
Information and Software Technology 174 (2024) 107519

Available online 22 June 2024
0950-5849/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Towards antifragility of cloud systems: An adaptive chaos
driven framework

Joseph S. Botros a, Lamis F. Al-Qora’n a, Amro Al-Said Ahmad b,*

a Department of Software Engineering, Faculty of Information Technology, Philadelphia University, Amman, Jordan
b School of Computer Science and Mathematics, Keele University, Staffordshire, United Kingdom

A R T I C L E I N F O

Keywords:
Antifragility
Resilience
Chaos engineering
Self-adaptive software
Resilience testing
Cloud computing

A B S T R A C T

Context: Unlike resilience, antifragility describes systems that get stronger rather than weaker under stress and
chaos. Antifragile systems have the capacity to overcome stressors and come out stronger, whereas resilient
systems are focused on their capacity to return to their previous state following a failure. As technology envi
ronments become increasingly complex, there is a great need for developing software systems that can benefit
from failures while continuously improving. Most applications nowadays operate in cloud environments. Thus,
with this increasing adoption of Cloud-Native Systems they require antifragility due to their distributed nature.
Objective: The paper proposes UNFRAGILE framework, which facilitates the transformation of existing systems
into antifragile systems. The framework employs chaos engineering to introduce failures incrementally and
assess the system’s response under such perturbation and improves the quality of system response by removing
fragilities and introducing adaptive fault tolerance strategies.
Method: The UNFRAGILE framework’s feasibility has been validated by applying it to a cloud-native using a real-
world architecture to enhance its antifragility towards long outbound service latencies. The empirical investi
gation of fragility is undertaken, and the results show how chaos affects application performance metrics and
causes disturbances in them. To deal with chaotic network latency, an adaptation phase is put into effect.
Results: The findings indicate that the steady stage’s behaviour is like the antifragile stage’s behaviour. This
suggests that the system could self-stabilise during the chaos without the need to define a static configuration
after determining from the context of the environment that the dependent system was experiencing difficulties.
Conclusion: Overall, this paper contributes to ongoing efforts to develop antifragile software capable of adapting
to the rapidly changing complex environment. Overall, the research provides an operational framework for
engineering software systems that learn and improve through exposure to failures rather than just surviving
them.

1. Introduction

According to Taleb [1], an antifragile is defined as a system that gets
stronger under stress, whereas antifragile systems, in contrast to robust
systems, are able to adapt to changes in their environment and learn
from earlier failures, reducing the effect of future failures and
strengthening themselves over time. In other words, systems that
experience degradation in their performance as a result of being sub
jected to uncertainty are classified as fragile, whereas systems that are
classified as antifragile will thrive, flourish, grow, and profit from
exposure to risk, uncertainty, randomness, and disorder [2]. An example
of an antifragile system is the human immune system, which gets

stronger with repeated exposure to germs [3]. Thus, Antifragility as
property refers to a desirable characteristic that focuses on how a system
or entity responds to stress or shocks. Unlike fragility, where an entity
becomes more vulnerable to harm under stress, antifragility involves a
quality of response that is not only resilient but actually benefits from
such challenges. In essence, when faced with adversity, an antifragile
system or entity reacts in a way that not only mitigates harm but also
gains advantages or improvements in architecture and maturity. This
quality can be visualised as a convex shape on a graph, while fragility is
a concave function (more pain than gain[4]). Consequently, Antifragile
design is becoming a growing field of study in software engineering [4,
6]. In a recent study by Grassi et al. [7,8], proposed conceptualising

* Corresponding author at: CR35, Colin Reeves Building, Keele University, Staffordshire, ST5 5BG, United Kingdom.
E-mail address: a.m.al-said.ahmad@keele.ac.uk (A. Al-Said Ahmad).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2024.107519
Received 18 November 2023; Received in revised form 11 June 2024; Accepted 20 June 2024

mailto:a.m.al-said.ahmad@keele.ac.uk
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2024.107519
https://doi.org/10.1016/j.infsof.2024.107519
https://doi.org/10.1016/j.infsof.2024.107519
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 174 (2024) 107519

2

antifragility as an extension of the “dependability” quality attributes in
software systems.

When a fault or malfunction occurs in one component of a fragile
system, it can propagate to other components, causing the system’s
failure, where the system is incapable of recovering. A resilient system,
on the other hand, makes an effort to promptly and effectively recover
from each failure event and stop faults from impacting other system
components. However, antifragile systems are intended to grow stronger
and benefit from such failure, whereas resilient systems are not expected
to bounce back stronger after failure.

When we discuss a system’s robustness or antifragility, we are talk
ing about how it responds to an increase in stressors over a range of
values until it reaches a particular stress threshold, after which the
system may start to become more fragile. We should design and create
the software to make antifragile software instead of investigating how
the system responds to all kinds of incidents. The antifragile software
will try to embrace uncertain environments by embedding adaptive and
fault-tolerant methods in their architecture, and continuously simu
lating stressful situations that uncover fragilities. In Fig. 1, these types of
systems are compared.

Cloud Computing is considered the dominant computing platform
nowadays [10]. Most applications operate in cloud-based environments,
whether public, private, or hybrid, because of the on-demand avail
ability of computing resources and the ease of provisioning and deliv
ering services to customers through different cloud service models.
Systems that are provisioned within cloud environments acquire the
adaptive behaviours of their environments by necessity.

Complex adaptive systems (CAS) are networks of several agents that
collaborate, interact, and get feedback from the environment in which
they operate. As a result, system behaviour becomes emergent rather
than predetermined [11] which allows a system to react and modify
according to the influence of its previous activity. Modern cloud systems
can also be considered Complex Adaptive Systems (CAS) since they are
composed of many independent agents competing over computing re
sources. Predicting the behaviour of a complex adaptive system in all
circumstances is considered a complicated problem, it is more efficient
to build an adaptive system that can gain benefit from unforeseen cir
cumstances, or more specifically to build an antifragile system.

"Cloud-native” is a term that is used to describe any system designed
to best utilize or apply cloud features [12]. Because of their inherent
resilience, the ease with which microservices may be deployed and
removed, the flexibility to execute chaos experiments to test system
responses, and their built-in redundancy, which enhances

dependability, cloud-native Systems are more likely to become anti
fragile [13]. Cloud-native applications consist of multiple small, inter
dependent services called containers, that are easy to deploy and remove
from the cloud. Using Docker containers to bundle and deliver
cloud-native applications is becoming more and more popular [14].
These containers can interact synchronously and asynchronously
through messaging buses. Such distributed architecture also can have
many emergent properties because of the inherent self-adaptation and
self-organisation capabilities of cloud-native systems. Thus, it is faced
with the same complexity in predicting the behaviour of the CAS systems
that we’ve mentioned before. A crucial novel approach to developing
cloud-native apps is serverless computing, which is built on technologies
like AWS Lambda, Azure, and Google Functions [15].

The advent of cloud computing and the reliance on its services to
build heterogeneous distributed systems, which span multiple services
that may originate from various cloud providers [16], suggests
enhancing the resilience and robustness of such software systems to
build resilient applications that can withstand services/faults disrup
tion. Chaos engineering involves intentionally introducing controlled
failures and disruptions into a system to proactively identify weaknesses
and improve overall resilience [13]. This is important because cloud
computing settings require resilience due to the dynamic and distributed
nature of these systems. Software antifragility and chaos engineering are
two concepts that can be connected to enhance cloud applications’
resilience and benefit from shocks, volatility, and stressors, becoming
more robust, responsive to unpredictable events, and more resilient as a
result. In other words, antifragility adds chaos to a system so that it will
react to become stronger rather than break down [13].

Resilience refers to a system’s ability to recover from failures and
restore itself to its original state [17]. Cloud computing offers several
strategies and techniques like auto-scaling, disaster recovery, and
auto-healing. Additionally, it provides fault tolerance techniques, such
as load-balancing, that support the resiliency of cloud applications [18].
Despite these valuable services and strategies, we still use chaos engi
neering methods to test and enhance resiliency. Antifragility, on the
other hand, is the ability of a system to learn from failures and become
stronger in the face of future challenges. To surpass resilience, it is
recommended to design systems that can adapt to changing environ
ments and learn from incidents. This involves developing systems that
can detect and respond to failures, as well as systems that can learn from
those failures and adjust their behaviour accordingly. By doing so, sys
tems can become more robust and better equipped to handle future
challenges [3]. This paper is inspired by a scarcity of studies that pro
pose an applicable architecture for building antifragile software [3,4,7].
Even though various antifragility principles may be found in literature,
few practitioners have adopted them. This is regardless of the fact that
they all share the same core idea of going beyond resilience and
benefiting from stressors. We found that the lack of practical, systematic
architectures that guide the process of upgrading current software into
antifragile ones was the reason for this lack of adoption. We are using
adaptive approaches to develop an operational framework that sur
passes existing strategies of robustness and resilience and moves to
wards antifragility. Adaptive strategies can help to accomplish
antifragility as they involve learning and improving from stressors and
challenges [19]. In other words, cloud-native apps can accomplish
antifragility by utilising a variety of adaptive mechanisms that help the
system perform well in the face of change and uncertainty.

Our goal is to provide a practical demonstration of the integration of
antifragility principles, such as adaptivity, into an overall architecture
that includes all necessary supportive components and the process for
helping existing systems achieve operational antifragility.

2. Research questions (RQs)

Our paper is guided by the following two key research questions:
RQ1: What are the key mechanisms and strategies that can enable Fig. 1. Comparison of different quality of responses to stressors [9].

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

3

automated operational antifragility in real-world cloud applications?
RQ2: How does the implementation of the UNFRAGILE framework

enhance the antifragility of a cloud-native application?
To answer the research questions, the paper first examines the con

cepts and design principles of building antifragile software systems.
Then, a thorough examination of the relevant research and the most
recent best practices in the field is used to develop a UNFRAGILE
framework that is intended to achieve automated operational anti
fragility in the face of challenges and failures, which answers the first
research question. The UNFRAGILE framework invests adaptivity prin
ciples and employs chaos engineering as an effective methodology for
testing and enhancing the stability of software systems by gradually
introducing faults into systems in production environments to uncover
fragilities. To answer the second research question, UNFRAGILE is then
evaluated with a proof-of-concept application to showcase how the
UNFRAGILE framework can be incorporated and utilised against a
common real-world scenario, namely outbound latency in distributed
cloud systems. Finally, the key ideas and contributions are summarised,
and future work is presented. Overall, the paper contributes to the
ongoing efforts to develop more resilient and antifragile software sys
tems capable of withstanding the challenges and complexity of the
software environment.

This paper is organised as follows: Section 3 describes the research
background and key related work; Section 4 presents the UNFRAGILE
architectural framework; Section 5 presents a case study on using a
cloud-native system; Section 6 discusses the results the analysis; and
finally, Section 7 concludes the paper and provides limitations and
future work.

3. Research background and related work

3.1. Antifragility principles and system architecture

To build antifragile software systems, thinking must undergo a
challenging change in perspective that embraces shocks as drivers of
progress rather than just resilience. Although incorporating risk-seeking
activities may assist in identifying system fragilities, genuine anti
fragility necessitates incorporating behaviours that let the system
bounce back and adapt, gradually improving with each stressor. Many
different principles and reference architectures in the antifragility
literature and state-of-the-art can be utilised to harness antifragility.

Tolk [20] introduced the concept of constructing antifragile systems
using agent-based systems engineering. He suggested employing the
agent metaphor to create systems that continuously adapt to changing
environments, providing new functionality as needed. By merging
model-based systems engineering with the agent metaphor and utilising
utility functions, the goal is to develop systems that not only survive but
also improve under stress and in dynamic contexts. Their study presents
a first step towards enabling systems engineering of antifragile systems.
Although it acknowledges that more studies are required to achieve this
goal, it provides evidence that such systems are capable of being
designed.

Russo and Ciancarini [5] proposed a manifesto that is inspired by the
Agile manifesto, consisting of 12 guiding principles to encourage prac
titioners to develop antifragile systems. These principles focus on client
satisfaction and embrace changing scenarios. Russo and Ciancarini [4]
followed up with a novel software architecture that attempted to
accomplish their proposed principles. Such an architecture suggests a
dynamic technique in which the system learns from errors and keeps
getting better all the time. According to their paper, static fault tolerance
alone is insufficient to be considered antifragile because experiencing
more problems offers no benefit. Thus, they also suggested using
fine-grained structures like microservices for flexibility and continuous
improvement and approaching antifragility through embedding adap
tive fault tolerance solutions. It also recommends fault injection ap
proaches, test-driven development (TDD), and DevOps as methodologies

to support antifragility.
To build antifragile software, Monperrus [6] outlined several prin

ciples, including a) Fault tolerance, which exposes the system to faults
and embeds adaptive and recovery strategies; b) Automatic runtime
repair, which modifies the system automatically at runtime in response
to errors and bugs; and c) Failure injection in production. The paper also
outlined another set of principles that can improve the software devel
opment process and harness antifragility. Monperrus [21] followed up
with an envisioned software model that deals with unexpected failure in
production systems by designing and building systems that can learn
from its failure. by building fault-tolerant systems that are constantly
subjected to perturbations and actively learning from its mistakes how
to improve its behaviour and performance. His proposed architecture
consists of a) a Monitoring module, b) a Perturbation module, and c) a
Recovery module.

Hole [9] also made significant contributions by synthesising anti
fragility concepts with market pioneer systems such as Netflix for
building highly available software. Several principles were proposed to
ensure the system’s antifragility. These principles for ensuring
anti-fragility in complex information and communications technology
(ICT) systems can be summarised as follows: modularity, which modu
larises the system to isolate local failures and reduce their impact on the
entire system; weak links, which create weak links that break to prevent
propagating failures; incorporate redundancy by deploying multiple
copies of modules to increase system robustness; diversity which in
troduces diversity by including modules with different designs or
implementations to increase system resilience. Together, these princi
ples are meant to develop ICT systems that are resistant to disruptions
and severe global behaviour that is a byproduct of being a CAS. Hole
questioned whether the five principles are enough for ensuring anti
fragility to any particular class of impacts, and he stated that the answer
to this question was not entirely recognised when he was writing his
book in late 2015. The principles required for designing and operating
an anti-fragile system will likely vary depending on the kind of system
and impact class under consideration. Next, Hole argued that the five
principles offer antifragility against malware propagation and down
time. To ascertain whether more principles are needed, more research
needs to be conducted.

Subsequently, a tutorial article by Hole [3] explored the architecture
and functionality of downtime-resistant software systems, leading to
antifragile distributed systems. The tutorial examined four design
principles and two operational principles, highlighting their significance
and the relationship between them. The software system should consist
of separate, isolatable processes with sufficient redundancy and di
versity as per design principles. The principles of operation dictate that
engineering teams should intentionally cause failures in production
systems to learn from them and improve, thus minimizing downtime. A
case study that demonstrates the application of both the anti-principles
and the principles is also included in the paper. It also introduces three
design choices and one operational choice gained by applying the
principles to distributed software systems of separate processes. Finally,
the author examines when and how to create socio-technical systems
that are resistant to downtime and emphasises the significance of using
the same principles for other types of antifragility and the importance of
developing more concepts that could lead to achieving antifragility.

Jones [22] discussed the need to shift from designing fragile systems
to antifragile systems, particularly within the context of NASA’s engi
neering practices. The paper argues that the traditional methods of
designing systems, which focus on meeting specific known re
quirements, inherently create fragile systems. These systems are prone
to failure when subjected to conditions beyond their designed specifi
cations. Also, it attributes software fragility to the traditional design
approach known as Reductionism. This approach assumes that any
system, no matter how complex, can be fully understood by breaking it
down into its individual components. The paper argues that this pre
cisely leads to building systems that fail to handle any future unexpected

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

4

conditions effectively because they are designed to meet predefined
requirements: The paper advocates for a change in design philosophy
inspired by concepts from Complexity Science and Nassim Taleb’s idea
of antifragility, the paper also presents many principles that are specific
to aviation technologies, including communal sensor networks for
adaptive noise control, morphing wings for optimal flight performance,
autonomous systems learning to fly, swarming of autonomous units for
mission resilience, integrated vehicle health management for proactive
maintenance, and self-healing materials that repair and strengthen
under stress. These principles aim to create systems that adapt, learn,
and thrive in unpredictable environments, which is aligned with the
paper’s vision for engineering antifragile systems

To conceptually define antifragility, Grassi et al. [8] proposed
including antifragility as a new attribute under the dependability um
brella, which is a software quality attribute) taxonomy. In addition to
the existing categories (fault prevention, fault tolerance, fault removal,
and fault forecasting), the paper suggests adding a new category called
"change triggering and exploitation." This category includes strategies
aimed at encouraging and leveraging knowledge changes to evolve the
system into an improved version or improved state by implementing a
"virtuous chain" of transformations that enhance system quality. Thus, a
system can be defined as “antifragile” if it can implement that virtuous
chain of continuous change and improving, thereby continuously
improving in response to changes and disturbances. This new attribute
recognizes the system’s ability to get better when exposed to stressors,
going beyond resilience or robustness. The paper does not provide a
concrete reference architecture or implementation for antifragile sys
tems and considers it an open challenge and research questions towards
defining a reference architectural model for antifragile systems. Spe
cifically, it highlights the need to identify suitable architectural ele
ments, methodologies for antifragility assessment, and suitable
antifragility metrics. This presented a challenge that inspired us to
create a detailed, well-organized architecture.

3.2. Chaos engineering and fault injection

The rationale of utilising chaos engineering to assess system
dependability and maturity is not new in literature. It has been estab
lished that fault injection in production uncovers fragilities and transi
tions from the mindset of avoiding failure to the mindset of embracing
faults for the sake of producing more robust and antifragile systems. it is
summarised in the following quote [23]:

“It’s better to prepare for failures in production and cause them to
happen while we are watching instead of relying on a strategy of
hoping the system will behave correctly when we aren’t watching.”

Many researchers utilised chaos engineering to assess the depend
ability of systems. For example, Malik et Al. [24] proposed a framework
CHESS for the systematic evaluation of self-adaptive and self-healing
capabilities of systems by using chaos engineering to evaluate system
response during chaos and whether it reflects any self-adaptation by
targeting the system with failure scenarios that affect system quality
attributes (Availability, Reliability, Integrity, Performance). Moreover,
Pierce et al. [25] applied chaos experimentation (specifically network
degradation) and automatic fault injection to applications running in
middleware systems. The experiments aimed to understand how the
system responds to specific faults and network conditions, providing
valuable insights into system operation and actionable strategies for
enhancing resilience. The research emphasises the importance of
applying Chaos Engineering to open systems architecture, particularly in
the context of military mission systems.

Meiklejohn et Al. [26] presented SFIT and Filibuster as tools for
identifying resilience issues in microservice applications. By combining
static analysis and concolic-style execution, SFIT enhances test suites to
cover failure scenarios. The authors emphasise the growing adoption of
chaos engineering to identify issues related to partial failure. Filibuster

demonstrates its effectiveness by detecting bugs in real-world micro
service applications, offering an opportunity to address these issues
early in the development process and improve application resilience.

Al-Said Ahmad and Andras [27] applied fault injection using the
Application-Level Fault Injection (ALFI) technique to evaluate the
scalability resilience of cloud-based software services. They conducted
experiments on a real-world cloud-based software service running on
the EC2 cloud and simulated delay latency faults. By comparing the
results of the fault scenarios with baseline data, they assessed the impact
of the injected faults on scalability resilience. Simulating network delay
chaos was used to assess the scalability of the software.

Simonsson et Al. [28] built a novel fault-injection system called
ChaosOrca that operates on the operating system level. The system aims
at evaluating applications’ self-protection through manipulating system
calls and injecting fault in them, and the framework targets cloud-native
systems that consist of containerised docker applications. The paper
utilises chaos engineering as a main method for detecting fragility and
verifying the quality of response for systems, whether it was fragile,
robust, or antifragile. This is done by building chaos experiments that
resemble real-life system stress. The chaos engineering process is fol
lowed as found in literature and state-of-art, and it is utilised as a part of
our antifragility holistic framework.

In his master’s thesis, KOSTENKO [29] investigated the applications
of resilience and antifragility in microservices architecture. Chaos en
gineering was implemented to generate various chaotic assaults on ap
plications. Following an examination of industry and state-of-the-art
tools, the KOSTENKO framework was proposed with four components: A
chaos toolkit, a load generator, a hypothesis validator, and a dashboard.
A Spring Java web application was used to evaluate the framework’s
various resilience strategies (Timeout, Retry, Circuit breaker). The
pattern employed for this work is categorised as a resilience pattern, and
it significantly helps in the development of robust and resilient appli
cations. However, when it comes to antifragility, it can be found that
developing antifragile systems is still limited due to the lack of adap
tivity in some patterns and their lack of a "learning from errors"
dimension [30]. Thus, building a systematic framework around Anti
fragility is still required [4]. To address such limitations in the frame
work, we have introduced an evaluation matrix to evaluate whether an
adaptation strategy can be considered antifragile according to its impact
on the system’s operational performance. We have also developed a case
study by implementing an adaptation strategy that exceeds resilience
and makes our case study system antifragile against one of the most
common network failures.

3.3. Adaptive concurrency

Architectural complexity can lead to a number of unpredicted fail
ures that may occur during runtime in distributed and microservices
systems [31]. Examples of such failures include [31–33]: (a) Cascading
failures, (b) Retry storm (backpressure), (c) Death spiral, and (d)
metastable failure. Antifragility requires having a dynamic adaptive
approach. Thus, when we are implementing antifragile software, we are
aiming at embedding adaptive and dynamic approaches based on system
context awareness (local strategies) and system-wide awareness (global
strategies).

Shahid et al. [34] examined recently developed fault tolerance
strategies for cloud computing and classified them into three groups:
Reactive Methods, Proactive Methods, and resilient solutions. They
stated that reactive methods let the system get into a defective condi
tion, but they then try to back up the device. Proactive Methods assist in
preventing the device from getting into a defective condition by incor
porating actions that reduce defects before they impact the device.
Newly developed resilient methods aim at reducing the time it takes for
a device to detect a fault. Resilience strategies include circuit breaker,
timeouts, load-shedding, and graceful degradation). The real problem,
however, with such fault tolerance strategies is that they’re inherently

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

5

fragile [4] because they embed a fault model as an assumption.
Liu et al. [35] recommended a concurrency-aware system scaling

framework that adapts to changing application workloads by guessing
the optimal concurrency configuration and running actuators that
perform autoscaling for cloud resources. Considering the relationship
between concurrency and throughput, such concurrency-aware mech
anisms are proven to be more reliable than static metrics rule-based
approaches.

Brogi et al. [36] proposed a methodology for self-healing trans-cloud
applications, which are complex systems deployed across multiple cloud
providers and service layers. The methodology focuses on reducing the
time that application components depend on faulty services, thereby
minimising unstable states and the potential for cascading failures. It
also considers the interdependencies between components during the
recovery process. Their work also includes a prototype implementation,
which demonstrates the effectiveness of adaptive methodologies pro
tecting cloud systems from both application failures and cascading cloud
service failures.

Zoghi et al. [37], discussed the design of adaptive applications that
are deployed in cloud environments. To satisfy the adaptation goals, the
authors suggested a search-based algorithm to optimise the deployment
of applications. These goals include minimising resource costs and
achieving a response time of less than 500 ms. The experiments
measured the response time, and the number of iterations needed to
attain the adaptation goals.

In conclusion, the antifragility of cloud services can be enhanced by
an adaptive concurrency-aware concurrency configuration strategy that
adjusts the maximum number of concurrent requests allowed to an
outbound service in accordance with workload criticality and perfor
mance metrics. This can prevent overwhelming the system or its de
pendencies, producing failures such as cascading failures and death
spirals.

4. UNFRAGILE architectural framework: a systematic
improvement to system’s response to stressors and failures

This paper proposes and evaluates the UNFRAGILE as an architec
tural framework. UNFRAGILE aims at developing antifragile systems
through an iterative cycle of experiments, analysis, and improvements.
UNFRAGILE is inspired by the system models proposed by [3,21,38], for
engineering antifragile systems. We developed UNFRAGILE as shown in
Fig. 2 with three modules (Chaos Module, Adaptation Module, and
Monitoring Module). The purpose is to extend the existing cloud-native

systems with supportive modules to enhance the software’s antifragility
towards chaotic events.

The components of the proposed UNFRAGILE framework and their
interrelationships are visualised in Fig. 2 which shows a high-level
software architecture diagram.

Fig. 3, shown below, defines our envisioned structures for imple
menting the UNFRAGILE framework for cloud-native systems, this ar
chitecture will be integrated with the system inside the docker
container. Extending the systems with the UNFRAGILE framework
components within a cloud-native ecosystem through utilising Docker
containers is crucial for establishing a continuously evolving software
that is approaching antifragility. This integration ensures a seamless and
effective system that can handle any challenges that arise by constantly
simulating chaotic situations, monitoring application behaviour, and
adjusting it to enhance its adaptation. This is important because
enhanced user experience and sustainable business operations depend
on the capacity to adapt to the changing demands and complexities of
modern IT infrastructures.

The following subsections explain the three modules, as shown in
Fig. 3.

4.1. Chaos module

Fig. 4 demonstrates chaos module overall process. Chaos module is
responsible for managing environment manipulation and fault injection
within the production environment. This can be tailored to fit the re
quirements of any perturbation experiment, or it can be combined with
an off-the-shelf tool that is currently on the market. The steps involved in
planning and executing a chaos attack are depicted in Fig. 4. The first
step in the procedure involves choosing a stressor or defect to be tested,
such as unexpected instance termination, network perturbations,
resource stress-testing, or simulating unexpected software behaviour, in
order to find out whether the system is capable of withstanding in an
antifragile manner.

In accordance with the chaotic experiment’s design, we monitor
system metrics, including the system’s steady state. We also formulate a
hypothesis, identify the blast radius, and, last, outline the parameters of
the experiment’s duration and scope. Subsequently, the experiment is
carried out, and the prescribed step-by-step perturbation is started.
Following analysis of the data, observations are made, where moni
toring modules and custom dashboards are utilised to view the system
before, during, and after chaos.

Fig. 2. UNFRAGILE framework overall architecture.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

6

4.2. Monitoring module

Application performance monitoring (APM) is the practice of
tracking software performance metrics using monitoring tools and
telemetry databases for better monitoring management [39]. APM is an
essential aspect of systems observability & instrumentation [40]. It helps
developers and operations teams to identify and resolve performance
issues in real-time. APM tools such as Prometheus [41] provide visibility

into the performance of applications, infrastructure, and networks. In
our UNFRAGILE framework, system’s observability is a necessary con
dition when evaluating the robustness, antifragility, and quality of sys
tem response under perturbations experiments. Furthermore, the
observability of system components through the use of APM tools helps
in identifying and eliminating the fragilities underlying causes.

Many standard application metrics such as response time, error rate,
and throughput, as well as system metrics like CPU usage, memory

Fig. 3. UNFRAGILE framework detailed architecture.

Fig. 4. UNFRAGILE framework - chaos module overall process.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

7

usage, and network latency, need to be monitored for cloud systems.
Some of these standard metrics are included by default in the majority of
APM tools, and more customised metrics can be added based on system
requirements. It may be possible to gain an understanding of the sys
tem’s behaviour, health, and performance before, during, and after the
experiments by observing these metrics over time.

To ensure the success of experiments, custom monitoring dashboards
are highly helpful in chaos engineering. These dashboards enable real-
time monitoring of critical experiment performance metrics during
chaotic experiments, enabling engineers to analyse system behaviour
and implement modifications as needed. They also contribute signifi
cantly to post-experiment analysis by collecting and presenting impor
tant metrics that enable a full understanding of the results. Furthermore,
specialised dashboards allow non-technical stakeholders to make
educated decisions based on empirical data by facilitating effective
communication of chaos engineering outcomes.

Since the primary goal of UNFRAGILE framework is to make any
system that already exists more antifragile, we know that introducing
observability to already-existing systems presents significant challenges
because of the need for code changes in several places to add monitoring
and instrumentation boilerplate code. As a result, we recommend uti
lising contemporary APM features for cloud-native systems, such as
auto-instrumentation [42,43], which can reduce the amount of code
changes required in order to add monitoring to already-existing systems.
In the context of cloud native systems, it provides additional function
ality, such as logging and monitoring, without the need for disruptive
code changes. Moreover, auto-discovery is the process of automatically
discovering the application component to monitor without the need for
manually adding it to the central configuration. This is also supported by
modern cloud-native ecosystems by adding monitoring to a system with
a small number of components by hand could be simple initially, but as
systems get bigger and more complex, the task becomes more difficult
and similar to attempting to find a needle in a haystack. The sheer
number of moving parts and metrics makes it challenging to effectively
correlate and pinpoint issues. A combination of these strategies can
make the monitoring module which is required by the UNFRAGILE, be
added in a plug-and-play manner.

4.3. Adaptation module

Fig. 5 below shows the overall process of the adaptive module.

4.3.1. Adaptation process description
The adaptation process is the process of detecting and eliminating

fragility in the system while building self-adaptivity and antifragility.
The adaptation module, as shown in Fig. 5, represents a crucial phase
where the software undergoes either runtime self-adaptation or source
code modifications based on the findings from the chaos experiment.
The first step is to detect the fragility, which is done through monitoring
and analytic tools that provide insights into the system’s behaviour
during the chaos experiment. Once the fragility is identified, a root cause
analysis is conducted to determine the underlying fault responsible for
the observed fragility. This analysis helps in understanding the weak
nesses and vulnerabilities in the system. With a clear understanding of
the root cause. The next step is to devise a recovery and mitigation
strategy, this involves implementing incremental changes to the soft
ware to address the identified fault and make the system more resilient.
The goal is to build adaptivity and antifragility into the system, enabling
it to not only withstand chaos but also benefit from it by becoming more
robust. The adaptation module is a continuous process that ensures the
system evolves and adapts to the lessons learned from the chaos
experiment, ultimately improving its overall stability and performance.

The overall process shown in Fig. 5 involves: (1) Observing the
experiment results by collecting metrics from various observability tools
and persisting it in time-series database for custom dashboard queries;
(2) Analysing the system’s response to chaos and categorising it as
fragile, robust, or antifragile based on the experiment results; (3)
Implementing strategies to address fragilities if the system is found to be
fragile, including conducting a root cause analysis to identify bottle
necks and implementing mitigation strategies to achieve adaptive fault
tolerance and antifragility; (4) Retrying the experiment after imple
menting the mitigation strategies to assess whether the fragility has been
resolved. This iterative approach aims to enhance the system’s resilience
and adaptivity, ultimately moving towards an antifragile state.

4.3.2. Static fault tolerance vs adaptive fault tolerance
As we previously discussed, fault tolerance is unavoidable for with

the increasing complexity of modern software, is emergent from

Fig. 5. UNFRAGILE framework - adaptive module overall process.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

8

increasing complexity in business domains, and emergent complexity
from the nature of distributed systems, fault tolerance is an inevitable
requirement for surviving unseen chaos and failure, but statically
embedded fault tolerance is intrinsically fragile as it embeds a fault
model as an assumption [4], according to Monperrus [6] a system with
dynamic and adaptive fault tolerance capabilities is antifragile: that is,
when exposed to faults, it continuously improves and becomes more
mature than static fault tolerance, which can fail with changing envi
ronmental conditions [44]. Thus, we propose evaluating the maturity of
the chosen fault tolerance strategy according to the matrix in the
following Fig. 6:

4.3.3. Enhancing static fault tolerance strategies to become adaptive
Antifragile software is defined in the paper as a system that is capable

of thriving under stress and adapting to chaotic environments. Although
static fault-tolerant strategies are useful, they are still fragile [4], since
they do not respond properly to the changing environment and stress by
exploiting them. So, the paper recommends enhancing fault-tolerance
strategies by making them adaptive through extending their behaviour
to become context-aware by providing contextual knowledge for the
hosting environment, and by giving them the capability of readjustment
in response to contextual thresholds. This has the potential to ensure
that the system tolerance can adapt to changing conditions, thus
becoming more antifragile towards stress.

The first step is to augment the system with performance metrics. By
making performance metrics accessible to the adaptation module, more
accurate and context-aware strategies can be executed that better adapt
the current environment state in a real-time manner. This allows con
verting these strategies to become more context-aware and self-adaptive
to their environment.

Secondly, system reconfiguration by avoiding static and hardcoded
configurations and making fault tolerance configuration customizable at
the run-time level, the Adaptation module can adjust system configu
rations to find the best values to keep the system stable under chaos.

4.4. UNFRAGILE framework workflow

The UNFRAGILE framework sequence diagram in Fig. 7 illustrates
the iterative workflow that aims at enhancing antifragility, which in
volves the Chaos Module, System Under Analysis, Adaptation Module,
and Monitoring Module. The system user (engineer or developer) initi
ates a chaos experiment by selecting it from a predefined chaos exper
iments library; then the Chaos Module will select all target components
and inject faults according to the chaos experiment into the System
Under Analysis. The Monitoring Module collects performance metrics

before, during, and after the experiment, and the monitoring data are
then provided to the Adaptation Module. The Adaptation Module ana
lyses the data to detect if fragility was found, and then it applies miti
gation strategies that are related to the detected fragilities to the System
Under Analysis. This loop continues, ensuring the system’s quality is
continuously evolving to an optimal state, from being fragile towards
specific types of chaos and disruptions to becoming resilient and,
ideally, antifragile, as long as the user validates improvements after each
iteration.

5. Case study

5.1. Experiment description

We have built a chaos experiment that seeks to convert existing
software to become antifragile towards a common cloud failure, namely
outbound latency, through a series of exploratory phases that follow the
process outlined in the UNFRAGILE framework, while evaluating the
quality of software response to chaos and stress at each phase. This al
lows us to verify the feasibility and applicability of the UNFRAGILE
framework.

Software systems are frequently constructed from distributed com
ponents that run on cloud platforms and rely on third-party service
providers. Protocols like HTTP, TCP, and RPC are commonly used to
communicate between these components. However, the failure modes of
their interdependence pose difficulties for these distributed systems.
When requests propagate slowly or stall indefinitely, inter-service
communication can result in cascade failures. If a request is delayed
for an extended time, the client devotes resources to it. When a signifi
cant amount of such requests depletes the server’s finite resources, such
as memory, threads, connections, or other constrained resources,
resource depletion and system failure might occur.

5.2. Experiment design

To apply the UNFRAGILE framework to a real-world web applica
tion, a proof-of-concept .NET application is built. The application con
tains several APIs that resemble different system response maturity
levels. The system components are hosted in Docker containers through
Docker-compose configurations. It is possible to package and run an
application in a loosely isolated container using Docker. Because of the
isolation and security, multiple containers can be executed concurrently
on a single host where applications are executed without depending on
what is installed on the host because containers are lightweight and
come with everything required to run them. The .NET Application APIs

Fig. 6. Fault-tolerance antifragility matrix.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

9

are dependent on another service that was built using NGINX to deliver
the API response. To illustrate how the chaos and latency in outbound
network calls can affect the system, ToxiProxy [45] is utilised to inject a
gradual latency in the network calls to that dependency (NGINX web
service) by routing all communications from .NET application to that
service through ToxiProxy, while monitoring all relevant metrics and
how they are affected from the injected latency. In the experiment, a tool
called NBomber [46] is used which is written in .NET to generate traffic.
The source code for the case study application, including all associated
modules, is openly available on GitHub [47] for reproducibility and
further exploration.

5.3. Experiment details

5.3.1. Experiment overall architecture
Fig. 8 demonstrates the overall architecture of our experiment’s

components and their relationships, which is also a concrete instantia
tion of UNFRAGILE framework architecture.

5.3.2. Hosting machine
All system components were hosted on an Amazon AWS EC2 VM

instance from the T3 Family. The model used was T3. Large1 with 8 GiB
of memory and 2 virtual CPUs. The instance had the capability to sup
port up to 3 TB of EBS block storage for storage purposes. In terms of
network performance, it could deliver speeds of up to 5 Gigabit. Overall,
the T3 instance belonged to the T3 Family, which is known for its bur
stable performance that aligns with our experiment workload.

Fig. 7. Fault-tolerance antifragility matrix.

Fig. 8. UNFRAGILE case study application components architecture.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

10

5.3.3. Chaos module

a) ToxiProxy [45]: an open-source proxy server developed by Shopify
which is used to simulate latency, errors, and other network condi
tions. It is a popular tool for testing the resilience of applications to
network failures. ToxiProxy can be used with a variety of program
ming languages, including Python, Java, and Go. This tool has been
used because it exposes an API to configure latencies, which is
required for the experiment since the latency is increased gradually
to simulate a realistic workload. Also, the proxy is low-overhead by
design.

b) NBomber [46]: a .NET library that can be used to send large numbers
of HTTP requests to a server. It is a popular tool for testing the per
formance of servers and for performing denial-of-service attacks. The
library can simulate real workload to cover complex cases by mixing
Pull/Push scenarios, protocols (HTTP/WebSockets) and formats
(XML/JSON/Protobuf) [46]. This tool has been selected for conve
nience because it supports customising simulation and can be inte
grated with ToxiProxy. It also provides experiment results in several
formats that can be automatically parsed and persisted in a
time-series database.

5.3.4. Monitoring module

a) Prometheus [41]: an open-source monitoring system and time-series
database. It is used to collect metrics from a variety of sources,
including servers, applications, and services. Prometheus stores the
collected metrics in a time series database, which can be queried to
generate graphs, tables, and alerts using Grafana. Prometheus is also
used to scrape the system and hosting machine metrics that are
exported by cAdvisor [48], One of the crucial features of Prometheus
is Instrumentation, which means adding and exposing your own
custom metrics. We also use Prometheus to instrument several
metrics that are useful for the application. The metrics we have
instrumented in our application using Prometheus Library are the
following: a) Standard metrics include CPU usage percentage,
memory usage percentage, TCP sockets metrics, and .NET API
response time latencies. b) Additionally, custom metrics such as
Injected latency, Adaptive concurrency limits, and 95 percentiles of
latencies are also monitored to ensure comprehensive monitoring
and analysis of system performance.

b) Grafana [49]: a dashboard and visualisation system for Prometheus
collected metrics or other data sources. They are used to monitor and
troubleshoot applications, systems, and infrastructure. Grafana is
used to create the experiment’s custom dashboards in order to
monitor experiment results.

5.3.5. Adaptation module
A background .NET service that adjusts software concurrency con

figurations based on observed latency from an NGINX web service, using

the Additive Increase and Multiplicative Decrease (AIMD) algorithm
[50]. It utilises shared memory to update concurrency limits and shed
load if requests exceed those limits. Load shedding [51] is essential to
prevent system overload, prioritise efficient request handling, and
maintain low latency for accepted requests. This approach creates a
sustainable and efficient system by avoiding wasted work and ensuring
high availability while mitigating the impact of excess traffic.

5.3.6. System under test
A proof-of-concept application is shown in Fig. 9, built using C# .

NET 7.0 that provides blog content through APIs. The solution consists
of two components:

a) A .NET 7.0 API service
b) NGINX Headless CMS.

The .NET Application receives API requests from clients for blog
posts and consequently issues HTTP Requests to NGINX Web service to
retrieve blog textual content. The application is a cross-platform cloud-
native Docker application that exposes multiple APIs using the MVC
pattern. It relies on the NGINX service to serve content, which is fetched
through HTTP requests using the HTTPClient. On the other hand, the
NGINX-based Headless CMS is a web server that is responsible for
serving content over the network via API calls. When a client sends a
request to the .NET service, it retrieves the required content from the
NGINX server to generate the response. Using Docker and Docker
Compose, the application and all of its dependencies are containerised,
allowing for simple deployment and scaling across various cloud envi
ronments. Thus, by leveraging containerisation in application operation
and deployment, it can be considered a cloud-native application.

5.3.7. Chaos engineering plan
The following steps are necessary in the chaos experimentation

procedure, as we stated in the introduction: capturing a snapshot of
system metrics at steady state, defining chaos variables, defining hy
potheses, and defining the blast radius.

In this work, the experiments are designed to generate a workload of
100 concurrent requests, which are injected every 5 s, generating a total
of 9600 requests over an 8-minute duration using the NBomber traffic
generator [46]. This workload simulates a realistic scenario that would
be suitable for a shared hosting docker container. Each experiment was
conducted ten times, and the monitoring data, which included the
average latencies, CPU, memory, and TCP allocations, were calculated.
Minimal standard deviations were observed, ensuring an accurate rep
resentation and confirming the data is statistically significant. In total,
the experiment involves 96,000 HTTP requests (9600 requests per
experiment * 10 trials) and is repeated for each phase (steady state,
fragile, robust, and antifragile), resulting in 384,000 requests. We will
provide a snapshot of system metrics in the next section. Each phase was
run for 1:20 h in real-time using the AWS cloud. A total of 5:20 h of

Fig. 9. Proof-of-concept application architecture.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

11

real-time experiment time was conducted to collect the results for all
phases (steady state, fragile, robust, and antifragile).

a) Chaos variables

In the experiment, “network latency” was injected gradually using
ToxiProxy in outbound network communications, as shown in Fig. 10.
The latency was increased after that by 0.4 s every 5 s over 8 min. The
goal was to simulate a real-world cloud application network congestion
workload. The latency reached a maximum of 15 s, which is typically
experienced during congestion in cloud systems or when dependent
systems are experiencing downtimes. The breakdown of the experiment
is as follows:

1. For the first 2.8 min, the latency was increased gradually by 0.4 s
every 5 s.

2. For the next 2.4 min (1/3 of the experiment time), the latency was
kept at the peak level of 15 s.

3. Finally, for the last 2.8 min, the latency gradually decreased by 0.4 s
every 5 s until it reached 0 s, simulating normal response times.

The purpose of this experiment is to mimic the behaviour of transient
cloud system congestion, which typically occurs for a few minutes and
then resolves itself with cloud auto-healing, manual intervention, etc.

b) Hypothesis: The .NET API metrics at a steady state will persist
after the chaos perturbation experiment duration.
c) Blast radius: Chaos latency injection is only applied to NGINX web
service, which is required for .NET Web API requests.

6. Results and discussion

We organised our data into four phases. First, we have our baseline,
or steady-state, results, which are obtained prior to the introduction of
any network latencies. This is followed by the three phases fragile,
robust, and antifragile, and these results will serve as our reference point
for assessing the hypothesis following the introduction of latency.
Furthermore, our findings are categorised as antifragile, robust, and
fragile phrases based on our analysis of the system response to chaos at
each stage in comparison with the steady state. The following sub
sections explain these phases in detail.

6.1. Steady state results

The steady-state results before injecting any network latencies are
documented, this will become our baseline for evaluating the hypothesis
after injecting latency. Fig. 11 demonstrates the API latencies, TCP al
locations, memory usage, and CPU usage for our baseline.

6.2. First phase (Fragile phase) results

The results after injecting latency gradually up to (15 s) with Tox
iProxy, generating realistic traffic over 8 min duration, repeating the
same experiments 10 times and capturing the averages of each mea
surement (min, max, mean). Fig. 12 shows the results of the fragile phase
compared to the results of the steady state for latency, TCP allocations,
memory usage, and CPU usage.

Analysing the results for the relevant metrics (TCP, CPU, Memory) of
the .NET application during the chaos experiment shows that the system
was highly sensitive to the injected latency. The system’s TCP connec
tions experienced an unbounded increase (from the baseline of a
maximum of 98 socket connections to a maximum of 5460 socket con
nections after injecting latency), and it will keep increasing if the
experiment persists. The CPU unexpectedly was lower, we can explain
this by the observation that the awaited network requests are locking the
threads during the wait-time, and making it idle and unable to process
all other HTTP requests till the response from the outbound service
returns, which is apparent from the rise in latency to more than 70 s
(compared to steady state) for some of the requests although our
injected latency upper bound was 15 s, which means that the HTTP
requests are experiencing long queueing time because there are no
threads are available in thread pool to process them. All of which led to
the accumulation of open sockets, and made most of the requests fail,
which eventually caused the system to crash (before completing all the
requests). Because the hosting machine is limited in the number of open
socket connections at a given time. This behaviour is consistent with a
concave response to stressors, indicating that the system is fragile under
stress. The root cause analysis revealed that the API component, which
was under stress, lacked asynchronous programming or any proactive
protection measures against latency in outbound communication. This
causes those threads to be locked, waiting for the response from the
NGINX service, and unable to process other requests concurrently. To
mitigate the fragility of the application, the following strategy is
implemented.

6.2.1. 1st phase adaptation strategy
To fix the fragility of the .NET API, all network calls are converted to

become asynchronous leveraging the TPL (Tasks Parallel Library) in .
NET. Also, an upper bound timeout of 10 s is implemented, if the
network call to NGINX service exceeds this timeout, the request will fail
gracefully which will potentially reduce all the open socket connections,
there are other strategies that can be implemented to tackle the same
problem such as “Circuit breaker” and “Bulkhead isolation” and
“Concurrency limits’’. To build this proactive policy, Polly.NET [52] is
used, which is a .NET library that provides resilience and transient-fault
handling capabilities. It allows developers to handle transient faults
such as network errors, timeouts, and other types of errors that can occur
when interacting with external services or systems. Those capabilities
can be implemented by applying Polly policies such as Retry, Circuit
Breaker, Bulkhead Isolation, Timeout, and Fallback.

6.3. Second phase (Robust) results

The results after injecting latency gradually up to (15 s) with Tox
iProxy while implementing asynchronous HTTP requests using Task
Parallel Library (TPL) and proactive timeouts are shown in Fig. 13

6.3.1. 2nd phase analysis
After implementing proactive strategies, latency significantly

improved significantly compared to the previous phase. The maximum
recorded value decreased from more than 70 s to 10 s, demonstrating a
noteworthy improvement. The system was able to withstand the
disturbance period without crashing or excessively depleting system
resources. Furthermore, the number of open socket TCP connections
reduced dramatically, with a maximum of 2.8k connections compared to Fig. 10. Chaos experiment design - injected latencies.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

12

5.5k in the previous phase. The system remained stable, and if the
request latency exceeded the defined timeout of 10 s, the system
terminated the requests and returned an HTTP status 400 error response
to the client. This behaviour can be seen in the Fig. 14.

The system’s behaviour can now be considered Robust, meaning that
the system’s reaction to increasing stress is neutral and bounded.
Although such a level of maturity might be acceptable for production-
grade systems, setting a constant (or hardcoded) timeout value can
lead to several problems. One of the significant issues is that the constant
timeout may not be suitable for all network calls since different network
calls can have varying response times, depending on factors such as
network congestion, server load, and latency. If the timeout value is set
too low, it can result in premature timeouts and incomplete requests,
leading to poor user experience and lost data. On the other hand, if the
timeout value is set too high, it can lead to prolonged wait times, which
can also negatively affect user experience and system performance.
Another problem with setting a constant timeout is that it may not be
effective in dealing with variability in network conditions. For example,
if the network experiences a sudden spike in latency, a fixed timeout
value may not be sufficient to handle the increased response time,
leading to more request timeouts and system failures. To mitigate these
challenges, it is required to apply the principles of antifragility outlined
in the literature and practice by implementing adaptive fault-tolerant
strategies. One approach that has been demonstrated by Netflix [53]

and other large systems providers to be particularly effective is to make
the system self-adaptive to changing latencies. This involves empower
ing the system with context awareness and the ability to dynamically
define limits, thus enabling it to respond to unexpected latencies in real
time. Rather than relying solely on timeouts to manage latency issues.
Thus, it is more effective to restrict the number of concurrent requests
sent to the external outbound system. When the system receives more
concurrent requests than it can handle, some requests will need to be
queued, which, in turn, increases the overall timeout for these requests.
Even in cloud environments with auto-scaling capabilities, the ability to
handle concurrent requests is always constrained by the available pro
cessing power. Therefore, Netflix recommends controlling concurrent
requests as a means of managing overall system performance [53]
instead of focusing solely on fixed limits. By doing so, the system gains
the ability to self-improve and self-adapt rather than relying on static
policies that are inherently proactive, such as timeouts. which aligns
with the antifragility matrix that we’ve proposed before.

6.4. Adaptive strategy

The adaptive concurrency limit is a technique developed by Netflix
[53] and was adopted by many companies [54–56] to improve service
availability and prevent cascading failures in their large distributed
systems. The algorithm which is shown in Fig. 15 is based on AIMD

Fig. 11. Experiment results - baseline phase.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

13

(Additive Increase and Multiplicative decrease), which was originally
used in TCP (Transmission Control Protocol) [53] . Concurrency refers
to the number of requests a system can handle simultaneously, and it is
usually limited by a fixed resource such as CPU [57]. When the number
of requests exceeds the concurrency limit, the system must queue or
reject them, which can lead to increased latency and, ultimately, system
failure, and consecutively, the propagation of failure to the origin sys
tem because if increased latency is left unchecked, it will start disturbing
the callers’ subsystems leading to cascading failures and fragility
through all of them. Concurrency refers to a system’s ability to process
several requests at the same time. It is usually determined by a restricted
resource, like the CPU [58]. This latency can be explained by Little’s law
[59] which asserts that the concurrency of a system in the steady state is
equal to the average service time multiplied by the average service rate.

(L= λW)

Determining the optimal concurrency limit for an outbound system
has been a manual and time-consuming process, and it quickly becomes
stale as the system’s topology changes due to outages, auto-scaling, or
code push. Determining the optimal concurrency limits based on run
time metrics [35] can solve this problem. which is the exact solution
implemented by Netflix in their distributed systems. The algorithm ad
justs the concurrency limit based on latency measurements and adds an
allowable queue size to account for bursts.

The algorithm initially sets a low concurrency limit and gradually
increases it by a fixed amount (+1) if the latency of requests in the last
period of time remains below the threshold, as shown in Fig. 16, this
additive increase phase allows the system to utilise more resources and
improve request throughput. If the latency exceeds a specific threshold
or a request timeout, the algorithm switches to a multiplicative decrease
phase. During this phase, the concurrency limit is reduced by a fixed
percentage (60 % in this case) to prevent system overload and cascading
failures. This adaptive mechanism helps protect the system by adjusting
the workload in response to changing conditions. It aligns with the
concept of overcompensation for potentially worse situations, as
described in Taleb’s book, "Antifragile”. “A system that overcompensates
is necessarily in overshooting mode, building extra capacity and strength in
anticipation of a worse outcome and in response to information about the
possibility of a hazard.” [1]. For our implementation, the initial config
urations [58] are as follows: (a) the latency threshold is set to 1 s (99
Percentile of the latencies at steady-state), (b) the decrease percentage is
60 %, the update interval is 2 s (where the Adaptation module calculates
the 95 percentiles of the recorded latencies and updates the concurrency
limit every 2 s), and the (c) round-trip time (RTT) uses the 95 percentiles
for latencies.

The adaptation module of the UNFRAGILE framework is designed to
detect system fragility, analyse root causes, and apply mitigation stra
tegies to enhance system antifragility. In this case study, we leverage the

Fig. 12. Chaos experiment results - fragile phase.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

14

AIMD (Additive Increase Multiplicative Decrease) algorithm to adjust
system parameters dynamically in response to real-time performance
data. The AIMD process involves periodically increasing resource allo
cations (additive increase) until an anomaly is detected, at which point it
decreases resource allocations by a multiplicative factor (multiplicative
decrease). This reconfiguration process allows the application to adapt
to disruptive situations, this has all been implemented as .NET services
through the following components:

• Adaptive concurrency policy: This policy manages the number of
concurrent outbound requests in the system, with the capability to

dynamically adjust the concurrency levels. It utilises a semaphore
lock in conjunction with the Polly.Net library to implement and
apply the policy on HTTPClient, the responsible driver for all
network requests in .NET

• Detection engine: Implemented as a recurring background job using
the BackgroundService library in .NET [60]. The detection engine
reads monitoring data from the monitoring module (Prometheus). It
frequently executes to gather all necessary parameters, such as the
number of in-flight requests, available slots, and the P95 latency.
Based on these metrics, it evaluates whether the adaptive concur
rency policy requires reconfiguration.

Fig. 13. Chaos experiment results - robust phase.

Fig. 14. Chaos experiment result - robust - average responses.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

15

• Mitigation executor: After determining if the current number of
concurrent requests is adequate or needs adjustment, the mitigation
executor updates the policy accordingly, increasing or decreasing the
concurrency limits as necessary by scaling up or down resources and
modifying configurations.

6.5. Third phase (Antifragile) results

Fig. 17 shows the results after injecting latency gradually up to (15 s)
with ToxiProxy while running an adaptive concurrency limit strategy
using the AIMD algorithm in the adaptation module.

6.5.1. Third phase analysis
An obvious improvement can be seen in the figures above in all of the

performance metrics during the chaos experiment. Furthermore, the
TCP ports were intensely reduced because the concurrent requests were
reduced after the system had observed a gradual increase in the latency
in the outbound dependency, which is a significant improvement
compared to the previous iteration because the system resources are
now protected against volatile behaviour of the external systems, not
only this, it was not required to configure any static limits, the system
was able to adapt to the changing environment according to the AIMD
algorithm [53] in which adaptively reaches the best concurrency limit to
enforce it on the components communicating with that outbound de
pendency according to the observed behaviour from that outbound de
pendency. Fig. 18 shows Adjusted Concurrency Limits that were
autoconfigured by the adaptation module and was instrumented in the
monitoring module.

The adjusted concurrent limit was recorded on a regular basis, and as
shown in the charts above, limitations started as low as 10 concurrent

requests and increased at the beginning of the experiment when the 95
percentiles of calculated latencies did not exceed the 1 s threshold.
However, as the chaotic module began to inject more latencies, the
adaptive module multiplicatively decreased the concurrency limit, and
it continued to decline until the outbound systems hit the configured
minimum number of concurrent requests (5 requests). The outbound
system progressively recovered and improved its latency, while the
adaptive module gradually raised the allowable concurrent requests as
the experiment neared its finish. The client responses for rejected re
quests due to overload is 400, as shown in Fig. 19. The number of re
quests that have been load shedded by the adaptation module due to
overload increased during the period when latency had increased
beyond the threshold, then it returned to its normal rate gradually.

As observed in the three phases of application incremental evolution,
fragile behaviour was uncovered through chaos engineering in the 1st
phase (fragile phase). It was clear that the system was indeed fragile to
outbound latency, which is a prevalent issue in cloud and distributed
systems. The conducted empirical analysis for fragility, which is repre
sented by the disturbance in application performance metrics and the
impact of chaos on these metrics, especially allocated socket connections
and memory, has shown that the system is sensitive to that class of chaos
and that it quickly stresses system resources and propagate failure to
other system components, which resembles the concave response as
explained by Taleb and Douady [61]. Consequently, an adaptation
phase was required, through which several strategies should be intro
duced to withstand chaotic networks in latency in network calls for
external downstream dependencies. Moreover, it can be seen in the
comparison figures below that the behaviour of the steady stage is
similar to the behaviour of the antifragile stage, which means that
without defining a static configuration, the system was able to

Fig. 15. Adaptive concurrency limits algorithm [53].

Fig. 16. AIMD algorithm in action [53].

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

16

self-stabilise during the chaos after learning from the environment
context that the dependent system is suffering. This was achieved
through the implementation of adaptive fault tolerance strategies,
which were employed as a means to achieve antifragility, as suggested
by [4]. This answers the first research question and demonstrates how
automated operational antifragility of real-world cloud applications
may be achieved.

Conventional resilience strategies are generally designed to facilitate
the rapid recovery from system failures or to withstand such failures. In
contrast, Adaptive fault tolerance approaches harness the lessons
learned from failures to guide the application towards the optimal
strategies for effectively managing the observed environment, this aligns
with the antifragility definition. Our results analysis, which is shown in
Fig. 20 for implementing an adaptive fault tolerance strategy, namely

Fig. 17. Chaos experiment results- antifragile.

Fig. 18. Chaos experiment result - antifragile - adjusted concurrency limits.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

17

AIMD, demonstrates how the UNFRAGILE framework has been suc
cessfully used, answering the second research question.

The study demonstrates the UNFRAGILE framework’s ability to be
implemented incrementally through incrementally embedding adaptive
fault tolerance strategies. This approach is used to differentiate between
robust and antifragile responses and to demonstrate its integration
within an incremental development lifecycle, ensuring an application
that is truly antifragile in uncertain and chaotic environments.

6.6. UNFRAGILE applicability to more complex architectural frameworks

UNFRAGILE may be used for more complicated systems and in
complex architectural frameworks, but it may also present complexity
issues when integrating it into existing architectures. For example, if we
are considering microservices architecture, this might require each
microservice to have a substantial code refactoring process to be inte
grated with UNFRAGILE.

Performance overheads that could impair the general performance of
such systems by increasing latency and use of resources is another issue

Fig. 19. Chaos experiment results - antifragile - API responses.

Fig. 20. Comparing means for experiment stages.

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

18

that might be faced. Moreover, using UNFRAGILE for such systems may
cause serious difficulties due to limited maintenance support.
UNFRAGILE may as well have unidentified security gaps that create
weak points when combined with current systems, potentially intro
ducing new security vulnerabilities. As a result, UNFRAGILE demands
that strong security be provided both before and after the transition.

The expense of implementing UNFRAGILE may also be a barrier
because it entails overhead, the need for more experienced staff, and the
possibility of failures and downtime during the transition. Furthermore,
teams inside organizations may be resistant to change as a result of
modifications to workflows and technologies, which makes resistance to
change a significant difficulty to take into account. Organizations with
established architectural frameworks must pay attention to their appli
cation and transition processes. These organisations must weigh the
benefits and drawbacks and create a thorough transition plan that
avoids causing problems with technology and business.

6.7. Implementation and scalability challenges

The question of scalability was addressed in the overall design of the
UNFRAGILE framework. One of the design principles we have adopted is
the decoupling of the main components (chaos, monitoring, adaptation)
of the framework from the system under test. This approach helps avoid
the pitfalls of common optimization frameworks that often make it
harder to scale or integrate with existing systems. Decoupling means
that the chaos, monitoring, and adaptation components can be scaled
independently. The exact scaling strategy—whether horizontal or ver
tical—is left to the implementation details of the experiment that adopts
the framework. In the paper, we suggested using cloud-native methods
for implementation because they facilitate the introduction of scaling
policies that fit specific requirements. By utilising cloud-native tech
nologies, it becomes much easier to add more monitoring and chaos
components, thereby enhancing the scalability and flexibility of the
UNFRAGILE framework.

Another challenge for scaling the UNFRAGILE monitoring module is
when the system has many components with complex relationships, but
since chaos engineering is the methodology we use in designing the
chaos experiments, the methodology originally defines the idea of the
“blast radius”. This means that when designing the chaos experiment,
the target components are selected, and every component in the system
is monitored. Although the complexity of this task increases with the
number of system components, we suggest mitigating this challenge by
using auto-instrumentation when adding the system monitoring mod
ule. Auto-instrumentation and Auto-Discovery should make it easier to
discover all operating system components and put them under the radar
of monitoring before, during, and after the experiment. Cloud-native
also makes it easier to introduce auto instrumentation through code
injection at runtime and service discovery strategies (OpenTelemetery,
for example, uses such strategies).

7. Conclusion, limitations, and future work

In an effort to create antifragile systems out of current software, the
paper examined cloud software antifragility from the viewpoints of
practitioners and software engineers. The UNFRAGILE framework, built
on antifragility principles, formalises a process for fault injection,
monitoring applications, and software adaptation. The results in Fig. 20
show that the framework has defined an overall architecture of sup
portive modules to help move existing systems from the fragile phase to
the antifragile phase through continuous experimentation utilising
chaos engineering and monitoring application response to stress. The
results of applying and validating the framework show that it is appli
cable and that it has the potential to enhance existing software incre
mentally, which is suitable for modern-day agile software development.
However, the framework’s limitations lie in its application to cloud-
native environments and distributed architectures, suggesting more

studies on concurrent actor models, as well as other computing models.
However, a single case study may not be enough to generalise the
applicability of the UNFRAGILE framework for every type of systems
stressor, we can still explore the framework on other adjacent opera
tional disruptions for some of the properties of subject systems. More
over, our case study involves specific assumptions about the cloud
environment, application architecture, and types of failures introduced.
Specifically, we assumed a particular set of dependencies and failure
modes typical of .NET applications running in Docker containers.
However, the UNFRAGILE framework itself is designed to be general
izable beyond the chosen technologies. The cloud-native approach can
be used to implement the framework across various technology stacks
without requiring changes to the overall design of the components and
their interactions. Our study demonstrated the efficacy of applying the
UNFRAGILE framework to enhance the antifragility of a cloud applica
tion. the case study we have designed to prove that was .NET Cloud-
native application, so it is important to acknowledge certain limitations:

• Assumptions are related to the cloud model we are using. However,
these assumptions might not hold in different contexts, such as leg
acy systems or serverless architectures that have upper limit for
request time. or other different computing models such as concurrent
actor models.

• While we demonstrated the framework’s effectiveness in a controlled
environment with an all-in cloud architecture, monitored and
orchestrated using the Docker toolset, Real-world applications might
encounter additional challenges related to scalability and perfor
mance and multi-cloud approaches that were not fully explored in
our study. Future work should involve testing the framework in
large-scale environments to evaluate its scalability and instantiating
the same architectural components for UNFRAGILE in other tech
nology stacks.

• UNFRAGILE experiments must be carried out in a production envi
ronment, a limitation of this approach is that it does not employ
static analysis methods to detect fragility during the development
phase.

Due to resource constraints such as time, cost, and computational
resources for the public cloud, we gave priority to in-depth and high-
quality analysis over the number of experiments, which has the poten
tial to provide valuable insights. Additional experiments could provide
further insights. However, they require more resources, cost, and time.
Our primary goal is to develop the framework and to demonstrate its
practicality and applicability to real-world settings. The chosen case and
benchmarks reflect the effectiveness of the framework under realistic
conditions. In future work, we will focus on evaluating the framework
across several other dimensions to ensure its robustness and versatility.
Dimensions that include:

• Different Technology Stacks: We will apply the UNFRAGILE frame
work to other technology stacks such as Node.js. This will help
validate the framework’s applicability and effectiveness across
diverse programming environments and platforms.

• Different Chaos Attacks: We will introduce a variety of chaos sce
narios, including hardware failures, and resource starvation. By
testing these different types of attacks, we aim to comprehensively
assess the framework’s ability to detect, adapt, and improve system
resilience under a wide range of stress conditions.

• Different performance measures: taking system recovery time and
adaptability measures into account is important. In future studies,
this will enable us to present a more comprehensive and multidi
mensional evaluation of the framework’s performance and
antifragility.

• Different Cloud Deployment Models: We will implement the
UNFRAGILE framework across various cloud deployment models,
including public, private, and hybrid clouds. This will allow us to

J.S. Botros et al.

Information and Software Technology 174 (2024) 107519

19

evaluate the framework’s performance and adaptability in different
cloud environments, ensuring that it can effectively enhance anti
fragility regardless of the deployment model.

• Varying Systems Architecture: Our case study targeted cloud-native
web applications, but other system architectures exist, such as
serverless architecture, we will focus on exploring how to adapt
UNFRAGILE framework into them.

• Other Adaptation techniques and a recommender module that em
ploys machine learning to identify and implement the best adapta
tion strategies are potential future research projects.

Funding

This work was supported by the Researcher Development Frame
work award [No. CSRDF22-23-1AA], Keele University, for Dr Al-Said
Ahmad.

Availability of code

https://github.com/josephwasily/Defragile.

CRediT authorship contribution statement

Joseph S. Botros: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Data curation, Conceptualiza
tion. Lamis F. Al-Qora’n: Writing – review & editing, Writing – original
draft, Supervision, Methodology. Amro Al-Said Ahmad: Writing – re
view & editing, Validation, Supervision, Methodology, Funding acqui
sition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Code is publicly available.

References

[1] N.N. Taleb, Antifragile things that gain from disorder, Random House Trade
Paperbacks 23 (3) (2013), https://doi.org/10.1108/10595421311319852.

[2] C. Keating, Anti-fragile: how to live in a world we don’t understand, vol. 13, no. 11.
2013. doi: 10.1080/14697688.2013.830860.

[3] K.J. Hole, Tutorial on systems with antifragility to downtime, Computing 104 (1)
(2022) 73–93, https://doi.org/10.1007/s00607-020-00895-6.

[4] D. Russo, P. Ciancarini, Towards antifragile software architectures, Procedia
Comput. Sci. 109 (2017) 929–934, https://doi.org/10.1016/j.procs.2017.05.426.

[5] D. Russo, P. Ciancarini, A proposal for an antifragile software manifesto, Procedia
Comput. Sci. 83 (2016) 982–987, https://doi.org/10.1016/j.procs.2016.04.196.

[6] M. Monperrus, Principles of antifragile software, in: ACM International Conference
Proceeding Series, 2017, pp. 1–4, https://doi.org/10.1145/3079368.3079412.

[7] V. Grassi, R. Mirandola, D. Perez-Palacin, Towards a conceptual characterization of
antifragile systems, in: Proceedings - IEEE 20th International Conference on Software
Architecture Companion, ICSA-C 2023, IEEE, 2023, pp. 121–125, https://doi.org/
10.1109/ICSA-C57050.2023.00036.

[8] V. Grassi, R. Mirandola, D. Perez-Palacin, A conceptual and architectural
characterization of antifragile systems, J. Syst. Softw. 213 (2024) 112051, https://
doi.org/10.1016/j.jss.2024.112051.

[9] K.J. Hole, Anti-fragile ICT Systems, Springer Nature, 2016, https://doi.org/
10.1007/978-3-319-30070-2.

[10] J. Choi, D.L. Nazareth, T.L. Ngo-Ye, The effect of innovation characteristics on
cloud computing diffusion, J. Comput. Inf. Syst. 58 (4) (2018) 325–333, https://
doi.org/10.1080/08874417.2016.1261377.

[11] R. Dodder, R. Dare, Complex adaptive systems and complexity theory: inter-related
knowledge domains, ESD. 83: Res. Seminar Eng. Syst., MIT (2000) 14 [Online].
Available, http://web.mit.edu/esd.83/www/notebook/ComplexityKD.PDF.

[12] N. Kratzke, P.C. Quint, Understanding cloud-native applications after 10 years of
cloud computing - a systematic mapping study, J. Syst. Softw. 126 (2017) 1–16,
https://doi.org/10.1016/j.jss.2017.01.001.

[13] C. Rosenthal, N. Jones, Chaos engineering system resiliency in practice, O’Reilly
Media (2020).

[14] B. Scholl, T. Swanson, P. Jausovec, Cloud native: using containers, functions, and
data to build next-generation applications, O’Reilly Media, Inc (2019).

[15] D. Gannon, R. Barga, N. Sundaresan, Cloud-native applications, IEEE Cloud
Comput 4 (5) (2017) 16–21, https://doi.org/10.1109/MCC.2017.4250939.

[16] L. Liu, Services computing: from cloud services, mobile services to internet of
services, IEEE Trans. Serv. Comput. 9 (5) (2016) 661–663, https://doi.org/
10.1109/TSC.2016.2602898.

[17] T. Welsh, E. Benkhelifa, On resilience in cloud computing, ACM Comput. Surv. 53
(3) (2020) 1–36, https://doi.org/10.1145/3388922.

[18] T.M. Tawfeeg, et al., Cloud dynamic load balancing and reactive fault tolerance
techniques: a systematic literature review (SLR), IEEE Access 10 (2022)
71853–71873, https://doi.org/10.1109/ACCESS.2022.3188645.

[19] D. Hillson, Beyond resilience: towards antifragility? Contin. Resil. Rev. (2023)
https://doi.org/10.1108/CRR-10-2022-0026.

[20] A. Tolk, Implementing antifragiles: systems that get better under change, in:
International Annual Conference of the American Society for Engineering
Management 2013, 2013, pp. 118–126. ASEM 2013.

[21] M. Monperrus, Software that learns from its own failures, ArXiv (2015) abs/1502.0
[Online]. Available, http://arxiv.org/abs/1502.00821.

[22] K.H. Jones, Engineering antifragile systems: a change in design philosophy,
Procedia Comput. Sci. 32 (2014) 870–875, https://doi.org/10.1016/j.
procs.2014.05.504.

[23] J. Allspaw, Fault injection in production, Commun. ACM 55 (10) (2012) 48–52,
https://doi.org/10.1145/2347736.2347751.

[24] M.A. Naqvi, S. Malik, M. Astekin, L. Moonen, On evaluating self-adaptive and self-
healing systems using chaos engineering, in: Proceedings - 2022 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2022, IEEE,
2022, pp. 1–10, https://doi.org/10.1109/ACSOS55765.2022.00018.

[25] A. Pierce, J. Schanck, A. Groeger, R. Salih, M.R. Clark, Chaos engineering
experiments in middleware systems using targeted network degradation and
automatic fault injection, in: Open Architecture/Open Business Model Net-Centric
Systems and Defense Transformation2021, SPIE, 2021, p. 8, https://doi.org/
10.1117/12.2584986.

[26] C.S. Meiklejohn, A. Estrada, Y. Song, H. Miller, R. Padhye, Service-level fault
injection testing, in: SoCC 2021 - Proceedings of the 2021 ACM Symposium on
Cloud Computing, 2021, pp. 388–402, https://doi.org/10.1145/
3472883.3487005.

[27] A. Al-Said Ahmad, P. Andras, Scalability resilience framework using application-
level fault injection for cloud-based software services, J. Cloud Comput. 11 (1)
(2022) 1–13, https://doi.org/10.1186/s13677-021-00277-z.

[28] J. Simonsson, L. Zhang, B. Morin, B. Baudry, M. Monperrus, Observability and
chaos engineering on system calls for containerized applications in Docker, Futur.
Gener. Comput. Syst. 122 (2021) 117–129, https://doi.org/10.1016/j.
future.2021.04.001.

[29] B.C.I. KOSTENKO, Antifragile Microservice Systems, Masaryk University, 2023
[Online]. Available, https://is.muni.cz/th/w3tej/.

[30] B. Rossi, “Antifragile microservice systems, supervisor’s review,” 2023. [Online].
Available: https://is.muni.cz/th/w3tej/posudek_vedouciho_Rossi.pdf.

[31] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, Z. Li, Microservices: architecture,
container, and challenges, in: 2020 IEEE 20th international conference on software
quality, reliability and security companion (QRS-C), IEEE, 2020, pp. 629–635,
https://doi.org/10.1109/QRS-C51114.2020.00107.

[32] Y. Gan, M. Liang, S. Dev, D. Lo, C. Delimitrou, Practical and scalable ML-driven
cloud performance debugging with sage, IEEE Micro (2022) 27–36, https://doi.
org/10.1109/MM.2022.3169445.

[33] C. Ma and M. Ranney, “Failure mitigation for microservices: an intro to aperture.”
Accessed: Nov. 09, 2023. [Online]. Available: https://doordash.engineering/2023/
03/14/failure-mitigation-for-microservices-an-intro-to-aperture/.

[34] M.A. Shahid, N. Islam, M.M. Alam, M.S. Mazliham, S. Musa, Towards Resilient
Method: an exhaustive survey of fault tolerance methods in the cloud computing
environment, Comput. Sci. Rev. 40 (2021) 100398, https://doi.org/10.1016/j.
cosrev.2021.100398.

[35] J. Liu, S. Zhang, Q. Wang, J. Wei, Coordinating fast concurrency adapting with
autoscaling for SLO-oriented web applications, IEEE Trans. Parallel Distrib. Syst.
33 (12) (2022) 3349–3362, https://doi.org/10.1109/TPDS.2022.3151512.

[36] A. Brogi, J. Carrasco, F. Durán, E. Pimentel, J. Soldani, Self-healing trans-cloud
applications, Computing (2022) 1–25, https://doi.org/10.1007/s00607-021-
00977-z.

[37] P. Zoghi, M. Shtern, M. Litoiu, H. Ghanbari, Designing adaptive applications
deployed on cloud environments, ACM Trans. Auton. Adapt. Syst. 10 (4) (2016)
1–26, https://doi.org/10.1145/2822896.

[38] A. Abid, M.T. Khemakhem, S. Marzouk, M. Ben Jemaa, T. Monteil, K. Drira,
Toward antifragile cloud computing infrastructures, Procedia Comput. Sci. 32
(2014) 850–855, https://doi.org/10.1016/j.procs.2014.05.501.

[39] D. Anderson, “What is APM? Application performance monitoring in a cloud-native
world.” Accessed: Oct. 10, 2023. [Online]. Available: https://www.dynatrace.
com/news/blog/what-is-apm-2/.

[40] Z. Flower, “5 benefits of APM for businesses.” Accessed: Jun. 20, 2023. [Online].
Available: ttps://www.techtarget.com/searchapparchitecture/feature/Learn-the
-benefits-of-APM-software-in-the-enterprise.

[41] “Prometheus.” Prometheus. [Online]. Available: https://prometheus.io/.
[42] N. Kratzke, Cloud-native observability: the many-faceted benefits of structured and

unified logging—a multi-case study, Futur. Internet 14 (10) (2022) 274, https://
doi.org/10.3390/fi14100274.

J.S. Botros et al.

https://github.com/josephwasily/Defragile
https://doi.org/10.1108/10595421311319852
http://10.1080/14697688.2013.830860
https://doi.org/10.1007/s00607-020-00895-6
https://doi.org/10.1016/j.procs.2017.05.426
https://doi.org/10.1016/j.procs.2016.04.196
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1109/ICSA-C57050.2023.00036
https://doi.org/10.1109/ICSA-C57050.2023.00036
https://doi.org/10.1016/j.jss.2024.112051
https://doi.org/10.1016/j.jss.2024.112051
https://doi.org/10.1007/978-3-319-30070-2
https://doi.org/10.1007/978-3-319-30070-2
https://doi.org/10.1080/08874417.2016.1261377
https://doi.org/10.1080/08874417.2016.1261377
http://web.mit.edu/esd.83/www/notebook/ComplexityKD.PDF
https://doi.org/10.1016/j.jss.2017.01.001
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0013
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0013
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0014
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0014
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/TSC.2016.2602898
https://doi.org/10.1109/TSC.2016.2602898
https://doi.org/10.1145/3388922
https://doi.org/10.1109/ACCESS.2022.3188645
https://doi.org/10.1108/CRR-10-2022-0026
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0020
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0020
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0020
http://arxiv.org/abs/1502.00821
https://doi.org/10.1016/j.procs.2014.05.504
https://doi.org/10.1016/j.procs.2014.05.504
https://doi.org/10.1145/2347736.2347751
https://doi.org/10.1109/ACSOS55765.2022.00018
https://doi.org/10.1117/12.2584986
https://doi.org/10.1117/12.2584986
https://doi.org/10.1145/3472883.3487005
https://doi.org/10.1145/3472883.3487005
https://doi.org/10.1186/s13677-021-00277-z
https://doi.org/10.1016/j.future.2021.04.001
https://doi.org/10.1016/j.future.2021.04.001
https://is.muni.cz/th/w3tej/
https://is.muni.cz/th/w3tej/posudek_vedouciho_Rossi.pdf
https://doi.org/10.1109/QRS-C51114.2020.00107
https://doi.org/10.1109/MM.2022.3169445
https://doi.org/10.1109/MM.2022.3169445
https://doordash.engineering/2023/03/14/failure-mitigation-for-microservices-an-intro-to-aperture/
https://doordash.engineering/2023/03/14/failure-mitigation-for-microservices-an-intro-to-aperture/
https://doi.org/10.1016/j.cosrev.2021.100398
https://doi.org/10.1016/j.cosrev.2021.100398
https://doi.org/10.1109/TPDS.2022.3151512
https://doi.org/10.1007/s00607-021-00977-z
https://doi.org/10.1007/s00607-021-00977-z
https://doi.org/10.1145/2822896
https://doi.org/10.1016/j.procs.2014.05.501
https://www.dynatrace.com/news/blog/what-is-apm-2/
https://www.dynatrace.com/news/blog/what-is-apm-2/
http://ttps://www.techtarget.com/searchapparchitecture/feature/Learn-the-benefits-of-APM-software-in-the-enterprise
http://ttps://www.techtarget.com/searchapparchitecture/feature/Learn-the-benefits-of-APM-software-in-the-enterprise
https://prometheus.io/
https://doi.org/10.3390/fi14100274
https://doi.org/10.3390/fi14100274

Information and Software Technology 174 (2024) 107519

20

[43] R. Rai, “Automatic instrumentation of containerized .NET applications with
OpenTelemetry.” Accessed: Jul. 20, 2023. [Online]. Available: https://www.twilio.
com/blog/automatic-instrumentation-of-containerized-dotnet-applications-with
-opentelemetry.

[44] Z.T. Kalbarczyk, R.K. Iyer, S. Bagchi, K. Whisnant, Chameleon: a software
infrastructure for adaptive fault tolerance, IEEE Trans. Parallel Distrib. Syst. 10 (6)
(1999) 560–579, https://doi.org/10.1109/71.774907.

[45] “Toxiproxy.” Shopify. [Online]. Available: https://github.com/Shopify/toxiproxy.
[46] “NBomber.” NBomber. [Online]. Available: https://nbomber.com/docs/gettin

g-started/overview/.
[47] J. Botros, “Defragile.” GitHub, 2023. [Online]. Available: https://github.com/jos

ephwasily/Defragile.
[48] “cAdvisor.” Google. [Online]. Available: https://github.com/google/cadvisor.
[49] “Grafana.” Grafana. [Online]. Available: https://grafana.com/docs/grafana/latest

/dashboards/.
[50] V. Kumar, “Handling overload with concurrency control and load shedding — part

2.” Accessed: Oct. 15, 2023. [Online]. Available: https://vikas-kumar.medium.co
m/handling-overload-with-concurrency-control-and-load-shedding-part-2-6b8
b594d4405.

[51] D. Yanacek, “Using load shedding to avoid overload,” Amazon Web Services.
Accessed: Jul. 20, 2023. [Online]. Available: https://aws.amazon.com/builders-
library/using-load-shedding-to-avoid-overload/.

[52] “The Polly Project.” The Polly Project, 2019. [Online]. Available: https://thepo
llyproject.azurewebsites.net/.

[53] Netflix Technology Blog, “Performance under load.” Accessed: Jul. 20, 2023.
[Online]. Available: https://netflixtechblog.medium.
com/performance-under-load-3e6fa9a60581#.

[54] D. Kleiman, “Adaptive concurrency control for mixed analytical workloads.”
Accessed: Jul. 20, 2023. [Online]. Available: https://klaviyo.tech/adaptive-conc
urrency-control-for-mixed-analytical-workloads-51350439aeec.

[55] Q.-M. Nguyen, “Gitaly adaptive concurrency limit.” Accessed: Jun. 20, 2023.
[Online]. Available: https://docs.gitlab.com/ee/architecture/blueprints/gital
y_adaptive_concurrency_limit/.

[56] “Backpressure.” Camunda. Accessed: Jul. 20, 2022. [Online]. Available: https://
docs.camunda.io/docs/self-managed/zeebe-deployment/operations/backpre
ssure/.

[57] Netflix, “Netflix concurrency limits.” Netflix /GitHub, 2023. [Online]. Available:
https://github.com/Netflix/concurrency-limits.

[58] C. [Cloud N. C. Foundation], “Envoy, take the wheel: real-time adaptive circuit
breaking - Tony Allen, Lyft.” Accessed: Jul. 20, 2023. [Online]. Available:
https://www.youtube.com/watch?v=CQvmSXlnyeQ.

[59] J.D.C. Little, A proof for the queuing formula: L= λ W, Oper. Res. 9 (3) (1961)
383–387.

[60] T. Dykstra, et al., Background tasks with hosted services in ASP.NET Core,
Microsoft (2024). AccessedJun. 09[Online]. Available, https://learn.microsoft.
com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-8.0
&tabs=visual-studio.

[61] N.N. Taleb, A map and simple heuristic to detect fragility, antifragility, and model
error, SSRN Electron. J. (2012), https://doi.org/10.2139/ssrn.1864633.

J.S. Botros et al.

https://www.twilio.com/blog/automatic-instrumentation-of-containerized-dotnet-applications-with-opentelemetry
https://www.twilio.com/blog/automatic-instrumentation-of-containerized-dotnet-applications-with-opentelemetry
https://www.twilio.com/blog/automatic-instrumentation-of-containerized-dotnet-applications-with-opentelemetry
https://doi.org/10.1109/71.774907
https://github.com/Shopify/toxiproxy
https://nbomber.com/docs/getting-started/overview/
https://nbomber.com/docs/getting-started/overview/
https://github.com/josephwasily/Defragile
https://github.com/josephwasily/Defragile
https://github.com/google/cadvisor
https://grafana.com/docs/grafana/latest/dashboards/
https://grafana.com/docs/grafana/latest/dashboards/
https://vikas-kumar.medium.com/handling-overload-with-concurrency-control-and-load-shedding-part-2-6b8b594d4405
https://vikas-kumar.medium.com/handling-overload-with-concurrency-control-and-load-shedding-part-2-6b8b594d4405
https://vikas-kumar.medium.com/handling-overload-with-concurrency-control-and-load-shedding-part-2-6b8b594d4405
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://thepollyproject.azurewebsites.net/
https://thepollyproject.azurewebsites.net/
https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581#
https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581#
https://klaviyo.tech/adaptive-concurrency-control-for-mixed-analytical-workloads-51350439aeec
https://klaviyo.tech/adaptive-concurrency-control-for-mixed-analytical-workloads-51350439aeec
https://docs.gitlab.com/ee/architecture/blueprints/gitaly_adaptive_concurrency_limit/
https://docs.gitlab.com/ee/architecture/blueprints/gitaly_adaptive_concurrency_limit/
https://docs.camunda.io/docs/self-managed/zeebe-deployment/operations/backpressure/
https://docs.camunda.io/docs/self-managed/zeebe-deployment/operations/backpressure/
https://docs.camunda.io/docs/self-managed/zeebe-deployment/operations/backpressure/
https://github.com/Netflix/concurrency-limits
https://www.youtube.com/watch?v=CQvmSXlnyeQ
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0059
http://refhub.elsevier.com/S0950-5849(24)00124-1/sbref0059
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-8.0&tnqh_x0026;tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-8.0&tnqh_x0026;tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-8.0&tnqh_x0026;tabs=visual-studio
https://doi.org/10.2139/ssrn.1864633

	Towards antifragility of cloud systems: An adaptive chaos driven framework
	1 Introduction
	2 Research questions (RQs)
	3 Research background and related work
	3.1 Antifragility principles and system architecture
	3.2 Chaos engineering and fault injection
	3.3 Adaptive concurrency

	4 UNFRAGILE architectural framework: a systematic improvement to system’s response to stressors and failures
	4.1 Chaos module
	4.2 Monitoring module
	4.3 Adaptation module
	4.3.1 Adaptation process description
	4.3.2 Static fault tolerance vs adaptive fault tolerance
	4.3.3 Enhancing static fault tolerance strategies to become adaptive

	4.4 UNFRAGILE framework workflow

	5 Case study
	5.1 Experiment description
	5.2 Experiment design
	5.3 Experiment details
	5.3.1 Experiment overall architecture
	5.3.2 Hosting machine
	5.3.3 Chaos module
	5.3.4 Monitoring module
	5.3.5 Adaptation module
	5.3.6 System under test
	5.3.7 Chaos engineering plan

	6 Results and discussion
	6.1 Steady state results
	6.2 First phase (Fragile phase) results
	6.2.1 1st phase adaptation strategy

	6.3 Second phase (Robust) results
	6.3.1 2nd phase analysis

	6.4 Adaptive strategy
	6.5 Third phase (Antifragile) results
	6.5.1 Third phase analysis

	6.6 UNFRAGILE applicability to more complex architectural frameworks
	6.7 Implementation and scalability challenges

	7 Conclusion, limitations, and future work
	Funding
	Availability of code
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

