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Abstract

The Winkler foundation model is often used to analyze the wrinkling of a film/substrate bi-

layer under compression, and it can be rigorously justified when both the film and substrate

are homogeneous and the film is much stiffer than the substrate. We assess the validity

of this model when the substrate is still homogeneous but the film has periodic material

properties in the direction parallel to the interface. More precisely, we assume that each

unit cell is piecewise homogeneous, and each piece can be described by the Euler-Bernoulli

beam theory. We provide analytical results for the critical compression when the substrate

is viewed as a Winkler foundation with stiffness modeled either approximately (as in some

previous studies) or exactly (using the Floquet theory). The analytical results are then

compared with those from Abaqus simulations based on the three-dimensional nonlinear

elasticity theory in order to assess the validity of the Euler-Bernoulli beam theory and the

Winkler foundation model in the current context.

Keywords: Thin-film/substrate bilayer, periodic structure, surface wrinkling,

bifurcation, nonlinear elasticity.

1. Introduction

Motivated by the fact that many physical properties of a material such as adhesion,

friction, and wetting are closely related to its surface structure at the micro- and nano-

scales, there has been a surge of interest in using buckling-induced patterns to mimic

naturally occurring surface structures [1]. These patterns can be used in a wide range

of applications such as functional coatings, optical diffraction, flexible electronic devices,

tunable adhesion, photonic structures, wetting, microfluidics, microlens arrays, and cell

patterning [2, 3, 4]. Such applications have in turn driven the intensive studies on the

buckling and post-buckling behavior of a film/substrate bilayer over the past few decades.

Research so far has predominantly focused on film/substrate bilayers in which both

the film and substrate are homogeneous. Recognizing the fact that only a limited variety

of relatively simple patterns can be created by buckling on such a structure, more recent

research efforts have begun to search for novel patterns through the use of periodic struc-

tures. The first such study seems to be the one by Wang et al. [5] who considered the
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surface wrinkling of a film-substrate system with periodic interfacial structures. By allow-

ing the film thickness to change periodically, they found, through both theoretical analysis

and numerical simulations, that three typical buckling modes for the film can be created

by varying the length of the thick and thin films. Subsequently, Wang et al. [6], Ouchi et

al. [7], Li et al. [8], Xue et al. [9] and Zheng et al. [10] considered film-substrate systems

where the film has periodic material properties, whereas Wang et al. [11] and Huang et al.

[12] considered the case when the substrate has periodic geometrical or material properties.

Most of the studies cited above have focused on experimental investigations and nu-

merical simulations. The authors of [5, 6, 9, 10] have also conducted analyses based on

the Euler-Bernoulli beam theory and the Winkler foundation assumption, but they had to

rely on numerical simulations to determine the stiffness of the foundation. Our first aim

is to solve the same problem analytically without having to depend on numerical simula-

tions to determine the stiffness of the Winkler foundation. When the film and substrate

are both homogeneous and the former is much stiffer than the latter, the Euler-Bernoulli

beam theory and Winkler foundation model can be asymptotically justified and extend-

ed to the next order [13]. The approximation transformed the governing equations from

partial differential equations into an ordinary differential equation, which simplified the

problem significantly. Therefore, this approximation has been frequently used/studied in

both static and dynamic problems [14, 15, 16, 17, 18, 19]. However, its extension to the

case when the film has periodic geometrical or material properties remains to be assessed

and justified. Our second aim is to provide such an assessment.

Our aims are achieved through the use of the Floquet theory according to which the

displacement field in a periodic structure is given by an exponential factor times a periodic

function that has the same period as the material properties. We expand both the elastic

moduli and displacement field as Fourier series and then truncate the infinite system of

homogeneous linear equations in order to obtain the bifurcation condition. This approach

is known as plane wave expansion (PWE) method [20]. PWE method is quite successful

in studying wave propagations in periodic structures in order to determine band gaps

[21, 22, 23, 24, 25, 27, 28]. Its use in static buckling analysis seems to be less common

although the Floquet theory has been used in many previous studies involving the buckling

of periodic structures. In the special case when the direction of material periodicity is

perpendicular to the direction in which the solution is periodic, a normal mode approach

is still possible; see [29, 30, 31, 32, 33, 34, 35] and the references therein. In the general

case, researchers usually resorted to solving the unit cell problem numerically; see, e.g.,

[36, 37, 38].

The rest of this paper is divided into four sections as follows. After formulating the

problem in the next section, we solve the problem in Section 3 by approximating the

response of the Winkler foundation as if only a monochromatic mode were involved. This

approximation enables us to derive an explicit asymptotic expression for the critical stretch

and the associated wavenumber. In Section 4, we model the Winkler foundation exactly

and use the PWE method to derive the bifurcation condition. The results in both Sections

3 and 4 are compared with those obtained from Abaqus simulations. The final section

provides a summary and some additional remarks.
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2. Problem formulation

We consider the structure of a homogeneous half-space coated by a stiffer layer with

periodic material properties; see Fig.1. Following common practice, we refer to this struc-

ture also as a film/substrate bilayer, and use the terms “film” and “layer” interchangeably.

Within each unit cell, the layer consists of two homogeneous segments, signified by orange

and grey colors and with shear modulus denoted by µf1 and µf2, respectively. We use h

to denote the common thickness of the two coating layers, µs the shear modulus of the

substrate, and P the external force applied in the x-direction. All the three materials

involved are assumed to be hyperelastic and incompressible.

𝑥

𝑧

𝜇௙ଵ, ℎ 𝜇௙ଶ, ℎ 𝑃 𝑃
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Figure 1: An elastic half-space coated by a periodic hard layer.

In the special case when µf1 and µf2 are equal, to µf say, so that the coating layer

becomes homogeneous, much is known about its buckling and post-buckling properties.

For instance, it was shown in [39] that when the modulus ratio r = µs/µf is small, the

bifurcation value of stretch has the following asymptotic expansion:

λ = 1− r

2kh
− 1

12
(kh)2 +

13

480
(kh)4 +

3r2

8(kh)2
+O((kh)6), (2.1)

where k is the wavenumber of the buckling mode in the x-direction and h is the deformed

layer thickness when bifurcation takes place. It can be seen that when r is of order (kh)3,

the second and third terms in (2.1) have the same order, and the fourth and fifth terms

in (2.1) have the same order. This regime of stiffness ratio is clearly of most importance,

and is in fact the regime in which the behaviour of the coating layer can be modelled by

the Euler-Bernoulli beam theory [40].

When the behaviour of the coating layer is modelled by the Euler-Bernoulli beam

theory and the reaction of the half-space modelled by an array of springs with stiffness

γ (the so-called Winkler foundation model), the transverse deflection w(x) of the coating

layer satisfies the fourth-order differential equation

EI

1− ν2
w′′′′(x) +

Eh

1− ν2
(1− λ)w′′(x) = −γw(x), (2.2)

where E, I and ν denote the Young’s modulus, moment of inertia, and Poisson’s ratio for

the layer, respectively. It can be verified that when we substitute w = exp (ikx) into (2.2),

the resulting bifurcation condition agrees with (2.1) to order (kh)2 provided γ = 2kµs,
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E = 3µf , and ν = 1/2. The last two relations are due to incompressibility, whereas the

first relation was first noted by Biot [41] and can also be derived by an asymptotic analysis

[40].

In our future work, we will ultimately investigate the buckling properties of the struc-

ture in Fig.1 using the exact theory of nonlinear elasticity (i.e. without using the Euler-

Bernoulli beam theory or the Winkler foundation model). However, as a first step towards

this goal and guided by the above results for the special case when the coating layer is

homogeneous, we shall, in the current paper, consider the case when both µf1 and µf2 are

much larger than µs, and model the bilayer as an Euler-Bernoulli beam supported by a

Winkler foundation as shown in Fig.2. The length of each unit cell is denoted by T and

the volume fraction of material 2 by δ. Strictly speaking, the expression γ = 2kµs for the

stiffness of the foundation is only valid when the buckling mode consists of a single sinu-

soidal function with period 2π/k. When the film is piecewise homogeneous, the buckling

mode can no longer be monochromatic and the equation (2.2) should be replaced by ([13],

eqn (80))
1

3
µfh

3w′′′′(x) + Phw′′(x) = 2µsH[w′(x)], (2.3)

where µf = µf1 or µf2, and H denotes the Hilbert transform defined by

H[g(x)] =
1

π
p.v.

∫ +∞

−∞

g(y)

y − x
dy. (2.4)

In the special case when w = exp (ikx), we have H[w′(x)] = −kw(x). To ease explanation,

we shall refer to our analysis based on (2.3) without further approximations as the exact

theory and when the single-mode approximation H[w′(x)] = −kw(x) is adopted, the cor-

responding analysis is referred to as the approximate theory. Our numerical simulations

are based on the exact theory of nonlinear elasticity with each material modeled by the

neo-Hookean strain energy function, and the associated results are referred to as simulation

results.

𝛿 · 𝑇𝑇 െ 𝛿 · 𝑇
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Figure 2: The reduced model of an Euler-Bernoulli beam supported by a Winkler founda-
tion.

3. Approximate theory

The single-mode assumption 2µsH[w′(x)] = −γw(x) was employed in the three previous

studies [5, 6, 9] with the stiffness γ determined from numerical simulations. Although

we shall evaluate H[w′(x)] exactly later on, we still include an analysis based on this

assumption based on two grounds. Firstly, this assumption is expected to be valid at least

when the wavelength of the buckling mode is much larger than the cell period T . Secondly,

4



this assumption will enable us to derive an explicit expression for the buckling stretch from

which we may assess, at least qualitatively, how the relative size of T will affect the critical

stretch.

We define two dimensionless parameters α = µf2/µf1 and ε = µs/µf1, and use h as the

length unit so that we may set h = 1 in the subsequent analysis. The governing equation

(2.3) then yields
1

12

d4w1

dx4
+ (1− λ1)

d2w1

dx2
+

1

2
kεw1 = 0, − T1 ≤ x ≤ 0,

α

12

d4w2

dx4
+ (1− λ1)

d2w2

dx2
+

1

2
kεw2 = 0, 0 ≤ x ≤ T2,

(3.5)

where T1 = (1−δ)T , T2 = δT , and w1(x) and w2(x) are the film deflections in the respective

intervals. Note that if the stretches in the two films are λ1 and λ2, respectively, and the

overall stretch is λ∗, we have

P = 4µf1(1− λ1) = 4µf2(1− λ2), λ∗ = λ1(1− δ) + λ2δ, (3.6)

and hence

1− λ∗ =
P

4µf1

(
1− δ +

δ

α

)
= (1− λ1)

(
1− δ +

δ

α

)
. (3.7)

Either λ∗ or P can be taken as the bifurcation parameter.

3.1. Bifurcation condition

The general solutions of (3.5) are given by{
w1 = a1e

q1x + a2e
−q1x + a3e

q2x + a4e
−q2x, −T1 < x < 0,

w2 = b1e
p1x + b2e

−p1x + b3e
p2x + b4e

−p2x, 0 < x < T2,
(3.8)

where ai and bi (i = 1, 2, 3, 4) are disposable constants, and {±q1,±q2} and {±p1,±p2}
are the four roots of

1

12
q4 − (1− λ1)q2 +

1

2
kε = 0 and

α

12
p4 − (1− λ1)p2 +

1

2
kε = 0,

respectively. These roots can be real or complex. If q1 is complex, for instance, then

q2 = q∗1 where the superscript “*”signifies complex conjugation. As a result, we choose

a3 = a∗1 and a4 = a∗2 to ensure the reality of w1.

We denote by θ(x),M(x), Fs(x) the (scaled) bending angle, bending moment, and shear

force, respectively. They are given by

θ(x) = w′1(x), M(x) =
1

12
w′′1(x), Fs(x) =

1

12
w′′′1 (x)

for −T1 ≤ x ≤ 0, and

θ(x) = w′1(x), M(x) =
α

12
w′′2(x), Fs(x) =

α

12
w′′′2 (x)

for 0 ≤ x ≤ T2. Defining

a = (a1, a2, a3, a4)T , b = (b1, b2, b3, b4)T , u = {w(x), θ(x),M(x), Fs(x)}T ,
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we obtain from (3.8)

u|x=0− = G1a, u|x=0+ = G2b, u|x=−T+
1

= G3a, u|x=T−2
= G4b, (3.9)

where G1, G2, G3, G4 are 4×4 matrices whose components are not written out here for the

sake of brevity, and the “±”superscripts on 0, −T1 and T2 are used to mean that the value

should be approached from the right side (+) or left side (−), respectively.

From the continuity condition u|x=0− = u|x=0+ , we obtain b = G−1
2 G1a. On substi-

tuting this relation into (3.9)4 and then eliminating a with the aid of (3.9)3, we obtain

u|x=T−2
= Gu|x=−T+

1
, (3.10)

with G = G4G
−1
2 G1G

−1
3 . The 4 × 4 matrix G serves to propagate the displacement and

force information at x = −T+
1 to x = T−2 and is commonly referred to as the propagator

matrix or transfer matrix.

Continuity of u at x = T2 implies that u|x=T−2
= u|x=T+

2
. The right hand side is

unknown since it is outside the unit cell. However, according to the Floquet theory, we

may assume that it is related to u|x=−T+
1

through the quasi-periodicity condition

u|x=T+
2

= eikTu|x=−T+
1
, (3.11)

where k is the wavenumber. It then follows that u|x=T−2
= eikTu|x=−T+

1
. On combining

this relation with (3.10), we obtain

(eikT I −G)u|x=−T+
1

= 0, (3.12)

where I is the 4×4 identity matrix. Thus, the bifurcation condition is given by det (eikT I−
G) = 0, that is

e4ikT − I1e
3ikT + I2e

2ikT − I3e
ikT + I4 = 0, (3.13)

where I1, I2, I3 and I4 are the principal invariants of G defined by

I1 = trG, I2 =
1

2
(I2

1 − trG2), I3 = (trG−1)detG, I4 = detG. (3.14)

It can be verified that G has the properties that detG = 1 and trG = trG−1. It then

follows that I3 = I1 and as a result, the left hand side of (3.13) can be factorised as

e2ikT (2 cos(2kT ) − 2I1 cos(kT ) + I2). Thus, the complex equation (3.13) may be reduced

to the single real equation

F (k, λ1, T, ε, α, δ) ≡ 2 cos(2kT )− 2I1 cos(kT ) + I2 = 0, (3.15)

where the first equation defines the function F .
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Figure 3: Solution of the eigenvalue system (3.12) for T = 5, δ = 0.5, α = 2, ε = 0.01.
(a) λ1 against k; (b) The first buckling mode with wavelength much larger than the cell
period T .

By solving the above bifurcation equation in the irreducible Brillouin zone (k ∈ (0, π/T )),

we can determine the relationship between λ1 and k when the other parameters are speci-

fied. For instance, when T = 5, δ = 0.5, α = 2, and ε = 0.01, the dependence of λ1 on k is

shown in Fig.3a. Of most interest is the maximum of λ1 that defines the critical stretch.

The associated buckling mode is shown in Fig.3b. The orange and grey parts correspond

to the two different materials. For this moderate T , it is seen that the wavelength of the

buckling mode is about 4.5T .

3.2. Asymptotic results

We denote the maximum of λ1 and the associated value of k by λ1cr and kcr, respectively.

They are solutions of the two simultaneous equations

F (k, λ1, T, ε, α, δ) = 0,
∂

∂k
F (k, λ1, T, ε, α, δ) = 0. (3.16)

Guided by results for the case when the coating is homogeneous, for small ε we may look

for an asymptotic solution for kcr and λ1cr in terms of ε. However, it turns out that it is

more convenient to first look for an asymptotic solution for ε in terms of k, and then invert

the relation to find k in terms of ε. Thus, we first obtain

ε =
α

3(α+ δ − αδ)
k3 − (α− 1)2α(δ − 1)2δ2T 2

12(α+ δ − αδ)3
k5 +O(k7), (3.17)

λ1 = 1− α

4(α+ δ − αδ)
k2 +

(α− 1)2α(δ − 1)2δ2T 2

16(α+ δ − αδ)3
k4 +O(k6). (3.18)

On inverting (3.17) and substituting the result into (3.18), we finally obtain

kcr = (1− δ +
δ

α
)1/3(3ε)1/3 +

T 2(α− 1)2(1− δ)2δ2ε

4α(α+ δ − δα)
+O(ε5/3),

1− λ1cr =
(1− δ + δ

α)−1/3

4
(3ε)2/3 − 31/3T 2(α− 1)2(1− δ)2δ2ε4/3

16α1/3(α+ δ − δα)5/3
+O(ε2).

(3.19)

It is seen that the effect of δ and α on the wavenumber kcr and strain 1 − λ1cr appears

at leading order, whereas the effect of T appears at the next order. Although only the
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first terms in kcr and 1 − λ1cr are asymptotically self-consistent, the next terms can at

least give us some indication on how the period T might appear in the correction terms.

Thus, we anticipate that the above asymptotic results will fail when either α becomes as

small as of O(ε) or T becomes as large as of O(ε−1/3). In either parameter regime, the

second term becomes as large as the leading term in either expression and the asymptotic

expression becomes disordered. Note that ε−1/3 can be quite moderate when ε is small: it

is approximately equal to 5 and 10 when ε is equal to 0.01 and 0.001, respectively. This

fact will be manifested when the above asymptotic expressions are compared with their

counterparts from numerical simulations or the exact theory.

In the special case when the coating is homogeneous, corresponding to α = 1 or δ = 0,

the above expressions give the leading-order results [42]

kcr = (3ε)1/3, 1− λ1cr =
1

4
(3ε)2/3, (3.20)

where ε = µs/µf , µf being the shear modulus of the homogeneous layer.

3.3. Numerical simulations

The software Abaqus is used to simulate the buckling of the film-substrate bilayer shown

in Fig.1. The thickness of the substrate is chosen to be large enough such that the results

obtained become insensitive to its further increases. All the three materials are assumed

to be neo-Hookean with the (ground-state) shear moduli taken to be the same as in our

analysis.

0.038 0.039 0.040 0.041 0.042
k

0.05

0.10

0.15

0.20

0.25

0.30
ω

λ* = 0.98057

λ* = 0.980569

⬇
Critical value

Figure 4: The frequency ω against k when T = 20, α = 2 and ε = 0.01, showing that the
the minimum of ω becomes zero when λ∗ is reduced to λ∗ = λ∗cr = 0.980569.

We use the same simulation strategy as that used by Liu et al. [43] with only minor

adaptations. The simulations are carried out on a unit cell consisting of one period of the

film and the associated substrate. For each fixed choice of T , ε, α and δ, the corresponding

critical values of k and λ∗ are determined using an iteration procedure as follows. We

first compress the unit cell with a specified overall stretch λ∗. In determining the primary

deformation, we impose the conditions that uR − uL = (1− λ∗)T and vR − vL = 0, where

u and v denote the horizontal and vertical displacements and the subscripts R and T

signify evaluations at the right and left boundaries of the unit cell, respectively. Once

the primary deformation is computed, we consider small amplitude incremental vibrations

of the resulting finitely deformed configuration. In this calculation, we impose the quasi-

periodicity condition (uR, vR) = eikT (uL, vL) with k denoting the wavenumber. We employ
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the“Frequency”module to compute the first branch of the dispersion relation, and hence

obtain the minimum frequency in the irreducible Brillouin zone k ∈ [0, π/T ]. Since Abaqus

cannot perform complex number operations, two identical “Instances”are established to

represent the real and imaginary parts separately. Once the two-step calculation above

is set up, we iterate by varying the values of λ∗ until the minimum frequency becomes

zero. When this occurs, the vibration mode degenerates into a static buckling mode and

the associated values of λ∗ and k are the critical stretch λ∗cr and critical wavenumber kcr.

Fig.4 shows a typical calculation where the red arrow indicates the largest λ∗ at which the

frequency ω becomes zero.

(a) (b)

Figure 5: Distribution of the logarithmic strain field in the horizontal direction as the
bifurcation point is approached when T = 20 and α = 2. (a) ε = 0.01 and λ∗ = 0.981; (b)
ε = 0.1 and λ∗ = 0.914.

In deriving the bifurcation condition (3.15), we have assumed that the primary de-

formation is piecewise homogeneous, with the horizontal stretches in the three materials

given by λ1, λ2 and λ∗, respectively. We expect that this is only valid when the modulus

ratio ε is sufficiently small so that the critical strain 1 − λ∗cr is small. This is confirmed

in Fig.5 where the distribution of strain when λ∗ = λ∗cr is shown for two typical values

of ε. Corresponding to the smaller value of ε = 0.01, the distribution of strain is indeed

almost piecewise homogeneous except in the boundary layers at the three interfaces. When

ε becomes as large as 0.1, Fig.5(b) shows that the primary deformation can no longer be

viewed as being homogeneous when buckling takes place.

9



Approximate theory

Asymptotic
Simulation

5 10 15 20
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0.2

0.3

kcr

(a)

Approximate theory

Asymptotic Simulation

5 10 15 20
T

0.96

0.97
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0.99

1.00

λ*cr

(b)

Approximate theory

Asymptotic
Simulation

10 20 30 40
T
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0.15

kcr

(c)

Approximate theory

Asymptotic Simulation

10 20 30
T

0.985

0.990

0.995

1.000

1.005

λ*cr

(d)

Figure 6: Dependence of kcr and λ∗cr on T for ε = 0.01 or 0.001 and δ = 0.5, α = 2,
predicted by the approximate theory (solid lines), asymptotic results (dashed lines), and
Abaqus simulations (dots). (a) kcr against T when ε = 0.01; (b) λ∗cr against T when
ε = 0.01; (c) kcr against T when ε = 0.001; (d) λ∗cr against T when ε = 0.001.

The dependence of the critical values on T is shown in Fig.6. In the case of δ = 0.5, α =

2, and ε = 0.01 or 0.001, the analytical solutions and asymptotic solutions are represented

by the black curves and the red dashed lines respectively. The blue points represent the

simulation results. It is seen that kcr first increases slowly with respect to T , and then

decreases gradually to zero. The analytical solutions and simulation results agree well

when T is O(1). However, when T becomes large, the two sets of results begin to diverge

for both ε = 0.01 and ε = 0.001.
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Approximate theory

Simulation
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Approximate theory

Simulation
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(b)

Simulation
Approximate theory
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Simulation
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Figure 7: Dependence of kcr and λ∗cr on α for ε = 0.01 or 0.001, predicted by the approxi-
mate theory (solid lines) and Abaqus simulations (dots). (a) kcr against α when ε = 0.01;
(b) λ∗cr against α when ε = 0.01; (c) kcr against ε when α = 2; (d) λ∗cr against ε when
α = 2.

The overall critical stretch λ∗cr is related to λ1cr by (3.6)2. Our simulation results show

that λ∗cr does not vary significantly with respect to T , but the approximate theory predicts

that λ∗cr tend to 1 as T increases. This discrepancy can be explained as follows. When

the cell period T become much larger than the wavelength, the beams will each buckle at

their intrinsic wavelengths, and so the foundation will provide different stiffnesses for the

two beams, which contradicts our previous assumption. At the same time, the asymptotic

and approximate solutions are in good agreement when T is O(1) and they diverge when

T becomes larger. This is consistent with our earlier observation that the asymptotic

expansions become invalid when T becomes as large as of O(ε−1/3).
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Figure 8: Comparison of asymptotic results (solid lines) with those given by the approx-
imate theory (dots) when T = 1 and δ = 0.5. (a) kcr against ε; (b) λ∗cr against ε; (c) kcr

against α; (d) λ∗cr against α.
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Figure 9: Comparison of asymptotic results (solid lines) with those given by the approx-
imate theory (dots) for three representative values of ε when T = 1 and δ = 2. (a) kcr

against δ; (b) λ∗cr against δ.

The rest of our discussions in this section are thus focused on the case when T = O(1).

The dependence of the critical values on α and ε is shown in Fig.7. In the case of δ = 0.5,

T = 1, and ε = 0.01, the black curve and blue points represent the analytical solutions

based on (3.15) and simulation results, respectively. It can be seen that the analytical

solutions and simulation results begin to diverge when α becomes much smaller than 1

or ε much greater than 0.01. Both cases correspond to the fact that the modulus of one

film is comparable with the substrate. Therefore, not surprisingly, the results indicate that
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the Euler-Bernoulli beam theory is only valid when both segments of the periodic film are

much stiffer than the substrate.

Next, for the case T = 1, Figs 8 and 9 show that kcr is an increasing function of ε and

a decreasing function of α and δ, whereas λ∗cr has the opposite monotonic behavior. As

expected, there is good agreement between the asymptotic results and the results given by

the approximate theory.

In the case when T is O(1) and ε� 1, the wavelength of the buckling solution is much

larger than the cell period T and the periodic beam can be viewed a homogeneous beam

with effective material properties. The leading order term of the asymptotic expression for

kcr, given by Eq.(3.19), can be expressed in terms of an effective homogeneous film as

kcr = (1− δ +
δ

α
)1/3(3ε)1/3 = (3µs/µ

eff
f )1/3, (3.21)

where the effective shear modulus of the film µeff
f is given by

µeff
f =

µf1µf2

δµf1 + (1− δ)µf2
. (3.22)

The corresponding strain 1− λ∗cr, according to (3.20)2, should then be given by

1− λ∗cr =
1

4

(
3µs/µ

eff
f

)2/3
. (3.23)

This is indeed consistent with (3.19)2 if λ1cr is expressed in terms of λ∗cr with the use of

(3.7).

4. PWE analysis

The direct method used in the previous section only works if the material in each unit

cell of the film is piecewise homogeneous and the Hilbert transform H[w′(x)] characterising

the response of the substrate is approximated by −kw(x). In contrast, the PWE method

is applicable in the most general case.

4.1. Approximate theory based on the assumption H[w′(x)] = −kw(x)

We first apply the PWE method to solve (3.5) in order to examine its effectiveness in

solving buckling problems. We define µf(x) to be the shear modulus of the film defined over

the entire real line so that the two equations in (3.5) can be written as a single equation:

1

12

d2

dx2

(
α(x)

d2w

dx2

)
+

P

4µf1

d2w

dx2
+

1

2
kεw = 0, (4.24)

where α(x) is defined by α(x) = µf(x)/µf1 . Since α(x) is a periodic function with period

T , it has a Fourier series given by

α(x) =

∞∑
n=−∞

Bne
iGnx, Bn =

1

T

∫ T/2

−T/2
α(x)e−iGnxdx, (4.25)

where Gn = 2nπ/T with n an integer.
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Figure 10: Profiles of α(x) and its 3-modes and 7-modes Fourier approximations.
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Figure 11: (a) P/µf1 against k; (b) Deflection corresponding to the critical mode.

According to the Floquet theory, the deflection w admits a solution given by eikx times

a periodic function with period T . Thus, it can also be written in terms of a Fourier series:

w(x) = eikx
∑
Gn

Ane
iGnx, (4.26)

where An are the coefficients to be determined.

On substituting (4.26) and (4.25) into (4.24) and equating the coefficient of ei(Gn+k)x

to zero for each Gn, we obtain

∞∑
n′=−∞

(
1

12
(Gn + k)2(Gn′ + k)2Bn−n′An′

)
− P

4µf1
(Gn + k)2An +

1

2
kεAn = 0,

(n = 0,±1,±2, ...). (4.27)

This is an infinite system of homogeneous linear equations. We may truncate it to obtain

a finite system of linear equations. The determinant of the coefficient matrix must be

zero for a non-trivial solution, which gives the bifurcation condition, i.e. P as a function

of k. Note that we may always choose the interval of integration in (4.25)2 to coincide

with a symmetric unit cell, that is a unit cell where α(x) is an even function of x. As a

result, Bn (n = 0,±1, ...) are all real and so the above coefficient matrix is also real and

symmetric. Instead of calculating the determinant of this matrix, we may monitor when
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the smallest eigenvalue of this matrix reaches zero. It is found that the computation time is

significantly reduced if the latter approach is used, especially when the truncation number

is large. Typically, for each k, the computation time to determine the associated P can

decrease from several tens of minutes when the determinant is used to just a few seconds

when the smallest eigenvalue is used.

We choose 3 (n = 0,±1) and 7 modes (n = 0,±1,±2,±3) of the Fourier series re-

spectively and compare the results with those given by (3.15) for the set of parameters

ε = 0.01, α = 2, T = 1, δ = 0.5. The approximation of α(x) is shown in Fig.10, and

the bifurcation condition is displayed in Fig.11(a). It can be seen that even though the

truncation number is not large and the variation of α(x) is approximated poorly, the bifur-

cation condition is recovered extremely well. The reason is that the critical wavenumber

is relatively small, which means the wavelength is much longer than a unit cell and can-

not distinguish details of the beam. The large truncation error in the material field only

produces a small error in the final result. Fig.11(b) shows that the displacement is also

approximated extremely well by including only 7 modes in the calculation.
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Fourier series-11
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Figure 12: P/µf1 against k for the case ε = 0.01, α = 2, and δ = 0.5. (a) when T = 1; (b)
when T = 10.

4.2. Exact theory

Having confirmed the effectiveness of the PWE method in solving (4.24), we now apply

it to solve (2.3) which is rewritten as

1

12

d2

dx2

(
α(x)

d2w

dx2

)
+

P

4µf1
w′′(x) =

1

2
εH[w′(x)]. (4.28)

The equations (4.27) are now replaced by

∞∑
n′=−∞

(
1

12
(Gn + k)2(Gn′ + k)2Bn−n′An′

)
− P

4µf1
(Gn + k)2An +

1

2
ε |Gn + k|An = 0,

(n = 0,±1,±2, ...). (4.29)

Again the above infinite system of linear equations is truncated to obtain the bifurcation

condition. Fig.12 shows the bifurcation curves for two typical values of T as the truncation

number is increased gradually. The red and orange lines are almost indistinguishable so

that convergent results are obtained by including only seven modes.

15



Approximate theory

Simulation
PWE

5 10 15 20
T

0.1

0.2

0.3

kcr

(a) kcr against T .

Approximate theory

Simulation PWE

5 10 15 20
T

0.96

0.97

0.98

0.99

1.00

λ*cr

(b) λ∗cr against T .

Figure 13: Dependence of kcr and λ∗cr on T for ε = 0.01 and δ = 0.5, α = 2, given by beam
theory, PWE method, and simulation.

Corresponding to (4.29), the dependence of the critical stretch and wavenumber on T is

shown in Fig.13 for the case of δ = 0.5, α = 2, and ε = 0.01. The analytical solutions based

on the assumption H[w′(x)] = −kw(x) and exact evaluation of H[w′(x)] are represented by

the black and blue curves, respectively, whereas the red points represent simulation results.

It is seen that the PWE and simulation results are in very good agreement. Therefore,

the discrepancy between the approximate solutions and simulation results are caused by

the approximation of the foundation response. In addition, the figure shows that when

T is between around 10 and 14, kcr lies on a tilted plateau in the sense that it is always

equal to the right extreme value of the Brillouin zone (0, π/T ), that is kcr = π/T , which

corresponds to a wrinkling mode with wavelength equal to 2T (i.e. a half wave mode).

Meanwhile, the corresponding λ∗cr is slightly elevated above its values outside the plateau.
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(b) λ∗cr against ε.

Figure 14: Dependence of kcr and λ∗cr on ε for δ = 0.5, α = 2, and T = 20 given by PWE
method and simulation.

The dependence of the critical values on ε is shown in Fig.14 for the case when δ =

0.5, α = 2, T = 20. The irreducible Brillouin zone is from 0 to π/T ≈ 0.157. From Fig.14a,

we can observe that although the values of kcr from the simulation and PWE analysis begin

to diverge when ε becomes sufficiently large, they at least exhibit the same overall trend in

the following sense. As ε increases, kcr initially stays on the plateau value of π/T , and then

decreases monotonically to reach the other plateau value of 0. After staying on this lower
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plateau for a while, it increases monotonically to come back to the higher plateau, followed

by another plunge to the lower plateau. Overall, as ε varies, kcr varies monotonically

between the left and right extremes of the Brillouin zone, accompanied by stays for a

while at the two plateaus/extremes in each oscillation. The discrepancies between the

simulations and theoretical results increase as ε increases, which is to be expected. The

discrepancies can be attributed to several factors. Firstly, when ε is large, the beam theory

becomes inapplicable. Secondly, the critical strain also increases with respect to ε and

large deformations lead to the failure of the assumption of uniform strain distribution in

the theoretical analysis. Thirdly, the theoretical analysis is based on the fact that the

cell length is T = 20 after the primary deformation, whereas in the simulations 20 is

the cell length in the undeformed configuration. In other words, the wavenumber k has

different definitions in the analysis and simulations, but kcr can be very sensitive to the

geometric parameters. From Fig.14(b) we can see that λ∗cr decreases as ε increases, and

the discrepancies between the simulations and PWE method remain small in contrast with

the much larger discrepancies in Fig.14(a) for kcr.
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0.980

0.978
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Figure 15: Dependence of kcr and λ∗cr on T1 and T2 for ε = 0.01 and α = 2.

Figs 13 and 14 only show the critical values when the two films have the same length.

By using the PWE method, we can obtain a phase diagram of the critical values kcr and

λ∗cr with respect to the lengths of the two films as shown in Fig.15. As T1 and T2 increase,

kcr gradually increases until a tilted plateau is formed in the C1 region. Subsequently, kcr

keeps decreasing to 0 and forms two new plateaus in the D1 and D2 regions. As T1 and

T2 continue to increase, kcr begins to increase until a plateau is formed in the C2 region.

It is worth noting that in the C1 and C2 regions, kcr = π/T .

The appearance of the plateaus in Fig.14 and Fig.15 can be interpreted in terms of

the intrinsic wavelengths Tw1 = 2πh(3ε)−1/3 and Tw2 = 2πh(3ε/α)−1/3 associated with

the two materials in the film. For the values ε = 0.01 and α = 2 used in Fig.15, we have

Tw1 ≈ 20.22h, Tw2 ≈ 25.47h. An examination of all the plateaus in Fig.15(a) reveals that

they correspond to special values of the scaled cell period T̃w defined by T̃w = T1/Tw1 +

T2/Tw2. In the regions C1 and C2, T̃w is approximately equal to 0.5 or 1.5, respectively,

suggesting that two unit cells together can make 2T̃w an integer and form a new period.

Similarly, in the regions D1 and D2, T̃w is approximately equal to 1, indicating that a

single unit cell is sufficient to span an entire wavelength. Notably, unlike homogeneous

film/substrate systems, the emergence of plateaus at specific T̃w values, such as 0.5, 1, and
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so on, demonstrates that similar patterns can form even when T̃w does not precisely match

these special values. However, in the transitional regions A and B, T̃w is far from these

special values, indicating that the new period contains multiple unit cells.

_____________________________

_____________________

_____________

(a) kcr against T1 and T2.

0.984

0.982

0.980

0.978

(b) λ∗cr against T1 and T2.

Figure 16: Dependence of kcr and λ∗cr on T1 and T2 for ε = 0.01 and α = 2.

Based on the above results, we may conjecture that as T1 and T2 continue to increase,

kcr will form more plateaus around the areas where T̃w approaches 2, 2.5, 3. To verify

this, we carry out further calculations and the results are depicted in Fig.16. As either

T1 or T2 increases, kcr consistently appears alternately at the left or right boundary of

the Brillouin zone, forming more elliptical plateaus that are interconnected along the red

lines T̃w = 2, 2.5, 3 and so on. Additionally, Fig.16(b) clearly illustrates that the values

of λ∗cr corresponding to the plateau regions are higher than those in the surrounding ar-

eas, indicating a heightened predisposition for instability. Particularly, the existence of

plateaus highlights the insensitivity of periodic patterns to variations in geometric param-

eters. Moreover, all the wrinkling modes corresponding to these plateaus exhibit regularity,

offering us a solid basis for pattern design based on surface wrinkling. This also grants us

greater flexibility in our patterning strategies.
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Figure 17: Four types of surface patterns when ε = 0.01 and α = 2.

Based on the phase diagram, we can obtain surface patterns under different geomet-

ric parameters. We can classify surface wrinkling modes into the following types: (A)

long-wave mode, (B) mixed mode, (C) half-wave mode, and (D) whole-wave mode, corre-

sponding to the different regions in Fig.15a. Four types of surface patterns are given in

Fig.17. The surface pattern of region A is sinusoidal, and the wave length is much greater

than T . We can see multiple orange and gray parts within each wavelength, so we call

it long-wave mode. In region C1, two cells form a sinusoidal wavelength, where the grey

part is in the middle due to the higher modulus, while the orange part is bent up and

down. As for the C2 region, due to the longer length of the grey and orange parts, they

each undergo sinusoidal bending. In regions C1 and C2, the pattern is regular, with two

cells forming a period, hence they are called half-wave mode. In region D1, the length

of the orange part is greater than that of the grey part and orange part is softer, so the

pattern is mainly composed of sine waves in the orange part, with the grey part playing a
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connecting role in the middle. In region D2, the situation is exactly the opposite, but the

orange part is bent because it is softer. Whether in the D1 or D2 region, the pattern is

periodic with a single cell, hence it is called the whole-wave mode. There are quasi-periodic

irregular patterns in the remaining regions B, resembling sinusoidal shapes but with con-

stantly changing amplitudes, which we collectively refer to as mixed modes. The modes

in regions C and D exhibit a distinctive characteristic. Despite undergoing wrinkling, the

structure maintains its periodicity, and the new periodic length remains on a similar scale

to the original periodicity. In contrast, the modes in regions A and B lose their periodicity

after instability, resulting in a significant increase in their period, far exceeding the period

before instability.
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Figure 18: Reproduction of previous work.

Comparing with the findings in previous works, we may confirm that the modes in

the C1 region are consistent with the mode in Xue et al.’s work [9], which they named as

articulated surface wrinkling. The modes in the C1 and C2 regions are the same as patterns

I and IV in Wang et al.’s work [5]. We may also reproduce the other patterns displayed in

[6] by choosing different parameters. For instance, when α = 5.94, ε = 0.00163, choosing

T1 = 51.8h, T2 = 46.9h or T1 = 29.6h, T2 = 26.8h produces the ridge mode and the tilted

sawtooth mode in Fig.18, respectively.

5. Conclusions

In the current study, an Euler-Bernoulli beam supported by a Winkler foundation is

used to approximate the periodic film/substrate system and to study buckling-induced

pattern formations. This same model has been used in a number of recent studies, but

invariably in each case the stiffness of the Winkler foundation was not evaluated exactly,

but deduced from numerical simulations. We model the Winkler foundation exactly with

the use of the Floquet theory and the buckling problem is then reduced to the solution

of an infinite system of homogeneous linear equations. After truncation, the bifurcation

condition is given by the determinant of a finite matrix equal to zero, and the accuracy of

its predictions can be improved by including more and more Fourier modes. We have also

carried out Abaqus simulations for the full buckling problem of a periodic layer supported

by a half-space. By comparing the predictions from the above determinant-based bifur-

cation condition and those from the Abaqus simulations, it is verified that the reduced

model of an Euler-Bernoulli beam supported by a Winkler foundation is still capable of

giving accurate results for the parameter regime that it is intended for, that is when both
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segments of the film in each unit cell are much stiffer than the substrate. We have also

discussed the validity of the approach in which the response of the substrate is approx-

imated as if the buckling mode were monochromatic. This approximation is equivalent

to replacing the Hilbert transform H[w′(x)] by −kw(x) with k denoting the wavenumber.

This approximation was adopted in all previous studies and in each such study the stiffness

of the Winker foundation was further adjusted by fitting the analytical predictions to the

corresponding numerical simulation results. We have provided a precise description of the

parameter regime where this further approximation is justified.

The full buckling problem of a periodic layer supported by a half-space without using

the above reduced model can also be analyzed using the same methodology although the

algebra will be much more involved and the evaluation of the above-mentioned determinant

will be much more demanding on computer resources.
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