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Tissue volume estimation and age 
prediction using rapid structural 
brain scans
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The multicontrast EPImix sequence generates six contrasts, including a T1-weighted scan, in ~1 min. 
EPImix shows comparable diagnostic performance to conventional scans under qualitative clinical 
evaluation, and similarities in simple quantitative measures including contrast intensity. However, 
EPImix scans have not yet been compared to standard MRI scans using established quantitative 
measures. In this study, we compared conventional and EPImix-derived T1-weighted scans of 64 
healthy participants using tissue volume estimates and predicted brain-age. All scans were pre-
processed using the SPM12 DARTEL pipeline, generating measures of grey matter, white matter and 
cerebrospinal fluid volume. Brain-age was predicted using brainageR, a Gaussian Processes Regression 
model previously trained on a large sample of standard T1-weighted scans. Estimates of both global 
and voxel-wise tissue volume showed significantly similar results between standard and EPImix-
derived T1-weighted scans. Brain-age estimates from both sequences were significantly correlated, 
although EPImix T1-weighted scans showed a systematic offset in predictions of chronological age. 
Supplementary analyses suggest that this is likely caused by the reduced field of view of EPImix 
scans, and the use of a brain-age model trained using conventional T1-weighted scans. However, this 
systematic error can be corrected using additional regression of T1-predicted brain-age onto EPImix-
predicted brain-age. Finally, retest EPImix scans acquired for 10 participants demonstrated high test-
retest reliability in all evaluated quantitative measurements. Quantitative analysis of EPImix scans 
has potential to reduce scanning time, increasing participant comfort and reducing cost, as well as to 
support automation of scanning, utilising active learning for faster and individually-tailored (neuro)
imaging.

EPImix.  A new multicontrast magnetic resonance (MR) pulse sequence has been developed, named 
EPImix1. This sequence utilises single-shot echo-planar imaging (EPI) and different magnetisation prepara-
tions to rapidly generate six contrasts; T1-FLAIR (fluid attenuated inversion recovery), T2-FLAIR, T2-weighted, 
T2*-weighted, diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) (for full acquisi-
tion details, see Skare et al.1). The EPImix sequence has lower signal-to-noise (SNR) ratio and resolution than 
standard MRI sequences1, resulting in lower image quality ratings than routinely collected corresponding MR 
scans2,3. However, the main benefit of this single-shot, multicontrast sequence over routinely acquired individual 
MRI sequences is its speed. The EPImix sequence is faster than corresponding single-contrast sequences because 
of its lower matrix size and because an EPI readout is more SNR-efficient than analogous fast spin echo (FSE) 
readouts1. This multimodal sequence can acquire full brain coverage in 78 seconds, relative to the ~750 seconds 
needed to collect these six contrasts using standard MRI sequences2,3. In addition to being more cost effective4, 
shorter scanning times improve participants’ comfort and reduce motion5, potentially resulting in less unusable 
data, especially for clinical populations6. The EPImix sequence also generates multiple types of MR contrasts, 
therefore capturing more tissue characteristics than standard parametric mapping2,3.

OPEN

1Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 
London, UK. 2Department of Computer Science, Centre for Medical Image Computing, University College 
London, London, UK. 3Dementia Research Centre, Institute of Neurology, University College London, London, 
UK. 4Department of Forensic and Developmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, 
King’s College London, London, UK. 5Centre for the Developing Brain, School of Biomedical Engineering and 
Imaging Sciences, King’s College London, London, UK. *email: frantisek.vasa@kcl.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14904-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12005  | https://doi.org/10.1038/s41598-022-14904-5

www.nature.com/scientificreports/

Quantitative analyses.  To establish whether this new sequence has potential to reduce scanning time 
whilst producing similar derived measures, it needs to be quantitatively compared to corresponding routinely 
acquired MR scans.  (In this context, the terms quantitative and qualitative refer to the type of analysis used, 
rather than the type of MR scan. Specifically, qualitative measures refer to visual inspection of scans, whereas 
quantitative measures refer to analyses which employ numerical computations.) Previous research established 
that EPImix scans are comparable to conventional scans in the context of qualitative clinical diagnosis2,3. Moreo-
ver, our previous work compared EPImix and routine T1-weighted (T1-w) scans (Note that the EPImix sequence 
includes a T1-FLAIR contrast, while the “conventional” single-contrast scans were acquired using an IR-FSPGR 
sequence. Still, as both sequences are T1-weighted, we refer to both as such (as well as simply “T1-w”).) using sim-
ple rapidly-derived quantitative measurements, including image intensity and Jacobian determinants (obtained 
from the registration to Montreal Neurological Institute (MNI) standard space), and found high similarity in 
these rudimentary quantitative measures as well as their potential to identify inter-individual differences7. (Note 
that the EPImix sequence includes a T1-FLAIR contrast, while the “conventional” single-contrast scans were 
acquired using an IR-FSPGR sequence. However, both sequences are T1-weighted and are referred to as such [as 
well as simply “T1-w”].) We further demonstrated the utility of the multicontrast EPImix sequence to construct 
morphometric similarity networks (MSNs), which provide individual estimates of anatomical connectivity8, in 
minutes following participants entering the MRI scanner7. However, EPImix scans have not previously been 
compared to standard sequences using established quantitative structural neuroimaging measures such as esti-
mates of tissue volume9 or predicted brain-age, a putative biomarker of brain health10,11. Such quantitative meas-
ures likely reflect subtle inter-individual differences and provide a more thorough comparison between EPI-
mix and standard sequences than qualitative measures12 or potentially noisy estimates such as tissue intensity13. 
Moreover, the ability to derive commonly used quantitative measures from data acquired with faster imaging 
sequences, such as EPImix, has the potential to reduce scanning time, increasing participant comfort and reduc-
ing costs.

Active acquisition.  One potential application of the EPImix sequence is in active acquisition. Active acqui-
sition is a proposed type of data acquisition which would utilise active learning14 to analyse MRI data as it 
is acquired, with results used to guide further image acquisition, in a closed-circuit sequence15,16. This would 
remove the necessity of making a priori decisions about scanning parameters such as the type of scan, scan 
resolution and/or the scan location. Instead, these would be dependent on the individual inside the scanner, 
driving the selection of scanning sequences towards identification of individual differences or personalised clini-
cal diagnosis. In this way, active acquisition holds the potential for reduced scan time and improved accuracy, 
reliability and individualisation of (neuro)imaging16. The main feasibility obstacles to active acquisition are the 
speed of image collection as well as data processing and analysis; to realise the benefits of this multimodal adap-
tive approach, analyses need to be carried out in near real-time7,16. Due to the relative speed of the new EPImix 
sequence, it could contribute considerably to this process.

Quantitative comparison of EPImix and standard T1‑w contrasts.  Here, we focused on the T1-w 
EPImix contrast and compared it to a standard T1-w contrast at two levels. We first compared T1-w global and 
voxel-wise estimates of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) tissue volumes9. 
These tissue volumes vary as a function of age and are typically abnormal in many psychiatric and neurological 
populations17,18.

We then compared predicted brain-ages from EPImix and standard T1-w scans to assess whether EPImix 
can reliably detect the well-established relationship between healthy aging and changes in tissue volumes17,19. 
Predicted brain-ages are derived from a validated multivariate regression model that estimates the biological age 
of an individual brain directly from the imaging data. This estimate provides a useful summary of the large voxel-
wise spaces generated by standard high-resolution T1-w scans into a single interpretable value. The difference 
between the predicted brain-age and the true chronological age is a versatile measure that has been associated 
with cognitive ability11,20 as well as clinical status and severity, with significantly “older” brain-ages associated with 
traumatic brain injury (TBI)21, mild cognitive impairment (MCI) and Alzheimer’s disease (AD)22. Furthermore, 
predicted brain-age could be a better predictor of disease risk than chronological age20,23. For example, brain-age 
has been shown to be a reliable predictor of which individuals will develop AD24,25.

We expected quantitative measurements derived from EPImix T1-w scans, including global and voxelwise 
estimates of tissue volume as well as predicted brain-age, to be broadly comparable to analogous estimates derived 
from standard T1-w scans. Given the notable differences in the field of view (FoV) between EPImix and standard 
T1-w scans, the tissue volume and brain-age analyses were repeated with standard T1-w scans that had their FoV 
artificially reduced to match the FoV of the EPImix T1-w contrast. Finally, we assessed the within-session test-
retest reliability of the EPImix-derived estimates of tissue volume and predicted brain-age.

Methods
Participants.  EPImix scans (including a T1-w contrast) were acquired for 95 healthy participants across 
three studies that used the same MRI scanner; one participant with particularly reduced cortical coverage (due 
to reduced FoV of EPImix scans, discussed below) was excluded, resulting in EPImix scans from 94 participants 
(F: 47, M: 47) used for analyses. The age range was 18-59 years. The mean age of participants was 28.2 years, with 
a standard deviation of 9.2 years (female mean age: 27.5 ± 8.6 years; male mean age 28.9 ± 9.7 years). Of those 
94 participants, 64 (F: 32, M: 32) were also scanned using a standard high-resolution T1-w sequence. The age 
range of this subset of participants was 18-59 years; their mean age was 28.9 years, with a standard deviation of 
10.1 years (female mean age: 28.6 ± 9.6 years; male mean age: 29.3 ± 10.5 years); for details, see Supplementary 
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Information (SI) Fig. S1. All three studies received ethical approval from King’s College London’s Psychiatry, 
Nursing and Midwifery Research Ethics Committee (KCL Ethics References: HR-18/19-9268, HR-18/19-11058 
and HR-19/20-14585). All participants gave written informed consent to take part in their respective study. All 
experiments were performed in accordance with relevant guidelines and regulations.

MRI acquisition.  All scans were collected on the same General Electric (GE) MR750 3T scanner (Wauke-
sha, WI). EPImix scans were acquired from 94 participants, consisting of six contrasts (T2*, T2-FLAIR, T2, 
T1-FLAIR, DWI, ADC). Only the T1-FLAIR contrast was used in this study (referred to as the EPImix T1-w con-
trast), which was acquired with the following parameters: TE = 16.5 ms, TR = 1300 ms, TI = 582 ms, flip angle 
= 90°, matrix size = 180 × 180, FoV 240 mm, 32 slices, slice thickness = 3 mm, voxel resolution = 0.975 × 0.975 
× 3 mm, acquisition time 1 min 10 s. The EPImix sequence includes an in-scanner motion correction step1 and 
we used the motion-corrected images for analyses. For details regarding the EPImix sequence, see Skare et al.1. 
Additionally, for 10 participants a second EPImix scan was acquired during the same session, which was used to 
quantify test-retest reliability.

Additionally, conventional T1-w scans were acquired for 64 participants within the same session, using an 
inversion recovery-prepared fast spoiled gradient recalled-echo (IR-FSPGR) sequence. Of these, 12 scans were 
acquired with the following parameters: TE = 3.172 ms, TR = 8.148 s, flip angle = 12°, matrix size = 256 × 256, 
FoV = 256mm, 164 slices, slice thickness = 1 mm, voxel resolution 1 × 1 × 1 mm, acquisition time 2 min 54 s; and 
52 scans were acquired with the following parameters : TE = 3.016 ms, TR = 7.312 ms, flip angle = 11°, matrix 
size = 256 × 256, FoV = 270 mm, 196 slices, voxel resolution = 1.05 × 1.05 × 1.2 mm, acquisition time 5 min 37 s.

Pre‑processing and brain‑age estimation.  All brain scans were pre-processed using a SPM12 DARTEL 
processing pipeline26; including bias field correction, segmentation, registration to standard space (MNI152, 6th 
generation) via an intermediate study-specific template, and smoothing using a 4mm full width at half maxi-
mum (FWHM) kernel. This process generated voxelwise estimates of tissue volumes, including grey matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF). Global tissue volumes were calculated by summing 
across voxels in each tissue class.

The above processing pipeline was applied as part of the brainageR software, which was additionally used 
to obtain brain age predictions using voxel-wise estimates of GM, WM and CSF tissue volume. The brain-age 
model was previously trained to predict chronological age from conventional T1-w scans in 3377 healthy people 
aged 18-92 years, using Gaussian Processes Regression. For additional information about the brain-age model, 
see Cole27 and https://​github.​com/​james-​cole/​brain​ageR.

The reduced FoV of the EPImix acquisition used in this study resulted in imperfect cortical coverage in some 
participants; in particular, portions of the inferior temporal and/or superior parietal lobes were not consist-
ently scanned (SI Fig. S2). To investigate the potential impact of this reduced FoV on quantitative analyses, we 
repeated analyses using standard T1-w scans with artificially reduced FoV, to match the reduced EPImix FoV 
(within-participants). This was performed using affine registration (FSL FLIRT)28 of the standard T1-w scan to 
an upsampled version of the same participant’s EPImix T1-w contrast (resampled from the EPImix resolution of 
0.975 x 0.975 x 3 mm, to match the standard T1-w resolution of 1 x 1 x 1 mm, or 1.05 x 1.05 x 1.2 mm). Standard 
T1-w scans with artificially reduced FoV (T1-w FoVEPI) were then processed using the steps described above, for 
both tissue volume estimation and brain age prediction.

Processing was run on a Dell workstation (16-CPU 3.6GHz Intel Xeon, 128Gb RAM). Total processing time 
was recorded for each scan, including data processing using SPM12 and brain-age estimation. The processing 
time of EPImix T1-w scans was: median [1st, 3rd Quartile] (Md [Q1, Q3]) = 4.82 [4.75, 4.9] min; for standard 
T1-w scans, Md [Q1, Q3] = 7.61 [7.50, 8.17] min; for standard T1-w scans with reduced FoV, Md [Q1, Q3] = 5.42 
[5.37, 5.66] min (SI Fig. S3).

Statistical analysis.  Quantitative measures derived from EPImix T1-w scans, standard T1-w scans and 
T1-w scans with reduced FoV from 64 participants were compared using the Spearman’s correlation coefficient 
(rs). We first compared tissue volumes (for GM, WM and CSF) between sequences, both at the global and vox-
elwise levels. Voxelwise comparisons were restricted to voxels contained within the FoV of EPImix scans in the 
majority of participants (i.e. voxels with at least 0.001 mm3 tissue volume in at least 95% of participants).

Furthermore, we quantified the relationship between GM volume and participant chronological age, to ascer-
tain whether EPImix T1-w scans are equally sensitive as standard T1-w acquisitions to known decreases in GM 
volume in ageing17,19. To investigate whether associations between GM volume and age differ across contrasts, we 
additionally investigated differences in the strength of this association between pairs of contrasts using bootstrap. 
Specifically, we re-estimated Spearman’s rs, and r2, in 10’000 samples of 64 participants, sampled with replace-
ment from the original group. We subsequently obtained a distribution of the difference in Spearman’s rs, and 
r2, between all three pairs of contrasts (i.e. EPImix VS T1-w, EPImix VS T1-w FoVEPI, T1-w VS T1-w FoVEPI), as 
well as a corresponding 95% confidence interval. Inspecting whether the confidence interval includes 0 allows 
us to determine whether pairs of associations differ.

We next compared estimates of predicted brain-age to true (chronological) age, across sequences, using 
Spearman’s correlation coefficient (rs), the proportion of variance explained (r2) as well as the median absolute 
error (MAE). We also compared the predicted brain-ages between scan types.

As the correspondence between brain age predictions from standard and EPImix T1-w scans was imperfect 
(likely due to the brain-age model being trained on standard T1-w scans; see Results & Discussion), we explored 
the use of an additional regression step to optimise brain age prediction from EPImix T1-w scans. We used leave-
one-out cross-validation to regress T1-w predicted brain-age on EPImix-predicted brain-age (in 63 participants), 

https://github.com/james-cole/brainageR
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leading to an adjusted estimate of predicted brain-age in the remaining (left-out) participant. Repeating this 
approach by iterating across all participants enabled us to quantify the MAE (relative to chronological age) of 
this adjusted brain-age estimate.

Finally, to benchmark the relative ability of each scan type (T1-w, EPImix T1-w, T1-w FoVEPI) to predict brain-
age, we compared each MAE estimate to the MAE from the worst possible brain-age model. Our “null model” 
MAE estimate was based on an assumed prediction of the same brain-age for every participant, equivalent to 
the mean age of participants within the training dataset of the brainageR model (40.6 years); this led to a null 
MAE of 15.6 years. We then calculated the ratio of this null MAE to the MAE of each scan type, to estimate the 
extent of predictive improvement of each scan type relative to the worst possible model.

Most analyses were carried out using the sample of 64 participants for whom both EPImix and standard T1-w 
scans were available; additionally, some analyses focused on EPImix T1-w scans were repeated in the full sample 
of 94 participants – including the relationship between EPImix-derived GM volume and chronological age, and 
the correlation between EPImix-predicted age and chronological age (SI Fig. S4).

Test‑retest reliability of EPImix T1‑w scans.  Test-rest reliability of quantitative measures derived from 
EPImix T1-w scans was assessed using 10 within-session test-retest EPImix scans. Test-retest reliability was 
evaluated using the intraclass correlation coefficient; specifically, we used the one-way random effects model 
for the consistency of single measurements, i.e., ICC(3,1), hereafter referred to as ICC29. We quantified the test-
retest reliability of global tissue volumes (GM, WM and CSF), corresponding voxel-wise tissue volumes, as well 
as predicted brain-age.

All statistical analyses were carried out in Python 3.7.

Results
Tissue volume.  We first compared global brain volumes of conventional and EPImix-derived T1-w scans. 
We observed strong positive correlations between standard T1-w and EPImix T1-w scans, in both GM volume (rs 
= 0.84, p < 0.001; Fig. 1A) and WM volume (rs = 0.84, p < 0.001; Fig. 1B). Measures of CSF volume demonstrated 
a weaker positive correlation (rs = 0.56, p < 0.001; Fig. 1C). These results were qualitatively consistent when using 
T1-w scans with reduced FoV (Fig. 1D–F).

Figure 1.   Global tissue volume estimation across contrasts. Comparison of tissue volumes (grey matter, 
white matter and cerebrospinal fluid) between T1-w and EPImix (T1-w) scans with full field of view (A–C) 
and between EPImix (T1-w) scans and T1-w scans with reduced field of view (D–F). (Spearman’s correlation 
coefficient rs, p-value, r2 derived from Pearson’s correlation).
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We next compared voxelwise estimates of GM, WM and CSF volume between conventional and EPImix-
derived T1-w scans, in voxels with at least 0.001 mm3 tissue volume in at least 95% of participants. Predominantly 
positive correlations across participants were observed for all three tissue types. Similarly to global tissue volumes, 
correlations were strongest in the GM (median [1st, 3rd Quartile] (Md [Q1, Q3]) = 0.70 [0.52, 0.82]; Fig. 2A,B) 
and WM (Md [Q1, Q3] = 0.77 [0.62, 0.88]; Fig. 2C,D), followed by CSF (Md [Q1, Q3] = 0.53 [0.36, 0.70]; Fig. 2E,F).

Additionally, we quantified the relationship of global GM volume with age. GM volume decreased as a 
function of age, for estimates derived from standard T1-w scans (rs = −0.28, p = 0.027; Fig. 3A), EPImix T1-w 
scans (rs = −0.44, p < 0.001; Fig. 3B) and T1-w scans with reduced FoV (rs = −0.27, p = 0.032; Fig. 3C). Bootstrap 
sampling of participants demonstrated that the association between GM volume and age for EPImix T1-w scans 
is marginally stronger than corresponding associations estimated using GM volumes derived from T1-w scans, 
and T1-w scans with reduced FoV. For details, see Supplementary Information.

Brain age.  Following tissue volume analyses, we used a pre-trained Gaussian Processes Regression model27 
to quantify the relative ability of EPImix T1-w and standard T1-w scans to predict brain-age. As a first step, we 
compared the chronological (true) age of participants with their brain-age prediction from each type of scan. 
Standard T1-w scans showed a high correspondence between chronological and predicted age, including both a 
high correlation and low error (rs = 0.73, p < 0.001, MAE = 3.72 years; Fig. 4A). EPImix T1-w scans also showed 
a high correlation between chronological and predicted age (rs = 0.61, p < 0.001) but with a substantially higher 
error (MAE = 14.24 years), due to a systematic prediction offset (Fig. 4B). Additional analysis of standard T1-w 
scans with reduced FoV (to match EPImix) showed a similarly reduced correspondence between predicted and 
chronological age (rs = 0.36, p = 0.004, MAE = 13.05 years; Fig. 4C), suggesting that the poorer predictive ability 
of EPImix T1-w scans was likely caused by their reduced brain coverage.

Figure 2.   Voxel-wise tissue volume estimation across contrasts. Correlation between voxel-wise tissue volume 
estimates from T1-w and EPImix (T1-w) scans, and corresponding probability density plots, for grey matter (A, 
B), white matter (C, D) and CSF (E, F). Only voxels with at least 0.001 mm3 tissue volume in at least 95% of 
participants are shown.

Figure 3.   Grey matter volume as a function of chronological age, using volume estimates derived from (A) 
T1-w scans, (B) EPImix T1-w scans and (C) T1-w scans with reduced field of view.
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Furthermore, we directly evaluated the correspondence between brain-age estimates from different sequences. 
There was a strong positive correlation between predicted brain-age derived from EPImix T1-w and standard 
T1-w scans (rs = 0.71, p < 0.001), although the same systematic offset (relative to the identity line) described 
above was apparent (Fig. 4D). The correlation decreased when comparing brain-age estimates from T1-w scans 
with identically reduced FoV (rs = 0.54, p < 0.001), although data shifted closer to the identity line (Fig. 4E).

We next benchmarked the brain-age MAE of each contrast type relative to the worst possible MAE. Assum-
ing an identical brain-age prediction for each participant, equivalent to the mean age of the brainageR training 
dataset (40.6 years), gives rise to an MAE of 15.6 years. While brain-age prediction using single-contrast T1-w 
scans is 4.20×  better than this null benchmark, the performance of both EPImix T1-w scans and T1-w scans with 
reduced FoV is minimally improved (respectively 1.10×  and 1.20×).

To improve brain-age prediction from EPImix T1-w scans, we used leave-one-out regression to adjust EPImix 
T1-w brain-age estimates. We regressed T1-w brain-age on EPImix brain-age (in 63 participants), leading to an 
adjusted estimate of predicted brain-age in the remaining (left-out) participant. Following iteration across all 
participants, this led to an adjusted MAE of 3.70 years (across left-out participants).

For all summary statistics related to predicted brain-age, see Table 1.

Test‑retest reliability.  We used a subsample of 10 participants with two (within-session) EPImix acquisi-
tions each to quantify the test-retest reliability of all EPImix-derived quantitative measures evaluated in this 
study, using the intraclass correlation coefficient (ICC).

Estimates of global tissue volume showed high reliability, for GM (ICC [95% confidence interval (CI95)] = 
0.99 [0.99,1]), WM (ICC [CI95] = 0.99 [0.98, 1] and CSF (ICC [CI95] = 0.92 [0.70,0.98]) (all p < 0.001).

Voxelwise estimates of tissue volume showed equally high test-retest reliability, for GM (Md [Q1, Q3] = 0.95 
[0.90,0.97]; Fig. 5A,B), WM (Md [Q1, Q3] = 0.96 [0.90,0.98]; Fig. 5C,D) and CSF (Md [Q1, Q3] = 0.92 [0.87,0.97]; 
Fig. 5E,F).

Finally, brain-age estimates were equally reliable (ICC [CI95] = 0.99 [0.95,1]).

Figure 4.   Age prediction across contrasts. Predicted age as a function of chronological age for (A) T1-w 
scans, (B) EPImix T1-w scans and (C) T1-w scans with reduced FoV. (D) Predicted age of EPImix T1-w scans 
compared to standard T1-w scans, and E) EPImix T1-w scans compared to T1-w scans with reduced FoV. 
(Spearman’s correlation coefficient rs, p-value, r2 derived from Pearson’s correlation).
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Discussion
We investigated whether T1-w scans from the recently-developed rapid multicontrast EPImix sequence1 are quan-
titatively comparable with routinely collected single-contrast T1-w scans. For these comparisons, we relied on 
interpretable and widely used quantitative measures, including global and local estimates of tissue volume as well 
as predicted brain-age. We found a strong correspondence between tissue volumes derived from both sequences, 
at both the global and local levels. Moreover, estimates derived from EPImix scans showed the expected decrease 
in grey matter volume as a function of age. Additionally, both types of scan significantly predicted participant 
brain-age, although the reduced FoV of EPImix scans led to a systematic offset and a commensurate increase in 
prediction error. However, we demonstrated that this can potentially be corrected using additional leave-one-out 
regression of T1-w-predicted brain-age onto EPImix-predicted brain-age. Finally, we used a subset of participants 
to show high test-retest reliability of all EPimix-derived quantitative measures evaluated in this study.

Tissue volume.  Both global and voxelwise analyses showed that grey matter, white matter and cerebrospinal 
fluid volumes are comparable between T1-w and EPImix T1-w scans. This extends our previous findings of cor-
respondence between tissue intensities and Jacobian determinants (derived from registration of T1-w scans to 
MNI standard space), between EPImix and standard T1-w scans7. While Jacobian determinants can be derived 
relatively rapidly from T1-w scans, the primary constraint being the speed of non-linear registration, they are 
both less interpretable and less widely used than estimates of tissue volume. For example, recent work employ-
ing the increasingly popular approach of normative modeling30,31 leveraged a large sample of scans to construct 
normative charts of variation in brain tissue volume across the lifespan32,33. Our results suggest that even volume 
estimates derived from rapid sequences such as EPImix could be used to anchor individual measures of brain 
morphology relative to such reference datasets. Our results suggest that global GM and WM volumes show 
higher correspondence than CSF, between EPImix and T1-w scans, for both the full and reduced FoV (Fig. 1). 

Table 1.   Correlation and Median Absolute Error between chronological age and predicted brain-age. The Null 
MAE ratio compares each MAE estimate to the MAE from the worst possible brain-age model (null MAE = 
15.6 years, assuming identical prediction of the mean age of the brainageR training sample for all participants). 
The leave-one-out (LOO) cross-validation MAE was derived using regression of T1-w-predicted brain-age onto 
EPImix-predicted brain-age. For details, see Methods section Statistical analysis.

EPImix T1-w T1-w T1-w FoVEPI

Spearman rs 0.61 0.73 0.36

Spearman p < 0.001 < 0.001 0.004

r2 0.45 0.78 0.17

MAE (y) 14.24 3.72 13.05

Null MAE ratio 1.10 4.20 1.20

LOO MAE (y) 3.70 – –

Figure 5.   Test-retest reliability of EPImix (T1-w) tissue volume estimates. Reliability of voxel-wise volume 
estimates, and corresponding probability density plots, in grey matter (A, B), white matter (C, D) and CSF (E, 
F). Test-retest reliability was evaluated using the one-way random effects model for the consistency of single 
measurements (ICC(3,1)29). Only voxels with at least 0.001 mm3 tissue volume in at least 95% of participants are 
shown.
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Consistently, the correspondence of CSF volumes is also reduced at the voxel level (Fig. 2E). However, some 
locations show high correlations between EPImix and standard T1-w scans, including the ventricles, indicating 
value in future parsing of CSF volumes into components such as ventricular volume. Such measures are poten-
tially more relevant to clinical translation, including demonstration of dementia progression34 and differentia-
tion of dementia variants35. However, it would be preferable to increase the FoV of EPImix scans to cover the 
whole brain, at the cost of a small increase in acquisition time (e.g., ~1.5 minutes instead of ~1 minute).

In addition, healthy ageing is well known to be associated with grey matter volume reduction17,19. Despite our 
modest sample size and non-uniform distribution of participants as a function of age, we found this signature 
of decreasing grey matter volume in EPImix T1-w scans. Bootstrap resampling of participants suggests that 
the association between GM volume and age in EPImix T1-w scans is marginally stronger than corresponding 
associations estimated using standard T1-w scans or T1-w scans with reduced FoV. However, potential differ-
ences between these associations should be re-evaluated in a larger sample of participants who are uniformly 
distributed across age.

Tissue volumes derived from EPImix showed high within-session test-retest reliability. Further work should 
investigate between-session test-retest reliability, and additionally compare test-retest reliability of EPImix to 
standard high-resolution T1-w scans. To our knowledge, the impact of scan resolution on reliability has previ-
ously only been investigated in the context of simple statistics (e.g. mean and variance) and texture features (e.g. 
autocorrelation and contrast)36. Further work is needed on the impact of scan resolution on reliability of more 
interpretable and clinically relevant quantitative measures, such as global and local tissue volumes. Translation to 
the clinical domain should take into account differences in reliability of tissue volume between healthy controls 
and clinical groups, such as individuals with MCI and AD37.

Predicted brain‑age.  Previous research has established predicted brain-age as a putative biomarker of 
brain health10,11. An increased predicted brain-age can be a strong predictor of risk of neurodegenerative dis-
eases, such as Alzheimer’s disease, and neuropsychiatric disorders, such as schizophrenia10,20,23. We used a pre-
trained Gaussian Processes Regression model27 to derive estimates of predicted brain-age from EPImix as well 
as conventional T1-w scans. EPImix-derived brain-age showed a strong correspondence (as quantified using 
Spearman’s rs, and r2) to chronological age – of a similar magnitude to previous studies (e.g. Cole20) – as well as 
to brain-age estimated from standard T1-w scans.

However, a systematic offset led to a large median absolute error of the prediction. Re-analysis of T1-w scans 
with reduced FoV led to a commensurate drop in performance, confirming that this systematic error is likely 
caused by incomplete brain coverage of EPImix scans, combined with the fact that the brainageR model we 
used27 was pre-trained on conventional single-contrast T1-w scans (with full FoV). However, we showed that 
this systematic offset can potentially be corrected using leave-one-out regression of T1-w-predicted brain-age on 
EPImix-predicted brain-age, to yield an adjusted estimate of EPImix-derived brain-age. Such approaches could 
be used to adjust brain age predictions derived from newly-acquired EPImix scans with reduced FoV.

In future, multicontrast data produced by the EPImix sequence could also be used to improve the accuracy 
of brain age predictions and help compensate for the reduced resolution of EPImix scans, as demonstrated by 
prior work on the added value of multimodal information in the context of brain age prediction20. Beyond 
improving brain age estimates, multicontrast information provided by EPImix could help enhance its detection 
of inter-individual differences.

Active acquisition.  An exciting potential application for the EPImix sequence is the active acquisition 
approach proposed by Cole et al.16. Active acquisition involves the online analysis of MR scans, aiming to use 
active learning14 to analyse scans as they are being acquired, in turn guiding subsequent acquisition steps16. As 
our study has found comparable quantitative measures between EPImix and routinely collected T1-w scans, 
whilst scanning times are considerably faster, there is potential for EPImix to be utilised in the online collection 
and analysis of brain scans, in the process of active acquisition.

Cole et al.16 proposed three examples of active acquisition scenarios, with EPImix potentially being suitable 
for use in all three. Firstly, due to its relative speed, EPImix could be used to rapidly acquire low resolution 
data to inform whether higher resolution data needs to be acquired (more slowly), depending on detection 
of abnormalities in the initial EPImix scan. The other two scenarios propose to leverage multi-modal data, to 
classify participants and/or to identify modalities in which participants deviate the most from the norm. Due 
to the multicontrast nature of the EPImix sequence, it could also be used in such scenarios. However, a larger 
normative sample would be required to robustly model inter-individual variability, and clinical data would be 
useful to test the translational relevance of such models30,31.

The acquisition time of the EPImix sequence is considerably faster than analogous single-contrast scans1; 
however, the current analysis pipeline (median = 4 min 49 seconds) is too slow for real-time analysis required for 
active acquisition16. As it currently stands, a small amount of analyses could be carried out whilst the participant 
is in the scanner, to inform several additional acquisition steps. Although not sufficient for the near-real-time 
process of active acquisition, this could still reduce the need for participants to be recalled for follow-up scans.

In the future, there is potential to run the data analysis on more powerful computers, to speed up the process-
ing and analysis pipeline. Alternatively, deep learning tools hold the promise of massively accelerating process-
ing. While such models are very costly to train – in terms of time, computing power and energy – inference 
is very fast. Examples of relevant recent tools include SynthSeg for scan segmentation38, voxelmorph for scan 
registration39 or FastSurfer, a deep learning analogue of FreeSurfer which is particularly suitable for surface-based 
measures40. Additionally, EPImix scans could be super-resolved using image quality transfer tools, to improve 
scan resolution and likely increase correspondence to conventional single-contrast acquisitions41.
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Methodological considerations.  There are a number of methodological limitations to be considered, to 
maximise potential practical utility of the rapid EPImix sequence in the context of quantitative analyses.

One limitation of the present study is the reduced FoV of EPImix scans, particularly in outer areas of cortex, 
such as the inferior temporal lobe and superior parietal lobe. We investigated the impact of this reduced cover-
age on our results by re-analysing single-contrast T1-w scans with identically reduced FoV (on an individual 
participant basis). This enabled us to conclude that the reduced FoV is likely the primary hindrance in the ability 
of EPImix T1-w scans to predict brain-age. However, this issue can potentially be addressed using an additional 
leave-one-out regression step to correct predicted brain-age values, as demonstrated here. We relied on leave-
one-out cross-validation – despite its inflated performance relative to k-fold or hold-out validation – due to 
small sample size, and to demonstrate the utility of even a small paired (EPImix and single-contrast T1-w scan) 
dataset for the correction of brain-age predictions in a new (EPImix-only) scan. An improved approach in future 
studies would be to increase the FoV of EPImix scans; despite increased scanning time, the multicontrast EPImix 
sequence would still remain considerably faster than routinely collected (higher-resolution) single-contrast 
scans. A larger FoV could be particularly important in clinical settings, where accurate diagnosis is dependent 
on comprehensive brain coverage42.

In addition, the image analysis pipeline used here remains too slow to realistically be used in an active 
acquisition setting, particularly if image processing needs to occur in near-real-time to drive scanning in a 
closed loop16. Our previous work developed a custom minimal processing pipeline which is sufficiently fast 
to realistically operate in near-real-time; however, this is limited to scan registration and Jacobian extraction, 
and does not enable quantification of tissue volume or brain age prediction. Increasing the speed of processing 
would be particularly valuable to enable the EPImix sequence to be used as a quantitative screening test, given 
that its speed is one of its main advantages over standard structural MR imaging1,2. One potential avenue for 
the creation of custom rapid processing pipelines is Bayesian optimisation, which has previously been used to 
customise processing tools for brain-age prediction43.

Moreover, additional research is needed to quantitatively compare the other contrasts generated by the mul-
ticontrast EPImix sequence, including T2-weighted, T2-FLAIR, T2

*-weighted, diffusion-weighted contrasts and 
the apparent diffusion coefficient, with analogous single-contrast MR scans. Similarly, it would be interesting to 
compare EPImix to other similar sequences on scanners from other manufacturers44, using quantitative tools 
applied here as well as the aforementioned deep-learning approaches.

Finally, further research should focus on clinical groups. Beyond the translational value of such studies, they 
would help to further investigate the correspondence between EPImix and standard T1-w scans. In particular, a 
key question is whether group differences are similar within EPImix and standard T1-w scans. Regarding future 
translation of our work to a clinical setting, it should be noted that global brain-age is a general measure, which 
is not disease specific. While the aim of active acquisition is to ultimately obtain a personalised diagnosis, any 
information regarding potential abnormality – including global deviation from expected brain-age – could 
help inform clinical predictions. In future, this should additionally be supplemented by more specific markers 
of brain health, including local estimates of brain-age45–48 as well as local deviations of brain anatomy from the 
norm31–33. Accordingly, further work should compare both of these local candidate biomarkers between EPImix 
and standard T1-w scans.

Conclusion.  In summary, we used popular quantitative measures derived from brain MRI to compare T1-w 
scans derived from the new rapid EPImix sequence with routinely collected single-contrast T1-w scans. We 
found that both global and voxelwise tissue volume estimates derived from EPImix T1-w scans were compara-
ble with analogous measures extracted from single-contrast high-resolution T1-w scans. Brain age predictions 
from EPImix T1-w scans showed a strong correlation with both chronological age and brain-age estimates from 
single-contrast T1-w scans, although a systematic offset led to a high prediction error. However, this could be 
corrected using additional leave-one-out regression.

Taken together, our findings underline the potential of the EPImix sequence to reduce scanning time, increas-
ing participant comfort and reducing cost, and further highlight its relevance and applicability to quantitative 
MR analysis routines. Future extension of this work includes the development of additional customised and 
deep-learning-based processing tools, as well as the analysis of other contrasts generated by EPImix; this will 
enable researchers to fully harness the potential of this multicontrast sequence to drive innovative paradigms 
in MRI acquisition and processing.

Data availability
All processing and analysis code is available on FV’s GitHub, at https://​github.​com/​frant​isekv​asa/​epimix_​volume_​
brain_​age. Processed EPImix and single-contrast T1-w data, including voxel-wise tissue volumes and brain age 
estimates, are available at https://​doi.​org/​10.​6084/​m9.​figsh​are.​18128​22549.
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