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Abstract

Context Software engineering (SE) experiments often have small sample sizes. This can
result in data sets with non-normal characteristics, which poses problems as standard para-
metric meta-analysis, using the standardized mean difference (Std M D) effect size, assumes
normally distributed sample data. Small sample sizes and non-normal data set characteris-
tics can also lead to unreliable estimates of parametric effect sizes. Meta-analysis is even
more complicated if experiments use complex experimental designs, such as two-group and
four-group cross-over designs, which are popular in SE experiments.

Objective Our objective was to develop a validated and robust meta-analysis method that
can help to address the problems of small sample sizes and complex experimental designs
without relying upon data samples being normally distributed.

Method To illustrate the challenges, we used real SE data sets. We built upon previous
research and developed a robust meta-analysis method able to deal with challenges typical
for SE experiments. We validated our method via simulations comparing Std M D with two
robust alternatives: the probability of superiority (p) and Cliffs’ d.

Results We confirmed that many SE data sets are small and that small experiments run the
risk of exhibiting non-normal properties, which can cause problems for analysing families
of experiments. For simulations of individual experiments and meta-analyses of families of
experiments, p and Cliff’s d consistently outperformed Std M D in terms of negligible small
sample bias. They also had better power for log-normal and Laplace samples, although lower
power for normal and gamma samples. Tests based on p always had better or equal power
than tests based on Cliff’s d, and across all but one simulation condition, p Type 1 error rates
were less biased.

Conclusions Using p is a low-risk option for analysing and meta-analysing data from small
sample-size SE randomized experiments. Parametric methods are only preferable if you have
prior knowledge of the data distribution.

Keywords Meta-analysis - Effect size - Non-parametric - Probability of superiority - Small
sample sizes - Reproducible research

Communicated by: Carlo A. Furia

B Lech Madeyski
lech.madeyski @pwr.edu.pl

1" School of Computing and Mathematics, Keele University, Keele, Staffordshire ST5 5BG, UK

2 Wroclaw University of Science and Technology, Wyb.Wyspianskiego 27, Wroclaw 50370, Poland

Published online: 17 August 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10504-1&domain=pdf
http://orcid.org/0000-0003-3907-3357

137 Page2of46 Empirical Software Engineering (2024) 29:137

1 Introduction

This article arose from our goal to develop reliable analysis guidelines to allow meta-
analysis of families of software engineering (SE) randomized experiments (Basili et al. 1999).
Although sometimes criticized for lack of realism, randomized experiments are important
because they allow researchers to test causal hypotheses.

The standard methods for meta-analysis of randomized experiments are based either on
two-group between-participants experiments or on single-group before-after repeated mea-
sures experiments, and are well understood (see, e.g., (Borenstein et al. 2009)). However,
software engineering experiments have characteristics that make meta-analysis far more dif-
ficult:

— Complex statistical designs. Vegas et al. (2016) pointed out that repeated measures
crossover-style experiments were extremely popular for organizing software engineer-
ing experiments. Subsequently, Santos et al. (2020) confirmed that many families of
experiments included cross-over experiments. One of the major advantages of cross-
over experiments for small sample-size experiments is that they have higher power than
between-group experiments of the same size. However, in the wider statistical litera-
ture, we found only one paper that considered including repeated measures cross-over
style experiments in meta-analysis (Curtin et al. 2002). Furthermore, it only considered
the AB/BA cross-over, not the more complex four-group variant common in SE exper-
iments (Kitchenham et al. 2020a, 2022). In addition, we found and corrected existing
errors in the published formulas for the variance of the effect sizes (see Kitchenham
et al. (2018) and Madeyski and Kitchenham (2018)). However, the estimates obtained
by using our revised formulas might themselves be unreliable when calculated from
small samples, so our corrections to the mathematical formulas cannot address all the
meta-analysis problems observed in SE experiments that use cross-over experiments to
improve the power of small sample-size experiments.

— Small sample sizes. Software engineering experiments (particularly those with human
participants) are often criticized for using sample sizes that are too small to give reli-
able results, and meta-analysis is recommended as a means of addressing the problem
(e.g., Shepperd 2018; Jgrgensen et al. 2016). However, for meta-analysis to be valid, we
need effect sizes and methods to aggregate those effect sizes that are reliable. Unfor-
tunately, small samples are often unrepresentative of the distributions from which they
arise. For example, in a recent study of the use of correlations in repeated measures
experiments, our simulation studies showed major differences between the estimated
variance of different small data sets sampled from the same distribution (see Kitchenham
et al. 2022). Thus, small data sets are likely to produce unreliable estimates of sample
properties from which the standardized mean difference effect sizes are constructed.

— Data inconsistent with the normal (Gaussian) distribution. In a study of the methods
used to meta-analyse families of SE experiments, we identified several meta-analysis
problems (Kitchenham et al. 2020a). A particular problem was that some researchers
reported that individual experiments in a family failed normality tests. Still, because of the
lack of any alternative meta-analysis method, they used a standard parametric approach
to meta-analyse the data from such families (violating the normality assumption).

In order to address these three meta-analysis issues, we concluded that it was necessary to
develop a well-defined, validated process for analysis and meta-analysis of SE experiments
that properly addressed the problems that arise when analysing families of small sample-size
SE experiments.
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This article reports our proposed analysis method and the results of our validation of the
method. The analysis method was based on three critical concepts that are needed to support
robust meta-analysis:

1. Identifying a Robust Effect Size and a Non-Parametric Analysis Method. To per-
form a meta-analysis, it is necessary to select an appropriate effect size to measure each
experiment’s outcome. To analyse small data sets from unknown distributions, we need
both effect sizes that are resilient to anomalous values that can occur as a result of small
samples or non-normal distributions, and non-parametric analysis methods that do not
require a normal distribution (or any other specific distribution) to calculate them.

2. Addressing Complex Statistical Designs. Non-parametric methods are usually restricted
to fairly simple experimental designs, but to support SE researchers using cross-over
designs to increase the power of small sample-size experiments, we need non-parametric
analysis methods that can be applied to such designs.

3. Specifying the Meta-Analysis Process. It is necessary to adopt a robust meta-analysis
process that can be used to aggregate the chosen effect size.

The statistical analysis proposals presented in this paper are based mainly on three exist-
ing statistical analysis proposals that provided methods of addressing the analysis problems
facing researchers restricted to using small sample sizes in the context of randomized exper-
iments. Firstly, Kromrey et al. (2005) proposed using the non-parametric effect size Cliff’s
d for meta-analysis. In this study, we investigated both Cliff’s d and the related probability
of superiority (referred to as p), which are ranked-based effect sizes. Secondly, Brunner and
Munzel (2000) and Brunner et al. (2002) addressed the problems associated with variance
heterogeneity in rank-based effect sizes by developing test procedures based on Welch’s
method (Welch 1938) that provide reliable statistical tests after the data is transformed to
average ranks. Thirdly, Senn (2002) pointed out that non-parametric methods could be used to
analyse a crossover-style experimental design by analysing the differences between repeated
measures.

However, to develop viable meta-analysis proposals for non-parametric effect sizes, it
is essential to validate them. Simulation studies are the standard method used to validate
statistical analysis proposals (Ripley 2006; Garcia et al. 2010), and it is necessary to validate
each element of our proposed method. For our validation studies, we compared the impact
of analysing data using our proposal with the usual parametric analysis method based on
the standardized mean difference effect size (Std M D). We sampled data from four different
distributions in order to compare the analyses on normal and non-normal samples. We used
normally distributed samples to provide baselines against which to compare the effectiveness
of the non-parametric effect sizes and meta-analysis method. To assess the extent to which
our methods were robust to non-normal data, we investigated datasets from three distributions
with various non-normal characteristics: the Lognormal distribution that produces strongly
skewed samples, the Gamma distribution that produces moderately skewed samples, and the
Laplace distribution that produces samples that are symmetric but have longer tails, and hence,
more outliers than normal samples. Our simulation studies were designed to investigate the
power, bias, estimate error, and Type 1 error rates of our analysis method for the different
distributions and experimental designs.

In Section 2, we provide an overview of the characteristics of randomized experiments
for readers unfamiliar with issues involved in running randomized experiments. Then, we
analyse some existing families of randomized experiments that have made their experimental
data publicly available, in order to give readers some idea of the range of sample sizes found in
SE experiments and the frequency of data sets exhibiting non-normal characteristics. Sample
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sizes reported in this section influenced our choice of sample sizes in our simulation studies.
Subsequently, we organize our study to introduce our analysis proposals and then validate
the different elements of the proposals.

We summarize our effect size proposals in Section 3 and provide a more detailed expla-
nation in our Supplementary Material (Kitchenham and Madeyski 2023). Then, in Section 4,
we present simulation results based on samples generated from four different distributions’
that confirmed the value of non-parametric effect sizes for individual experiments with small
sample sizes.

In Section 5, we report our simulations of meta-analysing families of two-group and four-
group experiments and confirm the value of non-parametric effect sizes for meta-analysis of
small sample size experiments. This was made difficult because there are no well-defined
guidelines for using Std M D with small samples, and factors such as sample size and exper-
imental design all result in different meta-analysis methods. We illustrate the problem with
a small example in Section 5.1 and justify the method we adopted for our meta-analysis
simulations.

In Section 6, we summarize our results, identify the limitations of our simulation studies,
and present our conclusions.

To assist readers who would like to adopt the use of our analysis methods, we provide a
reproducer package (Madeyski et al. 2023), written in R, that can be used to reproduce the
analyses reported in this paper. Wilcox has provided implementations (in R) of the methods
to calculate Cliff’s d and p, as well as their variances (Wilcox 2012). However, we have
amended Wilcox’s algorithms to provide consistent estimates of Cliff’s d and p, as well as an
alternative approach to handling extreme values of the effect sizes that lead to estimates of the
effect size variance being zero. This is discussed in the Supplementary Material (Kitchenham
and Madeyski 2023). Our long-term goal is to promote the reproducibility of research in
software engineering (Madeyski and Kitchenham 2017) by supporting our research papers
with algorithms and data sets published in the reproducer R package (see Kitchenham
et al. 2017; Madeyski and Kitchenham 2018; Jureczko and Madeyski 2015; Madeyski and
Jureczko 2015).

2 Properties of Data Sets Obtained from Software Engineering
Experiments

In this section, we describe the design of formal SE experiments which our analysis proposals
are intended to address. Then we use the results of two of our previous investigations of SE
experiments to demonstrate the existence of unreliable parameter estimates, small sample
sizes, and non-normal residuals. These issues confirm the need for, and the potential value of,
robust effect sizes and non-parametric meta-analysis for SE experiments with small sample
sizes.

2.1 Characteristics of Randomized Experiments

The goal of a randomized experiment is to formally test causal hypotheses that compare
two or more different treatments which address the same condition. The term treatment is

U we provide a short tutorial on the properties of the four distributions used in our simulations in the Supple-
mentary Material (Kitchenham and Madeyski 2023).
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adopted from the health care field, but applies to any method that can be used to achieve a

specific objective.

In SE research, randomized experiments aim to investigate different techniques used
to perform the same SE task. For example, the most famous series of experiments in SE
compared the use of perspective-based code reading for error detection either with checklist-
based code reading or with ad-hoc code reading (for a summary of papers investigating this
issue, see Ciolkowski (2009)).

SE experiments are usually designed to investigate which of two (or sometimes more)
techniques is either most likely to be associated with a correct task outcome, or most likely to
ensure a task is completed as quickly as possible (or with the least effort). Thus, in most cases,
we require outcome measures related to task output effectiveness and/or task efficiency.

Any randomized experiment is comprised of a number of trials, where, in the SE context,
each trial involves a human subject (or sometimes a team) performing a SE task using one of
the techniques under investigation. In order to provide an answer to the question of whether
one technique is likely to be better than another technique with respect to effectiveness or
efficiency, we need to perform multiple trials of each technique under the same conditions.
In addition, the trials need to be organized into a valid experimental design.

For a valid experiment, the variation between trials needs to be controlled so that the only
difference between trials is due to random variation between the individual participants (or
teams) in the experiment and the technique being used. In SE, we expect skill differences
between participants to impact the effectiveness and efficiency of task performance. This is
addressed in three ways:

1. Random assignment of participants to each technique. Random assignment is usually
constrained to ensure even numbers of participants per technique for optimal statistical
tests. It leads to the simplest statistical design, which statisticians refer to simply as a
randomized experiment. It is also referred to as a between-groups experiment, a between-
subjects experiment or an A/B experiment. It is effective when sample sizes are large
enough to ensure that random allocation will (with a high probability) ensure participant
skill differences are spread evenly between each treatment group.

2. Blocking into low- and high-skill groups. If participants can be separated into two or more
groups (preferably of the same size), referred to as blocks, on the basis of skill levels,
participants in each block can then be assigned randomly to equal-sized groups for each
technique. The statistical analysis is more complicated because it must address the impact
of the blocking process on the outcome measures. Statisticians refer to this design as a
randomized block design. It is sometimes mistakenly referred to as a factorial experiment
in SE (see the comment in Kitchenham et al. 2019)

3. Repeated measures designs which measure the results of human participants performing
tasks using all the techniques being investigated. This allows the participants to be observed
under both treatment conditions and to act as their own control. Formally, such designs
make experiments more powerful (i.e., the experiment is more likely to correctly reject
the null hypothesis). However, it requires more work from the participants, who have to
learn two techniques and undertake two trials, and more work for the experimenters since
they need to prepare more experimental materials, which need to be as similar as possible
for both tasks (e.g., instead of needing one piece of faulty code, experimenters need two
pieces of faulty code and the difficulty of the two programs and their embedded faults
need to be as similar as possible), and they need to undertake more complex statistical
analysis. There are two main forms of repeated measure design. The simplest design
is a within-subject before/after design where all participants perform a task using one
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technique and then perform a similar task using the other technique. However, in SE,
researchers usually use a more complex form of design called a crossover design. In
crossover designs, participants are randomized into two or more sequence groups. In the
simplest crossover design (which statisticians refer to as an A/B crossover), participants
in one sequence group perform a task using technique A first, then later perform a task
using technique B. In contrast, participants in the other sequence group use technique B
first, then technique A. However, SE researchers have frequently adopted an even more
complicated design involving 4-sequence groups for their experimental designs (see Vegas
et al. 2016).

All other conditions in an experiment need to be as similar as possible. This means
that experimental materials are the same or similar so that the SE tasks are essentially the
same for each technique (e.g., the same faulty code module in the case of a code reading
experiment or a specification of the same phenomenon in the case of an experiment involving
the understandability of different notations) This is obviously more difficult in the case of
repeated measures designs.

In addition, it is important that experimenters treat participants the same, irrespective of
their assigned treatment. Two imporant issues in the context of SE is to ensure both that
experimenters are not biased towards one of the techniques, and that participant training
does not favour one technique more than another.

Finally, the conduct of the experiment must be controlled to ensure that all participants
perform their tasks using the allowed materials and methods, all have the same amount of time
for their tasks, and that there is no interaction between individual participants (or individual
teams). Given the planned duration of the experimental tasks, the tasks need to be designed
not to be too difficult for any of the participants to complete, and not to be too simple so that all
the participants complete them easily. It is usual for academic researchers to run experiments
rather like examinations, so that all participants undertake their tasks at the same time and
can be discouraged from copying.

The statistical and meta-analysis methods proposed in this article are intended to support
all forms of random experiment discussed in this section, except factorial experiments. They
are intended for use when researchers have small sample sizes and unknown distributions.

2.2 Previous Analyses of Experimental Data

The data sets used in this section were obtained from two studies:

1. Kitchenham et al. (2020a), performed a systematic review of methods used to meta-
analysis families of experiments. We selected papers that meta-analysed parametric effect
sizes and identified 13 primary studies, each of which included between 3 and 5 random-
ized experiments. The set of studies we used in our experiment overlaps 12 of the 15
papers (Santos et al. 2020) classified as using the aggregated data (AD) technique. We
excluded two of the papers found by Santos et al. because they were not published in
the five SE journals we selected as having a relatively high impact and excluded another
one because it meta-analysed results of correlation studies, not experiments (i.e., Acuila
et al. 2015). We also found one paper that Santos et al. missed (i.e., Morales et al. 2016).
For more details about the search and selection process (see Kitchenham et al. 2020a).
We studied the experiments reported in these papers in some detail and identified them
as the type of experiments that the analysis and meta-analysis methods proposed in this
article are intended to address. One of the papers reported the results of three team-based
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experiments, but the other experiments all reported experiments that involved individual
human participants.

2. Kitchenham et al. (2022) investigated the correlation between repeated measures found
in cross-over experiments. We did this by re-analyzing the raw data from cross-over
experiments. As Santos et al. (2020) reported, most families of experiments did not pro-
vide access to their raw data. However, with our collaborators (Scanniello and Gravino),
who organized many families of experiments, we obtained raw data from 15 studies (11 of
which reported families of experiments). Two of the studies analysed team results and four
of the 15 studies overlapped with the data sets used in our previous study (Kitchenham et al.
2020a). These data sets are discussed, in detail, in the Supplementary Material (Kitchen-
ham et al. 2020b) to the paper by Kitchenham et al. (2022) and the raw data are available for
the experiments reported in 13 of the studies in the R reproducer package (Madeyski
et al. 2023).

2.3 Unreliable Variance Estimates

In our study of correlation in crossover experiments (Kitchenham et al. 2022), which was
based on both simulation studies and on analysis of software engineering datasets. We anal-
ysed data sets from 15 different software engineering papers reporting 36 different software
engineering experiments and 69 output metrics.

Our simulation studies confirmed that estimates of sample variances from small samples
(e.g., samples of 30 or less) based on normal distributions with equal variances can be very
inaccurate and often exhibit large heterogeneity.

Our analysis of the SE data sets showed some large differences between variance estimates
from different groups in the same experiment. That is, if we constructed the variance of data
from one sequence group in a crossover experiment and the variance of the another sequence
group, in the same experiment, they could be very different for small data sets. Thus, with
small data sets, we are likely to find within-group variance estimates that are very non-
homogeneous, and we cannot tell whether this is due to small data sizes or genuine variance
heterogeneity attributable to the experimental conditions. Whatever the reason, standard
analysis of variance tools always assumes variance homogeneity for anything more complex
than a simple between-two-group experimental design. The implication is that our variance
estimates for experiments with small sample sizes are untrustworthy in the sense that we
cannot be sure of their accuracy. However, we need reliable variance estimates to construct
trustworthy parametric effect sizes, such as the standardized mean difference (Std M D) or
the point biserial correlation coefficient.

2.4 Sample Sizes in SE Families of Experiments

Although Santos et al. noted that sample sizes for families of experiments were relatively
small in their mapping study of 39 families of experiments, we wanted to be sure about the
range of sample sizes that had been used by SE researchers for randomized experiments
of the type addressed by the methods proposed in this article. To do this, we identified
all individual studies and experiments in Kitchenham et al. (2022) and Kitchenham et al.
(2020a), excluding those involving team results rather than results obtained from individuals.
In Kitchenham et al. (2022), 13 of the 15 papers reported data from 32 experiments that
analysed individual participant data In Kitchenham et al. (2019), we analysed 13 papers
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that reported a meta-analysis of families of experiments, of which nine were not included
in the set of papers discussed in Kitchenham et al. (2022). These nine papers reported 31
experiments that analysed individual participant data. Thus, from a total of 22 papers, we
had sample size information on 63 independent experiments. We present a histogram of the
sample size data in Fig. 1.

Of the 63 experiments, 53 (i.e., 84%) had 40 or fewer participants. The smallest experiment
had 9 participants, and the largest had 178. The median number of participants was 24. This is
very close to the value of 23.5 we found for the median of the experiments reports by Santos
et al. (2020), excluding the overlapping papers we included in our analysis. These sample
sizes confirm that SE randomized experiments usually have small sample sizes. This analysis
motivated our choice of sample sizes in the simulation studies reported in this paper.

2.5 Frequency of Non-Normality in SE Experiments

To assess the prevalence of non-normal data, we re-analysed data from 13 of the 15 studies
used in Kitchenham et al. (2022), omitting the two studies that analysed data at a team level.
The remaining 13 studies reported 32 experiments that used either the standard two-group
AB/BA crossover studies or the four-group duplicated crossover design, where duplication
was based on the order in which the participants received the software engineering materials
needed to perform the required software engineering tasks (Madeyski and Kitchenham 2018).
Many of the 32 experiments collected several different metrics from each participant, leading
to a total of 64 different datasets.

In order to assess the normality of the data, we analysed the data for each metric in
each experiment and investigated the distribution of the residuals. We have argued against
preanalysis normality testing elsewhere (Kitchenham et al. 2019). In particular, a specific
issue in the context of complex experimental designs, such as the crossover designs, is that
the experimental design itself can introduce differences between partitions of the data that
can make the raw data appear non-normal. However, there is no objection to analysing the
distribution of residuals because the systematic differences between experimental conditions
are removed by statistical analysis. The experimental designs used by the 32 experiments
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Fig. 1 The number of participants per experiment (bin size = 5)
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were all crossover designs, including both two-group and four-group cross-over designs. We
discuss the nature of these designs in Kitchenham et al. (2022).

We analysed the AB/BA crossover experiments with the R package 1me4 using the lmer
formula as shown in Fig. 2. This analysis follows Senn’s recommendations for modelling
and analysing AB/BA crossover designs by treating Time Period as a simple blocking factor
and any interaction between Time Period and the treatment factor as negligible (Senn 2002).

Metric ~ TP + Treat + (1|ParticipantID)

Fig.2 1mer model function for AB/BA crossover experiments

where:
Metric identifies the outcome,
TP is a fixed effect parameter that identifies the time
period in which the value was obtained,
Treat is a fixed effect parameter that identifies the treatment
condition that was used to obtain the outcome value,
(1|ParticipantID) identifies the participant providing the output data and

confirms that participant values are treated as random

variables.

For the four-group duplicated crossover, described in Kitchenham et al. (2020b, Section 3),
we introduced two new blocking factors, as shown in Fig. 3, specifically:

COID (i.e., CrossOverID) to identify which group of participants
belonged to the same AB/BA crossover, and
System to specify which software system materials (i.e., code or documents)

were used in each experimental condition.

Metric ~ TP + Treat + System + COID + (1|ParticipantID)

Fig.3 lmer model function for four-group crossover experiments

We treat System and COID (which identifies which groups are matched together) as
simple blocking factors and assume interactions among such factors are negligible.

After analysing data for each metric, we analysed the distribution of the standardized
residuals. Specifically, we calculated the mean, median, variance, skewness, and kurtosis
values, identified the number of outliers for each output metric using the R boxplot function,
and tested the residuals for normality using the Anderson-Darling (AD) test, which we found
was preferred to the Shapiro-Wilk test by several recent studies (see Kitchenham et al. 2019).
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Table 1 Data sets with

. Study  Exp Metrics N AD Number of
non-normal properties P-Val  outliers
S1 USB2 Time 24 0045 1
S4 PoliTo2 Comprehension 17  0.013 0
S4 UniGe Comprehension 66  0.002 2
S6 EUBAS Comprehension 24 0.012 5
S6 RIUGOT!  Time 63  0.000 12
S8 UniBas2 Comprehension 31  0.040 0
S8 UniBas1 Efficiency 33 0049 3
S8 UniBas2 Efficiency 31 0.048 1
S9 UniBZ Comprehension 26 0.009 1
S9 UniBZ Time 26 0.008 5
S10 P2007 NATPPH 22 0000 5
S12 PROF Efficiency 16  0.007 2
S12 UNIBAS Efficiency 49 0.000 6
S12 UNINA Efficiency 19 0.003 4
S13 EXP1 Fc 55 0020 1
S14 CSI12010 Effectiveness 32 0012 2

2.6 Analysis Results and Implications

At the p = 0.05 level, residuals from 16 (of 64) data sets (i.e., 25%) failed the normality
test (see details in Table 1). The expected false positive rate given 64 data sets is 3 (with
a 95% upper bound of 6), which suggests that the proportion of data sets with non-normal
properties is excessive, even if the three experiments with p-values only just below 0.05 are
ignored. Five of the 64 data sets exhibited more than five outliers (based on a boxplot of the
residuals), and all of those five data sets also failed the normality test.

It is important to note that:

1. Data sets with non-normal residuals were found in nine of 13 families (i.e., in more than
69% of families of experiments).

2. In only two cases were data with non-normal residuals from the same experiment.

3. Among the data sets with non-normal properties are all eight experiments with sample
sizes larger than 30. Larger datasets are usually more trustworthy than small ones, so it
is possible that the smaller samples could have included false negatives as a result of the
lack of power usually associated with normality tests (Kitchenham et al. 2019).

Hence, not only did we find a much larger number of failed tests than would be expected, but
these were not restricted to specific families, specific metrics, or specific experiments. Thus,
our results confirm the following:

— SE experiments are often relatively small.
— Families of experiments are quite likely to include at least one experiment with residuals
that will fail tests of normality?.

2 We do not claim that the data sets are samples from non-normal distributions, only that the characteristics
of the data sets are likely to cast doubts on the validity of analyses that rely on normally distributed data.
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3 Non-parametric Methods and Robust EffectSizes

Robust effect sizes aim to provide summary sample statistics that are less influenced by
outliers than the usual mean and variance. As discussed by Derrick et al. (2017), outliers
are sample values that differ substantially from other values in a sample. Outliers increase
the variability of a sample and can result in unreliable estimates of the mean and variance.
Outliers can occur if the data is inherently non-normal, but can also occur by chance in normal
samples, and are most likely to occur in small samples.

Early suggestions for robust effect sizes were based on finding robust measures of central
location and dispersion that could be used to calculate robust equivalents of standardized
mean difference effect sizes. For example, Kraemer and Andrews (1982) developed an effect
size catering for pre-test and post-test studies where the post-test had both a treatment and a
control group. The effect size was based on the proportion of observations in the treatment
group that were greater than the median of the observations in the control group.

Hedges and Olkin (1983) extended this work by investigating a number of different exper-
imental designs. Their study makes it clear that effect sizes depend on experimental design.

Recent research has been more influenced by rank-based robust statistics (also known as
order statistics). In particular, many researchers have considered effect sizes based on the
probability that a random observation obtained from one group is greater than a random
observation from another group. This has been given a variety of different names in different
disciplines, such as the Common Language effect size (McGraw and Wong 1992), the A mea-
sure of Stochastic Superiority (Varga and Delany 2000; Arcuri and Briand 2014; Madeyski
et al. 2014), the Probability Index (Acion et al. 2006), Probability of Benefit (Faraone 2008),
and the Mann-Whitney probability of superiority (Rahlfs et al. 2013), and which we refer to
simply as the probability of superiority p.

Cliff’s d (Cliff 1993) is another non-parametric statistic closely related to the probability
of superiority. This is also referred to as the Mann-Whitney difference by Rahlfs et al. (2013).

In this study, we investigate the probability of superiority (which we refer to as p) and
Cliff’s d, both of which we have advocated as non-parametric effect sizes in a previous
study (Kitchenham et al. 2017). We have concentrated on these two non-parametric effect
sizes because prior research suggests they support our analysis requirements:

1. Kromrey et al. (2005) have proposed using Cliff’s d as an alternative to the standardized
mean difference StdM D. They reported that unweighted Cliff’s d had lower bias than
weighted Cliff’s d, Cohen’s § or Hedges g under all experimental conditions. Even under
conditions of severe variance heterogeneity together with a large population effect size,
Cliff’s d exhibited only minimum bias.

2. Brunner et al. have confirmed that p can be used in the context of different experimental
designs, including two-way designs and randomized block designs (Brunner and Munzel
2000; Brunner et al. 2002; Wilcox 2012). The method Brunner et al. used for statistical
tests of p is designed to cater for variance heterogeneity, thus improving the reliability of
statistical tests of hypothesis.

Other types of robust statistics, such as trimmed means, do not have the benefit of previous
existing research to clarify whether they could be used to construct valid effect sizes, nor
how they could be used in the context of meta-analysis.

We show below that Cliff’s d and p effect sizes are functionally related, which means they
should behave very similarly. However, p is defined as a probability and has the expected
range of values between 0 and 1, which is slightly easier to understand than Cliff’s d, which
is the difference between two probabilities and has values between -1 and 1. We decided to
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investigate both effect sizes because, if there was no practical difference between the two
effect sizes, researchers could use the effect size they felt most comfortable with.

3.1 The Meaning and Derivation of Cliff’s d and p

The effect sizes p, and Cliff’s d can both be derived from estimates of the probabilities that
observations from one group are greater than (p), less than (p3) or equal to (p;) observations
in another group, where p; + p> + p3 = 1.

For p:
A 2
Pxsy = p1+ % (1)
and 2
Px<y = p3+ > 2)

The values of p vary from O to 1, with values close to 0.5 suggesting that there is no significant
difference between the groups. Formal statistical tests are based on analysing the average
ranks of data using a method that allows for variance heterogeneity (Brunner and Munzel
2000). Values of px-y significantly greater than 0.5 imply that condition X has increased
values of the outcome variable. In contrast, values significantly less than 0.5 suggest condition
X has decreased the values of the outcome variable.
For Cliff’s d:
dx-y = p1—p3 3)

Cliff’s d values range from -1 to 1, with a value close to zero suggesting that there is no
significant difference between the groups. Formal statistical tests are based on identifying
whether the confidence interval for d includes zero (Long and Cliff 1997). It is clear from (1)
and (3) that there is a functional relationship between the effect sizes.

Values of dy.y significantly greater than O imply that condition X has increased values
of the outcome variable. In contrast, values significantly less than 0 suggest condition X has
decreased the values of the outcome variable.

We provide a more detailed discussion of these effect sizes and the formulas we use
to calculate their variance in Section 2 of our Supplementary Material (Kitchenham and
Madeyski 2023). Section 2 also explains how the effect sizes and their variances can be
derived from the superiority matrix, which defines the relationship between the values in
each group and is the basis of the algorithms Wilcox developed to calculate and test Cliff’s
d and p (see https://dornsife.usc.edu/rwilcox/).

We also provide algorithms to calculate these effect sizes in our reproducer R pack-
age (see reproducer: :Cliffd. test and reproducer: : PHat . test functions).
Assuming data from a two-group experiment, the algorithms deliver estimates of the relevant
effect size and its variance. The algorithms also perform statistical tests of the effect sizes
(either two-sided or one-sided) and calculate the 95% confidence intervals (see Section 8.3.3
of the Supplementary Materials).

In the statistical literature, p and Cliff’s d are not usually subscripted, but it is important
to note that they have a direction that needs to be respected, particularly if you are comparing
values from different experiments.
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3.2 Extracting Robust Effect Sizes from Different Experimental Designs

Although we have described Cliff’s d and p in terms of probabilities, they are also closely
related to rank order statistics and, in particular, are functionally related to non-parametric
tests such as the Mann-Whitney test. However, the Mann-Whitney test is inappropriate for
complex experimental designs because the variance of rank averages is heteroscedastic if
there is a significant difference between groups. Brunner and his colleagues (Brunner and
Munzel 2000; Brunner et al. 2002) developed an analysis method for p that avoids variance
inequality problems by adapting Welch’s method that allows for unequal variances in 7-tests
to rank-transformed data. Their research is discussed by Wilcox (2012), who also provides
implementations of their analysis algorithms. As discussed below and by Wilcox, Brunner
et al.’s method supports most standard experimental designs and, in particular, randomized
block experiments and cross-over experiments.

3.2.1 Calculating Non-parametric Effect Sizes for Randomized Block Designs

Randomized block designs are used to increase the generality of results and/or to reduce
spurious variability. For example, in SE experiments, participants usually perform software
engineering tasks using some specific software engineering materials. To avoid comparing SE
methods using only a single application (e.g., program, set of modules, or documentation),
we might want to use documents related to several different applications to increase the
generality of conclusions we can draw from our experiment. Alternatively, we might be
concerned that a technique is very dependent on the skill of its user, and we might want
to assign our participants to different skill groups with the aim of controlling the variability
among individuals. Organizing participants into groups with similar skills or using similar SE
documents is intended to control spurious variability and is the basis of the randomized block
designs. Once participants are separated into similar blocks, they are randomly assigned to
the different experimental treatments.

Randomized block experiments are always analysed using a within-block analysis. If we
design an experiment with k blocks (where k >= 2) and two treatments>, we can calculate
the value of the effect size for each block and then calculate the effect size of the experiment
as a whole as the average of the effect size for each block:

—___ Xf NPES;

NPES = - “4)
N P ES; estimates a specific NP effect size for group i. Thus, we have treated the randomized
block experiment as a group of k independent two-group randomized experiments and have
isolated the treatment difference from the block effect by comparing the individual treatment
differences under the same blocking condition.

Based on the following two standard statistical results for independent variables x and y
and a constant c:
var(x + y) = var(x) + var(y)

2

var(cx) = c“var(x)

3 Throughout this paper, we assume that there are only two treatment options; meta-analysis is not well-defined
for experiments with multiple treatments.
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we can use the variance of the NP effect size calculated in each block to estimate the variance
of NPES:

x*_ [var(NPES;)]
k2

Since there is no restriction on the number of blocks in a randomized blocks design, (4) and
(5) mean that we can extract the overall estimate of p, Cliff’s d and their respective variances
for any experimental design that can be broken down into a set of two-group randomized
experiments.

We provide an algorithm in our reproducer R package (Madeyski et al. 2023) to anal-
yse randomized block experiments comprising two treatment conditions and two blocking
conditions (see reproducer: :Calc4GroupNPStats).

var(NPES) = 5)

3.2.2 Calculating Non-parametric Effect Sizes for Cross-over Designs

Although (Senn 2002) was mainly interested in parametric analysis, he did point out that non-
parametric analysis can be based on applying the Mann-Whitney test to the period difference
values.

In our SupplementaryMaterial (Kitchenham and Madeyski 2023), we explain how Senn’s
suggestion can be applied to the AB/BA cross-over design. Specifically, the time period
difference values are equivalent to data from a two-group randomized experiment (between
groups). In addition, the time period difference values from a four-group cross-over design are
equivalent to data from a randomized block experiment with two blocks and two treatments.
An important issue is that the difference values within the same block represent effect sizes
in opposite directions. For example, in the case of a two-block A/B cross-over, assuming the
participants in block A use treatment T1 in period 1 and treatment T2 in period 2, and the
participant difference values (i.e. the value of each participant in period 1 subtracted from
the participant’s value in period 2), the values of participants (x;S), are modelled as:

Xi=pit+th—(ptuwt+n)=p+n—n (6)

where 71 is the change in outcome caused by using T1 and #, is the change in outcome caused
by using T2, p is the period effect, which is assumed to be the same for both groups, w; is
the hypothetical overall mean of participant i performing the specific SE task. The effect of
using difference values is to remove the individual participants’ effect.
The difference values for participants (y;) in group B that use treatment T2 in period 1
are modelled as :
Yi=pit+th—(p+tuith)=p+n—n @)

The effect of using difference values is to remove the effect due to individual participants
and to leave a period effect which is the same for both groups, and to have difference values
that (ignoring the common period effect) are modelled by #; — f, in one group and —(#; —
1) in the other. Thus, any difference between T1 and T2, will be strongly emphasized. In
practice, it is likely that the estimates of p and Cliff’s d obtained from crossover designs
will be systematically larger than estimates from between-groups designs. This is exactly
what happens with the standardized mean difference effect sizes (Madeyski and Kitchenham
2018). We consider methods of meta-analysis suitable for robust effect sizes from different
types of experimental design in more detail in Section 3.4.3.
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3.2.3 Limitations

Senn’s approach to non-parametric analysis of crossover designs assumes that outcome vari-
ables are ratio-scale numbers. Short ordinal-scale outcomes or binary outcomes would not
be suitable.

Brunner’s analysis method allows us to calculate p for any experiments that can be
decomposed into independent two-group experiments, including two-group and four-group
cross-over models. However, we do not claim that the method can be used to meta-analyse
any experimental design.

In particular, the analysis method does not directly support meta-analysis of genuine
factorial experiments, where researchers are investigating the joint impact of two different
treatments (for example, the impact of using both design inspections and code inspections).
However, it should be noted that currently, there is no well-defined meta-analysis method for
factorial experiments.

3.3 Meta-Analysis of Non-parametric Effect Sizes

Meta-analysis is a means of obtaining a summary of a set effect sizes from a series of inde-
pendent randomized experiments. The summary is usually a weighted average. Effect sizes
suitable for meta-analysis of randomized SE experiments have several characteristics:

1. They provide a measure of the difference between the techniques being compared.

2. They are usually unit-free. Although the mean difference between groups is an effect
size, it is seldom used for meta-analysis in SE because it presupposes that the value being
measured has some objective interpretation scale.

3. They are not functions of sample size like test statistics. This is because test statistics,
such as a t—test values, can be influenced by changing the sample size without changing
the difference between the treatment groups.

Meta-analysis is usually applied to parametric effect sizes, particularly the standardized
mean difference or the point bi-serial correlation coefficient, but Cliff’s d and p both conform
with the three criteria reported above. In addition, Kromrey et al. (2005) proposed applying
meta-analysis to Cliff’s d.

For parametric effect sizes, the weighting factor is usually the inverse of the effect size
variance. However, Kromrey et al. found that applying a weighted average to Cliff’s d values
gave biased results*. Thus, they recommended using the unweighted mean of the estimate
of Cliff’s d from each experiment and the average of the individual experiment variances
of each estimate of Cliff’s d to compute the standard error and confidence intervals. This
approach is exactly the same method that we suggested using to find the overall value of
Cliff’s d or p from a complex experiment comprising a series of independent two-group
experiments.

4 This happens because extreme values of Cliff’s d result in small variances. As explained in the Supplementary
Material (Kitchenham and Madeyski 2023), the variance of Cliff’s d is based on the variability of values in a
superiority matrix, which compares each observation in one group (e.g., Group A) with each observation in
the other group (e.g., Group B), allocating the value 1 if a value in Group A is greater than a value in Group
B, -1 if it is less than a value in Group B, and O if the two values are equal. The more the superiority matrix
values tend to be the same value (either 1 or -1), the less variability there is in the superiority matrix, and the
smaller the calculated variance becomes. Therefore, if a specific sample delivers an inflated estimate for d, it
will also produce a very small variance, and a standard meta-analysis process will give additional weight to
the inflated d value, which, in turn, will inflate the weighted mean.
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Thus, if we have values of Cliff’s d or p from a series of independent experiments, we can
use (4) to estimate the overall effect size and (5) to estimate its variance. In addition, for p, we
propose using Brunner et al.’s method for statistical tests of significance and the construction
of confidence intervals for the overall mean that allow for any variance heterogeneity.

3.4 Other Aspects of Meta-analysis

In addition to providing estimates of the overall mean and its variance, meta-analysis proce-
dures also encourage analysts to assess issues such as heterogeneity. Our analysis proposal
supports such analyses.

3.4.1 Heterogeneity Analysis

To investigate heterogeneity among individual experiments, we can compare the estimate of
the overall variance with the effect size variance, using a method similar to heterogeneity
analysis for meta-analysis but assuming equal weights for each study. Using this approach,
we can perform a homogeneity test based on the Q statistic where:

Sk (NPES; — NPES)?

o2

Q:

®

where N PES; is the ith non-parametric effect size estimate (either Cliff’s d or p), k is the
number of effect sizes being aggregated, N PES is the average the k non-parametric effect
sizes, and o2 is the average variance of the k N P E S; values:

k
; NPES;
0,2 — ZI:I Ua’;(( l) (9)

The Q statistic is distributed as a chi-squared with k — 1 degrees of freedom.
In addition, it is also usual to measure the extent of heterogeneity using the 12 statis-
tics (Higgins et al. 2003):

—k+1
2 =100 k+D (10)
0
where the negative values of 12 are set to zero. I2 values less than 25% are interpreted as indi-
cating low heterogeneity, with values in the range 25-50% indicating moderate heterogeneity
and values greater than 50% indicating high heterogeneity.

3.4.2 Fixed Effects and Random Effects Meta-Analysis

Meta-analysis methods and tools often refer to the need to distinguish between fixed and
random effects analysis (Viechtbauer 2010). Fixed effects are recommended if the different
experiments can all be assumed to have been based on data sets sampled from the same
distribution. If such an assumption cannot be justified, analysts are recommended to use
random effects analysis. If we adopt a fixed effects analysis, we should expect heterogeneity
analysis to confirm low heterogeneity levels.

Fixed effects meta-analysis takes advantage of the assumption that all data comes from the
same distribution to give maximum weight to experiments with the lowest variance estimates.

5 To avoid multiple testing, the best statistical practice is to choose fixed or random effects prior to any data
analysis.
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If analysts use random effects analysis, they cannot assume that all variance estimates are
measuring the same parameter, so assuming that low variances are indicators of more reliable
results is invalid. If analysts choose a random effects analysis, the analysis method reduces
the importance of the weights. In practice, large weights are reduced, and low weights are
increased, making all weights closer to the same value.

In the context of meta-analysis using Cliff’s d and p, Kromey’s proposal to base meta-
analysis on unweighted means is equivalent to always selecting a random effects analysis.
Given that SE activities in the industry are always performed on different software materials
with practitioners of different skills, this seems a reasonable default.

3.4.3 Meta-analysis Using Results from Different Experimental Designs

As we discussed above, analysis of repeated measures designs (which include before-after
designs, two-group AB/BA crossover designs, and four-group crossover designs) is likely to
have systematically larger robust effect sizes (and power) than the equivalent between-groups
effect sizes in just the same way as they have for the Std M D effect size. However, in the case
of the robust effect sizes, there is no method for converting the effect size found in crossover
designs to the equivalent effect sizes likely to be found in between-group designs.

Thus, for meta-analysis using Cliff’s d and p, we recommend the following approaches:

— Meta-analyse effect sizes calculated from repeated measures designs separately from
between-groups designs to assess the probability of personal improvement.

— To calculate repeated measures effect sizes equivalent to between-groups design, reanal-
yse the experimental results considering the first time period (since the design of a
between-groups experiment is identical to the design of the first part of an AB/BA
crossover design). Then, all effect sizes can be meta-analysed together to assess the
probability of one technique outperforming the other.

4 Effect Size Simulation Studies

In this section, we describe the simulations we undertook to evaluate Cliff’s d and p. The goal
of our evaluation was to assess the value of Cliff’s d and p as alternatives to the standardized
mean difference Std M D in situations where sample sizes are small, and the underlying
data distributions are unknown. We also wanted to assess whether there was any significant
difference between the effectiveness of the two non-parametric methods.

To evaluate how well Cliff’s d and p addressed our three meta-analysis requirements,
i.e., being robust to non-normality, addressing different statistical designs, and supporting
reliable meta-analysis, we needed to undertake a wide range of simulation studies. The scope
of the studies and the evaluation criteria we used are identified in Table 2.

The simulations were organized into four main categories:

1. Simulations of two-group experiments comparing a treatment group and a control group,
which are formally referred to as randomized experiments (or informally as between-
groups experiments)

2. Simulations of four-group experiments comparing two treatment groups and two control
groups, organized in two blocks, each containing one treatment and one control group.
In our study, block effects are simulated as a fixed value to one of the parameters in one
block before simulating the experiment data.
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3. Simulations of families of five two-group experiments. Differences between families are
simulated by adding a small random value to one of the parameters before simulating the
five related experiments.

4. Simulations of families of five four-group experiments. Differences between families are
simulated in a similar way to the two-group families.

In each category, simulations were split into studies investigating power, estimate error and
small sample bias and studies investigating Type 1 Error rates. More details of our simulation
process are presented in the following sections.

4.1 Data Distributions

Our simulation studies are based on obtaining random samples of different sizes representing
two- and four-group experiments drawn from four different distributions:

1. The normal distribution (more formally referred to as the Gaussian distribution). This was
selected because most data analysis methods assume normally distributed data.

2. The log-normal distribution, which is strongly skewed.

. The gamma distribution, which is moderately skewed.

4. The Laplace distribution, which is symmetric but has more outliers than a normal distri-
bution.

W

The three non-normal distributions were chosen because they exhibit properties that vary
from the normal distribution properties in different ways. We discuss the properties of the
data distributions in our Supplementary Material (Kitchenham and Madeyski 2023). An
important issue is that the two parameters of the log-normal distribution are functionally
related to one another, as are the two parameters of the gamma distribution. In both cases,
this means that changes to one of the parameters that are intended to change the mean of a
sample, also cause changes to the sample variance.

Our simulations include examples of experiments exhibiting variance heterogeneity. We
investigate the impact of variance heterogeneity by increasing the variance of the treatment
group data. We undertake this investigation only for the normal and Laplace data because,
for these distributions, changes to the variance (spread) parameter are independent of the

Table 2 Evaluation process overview

Evaluation issue Simulation features
Scope of Data generated from normal and three non-normal probability distributions.
simulations Samples with variance heterogeneity.

A range of relatively small sample sizes.
Simulations of single two-group and four-group experiments.

Simulations of families of 5 two-group and families of 5 four-group experiments

Evaluation 1. Power, the probability that a statistical test correctly rejects the null hypothesis.
criteria 2. Type 1 error rate (« level), the probability that a test incorrectly rejects the null
hypothesis.

3. Small sample bias, i.e., any systematic bias from the true effect size observed
when averaging effect size estimates obtained from small samples.
4. Effect size error, i.e., the expected deviation between the true effect size and

individual effect size estimate for small samples.
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mean (u). In fact, introducing heterogeneity into log-normally distributed data provides a
good example of the extent to which non-normality can invalidate the standard parametric
analysis (see Section 4.6).

Heterogeneity is an important issue because many tools supporting parametric statistical
methods of formal experiments, such as analysis of variance, assume that the treatment or
process under examination changes the mean of the outcome values but leaves the variance
of the outcome values unchanged. This is a rather dangerous assumption in the context of
software engineering methods that rely on human expertise where alternative scenarios are
possible. For example, a new SE method may improve the performance of less able software
engineers more than that of the more able software engineers, reducing the variance among
experiment participants. Therefore, we wanted to investigate how resilient non-parametric
effect sizes were to variance heterogeneity.

4.2 Evaluation Criteria and their Measurement

In this section, we explain the importance of our four evaluation criteria (see Table 2) and
how we used simulation results to measure them.

We expected Std M D to be the most powerful effect size for normally distributed sam-
ples, but we also anticipated that the non-parametric effect sizes would perform better than
Std M D for non-normal data. It was also possible that the non-parametric effect sizes would
outperform Std M D for some criteria, even for normally distributed samples. In particular,
even with normal samples, Std M D is known to exhibit small sample bias (Hedges and Olkin
1985), but given the results of Kromrey et al.’s study, we expected the non-parametric effect
sizes to exhibit less small sample bias. Small sample bias is an important factor in meta-
analysis because aggregating effect sizes that suffer from small sample bias will result in
biased meta-analysis estimates.

We discuss each of the four criteria in the following sections

4.2.1 Power

Power is usually considered a critical factor when comparing the effectiveness of alternative
statistical methods. We estimated power for a specific combination of non-zero effect size,
data distribution and sample size as the proportion of samples for which the difference
between control and treatment samples were correctly assessed as being statistically different
from zero.

We wanted to investigate whether the benefits of using Cliff’s d or p for small sample
sizes with non-normal data were sufficient to make up for the expected loss of power should
data be normally distributed.

Since we were interested both in whether the non-parametric effect sizes were more
powerful for non-normal distributions and whether there was any general difference between
Cliff’s d and p, we report the power difference between StdM D and each of the non-
parametric effect size as:

PowerDiff =100 x (NPESPower — StdM D Power) (1)

where N P ES Power is the power for each non-parametric effect size, and StdM D Power
is the power of the standardized mean difference calculated for two-group and four-group
samples, for different samples and each data distribution and various non-zero effect size
differences. A positive Power Diff value implies that the non-parametric effect size has
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out-performed Std M D; in contrast, a negative Power Di ff value implies that Std M D has
out-performed the non-parametric effect size.

4.2.2 Small Sample Size Bias

A parameter is said to exhibit small sample bias if the estimate of the parameter obtained by
taking the average of parameter estimates obtained from many small samples differs from the
expected value parameter. We report the extent of small sample bias as a percentage relative
error:

100 x (ExpectedES — ObservedES)

PercentageRelativeError = (12)
ExpectedES

where
200 (ObservedES;)

10000

ObservedE S; is the effect size for the ith of the 10000 effect size estimates obtained from
a specific sample size, effect size and data distribution. Expected E S is the true population
effect size for the specific simulation conditions. For Std M D, Expected E S is the theoretical
effect size, calculated by substituting the parameter values used in our simulation studies into
the relevant probability distributions. For the non-parametric effect sizes, ExpectedES is
the effect size found from a single ultra-large experiment.

Comparisons of relative bias are always problematic when the values of the divisors are
expected to differ. In our case, to avoid misleading results, it is necessary to use the centralised
p (i.e., subtract 0.5 from each estimate of p). The 0.5 value is a standard adjustment constant;
it is not an element of p that is subject to any estimation uncertainty, but it does inflate the
bias divisor. The important point is that using the centralised version of p, the relative bias
values for p and Cliff’s d are always exactly equal because p and Cliff’s d are directly
functionally related to each other. Even so, the relative bias values can be slightly misleading
because for each effect size, the expected value of Cliff’s d and centralized p is less than the
theoretical value Std M D, so we would expect our measure of relative bias to slightly favour
StdM D.

ObservedES = (13)

4.2.3 Effect Size Estimate Error

Since the non-parametric effect sizes are intended to be robust estimators, it was also possible
that estimates would be more accurate than Std M D. Rather than accuracy, we estimated the
relative error of the effect size estimates for samples of different sizes. For each of the 10000
simulations in each simulation condition, we calculated the magnitude (absolute) relative

error (MRE) as:
ExpES — ObsES;
MRE; = EP SES| (14)
|[ExpES]|

where ExpES is the expected effect size for a particular effect size (parametric or non-
parametric), for the specific simulation condition and ObsE'S; is the observed value of the
effect size for a specific simulation, and i = 1, ..., 10000.

For each condition, we calculate the median of the M RE; values, giving the median
magnitude relative error (MdM RE) for the specific effect size and the specific simulation
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condition. We multiplied Md M RE by 100 to give the percentage median magnitude error
(PMdMRE):

PMdMRE =100 x MAMRE = 100 x median(M RE;) 15)

Like relative bias, Md M R E must be based on the centralised p, which means that the
MdAMRE values are exactly the same for p and Cliff’s d. Again, theoretically, the fact that
the magnitude of Cliff’s d and centralized p are less than the corresponding theoretical
magnitude of Std M D means that Md M RE slightly favours StdM D.

4.2.4 Type 1 Error Rates

The Type 1 error rate is the probability that a statistical test will incorrectly reject the null
hypothesis. A well-constructed test process will ensure that the Type 1 error rate is close to
the «-level of the tests. We expected the robust effect sizes and Std M D to behave similarly
with respect to Type 1 error rates, i.e., tests of significance performed at the o = 0.05 level
should lead to a Type 1 error rate of approximately 0.05. The Type 1 error rate was estimated
as the proportion of a set of simulations, with a mean difference of zero and the same sample
size and data distribution, that incorrectly found the mean difference significantly different
from zero. The test was based on the t—tests for Std M D and the confidence intervals for
Cliff’s d and p. Maintaining the expected Type 1 error rate is critical for hypothesis testing
and constructing valid confidence intervals.

4.3 Two-Group Experiment Simulation Details

In this section, we specify the experimental conditions we used to simulate two-group exper-
iments.

All our two-group simulations were based on simple between-group experiments. We
simulated experiments with 10, 20, 30, 40, and 80 observations (i.e., 5, 10, 15, 20, and 40
observations per group) for normal, log-normal, gamma, and Laplace distributions. We chose
to simulate samples of 10, 20, 30, and 40 participants because study sizes between 10 and
40 participants are typical of the small sizes we see in SE experiments.

The extreme values for our simulations were chosen for different reasons:

— We simulated two-group samples with 5 observations per group because Wilcox reported
concerns about p when sample sizes were very small. So, we wanted to investigate
whether p was significantly flawed.

— We simulated two-group samples with 40 observations per group since a more straight-
forward way of addressing small sample sizes is to use bigger samples, and we wanted
to investigate whether larger samples are sufficient to avoid the need for non-parametric
effect sizes.

For the normal distribution, for the control group, we used a distribution with mean & = 0
and variance o> = 1. For the treatment group, we used four different mean values (0, 0.2,
0.5, 0.8). The nonzero values correspond to the values that Cohen (1992) identified as small,
medium and large standardized effect sizes in the context of psychological studies. These
are usually considered acceptable ranges for simulation studies. For the other distributions,
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Table 3 Simulation parameter values

Distribution Parameter 1 Values Parameter 2 Value
Normal Mean n = (0,0.2,0.5,0.8) Variance 62 = 1
Log-normal Mean pn = (0, 0.266, 0.72375, 1.43633) Variance 02 = 1
Gamma Rate 8 = (1, 1.1225, 1.3415, 1.6224) Shape ¢ = 3
Laplace Mean p = (0, 0.283,0.707104, 1.131374) Shape g =1

we chose parameter values that would have theoretical standardized effect sizes magnitudes
of (0, 0.2, 0.5, 0.8) on the raw data scale. The parameter values used in the simulations are
shown in Table 3. In the case of the gamma distribution, for the control group, we used the
value 1 for the rate parameter and 3 for the shape parameter since the gamma distribution
must have a rate parameter greater than 0. These values were chosen for convenience. For
the treatment effect, we used the parameter values that generated negative standardized mean
differences of (—0.2, —0.5, —0.8) because increasing the rate parameter decreases the mean
on the raw data scale. We kept the expected magnitude of Std M D values the same for the
different probability distributions to make the simulation outcomes more comparable.
For each non-zero effect size and each distribution, the simulation process was:

. Establish the population values of p and Cliff’s d (see the next paragraph).

. For each required sample size (i.e., 10, 20, 30, 40, and 80), generate data for 10000 two-
group experiments and, for each experiment, obtain the sample estimates of Std M D, p,
and Cliff’s d. For each of the 10000 experiments, return the value of each effect size and
three output values that identify whether each analysed effect size was significant, based
on one-sided tests with @ = 0.05. We use one-sided tests because we set the direction of
the effect for each simulation. If a simulation produces a significant result in the wrong
direction, it is equivalent to a Type 1 error because it has incorrectly rejected the null
hypothesis.

3. From the values returned from the 10000 simulated experiments, calculate the percentage
magnitude relative error (i.e., PMdM RE), the percentage relative bias, the power of the
10000 simulated experiments, and the Power Diff value for each non-parametric effect
size.

4. We simulated normal and Lapace experiments with variance heterogeneity by setting the

standard deviation for the treatment group to 1.5. This change implies changes to the

theoretical Std M D estimates and the large sample estimates of the non-parametric effect

sizes, as shown in Table 4.

N =

To obtain an estimate of the population values of p and Cliff’s d, for each data type and
effect size, we simulated ultra-large experiments with 10,000,000 observations per group.
Then, we calculated Std M D, p, and Cliff’s d from the sample. For Std M D, the theoretical

Table 4 Expected non-parametric effect sizes values

Distribution p Cliff’s d

Normal (0, 0.556, 0.638, 0.714) (0, 0.112, 0.276, 0.428)
Log-normal (0, 0.575, 0.696, 0.845) (0, 0.149, 0.391, 0.69)
Gamma (0, 0.446, 0.365, 0.286) (0, —0.108, —0.269, —0.428)
Laplace (0, 0.57, 0.666, 0.747) (0, 0.14, 0.332, 0.495)
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values can be calculated from the relevant probability density distribution, so if the calculated
StdM D values are very close to the theoretical values, we can assume that the sample is a
good representation of the population. Then, we assume that the estimates of p and Cliff’s
d from the ultra-large sample are also close estimates of the population effect sizes. This
process was undertaken for:

— Two-group experiments, using samples for each data type. For the gamma distribution,
we also investigated the impact of both increasing and decreasing the value of the rate
parameter.

— Two-group experiments, with an increase in variance for the treatment group, for normal,
log-normal and Laplace data.

— Four-group experiments, with and without a fixed block effect for each data type.

— Four group experiments with an increase in variance for the treatment group, for normal,
log-normal and Laplace data.

The results of this process are shown in tables in Section 4 of the Supplementary Mate-
rial (Kitchenham and Madeyski 2023). The non-parametric effect size estimates used as
input parameters in our two-experiment simulations are shown in Tables 4 and 5.°

We investigated the null hypothesis error rates using simulations where the difference
between the control and treatment means (or rate parameter) was zero. In this case, the
theoretical values of StdM D and Cliff’s d are both zero and the theoretical value of p is
0.5. This means we cannot construct a reliable measure of relative error. For Type 1 error
rate assessments, all statistical tests were two-sided tests because significant effects in either
direction indicate a Type 1 error.

4.4 Two Group Simulation Results

For simulations of two-group experiments, relative estimate error, power, and relative bias
results for non-zero effect sizes are shown in Table 6 and the Type 1 error rates are shown
in Table 7. In both tables, the “Type” column defines the data type used in the simulations
reported in each row: N for normal data, N-H for normal data with extra heterogeneity, Lap
for Laplace data, Lap-H for Laplace data with extra heterogeneity, L for log-normal data
and G for gamma data. We present only one P MdM RE value and one relative bias value
for the non-parametric effect sizes in Table 6 because centralised p and Cliff’s d, MdM RE
values and relative bias are identical. The column labelled GrpSize indicates the number
of observations in each group. The column labelled Diff in Table 6 has values labelled S,
M, and H corresponding to the small, medium and large differences between the control and
treatment groups.

The results tables are quite long and detailed, so we provide the set of graphs shown in
Fig. 4 and additional summary statistics derived from the tables to identify the most important
results.

The graphs were constructed from the outcome values for power, bias, effect size estimate
error and type 1 error rates. The graphs allow us to summarize the effectiveness of the effect
sizes across the different sample distributions, effect sizes and sample sizes:

6 There are some slight differences between the values reported in the Supplementary Material and the values
in this paper (of the order of .001). This is intentional. If there was a difference between the two-group estimates
and the four-group estimates of the non-parametric effect sizes when the values should be identical, we gave
preference to the four-group estimates (since they were based on more observations) unless there was any
inconsistency between the p and Cliff’s d estimates, in which case we took the average estimate or the most
consistent estimate.
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Table 5 Effect of variance heterogeneity on normal and Laplace effect size values

Distribution Theoretical Large sample Large sample

StdM D p Cliff’s d
Normal (0,0.157,0.392, 0.628) (0, 0.544, 0.609, 0.671 ) (0, 0.088, 0.219, 0.343)
Laplace (0,0.157,0.392, 0.628) (0, 0.556, 0.6355, 0.706) (0,0.112,0.271, 0.411)

— The graph in the top row of Fig. 4 shows the relationship between power, experiment
size and effect size for each of the effect size estimates. The experiment size for two-
group experiments is twice the group size reported in Table 6. Each boxplot is based on
18 outcome variables of the specified experiment size for each of the six different data
distributions (i.e., the normal and Lapace data samples both with and without variance
heterogeneity, and the gamma and log-normal data samples) and each of the three different
non-zero effect size differences. The variation within each boxplot is mainly due to the
size of the mean difference, with the power being greatest for the largest mean difference.
Since power levels of 0.8 are usually recommended for reliable experiments, the results
show clearly that the power of experiments is unacceptably low for experiments of 40 or
fewer observations for both parametric and non-parametric effect sizes. For experiments
of 80 observations, power is still low when the difference between the groups is small.

— The lefthand graph on the second row of Fig. 4 reports the power difference between each
of the non-parametric effect sizes and Std M D (multiplied by 100). Each boxplotis based
on 90 observations corresponding to each of the six different data types, five different
sample sizes, and three different effect size differences. Positive values indicate that the
non-parametric effect size has better power than Std M D, and negative values indicate
that they have worse power than Std M D. The boxplots confirm that the non-parametric
effect sizes are frequently more powerful than Std M D. Specifically, the power of Cliff’s
d is better than the power of StdM D in 37 of the 90 (i.e., more than 41%), while the
power of p is better in 55 of the 90 (i.e., more than 61% of) cases. Reference to Table 6
confirms that the non-parametric effect sizes are usually more powerful for Laplace and
log-normal samples, while StdM D is usually more powerful for normal and gamma
samples.

— The righthand graph on the second row of Fig. 4 is also based on 90 observations. It
shows very clearly that the non-parametric effect sizes do not exhibit any systematic
small sample bias, whereas estimates of Std M D systematically overestimate the true
value of the effect size, sometimes by very large amounts. Reference to Table 6 confirms
that the particularly large overestimates for Std M D correspond to estimates derived from
log-normal samples. This result is important because it means we can trust aggregates
of small sample estimates for Cliff’s d and p but we cannot trust aggregate estimates of
StdM D from small samples.

— The lefthand graph on the bottom row indicates that there is little difference between
the PMdM RE values for the non-parametric effect sizes and Std M D. Specifically
and bearing in mind that small P MdM RE values indicate better accuracy, PMdMRE
values for the non-parametric effect size were less than the PMdM RE values for the
corresponding Std M D effect size for 56 of the 90 simulations (62%).

— The righthand graph on the bottom row of Fig. 4 is based on the 30 Type 1 error rates
reported in Table 7. All tests were performed at the 0.05 « level, so the expected outcome
of the simulations should be approximately 0.05. In fact, p systematically overestimates
with a median value of 0.0539, whereas Cliff’s d and Std M D systematically underesti-
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Table 7 Type 1 error rates for two group experiments

Design Grp e Observed:........ ... Type 1 Error Rate:.......

Type Size D Cliff’s d StdM D D Cliff’s d StdM D
N 5 0.5027 0.0054 0.0066 0.0777 0.0324 0.0436
N 10 0.5005 0.0009 0.0011 0.0597 0.0435 0.0527
N 15 0.4993 —0.0013 —0.0025 0.0520 0.0410 0.0484
N 20 0.4995 —0.0009 —0.0018 0.0532 0.0437 0.0497
N 40 0.4992 —0.0017 —0.0038 0.0534 0.0480 0.0519
N-H 5 0.5011 0.0021 0.0061 0.0804 0.0329 0.0439
N-H 10 0.4990 —0.0020 —0.0025 0.0550 0.0393 0.0491
N-H 15 0.5018 0.0036 0.0062 0.0568 0.0449 0.0515
N-H 20 0.4999 —0.0002 0.0004 0.0514 0.0423 0.0475
N-H 40 0.5000 0.0000 —0.0005 0.0539 0.0499 0.0537
Lap 5 0.4999 —0.0001 —0.0009 0.0803 0.0312 0.0345
Lap 10 0.5004 0.0008 0.0000 0.0562 0.0402 0.0458
Lap 15 0.5007 0.0014 0.0022 0.0512 0.0388 0.0459
Lap 20 0.5007 0.0013 0.0033 0.0547 0.0456 0.0479
Lap 40 0.4998 —0.0003 —0.0008 0.0485 0.0426 0.0479
Lap-H 5 0.4985 —0.0030 —0.0025 0.0731 0.0315 0.0332
Lap-H 10 0.4975 —0.0049 —0.0076 0.0558 0.0385 0.0437
Lap-H 15 0.4998 —0.0004 0.0000 0.0507 0.0395 0.0447
Lap-H 20 0.5008 0.0016 0.0046 0.0499 0.0428 0.0470
Lap-H 40 0.5003 0.0005 0.0020 0.0539 0.0489 0.0478
L 5 0.5014 0.0027 0.0023 0.0811 0.0336 0.0181
L 10 0.4976 —0.0049 —0.0124 0.0569 0.0383 0.0256
L 15 0.4990 —0.0020 —0.0028 0.0492 0.0381 0.0307
L 20 0.4986 —0.0028 —0.0067 0.0494 0.0392 0.0353
L 40 0.4994 —0.0012 —0.0032 0.0513 0.0467 0.0431
G 5 0.4979 —0.0041 —0.0065 0.0778 0.0318 0.0372
G 10 0.4999 —0.0002 0.0019 0.0581 0.0408 0.0450
G 15 0.4992 —0.0016 —0.0017 0.0519 0.0390 0.0440
G 20 0.4996 —0.0009 —0.0006 0.0483 0.0410 0.0442
G 40 0.4999 —0.0003 —0.0003 0.0517 0.0468 0.0489

mate with median values of 0.0405 and 0.0454, respectively. The large outliers shown for
p correspond to the smallest sample size, which is consistent with the research reported
by Wilcox (2012). The small outliers shown for Std M D correspond to the log-normal
samples.

4.5 Simulations of Four Group Randomized Blocks Experiments

The basic parameters of the four-group simulations were similar to those of the two-group
simulations in terms of the choice of underlying distributions and their parameter values and
numbers of replications. However, we used group sizes of 5, 10, 15, 20 and 40 to simulate
experiments with total sample sizes of 20, 40, 60, 80 and 120 participants. In addition, for
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Power levels, Effect Size Measures and Experiment Sample Sizes of 10, 20, 30, 40, 80
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Fig.4 Two-group simulation experiments results summary (Boxplots defined by the x-axis and obtained from
all four data distributions)

each experiment, two groups (one corresponding to each treatment and control technique)
were given an adjustment to simulate a difference between the blocks.

For the normal, log-normal and Laplace distributions, the block effect was modelled as
a fixed 0.5 increase to the mean effect; for the Gamma distributions, the block effect was
modelled as a fixed 0.5 increase to the shape parameter.

For normal and log-normal samples, we simulated experiments with and without variance
heterogeneity, and all samples included the block effect. For both these distributions, the
change to four-group experiments with a block effect left the theoretical Std M D effect sizes
and the large sample non-parametric effect sizes unchanged compared with the two-group
values.

For the log-normal and Gamma distributions, we simulated samples with and without
the block effect. For both these distributions, the change to four-group experiments with-
out the block effect should leave the theoretical Std M D effect sizes and the large sample
non-parametric effect sizes unchanged compared with the two-group values. However, the
inclusion of the block effect slightly altered the theoretical effect sizes for Std M D and the
large sample non-parametric effect sizes as shown in Table 8. For simulated experiments that

Table 8 Effect of block effects on log-normal and gamma effect sizes values

Distribution Theoretical Large sample Large sample

StdM D p Cliff’s d
Log-normal (0.194, 0.486, 0.777) (0.575, 0.696, 0.845) (0.149, 0.391, 0.69))
Gamma (—0.208, —0.52, —0.833) (0.444, 0.359, 0.277) (—0.113, —0.281, —0.445)
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Power levels, Effect Size Measures and Experiment Sample Sizes of 20, 40, 60, 80, 160

%ggé@éaaéaaémﬁm

clifid PHat StdMD ciifid PHat stdvp clifid PHat StdMD ciifid PHat stdup clifid PHat stdvD

Power
o
@

o
N

ESType
Power Difference from StdMD Small Sample Size Bias
20 o 40- -
8
o
@ 30-
g Ch
g 10- ©
£ T 20-
2 S
8 g 10-
z o- 2
£ @
o
cliffd PHiat NPES StdMD
NPEffect Size Measure Effect Size Type (Non Parametric vs StdMD)
Effect Size Estimate Error Effect Size Type 1 Error rates
.
200~ . R — |
w150~ L . [:4
E 2 0.04-
w
% 100 u
8o03-
50~ =
0 , . 0.02 L ! =
NPES StdMD Cliffd PHat stdMD
Effect Size Type (Non Parametric vs StdMD) Effect Size Measure

Fig. 5 Four-group simulation experiments results summary (Boxplots constructed from outputs defined by
the x-axis and obtained from all four data distributions)

included the block effect, bias and error were assessed against the revised theoretical and
large sample effect sizes.

The full result tables for the simulations of four-group randomized block experiments can
be found in the Supplementary Material (Kitchenham and Madeyski 2023) in Section 5 and
are summarized in Fig. 5. The results were very similar to those obtained from the two-group
experiments:

— Power increases for the non-parametric effect sizes and Std M D as the experiment sizes
increase and as the effect size difference increases. In addition, the power diagrams for
experiment sizes of 20, 40 and 80 for the two-group and four-group graphs are virtually
identical.

— The Power Diff results for Cliff’s d and p were more similar than for the two-group
simulations. These results are discussed in Section 4.7

— The small sample size bias is again negligible for the non-parametric effect sizes but
substantial for Std M D.

— The PMdM RE values for the non-parametric effect size were less than the PMdM RE
values for the corresponding Std M D effect size for 71 of the 120 simulations (59%).

— The main change was that the Type 1 error rates were less biased with medians of 0.042,
0.0493, and 0.0465 for Cliff’s d, p, and Std M D respectively.

4.6 Log-normal Sample with Additional Variance Heterogeneity

Under most of the conditions we simulated, Std M D estimates from non-normal samples
provided what appeared to be reasonable analysis results. As we show in this section, this
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is not the case for Std M D estimates from log-normal samples when variance heterogeneity
is introduced. Table 9 shows the results of analysing simulations of two-group experiments
based on log-normal data. Each entry in the table is based on an ultra-large experiment with
10000000 observations in each group that is intended to deliver effect size estimates close to
the population values. Each group of three rows use the same mean and variance parameters.
In all cases, the variance parameter of the control group was set 1, and the variance of the
treatment group was set to 1.52 = 2.25. Rows 1-3 simulate the situation when there is no
difference between the treatment and control group means. The other groups of 3 rows use
the Small (S), Medium (M) and Large (L) mean differences for log-normal data shown in
Table 3.

For each group of three rows with the same mean difference, the top row shows the effect
of calculating Std M D directly from the mean and variance of the simulated log-normal
data. In the absence of variance heterogeneity, StdM D values for 0, S, M, and L mean
differences should be 0, 0.2, 0.5 and 0.8, respectively, and clearly, the variance heterogeneity
has significantly impacted the estimates. However, results shown in row 1 make it clear that
p and Cliff’s d analysis leads to estimates that are unaffected by variance heterogeneity. The
subsequent two rows show, respectively, the results of analysing the data after transforming
log-normal data and the results of analysing data simulated from a normal distribution with
the same mean and variance as the log-normal simulations. The second two rows all have the
same Std M D, p and Cliff’s d estimate values. The same pattern of results is seen for each
set of three related analyses.

The StdM D values from the first row in each group of three are consistent with the
theoretical values found by substituting the parameter values into the log-normal probability
distribution. However, the Std M D results based on raw log-normal data are invalid because
the correct analysis process requires transforming the data prior to analysis. This is an example
of a case when using a standard parametric analysis because the data was unknown, which
would lead to grossly invalid results irrespective of sample size. It is also a good example of
how trustworthy the non-parametric effect sizes can be.

Table 9 Large sample results for log-normal samples of two-group experiments with additional variance
heterogeneoty

Sample Mean Data Phat Cliff’s d StdM D
Type Difference Analysed Estimate Estimate Estimate

1 L-Het 0 Raw 0.50 0.00 0.22

2 L-Het 0 Transformed 0.50 0.00 0.00

3 N-Het 0 Raw 0.50 0.00 0.00

4 L-Het S Raw 0.56 0.12 0.28

5 L-Het S Transformed 0.56 0.12 0.21

6 N-Het S Raw 0.56 0.12 0.21

7 L-Het M Raw 0.66 0.31 0.36

8 L-Het M Transformed 0.66 0.31 0.57

9 N-Het M Raw 0.66 0.31 0.57

10 L-Het L Raw 0.79 0.57 0.43

11 L-Het L Transformed 0.79 0.57 1.13

12 N-Het L Raw 0.79 0.57 1.13
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4.7 Comparing Non-parametric Effect Sizes Cliff’s d and p

Table 10 compares the power levels for p and Cliff’s d observed for each sample size, effect
size and data type. For both two-group and four-group experiment simulations, the p power
level is greater than or equal to the Cliff’s d power level.

Wilcox reported that Cliff’s d Type 1 error rates were better than p Type 1 error rates for
very small sample sizes (Wilcox 2012). We also observed this effect in our two-group exper-
iment simulations. Table 11 compares the median Type 1 error rates and power difference
values for Cliff’s d and p over the full range of sample sizes and distributions in our two- and
four-group simulations. This table confirms that, as shown in the bottom left panes of Figs. 4
and 5, the median p Type 1 error rate is closer to 0.05 than Cliff’s d for both two-group and
four-group simulations. It also appears that p performs marginally (but not significantly) bet-
ter than Cliff’s d in terms of its power difference against Std M D, particularly for two-group
experiment simulations.

5 Meta-Analysis Simulations

Although our aim was simply to compare meta-analysis using non-parametric effect sizes with
meta-analysis using Std M D, we found several practical problems identifying an appropriate
meta-analysis method for Std M D. In our introduction to this paper, we commented that for
large sample sizes and normal data, the standard meta-analysis method was well-understood;
however, there are difficulties in applying the standard meta-analysis when sample sizes are
small. In particular:

— Luo et al. (2022) found large variations in standardized mean difference (Std M D) esti-
mates using different calculation methods on the same experiments, particularly with
small sample sizes. It appeared that researchers were unclear about which of the differ-
ent calculations they should use.

— Lin (2018) found that applying the small sample size adjustment to Std M D, could lead to
alarger bias in meta-analysis results than aggregating the uncorrected Std M D values. He
was unable to specify under which conditions the Std M D estimate should be corrected
for small sample bias.

— Kitchenham and Madeyski (2020) reported inconsistencies in the published formulas for
the variance of StdM D.

In the event of large samples and many independent experiments, disagreements with
respect to formulas may not have a major impact on the aggregated values. However, this
cannot be guaranteed in the context of small sample sizes and few experiments. We discuss
this issue in Section 5.1, and explain our choice of standardized mean difference effect size.
We then report our meta-analysis simulations in Section 5.2.

Table 10 Comparison of p and Cliff’s d power levels

Exp type Num observations p Power > p Power = p Power <
Cliff’s d Power Cliff’s d power Cliff’s d power

Two group 90 88 2 0

Four group 120 106 14 0

@ Springer



137 Page 34 of 46 Empirical Software Engineering (2024) 29:137

Table 11 Comparison of p and Cliff’s d

Criterion Exp type Num observations Cliff’s d p
Median Type 1 Error Rate Two-Group 30 0.0405 0.0539
Median Type 1 Error Rate Four-Group 40 0.042 0.0493
Power Difference > 0 Two-Group 90 37 56
Power Difference > 0 Four-Group 120 58 62

5.1 A Meta-Analysis Example

In this section, we present an example that makes the difference between taking the
unweighted average and using a meta-analytic weighted approach clearer. Suppose that we
have the data reported in Table 12, which is simulated data representing a family of five
experiments. The data for each experiment were based on two groups with five observa-
tions per group. The control group was sampled from a normal distribution with a mean
0 and variance 1, and the treatment group was sampled from a normal distribution with a
mean 0.8 and variance 1. No additional variance was added to simulate random differences
between experiments, so, for formal meta-analysis of parametric effect sizes, we used the R
language metafor package with a fixed effects model (Viechtbauer 2010). For Cliff’s d
and p, we used both methods Kromey investigated, i.e., the unweighted average and formal
meta-analysis.

For parametric meta-analysis, we considered eight different possible meta-analysis meth-
ods depending on whether or not Std M D was adjusted for small sample size, whether the
small-sample size formula for the variance of Std M D was used or the approximate Normal
variance, whether or not the meta-analysis process used weighted or unweighted means, and
whether the effect size was calculated after analysing the data as a single large experiment:

1. The MDUnweighted method. This is equivalent to meta-analysing the mean difference
rather than the Std M D. The overall mean difference is the unweighted mean of the mean
difference of each experiment, and the overall variance is the mean of the variance of
each experiment. The overall Std M D is calculated as the overall average divided by the
square root of the overall variance.

2. The StdM DUnweighted and the Std M D AdjUnweighted methods. For these meth-
ods, we took the average of StdM D and Std M D Adj values and calculated the variance
directly using the average effect size in the normal variance approximation formula (see
the Supplementary Material (Kitchenham and Madeyski 2023))

3. The Approx VarWeight method. This involves aggregating Std M D and Std M D Adj using
the relevant approximate normal variance’.

4. The ExactVarWeight method. This involves aggregating Std M D and StdM D Adj using
the relevant exact variance.

5. The HedgesSmallSample method, which Hedges and Olkin recommend for aggregating
results from small sample size experiments (see Hedges and Olkin 1985, Chapter 6,
Section F.1).

Formulas for the exact and approximate variance of Std M D and Std M D Adj are reported
in the Supplementary Material (Kitchenham and Madeyski 2023).

7 Hedges and Olkin propose another form of approximate variance for Std M D Adj (see (Hedges and Olkin
1985, Equation (8), Chapter 5)). However, the alternative formula is closely related to the approximate normal
formula, so we do not consider this variance formula in this paper.
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From Table 4, we know that the expected values of the effect size are p ~ 0.714, Cliff’s
d ~ 0.428, and StdM D = 0.8. Table 12 reports the effect size statistics obtained from each
experiment. It is clear that the effect size estimates are very varied, and only Experiment 4
exhibits values close to the expected values.

Table 13 reports the results of aggregating the effect sizes and their variances and shows
that:

— As expected, a formal meta-analysis of Cliff’s d and p delivers extremely inflated effect
sizes while aggregation based on the unweighted means of Cliff’s d and p gives esti-
mates that are close to the expected values. So, we recommend the meta-analysis method
based on unweighted means for the non-parametric effect sizes, and use it for all our
meta-analysis simulations. We provide algorithms to perform unweighted meta-analysis
for the non-parametric effect in our reproducer R package (Madeyski et al. 2023):
metaanalyse.PHat and metaanalyse.Cliffd.

— All the estimates Std M D and Std M D Adj underestimated the true effect size. The best
estimate underestimated by 8%, the worst by 29%.

— Aggregating StdM D and Std M DAdj based on formal meta-analysis was the least
accurate of the parametric methods, whether based on their exact or approximate variance.

The systematic underestimation of the parametric effect sizes occurs because, over the set
of five experiments, the average Std M D underestimates. However, the small sample size
adjustment always reduces the StdM D values, and smaller Std M D values have smaller
variances® and are given greater weight in the meta-analysis. So, when a set of experiments
tends to underestimate, using the small sample size adjustment makes the underestimation
worse. Clearly, if a set of Std M D values tends to overestimate, then using the small sample
size adjustment will tend to reduce the bias.

In our opinion, the selection of an appropriate parametric meta-analysis method based on
the standardized mean difference effect size for small samples is a problem in its own right,
and that problem is outside the scope of this study. Therefore, we decided to assess Cliff’s
d and p against the M DUnweighted method. This is similar to the Individual Participant
Data (IPD) stratified approach described by Santos et al. (2020), where each experiment is
analysed as a separate entity. It has the following advantages:

— Our approach is consistent with the method Santos et al. recommend for families of
experiments.

— It delays the estimation of the overall effect size and its variance until the best esti-
mates of the overall mean and variance of the data are based on relatively large sample
sizes. This means that the small sample size adjustment is not necessary, and the normal
approximation to the variance of StdM D can be used.

— Itis a similar basic approach to that we use for meta-analysis of the non-parametric effect
sizes, so it seems to be a fair comparison method, although it is only likely to be useful
in practice for families of experiments.

— We can use parametric analysis methods for both two-group (i.e., the usual R 7 —test) and
four-group designs (i.e., Wilcox’s 1incon method with trimming set to zero (Wilcox
2012)), that do not require the assumption of variance heterogeneity. This makes com-
parisons between the parametric and non-parametric effect sizes fairer.

8 Because the variance formula uses the estimate of the effect size.
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Table 13 Meta-analysis example results (given the simulation parameters, we expected Cliff’s d ~ 0.429,
p ~ 0.714, and StdMD= 0.8)

Effect Method Mean Significant ES Var
Size (ES)

Cliff’s d MA (FE) 0.640 TRUE 0.017
Cliff’s d Average 0.440 TRUE 0.026
p MA (FE) 0.827 TRUE 0.004
p Average 0.720 TRUE 0.006
StdMD Average MD 0.706 TRUE 0.088
StdMD StdMDUnwghtd 0.736 TRUE 0.088
StdMD MA (Exact Var) 0.642 TRUE 0.130
StdMD MA (Approx Var) 0.654 TRUE 0.090
StdMDAdj MA (Hedges) 0.663 TRUE 0.097
StdMDAdj StdMDAdjUnwghtd 0.657 TRUE 0.083
StdMDAdj MA (Exact Var) 0.569 TRUE 0.103
StdMDAdJj MA (Approx Var) 0.579 TRUE 0.071

5.2 Meta-Analysis of Small Sample Size Experiments from Different Distributions

In this section, we evaluate the non-parametric and parametric effect sizes for the meta-
analysis of families of experiments using an approach very similar to the method we used
for single experiment simulations.

For each meta-analysis, we simulated 10000 families, each comprising five experiments,
where each family shared the same properties for its individual experiments in terms of design
type (two-group or four-group), observations per group (5, 10, 15 or 20), and mean difference
(zero, small, medium or large) for each of the four distribution as defined in Table 3. For
Normal and Laplace data samples, we simulated data samples with and without variance
heterogeneity. For four-group data samples, we added a fixed block effect for all Normal and
Laplace samples, while for log-normal and Gamma distributions, we produced data samples
with and without the block effect. Thus, for the individual experiments in a family, we used
the same range of simulation conditions as we did for the single group evaluations, except
that we reduced the range of sample size because, for meta-analysis, we were only interested
in small sample sizes. We used the same evaluation criteria for our meta-analysis simulations
as for our individual experiment simulation.

To make the simulations more realistic, we introduced heterogeneity between families.
For normal, Laplace and log-normal distributions, when the mean difference was greater than
zero, we introduced additional heterogeneity between experiments from different families
by adding a small random amount to the control mean for each family. For the gamma
distribution, we added the random value to the rate parameter. The random value for a
specific family was obtained by generating a random normal variable from a distribution
with mean 0 and standard deviation 0.5.

Like for the single experiment simulations, we produced four main results tables: two
tables reporting the results for power, small sample bias and individual experiment estimate
error for each type of experiment, and two tables reporting the Type 1 error rates for each
type of experiment. The results tables can be found in Section 5 of the Supplementary
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Power levels, Effect Sizes & Experiment Sample Sizes of 10, 20, 30, 40 corresponding to Families of 50, 100, 150, 200 observations
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Fig. 6 Two-group meta-analysis simulation results summary (boxplots defined by the x-axis and obtained
from all four data distributions)

Material (Kitchenham and Madeyski 2023), and we summarize the results in two multi-pane
figures.

The results for families of experiments using two-group designs are shown in Fig. 6 and
the results for families of experiments using four-group designs are shown in Fig. 7. As
would be expected, the power levels shown in the top pane of both figures are much better
for families of experiments than for single experiments. However, families of experiments
with small sample sizes and small effect sizes still exhibit unacceptably low power.

The lefthand pane in the middle row in both figures shows that there is not much to choose
between the non-parametric effect sizes in terms of power compared with Std M D; both are
better than Std M D in about half of the conditions and worse under the other conditions. Like
the single experiment results, the data tables confirm that Std M D power is better than the
non-parametric effect sizes for the Normal and Gamma samples and worse for the Laplace
and log-normal samples. These results are reported in more detail in Section 5.3

Small sample size bias is shown on the righthand pane of the middle row of each figure;
again, the non-parametric effect sizes are less biased than Std M D, although the effects are
not as dramatic as they are for individual experiments, particularly in the case of four-group
experiment meta-analysis. The median small sample bias for the two-group experiment meta-
analysis was 0.195 for the NP effect sizes and 2.13 for Std M D. The median small sample
effect size for the four-group experiment meta-analysis was 0.015 for the NP effect sizes
and 0.775 for StdM D. The direct comparison of small sample bias for each entry in the
two-group and four-group data tables is reported in Table 14.

The individual estimate error values measured by P MdM RE are shown in each figure’s
lefthand pane of the bottom row. The median PMdM RE values for the two-group experi-
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Fig. 7 Four-group meta-analysis simulation results summary (boxplots defined by the x-axis and obtained
from all four data distributions)

ment meta-analysis were 28 for the non-parametric effect sizes and 32 for Std M D. For the
four-group experiment meta-analysis, the median P MdM R E values were 20.5 for the non-
parametric effect sizes and 24.4 for Std M D. The direct comparisons of related PMdMRE
values from the same simulations are shown in Table 15. The results suggest the NP effect
sizes are more accurate than the Std M D effect sizes, but the differences are not statistically
significant.

The Type 1 error rates are shown in the lefthand pane of the bottom row of each figure.
Cliff’s d exhibits the most biased error rate in both figures, while p has the most accurate
Type 1 error rates for two-group experiment families, and StdM D has the most accurate
Type 1 error rates for the four-group experiment families.

The results of the meta-analysis simulations illustrate the value of meta-analysis to increase
power and reduce estimate bias. They also confirm the value of the non-parametric effect
sizes in reducing small sample bias.

Table 14 Comparison of small sample bias of NP effect sizes and Std M D for meta-analysis simulations

Exp type Num observations Bias Bias Bias

NP < StdM D NP > StdM D NP = StdMD
Two Group 72 69 2 1
Four Group 96 75 21 0
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Table 15 Comparison of PMdM RE values for NP effect sizes and Std M D for meta-analysis simulations

Exp type Num observations PMdMRE PMdMRE
NP < StdMD NP > StdMD

Two Group 72 57 15

Four Group 96 78 18

5.3 Comparing Non-parametric Effect Sizes Cliff’s d and p

Table 16 confirms that, for both the two-group and the four-group experiment meta-analysis
simulations, p power levels were equal or better than Cliff’s d power levels for all simulation
conditions. Table 17 confirms that p exhibited less Type 1 error rate bias for meta-analysis of
both two-group families and four-group families. There was no significant difference between
Cliff’s d and p in terms of their power difference effectiveness compared to Std M D power.

6 Discussion

This paper has proposed the use of the non-parametric effects sizes p and Cliff’s d as effect
sizes that are suitable both for summarizing the results of randomized experiments, and
for subsequent meta-analysis of independent randomized experiments addressing the same
research hypothesis. A novelty of our research is that we confirmed that p could be used in
meta-analysis like Cliff’s d.

Another novelty of this study is that we compared the effectiveness of p and Cliff’s d.
There are some differences in power and Type 1 error rates between p and Cliff’s d due to the
different methods recommended for constructing the effect size variance and for statistical
tests. The main difference was that p power was always better than, or equal to, Cliff’s d
power. Reference to the results tables confirms that Cliff’s d power is equal to p power only
when power levels are very high (> 0.98); in all other cases, p power is greater than Cliff’s
d power. Although p overestimated Type 1 error rates for two-group experiments with five
observations per group while Cliff’s d was less biased, across all other simulation conditions,
p was less biased than Cliff’s d. The results, therefore, suggest that overall p is more effective
than Cliff’s d.

This proposal addresses the problem that SE researchers undertaking families of experi-
ments may find if some experiments exhibit non-normality, but meta-analysis of a group of
experiments testing the same hypothesis requires all the experiments to be summarized using
the same effect size. For example, in Kitchenham et al. (2020a), we investigated 13 studies
that applied meta-analysis to families of randomized experiments. Looking at the methods
used to analyse individual experiments, we found three studies used only parametric test,
whereas four used non-parametric tests only, four used either non-parametric tests or para-
metric tests depending on the normality of the experimental data, and two studies always

Table 16 Comparison of p and Cliff’s d Power levels for Meta-Analysis Simulations

Exp type Num observations p Power > p Power = p Power <
Cliff’s d power Cliff’s d power Cliff’s d power

Two Group 72 58 14 0

Four Group 96 57 39 0
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Table 17 Comparison of p and Cliff’s d for meta-analysis

Criterion Exp type Num observations Cliff’s d p
Median Type 1 Error Rate Two-Group Families 24 0.044 0.048
Median Type 1 Error Rate Four-Group Families 32 0.042 0.045
Power Difference >0 Two-Group 72 37 37
Power Difference >0 Four-Group 96 57 57

used both non-parametric and parametric statistical tests. However, in spite of most of the
studies using non-parametric statistics tests, all 13 studies used parametric effect sizes for
their meta-analyses. Our simulation results confirm that researchers can use p both for sum-
marizing the results of individual experiments and for meta-analyzing the results of families
of experiments.

Our simulations have also confirmed that the power levels for both the parametric and
non-parametric effect sizes are unacceptably low for single experiments with small sizes,
particularly when effect sizes are small. This has been long recognised by SE researchers
and had led to calls for using larger sample sizes (see Shepperd 2018; Jgrgensen et al.
2016). Furthermore, for many years the Simula Laboratory in Norway pioneered the use of
large sample size experiments using professional software engineers as participants (see, for
example, Arisholm and Sjoberg 2004; Arisholm 2006; Arisholm et al. 2007). However, the
mapping study by Santos et al. (2020) and our own research (Kitchenham et al. 2022) makes
it clear that academic researchers have found that using families of experiments is easier to
manage than undertaking single large-scale experiments. Fortunately, our simulations also
show that high power levels can be achieved when experimental results are aggregated using
meta-analysis. However, our simulations also confirm that for small effect sizes, aggregating
the Std M D can lead to biased estimates of the overall effect size, while aggregating p results
in much less bias’.

Our results show that there is a potential for power loss using p to summarize individual
experiments if the data is known to normal or gamma. However, our simulations confirm
that p estimates for individual experiments are unbiased for all distributions. This means the
p estimates from individual experiments can be easily aggregated with other experiments
testing the same hypothesis, without any of the adjustments required for the standardized
mean difference effect sizes needed to adjust for its small sample bias.

We have demonstrated two other advantages that p has over StdM D, in cases when
samples are small and the distribution of the samples is unknown:

1. p is robust to extreme non-normality, such as that arising for log-normal samples with
variance heterogeneity.

2. The meta-analysis process is much simpler for p than for Std M D because it does not
require the data analyst to make a large number of arbitrary decisions about the method
of constructing the effect sizes and their variance.

A criticism of using p as an effect size is that it may be difficult to understand. However,
it may also be difficult to understand the standardized mean difference or the point bi-serial
correlation coefficient. Furthermore, in the context of academic experiments, which are based

9 Inspection of the meta-analysis result tables provided in the Supplementary Material confirms that both
parametric and nonparametric effect sizes are most likely to be biased for gamma-distributed data.
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on participants (often students) all undertaking the same task in a restricted timescale, we
should not expect estimates of StdM D or StdM DAdj to be representative of the effects
that would be found in an industrial context. It may be more useful to report p, which gives a
good indication of whether or not a technique improves the performance of individuals (even
students) than a numerical estimate of the effect that is unlikely to be realistic.

6.1 Limitations and Constraints

A general limitation of simulation experiments is that they can only consider a limited number
of conditions. Our simulation studies included both normal and non-normal distributions
with different non-normal properties, two design types, a variety of small sample sizes and
limited variance heterogeneity. We have not used mixed distributions, which have higher
probabilities of outliers, nor have we used artificially truncated distributions, where data
values are restricted to be within finite upper and lower bounds, although, in principle, more
complex data sets should favour the use of non-parametric effect sizes (Neuhéuser et al.
2007). In addition, we have not considered unbalanced experiments where there are different
numbers of participants in different treatment groups and blocks, nor have we considered the
impact of families of less than 5 experiments.

A specific limitation of our study is that the meta-analysis method we used for Std M D
was recommended for families of experiments, not a meta-analysis of sets of independent
experiments (Santos et al. 2020). However, the method that we used for both parametric and
non-parametric meta-analysis is not actually invalid for any set of independent experiments; it
is just equivalent to always choosing a random effects model. This is likely to be less powerful
for StdM D than a standard meta-analysis when a fixed effects analysis is appropriate or
when it is possible to obtain a reliable estimate of the excess variance due to experiment
heterogeneity.

Our proposals are restricted to:

— experimental designs that can be decomposed into independent two-group experiments,
which include randomized between-groups experiments, randomized blocks experiments
and within-participant before/after experiments, and cross-over experiments. We explic-
itly exclude randomized factorial experiments that investigate the interaction effects
between different techniques. In this case, there is no well-defined summary effect size
for such experiments.

— outcome measures of ratio or interval scale but not binary outcome measures or short
ordinal scale measures. This is because binary measures and ordinal measures cannot
be converted into useful rank statistics. Binary outcome measures all share one of two
ranks, and ordinal scale measures share a limited number of ranks.

6.2 Future Work and Conclusions
For future research, we need to trial our proposals on a variety of different SE data sets

to ensure that our method and analysis tools are appropriate for experiments with unequal
treatment groups and block sizes and perform as we anticipate for cross-over designs.
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We present our key findings in the following textbox, which confirm that there are good
reasons for using the non-parametric effect size p for both statistical analysis and meta-
analysis of randomized experiments with small sample sizes.

'Key findings:

1. For individual experiments, the non-parametric effect sizes (Cliff’s d and p) had negli-
gible small sample bias for all the combinations of sample sizes and distributions that
we simulated. In contrast, Std M S exhibited a substantial small sample bias across the
range of distributions and sample size distributions.

2. The non-parametric effect sizes delivered power levels that were better than Std M D
for lognormal and Laplace data but marginally worse for gamma and normal data.

3. For meta-analysis, the method (Kromrey et al. 2005) propose for meta-analysis with
Cliff’s d can also be applied to p, and it can also be used for non-parametric analysis
of any single experiment that can be decomposed into blocks of one or more two-group
random experiments.

4. For meta-analysis, the non-parametric effect sizes exhibit less small sample bias than
StdM D.

5. Across all but one simulation condition, p type 1 error rates were less biased than Cliff’s
d type 1 error rates and across all conditions, p power was as good or better than Cliff’s
d power.

\ J

[ Overall conclusion: Using p as an effect size is a low-risk option for analysing and |
meta-analysing data from small sample-size experiments. Parametric methods are only
 preferable if you have prior knowledge of the distribution of the data.

J

We hope that researchers who have published meta-analyses based on parametric effect
size for lack of any alternative will re-do their meta-analysis using p and publish any changes
to their previous conclusions.
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