
The work is accepted at the 24th IEEE International Conference on Software Quality, Reliability and Security (QRS), July 2024,

Cambridge, UK.

Evaluating the performance resilience of serverless applications using chaos

engineering

Ahmad Zayed1 and Amro Al-Said Ahmad2,*
1 Faculty of Information Technology, Philadelphia University, Amman, Jordan

2 School of Computer Science and Mathematics, Keele University, Staffordshire, United Kingdom

ahmadomar19984@gmail.com, a.m.al-said.ahmad@keele.ac.uk

*corresponding author

Abstract—This study explores the use of chaos engineering

in evaluating the performance and resilience of serverless

applications, which are built as complex distributed systems

subject to different types of failures and errors. By

intentionally injecting controlled failures and uncertainty into

the system, we evaluate the impact of random delay

injections on Lambda functions using two methods: one

during code execution and the other during runtime. Our

research aims to evaluate the performance and resilience of

Lambda functions under controlled chaos experiments and

study the impact of faults on serverless applications'

behaviour by comparing the results with the baseline data

regarding performance metrics.

Keywords- Resilience; Performance; Delay injection;

Serverless Functions; Chaos Engineering.

1. INTRODUCTION

Cloud computing has rapidly grown, enabling companies to

build modern distributed systems with high performance and

scalability. Cloud-native Serverless architecture allows

developers to deploy applications without managing servers,

reducing costs, and increasing performance and reliability.

The increasing use of complex systems and cloud solutions,

such as serverless solutions, requires thoroughly examining

their dependability and resilience. Cloud services are prone

to failures that can affect other resources, making integrating

dependability and resilience in the development process

crucial. Fault injection, a part of software testing, is used to

assess the dependability of software systems and is frequently

utilized to evaluate cloud system reliability. Several major

technology companies have adopted Chaos Engineering,

which is a method that intentionally introduces controlled

failures into a system to test its resilience [1]. This approach

is crucial for evaluating the performance of serverless

applications built on cloud infrastructure, as they can be

vulnerable to various types of failures and errors. By testing

applications under different fault scenarios, developers can

identify and fix potential vulnerabilities, enhance fault

tolerance, and ensure correct functionality under unexpected

events. Chaos testing provides insight into application

behaviour under real-world fault scenarios, supporting

performance and fault tolerance. Our research investigates

how controlled failures impact the performance resilience of

serverless systems. We measure performance metrics and

compare the results of applications with and without chaos

engineering. The evaluation shows that chaos engineering

affected performance, resulting in decreased quality of cloud

services, such as average response time.

2. METHODOLOGY AND EXPERIMENTAL SETTING

Chaos engineering is a technique used to test the resiliency of

systems by intentionally introducing controlled failures or

disruptions, such as delays, to see how the system responds

and identify any potential issues. The two techniques used in

this paper are:

Code Level Chaos Engineering:

The introduction of a delay in Lambda functions is a form of

chaos engineering during code execution [2]. This type of

injection can have positive and negative effects on

performance resilience. On the one hand, it helps identify

potential issues or bottlenecks. Still, on the other hand, it can

lead to performance issues by slowing down the overall

execution time of the application. The delay code will be

added to the application's codebase and deployed to

production to run every time the function is invoked. The

environment variable used in AWS to introduce a delay (in

milliseconds) into Lambda functions, as shown in Figure 1.

Figure 1. Delay Environment Variable

Chaos Engineering at the application level (runtime):

The fault injection methodology involves injecting slower

connections into the system under test [3]. We use Charles

version 4.6.5 to simulate slower connection latency in

milliseconds (ms). This helps analyse how applications

respond to slower dependencies, potentially causing request

accumulation and service interruptions. We set random delay

latencies in ms using Charles (www.charlesproxy.com/) for

each request, which is 300 ms in this paper.

Experiments Design and Testing Process:
We tested two serverless functions with and without chaos
engineering using JMeter, with four different numbers of
users: 150, 300, 600, and 1200. Our metrics included response
time, latency, throughput, and lambda duration (min, average
and max). We injected 300 ms delays using two techniques

mailto:ahmadomar19984@gmail.com
mailto:a.m.al-said.ahmad@keele.ac.uk

The work is accepted at the 24th IEEE International Conference on Software Quality, Reliability and Security (QRS), July 2024,

Cambridge, UK.

and compared the impact on performance and resilience with
over 240 experiments conducted.

We used LeaveWebApp 1 , an Open-source Serverless

application hosted on AWS to demonstrate our methodology.

The application is built on native AWS services with

decoupled architecture design principles and was published on

GitHub by a Solutions Architect at AWS, with two serverless

functions: Add Leave Request (POST) and Get Leave Request

(GET). The application was hosted using AWS-native

services on Elastic Container with 8vCPU, 24GB, and

DynamoDBv2. The API Gateway Throttling was 10000

requests per second with a burst of 5000 requests.

3. EXPERIMENTAL RESULTS AND ANALYSIS

The paper compares the performance of serverless functions
in a normal state and with chaos injection. Our results show
that the performance of the POST and GET functions has
dropped in terms of response times, throughput, and latency
values in both fault injection experiments. Further, we note
similar behaviour regarding Lambda functions’ duration
times. Our experiments show that the overall Throughput
dropped between 15% and 17% compared to the baseline,
overall response times and latency dropped by 66%, and the
Lambda functions' execution times increased between 3% and
14%. Figure 2 shows the behaviour of both functions to the
injected faults in terms of function execution times. Although
we can see similar behaviour in the Add Leave function,
values were still different, especially regarding the average
and maximum Lambda durations. This demonstrated that the
same function acted differently in response to the injected
faults despite the same value.
The Get Leave function (GET) behaved differently for both
types of injections. Figure 2b shows that in some cases, the
Lambda durations recorded higher values for the slow
connections’ experiments, although the same 300ms
injections were used in both functions. In the experiments with
slow connection injection for the Add Leave function, the

response time and latency values were higher than the chaos
injection within the function itself (i.e., 300 ms injection at
code level). Figure 2 also highlights an important aspect of
application behaviour, which can be influenced by the type of
fault or chaos that was injected within the system. This
observation is particularly interesting because it reveals that
different types of HTTP APIs or Serverless functions can react
differently to the same fault even when subjected to identical
experimental settings. This underscores the importance of
considering the unique characteristics of each application
when assessing the potential impact of faults and chaos on its
behaviour. By doing so, developers and operators can better
anticipate and address issues that may arise, leading to a more
stable and reliable system overall.

4. CONCLUSIONS

The study findings indicate that the impact of the code-level
injection technique and the slow connection injection with
300 ms random delay on both functions is similar in terms of
response time, latency, and throughput. However, the 300 ms
injection within the functions (code level) had a greater impact
on the duration of the Lambda than the effect of a slow
connection. This highlights how different faults can affect the
application's performance and resilience in various ways. The
results of our study provide insights into the performance
resilience of applications and the effectiveness of chaos
engineering in evaluating serverless solutions.

REFERENCES

[1] A. Basiri et al., “Chaos Engineering,” IEEE Softw., vol. 33, no. 3, pp.
35–41, 2016, doi: 10.1109/MS.2016.60.

[2] A. Al-Said Ahmad, L. F. Al-Qora’n, and A. Zayed, “Exploring the

impact of chaos engineering with various user loads on cloud native
applications: an exploratory empirical study,” Computing, pp. 1–37,
2024, doi: 10.1007/s00607-024-01292-z.

[3] A. Al-Said Ahmad and P. Andras, “Scalability resilience framework

using application-level fault injection for cloud-based software

services,” J. Cloud Comput., vol. 11, no. 1, pp. 1–13, 2022, doi:
10.1186/s13677-021-00277-z.

Figure 2. Comparisons between faults impact on Lambda functions: a) Add Leave Request and b) Get Leave Request

1 https://github.com/aws-samples/aws-serverless-workshop-decoupled-architecture

https://github.com/aws-samples/aws-serverless-workshop-decoupled-architecture

