

Applied Physiology, Nutrition, and Metal

Test-retest reliability of cardiopulmonary exercise testing in patients with atrial fibrillation and determination of exercise responders to high-intensity interval training and moderate-to-vigorous intensity continuous training

Journal:	Applied Physiology, Nutrition, and Metabolism
Manuscript ID	Draft
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Terada, Tasuku; University of Nottingham, School of Life Sciences Keir, Daniel; University of Western Ontario, Kinesiology Murias, Juan; Hamad Bin Khalifa University, Faculty of Kinesiology Vidal-Almela, Sol; University of Ottawa Heart Institute, Exercise Physiology and Cardiovascular Health Lab; Institut du Savoir Montfort, Buckley, John; Keele University Reed, Jennifer; University of Ottawa Heart Institute; University of Ottawa
Is the manuscript for consideration in a Special Issue or Collection?:	
Keyword:	aerobic evaluation < exercise, exercise intensity < exercise, exercise performance < exercise, exercise physiology < exercise, aerobic exercise < exercise, exercise testing < exercise, exercise training < exercise

SCHOLARONE[™] Manuscripts

1	Title: Test-retest reliability of cardiopulmonary exercise testing in patients with atrial fibrillation
2	and determination of exercise responders to high-intensity interval training and moderate-to-
3	vigorous intensity continuous training
4	Running Title: Reliability of CPET in Afib
5	
6	Authors: Tasuku Terada, ^{1,2} Daniel A. Keir, ^{3,4,5} Juan M. Murias, ⁶ Sol Vidal-Almela, ² John
7	Buckley, ⁷ Jennifer L. Reed, ^{2,8,9}
8	
9	Affiliations:
10	¹ School of Life Sciences, Division of Physiology, Pharmacology, and Neuroscience; University
11	of Nottingham, Nottingham, UK
12	² Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and
13	Rehabilitation, University of Ottawa Heart Institute, Ontario, Canada
14	³ School of Kinesiology, The University of Western Ontario, Ontario, Canada
15	⁴ Lawson Health Research Institute, London, Ontario, Canada
16	⁵ Cardiac Rehabilitation and Secondary Prevention Program, St. Joseph's Health Care, Ontario,
17	Canada
18	⁶ College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
19	⁷ School of Allied Health Professions, Keele University, Stafford, UK
20	⁸ School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
21	⁹ Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
22	
23	

24 Corresponding Author:

- 25 Jennifer L. Reed, RKin, PhD
- 26 Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and
- 27 Rehabilitation, University of Ottawa Heart Institute, Ontario, Canada
- 28 E-mail: JReed@ottawaheart.ca
- 29 Telephone: 1-613-696-7392
- 30 Twitter: @DrJenniferReed
- 31
- 32 Abstract: 250 words
- 33 All element word counts: 6041 words
- 34 **Tables/Figures**: 3 figures and 1 table
- 35 **References**: 40

37 ABSTRACT

Introduction: Disabling atrial fibrillation (AF)-related symptoms (e.g., palpitations and 38 39 dyspnea) may influence day-to-day cardiopulmonary exercise testing (CPET) performance, which can affect exercise prescription for high-intensity interval training (HIIT) and moderate-40 to-vigorous intensity continuous training (M-VICT) and their outcomes. This study examined the 41 42 test-retest reliability of CPET in patients with AF and assessed the proportion of participants achieving minimal detectable changes (MDC) in peak oxygen consumption (VO_{2veak}) following 43 HIIT and M-VICT. Methods: Participants were randomized into HIIT or M-VICT after 44 completing two baseline CPETs: one with cardiac stress technologists (CPET_{diag}) and the other 45 46 with a research team of exercise specialists (CPET_{research}). Additional CPET was completed 47 following 12 weeks of twice-weekly training. Reliability of CPET_{diag} and CPET_{research} was assessed by intraclass correlation coefficient (ICC) and dependent t-tests. The MDC score was 48 calculated for VO_{2peak} using a reliable change index. The proportion of participants achieving 49 50 MDC was compared between HIIT and M-VICT using chi-square analysis. Results: Eighteen participants (69±7 years, 33% females) completed two baseline CPETs. ICC was significant for 51 all measured variables. However, peak power output (PO_{peak}: 124±40 vs. 148±40 watts, p<0.001) 52 53 and HR (HR_{peak}: 136±22 vs. 148±30 bpm, p=0.023) were significantly greater in CPET_{research} than CPET_{diag}. Few participants achieved MDC in VO_{2peak} (5.6 mL/kg/min) with no difference 54 55 between HIIT (0%) and M-VICT (10.0%, p=0.244). Conclusions: PO_{peak} and HR_{peak} differed 56 significantly in patients with AF when CPETs were repeated under different settings. Caution must be practiced when prescribing exercise intensity based on these measures as under-57 58 prescription may increase the number of exercise non-responders. **Key words**: cardiopulmonary 59 fitness, arrhythmia, peak oxygen consumption, cardiovascular rehabilitation

60 Introduction

61	Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia(Dai et al., 2021)
62	characterized by a rapid and irregular heartbeat that is associated with disabling symptoms, such
63	as palpitations, dyspnea, and dizziness (Lip et al., 2016). AF increases the risk of stroke by five-
64	fold and the risk of all-cause mortality by nearly two-fold (Ruddox et al., 2017, Wolf et al.,
65	1991). As AF progresses from paroxysmal to persistent and permanent forms, the risks of
66	thromboembolism (Chiang et al., 2012) and mortality (Mentel et al., 2020, Shukla and Curtis,
67	2014) increase. The age-adjusted prevalence of AF approximately quadrupled from 20 to 96 per
68	thousand in males and 14 to 49 per thousand in females, respectively, between 1998 and 2007
69	(Schnabel et al., 2015). In 2017, AF afflicted more than 37 million people globally (Dai et al.,
70	2021). With the rise in AF incidence and prevalence, it meets the criteria for a 21st century
71	cardiovascular disease epidemic (Kornej et al., 2020).
72	Low aerobic fitness in patients with AF (Andrade et al., 2020, Mertens and Kavanagh,
73	1996) may contribute to the high risk of morbidity and mortality (Kokkinos et al., 2023). Indeed,
74	in patients with AF, an increase in one metabolic equivalent (MET, a measure of aerobic fitness)
75	is associated with a 12% lower risk of morbidity and 15% lower risk of all-cause mortality
76	(Garnvik et al., 2020), and increases of 2.0-3.0 METs are associated with approximately 31%
77	lower mortality risks (Kokkinos et al., 2023). Although exercise training in the form of
78	moderate-to-vigorous intensity continuous training (M-VICT) increases aerobic fitness
79	(American College of Sports Medicine, 2021), growing evidence indicates that high-intensity
00	
80	interval training (HIIT) may elicit greater improvements in aerobic fitness in people with

82	Exercise intensity for HIIT and M-VICT in patients with AF has been prescribed as a
83	fraction of peak oxygen uptake (VO _{2peak}) (Mertens and Kavanagh, 1996), peak heart rate
84	(HR _{peak}) (Malmo et al., 2016), peak power output (PO _{peak}) (Reed et al., 2022), or based on ratings
85	of perceived exertion (RPE) (Mertens and Kavanagh, 1996, Risom et al., 2016) achieved during
86	a symptom-limited incremental cardiopulmonary exercise test (CPET). CPET protocols usually
87	involve a gradual increase in the exercise work rate until patients reach volitional exhaustion or
88	exhibit symptoms for which continued exercise is contraindicated. Despite some limitations of
89	using fraction of maximal/peak responses for aerobic exercise prescription (Iannetta et al.,
90	2020b), this approach is often used to prescribe individualized exercise intensity to maximize the
91	effects of exercise training on aerobic fitness (MacInnis and Gibala, 2017).
92	To effectively prescribe exercise intensity or assess the effectiveness of interventions on
93	aerobic fitness, variables determined from CPET must be reliable. In patients with stable angina
94	(Sullivan et al., 1984) and coronary artery disease (Coeckelberghs et al., 2016, Faricier et al.,
95	2023), CPET provides highly reliable measures of VO_{2peak} and HR_{peak} (intraclass correlation
96	[ICC] \geq 0.88). However, in patients with heart failure, VO _{2peak} (Elborn et al., 1990), HR _{peak} , and
97	RPE (Bensimhon et al., 2008) have been shown to be greater in the second CPET when two
98	CPETs were performed over two weeks, suggesting that the test-retest reliability may depend on
99	clinical conditions or test-retest familiarization. Notably, 17 of these patients (57%) had AF in
100	one of these studies (Elborn et al., 1990). In patients with AF, the complex presentation of
101	disabling AF-related symptoms (e.g., palpitations, dyspnea, weakness, and dizziness) combined
102	with the effects of medications to control HR may influence day-to-day exercise performance
103	during CPET beyond the expected biological variation seen in other non-arrhythmia populations.

Establishing the test-retest reliability of CPET allows for the determination of (1)104 consistency and variability in exercise intensity prescription for patients with AF, and (2) 105 minimal detectable change (Chelune, 1993) that distinguishes the training effects from error and 106 test exposure at the individual level (O'Connell et al., 2021, Chelune, 1993). The primary 107 purpose of this study was to examine the test-retest reliability of variables available from CPET 108 109 (i.e., VO_{2peak}, PO_{peak}, HR_{peak}, and RPE) in adult participants with persistent and permanent AF prior to embarking on a 12 week HIIT and M-VICT. The secondary purpose was to compare the 110 proportion of participants achieving minimal detectable change after participating in 12 weeks of 111 HIIT and M-VICT. 112

113

114 Materials and methods

Study design: We analyzed data collected in a previous RCT that compared the effects of HIIT 115 and M-VICT on functional capacity (6-minute walk test distance) and quality of life in patients 116 with persistent and permanent AF (Reed et al., 2022). The test-retest reliability was assessed by 117 analyzing the data from a subgroup of participants who completed CPET on two separate 118 occasions within two weeks at baseline (i.e., before the exercise training intervention). Data from 119 120 participants who completed CPETs at baseline (CPET_{pre}) and following HIIT or M-VICT (CPET_{post}) were analyzed to compare the proportion of participants achieving the minimal 121 detectable change in VO_{2peak} between the groups. The study was approved by the Ottawa Health 122 123 Science Network Research Ethics Board (protocol number: 20150427-01H) and all participants provided written consent prior to participating in the study. 124

Participants: Detailed description of participants has been reported (Reed et al., 2022). Briefly, 126 this study included patients with diagnosed persistent and permanent AF who were \geq 40 years old 127 and had a resting HR \leq 110 bpm. Patients who were participating in routine exercise training 128 (*in the second second* 129 stenosis, or hypertrophic obstructive cardiomyopathy with significant obstruction were excluded. 130 131 Demographic and medical information of participants were retrieved from the electronic medical records system (EPIC). Study staff measured stature, body mass, percent body fat (bioelectrical 132 impedance analysis), resting HR and blood pressure. Participants' time spent in AF was assessed 133 by a 24-hr Holter monitor. Physical activity levels were measured over seven days by an 134 ActiGraph GT3X accelerometer (ActiGraph, Pensacola FL). 135

136

Baseline cardiopulmonary exercise testing (CPET): At baseline, participants completed two 137 separate CPETs within two weeks. One CPET was completed on an electronically-braked cycle 138 ergometer (ergoselect 100, ergoline, Germany), with gas exchange and ventilatory responses 139 measured using a Vmax metabolic cart (Sensormedics, Yorba Linda, CA, United States). This 140 CPET was supervised by cardiac stress technologists in the Department of Cardiac Imaging 141 142 (CPET_{diag}). On a separate day, another CPET was completed by a certified study staff member (CPET_{research}) using an electronically-braked cycle ergometer (ergoselect 200, ergoline, 143 144 Germany) and Oxycon Mobile portable indirect calorimetry (CareFusion, Canada). The open 145 circuit calorimetry used in both CPETs provided breath-by-breath measures of oxygen uptake (VO_2) and carbon dioxide exhalation (VCO_2) , based on which the respiratory exchange ratio 146 (RER) was automatically calculated by the software. A 12-lead ECG was used to monitor HR 147 148 continuously for $CPET_{diag}$ and a 3-lead ECG for $CPET_{research}$. The test termination criteria for

both tests were volitional exhaustion (e.g., participants requesting to stop or unable to sustain the 149 cadence) or onset of severe symptoms (American College of Sports Medicine, 2021). Staff 150 151 performing CPETs were blinded to the results of the other CPET. The initial power output for CPET_{diag} was set at 20 watts and increased by 20 watts per 152 minute thereafter. The initial power output of CPET_{research} was set at 40 watts, which did not 153 154 change for the first two minutes, followed by an increase of 20 watts per minute thereafter. Consequently, the power output only differed during the first minute (Figure 1). RPE was 155 assessed at the end of each minute and at volitional exhaustion using the Borg's 6-20 RPE Scale 156 (Borg, 1970). For VO₂ and VCO₂, average measures captured over a 20-sec window were used 157 for the analyses. The highest attained 20-second average VO₂ during the exercise test was 158 defined as VO_{2peak} . The first ventilatory threshold (VT₁, gas exchange threshold) and second 159 ventilatory threshold (VT₂, respiratory compensation point) were determined by an investigator 160 blinded to the participant ID and conditions (i.e., CPET_{diag} or CPET_{research}). As previously 161 162 described, VT_1 and VT_2 were determined by plotting VCO₂, ventilation (V_E), V_E/VO₂, and $V_{\rm E}/VCO_2$ against VO₂ (Keir et al., 2022). Participants were instructed to take their prescribed 163 medications as usual prior to CPETs. 164

165

Exercise intervention: Following the baseline measures, participants were randomized 1:1 to HIIT or M-VICT. Each HIIT session was performed on a cycle ergometer and was 23 minutes in duration, including: a 2-min warm-up at 50% of PO_{peak} ; two blocks of 8 x 30-sec high-intensity bouts interspersed with 30-sec active recovery, with 4 min active recovery between the blocks; and, a 1-min cool-down at 25% PO_{peak} . Exercise intensity of the high-intensity bouts was based on the CPET_{diag} results and set at 50% of PO_{peak} for the first week and increased by 10% after

172	every other session. When participants were able to tolerate the prescribed 100% PO_{peak} , they
173	were permitted to increase the intensity up to 150% of their PO_{peak} . All HIIT sessions were
174	supervised by study personnel. The M-VICT sessions were supervised by cardiovascular
175	rehabilitation staff. Each M-VICT session was 60 minutes in duration, including: 10 to 15-
176	minute warm-up, 30 minutes of continuous aerobic conditioning (i.e. walking or jogging,
177	cycling, elliptical, rowing) at HR within 67-95% HR_{peak} or RPE between 12 and 16, and a 15-
178	minute cool-down with stretching and strengthening exercise. Both HIIT and M-VICT sessions
179	were performed 2 days/week for 12 weeks.
180	
181	Follow-up CPET: Willing participants completed an additional CPET following the allocated
182	exercise interventions (i.e., HIIT or M-VICT). The CPET _{post} was performed by the study group
183	using the Oxycon Mobile. The protocol used for the $CPET_{post}$ was the same as the $CPET_{research}$.
184	

Minimal detectable change: Based on data obtained from two baseline CPETs (i.e., $CPET_{diag}$ and $CPET_{research}$) and using a reliable change index score of 1.96, the minimal detectable change in VO_{2peak} was calculated (O'Connell et al., 2021, Faricier et al., 2023). Participants with VO_{2peak} changes exceeding the minimal detectable change following HIIT and M-VICT were considered as positive responders.

190

Data analysis: All analyses were performed using SPSS statistical software version 29 (IBM
 Corp, Armonk, NY, USA). Descriptive statistics were used to summarize the characteristics of
 participants. Both relative and absolute reliabilities were assessed to determine the test-retest
 reliability of CPETs. Relative reliability was assessed using the intraclass correlation coefficient

195	(ICC) based on a two-way random-effects model and type consistency using average measures
196	(ICC _{3,1}). The ICC was classified as follows: <0.5 as poor, \geq 0.5 and <0.75 as moderate, \geq 0.75 and
197	<0.9 as good, and \geq 0.9 as excellent (Koo and Li, 2016). Paired t-tests were used to compare
198	CPET _{diag} and CPET _{research} . Bland-Altman plots were used to assess the limits of agreement. The
199	presence of proportional bias was assessed by the linear regression of differences on averages
200	before plotting the Bland-Altman plots (Weir, 2005). When proportional bias was present,
201	modified Bland-Altman plots were plotted.
202	For changes in aerobic fitness, the normality of data was assessed by the Shapiro-Wilk
203	test. Repeated-measures analysis of variance (ANOVA) was used to examine the main effect of
204	time and time by exercise intervention interaction effects. When two baseline CPETs were
205	completed (i.e., CPET _{diag} and CPET _{research}), the latter CPET conducted prior to attending
206	prescribed exercise interventions were used for the analyses. The proportions of participants
207	achieving minimal detectable change in VO_{2peak} were compared between HIIT and M-VICT
208	using chi-square analyses. A p value < 0.05 was considered statistically significant. All
209	continuous data are presented as mean \pm SD.
210	

210

211 Results

212 Participants: Of 94 participants with persistent or permanent AF consented, 18 (33% persistent

AF, mean age: 69 ± 7 years, 33% females) completed two CPETs within two weeks at baseline

- and 23 completed CPET_{pre} and CPET_{post} (n=13 in HIIT and n=10 in M-VICT). Participants'
- characteristics are summarized in **Table 1**. Overall, participants were not physically active $(13 \pm$
- 216 11 minutes of moderate-intensity physical activity per day and 1 ± 1 minutes of vigorous-
- intensity physical activity per day) and spent most of the day in AF (\geq 95%). There was a large

variability in VO_{2peak} among participants at baseline, ranging from 11.3 to 31.9 mL/kg/min (i.e.,
very poor to excellent (American College of Sports Medicine, 2021)).

220

Test-retest reliability of baseline CPETs: The two baseline CPETs were separated by 7 ± 2 221 days. The majority of participants completed CPET_{diag} first (n=12, 67%). All CPETs were 222 223 terminated when participants reached volitional exhaustion; no CPETs were terminated by a supervisor due to the onset of exercise contraindications. Seventeen participants (94%) achieved 224 a respiratory exchange ratio (RER) ≥ 1.10 during CPET_{diag} and CPET_{research}. The variables 225 measured during the two baseline CPETs are presented in **Figure 2**. At volitional exhaustion, the 226 227 PO_{peak} (124 ± 40 vs. 148 ± 40 watts, p<0.001, d=-1.006) and HR_{peak} (136 ± 22 vs. 148 ± 30 bpm, p=0.023, d=-0.720) were significantly greater for CPET_{research} compared to CPET_{diag}. However, 228 the mean RPE at volitional exhaustion $(18 \pm 3 \text{ vs. } 19 \pm 1 \text{ points}, p=0.129, d=-0.564)$ and the 229 VO_{2peak} (18.6 ± 5.9 vs. 19.3 ± 5.1 mL/kg/min, p=0.393, d=-0.207) did not differ significantly 230 231 between CPET_{diag} and CPET_{research}. 232 Between CPET_{diag} and CPET_{research}, the ICC was significant for VO_{2peak}, PO_{peak}, HR_{peak}, and RPE at exhaustion. The ICC of VO_{2peak} was excellent, whereas the ICC of the other 233 234 measures were in a good range. At VT₁, there were no differences in VO₂ (10.3 ± 2.0 vs. $10.9 \pm$ 1.8 mL/kg/min, p=0.191, d=-0.355) or %VO_{2peak} (58.6 ± 11.5 vs. 58.8 ± 13.7 %, p=0.929, d=-235 236 0.023) between CPET_{diag} and CPET_{research}. Their ICCs were significant (p=0.022 for VO₂ and 237 p=0.002 for %VO_{2peak}, respectively). VT₂ could only be identified in three participants for both 238 CPET_{diag} and CPET_{research}, and thus, was excluded from the analysis. 239 The Bland-Altman plots are presented in Figure 3. The limits of agreement were wide 240 for PO_{peak} and HR_{peak} with significant systematic bias between the repeated tests. Although the

241	mean difference was small for VO_{2peak} between $CPET_{diag}$ and $CPET_{research}$, the limits of
242	agreement were similarly wide (±6.2 mL/kg/min). For RPE, there were larger discrepancies
243	between the two tests when average RPE was lower.
244	
245	Exercise training responders : The characteristics of participants who completed $CPET_{pre}$ and
246	CPET _{post} are summarized in Table 1 . Exercise adherence (i.e., % of exercise sessions attended)
247	was high for both HIIT (91 \pm 11%) and M-VICT (85 \pm 10%) and did not differ between the
248	groups (p=0.830). At week 10, 85% of participants in HIIT and 80% in M-VICT achieved the
249	prescribed exercise intensity targets, with no difference in the proportion of participants
250	achieving exercise target between the groups (p=0.772).
251	At week 12, no significant change in VO _{2peak} (18.8 ± 5.2 vs. 19.3 ± 4.6 mL/kg/min, main
252	effect of time, p=0.386) or time by exercise intervention interaction effects (p=0.984) were
253	found. The minimal detectable change for VO _{2peak} was 5.6 mL/kg/min. Following HIIT and M-
254	VICT, there were no significant differences in the proportion of participants who achieved a
255	reliable increase in VO _{2peak} (0 [0%] in HIIT and 1 [10%] in M-VICT, p=0.244).
256	
257	Discussion
258	CPET plays an important role in patients with AF to: (1) diagnose morbidity and mortality risks;
259	(2) prescribe individualized exercise intensity; (3) determine the effectiveness of exercise
260	training interventions; and, (4) assess the prognosis of clinical conditions (Mezzani et al., 2009).
261	However, for these methods to be valid in patients with AF, the reliability of CPET needs to be
262	established for this condition. Because two repeated tests were completed by different groups
263	(diagnostics and research personnel) using different metabolic systems, we present conservative

reliability that includes intra-individual, inter-tester, and inter-device variabilities.

265	Between CPET _{diag} and CPET _{research} , the ICC of PO _{peak} and HR _{peak} were in the good range.
266	However, both PO_{peak} and HR_{peak} were significantly higher in $CPET_{research}$ compared to $CPET_{diag}$.
267	In those unaccustomed to maximal and exhaustive efforts, increased confidence and expectations
268	may permit heightened exercise tolerance and achievement of higher exercise intensity. Because
269	a larger proportion of participants completed CPET _{research} after CPET _{diag} (12 of 18 patients, 67%),
270	it was possible that greater PO_{peak} and HR_{peak} observed in $CPET_{research}$ were due to a learning or
271	familiarization effect. To test the effects of the testing order, we performed dependent t-tests to
272	compare the variables obtained in the first and second CPETs (results not shown). These
273	comparisons showed no differences between the first and second CPETs (all p>0.05),
274	highlighting that significantly higher PO _{peak} and HR _{peak} during CPET _{research} were not due to
275	learning effects. Consequently, the observed differences in PO_{peak} and HR_{peak} may reflect
276	different testing settings, such as different degrees of encouragement provided in research versus
277	clinical settings (Andreacci et al., 2002). Professionals involved in diagnostic evaluations often
278	perform CPET to identify the underlying risks, whereas the research teams may often be more
279	interested in peak/maximal performance. To partially support this, although the RPE did not
280	differ significantly between $CPET_{research}$ and $CPET_{diag}$, the average RPE score was higher and
281	variability smaller during CPET _{research} compared to CPET _{diag} (18 ± 3 vs. 19 ± 1 points, p=0.129,
282	d=-0.564), suggesting a consistent and greater level of effort during CPET _{research} .
283	Despite significantly higher PO_{peak} and HR_{peak} in $CPET_{research}$ compared to $CPET_{diag}$, there
284	was no difference in VO_{2peak} . This was unexpected because, in healthy individuals, the expected
285	gain in VO ₂ within the severe-intensity domain for a ramp of 20 watts/min ranges between 7.6

- and 9.2 mL/min/watt (Iannetta et al., 2019). This is equivalent to approximately 2.0 to 2.4
- mL/kg/min for a ~24 watts difference using the group mean body mass of our patients. The lack

288 of significant difference in VO_{2peak} despite an increase in PO_{peak} could be explained by 289 physiological or technological factors. From a physiological perspective, this could reflect the achievement of maximal oxygen consumption (VO_{2max}) in CPET_{research} with additional work 290 facilitated by anaerobic energy contributions. However, this is unlikely because a plateau in VO₂ 291 was not observed. Alternatively, the high reliability for VO_{2peak} in our study may be confounded 292 293 by a systematic offset between VO₂ measuring devices as accuracy and error are likely to differ between systems (Van Hooren et al., 2023). The excellent test-retest ICC for the VO_{2veak} aligns 294 with previous findings in patients with coronary artery disease (ICC 0.95; 95% CI, 0.92-0.97) but 295 the study reported no differences in the PO and HR at VO_{2peak} (Coeckelberghs et al., 2016). 296 Thus, the use of two different metabolic systems complicates the interpretation of within-297 participant changes in gas exchange variables and may have contributed to the dissociation of 298 VO₂ from the HR and PO data. The wide limits of agreement for VO_{2peak} depicted in the Bland-299 Altman plots (±6.2 mL/kg/min) also represents the combination of inter-individual and inter-300 301 device variabilities. Similar to VO_{2peak}, significant and good test-retest ICCs for the VO₂ and $%VO_{2peak}$ at VT_1 need to be interpreted with caution given the different metabolic systems 302 used. Future studies in AF should reevaluate the reliability of VO_{2peak} (and other gas exchange 303 304 and ventilatory indices) using the same metabolic system. That said, it is important to note that many cardiac centres are equipped with different metabolic systems from different 305 306 manufacturers and often lack a standardized exercise testing protocol. 307 After 12 weeks of exercise training, there were no significant changes in VO_{2peak}. We 308 also found that only one participant in M-VICT achieved the minimal detectable change in VO_{2peak}. In the HIIT group, the exercise intensity prescription was based on PO_{peak} achieved 309 310 during CPET_{diag}. As shown in the original study (Reed et al., 2022), %HR_{peak} and RPE of the

HIIT sessions were performed at our vigorous intensity classification (American College of 311 Sports Medicine, 2021). However, given the significantly lower PO_{peak} in CPET_{diag} when 312 compared to CPET_{research}, the exercise prescription for HIIT may still have been insufficient to 313 induce significant changes in VO_{2peak}. It is possible that more rigorous and effective exercise 314 prescriptions can be implemented when CPET is led by exercise specialists. In addition, POpeak at 315 316 volitional exhaustion depends on the ramp slope (i.e., the rate and magnitude of PO increase) (Iannetta et al., 2020a, Keir et al., 2018). This concept is likely transferable to patients with 317 clinical conditions (Keir et al., 2018, Bowen et al., 2012) and makes it challenging to prescribe 318 appropriate exercise intensity based on PO_{peak}. Considering that exercise intensity prescription 319 based on HR may be confounded by arrhythmia and rate-controlling medications in AF, further 320 research is warranted to elucidate the best way of prescribing an effective individualized exercise 321 intensity for patients living with AF. 322

The M-VICT group was supervised by the cardiovascular rehabilitation team. The 323 average RPE of the M-VICT group over the 12 weeks of intervention remained between 12 and 324 13 (i.e., moderate intensity (American College of Sports Medicine, 2021)) and HR during the 325 exercise was also in a moderate-intensity range (Reed et al., 2022). Thus, the M-VICT group 326 327 may also have required a greater exercise intensity to improve VO_{2peak}. Additionally, a higher exercise training volume predicts a greater proportion of individuals achieving an increase in 328 329 aerobic fitness >0.5 METs, a threshold that has been considered clinically meaningful 330 (Bonafiglia et al., 2021). As recommended by the Canadian Cardiovascular Society AF guidelines (Andrade et al., 2020), a greater exercise volume (i.e., ≥200 minutes weekly) might be 331 required to increase VO_{2peak} in patients with AF when exercise intensity is moderate. It is 332 333 important to note that there was a significant improvement in six-minute walk test distance in

334	HIIT (21.3±34.1 m) and M-VICT (13.2±55.2 m) (Reed et al., 2022). This inconsistency (i.e., an
335	increase in six-minute walk test distance but not in VO_{2peak}) may be due to different statistical
336	power or an increase in submaximal thresholds without a rise in VO_{2peak} . Alternatively, there
337	may be a dissociation between changes in six-minute walk test distance and VO_{2peak} . The six-
338	minute walk test distance significantly correlates cross sectionally with VO_{2peak} in patients with
339	coronary artery disease (Mandic et al., 2013). However, the correlation between longitudinal
340	changes in six-minute walk test distance and VO_{2peak} is unclear. Considering that most
341	participants in HIIT and M-VICT did not change VO_{2peak} , finding the optimal exercise
342	prescription to increase responders is warranted for patients with AF.
343	This study has limitations. First, we examined the test-retest reliability of patients with
344	AF using different testers and metabolic systems. Thus, the reliability we observed can be
345	attributed to the combination of intra-individual and inter-testing environment variabilities. As
346	discussed above, this limitation also reflects a reality of many cardiovascular rehabilitation
347	environments where different metabolic systems are used. Second, the order of CPET was not
348	randomized. While our subsequent analyses showed no differences between the first and second
349	CPETs, randomized crossover study is needed to establish the reliability of CPET in AF. Third,
350	the timing of two CPETs were not standardized. While participants were instructed to take
351	prescribed medications prior to CPETs, their impact may have differed depending on the time of
352	CPETs. In addition, although we confirmed the administration of prescribed medications prior to
353	$CPET_{research}$, this was not documented for $CPET_{diag}$. This may have affected HR responses to
354	$CPET_{diag}$. Fourth, because $CPET_{post}$ was only performed by those willing to complete this
355	additional CPET, the participants included in the HIIT versus M-VICT analyses may have been
356	more motivated. However, we observed no improvement in aerobic fitness. Last, the study may

357	have lacked the power to detect changes in aerobic fitness over time or differences between HIIT
358	and M-VICT.
359	
360	Conclusion
361	We found that PO_{peak} and HR_{peak} can differ significantly when CPETs are repeated under
362	different settings in patients with persistent and permanent AF. Caution must be practiced when
363	prescribing exercise intensity based on these measures as under-prescription of exercise intensity
364	can result in increased number of non-responders. Exercise interventions to increase responders
365	are warranted in patients with AF.
366	
367	
368	
369	
370	
371	Arthur's contribution: TT, DAK, JMM, and JLR contributed to the conception or design of the
372	work. TT, SVA, and JLR contributed to the acquisition of data. TT, DAK, JMM, and JLR

373 contributed to data analysis and interpretation. TT drafted the manuscript. DAK, JMM, SVA, JB,

and JLR critically revised the manuscript. All gave final approval and agreed to be accountable

for all aspects of work, ensuring integrity and accuracy.

376

Data availability statement: A data sharing agreement can be requested to our legal team.

378

379 **Conflict of interest**: None

- **Funding**: This study was supported by the Innovations Fund of the Alternate Funding Plan for
- the Academic Health Sciences Centre of the Ministry of Ontario, New Investigators Award in
- 383 Clinical Rehabilitation from CIHR, Heart and Stroke Foundation of Emerging Research Leaders
- 384 Initiative.

385	References:
386	American College of Sports Medicine 2021. ACSM's Guidelines for Exercise Testing and
387	Prescription. Eleventh Editin. ACSM's Guidelines for Exercise Testing and Prescription.
388	Eleventh Edition.
389	Andrade, J. G., Aguilar, M., Atzema, C., Bell, A., Cairns, J. A., Cheung, C. C., Cox, J. L.,
390	Dorian, P., Gladstone, D. J., Healey, J. S., Khairy, P., Leblanc, K., Mcmurtry, M. S.,
391	Mitchell, L. B., Nair, G. M., Nattel, S., Parkash, R., Pilote, L., Sandhu, R. K., Sarrazin, J.
392	F., Sharma, M., Skanes, A. C., Talajic, M., Tsnag, T. S. M., Verma, A., Verma, S.,
393	Whitlock, R., Wyse, D. G., Macle, L. The 2020 Canadian Cardiovascular
394	Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management
395	of Atrial Fibrillation. Can J Cardiol, 36, 1847-1948.
396	Andreacci, J. L., Lemura, L. M., Cohen, S. L., Urbansky, E. A., Chelland, S. A. & Von
397	Duvillard, S. P. 2002. The effects of frequency of encouragement on performance during
398	maximal exercise testing. J Sports Sci, 20, 345-52.
399	Bensimhon, D. R., Leifer, E. S., Ellis, S. J., Fleg, J. L., Keteyian, S. J., Pina, I. L., Kitzman, D.
400	W., Mckelvie, R. S., Kraus, W. E., Forman, D. E., Kao, A. J., Whellan, D. J., O'Conor, C.
401	M., Russell, S. D. 2008. Reproducibility of peak oxygen uptake and other
402	cardiopulmonary exercise testing parameters in patients with heart failure (from the Heart
403	Failure and A Controlled Trial Investigating Outcomes of exercise traiNing). Am J
404	<i>Cardiol</i> , 102, 712-7.
405	Bonafiglia, J. T., Preobrazenski, N., Islam, H., Walsh, J. J., Ross, R., Johannsen, N. M., Martin,
406	C. K., Church, T. S., Slentz, C. A., Ross, L. M., Kraus, W. E., Kenny, G. P., Goldfield,
407	G. S., Prud'homme, D., Sigal, R. J., Earnest, C. P. & Gurd, B. J. 2021. Exploring
408	differences in cardiorespiratory fitness response rates across varying doses of exercise

409	training: A retrospective analysis of eight randomized controlled trials. Sports Med, 51,
410	1785-1797.
411	Borg, G. 1970. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med, 2, 92-
412	8.
413	Bowen, T. S., Cannon, D. T., Begg, G., Baliga, V., Witte, K. K. & Rossiter, H. B. 2012. A novel
414	cardiopulmonary exercise test protocol and criterion to determine maximal oxygen
415	uptake in chronic heart failure. J Appl Physiol (1985), 113, 451-8.
416	Chelune, H. G. N., I Richard; Luders, Hans; Seldlak, Jeffery; Awad, A Issam1993. Individual
417	change after epilepsy surgery: Practice effects and base-rate information.
418	Neuropsychology, 7, 41-52.
419	Chiang, C. E., Naditch-brule, L., Murin, J., Goethals, M., Inoue, H., O'Neill, J., Silva-cardoso, J.,
420	Zharinov, O., Gamra, H., Alam, S., Ponikowski, P., Lewalter, T., Rosenqvist, M. & Steg,
421	P. G. 2012. Distribution and risk profile of paroxysmal, persistent, and permanent atrial
422	fibrillation in routine clinical practice: insight from the real-life global survey evaluating
423	patients with atrial fibrillation international registry. Circ Arrhythm Electrophysiol, 5,
424	632-9.
425	Coeckelberghs, E., Buys, R., Goetschlckx, K., Pattyn, N., Vanhees, L. & Cornelissen, V. 2016.
426	Test-Retest Reliability of Maximal and Submaximal Gas Exchange Variables in Patients
427	With Coronary Artery Disease. J Cardiopulm Rehabil Prev, 36, 263-9.
428	Dai, H., Zhang, Q., Much, A. A., Maor, E., Segev, A., Beinart, R., Adawi, S., Lu, Y., Bragazzi,
429	N. L. & Wu, J. 2021. Global, regional, and national prevalence, incidence, mortality, and
430	risk factors for atrial fibrillation, 1990-2017: results from the Global Burden of Disease
431	Study 2017. Eur Heart J Qual Care Clin Outcomes, 7, 574-582.

© The Author(s) or their Institution(s)

432	Elborn, J. S., Stanford, C. F. & Nicholls, D. P. 1990. Reproducibility of cardiopulmonary
433	parameters during exercise in patients with chronic cardiac failure. The need for a
434	preliminary test. Eur Heart J, 11, 75-81.
435	Faricier, R., Keltz, R., Hartley, T., Mckelvie, R., Suskin, N., Prior, P. & Keir, D. 2023.
436	Quantifying improvement in VO2peak and exercise thresholds in cardiovascular disease
437	using reliable change indices. Journal of Cardiopulmonary Rehabilitattion and
438	Prevention, Accepted.
439	Garnvik, L. E., Malmo, V., Janszky, I., ELLEKJAER, H., WISLOFF, U., LOENNECHEN, J. P.
440	& NES, B. M. 2020. Physical activity, cardiorespiratory fitness, and cardiovascular
441	outcomes in individuals with atrial fibrillation: the HUNT study. Eur Heart J, 41, 1467-
442	1475.
443	Hannan, A. L., Hing, W., Simas, V., Climstein, M., Coombes, J. S., Jayasinghe, R., Byrmes, J. &
444	Furness, J. 2018. High-intensity interval training versus moderate-intensity continuous
445	training within cardiac rehabilitation: a systematic review and meta-analysis. Open
446	Access J Sports Med, 9, 1-17.
447	Iannetta, D., De Almeida Azevedo, R., Ingram, C. P., Keir, D. A. & Murias, J. M. 2020a.
448	Evaluating the suitability of supra-PO(peak) verification trials after ramp-incremental
449	exercise to confirm the attainment of maximum O(2) uptake. Am J Physiol Regul Integr
450	Comp Physiol, 319, R315-R322.
451	Iannetta, D., De Almeida Azevedo, R., Keir, D. A. & Murias, J. M. 2019. Establishing the VO2
452	versus constant-work-rate relationship from ramp-incremental exercise: simple strategies
453	for an unsolved problem. J Appl Physiol (1985), 127, 1519-1527.

454	Iannetta, D., Inglis, E. C., Mattu, A. T., Fontana, F. Y., Pogliaghi, S., Keir, D. A. & Murias, J. M.
455	2020b. A Critical Evaluation of current methods for exercise prescription in women and
456	men. Med Sci Sports Exerc, 52, 466-473.
457	Keir, D. A., Iannetta, D., Mattioni Maturana, F., Kowlchuk, J. M. & Murias, J. M. 2022.
458	Identification of non-invasive exercise thresholds: methods, strategies, and an online app.
459	Sports Med, 52, 237-255.
460	Keir, D. A., Paterson, D. H., Kowalchuk, J. M. & Murias, J. M. 2018. Using ramp-incremental
461	VO(2) responses for constant-intensity exercise selection. Appl Physiol Nutr Metab, 43,
462	882-892.
463	Kokkinos, P., Faselis, C., Samuel, I. B. H., Lavie, C. J., Zhang, J., Vargas, J. D., Pittaras, A.,
464	Doumas, M., Karasik, P., Moore, H., Heimal, M. & Myers, J. 2023. Changes in
465	cardiorespiratory fitness and survival in patients with or without cardiovascular disease. J
466	Am Coll Cardiol, 81, 1137-1147.
467	Koo, T. K. & Li, M. Y. 2016. A guideline of selecting and reporting intraclass correlation
468	coefficients for reliability research. J Chiropr Med, 15, 155-63.
469	Kornej, J., Borschel, C. S., Benjamin, E. J. & Schnabel, R. B. 2020. Epidemiology of atrial
470	fibrillation in the 21st century: novel methods and new insights. Circ Res, 127, 4-20.
471	Lip, G. Y., Fauchier, L., Freedman, S. B., Van Gelder, I., Natale, A., Gianni, C., Nattel, S.,
472	Potpara, T., Rienstra, M., Tse, H. F. & Lane, D. A. 2016. Atrial fibrillation. Nat Rev Dis
473	Primers, 2, 16016.
474	MaCinnis, M. J. & Gibala, M. J. 2017. Physiological adaptations to interval training and the role
475	of exercise intensity. J Physiol, 595, 2915-2930.

476	Malmo, V., Nes, B. M., Amundsen, B. H., Tjonna, A. E., Stoylen, A., Rossvoll, O., Wisloff, U.
477	& Loennechen, J. P. 2016. Aerobic interval training reduces the burden of atrial
478	fibrillation in the short term: a randomized trial. Circulation, 133, 466-73.
479	Mandic, S., Walker, R., Stevens, E., Nye, E. R., Body, D., Barclay, L. & Williams, M. J. 2013.
480	Estimating exercise capacity from walking tests in elderly individuals with stable
481	coronary artery disease. Disabil Rehabil, 35, 1853-8.
482	Mentel, A., Quinne, T. J., Cameron, A. C., Lees, K. R. & Abdul-rahim, A. H. 2020. The impact
483	of atrial fibrillation type on the risks of thromboembolic recurrence, mortality and major
484	haemorrhage in patients with previous stroke: A systematic review and meta-analysis of
485	observational studies. Eur Stroke J, 5, 155-168.
486	Mertens, D. J. & Kavanagh, T. 1996. Exercise training for patients with chronic atrial
487	fibrillation. J Cardiopulm Rehabil, 16, 193-6.
488	Mezzani, A., Agostoni, P., Cohen-Solal, A., Corra, U., Jegier, A., Kouidi, E., Mazic, S., Meurin,
489	P., Piepoli, M., Simon, A., Laethem, C. V. & Vanhees, L. 2009. Standards for the use of
490	cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a
491	report from the Exercise Physiology Section of the European Association for
492	Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil, 16, 249-
493	67.
494	O'Connell, M. E., Suskin, N. & Prior, P. L. 2021. Measuring true change in individual patients:
495	reliable change indices of cardiac rehabilitation outcomes, and implications for quality
496	indicators. CJC Open, 3, 1139-1148.
497	Reed, J. L., Terada, T., Vidal-Almela, S., Tulloch, H. E., Mistura, M., Birnie, D. H., Wells, G.
498	A., Nair, G. M., Hans, H., Way, K. L., Chirico, D., O'Neill, C. D. & Pipe, A. L. 2022.

499	Effect of high-intensity interval training in patients with atrial fibrillation: a randomized
500	clinical trial. JAMA Netw Open, 5, e2239380.
501	Rison, S. S., Zwisler, A. D., Rasmussen, T. B., Siblitz, K. L., Madsen, T. L., Svendsen, J. H.,
502	Gluud, C., Lindschou, J., Winkel, P. & Berg, S. K. 2016. Cardiac rehabilitation versus
503	usual care for patients treated with catheter ablation for atrial fibrillation: Results of the
504	randomized CopenHeart(RFA) trial. Am Heart J, 181, 120-129.
505	Ruddox, V., Sandven, I., Munkhaugen, J., Skattebu, J., Edvardsen, T. & Otterstad, J. E. 2017.
506	Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart
507	failure: A systematic review and meta-analysis. Eur J Prev Cardiol, 24, 1555-1566.
508	Schnabel, R. B., Yin, X., Gona, P., Larson, M. G., Beiser, A. S., Mcmanus, D. D., Newton-Cheh,
509	C., Lubitz, S. A., Magnani, J. W., Ellinor, P. T., Seshadri, S., Wolf, P. A., Vasan, R. S.,
510	Benjamin, E. J. & Levy, D. 2015. 50 year trends in atrial fibrillation prevalence,
511	incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study.
512	Lancet, 386, 154-62.
513	Shukla, A. & Curtis, A. B. 2014. Avoiding permanent atrial fibrillation: treatment approaches to
514	prevent disease progression. Vasc Health Risk Manag, 10, 1-12.
515	Sullivan, M., Genter, F., Savvides, M., Roberts, M., Myers, J. & Froelicher, V. 1984. The
516	reproducibility of hemodynamic, electrocardiographic, and gas exchange data during
517	treadmill exercise in patients with stable angina pectoris. Chest, 86, 375-82.
518	Van Hooren, B., Souren, T. & Bongers, B. C. 2023. Accuracy of respiratory gas variables,
519	substrate, and energy use from 15 CPET systems during simulated and human exercise.
520	Scand J Med Sci Sports.

- Weir, J. P. 2005. Quantifying test-retest reliability using the intraclass correlation coefficient and
 the SEM. *J Strength Cond Res*, 19, 231-40.
- 523 Wolf, P. A., Abbott, R. D. & Kannel, W. B. 1991. Atrial fibrillation as an independent risk factor
- for stroke: the Framingham Study. *Stroke*, 22, 983-8.

525

527 Figure legends

- 528 Figure 1. Baseline cardiopulmonary exercise testing (CPET) protocols.
- 529 Broken line represents CPET_{research} and solid line represents CPET_{diag}, respectively.

530

- **Figure 2**. Test-retest reliability of baseline cardiopulmonary exercise testing
- 532 $CPET_{diag}$: cardiopulmonary exercise test conducted by diagnostics; $CPET_{research}$: cardiopulmonary
- exercise testing conducted by the study group; HR: heart rate; PO_{peak}: peak power output; RPE:
- rating of perceived exertion; VO_{2peak}: peak oxygen consumption; VT₁: first ventilatory threshold
- 535 (gas exchange threshold)
- 536 ICC_{3,1}: intraclass correlation coefficient based on a two-way random-effects model and type
- 537 consistency using average measures
- 538 Significantly different from $CPET_{diag}$: *p<0.05 and †p<0.001
- 539

540 **Figure 3.** Bland-Altman plots:

- 541 CPET: cardiopulmonary exercise testing; CPET_{diag}: CPET performed by diagnostics;
- 542 CPET_{research}: CPET performed by the study group; HR: heart rate; HR_{peak}: peak heart rate; PO_{peak}:
- 543 peak power output; LOA: limits of agreement; RER: respiratory exchange ratio; RPE: rating of
- perceived exertion; VO_{2peak} : peak oxygen consumption; VT_1 : first ventilatory threshold (gas
- 545 exchange threshold)

	Test-retest reliability	Fx	ercise interver	ntions
	Tellability	Exercise interventions HIIT M-VICT HIIT vs. M-VICT		
	(N=18)	(n=13)	(n=10)	p-value
Female, n (%)	6 (33)	3 (23)	4 (40)	0.382
Persistent AF, n (%)	6 (33)	6 (46)	3 (30)	0.431
Permanent AF, n (%)	12 (67)	7 (54)	7 (70)	
Time in AF, %	96 (12)	95 (15)	99 (3)	0.426
Age, years	69 (7)	67 (4)	71 (9)	0.215
Height, cm	172.7 (7.6)	174.6 (4.3)	174.8 (9.5)	0.947
Body mass, kg	91.5 (19.4)	96.8 (20.6)	95.6 (25.5)	0.901
Body mass index, kg/m ²	30.6 (5.7)	31.8 (7.0)	31.2 (8.6)	0.844
Fat mass, %	28.9 (7.5)	30.3 (8.0)	30.0 (7.0)	0.944
Systolic blood pressure, mmHg	126 (19)	123 (15)	133 (20)	0.164
Diastolic blood pressure, mmHg	80 (11)	77 (10)	84 (9)	0.117
Resting heart rate, bpm	73 (11)	70 (13)	71 (9)	0.769
Physical activity level				
Light, min/day	66 (45)	69 (54)	92 (88)	0.456
Moderate, min/day	13 (11)	19 (17)	16 (15)	0.670
Vigorous, min/day	1 (1)	1 (1)	1(1)	0.359
Medical condition, n (%)				
Hypertension	10 (56)	7 (54)	5 (50)	0.855
Dyslipidemia	6 (33)	3 (23)	2 (20)	0.859
Coronary artery disease	2 (11)	2 (15)	0 (0)	0.194
Diabetes	4 (22)	1 (8)	3 (30)	0.162
Medication, n (%)				
ACE inhibitor	5 (28)	4 (31)	1 (10)	0.231
ARB	3 (17)	1 (8)	4 (40)	0.063
Statin	9 (50)	5 (39)	4 (40)	0.940
Beta-blocker	12 (67)	11 (85)	5 (50)	0.074

Table 1. Participant characteristics

547 Data are presented as mean (SD) unless indicated otherwise. AF: atrial fibrillation; ARB: angiotensin

548 receptor blockers

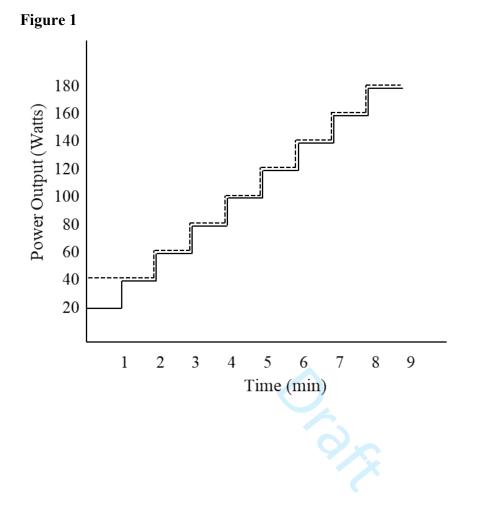
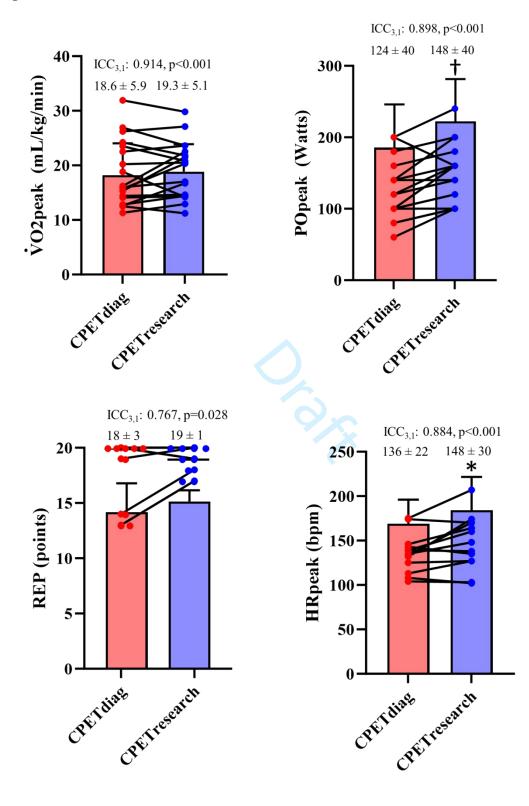
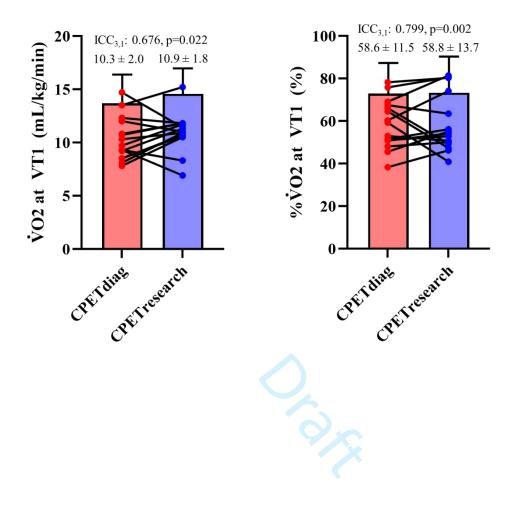
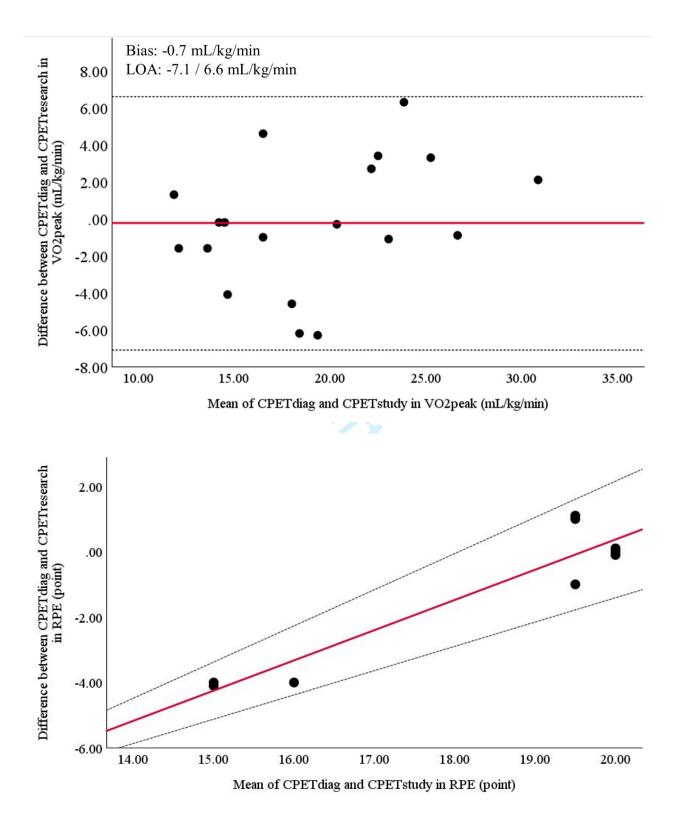





Figure 2



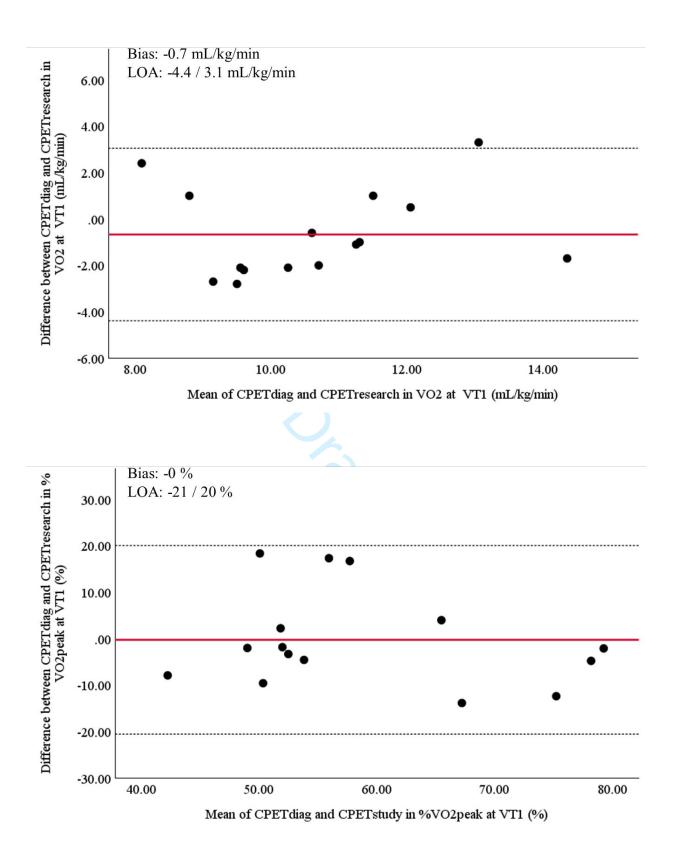


Figure 3

