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Abstract (max 250 words)

Circadian clock properties vary between individuals and relate to variation in entrained timing in captivity. How this
variation translates into behavioural differences in natural settings, however, is poorly understood. Here we tested in
great tits whether variation in the free-running period length (tau) under constant dim light (LL) was linked to the
phase angle of the entrained rhythm (“chronotype”) in captivity and in the wild, as recently indicated in our study
species. We also assessed links between tau and the timing of first activity onset and offset under LL relative to the
last experienced light-dark (LD) cycle. We kept 66 great tits, caught in two winters, in LL for 14 days and subsequently
released them with a radio transmitter back to the wild, where their activity and body temperature rhythms were



tracked for 1 to 22 days. For a subset of birds, chronotype was also recorded in the lab before release. Neither wild
nor lab chronotypes were related to tau. We also found no correlation between lab and wild chronotypes. However,
the first onset in LL had a positive relationship with tau, but only in males. Our results demonstrate that links between
tau and phase of entrainment, postulated on theoretical grounds, may not consistently hold under natural conditions,
possibly due to strong masking. This calls for more holistic research on how the many components of the circadian
system interact with the environment to shape timing in the wild.
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1 Introduction

Circadian rhythms are present across the whole tree of life and are considered essential for organisms (Jabbur et al.,
2024; Krittika & Yadav, 2020; Woelfle & Johnson, 2009). The rationale for the importance of biological clocks, rather
than timing in direct response to the environment, assumes two main advantages. Firstly, circadian rhythms allow for
temporal coordination of many, sometimes conflicting, behavioural and physiological processes within an organism.
Secondly, circadian rhythms provide an internal reference time by which environmental conditions can be correctly
interpreted. Thus, organisms respond appropriately to, and anticipate, naturally cyclic environmental conditions, in
particular the variation in natural light and darkness. By entraining their circadian clocks to this major synchronizing
cue (i.e., Zeitgeber), organisms can tell the time of day and thus anticipate cyclically repeating environmental events
(Daan & Aschoff, 1982; Jabbur et al., 2024; Krittika & Yadav, 2020; Pittendrigh, 1958; Woelfle & Johnson, 2009).

Biological clocks exhibit properties of physical oscillators, and these similarities in turn enabled predicting and
subsequently experimentally testing clock features (Aschoff & Wever, 1962; Johnson et al., 2003; Pittendrigh & Daan,
1976b; Schmal et al., 2020). When a biological oscillator is synchronized by an entraining cycle, it is expected that the
oscillator’s intrinsic period length (i.e., tau) determines its temporal relationship to the entraining cycle. This
relationship is quantified as the timing difference between stable cycle-to-cycle reference points in the rhythms of the
oscillator and the entraining cycle, called phases (e.g., start of activity and start of the light phase, respectively). Thus,
if the oscillator has a shorter period length than the entraining cycle, the phase angle (i.e., phase of the rhythm minus
phase of the entraining cycle) becomes negative, indicating a phase lead of the oscillator (e.g., start of the activity
occurs before the start of the light phase), and vice versa (Aschoff & Wever, 1962). When this is applied to organisms’
activity patterns, typically an individual’s activity phase would be predicted by its tau relative to the length of the
Zeitgeber cycle, e.g., a 24-hour light-dark (LD) cycle. Such predictions could indeed be confirmed empirically in the
laboratory, for example by manipulation of LD cycles or by using variation in tau (Aschoff & Wever, 1962). Still, even
under controlled conditions biological oscillators differed from physical oscillators by changing their properties, for
example dependent on season or the social setting (Aschoff, 1979).

Importantly, when applied to the natural environment, the predicted relationships between the natural light cycle and
an individual’s tau should contribute to its particular time-keeping in the wild. Properties of circadian clocks, such as
tau, and consequently phase angle, are variable between species (Daan & Pittendrigh, 1976), between populations of
the same species (Daan & Pittendrigh, 1976; Kyriacou et al., 2008) and even between individuals within the same
population (Pivarciova et al., 2016; Salmela & Weinig, 2019). In natural populations clock properties should be
distributed around the population-specific mean, like most other traits (Daan & Beersma, 2002; Helm & Visser, 2010;
Jabbur et al., 2024; Michael et al., 2003; Pittendrigh & Daan, 1976a).  In several species, consistent individual patterns
of temporal behaviour, such early- versus late-phased activity (i.e., behavioural “chronotypes”), have indeed been
described (Roenneberg et al., 2003). In humans these are traditionally assessed via questionnaires (Roenneberg et al.,
2003) while in other animals consistent early and late behaviours (e.g., Fleury et al., 2000; Helm & Visser, 2010; Nikhil
et al., 2016; Strauß et al., 2022) are used as proxy for distinct chronotypes. Studies of chronotypes have provided
mixed evidence for a correlation with tau. Where correlations existed, they often explained only small parts of inter-
individual differences in chronotype (Dominoni et al., 2013).

The discrepancy between predictions and results, especially in the field, is perhaps not so surprising. In contrast to the
laboratory, organisms under natural conditions experience a wide range of environmental inputs that contribute to
entrain or modify (i.e., mask) their diel time-keeping (Helm et al., 2017). Main forms of masking are positive masking,
which may augment the amplitude of a rhythm, and negative masking, which may suppress it (Mrosovsky, 1999;
Schwartz et al., 2017). For example, a nocturnal animal may be kept from displaying nocturnal activity while being
exposed to light, and conversely, a diurnal animal may be induced by light to show activity during its circadian rest
phase. While masking differs from entrainment by its ephemeral effects during exposure to an external factor, its
importance to fitness under natural conditions may equal that of entrainment (Helm et al., 2017; Mrosovsky, 1999;
Rotics et al., 2011). Many modifications of time-keeping by either entrainment or masking are mediated by sensory
and physiological pathways that jointly control an individual’s phase, for example sensitivity to light and ambient
temperature, or metabolic or immune state. If there are advantages to organisms in being earlier or later, natural



selection on daily timing should take place and act on any aspects of this integrated circadian system (Helm et al.,
2017; Jabbur et al., 2024; Krittika & Yadav, 2020; Roenneberg et al., 2003). Modifications of time-keeping can occur at
various levels of the integrated circadian system. For example, when overt behavioural rhythmicity may be absent,
rhythmicity could persist in other body function, such as body temperature or gene expression or protein levels
incontrol regions of the brain (Beer & Bloch, 2020). Hence, chronobiologists also assess clock properties through
other, putatively more robust measures, such as clock gene expression cycles in cell culture (Brown et al., 2005, 2008),
or cycles in body temperature (Duffy et al., 2001; Strauß et al., 2022), and apply more indirect approaches such as
(clock) gene-phenotype associations (Allebrandt & Roenneberg, 2008).

Arguably the most conclusive test of how the variation in tau translates into behavioural differences between animals
is to combine measures of clock properties in captivity with measures of chronotype in free-living animals. The
number of studies that attempted to do this is limited due to the logistical difficulties of measuring the same
individual in the wild and under constant conditions. The studies that succeeded in this attempt also presented mixed
results: i.e., in a comparison of urban and rural blackbirds (Turdus merula), a positive relationship between tau and
activity timing was found only in city birds (Dominoni et al., 2013); in female great tits (Parus major) a positive
relationship was found between incubation activity and tau in both city and forest birds (Tomotani et al., 2023), but a
previous study with the same species in captivity did not find a relationship (Helm & Visser, 2010; Lehmann et al.
2012).

Therefore, in the present study we aimed for greater clarity by follow-up investigations of the relationship between
clock and chronotype, using locomotor activity rhythms and a larger sample of wild, free-living animals. We used the
diurnal songbird great tit as a model because its circadian rhythmicity has been extensively studied in captive and wild
contexts (de Jong et al., 2016; Helm & Visser, 2010; Lehmann et al., 2012; Spoelstra et al., 2018; Tomotani et al.,
2023). We derived tau from free-running activity after the rhythms stabilized (from day 2 or later). We then tested
whether variation in tau was linked to the phase angle of the entrained activity rhythm (“chronotype”) in the wild, and
for a subset of birds, also in captivity (i.e., “wild chronotype” and “lab chronotype”, respectively). In the wild birds, we
also quantified diel timing patterns of peripheral body temperature in parallel to their activity patterns from
continuous skin temperature measurements using telemetry. Based on oscillator theory summarised above, we
expected a positive correlation between tau and chronotype.

In addition, we investigated the first activity cycles in constant dim light (LL) separately from subsequent cycles
because the phase and period length of the first cycles of the rhythm are affected by tau and by the previous
conditions that the organism was exposed to (after-effects, Pittendrigh, 1960). We calculated the phase angle of the
onset and offset relative to the natural LD cycle experienced by the birds on the previous day. This measure, referred
to as first onset and offset in LL, is thought to capture an animal’s prediction of morning and evening, based on its
previous entrainment, but in the absence of overriding environmental cues, as well as based on effects of tau (e.g.,
Tomotani et al., 2012, 2023). It can thereby tentatively be interpreted as a proxy for the phase angle of an individual’s
rhythm given its circadian period length, without confounding effects of masking. The measure was previously
reported to correlate with tau in studies with great tits in captivity (Laine et al., 2019; Spoelstra et al., 2018).

 

2 Material and Methods

2.1 Measurements in the lab

All experimental procedures in the lab and the field were carried out under licenses of the Animal Experimental
Committee of the Royal Netherlands Academy of Sciences (KNAW, protocol NIOO 20.02 128 AVD 80100 2019 9005 /
IvD 1356a and NIOO 21.13 / IvD 1963a).

During the winters of 2021 and 2022 we captured wild great tits (Table S1_1) at night, when the birds were roosting in
nest boxes. We captured 66 birds in total (including 2 birds captured twice), at the Zernike campus of Groningen
(2021, 2022, 53°14.5’N 6°32.3’E), in the city of Utrecht (2021, 52°6.1’N 5°8.9’E) and in Heikamp forest (2021, 52°1.9’N
5°50.3’E). Birds were immediately taken to the Netherlands Institute of Ecology (NIOO-KNAW, 51°59.2’N 5°40.3’E).
Once at the institute, birds were ringed, weighed, and in 2021 kept for one day in a cage exactly like the one in the
experimental set-up but exposed to the natural LD cycle to acclimatize (Fig. 1). Birds were kept in a room with direct
access to natural light, supplemented by indoor lighting (experiencing light intensity values ranging from 120 to 600
lux) that were switched on at sunrise and switched off at sunset. At night birds were kept without any provided light.
Birds were then moved from this acclimatization cage to the experimental set-up (Fig. S1_1) the following night. Thus,
at the end of the light phase of the preceding LD-cycle, instead of experiencing darkness, birds were exposed to
constant dim light (i.e., LL; 0.5 lux at perch level; see Supporting Information Part S1 and Fig. S1_2). Birds were kept in
the set-up in LL for 14 days (Fig. 1). In 2022 the capture procedure was the same but birds were placed directly in the
set-up. As in 2021, birds were exposed to one natural LD cycle to acclimatize through windows in the room. The set-up
was left uncovered until the start of the LL stage. Then, before the following sunset, windows were covered, cage
doors were closed at sunset time and the constant dim light treatment started.

The experimental set-up (Fig. S1_1) was designed to measure great tit rhythms. It consisted of individual metal cages,
placed in stand-alone plywood racks in groups of six cages (three rows and two columns; Fig. S1_1). The racks
provided plywood separators to the outside, as well as between each cage, so that only the metal-barred cage fronts



remained accessible. We then added a wooden front-door that covered the cage fronts except during feeding,
effectively isolating the animals from external cues and from each other. A ventilation grid with a light trap on the side
of this wooden door provided ventilation. Each cage was individually equipped with a night lamp that provided the
dim light continuously for the LL experiment.   Cages were also equipped with passive infrared sensors (PIR) that
checked for movement every 10 seconds and binned the data every 60 seconds. Thus, the intensity of activity varied
from 0 to 6 every 1-min bin (software developed by T&M Automation, Leidschendam, The Netherlands). Throughout
the study, the whole room with the isolation cages was kept completely dark, with all windows covered by a thick
black plastic. White noise, broadly resembling rain, was played continuously in the background to cover any external
noise and animals’ vocalizations. Birds were offered ad libitum water and food (i.e., beef heart mixture, apple, dry bird
food, peanuts, sunflower seeds and live mealworms). Food was refreshed daily but at variable times of the day so that
the birds would be unable to use the feeding times as a cue to synchronize their clock. At the end of the experiment,
in 2021 birds were returned to a regular cage without recording facilities and were again exposed to the natural LD
cycle before being released with a transmitter. In contrast, in 2022 birds were also re-exposed to LD cycles but
remained in the set-up prior to release, allowing their re-entrainment to be measured.

 

2.2 Measurements in the field

To measure biological rhythms in the field, we deployed temperature-sensitive radio transmitters (PicoPip Tag PIP31 &
PIP51 Ag317 single celled tag including temperature sensor option, Lotek, Wareham, UK; < 5% of the body weight).
Skin temperature measurements have been shown to correlate with core body temperatures in great tits (Nord et al.,
2016) to be rhythmic and to deviate from ambient temperatures patterns in winter (Strauß et al., 2022). These
transmitters emit pulses of a radio wave, each with a tag-specific frequency (150 – 151 MHz). The detected signal
varies in strength with movement and distance of a transmitter so that the variance of signal strength can be used to
distinguish active and inactive times of a tagged individual (Dominoni et al., 2014). Additionally, our transmitters were
temperature sensitive. The interval between two consecutive pulses depended on the transmitter’s temperature so
that increasing temperature decreased the pulse interval. This enabled us to simultaneously measure diel skin
temperature and activity rhythms (Strauß et al., 2022).

The tags were calibrated before deployment by exposing them to the progressively cooling temperatures of a hot
water bath (decreasing from ca. 40°C to 20°C). Temperatures of the water bath were recorded simultaneously with a
temperature logger (iButton: Thermochron DS1922L-F5, Maxim, USA), and signals were recorded with a telemetry
receiver (SRX800 MD2, Lotek, Wareham, UK).

To record the birds’ rhythms, we attached the transmitters to the birds` upper backs (Strauß et al., 2022). If the
transmitter is firmly attached to the skin, reliable temperature measurements can be taken. Thus, prior to
deployment, we sewed the tags to a cotton cloth (1 cm diameter) to increase gluing and attachment surface. A small
patch of feathers on the bird’s back was trimmed and the transmitter glued to the patch using eyelash glue and only a
small amount of superglue to ensure easy falling-off during moult at the latest. During deployment, the anterior
feathers were brushed away and afterwards brushed back in position to cover the patch.

Individuals were automatically recorded using stationary receivers. The receivers were self-constructed using
materials of Motus (a collaborative wildlife radio tracking system, Taylor et al., 2017) and the SensorGnome (SG)
system (here, Raspberry Pi3 model B, Raspberry Pi Foundation, Cambridge, UK) with software version 2018-10-12
(SensorGnome Project, 2018). One to two SGs were placed per site, each with an omnidirectional antenna (SIRIO CX
148 U – 148-152 MHz, Volta Mantovana, Italy). In Groningen we additionally used a fixed station on the roof of the
university building “Linnaeusborg” (RUG) that had five directional antennas (SIRIO WY 140-6N, SIRIO Antenne, Volta
Mantovana, Italy). The receivers were set to scan through the frequencies of each deployed tag for 10 sec before
switching to the next frequency, so every tag was recorded in intervals of 1.5 – 2.8 min (see Supporting Information
Part S2 for more details).

 

2.3 Data processing

The captivity data were used to obtain a) the first onset and offset in LL (2021 and 2022), b) the bird`s endogenous
free-running period length tau, and c) onsets and offsets of the re-entrained rhythm (lab chronotype, 2022 only) (Fig.
1). All 66 individual actograms are shown in Figures S3 – S10.

To account for seasonal changes in day length, we calculated relative timing by subtracting the time of sunrise or
sunset from the activity onset and offset time, respectively (i.e., activity onset minus sunrise or activity offset minus
sunset). Thus, a bird would have a negative onset phase angle if its activity started before sunrise and a positive onset
phase angle if its activity started after sunrise. Likewise, it would have a negative offset phase angle if its activity
ended before sunset and a positive offset phase angle if its activity ended after sunset.

The data collected from the set-up were used to produce actograms using the software Chronoshop (v. 1.04, 2015,
written by Spoelstra, e.g., Spoelstra et al., 2018; Tomotani et al., 2023). Chronoshop was also used for obtaining the
values of tau, and onset and offset of activity. Tau was calculated via the Sokolove & Bushell method (S-B), for all but



one bird in which no clear periodicity emerged. In these analyses, we excluded the first cycle that we used to obtain
the first onset and offset in LL. We also excluded additional cycles when the rhythm was still displaying after-effects
(see Supporting Information). In these excluded cycles the rhythm was still similar to the previous synchronized state
with a period close to 24 hours, and the onset of activity was matching the time of sunrise. This lasted from 1 to 7
days depending on the individual, and was easily detected by a change in the actogram where the onset of activity
drifted from the synchronized onset (see Fig. 1). For example, in Figure 1 (with annotations on the right), cycle 0 is the
synchronized onset under a LD cycle, cycles 1 to 3, when the animal had transitioned to LL, show history-dependent
after-effects from the previous synchronization, whereby onset time is similar to the entrained state. The onsets start
to drift from cycle 4 onwards as the animal expresses its own internal period length. For extracting the onset and
offset of activity, the software calculates the centre of gravity per cycle positioned at the mean vector angle. Then, it
estimates the activity onset or offset by going 0.5 cycles back or forward in time, respectively, to detect the phase
when the momentary activity first exceeds the average activity in the current cycle. In order to avoid onsets and
offsets being detected at timewhere small amounts of movements or noise are present, a running mean is fit to the
data so only activity bins above those values are classified as the onset or offset of activity (Spoelstra et al., 2018).
Because the detection of the onset and offset was sensitive to the activity level of the individual bird, we had to adjust
the running mean per individual, per cycle, varying between 10 bins (48 onsets / 32 offsets), 70 bins (14 onsets / 26
offsets) or 180 bins (0 onsets / 4 offsets). In a few instances, the amount of background noise did not allow the
detection of an onset or offset of activity regardless of the running mean used, in such instances the onset for that
cycle was excluded. The estimation of tau is very robust to small amounts of noise in the activity rhythms and was not
affected by changing the running mean.

From the wild, we obtained telemetric data that were processed and filtered in R (version 4.3.1, R Core Team, 2023)
and R studio (version 2023.06.2) to obtain activity and skin temperature estimates (for details see Supporting
Information Part S2 Section 1 – 4). The raw data were filtered to address several issues associated with the data
collection using a SG. In particular, we accounted for carry-over effects from switching from one to the next frequency,
due to a time lag between transitioning in the hard- and software. We also accounted for multiple detections per
second due to multiple recordings of the same radio frequency along the antenna and for further artefacts visible in
the recorded frequency and background noise that were probably caused by the SG software (for details, see
Supporting Information Part S2 Section 3). Thereafter, we calculated pulse intervals and applied the tag-specific
calibration curves to calculate the skin temperature sensed by the transmitter (Jonasson, 2017). We binned the data
into 5-min bins and calculated the deviation of signal strength between two consecutive bins as an indicator of
activity.

To extract the onset and offset of activity we used a behavioural changepoint analysis (BCPA) that finds the most
plausible changepoint by fitting two distributions to the data (Dominoni et al., 2014; Strauß et al., 2022, for details see
Supporting Information Part S2, Section 5, Fig. S2_5). We selected an 8-hour window around 7:20 CET (i.e., the overall
mean onset of activity across the whole dataset) for onsets and around 18:20 CET (i.e., the overall mean offset of
activity) for offsets. For the BCPA, we set a 70%-threshold to make sure that enough data were available for a reliable
analysis. In 158 occasions (67 onsets and 91 offsets), a BCPA was not possible. The birds were recorded well at the
night-time but had many data gaps during their active phase. Therefore, we additionally used the first and last
intersection of a 4dB-threshold on a given day (Adelman et al., 2010) to determine activity onset and offset,
respectively, when enough data were available at night-time (i.e., > 70% between midnight and sunrise or sunset,
respectively). Chronotypes from the BCPA and from the 4dB-threshold were highly correlated in the cases were both
methods could be used (onset: Pearson’s cor = 0.94, confidence interval = (0.93, 0.96), t = 40.21, df = 197, p << 0.001;
offset: Pearson’s cor = 0.87, confidence interval = (0.82, 0.90), t = 19.69, df = 127, p << 0.001). To assess the skin
temperature minimum at night, we smoothed the temperature data, averaged to 5-min bins, using a 3-harmonic
sinusoidal curve (Strauß et al. 2022, for details see Supporting Information Part S2 Fig. S2_4.2 in Section 4), and
interpolated for data gaps of maximally three bins (i.e., 15 min). We selected a 12-hour window around the observed
overall mean time of minimum temperature at 4:10 CET, derived from the data from all birds. From the smoothed
data, we then extracted for each bird the time of the minimum temperature just before rewarming for its active phase
(adjusted from Strauß et al. 2022, for details see Supporting Information Part S2, Section 5). The time of temperature
minimum was interpreted as the onset of the anticipatory increase in body temperature prior to wakening.

 

2.4 Data analysis

The birds used in this study differed in their origins (caught in distinct sites and years) and we also had males and
females. In order to test if this would have an impact on our measures, we first explored the variation of tau, using
one tau measurement per individual (n = 63, using only one tau estimate per bird), in response to the covariates
group and sex. We also accounted for cage position in the experimental set-up by including rack as random factor to
account for the possibility that the six cages in the same rack could be more similar to one another than to the other
cages in the room. As there were significant differences between groups and sexes, we included group and sex in all
following models (Fig. S1_11 & Table S1_2). In all cases, we combined year and site to create four groups (i.e.,
Groningen 2021: 6 females, 8 males; Utrecht 2021: 4 females, 10 males; Heikamp 2021: 7 females, 8 males; Groningen
2022: 10 females, 14 males, Table S1_1) due to the unbalanced study design.



We then assessed the relationship between tau, chronotype measured in the wild and in the lab, and first onset or
offset in LL. Models included as response variables chronotypes (i.e., measures of the entrained clock using onset and
offset in minutes relative to sunrise or sunset) measured either in the lab (Fig. 1b) or in the wild (Fig. 1c), or the first
activity onset or offset in LL (Fig. 1a). Tau was used as an explanatory variable in all models, while models with
chronotypes as response variables also included the first onset or offset in LL as an explanatory variable. Analyses
were done in separate linear mixed models with Gaussian error distribution (lme4 package, Bates et al., 2015). Models
included Individual as random factor to account for multiple measurements and for studying between-individual
differences in chronotype. To assess individual variation, the proportional variance (σ2) of the Individual term was
calculated from the model output. All test statistics were obtained via stepwise model reduction using likelihood ratio
tests (drop1 and anova function). Estimates were extracted from the model with all non-significant interactions
dropped.

For the wild chronotype traits (i.e., activity onset and offset, and time of skin temperature minimum collected in the
wild), we excluded the first day after release into the wild to avoid confounding effects from the disrupted night of
release. We then chose data from Groningen only (both years), because too few individuals were recorded at the
other sites (four in Utrecht, one in Heikamp). As before, we assessed sex- and group-specific relationships with tau
and onset and offset in LL, and also included Julian day and mean ambient temperature (at night for onset and at
daytime for offset) to account for seasonal and temperature-dependent variation (temperature data from the weather
station in Elde, (Royal Netherlands Meteorological Institute (KNMI), 2023)). To assess a potential correlation between
the times of activity onset and skin temperature minimum, we extracted individual-specific residual variances (best
linear unbiased predictor, BLUP) to account for multiple measurements. In order to obtain the BLUPs, we used the
same model as from above for both traits, including only days when timing of both, activity and skin temperature
minimum, were available (n=167). We then used the BLUPs to check for a correlation between chronotype estimated
from activity and skin temperature (Houslay & Wilson, 2017). Because the analysis of BLUP correlation is prone to
false positives, multivariate models are preferable, but sample sizes in our study were insufficient for multivariate
analyses (Houslay & Wilson, 2017). Thus using BLUPs, we found no significant relationship and expect therefore that
the analysis, here, was not delivering false positives.

For tests involving the first onset or offset in LL or lab chronotypes as responses to tau, we included group, sex and
their two-way interactions with tau as covariates. Lab chronotype was only available for Groningen 2022 and its
analysis also included the interaction between first onset and offset in LL and sex. Then, in separate post hoc models,
we verified effects of tau for males and females.

Finally, as a separate test, we compared if wild chronotype traits were related to lab chronotype using the subset of
individuals from 2022 for which both measures were available. In two separate models we modelled the onset and
offset of activity in the wild as response variables. We included as predictors the mean onset or offset in captivity, sex
and their interaction, as well as Julian day and mean ambient temperature of night or day, and individual as random
effect.

 

3 Results

The free-running period lengths tau for the 63 individuals in our studies ranged from 23 to 24.7 h, and were on
average shorter than 24 h (mean 23.75 ± 0.04 h; Fig. S1_11 & Table S1_2). Day-to-day changes in the timing of onset
under LL are shown in Figure S1_12. We found that the wild chronotype measures, both in terms of activity onset and
offset, were unrelated to tau (slope for onset: -11 min per h, F1,222 = 1.45, p = 0.25; offset: 0 min per h, F1,177 = 0.00, p =
0.98, Fig. S1_2 & Table S1_3). However, individuals differed significantly from each other in wild chronotype (onset:
0.34 proportional variance (σ2), Χ2

1,n=223 = 23.30, p << 0.001; offset: σ2 = 0.32, Χ2
1,n=178 = 14.74, p < 0.001). For the birds

of 2022, whose chronotype was also measured in the lab, we found that both activity onset and offset were unrelated
to tau (slope for onset: -2 min per h, F1,118 = 0.07, p = 0.80; offset: 5 min per h, F1,110 = 3.01, p = 0.10, Fig. 2 & Table
S1_4), but that these individuals also differed consistently from each other (onset: σ2 = 0.33 , Χ2

1,n=119 = 8.52, p =
0.004; offset: σ2 = 0.40, Χ2

1,n=111 = 19.92, p << 0.001, Table S1_4). In these birds, chronotype measured in the wild
could not be explained by chronotype measured in the lab (onset: -1 min per min, F1,142 = 0.30, p = 0. 60; offset: 0 min
per min, F1,124 = 0.13, p = 0.73, Table S1_5).

The relationship between the first onset in LL and tau depended on sex (F1,59 = 4.23, p = 0.04, Fig. 3 and Table S1_6).
Specifically, in males, the first onset in LL was significantly positively related to tau, so that males delayed onset by 45
min per hour of longer tau (post hoc: F1,34 = 5.58, p = 0.02). No significant relationship was detected in females (post
hoc: -10 min per h, F1,24 = 0.27, p = 0.61, Table S1_7). First offset in LL was also positively, but not significantly, related
to tau such that offset was delayed with increasing tau (slope of 78 min per h, F1,60 = 2.79, p = 0.10). For the offset, we
found no effects of sex (F1,60 = 2.96, p = 0.09) and of its interaction with tau1,60 = 0.03, p = 0.85, Table S1_6). First onset
or offset in LL were not significantly related to entrained onset and offset of activity, neither in the wild (onset: 0 min
per min, F1,222 = 3.08, p = 0. 10; offset: 0 min per min, F1,177 = 0.20, p = 0.66) nor in the lab (onset: 2 min per min, F1,118
= 0.15, p = 0.71; offset: -1 min per min, F1,110 = 1.50, p = 0.24).



For time of the skin temperature minimum, we also failed to detect significant relationships with predictors. There
was no relation with tau (slope: -23 min per h, F1,158 = 2.13, p = 0.20, Fig. S1_13 & Table S1_8) and with first onset in LL
(slope: 1 min per min, F1,158 = 4.83, p = 0.10), nor with lab chronotype in the subset of the 2022 birds (slope: -3 min
per min, F1,119 = 0.97, p = 0.37). Timing of the skin temperature minimum also did not differ between individuals (σ2 =
0.02, Χ2

1,n=159 = 0.00, p = 1.00, Table S1_8). Further, we could not find a correlation between the timings of activity in
the wild and of skin temperature minima (correlation of BLUPs: Pearson’s cor = -0.06, confidence interval = (-0.50,
0.41), t = -0.24, df = 17, p-value = 0.82, Fig. S1_13).

 

4 Discussion

In our study, we confirmed that while free-living great tits displayed individual chronotypes under entrained
conditions, these chronotypes were unrelated to tau. The lack of a relationship contrasts with what has been
postulated in earlier theoretical and laboratory studies and thus adds to the evidence that predictions made using lab
animals may not consistently hold in the wild (Calisi & Bentley, 2009; Daan, 2011; Daan et al., 2011; Tomotani et al.,
2012). Earlier studies of the same species also yielded inconsistent results. A large-scale captivity study of hand-raised
great tits and follow-up research involving temperature manipulations also reported that tau was unrelated to
chronotype in the lab in the birds’ first autumn of life (Helm & Visser, 2010; Lehmann et al., 2012). Conversely, a
recent, smaller-scale study of incubation rhythms revealed that activity onset of wild female great tits did correlate
with tau (Tomotani et al. 2023). Such inconsistent findings are perhaps not surprising given the complex interactions
between the circadian system and the environment (Helm et al., 2017).

Classical laboratory studies showed systematic relationships between tau and phase of entrainment, leading to the
formulation of “rules” on theoretical grounds (Floessner & Hut, 2017). Such conclusions were particularly based on
testing ranges of entrainment and manipulating the period length of the Zeitgeber (Aschoff, 1980). Chronobiologists
studying humans also attempted to link chronotype with tau (e.g., Allebrandt & Roenneberg, 2008; Brown et al.,
2008; Duffy et al., 2001), and in some cases, showed the expected positive correlations between longer tau and later
chronotype. Intriguingly, Steve Brown and co-authors showed that tau also correlated with a molecular measure for
chronotype, the entrained phase of a reporter on a clock gene in cultured dermal fibroblasts (Brown et al., 2008).
Positive correlations between longer tau and later chronotype have also sometimes been found in wild and wild-
derived animals (Fleury et al., 2000; Nikhil et al., 2016; Wicht et al., 2014). However, the evidence has been mixed for
birds, including as mentioned above for great tits. While Tomotani et al. (2023), and also Dominoni et al. (2013),
showed a relationship between tau and chronotype or activity phase in at least some populations, other studies failed
to do so (Helm & Visser 2010, Lehmann et al. 2012). One possible explanation for such discrepancy relateso tau as
estimated during LL. Despite the fact that the variation in tau has a genetic basis (Konopka & Benzer, 1971) and a high
heritability (Helm & Visser, 2010), period length is still a labile trait (Pittendrigh & Daan, 1976a). Tau has been
reported to change seasonally (Aschoff, 1979; Pohl, 1972; Gwinner, 1975; but see Dixit & Singh, 2016) and is affected
by changes in light intensity (e.g., Pohl, 1974) and previous entrainment (i.e., after-effects Pittendrigh, 1960), as well
as by other aspects such as housing conditions and hormones (Aschoff, 1979).

Despite lacking correlations between tau and chronotype, our study provides some support for links between tau and
phase of entrainment. We found that in males, but not in females, the first onset of activity in LL correlated positively
with tau. The first onset in LL can be interpreted as approximating the phase angle of entrainment of an individual
with a given free-running period length in the absence of masking. This is because on one hand, the first day(s) after
moving an animal from entrained to constant conditions often show after-effects of the previous entrainment on
period, phase, and amplitude (Fig. S1_12) that are missing in later stages of a stabilized free-running rhythm
(Pittendrigh, 1960). On the other hand, these after-effects take place during exposure to constant conditions, when all
external influences on timing are removed and activity can occur at the entrained phase it would assume without
masking. That correlations with tau are nonetheless weak is perhaps expected since history-dependent after-effects
are a combined reflection of tau, of previous entrainment and of other influences on the response of organisms to
altered light conditions (Pittendrigh & Daan, 1976a). We thus found a discrepancy between lacking correlations of tau
with chronotype and some correlation of tau with first activity timing in LL. This discrepancy might indicate strong
effects of masking in the wild. Chronotype under natural, masking conditions would therefore arise from influences on
timing other than of circadian period length.

The conclusions from males are weakened by the lack of an association of tau and first onset in LL in females, as well
as by non-significant associations of tau with first offset in LL. However, sex differences in activity patterns and
circadian rhythms have been previously reported (Helm & Visser, 2010; Stuber et al., 2015; Walton et al., 2022). Thus,
sex-specific differences in the clock-chronotype link could stem from selection pressures that differentially affect
phase and masking responses, as shown for example in fruit flies (Ghosh et al., 2021). Furthermore, although not
significant, in both sexes tau was positively associated with first offset of activity in LL. The weakness of this
association could be due to the large variation in offset derived from our birds. As evident from individual actograms
(Figs. S1_3 – S10), there was a tendency for the evening component of activity to dissociate from the morning
component, leading to highly divergent timings of activity offset. Nonetheless, we maintain that after-effects could be
interesting for studies with wild animals as they can reveal aspects of entrainment in the wild. Animals under constant
conditions in the absence of masking may retain – at least for a few cycles – the same period length and phase of their



entrained state (Fig. S1_12). Therefore, after-effects could arguably serve as a closer measure of the clock-predictive
ability of the animal than its entrained activity rhythm (Oda & Valentinuzzi, 2023; Tomotani et al., 2012, 2023).

In addition to masking, environmental factors modify the entrained rhythm also in other ways, for example via
modulations of clock amplitude and robustness (Daan & Pittendrigh, 1976; Oda & Valentinuzzi, 2023; Pittendrigh &
Daan, 1976c, 1976b; Schmal et al., 2015), via modulations of sensory input and output pathways (Chellappa, 2021;
Gwinner et al., 1997; Schmal et al., 2020; Shimmura et al., 2017) or via effects of other oscillators (Bartell & Gwinner,
2005; Gänshirt, et al., 1984; Mistlberger, 1994; van der Vinne et al., 2014). The strength of photic entrainment may
change due to either environmental changes in exposure to light or to organismic changes in light sensitivity
(Marimuthu, 1984; Schmal et al., 2015, 2020). Although chronotype is broadly consistent within individuals, as also
shown in our study (Schwartz et al., 2017), various environmental variables may modify timing. For example, at higher
latitudes, winter has a much shorter light phase (i.e., day length) and lower light intensity than summer. Thus, some
models have predicted the strength of the entrainment to be weaker in winter, possibly allowing the vriation in
chronotypes to be larger (Schmal et al., 2020). Modifying effects can arise from other environmental factors such as
light pollution (Sanders et al., 2021), ambient temperature (Lehmann et al., 2012), reproductive stage, season (Daan &
Aschoff, 1975; Strauß et al., 2024), social cues (Davidson & Menaker, 2003), and sound (Dominoni et al., 2020). It is
noteworthy that the two cited avian studies that showed links between tau and chronotype did so for birds
experiencing reduced perceived strength of the Zeitgeber. Dominoni et al. (2013) found a relationship only in an urban
habitat (Dominoni et al., 2013), where light pollution could result in a reduced contrast between the light and dark
phases. This weaker Zeitgeber in cities could thus lead to greater variation in chronotypes. Furthermore, Tomotani et
al. (2023) had derived chronotype of females during the incubation phase when nest box-breeding females experience
greatly reduced exposure to day light. This reduced Zeitgeber amplitude may contribute to greater expression of inter-
individual differences. Some of these environmental factors may have contributed to the inconsistent findings in the
case of the great tit.

By which traits chronotype and the circadian clock are measured may also impact the results (e.g., Roenneberg et al.,
2003). It is possible that results differ when using other physiological processes (e.g., melatonin levels, e.g., Zawilska
et al., 2006, body temperature e.g., Strauß et al., 2022, gene expression or protein levels, e.g., Beer & Bloch, 2020) or
other behaviours than the locomotor rhythm (incubation behaviour, e.g., Tomotani et al., 2023). While a relationship
should be expected between the different rhythms, there is ample room for variation. Physiological rhythms such as
melatonin and (core) body temperature are often considered a more precise way of assessing the phase of
entrainment (Roenneberg, 2012; Strauß et al., 2022). In our present study, the timing of the increase in peripheral
body temperature during early morning was also unrelated to activity-derived tau. The low accuracy of determining
phase markers of the measured body temperature rhythm (i.e., timing of the temperature minimum) made it less
precise than the activity rhythm, thus further blurring the relationship between clock and chronotype. We cannot
exclude that in our birds, other measures of both chronotype or tau, might have revealed different findings.

How does variation in clock relate to variation in behaviour then? As discussed above, it is perhaps not surprising that
theoretical predictions are not consistently met in the natural environment. The clock versus behaviour relationship in
the wild is more tenuous due to direct influences of the environment on the behaviour itself and to differences
between organisms in all of the implicated pathways. Tau is only one feature of the circadian rhythms and, although it
affects other properties such as the shape of phase response curves (Daan & Pittendrigh, 1976), its influence is subject
to many factors that jointly exert phase control. Next to the phase set by the clock relative to the environment,
multiple levels of organization ultimately lead to variation of rhythms in nature (Helm et al., 2017).

 

5 Conclusion

Our study shows that variation in tau is not consistently related to chronotype in the great tit. Because the variation in
both tau and chronotype depends on environmental and internal state conditions, the relationship between clock and
chronotype may only appear in certain circumstances, times of the year, or in specific traits. If this is true, literature
support of a seemingly straight-forward relationship could also be a result of reporting bias. However, evidence for
individual differences in chronotype and in diel behaviour, including those reported here, indicates that the suite of
components of the circadian system interact with the environment to form broadly consistent temporal behaviour. For
wild animals, such consistency matters, especially because of a possible link between chronotype and fitness
(Martorell-Barceló et al., 2018; Womack et al., 2023). From an ecological perspective, the important question now is
which are the other factors – beside the clock’s free-running period length – that explain variation in chronotype and
diel timing of behaviour. To solve this challenge, we reaffirm that studying clock features particularly through the
combination of measurements in captivity and in the natural settings will be crucial for going forward. A holistic
approach, as always embraced by Steven Brown, will benefit chronobiologcal, ecological and behavioural research
alike.

 

List of Abbreviations

LD: light-dark cycle



LL: constant dim light

Tau: length of the free-running period under constant dim light

 

Figure Legends

Figure 1: Actogram of one of the birds from the 2022 group, showing the measurements collected in this study.
Activity (amount of activity per minute measured in increments of 10 seconds, thus ranging from 0 to 6 per 1-min bin)
is plotted in black against time of day, whereby each row represents a day of experiment. Activities on a given day are
repeated to the right of each day (i.e., double-plotted) for greater clarity. Measures are as follows: a) First onset and
offset in LL (constant dim light conditions). b) Tau, the period length of the endogenous clock. c) Lab chronotype, the
onsets and offsets of the rhythm in captivity, once re-synchronized by a light-dark (LD) cycle, based on a subset of
birds. d) Wild chronotype, the onsets and offsets of the activity rhythm and body temperature in the wild (data not
shown).

Figure 2: Relationships between free-running period length tau and activity onset (left) and offset (right) in the wild
and in captivity. Top: wild chronotype, i.e., onset or offset in the wild relative to sunrise and sunset after release (only
Groningen 2021 and 2022). Bottom: lab chronotype, i.e., onset or offset in captivity under light-dark cycles (LD)
relative to lights-on and lights-off, respectively (based on data only collected in Groningen 2022). Raw data are shown
as means with standard errors for every individual and model estimates are presented as lines with 95% confidence
interval. Colours represent different groups, shapes represent sex (circles in females, triangles in males), and line types
show significance level: solid for p < 0.05, dotted for not significant.

Figure 3: Relationships between free-running period length tau and the first activity onset (left) and offset (right) in
constant dim light (LL) relative to lights-on and lights-off, respectively, on the preceding day in females (top) and males
(bottom). Raw data are shown for every individual and model estimates are presented as lines with 95% confidence
interval. Colours represent different groups, shapes represent sex (circles in females, triangles in males), and line types
show significance level: solid for p < 0.05, dotted for not significant. A significant relationship was only found for first
onset in LL in males.
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Figure 1. Actogram illustration our experimental design with parts made in the captivity and in the 

wild. 

 

  



 

Figure 2. The relationship between tau and activity onset and offset. 



 

Figure 3. The relationship between the first onset in LL and tau depended on sex. 

  



 

Graphical Abstract: 
  

Wild birds showed chronotypes in the field that were unlinked to their circadian period 
length tau measured in captivity. In males only, the first onset of activity after exposure 
to constant dim light did correlate with tau. Our study emphasises the need to investigate 
clocks in the real world, including a need to better understand masking. 
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Part S1: Additional Information on Methods and Results 

Sample sizes 
Table S1_1: Number of birds for each measurement, numbers differ between 
measurements due to data loss, insufficient data quality, etc. 
 Groningen 2021 Heikamp 2021 Utrecht 2021 Groningen 2022 
Number of birds females males females males females males females males 
Tau 6 8 7 6 4 10 10 14 
First onset in LL 5 7 6 7 4 10 10 13 
First offset in LL 6 7 7 7 3 10 9 14 
Lab chronotype onset       10 14 
Lab chronotype offset       10 14 
Wild chronotype onset 3 7 1 0 2 2 6 7 
Wild chronotype offset 3 6 1 0 2 2 6 7 
Wild skin temp. min. 3 4 1 0 2 2 6 7 
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Experimental set-up 

 
Figure S1_1: Photo of the experimental set-up for measuring activity rhythms. We had 
groups of 6 individual cages with a metal front in stand-alone plywood racks. Cages were 
separated from one another by wood panels that surrounded them except for the front side. 
These panels prevented birds from seeing any of their neighbours. The front of the cages 
was covered by a wooden door that could be opened for feeding and caretaking. Photo by 
Barbara M. Tomotani.  
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Light spectral distribution 
We measured the spectral composition of the lamps used in the experiment (0.5 lux 
intensity) using an Ocean Insight OEPro spectrometer. Measurements of absolute 
irradiance (μW/cm2.nm) collected with a 200 µm slit and standard cosine corrector were 
input into the online toolbox Alphaopics: Species-specific light exposure calculator 
(McDowell et al., 2023) to obtain the plot of the spectral power distribution (Figure S1_2) 
and calculations of total irradiance, total photon and photopic illuminance. Because there 
are no great tit-specific photoreceptor data and other birds were absent from the list, we 
report here the calculations for humans: 

Total irradiance [W/m²]: 0.0007 

Total photon [log(photons/cm²/s)]: 11.3007 

Human photopic illuminance [lux]: 0.2697 

 
Figure S1_2: Plot of spectral power distribution (W/m².nm).  
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Actograms showing activity patterns under dim light (LL) and light-dark (LD) 
conditions in the lab 

 
Figure S1_3: Double-plotted actograms of males from Groningen (2021). For all actograms, 
see explanations of the conditions experienced by the birds in Figure 1 of the main 
manuscript. 
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Figure S1_4: Double-plotted actograms of females from Groningen (2021) 
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Figure S1_5: Double-plotted actograms of males from Heikamp (2021) 
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Figure S1_6: Double-plotted actograms of females from Heikamp (2021) 
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Figure S1_7: Double-plotted actograms of males from Utrecht (2021) 
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Figure S1_8: Double-plotted actograms of females from Utrecht (2021) 
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Figure S1_9: Double-plotted actograms of males from Groningen (2022) 
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Figure S1_9 (cont.): Double-plotted actograms of males from Groningen (2022) 
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Figure S1_10: Double-plotted actograms of females from Groningen (2022) 
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Figure S1_10 (cont.): Double-plotted actograms of females from Groningen (2022) 
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Variation and factors influencing the length of the free-running period (tau) 
In this study, tau was normally distributed around a mean of 23.75 ± 0.04 h, and differed 
between the bird groups tested (Figure S1_11 & Table S1_2). 

 
Figure S1_11: Tau [h] during constant dim light (LL) of 63 individuals in this study. Left) 
Distribution of tau. Right) Tau per group and sex (colours indicate groups, triangles stand 
for males, circles for females); significance levels derive from pairwise comparisons of the 
sexes within group using the emmeans package (Lenth 2023). 

 
Table S1_2: Test statistics and estimates for tau [h] across groups (Gro22, Groningen 2022, 
Gro21 = Groningen 2021, Utr21 = Utrecht 2021, Hei21 = Heikamp 2021) and sexes (f = 
female, m = male). Statistics were obtained by stepwise model reduction and estimates for 
the model with all non-significant interactions dropped. “Χ2” refers to Chi-square. In a post 
hoc tests using the emmeans package (Lenth 2023) sex were compared within group. 
  Tau n = 63 Post hoc female – male 
 df F p  Estimate SE  t ratio p  Estimate SE 
Intercept (f)     Gro21 23.66 0.12 Gro21 -1.76 0.08  -0.29 0.17 
Group 3    Gro22  

Hei21 
Utr21 

0.28 
-0.37 
-0.13 

0.15 
0.16 
0.18 

Gro22  1.29 0.20  0.15 0.12 
Hei21 -2.03 0.046 * -0.32 0.16 
Utr21 -1.65 0.11  -0.28 0.17 

Sex (m) 1    0.29 0.17       
Group*Sex 3 2.96 0.04 * Gro22  

Hei21 
Utr21 

-0.44 
0.03 

-0.01 

0.20 
0.23 
0.24 

      

  Χ2 p  Var SD       
Rack n=7 1 0.00 1.00  0.00 0.00       
Residual     0.09 0.30       
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Change in the timing of onset during exposure to constant dim light (LL) 

 
Figure S1_12: Change over time in the onsets of activity (h, clock time CET) after 
transferring birds to constant dim light (LL) in the lab, revealing the day-to-day changes in 
clock period. 
 

Wild chronotype - activity 
Table S1_3: Test statistics and estimates for activity onset or offset in the wild after release, 
relative to sunrise or sunset [min], respectively. “Phase in LL” refers to first onset and offset 
in LL, respectively. Statistics were obtained by stepwise model reduction and estimates for 
the model with all non-significant interactions dropped. (Groups: Gro22, Groningen 2022, 
Gro21 = Groningen 2021; and sexes: f = female, m = male.). 
Activity  Onset in the wild n = 223 Offset in the wild n = 178 
 df F p  Estimate SE F p  Estimate SE 
Intercept (Gro21, f)     209 209    34 174 
Tau [h] 1 1.45 0.25  -11 9 0.00 0.98  0 7 
Phase in LL [min] 1 3.08 0.10  0 0 0.20 0.66  0 0 
Group (Gro22) 1 1.15 0.30  16 15 0.11 0.75  -3 9 
Sex (m) 1 2.53 0.14  -13 8 0.37 0.55  4 7 
Julian day 1 0.01 0.91  0 0 5.19 0.02 * -1 0 
Mean Temp. (n/d) 1 0.25 0.62  0 0 1.45 0.23  -1 0 
Tau*Group (Gro22) 1 2.92 0.11    3.25 0.10 .   
Tau*Sex (m) 1 0.04 0.85    0.00 0.98    
Phase*Group (Gro22) 1 1.83 0.20    1.13 0.31    
Phase*Sex (m) 1 0.00 0.97    0.03 0.87    
  Χ2 p  Var SD Χ2 p  Var SD 
Individual n=22|n=20 1 23.30 1e-6 *** 253 16 14.74 1e-4 *** 155 12 
Residual     493 22    336 18 
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Lab chronotype  
Table S1_4: Test statistics and estimates for onset or offset in captivity under light-dark 
(LD) conditions relative to sunrise or sunset [min], respectively. “Phase in LL” refers to first 
onset and offset in LL, respectively. Statistics were obtained by stepwise model reduction 
and estimates for the model with all non-significant interactions dropped. “Χ2” refers to Chi-
square. Sexes: f = female, m = male. 
Activity  Onset in captivity n = 119 Offset in captivity n = 111 
 df F p  Estimate SE F p  Estimate SE 
Intercept (f)     36 159    -108 69 
Tau [h] 1 0.07 0.80  -2 7 3.01 0.10 . 5 3 
Phase in LL [min] 1 0.15 0.71  2 4 1.50 0.24  -1 1 
Sex (m) 1 0.96 0.34  -4 4 0.07 0.79  0 2 
Tau*Sex (m) 1 0.03 0.86    1.83 0.19    
Phase*Sex (m) 1 0.06 0.82    0.18 0.67    
  Χ2 p  Var SD Χ2 p  Var SD 
Individual n=23 1 8.53 0.004 * 60 8 19.92 8e-6 *** 12 3 
Date n=7|n=5 1 2.76 0.10 . 23 5 3.29 0.07 . 2 1 
Residual     114 11    16 4 
 

Comparison wild and lab chronotypes 
Table S1_5: Test statistics and estimates for activity onset or offset in the wild after release, 
relative to sunrise or sunset [min], respectively, using only birds that also had a lab 
chronotype value. Statistics were obtained by stepwise model reduction and estimates for 
the model with all non-significant interactions dropped. (Groups: Gro22, Groningen 2022; 
sexes: f = female, m = male; and daytime: n = night for onset, d = day for offset). 
Wild vs Lab Gro22  Onset in the wild n = 143 Offset in the wild n = 125 
 df F p  Estimate SE F p  Estimate SE 
Intercept (f)     -47 22    66 20 
Lab Chronotype [min] 1 0.30 0.60  -1 2 0.13 0.73  0 1 
Sex (m) 1 0.36 0.56  -8 13 0.02 0.89  1 9 
Julian day 1 0.01 0.92  0 0 7.85 0.01 ** -1 0 
Mean Temp. (n|d) [°C] 1 0.69 0.41  1 1 2.34 0.13  -2 1 
Lab*Sex (m) 1 0.75 0.41    0.70 0.43    
  Χ2 p  Var SD Χ2 p  Var SD 
Individual n=13 1 57.90 3e-14 *** 429 21 20.1 7e-6 *** 202 14 
Residual     484 22    362 19 
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First onset and offset under constant dim light (LL) 
Table S1_6: Test statistics and estimates for first onset or offset in constant dim light (LL) 
relative to expected sunrise or sunset [min], respectively. Statistics were obtained by 
stepwise model reduction and estimates for the model with all non-significant interactions 
dropped. (Groups: Gro22, Groningen 2022, Gro21 = Groningen 2021, Utr21 = Utrecht 2021, 
Hei21 = Heikamp 2021; and sexes: f = female, m = male.) 
  Onset in LL n = 60 Offset in LL n = 61 
 df F p  Estimate SE F p  Estimate SE 
Intercept (f)     Gro21 109 428    Gro21 -1556 1065 
Tau [h] 1    -2 18 2.79 0.10  78 45 
Sex (m) 1    -1143 555 2.96 0.09 . -47 28 
Group 3 21.48 3e-9 *** Gro22  

Hei21 
Utr21 

-78 
-18 
-27 

11 
13 
12 

3.62 0.02 * Gro22  
Hei21 
Utr21 

-99 
1 

-32 

36 
44 
41 

Tau*Sex (m) 1 4.23 0.04 * 48 23 0.03 0.85    
Tau*Group 3 0.22 0.88    0.84 0.48    
 

Table S1_7: Post hoc testing for the first onset in constant dim light (LL) relative to sunrise 
[min] separately for both sexes. Statistics were obtained by stepwise model reduction. 
(Groups: Gro22, Groningen 2022, Gro21 = Groningen 2021, Utr21 = Utrecht 2021, Hei21 = 
Heikamp 2021; and sexes: f = female, m = male.) 
Post hoc  Female n = 25 Male n = 35 
Onset in LL df F p  Estimate SE F p  Estimate SE 
Intercept     Gro21 295 465    Gro21 -1015 442 
Tau [h] 1 0.27 0.61  -10 20 5.98 0.02 * 45 18 
Group 3 8.77 6e-4 *** Gro22  

Hei21 
Utr21 

-72 
-19 
-39 

14 
17 
17 

12.48 2e-5 *** Gro22  
Hei21 
Utr21 

-81 
-19 
-23 

16 
19 
16 
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Wild chronotype – skin temperature 
Table S1_8: Test statistics and estimates for timing of the skin temperature minimum in the 
wild after release, relative to sunrise [min]. “Phase in LL” refers to first onset and offset in 
LL, respectively. Statistics were obtained by stepwise model reduction and estimates for the 
model with all non-significant interactions dropped. (Groups: Gro22, Groningen 2022, 
Gro21 = Groningen 2021; and sexes: f = female, m = male.) 
Skin temperature  Timing of minima n = 159 
 df F p  Estimate SE 
Intercept (Gro21, f)     163 373 
Tau [h] 1 2.13 0.20  -23 16 
Phase in LL [min] 1 4.83 0.10 . 1 0 
Group (Gro22) 1 0.54 0.49  25 34 
Sex (m) 1 1.47 0.28  18 15 
Julian day 1 0.93 0.34  1 1 
Mean Night Temp. [°C] 1 0.12 0.73  1 2 
Tau*Group (Gro22) 1 0.60 0.46    
Tau*Sex (m) 1 1.20 0.31    
Phase*Group (Gro22) 1 2.43 0.16    
Phase*Sex (m) 1 1.75 0.20    
  Χ2 p  Var SD 
Individual n=19 1 0.00 1.00  148 12 
Residual     6041 78 
       
Wild vs Lab Gro22  Timing of minima n = 120 
 df F p  Estimate SE 
Intercept (f)     -374 63 
Lab Chronotype [min] 1 0.97 0.37  -3 3 
Sex (m) 1 0.27 0.62  11 20 
Julian day 1 0.41 0.53  1 1 
Mean Night Temp. [°C] 1 0.11 0.74  1 2 
Lab*Sex (m) 1 1.57 0.26    
  Χ2 p  Var SD 
Individual n=13 1 0.26 0.61  540 23 
Residual     5307 73 
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Figure S1_13: Timing of the skin temperature minimum relative to sunrise in the wild after 
release for 19 individuals: Left) Time of temperature minimum against tau. Right) Time of 
temperature minimum against activity onset. No significant correlation was detected, using 
correlation of the residuals (best linear unbiased predictor, BLUP). This type of data was 
only analysed for Groningen, and thus only for Groningen 2021 and 2022. Colours indicate 
groups, triangles stand for males, circles for females. 
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Part S2: Processing Pipeline for Telemetry Data 
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1. Telemetry Receiver Settings 
For data collection we used the SensorGnome (SG) system based on a freely available 
software (2023, https://github.com/sensorgnome-org) uploaded to a Raspberry Pi (Model 
3B, 2023, https://www.raspberrypi.com/products/raspberry-pi-3-model-b/). The settings 
(file deployment.txt, see below) were adjusted so that the receiver scanned through a set of 
deployed frequencies (= one per transmitter) resulting in intervals of 1.5 - 2.8 min 
depending on the number of frequencies used. The frequencies ranged from 150 to 151 
MHz and were spread across the areas to maximise spacing between frequencies of one 
area (spacing: 0.007 - 0.384 MHz). We set the dongle (FunCube Pro+, 2023, 
https://www.funcubedongle.com/) to switch the frequency periodically every 10 seconds 
for all antennas simultaneously, and adjusted two filtering settings, i.e. pulse length to 
maximal 20 or 25 ms and signal-to-noise ratio (SNR) to minimal 3dB. 
#### 1. Telemetry Receiver Settings #### 
# extract of the adjusted deployment.txt file 
{ 
  "key": { 
    "port": ".*", 
    "devType": "funcubeProPlus" 
    }, 
  "rate": 48000, 
  "channels": 2, 
  "schedule": { 
    "type": "AlwaysOn" 
    }, 
  "devParams": [ 
    { 
      "name": "frequency", 
      "schedule": { 
        "type": "periodic",                     # changing frequencies 
        "states": [150.020,150.118,150.142...], # frequencies: set as -4 kHz from 
                                                  actual frequency 
        "periods": [10,10,10,...]               # period length for frequencies 
        } 
      }, 
    ...                                         # other default settings 

https://github.com/sensorgnome-org
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.funcubedongle.com/
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    ], 
  "raw": { 
    "enabled": false, 
    "chunkMinutes": 0.5 
    }, 
  "plugins": [ 
    { 
      "library": "lotek-plugins.so", 
      "name": "findpulsefdbatch", 
      "outputID": "pulses", 
      "params": [ 
        { 
          "name": "plen",                        # filter for max pulse length 
          "value": 25                            # 20 ms in 2021, 25 ms in 2022 
          }, 
        { 
          "name": "minfreq",                     # min freq deviation: default 
          "value": 2 
          }, 
        { 
          "name": "maxfreq",                     # max freq deviation: default 
          "value": 8 
          }, 
        { 
          "name": "fftsize",                     # default 
          "value": 24 
          }, 
        { 
          "name": "minsnr",                      # filter for min SNR 
          "value": 3                             # 3dB to increase range 
          }, 
        { 
          "name": "noisesize",                   # default 
          "value": 5 
          }, 
        { 
          "name": "pulsesep",                    # default 
          "value": 1 
          } 
        ] 
      } 
    ] 
  } 
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2. Data Preparation 
# packages 
library(dplyr)      # data management 
library(tidyr) 
library(reshape2) 
library(pracma)     # hampel function 
library(diptest)    # data distributions 
library(mclust) 
library(chron)      # time conversion 
library(suncalc)    # sunrise and sunset 
 
options(digits=15)  # increase the numbers of digits available in R to avoid rounding 
                      of numeric timestamp 
memory.limit(24000) # increase memory limit used to conduct R; usually about 8000 
 
# directories 
directory <- "~/R/WinterTelemetry/Data_Telemetry/" 
setwd(directory) 
 
file_directory <- "~/R/RawData/Telemetry/" 

The raw data (separate txt.gz files for different dates) from the SGs were merged and 
produced the following raw data file (Tab. 2.1 columns 1 [Info] to 6 [V6]) with added and 
disentangled information (Tab. 2.1 columns 7 [Site] to 15 [SNR, signal-to-noise ratio]). 
#### 2. Data Preparation #### 
# get a list of all .gz files names from the file directory including sub-folders 
file_list <- list.files(path = file_directory, pattern = "*.gz", recursive = TRUE) 
 
#### 2.1. Data Merging #### 
rm(dataset) # remove dataset so that the merging starts anew 
 
# go through file list, name by name 
for(a in c(1:length(file_list))){ 
  file <- file_list[[a]]                     # extract file name 
  file2 <- paste(file_directory,file,sep="") # create file path 
   
  # extract info from the file path: e.g. site or receiver 
  # (here, equivalent to the names of sub-folders) 
  info <- unlist(strsplit(file,split="/"))   # split path 
  site <- info[1]                            # extract folder names that are relevant 
  receiver <- info[2] 
   
  # if the merged dataset doesn't exist, create it 
  if (!exists("dataset")){ 
    # read in file 
    dataset <- read.csv(file2,colClasses=c("character"), header=FALSE)  
     
    # add NA columns if necessary, delete last column if necessary, add info 
    ifelse(ncol(dataset)==4,dataset$V5 <-NA,dataset$V5)  
    ifelse(ncol(dataset)==5,dataset$V6 <-NA,dataset$V6) 
    dataset$V7 <- NULL                       # delete last column if necessary 
    dataset$Site <- as.character(paste(site)) 
    dataset$Receiver <- as.character(paste(receiver)) 
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  } 
  # if the merged dataset does exist, add to it 
  if (exists("dataset")){ 
    # if tryCatch finds an error message, it exchanges the txt.gz file name into a 
      txt file*  
    temp_dataset <- tryCatch(read.csv(file2,colClasses=c("character"), 
header=FALSE),error=function(txt){ 
      read.csv(gsub(pattern = "\\.gz$", "", file2),colClasses=c("character"), 
header=FALSE)}) 
     
    # add NA columns if necessary, delete last column if necessary, add info 
    ifelse(ncol(temp_dataset)==4,temp_dataset$V5 <-NA,temp_dataset$V5)  
    ifelse(ncol(temp_dataset)==5,temp_dataset$V6 <-NA,temp_dataset$V6)  
    temp_dataset$V7 <- NULL                  # delete last column if necessary 
    temp_dataset$Site <- as.character(paste(site)) 
    temp_dataset$Receiver <- as.character(paste(receiver)) 
    dataset<-rbind(dataset, temp_dataset)    # merge the data 
    rm(temp_dataset)                         # remove the temporary dataset 
  } 
} 
 
#### 2.2 Data Extraction #### 
dataset <- dataset[!duplicated(dataset), ]   # remove duplicates 
 

# rename and adjust column types 
colnames(dataset) <- c("Info","TS_num",paste("V",3:6,sep=""), "Site", "Receiver") 
dataset$Info <- as.factor(dataset$Info) 
dataset$TS_num <- as.numeric(dataset$TS_num) 
 
# "cleaning" dataset by separating information 
dataset$Antenna <- as.factor(NA)             # create new columns 
dataset$dfreq <- as.numeric(NA) 
dataset$Setting <- as.factor(NA) 
dataset$Signal <- as.numeric(NA) 
dataset$Setting_Value <- as.numeric(NA) 
dataset$BG <- as.numeric(NA) 
 
# assign information from either setting ("S") or detection ("p") row 

# setting rows 
dataset$Antenna <- ifelse(dataset$Info=="S",paste("p",dataset$V3,sep=""),NA)  

# detection rows 
dataset$Antenna <- as.factor(ifelse(grepl("p", dataset$Info)==TRUE, 

paste(dataset$Info),dataset$Antenna)) 
dataset$dfreq <- as.numeric(ifelse(grepl("p", dataset$Info)==TRUE, 

paste(dataset$V3),dataset$dfreq)) 
dataset$Setting <- as.factor(ifelse(dataset$Info=="S", 

paste(dataset$V4),dataset$Setting)) 
dataset$Signal <- as.numeric(ifelse(grepl("p", dataset$Info)==TRUE, 

paste(dataset$V4),dataset$Signal)) 
dataset$Setting_Value <- as.numeric(ifelse(dataset$Info=="S", 

paste(dataset$V5),dataset$Setting_Value)) 
dataset$BG <- as.numeric(ifelse(grepl("p", dataset$Info)==TRUE, 

paste(dataset$V5),dataset$BG)) 
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dataset$SNR <- as.numeric(dataset$Signal/dataset$BG) # add signal to noise ratio 
 

# convert timestamp & sort ascendic for timestamp 
dataset$ts <- as.POSIXct(as.numeric(as.character(dataset$TS_num)),origin="1970-01-

01",tz="GMT") # GMT! to obtain local time; double check for your own data 
dataset$Year <- as.numeric(format(dataset$ts,format="%Y")) 
dataset <- dataset[order(dataset$TS_num),]   # sort rows by timestamp 
rownames(dataset) <- NULL                    # ascending row numbers 

 
# save data frame so that it can be loaded easily for the next steps** 
# write.csv(dataset,paste(directory,"dataset_WinterTelemetry.csv",sep="/"), row.names 

= FALSE) 
* The SG records any information and receives signals in a txt file that is compressed to txt.gz after one hour. The 
previous txt file is deleted. Two new files are created for the data collection of the next hour: a txt and an empty 
txt.gz file. In case of interruptions or during the data download, the data might not be compressed into the txt.gz 
file yet. Then, the available data can be extracted from the txt file directly. 
** To avoid re-running the script and subsequently waiting for the processing time multiple times, we saved the 
data frames of the intermediate steps as csv files that can be easily read in before progressing with the pipeline. 
Note that the file size can be very large depending on the amount of data (e.g. 1.2 GB for ca 8.5 x 106 rows in the 
raw data). 

 

Table S2_2.1: Raw data output from the SensorGnome in columns 1-6. The Info column 
indicates if the row contains a record about a change in settings (S) or a received radio 
signal (pX, which contains the port number X and is equal to the antenna number, e.g. p4). 
Depending on the row type, the following columns contain different information which can 
be extracted and separated, accordingly: TS_num contains the numeric timestamp in 
seconds from epoch 1970-01-01, and V2 the antenna (= Antenna) of which settings are 
changed or the deviation of signal from the set frequency (= dfreq, kHz). V3 has information 
about which setting is changed (= Setting) or the relative signal strength (= Signal, -100 to 0 
dB), and V5 about the value of the new setting (= Setting_Value) or the relative level of 
background noise (= BG, -100 to 0 dB). 
Info TS_num V3 V4 V5 V6 Site Receiver Antenna dfreq Setting Signal Setting_Value BG SNR 

S 1644098402.255 8.000 frequency 150.64 0 GRO LB p8 NA frequency NA 150.64 NA NA 

S 1644098402.207 5.000 frequency 150.64 0 GRO LB p5 NA frequency NA 150.64 NA NA 

S 1644098402.230 6.000 frequency 150.64 0 GRO LB p6 NA frequency NA 150.64 NA NA 

S 1644098402.278 7.000 frequency 150.64 0 GRO LB p7 NA frequency NA 150.64 NA NA 

p4 1644098402.405 4.631 -68.13 -74.98 NA GRO LB p4 4.631 NA -68.13 NA -74.98 0.909 

p4 1644098402.408 4.791 -70.2 -75.64 NA GRO LB p4 4.791 NA -70.20 NA -75.64 0.928 

S 1644098402.184 4.000 frequency 150.64 0 GRO LB p4 NA frequency NA 150.64 NA NA 

p8 1644098403.416 3.867 -68.71 -77.92 NA GRO LB p8 3.867 NA -68.71 NA -77.92 0.882 

p8 1644098403.418 4.019 -74.26 -79.06 NA GRO LB p8 4.019 NA -74.26 NA -79.06 0.939 

p8 1644098404.791 4.207 -68.66 -78.02 NA GRO LB p8 4.207 NA -68.66 NA -78.02 0.880 

 

Set frequencies and other settings were assigned to the radio signals passing 
chronologically through the rows so that the radio signals can be matched to the 
transmitter monitored. Additionally, we flagged detections within the first second after a 
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frequency change for a later filtering step because those turned out to be problematic due 
to a carry-over of signals from the previous frequency (see Section 3.1). 

#### 2.3. Assigning Frequencies #### 
# split into antennas 
dataset2 <- split(dataset, f=list(dataset$Year,dataset$Site,dataset$Receiver, 

dataset$Antenna,drop=T),drop=TRUE) 

# assign set frequencies 
for(a in seq_along(dataset2)){ 
 
  dataset2[[a]] <- dataset2[[a]][order(dataset2[[a]]$TS_num),] # sort rows by         
                                                                 timestamp 
  rownames(dataset2[[a]]) <- NULL           # rename rows in the ascending order 
   
  # vectorisation to speed up loop 
  # initialisation of results: create NA vectors 
  Freq <- as.numeric(rep(NA,nrow(dataset2[[a]]))) 
  ChangeFilter <- as.numeric(rep(NA,nrow(dataset2[[a]]))) 
  SecondFilter <- as.numeric(rep(NA,nrow(dataset2[[a]]))) 
   
  # conditioning: create TRUE/FALSE vectors for required if statements 
   # setting row for switching frequency 
  SetFreq <- c(grepl("S", dataset2[[a]]$Info) & dataset2[[a]]$Setting == "frequency")  
  Detection <- c(grepl("p", dataset2[[a]]$Info)) # detection row 
  TimeInBetween <- c(NA,diff(dataset2[[a]]$TS_num)) # time interval between rows 
   
  # initial variables needed to start the loop 
   # first frequency set  
  current_freq <- dataset2[[a]]$Setting_Value[which(SetFreq==TRUE)][1]  
   # first time of frequency setting 
  change_time <- dataset2[[a]]$TS_num[which(SetFreq==TRUE)][1]         
    
  # processing all rows in data row-by-row 
  for(i in 1:length(dataset2[[a]]$Info)){ 
    # is it a setting row with frequency changes (TRUE/FALSE) 
    if(SetFreq[i]){ 
      current_freq <- dataset2[[a]]$Setting_Value[i] # extract the new frequency 
      Freq[i] <- current_freq                      # assign this frequency to the row 
       
      change_time <- dataset2[[a]]$TS_num[i]   # extract the time of frequency change 
    } 
    # is it a row with detection (radio signals) 
    if(Detection[i]){ 
      Freq[i] <- current_freq # assign current frequency 
       
      # mark detections that occur within 1st sec after change (check millisec) 
      ChangeFilter[i] <- ifelse(dataset2[[a]]$TS_num[i]-change_time < 1,TRUE,FALSE) 
      # TRUE/1 for filter, FALSE/0 for keep 
      } 
  } 
  dataset2[[a]]$Freq <- Freq                # add the frequency vector to the dataset 
  dataset2[[a]]$ChangeFilter <- ChangeFilter         # add the change filter 
} 
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# merge the list of datasets and remove the created row names so that they are just 
# numbered 
dataset_conv <- do.call("rbind",dataset2) 
rownames(dataset_conv) <- NULL 
 
# write.csv(dataset_conv,paste(directory,"dataset2_WinterTelemetry.csv",sep="/"), 

row.names = FALSE) 

Then, we selected signals only and assigned the individual IDs. For this, we merged the 
records with a data frame that contained the BirdID, year, site and the frequency of the 
transmitter used. Please, note that it is recommended to set the frequencies 4 kHz lower at 
the SG receiver (see above) so that this needs to be taken into account in the data frame 
with the individual information. 

 

Table S2_2.2: Radio signals (detections), their qualitative properties, assigned frequency, 
individual ID and other information: Both, TS_num and ts, represent the timestamp in 
numeric form (in seconds from epoch 1970-01-01) and date-time format, respectively. 
dfreq shows the deviation between recorded and set frequency in kHz. Signal and BG are 
the relative strength (in dB; log scale with 0 at maximal strength) of the signal and the 
background noise (BG), respectively. From those, the signal-to-noise ratio (SNR) was 
calculated. Freq contains the set frequency, and detections that are within one second after 
the switch of the frequency are marked in ChangeFilter. The last columns give information 
about the individual ID (BirdID), location (Site) and the receiver (Receiver, Antenna). 
TS_num ts dfreq Signal BG SNR Freq ChangeFilter BirdID Site Receiver Antenna 

1644098402.405 2022-02-05 23:00:02 4.631 -68.13 -74.98 0.909 150.640 remove BD58563 GRO LB p4 

1644098402.408 2022-02-05 23:00:02 4.791 -70.20 -75.64 0.928 150.640 remove BD58563 GRO LB p4 

1644098422.890 2022-02-05 23:00:22 4.157 -67.57 -75.32 0.897 150.779 remove BD58566 GRO LB p4 

1644098422.892 2022-02-05 23:00:22 4.165 -62.17 -74.41 0.836 150.779 remove BD58566 GRO LB p4 

1644098424.600 2022-02-05 23:00:24 3.879 -62.11 -74.49 0.834 150.779 keep BD58566 GRO LB p4 

1644098426.314 2022-02-05 23:00:26 3.871 -62.42 -74.61 0.837 150.779 keep BD58566 GRO LB p4 

1644098426.321 2022-02-05 23:00:26 4.295 -67.51 -75.25 0.897 150.779 keep BD58566 GRO LB p4 

1644098428.026 2022-02-05 23:00:28 4.050 -67.59 -75.42 0.896 150.779 keep BD58566 GRO LB p4 

1644098428.026 2022-02-05 23:00:28 3.910 -62.28 -74.81 0.833 150.779 keep BD58566 GRO LB p4 

1644098429.747 2022-02-05 23:00:29 4.285 -67.60 -75.11 0.900 150.779 keep BD58566 GRO LB p4 

* For further information see the archived SensorGnome documentation, e.g. at The Web Interface tab 
(https://archived.sensorgnome.org/). 

  

  

https://archived.sensorgnome.org/
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3. Filtering 
Now, we filtered the data addressing several issues associated with the raw SG data: First, 
we found a carry-over effect of radio signals from one to the next frequency sampled, 
probably caused by a time lag between hard- and software (Section 3.1). Second, telemetry 
antennas can detect the radio signal, and its echo, from multiple angles resulting in artefacts 
such as multiple detections of the same signal per second (Section 3.2 – 3.3). Additionally, 
the SG software might further fragment the signal (Section 3.3). All this results in noise that 
obscure the actual radio signal and is visible in the raw data file: 

Table S2_3: This extract from the raw data shows a switch of the set frequency in antenna 
‘p5’ (row 1, green) followed by multiple detections thereafter. The timestamps, ts and 
TS_num, enable us to spot multiple detections per second easily. The ChangeFilter column 
already marks which detections are within a second after a frequency switch (= ‘remove’). 
However, there are still more detections than emitted radio signals thereafter, e.g. multiple 
detection per second (indicated by colour). 
Info ts TS_num Freq dfreq Signal BG SNR ChangeFilter 

S 2022-02-08 23:00:42 1644357642.211 150.256 NA NA NA NA NA 

p5 2022-02-08 23:00:42 1644357642.314 150.256 4.998 -66.28 -73.63 0.900 remove 

p5 2022-02-08 23:00:42 1644357642.315 150.256 5.004 -65.58 -73.30 0.895 remove 

p5 2022-02-08 23:00:44 1644357644.079 150.256 4.639 -66.79 -73.92 0.904 keep 

p5 2022-02-08 23:00:44 1644357644.079 150.256 4.643 -66.01 -73.65 0.896 keep 

p5 2022-02-08 23:00:45 1644357645.857 150.256 4.989 -66.58 -73.64 0.904 keep 

p5 2022-02-08 23:00:45 1644357645.859 150.256 4.998 -65.64 -73.26 0.896 keep 

p5 2022-02-08 23:00:47 1644357647.626 150.256 4.715 -65.83 -73.34 0.898 keep 

p5 2022-02-08 23:00:47 1644357647.629 150.256 4.960 -66.55 -73.69 0.903 keep 

p5 2022-02-08 23:00:49 1644357649.399 150.256 4.713 -66.32 -72.86 0.910 keep 

p5 2022-02-08 23:00:49 1644357649.400 150.256 4.910 -65.37 -72.67 0.900 keep 

 
3.1. Carry-over from previous frequency 

In the raw data we found subsequentially recorded frequencies showing the same, 
overlapping pattern in dfreq which infers that the subsequential frequency contained some 
detections aligning with previously sampled frequency (Figure S2_3.1 a). These detections 
are closely associated to the change of the frequency in the receiver (Figure S2_3.1 b). This 
carry-over effect is probably caused by the software (i.e. Raspberry Pi) changing before 
and/or quicker than the hardware (i.e. antenna). 
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Figure S2_3.1: The carry-over effect: a) Two subsequent example frequencies show the 
same pattern of deviations. Detections within one second after the transition from the 
previous frequency are marked red. b) Detail of a frequency change (vertical green lines) in 
the software. 

Solution: Removal of detections that are within 1 sec after a frequency change 

#### 3.1. Filter: remove detections within one second after frequency change #### 
# subset to detections more than 1 sec after frequency switch 
dataset_filt1 <- subset(tags, ChangeFilter==0)  

 
3.2. Background noise & tag signal artefacts  

Strong noise can obscure the signal and not every detection is a true signal. In the SG 
software (i.e. in deployment.txt file) it is recommended by the developers that the 
frequency is set 4 kHz below the carrying frequency of a tag (the frequency provided by a 
supplier) so that we expect dfreq to be around 4 kHz. As a first step, we visually inspected 
the histograms for dfreq and background noise (BG) per transmitter. In our study, most 
detections fell into a range of 2 – 7 kHz for dfreq and -70 to -86 dB for BG. Thus, we selected 
detections with more than 1.5 kHz dfreq and BG below -70 dB. Note that these thresholds 
can vary depending on the used SG settings, the transmitters, and the circumstances of the 
area regarding background noise levels so that they need to be chosen based on the 
collected data. Additionally, the recorded frequency can vary with environmental cues such 
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as ambient temperature, and often also shows artefacts (multiples of the main carrying 
frequency of a tag). Thus, we split the data into nights (24-h bins) and further into 
distributions (similar to Figure S2_3.3 b). We assigned distribution numbers to every data 
point within each night, before picking the detection from the largest distribution per 
minute. To further smooth the data, we applied a hampel filter to remove outliers (Jonasson 
2017). The hample filter removes outliers that deviate from the median in a time series 
using a sliding window (with length set in k) and a given threshold (set in t0). 

Solution: Removal of detections with strong background noise and wrong frequencies 

# split the data to process with the filtering separately for every transmitters-
antenna combination 
dat_antenna <- split(dataset_filt1, f = list(dataset_filt1$Year,dataset_filt1$BirdID, 

dataset_filt1$Receiver,dataset_filt1$Antenna), drop=TRUE) 
# the following code can be applied to every transmitter-antenna combination using  
  for loop going through the list of data frames 
                   
#### 3.2. Filter: remove very high BG noise & artefacts in dfreq #### 
# general filter: completely wrong BG and dfreq 
# values are chosen by visual inspection of all data, i.e. distribution of data 
  points for every frequency. We selected dfreq larger than 1.5 kHz and BG noise  
  weaker than -70 dB 
dat_antenna2 <- subset(dat_antenna, dfreq>1.5 & BG< (-70)) 
 
# dfreq: filter multiple dfreq detected per signal 
# after each data point is assigned distributions of dfreq per 24 h (just like for BG 
  later, see Figure S2_3.3b), the detections from the largest distribution are chosen  
  per minute 
data_antenna2 <- dat_antenna2 %>% 
  # create two types of bins: AnalysisDate (i.e. 24 h shifted by -12 h so this is 
equivalent to night) and 1-min bins 
  mutate(AnalysisDate = as.factor(format(ts+12*60*60,format="%Y-%m-%d")), 
         bin = floor(TS_num/60)) %>% 
  ungroup() %>% group_by(AnalysisDate) %>% # per 24 h (here, split by 12:00) 
  # check for multimodality (multi) and assign distribution numbers and parameters 
  mutate(multi = dip.test(dfreq)$p.value<0.05,  
         distr.nr = ifelse(multi,densityMclust(dfreq, # total number of distributions 
                    modelNames="E",plot=FALSE)$G,1),    
         distr = ifelse(multi,densityMclust(dfreq,              # distribution number 
                 modelNames="E",plot=FALSE)$classification, 1),  
         distr.size = ifelse(multi,densityMclust(dfreq,    # size of the distribution 
                 modelNames="E",plot=FALSE)$parameters$pro[distr],1)) %>% 
  group_by(bin) %>% # per 1-min bin 
  # choose the detections from the larger distribution (==0) 
  mutate(dfreqFilter = ifelse(distr.size!=max(distr.size),1,0)) 
 
filtered <- data_antenna2 %>% filter(dfreqFilter==0) %>%     # apply filter 
  dplyr::select(-c(contains("distr"),multi)) %>% ungroup()   # remove “multi”-columns 
   
# dfreq: hampel filter 
outliers <- hampel(filtered$dfreq, k=100,t0=1.5) # find outliers 
filtered <- filtered[-c(outliers$ind),]          # remove outliers 
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3.3. Artefacts in BG & multiple detections per second 

The raw data can show multiple detections of the same signal. These detections differ in 
signal strength, SNR, and BG noise. Signal strength and therefore also SNR varies depending 
on the activity of the individual and can therefore not be used to filter the data. However, 
BG noise strength is supposed to be stable overtime with no sudden changes. Similar to the 
previous ‘distribution’ filter, we split the data, assigned distribution numbers to the data 
points (Figure S2_3.3 b), and picked the detections from the largest distribution, before 
smoothing the time series with a hampel filter. In case there were still multiple detections 
per second left over, we picked the first. 

 
Figure S2_3: The Background noise (BG) artefacts: a) Time series dfreq and BG showing 
multiple timeseries each. Filtered data in red. b) Histogram BG noise for first and second 
part of a given date. Notice that values of background noise tend to cluster forming 
multimodal patterns. 

Solution: Inclusion of detection from one stable BG noise and,  
if necessary, the first one per second 
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#### 3.3. Filter: remove BG artefacts & multiple detections per second #### 
# BG noise: filter multiple BG detections per signal 
# after each data point is assigned distributions of dfreq per 24 h (see Figure  
  S2_3.3b), the detections from the largest distribution are chosen per minute 
filtered <- filtered %>% 
  ungroup() %>% group_by(AnalysisDate) %>% # per 24 h (here, split by 12:00) 
  # check for multimodality (multi) and assign distribution numbers and parameters 
  mutate(multi = dip.test(BG)$p.value<0.05, 
         distr.nr = ifelse(multi,densityMclust(BG,                     # total number 
                    modelNames="E",plot=FALSE)$G,1),  
         distr = ifelse(multi,densityMclust(BG,                 # distribution number 
                 modelNames="E",plot=FALSE)$classification,1),  
         distr.size = ifelse(multi,densityMclust(BG,                   # size 
                      modelNames="E",plot=FALSE)$parameters$pro[distr],1)) %>%  
  group_by(bin) %>% # per 1-min bin 
  # choose the detections from the larger distribution (==0) 
  mutate(BGFilter = ifelse(distr.size!=max(distr.size),1,0)) 
 
filtered2 <- filtered %>% filter(BGFilter==0) %>% # apply filter 
  dplyr::select(-c(contains("distr"),multi)) %>% ungroup() 
 
# BG noise: hampel function 
outliers2 <- hampel(filtered2$BG, k=100,t0=1.5) # find outliers 
filtered3 <- filtered2[-c(outliers2$ind),]      # remove outliers 
 
# filter one per sec: 
# in case there are still multiple data points per second, the first one is chosen 
filtered3$TS_num <- as.numeric(filtered3$TS_num) 
TimeInBetween <- c(NA,diff(filtered3$TS_num))   # conditioning 
prevDetect_time <- filtered3$TS_num[1]-1        # 1 sec before first detection 
SecondFilter <- as.numeric(rep(NA,nrow(filtered3))) 
for(a in 1:nrow(filtered3)){ 
  # choose 1st detection (multiple detections within sec, from echo or SG) 
  SecondFilter[a] <- ifelse(filtered3$TS_num[a]-prevDetect_time <1,  TRUE, FALSE) 
   # TRUE for remove, FALSE for keep 
  prevDetect_time <- ifelse(SecondFilter[a]==FALSE,filtered3$TS_num[a], 
              prevDetect_time) # time of (real) detection if its not filtered against 
} 
 
filtered3$SecondFilter <- SecondFilter 
filtered4 <- subset(filtered3, SecondFilter==0)  # apply filter 
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4. Activity & Skin Temperature 
From the filtered data, we extracted changes in signal strength as a measure of activity and 
assigned recorded temperatures to the signals. Similar to the filtering, this was done 
separately for every frequency and antenna used, which were merged together afterwards. 
 
4.1. Activity 

Signal strength varies with distance and movement of the transmitter. Therefore, its 
variation is equivalent to the relative activity of the tagged individual. Low variation is 
expected for low movement i.e. activity levels, and high variation for high activity levels, 
respectively. Therefore, we first averaged the data into 5-min bins and then calculated the 
deviation in signal strength between subsequent bins. 
 

4.2. Skin Temperature 

To assign skin temperature values, we followed the pipeline from Jonasson (2017). We 
calculated the interval between two signals using the numeric timestamp (including 
milliseconds), filtered for appropriate intervals and applied the tag-specific calibration 
curves (Figure S2_4.1). Tag-specific curves were obtained from the calibration of the tags 
using a progressively cooling water bath. 

 
Figure S2_4.1: An example of a calibration curve. 

 
#### 4. Activity & Skin Temperature #### 
# split the data to process with the filtering separately for every individual and    
  year 
dataset3 <- split(Filtered_data, 
                  f = list(as.factor(Filtered_data$BirdID), 
                           as.factor(Filtered_data$Freq)), drop=TRUE) 
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# lists for output data 
Activity_all <- list() 
Skin_Temp_bird <- list() 
 
# data analysis per year-individual combination 
for(i in 1:length(dataset3)){ 
  # extract data and information 
  dat_freq <- dataset3[[i]] 
  freq <- unique(dat_freq$Freq) 
  bird <- unique(dat_freq$BirdID) 
  year <- unique(dat_freq$Year) 
   
  # data analysis per antenna: split data and go through the list of data frames 
  dat_antenna <- split(dat_freq,dat_freq$Antenna,drop=TRUE) 
  for(b in 1:length(dat_antenna)){ 
    antenna <- unique(dat_antenna[[b]]$Antenna) # extract antenna info 
 
#### 4.1. Activity #### 
    # data binning 
    binsize <- 5 # in min 
    dat_antenna[[b]]$datetime_num <- floor(dat_antenna[[b]]$TS_num/60/binsize)* 
                                     binsize # datetime in 5-min bins 
    # averaging of recorded skin temperature and signal strength (for activity) for  
      each bin and individual 
    Activity <- aggregate(Signal ~ datetime_num+BirdID+Freq+Receiver+Antenna, 
                          data=dat_antenna[[b]],FUN=mean) %>% 
      rename(Pwr = "Signal") %>% 
      mutate(ts = as.POSIXct(datetime_num*60,origin="1970-01-01",tz="CET")) 
         # needs to be CET to be actually CET 
     
    # fill missing values with NA 
    # select bird specific time period 
    Time_min <- min(Activity$ts)  
    Time_max <- max(Activity$ts)  
    # create data frame with all bins possible 
    full_time <- data.frame(ts=as.POSIXlt(c(seq(Time_min,Time_max,by=binsize*60)), 
                               tz="CET")) # needs to be CET to be actually CET 
    # merge with existing data frame 
    Activity <- merge(full_time,Activity,by=c("ts"),all=TRUE) 
    Activity <- Activity[order(Activity$ts),] #order by date and time 
    rownames(Activity) <- NULL 
    Activity$Timestamp_num <- as.numeric(as.POSIXct(Activity$ts)) # add missing cells 
     
    # add deviation of signal strength as measure for activity 
    Activity$Pwr_diff <- abs(c(NA, diff(Activity$Pwr))) 
     
    Activity_bird[[b]] <- Activity 
     
#### 4.2. Skin Temperature #### 
    # prepare new columns 
    dat_antenna[[b]]$beep_int <- NA      # interval between signals 
    dat_antenna[[b]]$rel_beep_int <- NA  # realistic interval? (filter) 
    dat_antenna[[b]]$skin_temp <- NA     # calculated skin temperature 
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    dat_antenna[[b]]$rel_skin_temp <- NA # realistic skin temperature? (filter) 
    # check for enough data to skip antennas with little information 
    if(nrow(dat_antenna[[b]])<200){ 
      print(paste("skipped: i is",i,"- data from bird",bird, freq, antenna, "have 
                   only", nrow(dat_antenna[[b]]),"(<200) data records",sep=" ")) 
      }else{ 
      # sort by timestamp 
      dat_antenna[[b]]$TS_num <- as.numeric(dat_antenna[[b]]$TS_num) 
      dat_antenna[[b]] <- dat_antenna[[b]][order(dat_antenna[[b]]$TS_num),]  
       
      # calculate time intervals 
      dat_antenna[[b]]$beep_int <- c(NA,diff(dat_antenna[[b]]$TS_num)) 
       
      # remove improbable time intervals 
      # minimum 20bpm (usually min is 25bpm) -> 3 sec interval max 
      # maximum 50bpm (usually max is 45bpm) -> 1.2 sec interval min 
      dat_antenna[[b]]$rel_beep_int <- as.factor(ifelse(dat_antenna[[b]]$beep_int> 
                                     1.2 & dat_antenna[[b]]$beep_int< 3,TRUE,FALSE))  
          # TRUE/1 for keep, FALSE/0 for filter 
 
       
      # apply skin temperature function: y ~ intercept + slope1*x + slope2*x^2 
      cal_row <-  which(calibration$Year==year & calibration$Freq_SG == freq) 
      dat_antenna[[b]]$skin_temp <- calibration$Intercept[cal_row] + 
                            (calibration$Slope1[cal_row]*dat_antenna[[b]]$beep_int) + 
                            (calibration$Slope2[cal_row]*dat_antenna[[b]]$beep_int^2) 
       
      # mark improbable skin temperatures: lower than 20 °C, larger than 50 °C 
      dat_antenna[[b]]$rel_skin_temp <- as.factor(ifelse(dat_antenna[[b]]$skin_temp> 
                                    20 & dat_antenna[[b]]$skin_temp< 50,TRUE,FALSE))  

   # TRUE/1 for keep, FALSE/0 for filter 
    } 
  } 
  # save activity into list if there is any available, and save skin temperature 
  if(length(Activity_bird)>0){ 
    Activity_all[[i]] <- do.call("rbind",Activity_bird) # save activity 
  } 
  Skin_Temp_bird[[i]] <- do.call("rbind",dat_antenna) # save temperature 
} 
 
# merge the lists of datasets 
Activity_data <- do.call("rbind",Activity_all) 
Skin_Temp_all <- do.call("rbind",Skin_Temp_bird) 
 
# write.csv(Activity_data,"dataset_Winter_activity_20231018.csv", row.names = FALSE) 
# write.csv(Skin_Temp_all,"Skin_Temp_Winter_20231018.csv", row.names = FALSE) 
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Figure S2_4.2: An example of activity (black dots) and skin temperature patterns (light red 
dots for filtered, and dark red line for smoothed data) across time. Yellow shades indicate 
daylight periods. 

 

5. Functions for Onset & Offset 
Following Strauß et al.’s (2022) pipeline for extraction of onset and offset for activity and 
skin temperature, we used the filtered and converted data to choose analyses windows and 
to extract chronotype traits thereafter. 

For activity onset and offset we adjusted a behavioural change point analysis (BCPA, from 
Dominoni et al. 2014 and Strauß et al. 2022). In the BCPA, two distributions were fitted to 
the data of the chosen analysis window separating active and inactive phase. This was done 
for all possible changepoints, of which the most plausible was chosen, i.e. with the lowest 
Akaike information criterion (AIC). A reliable BCPA requires sufficient data i.e. less than 
30% data gaps within the analysis window. The required data were not always available in 
our study because some individuals left the detection area of the receiver in their active 
phase creating data gaps during daytime. Therefore, we also used a threshold of 4 dB 
(adjusted from Adelman et al. 2010) to extract onset and offset of activity when sufficient 
data were available during night-time. 
#### 5.1. Onset & Offset of Activity #### 
# variables required for change point functions 
per_h <- 24            # set length of expected period in hours: here 24 h 
per_sec <- per_h*60*60 # period in sec 
binsize <- 5           # bin size in min 
window_size <- 8       # for activity function 
bins_possible <- window_size*60/binsize 
window_length <- 5     # for BCPA 
 
# BCPA function to assign AICs for every possible change points 
bcpa_actday_function <- function(x){ 
  library(MASS) 
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  # length of window (10 data points)   
  window_length <- window_length 
  # normal distribution 
  dist<-"normal" 
  # x is a data frame 
  x <- as.data.frame(subset(x,(!is.na(x$Pwr_diff)))) 
  # consider empty data frames 
  if (nrow(x)>0){ 
    # there need to be more than 70% of data points 
    if(nrow(x)<bins_possible*0.70){  
      # assign NA to AIC column 
      x[,"AIC"] <- NA 
    }else{ 
      # from 5 data points in, to 5 data points from end 
      for( d in window_length:(nrow(x)-window_length)){ 
        # calculate AIC by summing logliks of the 2 distributions 
        x[d,"AIC"]<-AIC( 
           
          # two normal distributions are fitted to the data,  
          # one for the data before a given time point and one for the data after 
          # given time point and calculates log likelihood 
          logLik(fitdistr((x[,'Pwr_diff'])[1:d],'normal'))+ 
            logLik(fitdistr((x[,'Pwr_diff'])[(d+1):nrow(x)],'normal'))) 
        x$AIC <- ifelse(is.infinite(x$AIC),NA,x$AIC) #removes infinites 
      } 
    } 
    # keep intervals and AIC column 
    AICs <- x[, c('Year', 'Site','BirdID', 'window','JulianDay', 'Hours_num', 'AIC')] 
  } 
  return(AICs) 
} 
 
# Onset & Offset from BCPA 
onoff_act_function <- function(x){ 
  bcpa_act <- NA 
  #has AIC values (not just NA) 
  if(nrow(x[!is.na(x$AIC),])>0){ 
    x <- as.data.frame(x) 
    #selection of lowest AIC 
    min_AIC <- aggregate(AIC~ Year+Site+BirdID+window+JulianDay,x, FUN="min",na.rm=T) 
    bcpa_act <- merge(min_AIC,x,by=c("Year","Site","BirdID","JulianDay","window", 
                                     "AIC"),all.x=TRUE,all.y=FALSE) 
  } 
  return(bcpa_act) 
} 
 
# 4dB-threshold method 
temp_thres <- 4 # threshold in dB 
binsize <- 5    # bin size in min 
db_day_function <- function(x){ 
  BirdID <- NA 
  Year <- NA 
  JulianDay <- NA 
  AMPM <- NA 
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  db.Chrono <- NA 
  # extract information 
  BirdID <- unique(x$BirdID) 
  Year <- unique(x$Year) 
  JulianDay <- unique(x$JulianDay) 
  AMPM <- unique(x$AMPM) 
  Site <- unique(x$Site) 
  # get GPS coordinates and calculate sunrise and sunset 
  gps <- subset(GPS,Site==unique(x$Site)) 
  Date <- format(as.POSIXct(paste(unique(x$Year),unique(x$JulianDay)),format="%Y %j"), 
                 format="%Y-%m-%d") 
  sunrise_num <- as.numeric(times(format(as.POSIXct(getSunlightTimes(date= 
                             as.Date(Date),lat=gps$Lat,lon=gps$Lon,tz="CET")$sunrise), 
                     format="%H:%M:%S")))*24 # set differently for different locations 
  sunset_num <- as.numeric(times(format(as.POSIXct(getSunlightTimes(date= 
                              as.Date(Date),lat=gps$Lat,lon=gps$Lon,tz="CET")$sunset), 
                     format="%H:%M:%S")))*24 
   
  # number of possible bins: night-time after or before midnight for onset or offset, 
    respectively 
  bins_possible <- ifelse(AMPM=="AM",sunrise_num*60/5,(24-sunset_num)*60/5) 
  # available bins 
  bins_available <- ifelse(AMPM=="AM",nrow(x[x$Hours_num<sunrise_num,]), 
                                      nrow(x[x$Hours_num>sunset_num,])) 
   
  # there need to be more than 70% of data points available at night-time before or  
    after midnight 
  if(bins_available>0.7*bins_possible){ 
    if(AMPM=="AM"){ 
      # select non-active part i.e. <4dB 
      sub <- x %>% filter(window=="AM") %>% 
        mutate(time = min(Hours_num[Pwr_diff>temp_thres],na.rm=T)) %>% 
        filter(Hours_num<time) 
      # one bin after inactivity 
      db.Chrono <- max(sub$Hours_num[which(sub$Pwr_diff<temp_thres)],na.rm=T)+ 
                   binsize/60 
    }else{ 
      # select non-active part i.e. <4dB 
      sub <- x %>% filter(window=="PM") %>% 
        mutate(time = max(Hours_num[Pwr_diff>temp_thres],na.rm=T)) %>% 
        filter(Hours_num>time) 
      # one bin before inactivity 
      db.Chrono <- min(sub$Hours_num[which(sub$Pwr_diff<temp_thres)],na.rm=T)- 
                   binsize/60 
    } 
  } 
 
  db.Chrono <- ifelse(db.Chrono==Inf | db.Chrono==-Inf,NA ,db.Chrono) 
  db.method <- data.frame(Year,Site,BirdID,AMPM,JulianDay,db.Chrono) 
   
  return(db.method) 
} 

All onsets and offsets were visually inspected, and unreliable ones were marked for 
removal. The results from both methods were highly correlated so that, for statistical 



38 

analysis, we used BCPA onsets and offsets filled up with the ones from the 4dB-threshold 
method (where available, Figure S2_5). 

Similarly, we extracted skin temperature onsets using the first rise in morning (adjusted 
from Strauß et al. 2022). To do so, we first smoothed the data using a sinusoidal curve with 
three harmonics, and then extracted the first rise (> 0 change) of skin temperature before 
re-warming in the morning. The output was also visually inspected (Figure S2_5). 

#### 5.2. Minimum Skin Temperature #### 
cptday_function <- function(x){ 
  BirdID <- NA 
  AnalysisDate <- NA 
  AMPM <- NA 
  cpt.change <- NA 
  cpt.min <- NA 
  cpt.max <- NA 
  diff.min <- NA 
  diff.change <- NA 
  diff.max <- NA 
   
  # bins possible before sunrise 
  bins_possible2 <- bins_possible – 
                    (ifelse(unique(x$AMPM)=="AM",10-unique(x$Sunrise_num),0))*60/5 
   
  # differences (slope) between temperatures 
  x$Temp_diff <- c(NA, diff(x$Est_Temp))            # add deviation from previous bin 
  x$Temp_diff <- ifelse(abs(x$Temp_diff)>1,NA,x$Temp_diff)  
     # remove outliers from data gaps 
   
  x <- as.data.frame(subset(x,is.na(Est_Temp)!=TRUE)) 
  bins_available <- c(nrow(subset(x,AnalysisHour<Sunrise_num)), 
                    nrow(subset(x,AnalysisHour<Sunrise_num & is.na(x$Skin_Temp)==F)))  
   
  # consider empty data frames 
  if(nrow(x)>0){ 
    BirdID <- unique(x$BirdID) 
    AnalysisDate <- unique(x$AnalysisDate) 
    AMPM <- unique(x$AMPM) 
    # consider only windows with 80% of data and maximal 10% of this interpolated 
    if(bins_available[1]<bins_possible2*0.8 & bins_available[2]<bins_possible2*0.7){ 
      cpt.change <- NA 
      cpt.min <- NA 
      cpt.max <- NA 
      diff.min <- NA 
      diff.change <- NA 
      diff.max <- NA 
    }else{ 
      # for onset only 
      increase <- x %>% 
        # narrow window to time of period that contains increasing temperatures  
        filter(AnalysisHour>= min(AnalysisHour[which(Temp_diff>=0)]) 
               & AnalysisHour<= max(AnalysisHour[which(Temp_diff>=0)])) %>% 
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        # extract positive changes in temperature of >= zero → increases 
        filter(Temp_diff>=0 & 
        # and, in case of negative changes i.e. decreasing temperature, only select 
          hours that are after the steepest decrease → this filters some cases where 
          skin temperature spontaneously warms up at night-time 
 
               AnalysisHour >= ifelse(min(Temp_diff,na.rm=TRUE)<0 & 
                           AnalysisHour[which(Temp_diff==min(Temp_diff,na.rm=TRUE))]< 
                              mean(AnalysisHour,na.rm=TRUE), 
                           AnalysisHour[which(Temp_diff==min(Temp_diff,na.rm=TRUE))], 
                           min(AnalysisHour))) 
      if(nrow(increase)>1){ 
        # absolute change (here always increase) 
        increase$Temp_diff <- abs(increase$Temp_diff) 
        # minimum skin temperature 
        increase_early <- subset(increase,AnalysisHour==min(increase$AnalysisHour)) 
        cpt.min <- increase_early$AnalysisHour # time at min temperature 
        diff.min <- increase_early$Temp_diff   # change at min temperature 
        } 
    } 
  } 
 
  cpt_output <- data.frame(BirdID, AnalysisDate, cpt.min,cpt.change,cpt.max, 
diff.min,diff.change,diff.max,AMPM) 
  return(cpt_output) 
} 

 
Figure S2_5: Skin temperature minima (red vertical lines) and chronotypes (i.e. onset and 
offset) for activity from BCPA (dark blue) and from 4dB-threshold method (light blue & 
dashed) added to the previous example showing patterns of activity (black dots) and skin 
temperature patterns (light red dots for filtered, and dark red line for smoothed data) 
across time. Yellow shades indicate daylight periods. 

 

Full R codes for the processing pipeline are available upon request.  
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