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Abstract

Objective This study delves into the impact of urban meteorological elements—specifically, air temperature, relative
humidity, and atmospheric pressure—on water consumption in Kamyaran city. Data on urban water consumption,
temperature (in Celsius), air pressure (in hectopascals), and relative humidity (in percent) were used for the statistical
period 2017-2023. Various models, including the correlation coefficient, generalized additive models (GAM),
generalized linear models (GLM), and support vector machines (SVM), were employed to scrutinize the data.

Results Water consumption increases due to the influence of relative humidity and air pressure when the
temperature variable is controlled. Under specific air temperature conditions, elevated air pressure coupled with high
relative humidity intensifies the response of water consumption to variations in these elements. Water consumption
exhibits heightened sensitivity to high relative humidity and air pressure compared to low levels of these factors.
During winter, when a western low-pressure air mass arrives and disrupts normal conditions, causing a decrease in
pressure and temperature, urban water consumption also diminishes. The output from the models employed in this
study holds significance for enhancing the prediction and management of water resource consumption.
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Introduction

Addressing the escalating challenge of urban water scar-
city and exploring sustainable management methods
stands out as a crucial research imperative on a global
scale today [1]. Climate change and heightened global
resource utilization, particularly in arid regions like Iran,
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are contributing to escalating water tensions among vari-
ous regions and cities. Simultaneously, the surge in urban
population over recent decades has led to a doubling
of the demand for water resources [2]. Access to water
resources emerges as a fundamental challenge in urban
management. According to studies, accurately predict-
ing the water demand for a city relies significantly on
meteorological variables, in addition to factors such as
population, social dynamics, economic conditions, and
technological aspects [3].

Water consumption is influenced by human factors like
population and technology, but monthly and seasonal
patterns depend on meteorological conditions, which
drive medium-term fluctuations in consumption [4, 5].
Water scarcity in North America results from climate
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change and population growth, worsened by overexploi-
tation of water resources. This is compounded by abun-
dant fresh water alongside poor management practices
[6].

The significance of meteorological variables in pre-
dicting urban water consumption has been underscored
as crucial by various studies [7—10]. Studies have used
machine learning methods like artificial neural networks
(ANN:Ss) to forecast water demand [9], specifically in rela-
tion to climatic factors. They primarily explored potential
input variables, employing various statistical techniques
to discern the optimal model input and to achieve precise
predictions of future urban water demand, considering
meteorological factors [11-13]. Seasonal climate varia-
tions influence water consumption differently through-
out the year, with factors like humidity and evaporation
affecting end-of-summer usage. Identifying these influ-
ences is crucial due to the complexity of urban water
consumption pattern [14—16].

Effective and sustainable urban water management
requires understanding meteorological variables’ identi-
fication and impact. Each region has its own water con-
sumption patterns and should be investigated by advance
modelling methods to provide an insight into the effects
of environmental factors. Therefore, we investigated
monthly and seasonal water consumption fluctuations,
using Generalized Linear Models (GLM), Generalized
Additive Models (GAM), and support vector machines
(SVM) in Kamyaran, Iran.

Materials and methods

Data

This study utilized data encompassing urban water con-
sumption, temperature (measured in Celsius), air pres-
sure (measured in hectopascals), and relative humidity
(measured in percentage) for the statistical period span-
ning from 2017 to 2023.

Statistical analysis

The study employed zero-order Pearson correlation to
explore linear associations between meteorological vari-
ables and water consumption, and first-order partial cor-
relation to assess distinct impacts. A GAM was used to
examine non-linear responses. Additionally, GLM and
SVM models were constructed to capture both linear
and non-linear relationships. The simplex optimizer algo-
rithm was applied to understand the additive and sub-
tractive influences of independent variables.

GLM extends linear models, measuring relationships
between variables via regression parameters and confi-
dence intervals, based on provided formulas. The GLM
model can be written as g (1) = a+ ) 3 ;v; where “g”
is a link function from the exponential family, i is the
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mean response, [ is the vector of regression coefficients
and g is the matrix of predictors.

GAMs are a nonparametric extension of GLMs [17].
GAMs allow the data to determine the shape of the
response curve by g(u)=a-+ Z§:1fj (X;). In these
models, it is assumed that the dependent variable has
a distribution from the exponential family with mean
w =E(Y|Xy,..., X,), which is linked to the indepen-
dent variables (X;) through the link function (g). In fact,
GAMs extend the parametric form of the independent
variables in the linear model to a nonparametric form.

Here, f; for j=1,2,---,pare assumed to be
unknown and smooth functions, and X; are independent
variables. Specifically, f;is estimated from the data using
advanced scatterplot smoothing techniques. GAM allows
data to shape response curves unlike parametric models,
replacing linear functions with smooth functions. These
additive functions enable separate investigation of pre-
dictor variables’ effects, identifying nonlinear relation-
ships [18, 19].

The SVMs are data-driven algorithms, used for classi-
fication and regression problems. SVMs create a hyper-
plane to maximize the margin between classes, utilizing
support vectors for optimization [20]. SVR is used to
describe regression [21] in the form of a least squares
model. In this regard, there are two types of SVMs called
SVM-¢ and SVM-Nu, and in this study, the SVM-Nu
approach is used. In machine learning models, the aim is
to estimate the relationship between dependent variable
and independent variables, minimizing error while main-
taining smoothness.

The Simplex algorithm is a non-gradient search
method for minimizing functions with continuous vari-
ables. It iteratively tests solutions until an optimal point
is found, making no assumptions about the function’s
nature [22, 23]. Therefore, in this approach, by applying
the Simplex algorithm on the models produced by GLM
and SVM-Nu, the simulated water consumption of each
of these models was optimized.

Results and discussion

The long-term average of meteorological variables during
summer for air temperature (°C), relative humidity (%),
and air pressure (hPa) was 8, 60, and 892 respectively.
The same for summer was 29, 20, and 880 respectively.
Similarly for yearly was 18, 41, and 886.

The results from the Pearson correlation analysis and
the nonlinear and significant impact of temperature,
pressure, and relative humidity variables at a 99% confi-
dence level on water consumption (depicted in Table 1)
reveal a statistically significant relationship between the
three meteorological variables and water consumption.
Specifically, air temperature exhibits a direct relationship,
while air pressure and relative humidity show an inverse
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Table 1 Zero- and 1-degree correlation coefficient of meteorological variables with water consumption and results of individual and
combined fitting of GAM model on meteorological variables against water consumption in Khorram Abad

Correlation and Model

Air temperature (°C)

Relative humidity (%) Air pressure (hPa)

Zero-order correlation Water consumption 0.53 -0.50 -0.38
1-order discriminant correlation control (air temperature) - 0.19 042
control (air pressure) 0.59 -0.32 -
control (relative humidity) 042 - 0.13
Individual GAM model Degrees of freedom 3 3 2
Model parameters -0.0144 -0.004 0.108
p-value <0.001 <0.001 <0.001
Combined GAM model Degrees of freedom 4 3.99 4
Model parameters 0.0253 0.0049 0.0390
p-value <0.001 <0.001 <0.001

relationship with the dependent variable. Continuing the
investigation, the study explores the non-linear response
of water consumption using the GAM for both individual
and cumulative variables, employing the Poisson distri-
bution and the log link function.

Figure 1 depicts the nonlinear relationship between
water consumption and temperature, humidity, and pres-
sure individually and cumulatively. Individual analysis
reveals varying responses compared to the combined
state, notably opposite reactions to humidity. In the
cumulative state, pressure influences increased con-
sumption, moderated by temperature. However, con-
trolling for humidity and temperature unveils nuanced
reactions, with consumption initially increasing with
pressure, then decreasing beyond 883 hectopascals. A
pattern of increasing-stasis-increasing is observed con-
cerning humidity. Changes in a 5-month moving average
indicate an inverse correlation between temperature and
pressure, mitigating summer temperature impacts on
consumption.

A 5-month moving average was applied to the time
series to smooth seasonal fluctuations. Winter tem-
perature changes have a larger impact on consumption,
while summer sees mitigating effects from air pressure
and humidity. Adaptive GAM and SVM models further
analyze consumption reactions. Temperature increases
correlate with consumption, especially in colder sea-
sons below 11.15 °C, when humidity and air pressure are
higher, indicating stronger temperature effects. (Fig. 2).

The reaction of water consumption to air tempera-
ture, pressure, and humidity in annual status, winter,
and summer conditions in GLM and SVM-Nu models
was checked (FIG S1). The examination of these graphs
reveals a seasonal transition from winter to spring-sum-
mer, characterized by a gradual increase in air tempera-
ture and a decrease in relative humidity and air pressure.
Notably, the composite spline component graphs indi-
cate a positive impact of net pressure, relative humid-
ity, and temperature on water consumption. Therefore,
under specific conditions, the combination of these

three variables may exert a synergistic effect on water
consumption.

The moving average charts depict an inverse relation-
ship between temperature and air pressure-relative
humidity trends. While rising temperatures increase
water consumption, the influence diminishes in summer
due to air pressure and humidity acting as mitigating fac-
tors. Consequently, the impact of temperature changes
on consumption is more pronounced in cold seasons.
Both SVMs (non-linear) and GAM (linear) models were
employed to estimate seasonal effects on urban water
consumption, revealing nonlinear reactions to meteoro-
logical variables and reducing linear correlations.

Nonlinear models generally outperform linear ones in
the study. For instance, the impact of air temperature on
water consumption, controlled for pressure and humid-
ity, showed nonlinear reactions in winter and annually,
but linear in summer. This highlights winter’s height-
ened responsiveness to temperature changes due to
humidity and pressure moderating summer consump-
tion. Air pressure’s effect on consumption varies, with
winter conditions showing lower impact than summer.
Similarly, relative humidity’s impact, estimated by both
linear and nonlinear models, is more pronounced in
summer than winter. Overall, nonlinear models provide
superior insights, indicating seasonal variations in water
consumption’s sensitivity to temperature, pressure, and
humidity in Kamyaran’s urban water management.

Discussion and conclusion

The study in Kamyaran investigates the influence of
meteorological factors on urban water consumption,
highlighting the interplay between temperature, pressure,
and humidity. Linear and nonlinear models reveal that all
three factors increase water consumption, but air pres-
sure and humidity have a diminishing effect on the tem-
perature-water consumption relationship. This inverse
relationship is attributed to the law of gases, where tem-
perature influences pressure and humidity. Analysis
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Fig. 1 (a) Cumulative reaction of water consumption to temperature, (b) Separate reaction of water consumption to temperature, (c) Cumulative reac-
tion of water consumption to pressure, (d) Separate reaction of water consumption to pressure, (e) Cumulative reaction of water consumption to relative
humidity, (f) Separate reaction of water consumption to relative humidity
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Fig. 2 Five-month moving average: temperature, pressure, relative humidity

using a 6-month moving average further elucidates these
trends.

GLM and SVM models predict water consumption
based on temperature, pressure, and humidity, showing
stronger effects of humidity and pressure in summer and
temperature in winter due to regional climate dynam-
ics. External factors like western waves and cyclones also
affect local climate, creating unique conditions where the
combined effect of temperature, humidity, and pressure
significantly influences water consumption, emphasiz-
ing the complexity of managing water resources in arid
regions.

The absolute and relative position of the city of
Kamyaran, which is influenced by the migrating western
and southwestern weather systems, and with the arrival
of short waves and rainy systems in the west and in the
cold season, the climate of Kamyaran is subject to change.
Based on the results of the partial correlation coefficient,
it is expected that the entry of low-pressure air masses
will have a greater effect on reducing consumption than
high-pressure air masses. This is because the values of
temperature and pressure in the former mass lead to
a decrease in the amount of water consumption, while
these two variables act against each other in the latter
mass. Such results are contrary to reality and the usual
and standard state of the air in Kamyaran, in which high
pressure in the cold season is based on low temperatures
and minimum air pressure in the hot season is based on
high temperatures. Such conditions indicate the nonlin-
ear reactions of the amount of water consumption if the
effects of other variables are not kept constant. Brentan
et al. [24] also showed in a study that water consumption
has a positive relationship with temperature and a nega-
tive relationship with air pressure and relative humidity.
Since the air pressure and relative humidity are low in the

hot season in Kamyaran, the amount of water consump-
tion also has an upward trend.

This achievement confirms the findings by Abbasi et al.
[4] who reported a threshold temperature of 15 degrees
Celsius for the city of Khorramabad, which is in a similar
climatic and geographical situation. Similarly, Aqeeluko
and Draper [25] reported a threshold temperature of 15
degrees Celsius for the city of Calgary (Alberta, Canada),
Gato et al. [26] reported a threshold temperature of 27.5
degrees Celsius for Melbourne (Australia), and Sarker et
al. [27] reported a threshold temperature of 35.5 degrees
Celsius for Melbourne (Australia). The research findings
consistently indicate that water consumption does not
exhibit a significant response to temperature increases
below these identified thresholds. Maidment and Miao
[28] also showed that in the states of Texas, Florida, and
Pennsylvania, the reaction of water consumption to tem-
peratures between 29 degrees Celsius and 32 degrees
Celsius is about 3 to 5 times greater than temperatures
below 29 degrees Celsius. Temperature thresholds were
calculated individually, revealing nonlinear water con-
sumption reactions. However, these findings lack control
over other variables, showing only the individual model’s
effect.

Limitations

Our findings were subjected to some limitations. Short-
comings that occurred during data collection may have
influenced the reliability of the results. Additionally, the
small sample size was small which may limit the gener-
alizability of our conclusions, as it may not adequately
represent the broader population. Furthermore, this
study does not establish causality. Without a clear causal
framework, it is difficult to determine whether changes
in risk factors directly influence water consumption or if
other underlying factors are at play.
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