sets: { δi

xi
} = {βj

yj
}. Fix j and consider βj

yj
. We have

βj

yj
=

b−j⌊ lt
m
⌋c−jtδjt

b−⌊
lkj
m

⌋c−kjxkj

.

Since jt = m⌊ jt
m
⌋+ kj we can rewrite the exponent of δ to obtain

b−j⌊ lt
m
⌋c−jtδm⌊ jt

m
⌋δkj

b−⌊
lkj
m

⌋c−kjxkj

.

Since δm = d = blcm we can rewrite the first δ in the previous expression to obtain

b−j⌊ lt
m ⌋c−jtbl⌊

jt
m ⌋cm⌊ jt

m ⌋δkj

b−⌊
lkj
m ⌋c−kjxkj

. Now we collect powers of b and c. We have bl⌊
jt
m
⌋+⌊

lkj
m

⌋−j⌊ lt
m
⌋.

Since lt ≡ 1 (mod m) we can move the j inside the floor function to obtain

bl⌊
jt
m
⌋+⌊

lkj
m

⌋−⌊ jlt
m

⌋. Earlier we showed that ⌊ jlt
m
⌋ = l⌊ jt

m
⌋ + ⌊ lkj

m
⌋, which implies that

the exponent of the b term is equal to zero. Also we have cm⌊ jt
m
⌋+kj−jt and since

jt = m⌊ jt
m
⌋ + kj, the exponent of the c term is also equal to zero. Hence βj

yj
= δkj

xkj

which implies that { δi

xi
} = {βj

yj
} which implies that 1

m

∑m−1
j=0

βj

yj
∈ OL which com-

pletes the proof.

Applying the argument used in the proof of Theorem 2.5.25 we obtain:

Theorem 6.6.6. Let m be an odd square free number, let K be a number field

such that each prime number dividing m is unramified in K, and let L be a tamely

ramified extension of K of degree m having the form L = K(δ) for some δ ∈ L such

that δm ∈ K. Let H be the Hopf algebra giving the unique almost classical Hopf-

Galois structure on L/K. The ring of algebraic integers OL is a free AH-module

if and only if there exists β ∈ OL such that

1. L = K(β)

2. b = βm ∈ OK

3. The ideals
∏

p p
rp(bk) associated to b are principal with generators ck such that

y =
1

m

m−1∑
k=0

βk

ck
∈ OL.

Furthermore in this case the element y is a free generator of OL as an AH-module.
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