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Abstract

Individual participant data (IPD) meta-analysis projects obtain, harmonise,

and synthesise original data from multiple studies. Many IPD meta-analyses of

randomised trials are initiated to identify treatment effect modifiers at the indi-

vidual level, thus requiring statistical modelling of interactions between treat-

ment effect and participant-level covariates. Using a two-stage approach, the

interaction is estimated in each trial separately and combined in a meta-

analysis. In practice, two complications often arise with continuous outcomes:

examining non-linear relationships for continuous covariates and dealing with

multiple time-points. We propose a two-stage multivariate IPD meta-analysis

approach that summarises non-linear treatment-covariate interaction functions

at multiple time-points for continuous outcomes. A set-up phase is required to

identify a small set of time-points; relevant knot positions for a spline function,

at identical locations in each trial; and a common reference group for each

covariate. Crucially, the multivariate approach can include participants or tri-

als with missing outcomes at some time-points. In the first stage, restricted

cubic spline functions are fitted and their interaction with each discrete time-

point is estimated in each trial separately. In the second stage, the parameter

estimates defining these multiple interaction functions are jointly synthesised

in a multivariate random-effects meta-analysis model accounting for within-

trial and across-trial correlation. These meta-analysis estimates define the sum-

mary non-linear interactions at each time-point, which can be displayed graph-

ically alongside confidence intervals. The approach is illustrated using an IPD
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meta-analysis examining effect modifiers for exercise interventions in osteoar-

thritis, which shows evidence of non-linear relationships and small gains in

precision by analysing all time-points jointly.

KEYWORD S

individual participant data (IPD) meta-analysis, longitudinal data, multivariate meta-
analysis, non-linear analysis, treatment-effect moderators, treatment-effect modifiers

Highlights

What is already known?
• Individual participant data meta-analyses of existing randomised trials are

recommended to identify treatment effect modifiers at the individual level,
as opposed to single randomised trials that are under-powered to detect an
effect modifier or a meta-regression of study-level information which are
prone to aggregation bias and study-level confounding.

• When examining covariates as potential treatment effect modifiers it is
recommended that categorisation of the continuous covariate should be
avoided, and potential non-linear relationships should be examined.

What is new?
• We propose a two-stage multivariate IPD meta-analysis approach that sum-

marises non-linear interaction functions at multiple time-points, allowing
for participants or trials with missing time-points to still be included in the
analysis.

• We demonstrate how the estimates defining the summary non-linear inter-
actions at each time-point can be displayed graphically.

• We provide an example using an IPD meta-analysis examining effect modi-
fiers for exercise interventions in knee and hip osteoarthritis, which demon-
strates analysing non-linear relationships and multiple time-points using
the proposed two-stage multivariate IPD meta-analysis approach.

Potential impact for Research Synthesis Methods readers
• The approach we propose can be used by researchers in any field (not only

osteoarthritis), conducting an IPD meta-analysis that seeks to identify treat-
ment effect modifiers with a continuous covariate and multiple time-points
of interest.

1 | INTRODUCTION

There is an increasing interest in precision (personalised)
medicine, where the aim is to select optimal treatments
for individual patients, or groups of similar patients,
based on their particular characteristics such as stage of
disease, disease characteristics or particular gene muta-
tions.1,2 A key component of precision medicine research
is exploring whether particular participant-level charac-
teristics (covariates) are associated with a differential
effect of a particular treatment, to identify those who
benefit the most from it.1 In other words, the goal is to
identify treatment-covariate interactions. For example, the

drug trastuzumab is usually only given to the subgroup
(stratum) of breast cancer patients who are human epi-
dermal growth factor receptor 2 (HER-2) positive, as it is
known to lock on to the HER-2 protein, block the recep-
tor and stop the cells from dividing and growing.3

A single randomised trial is rarely powered to detect a
treatment-covariate interaction,4 as it would be expensive
and so usually infeasible.

A solution is to obtain and synthesise individual par-
ticipant data (IPD) from existing randomised trials.5 IPD
meta-analysis provides the opportunity to increase power
to detect genuine treatment-covariate interactions and to
examine relationships at the participant level (thus
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avoiding study-level confounding and aggregation
bias6,7), whilst also conditioning on prognostic factors.8

For this reason, many IPD meta-analyses of randomised
trials are initiated specifically to examine one or more
treatment-covariate interactions. Treatment-covariate
interactions are sometimes described within research as
‘heterogeneous treatment effects’ or ‘treatment effect
heterogeneity’, where heterogeneity refers to participant-
level variability.9,10 However, in this article—and indeed
the meta-analysis literature in general—we reserve the
word heterogeneity for variability between trials.

Previous work describes how to use a two-stage or a
one-stage IPD meta-analysis framework to examine
treatment-covariate interactions at the participant level
whilst avoiding aggregation bias.5,11–15 One-stage and
two-stage models should closely agree if the sample sizes
or events per trials are not small, and if the approaches
make the same assumptions.5,16–18 Another important
recommendation when examining interactions in IPD
meta-analysis is to avoid categorisation of continuous
covariates, and to examine potential non-linear relation-
ships. This can be done using, for example, (restricted)
cubic splines or fractional polynomials.11,19–23 However,
there has been little research on how to deal with multi-
ple time-points in this context, which arises when IPD
meta-analysis researchers are interested in the treatment
effect (and thus potential treatment-covariate interac-
tions) at two or more follow-up times. Many trials record
follow-up information at multiple times, and so
researchers need to examine the treatment effect over
time, and whether effect modification changes over time.
As multiple time-points are likely to be correlated, this
adds extra complexity to the IPD meta-analysis model at
both the patient-level and the between-study level, which
should be accounted for when examining linear or non-
linear interactions between the continuous covariates
and treatment effect at each time-point. Further, not all
studies will provide all the time-points of interest, so
accounting for their correlation may be important to
address this and gain efficiency in estimates.24

To address this, in this article, we extend the model-
ling of linear and non-linear interactions in two-stage
IPD meta-analysis to the situation where a continuous
outcome is of interest at multiple follow-up time-points.
The proposed models allow multiple linear or non-linear
interaction functions corresponding to multiple time-
points to be synthesised in combination, whilst account-
ing for their within-trial and across-trial correlation. The
outline is as follows. In Section 2, we introduce a general
two-stage framework for synthesising interactions at a
single time-point, and Section 3 extends this to a multi-
variate meta-analysis of spline functions to summarise a
non-linear interaction. Section 4 extends this further to

allow for multiple time-points, and then, Section 5 con-
cludes with discussion. A running example is provided
across all sections.

2 | USING IPD META-ANALYSIS
TO EXAMINE A LINEAR
INTERACTION AT A SINGLE
TIME-POINT

In this section, we provide a general framework for
undertaking a two-stage IPD meta-analysis of treatment-
covariate interactions at a single time-point, building on
material presented in Chapter 7 of our textbook.5 In the
first stage, the treatment-covariate interactions are esti-
mated using the IPD in each trial separately; in the sec-
ond stage, these interaction estimates are pooled using a
chosen meta-analysis model.25 The approach can be
implemented using the ipdmetan software package in
Stata,26 and our website (www.ipdma.co.uk) provides
examples of statistical code for various case studies used
in this article. In this section, we assume a linear rela-
tionship for continuous covariates of interest, with exten-
sion to non-linear relationships and multiple time-points
given in subsequent sections.

2.1 | First stage

Consider IPD from a parallel group randomised trial,
comparing a treatment (xij=1) to a control (xij=0). Let zij
be a participant-level covariate (e.g., the age of partici-
pant j in trial i), observed for all participants in each trial,
and consider a continuous outcome at a particular time-
point, such as systolic blood pressure or pain score at
1 year after randomisation (yij). Then, the first stage is to
apply a linear regression in each trial separately, to model
the variation of yij values in terms of the treatment (xij),
the covariate (zij), the baseline value of the continuous
outcome (y0ij), and treatment-covariate interac-
tion (xijzij):

yij ¼ αiþβ1izijþβ2ixijþβ3iy0ijþ γWixijzijþ eij

eij �N 0,σ2i
� � ð2:1Þ

Fitting this model will estimate the treatment-
covariate interaction (γWi) conditional on (after adjusting
for) the prognostic effect (β1i) of the covariate of interest
(zij), the treatment effect (β2iÞ for the reference (zij ¼ 0Þ
group, and the prognostic effect (β3i) of y0ij. Model (2.1)
can be extended to adjust for other (pre-defined)
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prognostic factors, especially as interactions may disap-
pear after conditioning on them. The choice of prognostic
factors may be restricted by the information available in
the IPD, but generally a few key prognostic factors like
age or stage of disease should be available in all trials.

The treatment-covariate interaction term, γWi, indi-
cates the expected change in treatment effect for a one-
unit increase in zij for trial i. For a continuous covariate,
as written this assumes the effect of the interaction is lin-
ear but in practice extension to non-linear trends is
important, as discussed in the next section. The ‘W ’
is used to emphasise that the interaction, γWi, is based
solely on within-trial information. The model can be
fitted using restricted maximum likelihood estimation
(REML), and produces a treatment-covariate interaction
estimate, bγWi, and its variance, var bγWið Þ, to be used in the
second stage.

2.2 | Second stage

In the second stage, the bγWi values are combined across
trials in either a common-effect model (i.e., the true inter-
action is assumed the same in all trials),

bγWi �N γW ,var bγWið Þð Þ ð2:2Þ

or a random-effects model (i.e., the true trial interactions
are assumed drawn randomly from a normal distribution
with mean γW and variance τ2):

bγWi �N γWi,var bγWið Þð Þ

γWi �N γW ,τ2
� � ð2:3Þ

The estimate of γW summarises the difference in the
expected treatment effect (i.e., mean difference for a con-
tinuous outcome) for two participants who differ in zij by
one unit. We generally focus on the random-effects
model (2.3) in this article, with estimation using REML.

Between-trial heterogeneity in the true treatment-
covariate interaction may arise due to differences across
trials in, for example, the dose of the treatment, the length
of follow-up, the measurement of the covariate, and the
magnitude of any interaction. It may also be due to case-
mix differences in the trial populations, for example lead-
ing to between-trial differences in the distribution of (not
included) prognostic factors and even the covariate itself.
For instance, if a treatment-covariate interaction is non-
linear, and the covariate distribution is narrow in some tri-
als and wide in others, then this will induce between-trial
heterogeneity in the treatment-covariate interaction,

unless the non-linear association is modelled directly (see
next section). The magnitude and impact of heterogeneity
can be summarised by the estimated between-trial vari-
ance (τ2) or standard deviation (τ), and a 95% prediction
interval for the interaction size in a new study.27

2.3 | Applied example: IPD
meta-analysis to examine effect modifiers
for exercise interventions for knee and hip
osteoarthritis

The Subgrouping and TargetEd Exercise pRogrammes for
knee and hip OsteoArthritis (STEER OA) project is an
IPD meta-analysis to identify moderators of the effect of
exercise among people with knee and/or hip OA at multi-
ple follow-up time-points (nearest to 3, 6 and
12 months).28 A total of 31 trials, containing 4241 partici-
pants, were included in the IPD meta-analysis. We use
the IPD from the STEER OA project as a running exam-
ple throughout this paper. The key outcome of interest
was pain; this was measured using different scales in dif-
ferent trials, and so to enable meta-analysis, all the out-
come measures were mapped to a 0 (no pain) to
100 (most pain) scale.

The 31 trials are summarised in Table 1. The three
time-points were not available in all trials, which is a key
motivation for analysing all time-points together later in
the article. Twenty-Seven of the trials provided 3 months
(‘short-term’); 15 of the trials provided 6 months
(‘medium term’); and 13 of the trials provided 12 months
(‘long term’). Initially, in the remainder of this
section and Section 3, we consider the single time-point
of 12 months. Our focus is on the single potential moder-
ator of baseline physical function score, which was also
harmonised to a 0 (most function) to 100 (least function)
scale in all trials. Specifically, we aim to examine whether
baseline physical function score interacts with the effect
of exercise on pain compared to non-exercise controls by
a single time-point in each trial corresponding to that
closest to 12 months. Section 4 extends to multiple time-
points.

Using the 13 (2216 participants) studies that provide
the pain outcome at 12 months, we applied a two-stage
IPD meta-analysis analysis to summarise the interaction
between the effect of exercise on pain at 12 months and
baseline physical function score (Figure 1). In the first
stage, model (2.1) was applied in each trial separately to
estimate the treatment-covariate interaction assuming a
linear effect of baseline function, and adjusting for an
assumed linear prognostic effect of baseline pain score.
In the second stage, we applied random effects
meta-analysis model (2.3) using REML to summarise the

4 HATTLE ET AL.



interaction. (Although, we would recommend using a
correction for the confidence interval to account for the
uncertainty in the between-study variance, for example,
Hartung-Knapp Sidik-Jonkman correction,29,30 for exam-
ple purposes we do not include a correction for any
examples, to allow for comparisons to be made across the
methods).

The results show a summary treatment-covariate
interaction of �0.078 (95% CI: �0.152 to �0.003, tau^2:
0.00) at 12 months (Figure 1), providing some evidence
that the benefit of exercise treatment compared to control
improves in those with a higher baseline physical func-
tion score (i.e., those with worse physical function). There
is an estimated additional 0.078 reduction in pain for

TABLE 1 Summary of the 31 trials in the IPD meta-analysis of the Subgrouping and TargetEd Exercise pRogrammes for knee and hip

OsteoArthritis (STEER OA) project, including whether the IPD provided pain outcome data at 3 months (short term), 6 months (medium

term) and 12 months (long term).

Trial
No. participants
(treatment/control)

Baseline function
scorea Mean (SD),
range

3 months
(short
term)

6 months
(medium
term)

12 months.
(long term)

Allen et al. (2018) 210 (142/68) 33.1 (19.3), 0–100 Yes No Yes

Bearne et al. (2011) 48 (24/24) 23.2 (16.0), 0–72.1 Yes Yes No

Bennell et al. (2010) 89 (45/44) 35.7 (16.6), 5.9–85.3 Yes No No

Bossen et al. (2013) 199 (100/99) 44.4 (21.5), 4.4–93.7 Yes No Yes

Brosseau et al. (2012) 222 (148/74) 27.5 (16.5), 0–76.5 Yes Yes Yes

Cochrane et al. (2005) 312 (153/159) 44.9 (17.4), 0–89.7 No Yes Yes

de Rooij et al. (2017) 126 (63/63) 48.7 (18.0), 7.4–94.1 Yes Yes No

Fernandes et al. (2010) 109 (55/54) 22.3 (15.4), 1.2–56.9 Yes No Yes

Fransen et al. (2007) 152 (111/41) 39.4 (16.5), 5.9–82.4 Yes No No

French et al. (2013) 88 (45/43) 47.9 (19.9), 10.3–98.5 Yes No No

Hale et al. (2012) 39 (23/16) 38.6 (11.9), 11.8–64.1 Yes Yes Yes

Hay et al. (2006) 217 (109/108) 44.6 (19.2), 2.9–100 Yes Yes Yes

Henrikson et al. (2014) 48 (25/23) 31.0 (15.2), 4.4–63.2 Yes No No

Hinman et al. (2007) 71 (36/35) 40.8 (19.1), 2.8–83.4 Yes No No

Hopman-Rock and Westhoff
(2000)

105 (56/49) 70.1 (22.4), 0–100 Yes Yes No

Hurley et al. (2007) 418 (278/140) 39.9 (21.5), 0–95.6 Yes Yes Yes

Kraus et al. (2014) 218 (71/147) 27.5 (16.4), 0–82.6 Yes No No

Levinger et al. (2018) 28 (19/9) 5.2 (3.1), 0–11.0 Yes No No

Lim et al. (2008) 107 (53/54) 34.8 (15.8), 1.5–67.6 Yes No No

Messier et al. (2004) 158 (80/78) 37.1 (17.4), 2.9–100 No Yes Yes

Multanen et al. (2014) 80 (40/40) 4.7 (5.5), 0–24.1 No No Yes

Munukka et al. (2016) 87 (43/44) 9.5 (10.5), 0–54.0 Yes No Yes

Simão et al. (2012) 32 (21/11) 51.8 (21.2), 13.2–89.7 Yes No No

Tak et al. (2005) 109 (55/54) 13.3 (11.3), 0–61.1 Yes Yes No

Takacs et al. (2017) 40 (20/20) 43.4 (12.5), 10.3–69.1 Yes No No

Talbot et al. (2003) 34 (17/17) – Yes Yes No

Teirlinck et al. (2016) 203 (101/102) 36.7 (17.2), 1.5–82.8 Yes Yes Yes

Thomas et al. (2002) 391 (235/156) 33.4 (18.8), 0–95 No Yes Yes

Tsai et al. (2013) 55 (28/27) 39.1 (14.7), 0–77.9 Yes Yes No

van Baar et al. (2001) 200 (98/102) 63.2 (26.4), 0–100 Yes Yes No

Wallis et al. (2017) 46 (23/23) 52.5 (14.3), 25–85.3 Yes No No

aStandardised score from 0 (good physical function) to 100 (poor physical function).
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every 1-unit increase in baseline physical function score.
Therefore, the participants with poorer physical function
are expected to benefit more (have greater reduction in
their pain) from the exercise treatment at 12 months.

3 | USING IPD META-ANALYSIS
TO EXAMINE A NON-LINEAR
INTERACTION AT A SINGLE
TIME-POINT USING SPLINES

The previous section assumed a linear effect of the con-
tinuous covariate. However, sometimes the underlying
relationship may be non-linear, as emphasised by Roy-
ston and Sauerbrei,31 and considered in detail by
Kasenda et al.32,33 A non-linear relationship implies that
the change in treatment effect for every one-unit increase
in the covariate may vary across the distribution of the
covariate. Therefore, non-linear interactions should rou-
tinely be evaluated when the interaction of continuous
covariates and treatment effect is of interest.

Here, we focus on interaction with treatment defined
via a restricted cubic spline function, which is a flexible
way of modelling smooth non-linear relationships. For a

detailed introduction to (restricted cubic) splines, we
refer the reader to the following references.34–37 Briefly
here, a restricted cubic spline is obtained by fitting a
series of cubic functions and forcing them to join (and be
smoothed) at certain points (called internal knots), whilst
constraining the function to be linear in the tails
(i.e., before the first internal knot and after the last inter-
nal knot). The magnitude and shape of the curve are
defined by multiple parameters depending on the num-
ber of knots chosen. Rather than using a reference group
whose covariate value is 0, it helps to centre the spline
variables at a meaningful value; if so, this should be con-
sistent and use the same value for every trial in the IPD
meta-analysis. Further details of restricted cubic spline
functions are given in the Appendix and also by Belias
et al.23 Here, we focus on a two-stage IPD meta-analysis
of splines defining an interaction.

3.1 | First stage

In a two-stage approach to IPD meta-analysis of a non-
linear interaction, the first stage fits a model in each trial
separately that includes a restricted cubic spline for the

FIGURE 1 Forest plot of study-specific and meta-analysis results for the interaction effect between the pain outcome at 12 months and

baseline function. Values below 0 (‘improved treatment effect’) indicate a 1-unit increase in baseline function score improves the treatment

effect on pain. Values above 0 (‘lower treatment effect’) indicate a 1-unit increase in baseline function score reduces the treatment effect

on pain.
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covariate of interest and its interaction with treatment
effect. The key focus (to take forward for the second
stage) is to obtain the parameter estimates defining this
interaction. For instance, in the first stage we might pre-
define three internal knots (at the same location in each
trial) for the restricted cubic function for the covariate of
interest, which leads to three parameters per trial defin-
ing the spline function in each trial (an intercept and two
slope terms). The interaction of this spline function with
the treatment effect is then estimated, leading to an esti-
mated function defining the non-linear within-trial
treatment-covariate interaction in each trial. The steps
can be summarised as follows:

1. Create the restricted spline transformation of z,
which requires choosing the number of knots and
their location. The number and location of the knots
must be identical for each trial. Usually, three or four
knots will suffice. Their location could be defined by
quantiles of the covariate distribution observed within
the entire IPD from all trials. However, if the distribu-
tion of the covariate varies considerably across trials,
then knot locations might be modified so that they fall
at relevant places. For example, if some trials do not
have any patients above a value of v, then v could be a
knot location. Sensitivity analysis changing the loca-
tion of the knots may be important.

2. Estimate the treatment-covariate interaction in
each trial. This requires the specification and estima-
tion of a suitable regression model, followed by stor-
ing the parameter estimates (and corresponding
variance matrix) that define the treatment-covariate
interaction function. The module mvmeta in Stata
allows the user to perform a particular regression
analysis in each trial and automatically stores the rele-
vant estimates and corresponding variance matrix.38,39

Example code is provided in the supplementary mate-
rial in Data S1.

For example, consider a continuous outcome (yij) and
a regression to examine the non-linear interaction
between treatment and a continuous covariate zij

� �
, con-

ditioning on the prognostic effect of baseline (y0ij), the
reference treatment effect (xij) and the non-linear prog-
nostic effect of zij, as follows:

yij ¼ αiþ f zij
� �þβ2ixijþβ3iy0ijþ f xijzij

� �þ eij

eij �N 0,σ2i
� � ð3:1Þ

with the restricted cubic spline function defined by two
terms (based on three internal knots),

f zij
� �¼ δ1iz1ijþδ2iz2ij

where z1ij and z2ij denote the first and second spline
transformations of zij (Appendix Box A1), respectively,
and δ1i and δ2i denote the conditional effect on the out-
come of a 1-unit increase in z1ij and z2ij, respectively.
Then, the interaction between the spline function and
treatment is defined by the function:

f xijzij
� �¼ γW1ixijz1ijþ γW2ixijz2ij

After model fitting, the estimates bγW1i and bγW2i are of
key interest, as they define the treatment-covariate inter-
action in trial i, together with their variances
var bγW1ið Þ and var bγW2ið Þð Þ and covariance cov bγW1i,bγW2ið Þð Þ.

To aid interpretation, before model estimation it may
be helpful to centre zij by a reference value, such as the
mean zij across all trials or in the general population.
Each of the spline transformations (e.g., z1ij and z2ij) need
to be centred by their specific value that corresponds to
this overall reference group. The same reference group
should be used in every trial, in order to ensure the
parameters are compatible for the meta-analysis.

Note that if some parameters cannot be estimated in
some trials (e.g., due to a narrow distribution of zij, or
perfect prediction), then data augmentation can be used
(e.g., via the mvmeta_make package by White38). Essen-
tially, this adds just a few individuals to the problematic
groups and leads to an arbitrary parameter estimate but
with a very large variance (e.g., 1,000,000,000) and any
associated covariances set to zero, such that the estimates
will receive barely any weighting in the subsequent mul-
tivariate meta-analysis.

3.2 | Second stage

In the second stage, we can apply a multivariate meta-analysis
to synthesise the estimates of the restricted cubic spline func-
tions. The steps involved can be summarised below.

1. Perform a multivariate meta-analysis of the
treatment-covariate interaction estimates, to produce
a summary of the treatment-covariate interaction
function. The multivariate approach allows the joint syn-
thesis of multiple parameter estimates, whilst accounting
for their correlation.40,41 It can be fitted using REML esti-
mation. Example Stata code is provided in the supple-
mentary material in Data S1.
For example, if the spline function is defined by two
parameters (based on three internal knots), we can fit a
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bivariate random-effects meta-analysis allowing for
between-trial heterogeneity,

bγW1ibγW2i

 !
�N

γW1i

γW2i

 !
,

var bγW1ið Þ cov bγW1i,bγW2ið Þ
cov bγW1i,bγW2ið Þ var bγW2ið Þ

 ! !

γW1i

γW2i

 !
�N

γW1

γW2

 !
,

τ21 τ12

τ12 τ22

 ! !
ð3:2Þ

where τ21 and τ22 define the between-trial variances of
γW1i and γW2i, respectively, and τ12 defines their between-
trial covariance.
The summary estimates of bγW1 and bγW2 define the sum-
mary spline function describing the treatment-age inter-
action of γW1xijz1ijþ γW2xijz2ij.

• Plot the summary treatment-covariate interaction
and its confidence interval across the distribution
of covariate values. After estimation of the
multivariate model, the summary treatment-covariate
interaction function can be applied (e.g., via the predict
post-estimation command in Stata, see supplementary
material in Data S1) to each participant in the original
IPD, to obtain their predicted treatment-covariate
interaction; i.e., the difference in their treatment effect
compared to that for the reference covariate value.
This predicted value can then be plotted (on the y-axis)
against the original covariate value (on the x-axis). The
standard error (s.e.) of the predicted value can also be
estimated, and then a confidence interval calculated
(e.g., using predicted estimate � (1.96 � s.e.), or one
based on a t-distribution as in the Hartung-Knapp-
Sidik-Jonkman approach29). The upper and lower
values of the confidence interval can then be plotted.
This might be accompanied by the trial-specific esti-
mated curves from the first stage, or trial-specific
empirical Bayes curves obtained post-estimation from
the second stage might also be presented, as shown by
Gasparrini et al.22

3.3 | Applied example: non-linear
interaction assessment in the STEER-OA
project

Returning to the STEER-OA example, let us now exam-
ine whether there is a non-linear interaction between
pain and baseline physical function, for the long-term

time-point of 12 months. In the first stage, we fit a
restricted cubic spline with 3 internal knots. The most
appropriate knot positions were decided upon from
examining the entire IPD and choosing values closest to
the quartiles. The knot positions were 5, 35 and 60, and
forced to be the same for each trial. In the second stage, a
bivariate meta-analysis with REML estimation was used
to pool the spline functions for the long-term time-point.

The results are shown visually in Figure 2. It is clear,
from the shape of the non-linear plot, that the relation-
ship between pain and baseline physical function was
misrepresented as linear, and the non-linear relationship
is more appropriate. Moreover, conclusions from the lin-
ear and non-linear analyses differ. Recall, when assuming
a linear relationship, we concluded that those prescribed
exercise with the least physical function (i.e., higher
physical function scores) will see the greatest additional
reduction in pain. However, after allowing for a non-
linear relationship, the additional benefit only rises up to
a baseline physical function score of about 42, and there-
after there is a plateau (no continued improvement) and
perhaps a slight reduction. The uncertainty is also much
larger in the non-linear investigation, especially in
regions above a function of 42.

4 | EXAMINING LINEAR OR
NON-LINEAR INTERACTIONS AT
MULTIPLE TIME-POINTS

We now extend the approach to allow for multiple
time-points, focusing on a continuous outcome. We
assume there are a set of key time-points of interest,
and that these are to be modelled as discrete (rather
than as continuous values themselves). In an IPD
meta-analysis, sometime-points (e.g., 12 months) may
be recorded by all the included trials, but other time-
points may be only available in some trials and not
others. However, the multivariate framework
described below can handle this situation as it allows
for different sets of time-points across studies, under a
missing at random assumption. Similarly, participants
do not need to report outcome values for all time-
points in a trial. Still, some pragmatism will often still
be needed to aid the modelling process if time-points
vary slightly across trials and some time-points are
sparsely available. For example, if most studies report
outcomes at 4 months and 12 months, but a few trials
rather report outcomes at 3 months and 12 months, it
may be sensible to focus meta-analysis on the two
time-points of 3/4 months and 12 months, thus group-
ing together 3 and 4 months.
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4.1 | First stage

In the first stage, we will estimate all parameters (treat-
ment effect, prognostic effects, and interaction) for all
time-points simultaneously, whilst accounting for their
correlation. For a continuous outcome, this requires a
multivariate linear regression model (akin to a repeated
measures or longitudinal data model). For example,
assuming a linear interaction, equation (2.1) can be
extended to include multiple time-points as,

yijt ¼ αitþβ1itzijþβ2itxijþβ3ity0ijþ λWitxijzijþ eijt

eijt �N 0,σ2it
� �

cov eijt,eijt0
� �¼ σitt0 ð4:1Þ

where t and t’ denote different time-points. REML esti-
mation leads to an interaction estimate (bλWit) for each

time-point, along with their variances (var bλWit

� �
) and

covariances (cov bλWit,bλWit0
� �

) to be taken forward for the

second stage.

Allowing for non-linear interactions, Equation (3.1)
can be extended to:

yijt ¼ αitþ f t zij
� �þβ2itxijþβ3ity0ijþ f t xijzij

� �þ eijt

eijt �N 0,σ2it
� �

cov eijt,eijt0
� �¼ σitt0 ð4:2Þ

Here, f t zij
� �

defines the restricted cubic spline func-
tion at time t; for example, with three internal knots it is
defined by,

f t zij
� �¼ δ1itz1ijþδ2itz2ij

where z1ij and z2ij denote the first and second spline
transformations of z1ij, respectively, and δ1i and δ2i denote
the conditional effects on the outcome of a 1-unit
increase in z1ij and z2ij, respectively.\ The interaction
between the spline function and treatment at time t is
defined by the function f t xijzij

� �
; again, with three inter-

nal knots we have

f t xijzij
� �¼ γW1itxijz1ijþ γW2itxijz2ij

REML leads to an estimated f t xijzij
� �

for each trial,
giving parameter estimates (e.g., bγW1it and bγW2it) at each
time-point, alongside their variances and covariances, to
be taken forward for the second stage.

Crucially, these first-stage models do not require each
patient to provide outcome values for all time-points. Indeed,
by accounting for correlation among the time-points (via
cov eijt,eijt0
� �

), this allows information from one time-point
to contribute toward the parameter estimates at another
time-point, and vice versa, via a missing at random
assumption. As specified, the residual variances and
covariances are unstructured (i.e., allowed to be distinct
for each time-point and pair of time-points, respectively),
but this can be modified (simplified) as appropriate.

4.2 | Second stage

The second stage requires a multivariate meta-analysis to
pool all the parameters defining the interactions at all
time-points, accounting for their within-trial and

FIGURE 2 Comparison of

linear and non-linear moderating

effect of baseline function on the

effect of exercise on pain outcomes

at the (long term) time-point of

about 12 months. Reference group

is individuals with a baseline

function of zero (most function).
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between-trial variances and correlations. This allows the
trial-specific estimates of the interaction (and any non-
linear relationship) at one time-point to contribute
toward the summary (meta-analysis) results about the
interaction (and non-linear relationship) at another time-
point. This is particularly important if some time-points
are not available in some studies.

Let bθi be a vector containing the available K parameter
estimates defining the interactions for the time-points
recorded in the i th trial (i = 1 to S). For example, when fit-
ting equation (4.1) in the first stage assuming a linear
treatment-covariate interaction, then if T time points are
recorded there are K ¼T parameter estimates givingbθi ¼ bλWi1,bλWi2,…,bλWi1T

� �
. When fitting Equation 4.2 the

number of parameters depends on f t xijzij
� �

and the number
of time-points. For example, with three internal knots, we

would have bθi ¼ bγW1i1,bγW2i1bγW1i2,bγW2i2,…,bγW1iT ,bγW2iTð Þ
and thus K ¼ 2�T parameters.

Then, the general specification of the multivariate
meta-analysis model is:

bθi���θi �N θi,Sið Þ
θi �N θ,Σð Þ ð4:3Þ

Here N denotes a multivariate normal distribution, θi
contains the true underlying (true) values for the K
parameters for the ith trial, Si is the within-trial variance–
covariance matrix for the ith trial (assumed known) con-
taining the K variances of the effect estimates (in the
diagonal: s2i1,s

2
i2,…,s2iK ) and their covariances (in the off-

diagonal; for example ρWi 1,2ð Þsi1si2 is the within-trial
covariance for outcomes 1 and 2), and θ is a vector con-
taining the K mean parameter values. The matrix Σ is the
between-trial variance–covariance matrix, and in its
unstructured form contains the K between-trial variances
of the true parameter values (in the diagonal: τ21,τ

2
2,…,τ2K )

and their between-trial covariances (in the off-diagonal;
e.g., the between-trial covariance for outcomes 1 and 2 is
ρB 1,2ð Þτi1τi2, where ρB 1,2ð Þ is their between-trial correlation).
The number of rows in each vector and matrix is equal to
the number of parameters. We again assume unstructured
between-study covariance matrix, but simplifications are pos-
sible, and of course the larger K, the greater the potential
for convergence issues and the need for simplifications.

4.3 | Applied example: interactions at
multiple time-points in the STEER-OA
project

So far our STEER-OA application focused on treatment-
covariate interactions for the time-point of 12 months (long

term). Many of the trials in the IPD meta-analysis had other
time-points of interest available, in particular 3 months
(short term) and 6 months (medium term). Hence, let us
now model 3 (26 studies, 86.7%), 6 (14 studies, 46.7%), and
12 (13 studies, 43.3%) month outcomes simultaneously for
the 30 studies that provided physical function scores, using
the approaches described in Sections 4.1 and 4.2 above, and
compare the results from analysing each time-point sepa-
rately (in both the first and second stage).

4.3.1 | Linear interactions at multiple
time-points

First, we assumed a linear effect of baseline function. The
multivariate meta-analysis of all time-points jointly
showed slightly larger interaction estimates than when
analysing all time-points separately (Table 2). Further,
the precision (standard error) of the interaction estimate
was smaller for the multivariate estimates compared to
the univariate estimates (Table 2). Nevertheless, the find-
ings were quite similar, and the extra information gained
by analysing all time-points together was quite small.
This is evident from the borrowing of strength (BoS)
statistic,42 which quantifies the percentage reduction in
the variance of the summary interaction estimate for a
particular time-point that is due to (borrowed from) data
from other correlated time-points. This is less than 10%
for every time-point (Table 2).

4.3.2 | Non-linear interactions at multiple
time-points

We now use spline functions to allow for non-linear rela-
tionships between pain and baseline function, whilst also
modelling the 3, 6 and 12 month time-points jointly. The
trends are presented in Figure 3a–c, and in general,
the findings are similar to when analysing each time-
point separately. The most notable difference is in the
medium term (6 months), as the confidence interval is
much narrower, and the summary trend is more pro-
nounced after using a multivariate meta-analysis of all
time-points. All three time-points suggest that the effect
of exercise increases in patients with a worse baseline
function (scores further from zero), but with the plateau
(no continued improvement beyond a baseline level of
42) only observed at the 12-month follow-up.

5 | DISCUSSION

In this paper, we proposed how to model linear and
non-linear relationships at multiple time-points, when

10 HATTLE ET AL.



examining treatment-covariate interactions in an IPD
meta-analysis of randomised trials with a continuous out-
come. Researchers often embark on an IPD meta-analysis
project to examine treatment-covariate interactions at the
participant level, as they circumvent the problems of low
power and aggregation bias facing meta-regression of
across-trial information.11 It also allows continuous cov-
ariates to be modelled properly and avoids arbitrary cate-
gorisation into two or more groups,43 which reduces
power and may lead to inappropriate interpretation of
findings. In some trials, the categorisation may be
embedded in the IPD provided (i.e., the original value
has been lost), but usually the original value is available
in the IPD, and this allows researchers to analyse covari-
ates on the continuous scale and to examine non-linear
interactions. We focused on restricted cubic splines for
this purpose, but other spline types are possible,23 and
also other approaches,44 such as fractional polynomials,
pointwise averaging, barycentric rational interpolation,45

and machine learning approaches such as tree-based
methods.19,21,46,47 An advantage of cubic splines is that it
allows knots to be fixed at the same positions in each
study, thus ensuring the parameter estimates (from the
first stage) can be combined across studies (in the second
stage) to produce coherent and interpretable summary
curves and results.

The value of analysing all time-points together
depends on the proportion of trials not providing all
time-points.41,48 In our example the benefit was quite
small, mainly because most trials provided all time-
points. Yet differences still arose and in situations with
more missing time-points across studies, the gain in
information will be more pronounced.42 This has been
demonstrated mathematically and in applied exam-
ples.24,49 For example, when focusing on the overall treat-
ment effect, Jones et al.48 consider an IPD meta-analysis
of five trials investigating the effects of selegiline versus

placebo for the treatment of Alzheimer's disease, with
respect to the Mini-Mental State Examination (MMSE)
score at 6 time-points from 1 month to 12 months, which
were not all available in all studies. When the time points
were wrongly assumed uncorrelated and a series of sepa-
rate univariate meta-analyses conducted at each time
point, the summary estimates and standard errors of the
overall treatment effect were very different compared to a
multivariate IPD meta-analysis. For example, assuming
zero correlation gave a summary difference (between
selegiline and placebo groups) at 9 months of 0.69 with
standard error of 0.63, compared to the multivariate sum-
mary estimate of 0.34 with standard error of 0.52. Nota-
bly, the standard error of treatment effect estimates was
consistently smaller when accounting for correlation, due
to the large borrowing of strength across time-points due
to large correlation and missing time-points. In situations
with low correlation or mostly complete time-points, bor-
rowing of strength may be small.50

The methods proposed are quite advanced, requiring
the synthesis of spline functions in a multivariate model
allowing for random effects and correlations, both within
and across studies, whilst adjusting for prognostic factors.
The module mvmeta in Stata is able to fit such multivari-
ate models (supplementary material in Data S1 provides
example code). The complexity is justified as it makes full
use of the available data, which is important after spend-
ing much time (often 1–2 years) collecting and harmonis-
ing IPD from multiple studies. Sadly, current practice is
not utilising the IPD properly, with Gao et al. showing
that treatment-covariate interactions are sub-optimally
modelled in IPD meta-analysis cancer projects,51 with
only 1 in 89 examining non-linear relationships. Further
research is needed to examine situations where estimat-
ing correlations (either within-trials or between-trials) is
problematic, for example when the number of partici-
pants is sparse in a particular trial, or there are few trials

TABLE 2 Comparison of univariate and multivariate meta-analysis results from the linear moderation effect of baseline function on

exercise on pain outcomes at the time-points closest to 3 months (Short term), 6 months (Medium term) and 12 months (Long term).

Time-point

Univariate meta-analysis (separate IPD meta-
analysis at each time)

Multivariate meta-analysis (IPD meta-analysis of all time-
points jointly)

Interaction
Standard
error 95% C.I. τ2 Interaction

Standard
error 95% C.I. τ2

BoS
Statistic

Short term
(3 months)

�0.101 0.032 �0.163 to
�0.040

0.000 �0.105 0.030 �0.164 to
�0.046

0.000 7.6%

Medium term
(6 months)

�0.086 0.036 �0.156 to
�0.015

0.000 �0.097 0.034 �0.163 to
�0.031

0.000 9.8%

Long term
(12 months)

�0.078 0.038 �0.152 to
�0.003

0.000 �0.080 0.036 �0.150 to
�0.010

0.000 6.3%

Abbreviation: BoS, borrowing of strength statistic.
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with a particular time-point available. We assumed
unstructured variance–covariance matrices (within each
trial and also between trials), and further work is needed

to examine the impact of using constraints (e.g., common
between-trial variance for all time-points; common
between-trial correlation between all pairs of outcomes).

FIGURE 3 Comparison of

multivariate and univariate analysis

results from the non-linear moderation

effect of baseline function on exercise

on pain outcomes at the time-points

closest to 3 months (Short term) [A],

6 months (Medium term) [B] and

12 months (Long term) [C].
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In our examples, we assumed a random-effects model as
we considered heterogeneity in treatment-covariate inter-
actions was likely at some time-points. However, this
may not always be justified or computationally feasible,
and a common-effects model (i.e., setting all between-
study variances and correlations to zero) may be justified.

Although we focused on trials, the modelling princi-
ples also apply to IPD meta-analyses of observational
studies, for example to examine interactions between two
prognostic variables. We focused on a continuous out-
come mapped to a 0–100 scale, but the approach could be
applied to any continuous outcome scale (e.g., original,
standardised) that is interpretable and combinable across
studies. The general principle of using splines to model
continuous variables and non-linear interactions also
extends to other outcome types such as binary and time-
to-event outcomes, for which multiple time-points may
require multinomial models or Cox models (potentially
with further interactions with time), respectively. Further
research should also consider how to extend our work to
obtain predicted treatment effects for an individual, con-
ditional on their covariate value.52 Our work focused on
estimating the interaction itself, but clinical decisions are
more likely to require the predicted treatment effect. This
may require the use of penalisation methods to shrink
regression coefficients due to overfitting concerns.53 How
to implement such penalisation in a two-stage IPD
meta-analysis framework requires consideration, as does
extension to the network meta-analysis setting where
multiple treatments are being compared at multiple time-
points whilst accounting for non-linear effect modifiers,
building on related work.54–56

Some patients may have missing covariates values in a
trial. Rather than excluding such patients, this can be han-
dled (in each trial separately) by using mean imputation
or the missing indicator method, which—although
rightly criticised for use in other medical research
applications—is actually appropriate for randomised tri-
als aiming to estimate a conditional treatment effect,57,58

though more evaluation of the impact on interactions is still
needed. Multiple imputation is a possible alternative.58

In summary, we have proposed a multivariate meta-
analysis approach for examining non-linear treatment-
covariate interaction functions at multiple time-points,
which we hope readers find useful for performing IPD
meta-analyses of randomised trials with continuous out-
comes to evaluate potential treatment effect modifiers.

AUTHOR CONTRIBUTIONS
Miriam Hattle: Conceptualization; writing – original
draft; writing – review and editing; methodology; data
curation; software; visualization; formal analysis. Joie
Ensor: Funding acquisition; methodology;
writing – review and editing. Katie Scandrett:

Methodology; writing – review and editing. Marienke
van Middelkoop: Data curation; writing – review and
editing. Danielle A. van der Windt: Methodology;
writing – review and editing. Melanie A. Holden: Meth-
odology; data curation; writing – review and editing.
Richard D. Riley: Writing – review and editing;
writing – original draft; conceptualization; methodology;
software; funding acquisition; supervision; visualization.

ACKNOWLEDGMENTS
We would like to thank Elaine Hay and all members of
the OA trial Bank Exercise Collaborative who shared
individual participant data from their randomised con-
trolled trials for inclusion in the STEER OA study, the
running example throughout this paper. Thanks also to
members of the STEER OA patient advisory group and
wider members of the STEER OA team. This includes Jos
Runhaar, Emma Healey, Jonathan Quicke, Krysia
Dziedzic, Danielle Burke, Nadia Corp, Amardeep Legha,
Sita Bierma-Zeinstra, and Nadine E Foster. We thank
two anonymous reviewers for their constructive com-
ments to help improve the article.

FUNDING INFORMATION
MiH, JE, and RDR were supported by funding from the
MRC-NIHR Better Methods Better Research panel (grant
reference: MR/V038168/1). MiH, JE, KES, and RDR were
supported by the NIHR Birmingham Biomedical Research
Centre at the University Hospitals Birmingham NHS Foun-
dation Trust and the University of Birmingham. The
STEER OA study was funded by the Chartered Society of
Physiotherapy Charitable Trust (PRF/16/A07), National
Institute for Health and Care Research (NIHR) School of
Primary Care Research (351); Nadine Foster's NIHR Senior
Investigator Award. This is independent research funded by
MRC-NIHR Better Methods Better Research panel (grant
reference: MR/V038168/1) and carried out at the National
Institute for Health and Care Research (NIHR) Birming-
ham Biomedical Research Centre (BRC). RDR is an NIHR
Senior Investigator. The views expressed are those of the
author(s) and not necessarily those of the NHS, the NIHR
or the Department of Health and Social Care.

CONFLICT OF INTEREST STATEMENT
RDR receives royalties for two books: Prognosis Research
in Healthcare and Individual Participant Data Meta-
Analysis.

DATA AVAILABILITY STATEMENT
Keele University is a member of the UK Reproducibility
Network and committed to the principles of the UK Con-
cordat on Open Research Data. The Keele University
School of Medicine has a long-standing commitment to
sharing data from our studies to improve research

HATTLE ET AL. 13



reproducibility and to maximise benefits for patients, the
wider public and the health and care system. De-
identified IPD that underlie the results from this study
will be made available to bonafide researchers on reason-
able request via the OA Trial Bank and with permission
from the original randomised controlled trial leads. Data
requests and enquiries should be directed to m.hol-
den@keele.ac.uk. We encourage collaboration with
those who collected the data, to recognise and credit
their contributions. Release of data will be subject to a
data use agreement between the OA Trial Bank, original
randomised controlled trial leads, and the third party
requesting the data. De-identified IPD will be encrypted
on transfer. Example code is provided in the Supple-
mentary Material in Data S1.

ORCID
Miriam Hattle https://orcid.org/0000-0003-1542-6277
Joie Ensor https://orcid.org/0000-0001-7481-0282
Katie Scandrett https://orcid.org/0000-0001-6111-2805
Marienke van Middelkoop https://orcid.org/0000-0001-
6926-0618
Danielle A. van der Windt https://orcid.org/0000-0002-
7248-6703
Melanie A. Holden https://orcid.org/0000-0003-0374-
2862
Richard D. Riley https://orcid.org/0000-0001-8699-0735

REFERENCES
1. Hingorani AD, Windt DA, Riley RD, et al. Prognosis research

strategy (PROGRESS) 4: stratified medicine research. BMJ.
2013;346:e5793.

2. Riley RD, van der Windt D, Croft P, Moons KGM, eds. Progno-
sis Research in Healthcare: Concepts, Methods and Impact.
Oxford University Press; 2019.

3. Hudis CA. Trastuzumab – mechanism of action and use in
clinical practice. N Engl J Med. 2007;357(1):39-51.

4. Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA,
Peters TJ. Subgroup analyses in randomized trials: risks of
subgroup-specific analyses; power and sample size for the
interaction test. J Clin Epidemiol. 2004;57(3):229-236.

5. Riley RD, Tierney JF, Stewart LA, eds. Individual Participant
Data Meta-Analysis: A Handbook for Healthcare Research.
Wiley; 2021.

6. Schmid CH, Stark PC, Berlin JA, Landais P, Lau J. Meta-
regression detected associations between heterogeneous treat-
ment effects and study-level, but not patient-level, factors.
J Clin Epidemiol. 2004;57(7):683-697.

7. Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI.
Individual patient- versus group-level data meta-regressions for
the investigation of treatment effect modifiers: ecological bias
rears its ugly head. Stat Med. 2002;21(3):371-387.

8. Thompson SG, Higgins JP. Treating individuals 4: can meta-
analysis help target interventions at individuals most likely to
benefit? Lancet. 2005;365(9456):341-346.

9. Kent DM, Paulus JK, van Klaveren D, et al. The predictive
approaches to treatment effect heterogeneity (PATH) state-
ment. Ann Intern Med. 2019;172:35.

10. Kent DM, Steyerberg E, van Klaveren D. Personalized evidence
based medicine: predictive approaches to heterogeneous treat-
ment effects. BMJ. 2018;363:k4245.

11. Riley RD, Debray TPA, Fisher D, et al. Individual participant data
meta-analysis to examine interactions between treatment effect
and participant-level covariates: statistical recommendations for
conduct and planning. Stat Med. 2020;39(15):2115-2137.

12. Fisher DJ, Carpenter JR, Morris TP, Freeman SC, Tierney JF.
Meta-analytical methods to identify who benefits most from
treatments: daft, deluded, or deft approach? BMJ. 2017;356:j573.

13. Hua H, Burke DL, Crowther MJ, Ensor J, Tudur Smith C,
Riley RD. One-stage individual participant data meta-analysis
models: estimation of treatment-covariate interactions must
avoid ecological bias by separating out within-trial and across-
trial information. Stat Med. 2017;36(5):772-789.

14. Riley RD, Lambert PC, Staessen JA, et al. Meta-analysis of con-
tinuous outcomes combining individual patient data and aggre-
gate data. Stat Med. 2008;27(11):1870-1893.

15. Belias M, Rovers MM, Reitsma JB, Debray TPA, IntHout J. Sta-
tistical approaches to identify subgroups in meta-analysis of
individual participant data: a simulation study. BMC Med Res
Methodol. 2019;19(1):183.

16. Burke DL, Ensor J, Riley RD. Meta-analysis using individual
participant data: one-stage and two-stage approaches, and why
they may differ. Stat Med. 2017;36(5):855-875.

17. Morris TP, Fisher DJ, Kenward MG, Carpenter JR. Meta-
analysis of Gaussian individual patient data: two-stage or not
two-stage? Stat Med. 2018;37(9):1419-1438.

18. Riley RD, Ensor J, Hattle M, Papadimitropoulou K, Morris TP.
Two-stage or not two-stage? That is the question for IPD meta-
analysis projects. Res Synth Methods. 2023;14(6):903-910.

19. White IR, Kaptoge S, Royston P, Sauerbrei W, Emerging Risk
Factors Collaboration. Meta-analysis of non-linear exposure-
outcome relationships using individual participant data: a com-
parison of two methods. Stat Med. 2019;38(3):326-338.

20. Royston P, Sauerbrei W. A new approach to modelling interac-
tions between treatment and continuous covariates in clinical
trials by using fractional polynomials. Stat Med. 2004;23(16):
2509-2525.

21. Sauerbrei W, Royston P. Investigating treatment-effect modifi-
cation by a continuous covariate in IPD meta-analysis: an
approach using fractional polynomials. BMC Med Res Metho-
dol. 2022;22(1):98.

22. Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-
analysis for non-linear and other multi-parameter associations.
Stat Med. 2012;31:3821-3839.

23. Belias M, Rovers MM, Hoogland J, Reitsma JB, Debray TPA,
IntHout J. Predicting personalised absolute treatment effects in
individual participant data meta-analysis: an introduction to
splines. Res Synth Methods. 2022;13(2):255-283.

24. Riley RD, Price MJ, Jackson D, et al. Multivariate meta-analysis
using individual participant data. Res Synth Methods. 2015;6:
157-174.

25. Simmonds MC, Higgins JP. Covariate heterogeneity in meta-
analysis: criteria for deciding between meta-regression and
individual patient data. Stat Med. 2007;26(15):2982-2999.

14 HATTLE ET AL.

https://orcid.org/0000-0003-1542-6277
https://orcid.org/0000-0003-1542-6277
https://orcid.org/0000-0001-7481-0282
https://orcid.org/0000-0001-7481-0282
https://orcid.org/0000-0001-6111-2805
https://orcid.org/0000-0001-6111-2805
https://orcid.org/0000-0001-6926-0618
https://orcid.org/0000-0001-6926-0618
https://orcid.org/0000-0001-6926-0618
https://orcid.org/0000-0002-7248-6703
https://orcid.org/0000-0002-7248-6703
https://orcid.org/0000-0002-7248-6703
https://orcid.org/0000-0003-0374-2862
https://orcid.org/0000-0003-0374-2862
https://orcid.org/0000-0003-0374-2862
https://orcid.org/0000-0001-8699-0735
https://orcid.org/0000-0001-8699-0735


26. Fisher DJ. Two-stage individual participant data meta-analysis
and generalized forest plots. Stata J. 2015;15(2):369-396.

27. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of
random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;
172:137-159.

28. Holden MA, Hattle M, Runhaar J, et al. Moderators of the
effect of therapeutic exercise for knee and hip osteoarthritis: a
systematic review and individual participant data meta-analy-
sis. Lancet Rheumatol. 2023;5(7):e386-e400.

29. Hartung J, Knapp G. A refined method for the meta-analysis of
controlled clinical trials with binary outcome. Stat Med. 2001;
20(24):3875-3889.

30. Jackson D, Law M, Rucker G, Schwarzer G. The Hartung-
Knapp modification for random-effects meta-analysis: a useful
refinement but are there any residual concerns? Stat Med.
2017;36(25):3923-3934.

31. Royston P, Sauerbrei W. Interactions between treatment and
continuous covariates: a step toward individualizing therapy.
J Clin Oncol. 2008;26(9):1397-1399.

32. Kasenda B, Sauerbrei W, Royston P, et al. Multivariable frac-
tional polynomial interaction to investigate continuous effect
modifiers in a meta-analysis on higher versus lower PEEP for
patients with ARDS. BMJ Open. 2016;6(9):e011148.

33. Kasenda B, Sauerbrei W, Royston P, Briel M. Investigation of
continuous effect modifiers in a meta-analysis on higher versus
lower PEEP in patients requiring mechanical
ventilation – protocol of the ICEM study. Syst Rev. 2014;3:46.

34. Harrell FE Jr. Regression Modeling Strategies: with Applications
to Linear Models, Logistic and Ordinal Regression, and Survival
Analysis (Second Edition). Springer; 2015.

35. de Boor C. A practical guide to splines. Vol xviii. Springer;
2001:346.

36. Royston P, Sauerbrei W. Multivariable modeling with cubic
regression splines: a principled approach. Stata J. 2007;7(1):
45-70.

37. Binder H, Sauerbrei W, Royston P. Comparison between
splines and fractional polynomials for multivariable model
building with continuous covariates: a simulation study with
continuous response. Stat Med. 2013;32(13):2262-2277.

38. White IR. Multivariate random-effects meta-regression:
updates to mvmeta. Stata J. 2011;11:255-270.

39. White IR. Multivariate random-effects meta-analysis. Stata J.
2009;9:40-56.

40. Riley RD, Jackson D, Salanti G, et al. Multivariate and network
meta-analysis of multiple outcomes and multiple treatments:
rationale, concepts, and examples. BMJ. 2017;358:j3932.

41. Jackson D, Riley RD, White IR. Multivariate meta-analysis:
potential and promise. Stat Med. 2011;30:2481-2498.

42. Jackson D, White IR, Price M, Copas J, Riley RD. Borrowing of
strength and study weights in multivariate and network meta-
analysis. Stat Methods Med Res. 2017;26(6):2853-2868.

43. Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers
of using "optimal" cutpoints in the evaluation of prognostic fac-
tors. J Natl Cancer Inst. 1994;86(11):829-835.

44. Walker R, Stewart L, Simmonds M. Estimating interactions in
individual participant data meta-analysis: a comparison of
methods in practice. Syst Rev. 2022;11(1):211.

45. Baker RD, Jackson D. Statistical application of barycentric
rational interpolants: an alternative to splines. Comput Stat.
2014;29(5):1065-1081.

46. Sauerbrei W, Royston P. A new strategy for meta-analysis of
continuous covariates in observational studies. Stat Med. 2011;
30(28):3341-3360.

47. Huber C, Benda N, Friede T. Subgroup identification in indi-
vidual participant data meta-analysis using model-based recur-
sive partitioning. Adv Data Anal Classif. 2022;16(3):797-815.

48. Jones AP, Riley RD, Williamson PR, Whitehead A. Meta-
analysis of individual patient data versus aggregate data from
longitudinal clinical trials. Clin Trials. 2009;6(1):16-27.

49. Riley RD. Multivariate meta-analysis: the effect of ignoring
within-study correlation. J R Stat Soc A Stat Soc. 2009;172:
172-811.

50. Trikalinos TA, Hoaglin DC, Schmid CH. Empirical and
Simulation-Based Comparison of Univariate and Multivariate
Meta-Analysis for Binary Outcomes. Methods Research Report
Agency for Healthcare Research and Quality. 2013.

51. Gao Y, Liu M, Shi S, et al. Prespecification of subgroup ana-
lyses and examination of treatment-subgroup interactions in
cancer individual participant data meta-analyses are subopti-
mal. J Clin Epidemiol. 2021;138:156-167.

52. Godolphin PJ, Marlin N, Cornett C, et al. Use of multiple cov-
ariates in assessing treatment-effect modifiers: a methodologi-
cal review of individual participant data meta-analyses. Res
synth. Methods. 2023;15:107-116.

53. Hoogland J, IntHout J, Belias M, et al. A tutorial on individual-
ized treatment effect prediction from randomized trials with a
binary endpoint. Stat Med. 2021;40(26):5961-5981.

54. Efthimiou O, Mavridis D, Cipriani A, Leucht S, Bagos P,
Salanti G. An approach for modelling multiple correlated out-
comes in a network of interventions using odds ratios. Stat
Med. 2014;33(13):2275-2287.

55. Dagne GA, Brown CH, Howe G, Kellam SG, Liu L. Testing
moderation in network meta-analysis with individual partici-
pant data. Stat Med. 2016;35(15):2485-2502.

56. Jansen JP, Vieira MC, Cope S. Network meta-analysis of longi-
tudinal data using fractional polynomials. Stat Med. 2015;
34(15):2294-2311.

57. Groenwold RH, White IR, Donders AR, Carpenter JR,
Altman DG, Moons KG. Missing covariate data in clinical
research: when and when not to use the missing-indicator
method for analysis. CMAJ. 2012;184(11):1265-1269.

58. Sullivan TR, White IR, Salter AB, Ryan P, Lee KJ. Should multiple
imputation be the method of choice for handling missing data in
randomized trials? Stat Methods Med Res. 2018;27(9):2610-2626.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Hattle M, Ensor J,
Scandrett K, et al. Individual participant data
meta-analysis to examine linear or non-linear
treatment-covariate interactions at multiple time-
points for a continuous outcome. Res Syn Meth.
2024;1‐16. doi:10.1002/jrsm.1750

HATTLE ET AL. 15

info:doi/10.1002/jrsm.1750


APPENDIX A

BOX A1 Brief introduction to modelling non-linear relationships for a continuous covariate using
restricted cubic splines

Let the original continuous covariate (e.g., age) be denoted by z. Rather than simply assuming a linear associa-
tion with the outcome of interest (e.g., Y ¼ δ0þδ1z), a restricted spline function, denoted by f zð Þ, allows for a
potential non-linear association.34 It is obtained by fitting a series of cubic functions and forcing them to join
(and be smoothed) at certain points (called internal knots), whilst constraining the function to be linear in the
tails (i.e., before the first internal knot and after the last internal knot). The magnitude and shape of the curve
are defined by multiple parameters depending on the number of knots chosen. If we assume there are
k internal knots in total at locations t1, t2,…, tk, then the restricted cubic spline is:

f zð Þ¼ δ0þδ1z1þδ2z2þ…þδk�1zk�1

where z1 ¼ z and thus there is an assumed linear association between z and the outcome before the first inter-
nal knot (i.e., when z< t1), and for c¼ 1,…,k�2,

zcþ1 ¼ z� tcð Þ3þ� z� tk�1ð Þ3þ
tk� tcð Þ
tk� tk�1ð Þþ z� tkð Þ3þ

tk�1� tcð Þ
tk� tk�1ð Þ

where the A+ notation means that A = A if A > 0, and A = 0 if A ≤ 0. This specification of zcþ1 also forces the
trend to there to be a linear association between z and the outcome after the last internal knot
(i.e., when z≥ tk).

Therefore, using a restricted cubic spline in a regression analysis will include the original covariate (z) as
linear and k–2 piecewise cubic variables. So with k internal knots, there are k – 1 parameters to estimate which
define the spline function, plus an ‘intercept’ term δ0. We can examine whether the use of the spline function
(i.e., f zð Þ) adds value over and above assuming a linear trend by comparing the change in the model fit
(e.g., the likelihood ratio statistic).

In terms of how to choose the number of knots, Harrell stated that ‘for many datasets, k= 4 offers an ade-
quate fit of the model and is a good compromise between flexibility and loss of precision caused by overfitting a
small sample’.34 If the sample size is small, three knots should be used in order to have enough observations in
between the knots to be able to fit each polynomial. The location of the knots is best pre-specified, based on the
quantiles of the continuous variable, with the following suggested by Harrell34:

Number of internal knots, k Knot locations in terms of quantiles of the z variable

3 0.1 0.5 0.9

4 0.05 0.35 0.65 0.95

5 0.05 0.275 0.5 0.725 0.95

6 0.05 0.23 0.41 0.59 0.77 0.95

7 0.025 0.1833 0.3417 0.5 0.6583 0.8167 0.975

Note: Box taken from fig. 4 of Riley et al.,11 reproduced with permission, © 2020 Wiley.
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