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A B S T R A C T

In electroencephalographic (EEG) data, power-frequency slope exponents (1/f_β) can provide non-invasive
markers of in vivo neural activity excitation-inhibition (E:I) balance. E:I balance may be altered in neuro-
developmental conditions; hence, understanding how 1/f β evolves across infancy/childhood has implications for
developing early assessments/interventions. This systematic review (PROSPERO-ID: CRD42023363294)
explored the early maturation (0–26 yrs) of resting-state EEG 1/fmeasures (aperiodic [AE], power law [PLE] and
Hurst [HE] exponents), including studies containing ≥1 1/f measures and ≥10 typically developing participants.
Five databases (including Embase and Scopus) were searched during March 2023. Forty-two studies were
identified (Nparticipants=3478). Risk of bias was assessed using the Quality Assessment with Diverse Studies tool.
Narrative synthesis of HE data suggests non-stationary EEG activity occurs throughout development. Age-related
trends were complex, with rapid decreases in AEs during infancy and heterogenous changes thereafter.
Regionally, AE maxima shifted developmentally, potentially reflecting spatial trends in maturing brain con-
nectivity. This work highlights the importance of further characterising the development of 1/f measures to
better understand how E:I balance shapes brain and cognitive development.

1. Introduction

The maintenance of excitation and inhibition (E:I) balance in the
brain is an essential homeostatic mechanism that regulates spontaneous
neural activity and facilitates the complex activity patterns thought to
underlie efficient information processing and adaptive behaviour
(Rocha et al., 2018; Bassi et al., 2019). It has been suggested that this key
feature of brain physiology can be represented by a power law (1/f)
relationship between spectral frequencies and spectral power in elec-
trophysiological data (Boustani et al., 2009; Gao et al., 2017; Donoghue
et al., 2020). Steeper 1/f profiles (higher exponents) characterised
within specific frequency ranges (Manning et al., 2009; Miller et al.,
2012) suggest higher contributions of inhibitory (i.e. increased

GABAergic/decreased glutamatergic) signalling whereas flatter (lower)
exponents suggest excitation-dominant signalling (E>I) (Gyurkovics
et al., 2022). This can be non-invasively studied using electroencepha-
lography [EEG] (Waschke et al., 2017) which is sensitive to local field
potential (LFP) aggregates including faster decaying excitatory AMPA
and slower decaying inhibitory GABA currents (Buzsáki et al., 2012);
and thus changes in power spectral densities (PSDs) will affect estimated
1/f exponents. However, the biological link between 1/f and E:I is still
under investigation (Gao et al., 2017; Salvatore et al., 2024).
The power spectrum can be further decomposed into both frequency-

specific ‘periodic’ oscillations and an ‘aperiodic’ signal (termed β or χ)
(Voytek and Kramer, 2015). In adulthood, β significantly declines with
age (Voytek and Kramer, 2015; Waschke et al., 2017) although the
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physiological origin of this age-related change is unclear. Flattening of
the 1/f slope has been associated with a reduction in the autocorrelation
of brain activity, allowing for more efficient information processing (He,
2014). EEG 1/f measures also display behavioural and clinical rele-
vance, particularly in conditions thought to relate to shifts in E:I balance,
including those affecting selective attention and inhibition such as
attention-deficit hyperactivity disorder (ADHD) (Waschke et al., 2021;
Robertson et al., 2019). In addition, EEG 1/f have also been associated
with states of consciousness (Leroy et al., 2023), and functional recovery
from stroke (Leemburg et al., 2018). Prior to future research utilising 1/f
measures to explore possible atypical brain E:I or exploring its potential
use as a clinical “biomarker”, 1/f measures must first be characterised
across the typically developing (TD) lifespan, from infancy to early
adulthood (other studies have begun to chart this for later adulthood,
see Finley et al., 2022).
Three different methods for deriving the 1/f β exist in the human EEG

literature: (1) power law exponents (PLEs) (He, 2014) estimated from
the slope of log-frequency versus log-power distributions and measures
accounting for periodic oscillations, including aperiodic exponents (μV2
Hz− 1) [AEs] which can be estimated using one of the following ap-
proaches; (2) fitting of one-over-f [FOOOF] (now specparams) via esti-
mation of an initial slope and iterative estimation of gaussian peaks,
which are subsequently subtracted to facilitate slope re-estimation prior
to combining into a representative model (Donoghue et al., 2020); or (3)
non-integer resampling prior to Fourier-based spectral decomposition,
followed by taking the median of the auto-spectral distribution (Irreg-
ular Resampling Auto-Spectral Analysis [IRASA]) (Wen and Liu, 2016).
Given the challenges of comparing raw exponents acquired when per-
forming different tasks (Gao et al., 2017), we focus here only on char-
acterising resting-state 1/f β during typical development and
maturation. We also explore evidence surrounding the maturation of
activity patterns in the temporal domain via the resting Hurst exponent
(HE), a measure which captures the self-similarity, trending or “persis-
tence” of activity patterns within windows of a timeseries. These
persistent patterns/trends constitute long-range temporal correlations
(Hardstone et al., 2012; Jannesari et al., 2020) between (often un-
known) underlying sources, which can provide an informative func-
tional connectivity marker. HEs are typically calculated via detrended
fluctuation analysis (DFA)(Peng et al., 1994; Peng et al., 1995). Similar
to AEs, HEs reflect scale(s) of self-similarity/power law structure(s) but
do not by themselves offer granularity as to the underlying spiking
characteristics (or associated frequency profile) of signal generators,
therefore do not allow decomposition into frequencies commonly
associated with excitatory or inhibitory neuronal population activity.
HE (α) can be converted into PLE for both stationary (α = 0–1, i.e.
representing a linear system governed mostly by a singular scaling
behaviour) and non-stationary (α = 1–2 i.e. representing a non-linear,
multi-fractal system governed by multiple scaling behaviours) cases
(Eke et al., 2000; Hardstone et al., 2012). Given the dynamic nature of
the brain’s activity, EEG data generally display persistent patterns of
electrical activity (0.50<HE<1.00) which are non-stationary (HE>0.50)
i.e. activity does not revert to a baseline state but is segregated and
maintained in contextual functional states. To further synergise the 1/f
literature here we also convert HE into AE, wherein AE=2*HE-1
(Schaefer et al., 2014), thus providing a comprehensive account of early
developmental 1/f β changes.
This systematic review aims to explore how and when 1/f measures

change in early human development, and where variability within early
lifespan stages exists, thereby offering a more nuanced perspective of
sensitive periods of neurodevelopment.

2. Methods

2.1. Eligibility criteria and selection process

We included observational or experimental studies containing

resting-state (eyes open [EOR] or closed [ECR]) data for ten or more
typically developing (TD) human participants with a mean-centred age
less than 26.50 yrs (i.e. bordering into ‘emerging adulthood’, see
Hochberg and Konner, 2020) who were not otherwise known to have
been born premature or hold any clinical diagnoses (neuro-
developmental, neurodegenerative or neuropsychiatric). For subjects
younger than 2 yrs (neonates and infants ), data collected during sleep or
wake (including when observing videos or toys) were included. We
included studies which referred to AE or slope, 1/f β, HE, fractal
dimension (to assess for HEs), PLE/spectral slopes, or AE/PLE estimation
models (e.g. FOOOF/specparams/IRASA/sprintf/PaWNextra). Abstracts
fitting these criteria were assessed as full-texts if an English-language
text was available, including abstracts referring to an evoked para-
digm or where sample or method details were omitted, so as to capture
suitable studies containing resting-state data for TD individuals within
the aforementioned age range. Articles focusing on non-human pop-
ulations (e.g. animals, or simulations only), of an unsuitable format
(preprints, reviews, theses, case reports, books, conference abstracts,
and non-peer-reviewed material) or using measures other than
scalp-based EEG (e.g. iEEG, sEEG or ECoG, MEG, TMS, tDCS) were
excluded. Articles lacking measures of interest in the main/-
supplementary texts were excluded. In calculating the HE, the under-
lying scaling exponent (α) only deviates from 0.50 for short window
sizes (Hardstone et al., 2012), hence the scaling range should be re-
ported. Furthermore, we exclude papers not reporting or responding to
requests for two or more key details (scaling range, epoch length, win-
dow size).

2.2. Search strategy and information sources

The systematic review was completed according to the PRISMA
guidelines (Page et al., 2021) and pre-registered with the international
Prospective Register of Systematic Reviews (PROSPERO Registration
number: CRD42023363294). Relevant literature referred to the devel-
opment/maturation of the 1/f β signal: 1/f, aperiodic exponent/slope
and/or the HE (Hurst exponent*/slope or fractal, primarily measured
via DFA or detrend* fluctuation analysis) across the early human life-
span (birth, newborn, neonat*, infan*, toddler*, child*, adolescent,
teenager, young adult*, develop*, maturation*) using EEG (EEG or
electroencephal*). Searches were performed across the following data-
bases (with appropriate MESH headings and adjacency terms where
permissible): Ovid-Embase, Ovid-PsycInfo, Ovid-Medline, Scopus and
Web of Science, during March 2023. For an example search strategy, see
Supplementary Material I. Backwards searching of included studies was
also performed.

2.3. Selection process

Records were stored and de-duplicated in Endnote before being
transferred to Rayyan for secondary deduplication and subsequent
screening. Titles and abstracts were screened by author RAS, with a
subset (20%) reviewed independently by co-author DM and re-reviewed
in cases of disagreement until a consensus was reached.

2.4. Data collection and data items

Article full texts were then screened by RAS and data pertaining to
sample characteristics (age mean and SD, sample size, gender split) and
1/f data (AE/PLE/HE) were extracted from tables or figures of the main
and/or supplementary texts, an associated repository or by contacting
the authors directly.

2.5. Study risk of bias assessment

Risk of bias was assessed independently by co-authors RAS and CE
using the Quality Assessment for Diverse Studies (QuADS) tool (Harrison
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et al., 2021), with the omission of item 12 (stakeholder involvement)
due to a lack of relevance to the TD population. Rater scores (91.07%
agreement) were compared to ensure differences of less than 2 points
(0.01%, 6/504 cases). Differing cases were discussed, agreed and cali-
brated. For the assessment criteria and risk of bias results, see Supple-
mentary Materials II and III respectively.

2.6. Synthesis methods

Few studies reported age correlations or other effect sizes (N=8) and
given the ambiguity of raw AE effect size interpretation (Gao et al.,
2017) and the absence of a comparison state uniform to all studies, a
meta-analysis was not performed. Rather, we qualitatively synthesised
findings across lifespan stages: infancy (0.01–2.00 yrs), toddlerhood
(2.00–3.00 yrs), childhood (3.00–12.99 yrs), adolescence
(13.00–19.99 yrs), young adulthood (20.00–26.00 yrs), spatial scale
(global, regional, channel-wise), method (HE, PLE/AE) and condition
(ECR/EOR).

3. Results

Our database searches yielded 1596 records. After de-duplication,
we screened 1112 titles and abstracts. Nine full-texts sought for
retrieval were unavailable, resulting in 138 retrieved full-texts, of which
37 were included (see Fig. 1). We identified a further five studies after
searching for citations of the included studies as well as their reference
lists. The characteristics of the included studies are shown in Table 1.

3.1. Risk of Bias

Across the 12 QuADS items examined, the performance of included
studies was generally strong across all items with average scores
exceeding 2 (scale 0–3, Supplementary Material III). Studies generally
showed the weakest performance in terms of providing recruitment
data, discussing study strengths and limitations and providing clearly
defined research aims/hypotheses.

3.2. Narrative synthesis

Of the 42 included articles (N=3478 aggregated observations; 99
HEs+AEs/PLEs, 1097HEs, 2282 AEs/PLEs), seven included infants (5
AE/PLE, 2 HE), two included samples containing toddler cohorts (1 AE,
1 AE & HE), thirteen included children (9 AE, 3HE, 1 AE & HE), eight
included adolescents (5 AE, 3 HE), and twenty-one included young
adults (12 AE, 7 HE and 2 HE and PLE). Most studies analysed data in
either EOR or ECR conditions, though two studies used EOR-ECR aver-
ages to increase the signal-noise ratio (SNR) (no statistical ECR-EOR
differences were reported). The majority of 1/f β studies used the
FOOOF package (22/42), and thus, for brevity, studies should be
assumed to use FOOOF unless otherwise stated. Results are discussed as
measured (i.e. HE as HE, not AE), with later discussion on the utility of
value conversion (see also Table 1).
Overall, the method employed to measure 1/f β only has a marked

impact when comparing converted HE with measurements of AE/PLE,
whilst comparisons of direct measures (i.e.measures not converted from
HEs) show no difference between calculation methods (Fig. 2A).
Focusing on direct AE measures, the global AE decreases from infancy to
toddlerhood and remains within more confined AE ranges thereafter
(Fig. 2B). However, the interpretation of this trajectory hinges on an
accurate characterisation of AEs during infancy (via sufficiently pow-
ered studies), whereas currently, few studies exist. Further, there does
not appear to be a difference between global versus regional AEs across
the lifespan (Fig. 3A), evident also on a regional scale (Supplementary
Material V). Both ECR and EOR AEs display broad variability (Fig. 2B),
particularly in young adulthood (YA), irrespective of study size.
Following infancy, regional and global age-related changes generally
overlap, with the highest (global) between-study variability observed in
YA. These data suggest no differences between AE estimation method,
resting-state paradigm, or the level of scale measurement (for most
stages). Given the comparability of EOR and ECR, we plot results only
for EOR where study data for both conditions is available.
In EOR, we observe age-related AE stabilisation following infancy,

with the centre of this trajectory in line with the infant AE estimates of

Fig. 1. PRISMA flowchart for record screening. Backwards searching utilised based on citation title relevance of included texts to ensure sufficient article capture
(N=5 relevant reports, see ‘Included’).
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Table 1
Studies included in the review. Infancy (0.01–2.00 yrs), Toddlerhood (2.00–3.00 yrs), Childhood (3.00–12.99 yrs), Adolescence (13.00–19.99 yrs), Young adulthood
[YA] (20.00–26.00 yrs). ‘ est ’ in the ‘Scale’ column denotes values are estimated from a plot. Measures include eyes open (EOR) and closed (EOR) rest, alongside other
specified states. Measures from sub-samples in the ‘Original Measure’ column are referred to by ‘S’whilst observed timepoints are denoted by ‘t’. Sample split by sex is
given in ‘N (M, F)’, wherein unknown values are indicated by ‘?’. Data from supplementary sources (tables, figures) are denoted as ‘Supp.’ in the ‘Source’ column, with
open-access data from the open science framework (OSF) marked and ‘Auth Corr.’ denoting author correspondence was required for additional information/data was
absent from the published material. Sections and figures (‘Fig’) are marked where relevant. Studies with overlapping data are marked with the same superscript
character (a,b respectively). In column ‘F’, ‘Y’ entries denote backward-search results. For technical details of measures, see Supplement IV.

# Study Lifespan
Stage (age,
yrs)

Measure Scale(s) Original Measure HE to AE Measure N (M, F) Source F

1 Schaworonkow and
Voytek (2021)

Infancy
(0.10–0.56)

1/f (FOOOF) Channelwise S1: 1.74–3.22 (N =

20)
S2: 1.74–2.95 (N =

20)
S3: 1.79–2.25 (N =

20)
S4: 1.94–2.98 (N = 5)
S5: 1.46–2.76 (N = 3)
S6: 1.88–2.63 (N = 2)

Baseline-
wakeful
reaching

22(10,12) Methods,
Auth
Corr.,
GitHub

2 Karalunas et al.
(2022)

Infancy
(0.12±0.01)
Adolescent
(14.10±1.30)

1/f (FOOOF) Global,
Channelwise

Infant EOR (PEACH
cohort): 2.21
±0.28Adol EOR (1.85
±0.28): ECR (1.98
±0.26), EOR-ECR avg
(1.91±0.28)Infant:
2.48±0.24 (Cz, EOR)
Adol: 2.28±0.19 (Cz,
EOR), 2.33±0.27 (Pz,
ECR),2.29±0.19
(EOR-ECR average)

EOR,
ECR
EOR-
ECRavg

69 (36,33)
152(85,67)

Auth Corr.

3 Fransson et al. (2013) Infancy
(0.81,
0.75–0.85)

1/f (PLE) Global,
Regional,
Channelwise

2.07±0.22 Natural
Active/
Quiet
Sleep

15(9,12) Fig. 4 Y

4 Carter-Leno et al.
(2022)

Infancy
(0.90±0.05)

1/f (FOOOF) Global,
Regional,
Channelwise

1.50±0.13 (non-
social), 1.52±0.16
Fz: social (1.53
±0.16), non-social
(1.51±0.13)Cz: social
(1.51±0.15), non-
social (1.49±0.13)Pz:
social (1.51±0.16),
non-social (1.49
±0.13)

~EOR
(social
and non-
social
videos)

24(13,11) Table 1,
Fig. 4,
Auth Corr.

5 Roche et al. (2019) Infancy
(1.92–10.25)

1/f (PLE) Globalest,
Regional

~0.58 ~EOR
(movie)

37(0,37) Methods,
Results

6 Smith et al. (2021) Infancy
(med. 0.63,
0.43–0.82)

HE Global Delta[1–3 Hz]: ~0.80
(A), 0.68(S) Theta
[4–7 Hz]: ~0.74(A),
0.68(S)Alpha
[8–12 Hz]: ~0.69(A),
0.68(S)
Beta[13–30 Hz]:
~0.88(A), 0.72(S)

Awake,
Sleep

20(12,8) Section
3.1, Fig. 6,
Auth Corr.

7 Smith et al. (2017) Infancy
(med. 0.58,
0.48–0.94)

HE Globals Delta[1–3 Hz]:
~0.78Theta[4–7Hz]:
~0.70 Alpha
[8–12 Hz]: ~0.66
Beta[13–30 Hz]:
~0.94

Awake~
(EOR)

21(?,?) Fig. 5,
Auth Corr.

8 Cellier et al. (2021) Toddler
(N=5),
Child (N=81),
Adolescent
(N=22),
Young Adult
(N=8)
(2.95–24)

1/f (FOOOF) Regional
(Parietal-midline
[P], Frontal-
midline [F])

Toddler: [P] 1.45
±0.23, [F] 1.32
±0.54Children: [P]
1.23±0.25, [F] 1.34
±0.22Adolescents:
[P] 1.24±0.18, [F]
1.13±0.24Young
Adults: [P] 1.14
±0.12, [F] 1.11±0.09

EOR 116
(33,24,59
unlabelled)

Fig. 2,
Sections
2.2, 3.1,
Auth
Corr.,OSF

9 Houtman et al. (2021) Toddler (2.92
[N=8], 3.92
[N=13]),
Child (7–16
[N=29])

1/f
(FOOOF), HE

Global
Channelwise

Infant-toddler (I) &
child-adol (C): HE,
11–18 Hz: I: ~0.655,
C: ~0.656Infant-
toddler (I) & child-
adol (C): AE,
~1.11–1.60

EOR 50 (28,22):
Inf-Todd:21
(14,7)
Child-
Adol:29
(14,15)a

Figs. 3,
5Supp.
Fig. 5

(continued on next page)
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Table 1 (continued )

# Study Lifespan
Stage (age,
yrs)

Measure Scale(s) Original Measure HE to AE Measure N (M, F) Source F

(Hurst, 11–18 Hz): I:
~0.63-.70), C:
~0.64–0.74, 0.66
±0.02

10 Wilkinson and Nelson
(2021)

Child (3.98
±1.09,
2.67–6.67)

1/f(FOOOF) Global
Regional

1.19±0.12
Frontal: 1.26±0.13
Central: 1.33±0.14
Temporal: 1.11±0.15
Posterior: 1.07±0.32

EOR 12(12,0) Methods,
Results,
Auth Corr.

11 Robertson et al.
(2019)

Child (5.65
±1.23)

1/f (FOOOF) Global
Channelwise

1.51±0.32 EOR 50(36,14) Table 1,
Fig. 2A, B

12 McSweeney et al.
(2023)

Child (6.92
±2.21)

1/f (FOOOF) Global EOR: 1.53±0.31
ECR: 1.77±0.28

EOR,
ECR

502
(230,272)

Section
3.2,
Auth Corr.

13 Arnett et al. (2022a) Child (8.83
±1.23)

1/f (FOOOF) Global 1.77±0.15 (Median:
1.76)

EOR 29(19,10)b Methods,
Auth Corr.

14 Arnett et al. (2022b) Child (8.83
±1.23)

1/f (FOOOF) Global 1.77±0.15 (Median:
1.76, range:
0.22–2.30)

EOR 29(19,10)b Methods,
Auth Corr.

15 Peisch and Arnett
(2022)

Child (9.40
±1.36)

1/f (FOOOF) Global
Regional

1.78±0.14
Anterior Frontal (AF):
1.79±0.14
Frontal (FR): 1.79
±0.13
Central (CE): 1.75
±0.15
Parietal (PR): 1.81
±0.16
Occipital (OC): 1.77
±0.22

EOR 29(19,10)b Methods,
Auth Corr.

16 Hill et al. (2022) Child (9.41
±1.95)

1/f (FOOOF) Global
Regional
(anterior [A],
central [C],
posterior [P])

EOR: 1.65±0.18
ECR: 1.81±0.16
EOR: A (1.64±0.19),
C (1.69±0.19)
P (1.68±0.20)
ECR: A (1.81±0.17),
C (1.85±0.16),
P (1.84±0.18)

EOR,
ECR

139 (72,
67)

Fig. 2,
Auth Corr.

17 Tröndle et al. (2022) Child
(N=153),
Adolescent
(N=34),
Young Adult
(N=3)(10.07
±3.39,
5.02–21.67)

1/f (FOOOF) Regional
(Parieto-
occipital)

1.89±0.36
(0.68–2.77)
Child: 1.98±0.30
Adolescent: 1.58
±0.37
Young adult: 1.12
±0.04

ECR 190
(104,86)

Methods,
Auth
Corr.,Fig.
3, App. 4,
Supp. 2, 3

18 Kwok et al. (2019) Child 4 yrs
(N=8),
5 yrs (N=14),
6 yrs (N=11),
(5.60±?.??)

HE Global,
Channelwiseest

Median: ~0.09 (EOR)
~0.06(ECR)
Posterior electrodes:
~0.09 EOR, ECR

EOR,
ECR

33(?,?) Fig. 6A-C

19 Smit et al. (2011) Child (5.27
±0.19,6.79
±0.19),
Adolescent
(16.06
±0.5517.57
±0.55),
Young Adult
(26.18±4.15)
(5− 50)

HE Channelwise (12
channels)

Child Theta (P3
maxima): 0.77±0.09
(5 yrs), 0.76±0.07
(7 yrs)
Child Alpha (O2
maxima): 0.70±0.09
(5 yrs), 0.71±0.08
(7 yrs)
Child Beta: 0.64±0.09
(5 yrs, Fp2), 0.62
±0.08 (7 yrs, F8)
Adol Theta (Fp1
maxima): 0.72±0.06
(16 yrs), 0.72±0.06
(18 yrs)
Adol Alpha (O1
maxima): 0.72±0.10
(16 yrs), 0.73±0.12
(18 yrs)
Adol Beta: 0.64±0.09
(16 yrs), 0.66±0.11
(18 yrs)
YA Theta (F3

ECR 5 yrs 366
7 yrs 378
16 yrs 426
18 yrs 387
25 yrs 396

Auth Corr.
Methods,
Fig. 3,
Table 2

(continued on next page)
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Table 1 (continued )

# Study Lifespan
Stage (age,
yrs)

Measure Scale(s) Original Measure HE to AE Measure N (M, F) Source F

maxima): 0.73±0.07
(25 yrs)
YA Alpha (P4
maxima): 0.75±0.09
(25 yrs)
YA Beta (O1 maxima):
0.67±0.10 (25 yrs)

20 Bruining et al. (2020) Child (10.30
±1.54)

HE Global 0.66±0.04 ECR 29 (14,15)a Supp.
Table 1

Y

21 McSweeney et al.
(2021)

Adolescent
(12− 17)

1/f (FOOOF) Global (1–45 Hz) t1 (all subjects): EOR
(1.21±0.30)
t1 (subjects with t1 & t2):
EOR (1.21±0.30)
t1 (all subjects): ECR
(1.33±0.27)
t1 (subjects with t1 & t2):
ECR (1.21±0.30)
t2 (all subjects): EOR
(1.10±0.26)
t2 (subjects with t1 & t2):
EOR (1.11±0.27)
t2 (all subjects): ECR
(1.16±0.25)
t2 (subjects with t1 & t2):
ECR (1.17±0.26)

EOR,
ECR

186
(85,101)95
@t1, t2

Fig. 1B,
Results

22 Ostlund et al. (2021) Adolescent
(13.97±1.28)

1/f (FOOOF) Global (2–50 Hz) (EOR+ECR/2): 1.80
±0.28 (0.92–2.57)
EOR: 1.72±0.31
(0.88–2.49)
ECR: 1.88±0.28
(0.90–2.65)

EOR,
ECR

97(53,43) Table 1

23 Linkenkaer-Hansen
et al. (2007)

Adolescent
(16.50–19.50)

HE Channelwise
(Alpha, Beta)

Alpha: (0.70–0.74
±0.08–0.11)
Beta:(0.61–0.66
±0.07–0.09)

ECR 390
(196,194)

Table 1

24 Gao et al. (2017) Adolescent
(18.30±2.80)

HE Channelwise
(Delta-
Gamma)est

Alpha: ~0.80
Beta: ~0.70

0.600.40 ECR 15(15,0) Fig. 2

25 Donoghue et al.
(2020)

Young Adult
(19.56±1.90)

1/f (FOOOF) Channelwise
(Cz)

1.43±0.25 EOR 16(8,8) Auth
Corr.,
Results

26 Linkenkaer-Hansen
et al. (2001)

Young Adult
(20− 30)

1/f (PLE)
HE

Global (Alpha
[8–13 Hz])
4-channel avg

PLE ECR: 0.36±0.17
PLE EOR: 0.51±0.12
HE ECR: 0.68±0.07
HE EOR: 0.70±0.04

EOR,
ECR

10(9,1) Results Y

27 Muthukumaraswamy
and Liley (2018)

Young Adult
(23.00±??)

1/f (IRASA) Global,
Channelwise

βlf 1.36(1.12–1.72)
βhf 1.48(1.18–1.81)
βlf frontal maxima:
1.72
βhf central maxima:
1.81

ECR 17(17,0) Methods,
Supp. Fig
7

28 Pathania et al. (2021) Young Adult
(20.88±2.24)

1/f (PLE)
1/f (FOOOF)

Global (FOOOF),
Regional
(FOOOF),

1.36±0.26 F(1.18
±0.34), C(1.40
±0.28), P(1.46
±0.28), O(1.41
±0.29)

EOR 59(19,40) Auth Corr.

29 Barry and de Blasio
(2021)

Young Adult
(21.20±3.80)

1/f PN Slope
(PaWNextra)

Global
Channelwise (30
channels)

EOR (session 1, 2
average): 1.07±0.33
ECR: 1.22±0.38
EOR: 0.41–1.50 (Fp1,
Cz)
ECR: 0.38–1.22 (Fp1,
C4)

EOR,
ECR

20(3,17) Auth Corr.

30 Merkin et al. (2023) Young Adult
(22.20
±3.90,18–35)

1/f (FOOOF) Globalest

Regional
~1–2.1~ range
1.3–1.6 YA

ECR 85(37,48) Sections
2.1, 3.1,
Supp. S5

31 Ke et al. (2022) Young Adult
(22.29±2.28)

1/f (FOOOF) Global,
Regional
(Frontal, Central,
Parietal,
Occipital)

Global (1.84±0.34)
Frontal (1.99±0.35)
Central (1.84±0.34)
Parietal (1.76±0.37)

Occipital (1.67±0.52)

EOR 90(44,46) Table 1,
Auth Corr.

(continued on next page)
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Carter Leno et al. (2022)(Fig. 3B). In summary, there is insufficient
evidence in infancy-toddlerhood to validate exponential AE decay, and
from childhood onwards AEs seem to vary (partly due to the broad
spread of ages in individual studies, as reflected in the age SDs). Whether
consistent AE decreases occur from infancy to toddlerhood is likely to be
better revealed by studying data at the individual level, dissecting both
within- and between-study variability with greater precision. This in-
cludes exploring the impact of parameter decisions, such as the number
of peaks fit and peak height which affect slope estimation and therefore
AE estimates. Notably, the topography of the AE changes with age
(Fig. 4) with AE maxima shifting from posterior foci during infancy (and
early toddlerhood) to the midline with continued development.
Comparatively, changes in the HE across early development are equally
subtle, with evidence from the majority of included studies illustrating
that HEs vary by < 0.10 for any given band across the early life span.

3.3. Hurst exponent: Infancy-young adulthood

For the HE synthesis, twenty-four studies were included: seven
containing infants, one containing toddlers, four containing children,
three containing adolescents and nine containing young adults. Infants
displayed persistent neural activity patterns (HE>0.50) from delta-beta
bands (1–30 Hz), during wake (Smith et al., 2017) and sleep (Smith
et al., 2021). Whilst no studies explicitly examined HE maturation in
infancy or toddlerhood, one study used a sample containing toddlers.
Houtman et al. (2021) showed that in an infant-toddler sample, HEs vary
from ~0.65–0.68 across the scalp (with no statistical difference
observed between toddlers and children). In childhood, studies collec-
tively showed similar HE in older children, with HE also>0.50: Bruining
et al. (2020) showed global HE of 0.66±0.04 during ECR in older chil-
dren (the same sample used in Houtman’s work). Moreover, in a study

Table 1 (continued )

# Study Lifespan
Stage (age,
yrs)

Measure Scale(s) Original Measure HE to AE Measure N (M, F) Source F

32 Smit et al. (2013) Young Adult
(22.40, 21–25)

1/f (PLE)HE Channelwise
(Alpha
[9–13 Hz]) CP3

Maxima (both):
central midline, scalp
ranges
Hurst (0.70–0.80), 1/f
(0.20–0.40)
PLE = 0.43
HE = 0.66 (Range:
0.66–1.04)

EOR 39(11,28) Fig. 1B/C,
Auth Corr.

Y

33 Zsido et al. (2022) Young Adult
(22.48±3.79)

1/f (FOOOF) Globalest ~1.40 ECR 31(?,?) Methods

34 Immink et al. (2021) Young Adult
(22.67±3.85)

1/f (IRASA) Global 2.06±0.13 (range:
1.82–2.48)

ECR 45(22,23) Section
3.1,
Auth.
Corr.

35 Pathania et al. (2022) Young Adult
(23.29±3.47)

1/f (FOOOF) Global
(2–25Hz),
Regional

1.17±0.23
F(1.20±0.25), C(1.22
±0.27), P(1.09
±0.28), O(0.96
±0.28)

ECR 21(11,10) Section
4.1,
Fig. 2B,
Auth Corr.

36 Cross et al. (2022) Young Adult
(25.00±7.13)

1/f (FOOOF,
IRASA)

Global IRASA ECR: 1.11
±0.30
IRASA EOR: 1.08
±0.31

EOR,
ECR

35 (18,17) Auth Corr.

37 Nakao et al. (2019) Young Adult
(19.57±??
18–21)

HE Alpha [8–13 Hz] FCz: 0.75±0.12

Min (T7, 0.74±0.12)
Max (O1, 0.80±0.13)

0.50
(0.48–0.60)

ECR 23(11,12) Fig. 5,
Section
3.3,
Auth Corr.

38 Natarajan et al.
(2004)

Young Adult
(20.00±3.00)

HE Global (1–50 Hz) 0.29±0.06 -0.42 ECR 30(15,15) Table 1

39 Liu et al. (2022) Young Adult
(20− 30)

HE Channelwiseest

(Broadband)
[0.5–120 Hz]

EOR~0.80–0.82 EOR0.60–0.64 ECR,
EOR

26(?,?) Fig. 5

40 Sleimen-Malkoun
et al. (2015)

Young Adult
(22.70±1.60,
18.80–25.10)

HE Global
(0.5–100Hz)

1.69
Higher for posterior
vs midline

2.38 ECR 31(17,14) Fig. 4 Y

41 Irrmischer et al.
(2018)

Young Adult
(25.00±6.20)

HE Global (Delta
[1–4Hz], Theta
[4–8Hz],
Alpha [8–13 Hz],
Beta [13–45 Hz])

ECR (N = 57)
Theta: 0.66±0.01
Alpha: 0.71±0.01
Beta: 0.66 ± 0.01
EOR (N = 23)
Theta: 0.69±0.02
Alpha: 0.75±0.02
Beta: 0.70 ± 0.01

ECR
0.32
0.42
0.32
EOR
0.38
0.50
0.40

EOR,
ECR

57(22,35) Results

42 Bornas et al. (2013) Young Adult
(24.61±7.03)

HE Regional (theta
[3–7Hz], alpha
[8–13 Hz],
broadband
[1–40 Hz]):
Central [C],
Parietal [P],
Occipital [O])

Theta
C (0.75±0.07), P
(0.76±0.07), O (0.74
±0.07)
Alpha C (0.76±0.07),
P (0.80±0.08), O
(0.85±0.10)

Broadband C (0.85
±0.07), P (0.86
±0.06), O (0.88
±0.06)

Theta
0.50,0.520.48
Alpha 0.52,
0.600.70
Broadband
0.70, 0.720.76

EOR,
ECR
average

56(20,36) Table 1
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from ages 5–71 yrs (5–7, 16–18 yrs longitudinally), Smit et al. (2011)
identified age-related changes in alpha (5–18 yrs occipital maxima,
25 yrs: parietal maxima) and beta band HEs (5, 7 yrs frontal maxima,
16–50 yrs: occipital maxima). By contrast, the theta band HE of Smit
et al. (2011) are stable and parietal dominant from childhood (5 yrs)
until YA (25 yrs) before switching to frontal dominant in adolescence.
Conversely, Kwok et al. (2019) observed anti-persistent trends
(HE<0.50) for global alpha band HE (EOR: ~0.09, ECR, ~0.06) and
identified ECR-EOR differences unrelated to age. HEs remain consistent
throughout adolescence, with ECR alpha and beta band HE (Link-
enkaer-Hansen, 2007) similar across studies (Gao et al., 2017). In YA,
Smit et al. (2013) identify EOR alpha band HE maxima in the central

midline consistent with other ECR and EOR studies (Linkenkaer-Hansen
et al., 2001). Moreover, other EOR studies illustrate increasing HE with
age; both Nakao et al. (2019) and Liu et al. (2022) reported consistent
ECR alpha band HE across the scalp. However, Natarajan et al. (2004)
report considerably lower global HE (0.29 vs ≥0.70–0.80 in other
studies), and Sleimen-Malkoun et al. (2015) identify a broadband global
HE of 1.69, suggesting non-stationary (variation unrestricted to a sin-
gular mean/setpoint) with occipital maxima and frontal minima.
Overall, studies continue to demonstrate posterior (occipital) HE max-
ima for the alpha band (Irrmischer et al., 2018; Bornas et al., 2013)
consistent with prior power-based studies. In addition, Irrmischer et al.
(2018) showed that for theta and beta bands, global EOR HE exceed ECR

Fig. 2. Consistency of the (A) global aperiodic exponent (μV2 Hz− 1) across methods and (B) resting-state method for each lifespan stage. Studies are denoted beneath
each plot, both figures include eyes open (EOR) and closed (ECR) rest; larger samples are encoded with higher alpha in each plot; see the marker legend for cor-
responding glyphs. Inf: Infancy, Todd: Toddlerhood, Child: Childhood, Adol: Adolescence, YA: Young adulthood, Ext Ad: Extended adulthood. Horizontal whiskers
denote study age standard deviation (SD) whilst vertical whiskers denote 1/f β SD. Study numbers (white, black) only differ to enhance readability. ‘lf’ and ‘hf’ denote
low and high frequency slope estimation ranges. For visibility, only global AEs are shown, whilst converted HE may include regional measures as the only recording
sites available.
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HE. Overall, the HE lifespan trend entails mostly subtle increases in HE
with age, differing depending on the band examined and falling within a
range of 0.60–0.80 (non-stationary and persistent).

3.4. Aperiodic/power law exponents: Infancy-Young adulthood

For the AE/PLE synthesis, thirty-six studies were included: five
containing infants, two containing toddlers, ten containing children, five
containing adolescents and fourteen containing young adults. Infant AE

Fig. 3. Consistency of the (A) global aperiodic exponent (μV2 Hz− 1) across global and regional scales and (B) focusing explicitly on the global trend of AEs across
lifespan stages. For studies where both EOR and ECR were available, only EOR was plotted, as to avoid excess overlap. (A) dotted lines indicate regional AEs, whilst
solid lines denote global AEs. Alpha encoding as in Fig. 2. Study numbers (white, black) only differ to enhance readability. (B) Colourisation by lifespan stage from
infancy-young adulthood. ‘lf’ and ‘hf’ denote low and high frequency slope estimation ranges.
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(typically >2.00) was higher than in any other lifespan stage for the
included studies and appeared to decrease throughout infancy. For
instance, Schaworonkow and Voytek (2021) described global AE de-
creases from 40 to 134 postnatal days with posterior maxima
(40–70days: 3.21, 70–96days: 2.95, 96–134 days: 2.75). In younger
infants (0.12 vs 0.81 yrs), Karalunas et al. (2022) observed EOR-ECR AE
averages that were maximal in themidline (2.48, Cz). Conversely, Carter
Leno et al. (2022) studied 10-month-old infants and identified global AE
of 1.50, with no significant regional AE differences nor age effects. By
contrast, the evidence from PLE studies showsmuch lower 1/f estimates;
during movie-watching, infant global PLE was ~0.58 for Roche et al.
(2019), considerably below global PLE observed by Fransson et al.
(2013) (2.07, occipital cortex).
The largest gap in the developing AE literature sits in toddlerhood;

toddler AE are the least characterised of the studied lifespan stages, with
only one study evident (Houtman et al., 2021), which described AE that
were maximal in the midline (~1.50–1.60). Additional insights were
gained from the toddler sub-cohort (N=5) of Cellier et al. (2021)
wherein steeper posterior (1.27–1.83) than frontal (0.47–1.81) AE were
observed. Moreover, Cellier et al., found that AEs significantly decreased
with age across their full cohort (3–24 yrs) from toddlerhood through
young adulthood (r = − 0.36).
In comparison with other lifespan stages, AE and HE have been best

characterised in childhood. Childhood studies recruited TD (McSweeney
et al., 2023; Tröndle et al., 2022; Cellier et al., 2021) and case-control
child cohorts for comparison with neurodevelopmental conditions
including ADHD (Peisch and Arnett, 2022; Arnett, et al., 2022a,b) and
Fragile X syndrome (Wilkinson and Nelson, 2021). Childhood AE studies
show higher AE than in infancy-toddlerhood, shifting from negative
linear AE decay to a positive trend from early to late childhood. Studies
in overlapping ages for early (Wilkinson and Nelson, 2021; Robertson
et al., 2019; Peisch and Arnett, 2022; Hill et al., 2022) and late child-
hood (Tröndle et al., 2022; Ostlund et al., 2021; McSweeney, 2021) are
generally in agreement in terms of both the direction and range of AE,
for both ECR and EOR (Fig. 2B) and regional versus global (Fig. 3A)
respectively. This was also consistent with figure estimates for studies
where data could not be directly obtained (Houtman et al., 2021). Two

studies provided statistical evidence of a negative age-related AE trend;
firstly by Peisch and Arnett (2022) in younger children (r =-.30,
consistent with previous overlapping work: Arnett et al., 2022a,b), and
secondly by McSweeney et al. (2023) in older children where a
quadratic age-related AE decrease was observed, and ECR AE (1.77)
significantly exceeded EOR (1.53) (a trend shown in other studies across
the early lifespan, see Fig. 2B).
Two studies in childhood which have both AE data for ECR and EOR

demonstrated these conditions to be comparable (Hill et al., 2022;
Ostlund et al., 2021), alongside single-condition data (typically EOR)
from other studies in this stage (Fig. 2B). Equally, two studies with AE
measures for both global and regional scales highlighted comparability
across scales (Wilkinson and Nelson, 2021; Hill et al., 2022), with
similar trajectories evident based on combined data from other studies
as in Fig. 3A (Robertson et al., 2019; Ostlund et al., 2021; Peisch and
Arnett, 2022; Tröndle et al., 2022; McSweeney et al., 2021). Significant
relationships between AE for both scales have also been reported for
EOR but not ECR (Hill et al., 2022): [global] r = − .24, [regional]
anterior: r = − 0.28, central: − 0.24, posterior: − 0.35). Topographically,
AE maxima in late childhood seem to be parietal dominant (Peisch and
Arnett, 2022; Tröndle et al., 2022).
In adolescence, three studies provided quantitative evidence for age-

related AE decreases (Ostlund, 2021; McSweeney, 2021; Karalunas,
2022), with additional support for this decreasing trajectory in
sub-cohort data from Cellier et al. (2021). Age-related decreases are
observed for both ECR and EOR (Ostlund et al., 2021; McSweeney et al.,
2021), with lower AE observed in females, and faster age-related flat-
tening observed in males (McSweeney et al., 2021). Given the collin-
earity between EOR and ECR, some authors opted to average across
conditions (Ostlund et al., 2021). Topographic data was only available
from one study (Karalunas et al., 2022), highlighting AE maxima in the
central midline and lateral electrodes (extending more frontally and
laterally in higher density caps), with lower adolescent AE than in the
study’s infant sample.
A more complex trend is observed during YA, with divergent lines of

evidence suggesting an increased versus decreased age effect when
taken as a whole. Early YA resting-state PLE studies report considerably

Fig. 4. Illustrative regional maturation of the aperiodic exponent (μV2 Hz− 1) with age. Due to limited access to study data for studies in each lifespan stage, topoplots
have been generated from available eyes-open rest (EOR) data (references: #1, #9, #11, #15, #2 respectively). For the toddler topoplot, transparency edits to the
corresponding published topoplot were made as the data were not publicly available or supplied on request.
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lower estimates than studies leveraging methods accommodating for
oscillatory peaks to derive AE. For example, Smit et al. (2013) identify
EOR PLE maxima in the central midline (0.20–0.40) whilst Muthuku-
maraswamy and Liley (Muthukumaraswamy and Liley, 2018) use IRASA
to account for knees in the spectra by modelling multiple slopes, iden-
tifying global AE of 1.36 (β1:0.1–2.5 Hz, frontal maxima) and 1.48
(β2:20–100 Hz, central maxima) respectively. AE studies cluster be-
tween 1.30 and 1.60, similar to the range described by Merkin et al.
(2023), irrespective of whether FOOOF (Donoghue, 2020; Pathania,
2021; Pathania et al., 2022; Zsido et al., 2022; Cross et al., 2022), IRASA
(Muthukumaraswamy and Liley, 2018) or other methods (Barry and De
Blasio, 2021) are utilised, and with similar patterns for ECR and EOR,
though ECR AE remains higher. Two exceptions to this are noted (Ke
et al., 2022; Immink et al., 2021), with one of these (Immink et al., 2021)
identifying ECR AE estimates falling within the tentative infant AE range
(>2.00). Merkin et al., also noted that regional (but not global)
age-related AE changes were significant when accounting for peak pa-
rameters and goodness of fit and did not differ by region.
In YA, the magnitude of ECR AE exceed that of EOR AE (Pathania

et al., 2022; Cross et al., 2022; Barry and De Blasio, 2021), and topo-
graphical maxima centre around the central and frontal regions
(Pathania et al., 2022; Barry and De Blasio, 2021), with an indication
that this is more commonly frontal dominant (Ke et al., 2022). The
differences in regional AE are smaller than in other lifespan stages, thus
differences between these maxima (e.g. parietal - (Pathania et al., 2021)
vs occipital - (Pathania et al., 2022) are unlikely to reflect biological
differences.

4. Discussion

In this systematic review, we aimed to explore how and when EEG
derived 1/f measures change in early human development, and where
variability within early lifespan stages exists. We found that AE and HE
age-related changes have complex developmental patterns; (1) HE
consistently exceeded 0.50 across development, suggesting persistent
and non-stationary signals throughout the early lifespan (2) provisional
evidence suggests AEs decrease throughout infancy (i.e. an increased
excitation:inhibition ratio) prior to the AE varying within confined
ranges across subsequent development, (3) this pattern is generally
consistent across AE methods, (4) the magnitude of ECR AEs exceed that
of EOR AEs throughout early development (with overlapping trends
observed), (5) heterogenous post-infancy AE changes do not differ be-
tween global or regional scales and (6) a posterior-anterior shift in
maximal AE occurs from infancy through young adulthood.

4.1. Further evidence is required to determine age-related AE trends

Despite the influence of narrowband oscillations on slope fitting and
exponent estimation, PLEs show age-related decreases (Waschke et al.,
2017). We find that AE changes non-linearly from childhood onwards, a
finding in line with large child AE datasets in both the EEG (Cellier et al.,
2021; McSweeney et al., 2023) andMEG (Thuwal et al., 2021) literature.
However, several other EEG studies fail to identify global (Merkin,
2023) or regional age-effects (Hill et al., 2022). As recent evidence
suggests that the balance of E:I in early infancy may have key implica-
tions for brain development and function across the lifespan, infant AEs
can provide an important early non-invasive marker of the integrity of
functional brain activity. However, comparison of infant AE with AE in
later life is likely to be affected not only by changes in neural activity
across development, but also by non-neural changes to anatomy,
including developmental changes to skull thickness, and changes in CSF
volume, effects which will collectively impact the conductive properties
of the skull in combination with progressive closure of the cranial su-
tures and fontanelles (posterior, anterior). As a result, this will impact
AE estimation based on observed PSDs measured at the scalp. Currently,
the provisional evidence available shows age-related decreases in global

AE from the first several weeks after birth in term-born infants, however,
there are significant gaps in the literature, particularly in mid and late
infancy. Recently, Rico-Picó et al. (2023) identified early decreases in
global AE (6–9 months) and flattening thereafter (9–18 months), a
finding also observed by Brandes-Aitken et al. (2023). High AE in early
infancy may reflect that a larger proportion of early infant EEG spectral
power is concentrated in lower frequency ranges, with relatively lower
power at higher frequencies (Marshall et al., 2002; Saby and Marshall,
2012), leading to a steep spectral slope. The precise biology underlying
these differences across this period is unclear but may represent
regionally-varying maturational increases in glutamatergic receptor
density (Johnston, 1995; Behuet et al., 2019) and glutamate (Kreis et al.,
2002) and GABA concentration (Laurie et al., 1992; Turgeon and Albin,
1994; Kreis et al., 2002; Pinto et al., 2010; Xu et al., 2011; Behuet et al.,
2019) which co-occur with the evolution of local circuitry and the rapid
establishment of long-range connectivity. Importantly, the observed AE
maturational trends appear robust regardless of the behavioural state of
the infant during data collection (Schaworonkow and Voytek, 2021;
Karalunas et al., 2022). However, we acknowledge that this area re-
quires further systematic study as a combination of state, data quality
and preprocessing approaches could have influenced the findings.
In toddlerhood, AE are less well characterised, which impedes the

interpretation of a qualitative ‘trajectory’ of AE development thereafter
(particularly given the complex patterns of AE variability observed in
childhood). A preprint by Wilkinson et al. (2023) partially addresses this
toddler AE gap, charting resting AE from 2 to 44 months, highlighting
considerably flatter spectra than we observe here, with AE rising from
1.00 to 1.20 (0–1200 days) and age-sex interactions being evident. Ev-
idence from this work suggests that AE increases persist through infancy
and toddlerhood. Similarly, Witteveen et al. (2023) identified progres-
sive PLE slope increases in infancy and term-preterm PLE differences,
though as previously discussed, PLEs do not account for the effect of
oscillations on the 1/f slope so may differ from AE. Physiologically,
increased postnatal AEs (higher inhibition/lower excitation) are in
keeping with the axiom that postnatal GABA-related activity shifts from
excitatory (depolarising) to inhibitory (hyperpolarising) postnatally due
to changes in intracellular chloride concentrations (Ben-Ari et al., 2007;
Kirmse et al., 2015; Ben-Ari and Cherubini, 2022). However, as this
GABA shift occurs in immature neurons, E:I balance later tilts towards
excitation (during or following late infancy) as circuits and networks
mature and glutamate signalling predominates. Whether net excitation
or inhibition initially dominates activity in the developing brain is
frequently disputed: evidence from rodent (postnatal days 2–12) and
newborn infant frontal EEG (35–46 postmenstrual weeks) 1/f data show
higher AEs are observed with increasing age (Chini et al., 2022),
possibly due to a more protracted integration of interneurons (relative to
pyramidal neurons) into emerging circuits. Rodent data suggests that
cortical GABAergic neuron cell fraction does not appear to change from
early embryonic development until adulthood (Sahara et al., 2012),
suggesting that changes in connectivity and glutamatergic cell density
may be more focal influences of developing E:I balance. From childhood
to young adulthood an age-related decrease in EEG AE in the DLPFC has
been observed which was associated with glutamate but not GABA MRS
measurements (McKeon et al., 2024), coinciding with evidence sur-
rounding GABA concentrations stabilising in early life (Sahara et al.,
2012).
Furthermore, there is currently no consensus on whether at the

earliest point in infant development E:I balance tilts more towards
excitation or inhibition, as AE coverage in this window is limited. Wil-
kinson et al. (2023)’s data suggests that all regional AEs but temporal
AEs increase during infancy, whilst temporal AE decreases prior to a
nadir ~400 days, before increasing. Overall, these data and our findings
agree that infant AE maxima are in the posterior channels overlaying
occipital regions. However, our findings differ as to the direction of
expected regional/global AE. Whilst beta frequency range peaks
(10–20 Hz) in Wilkinson’s data may have affected AE estimation, the
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authors performed comprehensive model fit screening. They modified
slope fitting functions in order to accommodate peaks, whereas
modelling of knees or multiple slopes as in other work (Shuffrey et al.,
2022) may have produced different findings. Rico-Picó et al. (2023)
identified similar beta peaks which they attributed to muscle artefact
and thus truncated their frequency spectrum: it would be beneficial to
see how such the same truncation for the Wilkinson et al. (2023) data
might affect AE estimates. A small number of other studies in this review
parameterised a frequency range as widely as Wilkinson et al. (2023)
using FOOOF (Robertson et al., 2019; Arnett et al., 2022a,b; Wilkinson
and Nelson, 2021; Ostlund et al., 2021) with the majority parameter-
ising at or below 40 Hz. Spectral widths are likely to vary develop-
mentally (see Supplementary Material IV for the range variability
between datasets, e.g. 1–10 Hz, 1–25 Hz, 1–40 Hz), with greater
higher-frequency contamination in younger subjects owing to move-
ment and muscle artefacts, which are not readily mitigated through
instructions (e.g. for infants and toddlers). Moreover, the inclusion of
higher frequencies (assuming such noise is mitigated and noise har-
monics do not remain in the data) adds a source of largely excitatory
contributions, and thus can affect E:I balance, and consequently AE
estimation. Whilst observed differences between infants-toddlers and
those of later ages are likely not simply due to such discrepancies in
higher frequencies (as their power contributions decrease exponen-
tially), this is nontrivial. Many groups do validate whether AE changes
depending on spectral widths (e.g Schaworonkow and Voytek, 2021),
but generally, this is rarely explicitly stated or evidenced in many
publications. However, differences in electrical impedance and data
quality during recordings and decisions made during pre- and
post-processing leading up to AE estimation can all impact the estimate
observed.
Other factors will influence AE estimation, with varying degrees of

impact, including relatively minor influences such as the choice of
power estimator across frequencies (i.e. Welch vs multitaper) to larger
influences such as choices of filters during preprocessing, the parame-
terisation of inflection points in the spectrum and the number of peaks
(and specification of their associated height and width) to fit using a
given model. Ultimately, the validity of AE is entirely dependent on this
fit being optimal. Whilst some of these decisions can be literature-led
based on similar age ranges, there is no substitute for assessing (a) the
quality of data, including its’ SNR, (b) visualising data directly to inform
these decisions around modelling spectral ‘’knees’ and oscillations and
(c) rejecting poor model fits, so that whether relating individual channel
AE or global AE to a measure of interest, estimates are as meaningful as
possible. Overall, future AE research should seek to provide robust es-
timates of AE, most crucially, as we have shown, during the neonatal
period, identifying whether age-related decreases occur from the
beginning of the neonatal period and continue through to late infancy.
One approach to address this involves visualising pooled individual-
level data across studies to get an accurate consensus of how AE varies
within given stages (e.g. infancy) and, consequently, how variable it
becomes across lifespan stages into adulthood. Importantly, the results
of the group-level analysis reported here suggest that such an analysis
should consider differing methodologies and model-fitting parameters
to make robust comparisons.

4.2. Comparable AE results across methods

In contrast to early infancy, synthesising AE patterns across methods
in subsequent childhood suggest that AE estimationmethods are broadly
comparable (except for converted HE): in YA in particular, FOOOF,
IRASA, PawWNextra and PLE estimates overlap from 0.77 to 1.93. HEs
differ in that whilst they inform us about the temporal persistence of
EEG activity patterns (revealing when patterns become conserved across
time), HEs are agnostic to the direction of change and tilting of the E:I
balance spectra and thus only partially explain how E:I shapes evolving
functional circuits/networks. Moreover, converted HE show substantial

differences vs AE measured directly, likely as a result of: (1) many HE
being characterised via DFA based on amplitude envelopes of specific
bands (particularly papers from >2012), (2) time domain effects
occurring due to reduced sampling windows and recording lengths, (3)
data self-similarity whichmust be verified in source data for DFA and (4)
conversion assuming DFA scaling exponents (⍺) are Gaussian (i.e. >0.5
or < 0.5) and not Brownian (~0.5)(Eke et al., 2002). Finally, (5) the HE
does not accommodate for oscillatory influence, and thus similar to
PLEs, converted AE will provide potential over- or underestimates of the
true AE, potentially providing physiologically implausible estimates
akin to what has been described in the frequency spectra literature
(Barry and De Blasio, 2021). Across the lifespan, HE studies consistently
show persistent (0.50<HE<1.00), non-stationary (HE>0.50) patterns in
each lifespan stage, reminiscent of sustained processing during mea-
surement, and notably, of properties of a system with memory whose
signal is exhibiting positive correlations over time (Hardstone et al.,
2012). Only Sleimen-Malkoun et al. (2015) study suggested
non-stationarity (1>⍺>2, therefore HE=⍺-1) in the EEG during rest. It
is, however, worth noting that detecting developmental changes in HEs
requires both large subject samples and (noise-free) long epochs (Ber-
thouze et al., 2010) in order to characterise temporal correlations at
multiple scales. This is all the more poignant given the individual vari-
ation in long-range temporal correlations within and across subjects
(Linkenkaer-Hansen et al., 2007). Whilst the HE has been studied more
deeply in adults, larger AE studies tend to focus on childhood. The HE
studies captured by this systematic review were generally monofractal
(a single scaling behaviour describes the trend) or equivalent multi-
fractal measures (H(2)), though recent studies have tended to focus on
multifractal EEG dynamics (wherein multiple scaling behaviours within
a given temporal window are evident), potentially offering insights into
more complex non-stationary scaling behaviours in EEG data (Zorick
and Mandelkern, 2013); these methods thereby index E:I proxies at
multiple temporal scales, akin to estimating 1/f slopes across multiple
frequency ranges.

4.3. ECR consistently exceeds EOR AE

When focusing on AEs specifically, there was consistent evidence
that the magnitude of ECR AEs exceeded that of EOR AEs across the
lifespan, indicating there is, in fact, a difference between the underlying
governing of neural activity in response to cues related to keeping the
eyes open or closed. Furthermore, experimental instructions could also
influence the net neural activity that comprises the observed PSDs and
resultant estimation of AEs. Whilst this example is illustrative for dif-
ferences in a seemingly benign case of “resting-state”, one can consider
what more value-laden or association-rich wording differences in in-
struction may make under task conditions. Childhood studies showed
marginal AE increases in later (Hill et al., 2022; Tröndle et al., 2022;
McSweeney et al., 2021) versus earlier (Robertson et al., 2019; Wil-
kinson and Nelson, 2021) childhood (for both EOR/ECR), although this
may reflect greater between-dataset variability rather than genuine AE
increases preceding a prolonged age-related decline. Across early
development, the greater magnitude of ECR vs EOR AE is driven not only
by posterior-dominant alpha band activity (Wilson et al., 2022) but also
activity in other frequency bands (Barry et al., 2007). Whilst some au-
thors using other methods report FOOOF AEs are greater in EOR than in
ECR, such as SPRiNT (Wilson et al., 2022), our findings consistently
show that studies using FOOOF, IRASA and PaWNextra find ECR AE to
exceed that of EOR. Moreover, both EOR and ECR AEs follow similar
trajectories suggesting these ‘resting’ E:I processes mature in similar
ways, consistent across both regional and global scales.

4.4. Regional vs Global AE

For the most part, global AE magnitude exceeds that of regional AEs
(Fig. 3A), likely owing to the average rate of AE decrease across the scalp
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remaining constant across development whilst regional AE differs (as
maturing regions shift developmentally). For example, regional changes
in AE are apparent in early childhood, but equilibrate before YA and
thus the neurobiological changes underlying AE changes during mature
ageing are likely physiologically distinct from those in the earlier life-
span (Merkin et al., 2023). For example, using simultaneous EEG-fMRI
during EOR, Jacob et al. (2021) identified posterior parietal AE max-
ima (~1.60) in adults, with global average AE (1.49) being associated
with decreases in frontal and increases in cerebellar, insular and
cingulate blood-oxygen-level-dependent fMRI activity. In later life,
Aggarwal and Ray (2023) identify there are no age-related MEG AE
differences in younger versus older adults up to 50 Hz, but from 64 to
140 Hz AE decreases and from 230 to 430 Hz increases (higher inhibi-
tion), collectively suggesting that suPathabtle GABAergic changes may
occur in later life outside of spectral ranges accessible to EEG. Moreover,
whilst AE maturation may taper in earlier development, AE develop-
ment is not static thereafter. Differences between mid and older adults
were evident in posterior channels, similar to what is observed in early
development, suggesting that network hubs established in infancy are
also the last to change during later ageing. However, it is worth
considering that when producing regional estimates to inform network
maturation, selecting spatially neighbouring high SNR channels is vital
(Linkenkaer-Hansen et al., 2001). Therefore, whether estimating
regionally or globally, researchers should utilise model fit statistics to
ensure adequate representation of underlying neural data. Currently,
only a minority of studies report model fits and fewer still include fits as
covariates. Given the need to systematically validate lifespan AE, we
consider model reporting to be vital to ensuring accurate characterisa-
tion of developmental trajectories.
As to whether global versus regional AE are of greater utility, this

will ultimately depend on the question under examination. For example,
if the focal question centres upon sensorimotor development in infancy,
then examining AE maturation within a region of interest comprising a
subset of central electrodes constitutes a sensible approach. Alterna-
tively, a researcher may be examining a phenotype in late childhood
wherein no a priori brain source is implicated (or equally, where a
network of spatially distributed sources is implicated) and thus uti-
lisation of a global AE metric would be more appropriate.

4.5. Regional AE maxima shift across typical development

Topographical E:I maxima by definition relate to spectra with lower
E:I balance (steeper AE spectra) relative to the rest of the brain, which in
the absence of a stimulus (endogenous or exogenous) may suggest
ongoing regional maturation (as opposed to flatter spectra and greater
neural “noise” in ageing and pathology (Dave et al., 2018; Pertermann
et al., 2019), or regions involved in networks which are more selectively
held at baseline during conditions of rest. Understanding where AE are
maximal (and neural noise minimal) provides insights into which re-
gions are potentially undergoing maturational changes, which must first
be characterised in TD to provide a referential maturational trajectory.
We find that typical AE maturation displays a posterior-to-anterior shift
in ageing (PASA), similar to the fMRI literature, with age-related re-
ductions in occipital activity concomitant with increasing frontal ac-
tivity (Davis et al., 2008; McCarthy et al., 2014). In longitudinal infant
data at 6, 9 and 16 months, Rico-Picó et al. (2023) show AE decreases
more slowly in occipital (maximal) and frontal versus parietal and
central areas. These AE changes temporally coincide with white matter
maturation and ongoing activity integration in the toddler as sensori-
motor skills emerge (Hagmann et al., 2010). From childhood to late
adolescence, the difference between posterior and anterior AE seems to
grow with age across both sleep and wake, being the strongest in the
second stage of sleep (Favaro et al., 2023). fMRI FC maturation at this
point in development follows a sensorimotor-association gradient where
primary sensory maturation precedes that of frontal executive and as-
sociation areas (Sydnor et al., 2023). Overall, AEs demonstrate PASA in

line with prior neuroimaging evidence, and accordingly, centro-frontal
regions seem to be the maturational ‘endpoint’ for early AE develop-
ment (with the lowest neural noise), perhaps supporting an increasing
processing requirement for cognitive function.

4.6. Limitations and future work

This review highlights the complexity of characterising group-level
age-related AE changes across studies, methods, and spatial scales.
Given the heterogeneity in AE estimates, AE must be estimated on
relatively noise-free data (minimal evidence of physiological/non-
physiological artefacts including eye movements, electrode bridging,
line noise, cardiac and respiratory signals or sweat-induced artefacts).
Simulation work suggests SNR>2 are appropriate for determining HEs
(Linkenkaer-Hansen et al., 2007). SNR may also be influenced by
equipment selection, particularly for acquisitions with reduced chan-
nels, poorer contact quality and/or more flexible sensors, designed for
‘active’ paradigms (see Grummett et al., 2015). There are further in-
fluences due to data constraints and processing decisions, including the
effect of window length on smoothing, affecting peak estimates. Data
reference schemes will also affect PSD and AE estimates (Gao et al.,
2017), for which most included studies used average referencing (see
Table 1 and Supplementary Material IV). Equally, filtering decisions
affect the frequency range available for exponent estimation; as others
have shown, estimations on lower versus higher frequency slopes differ
(Shuffrey et al., 2022; Muthukumaraswamy and Liley, 2018) and may
have different physiological interpretations in the contexts of neuro-
development and pathophysiology. In addition, motion is generally
unavoidable in infants and children, who may not tolerate prolonged
recording periods, hindering attempts to use epoch averaging to in-
crease SNR.
AE estimation methods must, therefore, be valid for the applied

dataset(s) and comparable with prior studies. For instance, when
comparing FOOOF and IRASA results, a consideration is that IRASA
evaluates spectral ranges beyond the fitted range in order to compute
median AE using resampling factors (Gerster et al., 2022). Therefore,
comparing results by exact frequency mapping results in evaluating
upper or lower limit ranges which may be affected by filtering or noise,
thus biasing AE estimation. Fortunately, IRASA and FOOOF AE esti-
mates in this review overlap heavily, but this is nonetheless a consid-
eration. Moreover, Gyurkovics et al. (2021) highlight that neural
variability as captured by the 1/f β may differ between age groups, and
spectra calculated from longer epochs (or averages) may be optimal for
FOOOF as shorter single-trial spectrum models can overfit noise (due to
the number of free parameters). For specific limitations and strengths of
either method, see Gerster et al. (2022). Other tools for parameterising
the AE have been introduced recently, but these have yet to be applied to
resting scalp EEG (Seymour et al., 2022). Beyond methodological
choices, AEs may also change based on genotype, task paradigm, and
cognitive state (He, 2014; Voytek and Kramer, 2015; Donoghue et al.,
2020), hence the focus on quasi-resting states and typical development
in this review. The reviewed literature discussed provided (predomi-
nantly) cross-sectional measures of AE across development. However,
the AE varies both statically across (e.g. 0.68–2.77 in (Tröndle et al.,
2022) and dynamically within individuals (during recordings), espe-
cially in task-specific contexts. For example, Wilson et al. (2022) show
that the AE varies over time in the resting-state, with YA AEs predictive
of subject state (EOR vs ECR). Ultimately, more complex modelling may
be required to evaluate how AE variation within-individual differs from
results observed across individuals. Moreover, we suggest that the
pooling of individual datapoints from constituent studies and a quanti-
tative analysis thereof may better distinguish how age (and sex) influ-
ence biological AE changes across the lifespan.
Whilst individuals in our included studies may go on to attain di-

agnoses for one or more phenotypes, we worked from the basis of these
individuals being TD at the point of measurement and from the
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published data. As more TD AE data becomes openly shared and built
into trajectory models for AE maturation, and comparative non-TD
trajectories characterised, future studies will be able to delineate crit-
ical junctures for deviation in a phenotype-specific or individual-specific
manner to further our understanding of how altered AE is associated
with non-TD phenotypes. Whether or not AE has sensitivity as a
biomarker remains to be seen; particularly as it is likely single AE values
from global or regional sources may be insufficient to identify an indi-
vidual as developmentally atypical for their age. AE may have potential
as stratification biomarkers in conjunction with psychometric and/or
clinical data.
In addition to limitations inherent to the methods of studies included

in the review, there are limitations to the review itself. Given the sparsity
of effect size measures for AE and age (age*AE correlations or age-
related mean group differences between EOR and ECR AE) it was not
possible to produce a meaningful meta-analytic measure of age-related
AE change. In addition, our inclusive search approach (including
searches for terms relating to fractal measures to ensure sufficient HE
data was sourced to provide adequate converted comparisons) resulted
in significant heterogeneity. The suitability of including infant AEs
where participant attention was captured using “toys” (Carter Leno
et al., 2022) as a “resting” AE measure could be disputed. However, we
perceive this to be a necessary means to engage young infant partici-
pants and minimise motion, and in the trajectories we have qualitatively
illustrated, these AE estimates are consistent with a trend of decreasing
AEs from infancy towards childhood.
Whilst there is some evidence supporting the notion that 1/f mea-

sures are relevant to understanding E:I shifts (Gao et al., 2017), two key
aspects bear consideration. Firstly, AE methods must be used within the
contexts of the limits of data they are fitted to, many errors of which can
be avoided by inspecting PSDs before fitting models to ensure oscilla-
tions are not masking the onset of the spectral plateau. Accordingly, this
avoids missing or overparameterizing peaks (including using cutoffs
where oscillations are only partially visible, as these will bias AE esti-
mates) which in turn affect AE estimates and avoids over- or underfitting
models. These suggestions have been raised previously by Gerster et al.
(2022) and are immensely relevant given they impact interpretations of
age-specific states of E:I balance. As Figure 8 of Gerster et al. (2022)
demonstrates, FOOOF and IRASA are indeed highly comparable,
although discrepancies are seen when high amplitude low-frequency
peaks arise (<10 Hz) or multiple peaks overlap, and the spectral
plateau onset ends prematurely. However, many such concerns can be
mitigated by ample spectral screening and appropriate choice of the
frequency range, peak width and height, and number of peaks selected.
Further validation of such choices could also include the use of sensi-
tivity analyses. Secondly, the spatial scale (regional, network or global)
at which E:I is governed by 1/f and to what extent this occurs is yet
unknown, as is the correspondence between pharmacological modula-
tion of E:I in vivo and changes in 1/f (AE). Whilst administration of
GABAAR agonists has been shown to increase delta bandpower and
depending on the drug, power across other frequencies (Yamamoto
et al., 1985; Christian et al., 2015), controlled pharmacological modu-
lation of known excitatory and inhibitory targets does not always yield a
shift in AE in the anticipated direction (ketamine: (Waschke et al., 2021;
Salvatore et al., 2024), picrotoxin, bicuculline: (Salvatore et al., 2024),
whilst in other cases, it corresponds with the known mechanism of ac-
tion of the pharmacological agent (pentobarbital: (Salvatore et al.,
2024), diazepam: (Gonzalez-Burgos et al., 2023; Salvatore et al., 2024),
MK801: (Gonzalez-Burgos et al., 2023). Drug action on AE magnitude
also appears to vary based on sleep state (Salvatore et al., 2024), Drug
action on AE magnitude also appears to vary based on sleep state (Sal-
vatore et al., 2024), for both induced (Leroy et al., 2023) or natural sleep
(Favaro et al., 2023). Furthermore, in attributing a potential 1/f to E:I
relationship based on neural sources, we must consider the
co-modulation of 1/f owing to other physiological sources, such a
recently highlighted link between brain 1/f and respiratory rhythm

(Kluger et al., 2023).

5. Summary

In summary, this review demonstrates that age-related AE changes in
early development are complex. However, there are significant gaps in
the data which currently prevent the robust establishment of age-related
directions of change and reliable AE ranges, particularly in infancy and
toddlerhood. We identify consistent AEs across methods and scales and
confirm higher values of ECR than EOR, as well as developmental
changes in AE maxima. Our review exclusively characterises the matu-
ration of AEs in the resting state. Thus, specific task-related AE changes
across the lifespan remain to be explored. As AE data is made available
to the community, we can collectively extend the findings of this review
to advance knowledge of how E:I shapes FC in early development.
Moreover, characterising typical AE development provides a point of
reference for exploring atypical development in which early life E:I
balance is perturbed, where AEs may serve as a potential non-invasive
biomarker.
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