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1. Introduction
The dynamic analysis of structured systems has an important role in many engineering
applications and helps to understand the behaviour of a range of stratified systems encountered
in, for instance, civil, maritime and aerospace engineering and materials science [1]. In the latter,
the notion of a periodic medium is helping to push the creation of new paradigms concerning
the development of materials with counterintuitive and useful properties [2]. In this respect,
modelling techniques and analytical methods play an essential role in providing quick and
accurate descriptions of the behaviour of such materials. Often, these models are concerned
with waves that freely propagate within a periodic system that give rich information about the
modes the material can support and the corresponding frequencies.

In reality, one needs to also consider how the waves interact with inhomogeneities that
break the structure’s periodicity. External or internal boundaries and defects are just some
examples, but understanding their role in wave scattering and transport is important in
real-world applications. In helping to address this, one can study a diverse range of canonical
scattering problems involving discrete structures with defects. A particular class of defects that
has received much attention in the literature are linear defects that induce abrupt changes
into the geometry of the considered structure. The study of these linear defects often leads to
canonical problems whose solutions are amenable to the so-called Wiener–Hopf technique [3,4].
As an example, the problem of the interaction of a plane wave with a semi-infinite defect in
square-cell lattice is the first case where the Wiener–Hopf technique was used to tackle such
canonical scattering problems for a discrete medium [5]. Note that this problem has also been
addressed using lattice Green’s functions [6].

Since [5], many works have appeared where the Wiener–Hopf technique has been exploited
to study wave scattering by linear defects in stratified systems. Some scalar problems focusing
on the anti-plane motion of lattice systems include scattering induced by a rigidly constrained
defect [7], wave transmission across surface discontinuities and interfaces in a lattice [8,9]. The
Wiener–Hopf technique was also utilized to describe the interaction of waves with multiple
lattice cracks [10,11] and the scattering of crack face waves by the tip of a crack embedded in
a lattice [12]. Furthermore, the approach of [5] has also been extended to understand in-plane
wave scattering by an inertial defect in an elastic lattice [13].

The method applied in [5] is analogous to that adopted by Slepyan and co-workers [14,15]
that deals with the dynamic fracture of discrete structures and provides insight into how
microlevel waves influence multi-scale failure phenomena. Slepyan’s approach has also helped
to resolve certain questions concerning crack propagation arising from experiments [16]. In
the last 20 years, owing to the development of metamaterials, the [14,15] have also initiated a
range of studies into the dynamic fracture of various exotic elastic periodic systems due to the
application of some remote load. Utilizing the Wiener–Hopf method, the approach of Slepyan
enables one to identify all regimes for stable propagating cracks in a considered structure, as
well as waves generated by the propagation of these defects. The theory of dynamic lattice
fracture has been developed for periodic structures with, e.g. distributed inhomogeneities [17],
structured interfaces [18] and inclusions contained between dissimilar lattice media [19–21].
Lattice fracture problems such as these may also be interpreted as wave scattering problems
involving moving boundaries. They play an important role in enhancing the sustainability of
materials and their resilience to failure [22]. Furthermore, by employing the notion of flexural
periodic multistructures and their dynamic response, e.g. [23,24], the approach of [14,15] can
provide simplified models of civil engineering systems undergoing failure [25–27].

A distinctive feature of a majority of the aforementioned works when compared with the
current article is the use of a single Fourier transform (either continuous or discrete) which is
applied due to the geometric nature and periodicity of the problem under consideration. The
present article contributes to the associated area by applying a novel method developed in
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[1] to treat dynamic problems for lattice systems with multiple boundaries subjected to some
prescribed forcing.

The main result of this paper includes the verification of the method of [1] developed to
handle functional equations containing three unknown functions. This is carried out through
the study of two problems involving the anti-plane wave motion of an elastic square lattice
quadrant subjected to boundary point loading. There, following the application of the Fourier
transform in the two principal directions connected with the lattice microstructure, we may
reduce the problems to functional equations treatable via the theory in [1]. In particular, in
each problem the technique of [1] helps to convert the functional equation into a Wiener–Hopf
problem for only one unknown and upon deriving its solution we are able to determine the
behaviour of the entire lattice system. Furthermore, the method adopted [1] is shown to be
efficient in computing the response of the quadrant. This includes low-frequency responses
relative to the lattice cut-off frequency, where the lattice motion can be approximated by
the solution of the Helmholtz equation (e.g. [15, chapter 11]). Furthermore, atypical dynamic
regimes at higher frequencies within the lattice passband can also be computed. They exhibit
highly localized waveforms with preferential directionality. We note that in those regimes, one
can trace novel effective equations governing the envelopes of such modes via the application
of high-frequency homogenization methods that exploit dispersion degeneracies and standing
modes [28,29].

The related responses of the lattice quadrants studied here share a connection with the
lattice Green’s function, studied for a square lattice in [30]. In fact, these responses can be
associated with the discrete analogue of the regular part of Green’s function. Some recent
works in understanding the behaviour of lattice systems subjected to point loading include
elastic lattices and strips with gyroscopic features that can support the one-way propagation of
surface, interfacial and bulk waves [31–35]. Similarly, in connection with the problems studied
here, we also mention a recent advance in [36], where plane wave scattering by a quadrant in a
structured system of infinite extent was addressed.

Examples of some numerical computations obtained from the analytical solutions derived
in this paper are given in figure 1. This highlights non-trivial waveforms, possessing several
wavefronts or represented by highly localized waves, including their generation by the applied
load and their scattering from the quadrants’ external boundaries. There we show the total
displacement related to the complex valued function representing the displacement of each
lattice node (in figure 1a,c) and the corresponding real parts (in figure 1b,d). Further details
of the computations are provided in the following text. We note that the periodicity of the
structure is essential in the analytic approach here. However, for more complex discrete systems
having a microstructure without periodicity, the analysis of their vibration response is possible
with methods such as those in [37] that utilize dynamic Green’s functions. For continuous
systems with microstructure, we refer also to sophisticated numerical algorithms [38,39] based
on the T-matrix method [40] to model wave scattering by non-periodic arrays of inclusions.

The structure of the article is as follows. In §2, we introduce the structured quadrant and
the description of the two problems considered. We first derive the solution to the constrained
lattice quadrant whose vertical boundary is clamped in §§3–6. Details concerning the transition
from the associated transient formulation of this problem to the steady-state problem consid-
ered are given in electronic supplementary material A [41]. In particular, §3 contains the Fourier
transform of the equations governing the structure and the derivation of the functional equation
having three unknowns. In §4, we apply the method of [1] to derive a Wiener–Hopf equation
for one of the transformed functions and the corresponding solution is developed in §5. Some
results utilized in tackling this equation are also given in the electronic supplementary material
B [41]. The solution to the problem of the constrained quadrant subjected to point loading is
presented in §6. Then in §7, we detail the modifications of the theory developed in §§3–6 to
enable the solution of the free quadrant subjected to a point load along its boundary. Numerical
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computations corresponding to both problems are then presented in §8, which is then followed
by conclusions in §9.

2. Formulation of the problems
We consider the square-cell lattice systems shown in figure 2, composed of elastic links of
length L and stiffness ϰ that interconnect the square array of lattice nodes of mass M. We
are concerned with the steady-state motion of these systems that occurs perpendicular to thex1x2-plane.

The first lattice quadrant has nodes whose positions are given as (x1,x2) = (Ln1, Ln2)
where n1,n2 ∈ ℤ, n1 ≥ −2,n2 ≥ −1. This lattice possesses nodes along its vertical boundary
(n1 = − 2,n2 ≥ − 1) that are clamped, whereas its lateral boundary at n1 > − 2,n2 = − 1, is free
to move (see figure 2a). The second lattice quadrant has free boundaries, whose nodes will
occupy points (x1,x2) = (Ln1, Ln2), where n1,n2 ∈ ℤ, n1,n2 ≥ −1 (see figure 2b). Later, we show that
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Figure 1. Displacement fields for a lattice quadrant occupying x1,x2 ≥ −1 with a free boundary. (a,b) A response of the

system created by a point load at x1 = 9, x2 = − 1 and frequency 1.5 rad s−1. The total displacement given in (a) shows
the load creates several regions in the bulk where the displacement is non-neglible. The resulting wave pattern includes
waves with several fronts propagating into the bulk of the lattice (see the displacement field in (b)). (c,d) A highly localized
bulk wave mode represented by two rays is created by a combination of the boundary source at x1 = 20, x2 = − 1,

with frequency 1.99 rad s−1, and the reflection of a localized mode from the left-boundary. The total displacement field
in (c) shows the localized rays are accompanied by moderate lattice displacements, where some lattice oscillations can be
observed in the displacement field in (d).

4

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 480: 20240099



for both configurations in figure 2, that we are able to reduce the study to equations associated
with nodes contained in n1,n2 ≥ − 1. Note that in subsequent sections and all computations
discussed in this article, we adopt the normalization described in the next section that corre-
sponds to the case when L = 1, i.e., the lattice has links of unit length, as well as unit stiffness,
and nodes at the lattice junctions have unit mass.

In both problems, along n2 = − 1, a point force with unit amplitude is applied to the node
at n1 = n1

∗, with n1* > −1. This force acts sinusoidally with frequency ω0 and also perpendicular
to the plane in figure 2 (where in this illustration, n1* = 1). We note that we are interested
in the case when the load frequency ω0 < ωc = 8, i.e. the load frequency is contained in the
passband for the bulk lattice, with ωc being the upper limit for this band. In this scenario, the
point load can generate waveforms propagating inside the lattice. Mathematically, the response
can then be associated with the so-called passband Green’s function for the lattice quadrant.
Analogously, the case ω0 > 8 is the stop band Green’s function for the quadrant, where the
point force generates only localized modes in the vicinity of the load. The phenomenon related
to localization effects induced by the point force is not considered here but the analytical
derivations given here can also be easily extended to address this type of lattice response.

Going forward, we use the notation ω = ω0 − i0 with the right-hand side representing the
limit

(2.1)ω0 − i0 = lims → + 0
(ω0 − is)

in accordance with the so-called causality principle [15] (see also electronic supplementary
material B [41]). The preceding limit ensures that the functions involved in the transformed
equations constructed below remain analytic in an annulus containing the unit circle of ℂ, e.g.
see [5].

We will begin by examining the first lattice problem (see figure 2a) in §2a−6, by applying
the new method [1]. We then extend this analysis in §7 to solve the second lattice problem (see
figure 2b).

Sections 2a−6 also help in providing a better understanding of how we can apply the method
of [1] to solve problems involving the lattice quadrant. We note that the problem of figure
2a may also be approached using the method of images, whereby appropriately chosen point
forces in a lattice half-plane with a free boundary along n2 = − 1 can produce the solution
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Figure 2. (a) The constrained quadrant located at x1 ≥ −2L,x2 ≥ −L. The nodes along the boundary corresponding ton1 = −2, n2 ≥ −1 are clamped, whereas those on the remaining boundary associated with n1 ≥ −1,n2 = −1, are free.
(b) The quadrant with a free boundary occupying x1,x2 ≥ −L. The location of the boundary point force in both cases is
shown as the red circle and this force acts perpendicularly to the x1x2-plane.
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to the problem involving the constrained quadrant, i.e. one with the vertical boundary being
clamped at n1 = −2. The approach is similar to that taken in constructing Green’s function for
the analogous continuum quadrant, governed by the Helmholtz equation [15] in the interior
and with similar mixed boundary conditions along its frontiers (e.g. see [42]). This then reduces
the problem to finding the response of the lattice half-plane whose boundary is subjected to
a boundary point force. In contrast with the analogous continuum problem, where singular
solutions [42] of this type are written in terms of elementary functions, this lattice Green’s
function [30] is derived in the form of an integral as follows (and similar to [15]). We (i)
implement the discrete Fourier transform in the direction parallel to the boundary of the
half-plane, (ii) find the transformed bulk half-plane displacements through recurrence relations
interconnecting the lattice motion on neighbouring lattice rows, and (iii) ensure the transformed
bulk solution satisfies the transformed boundary condition along the half-plane at n2 = − 1.
The inversion of the Fourier transform then gives the lattice Green’s function in the form of a
contour integral. Linear combinations of this solution, with appropriate weights, may then be
employed to find the function that satisfies the clamped conditions along n1 = − 2.

(a) Normalized governing equations for the constrained lattice
From here to §6, we concentrate on the lattice problem associated with figure 2a. In this section,
we provide the normalized dynamic equations of motion for this problem in the steady-state
regime. The normalization adopted in the equations corresponds to a lattice with unit mass at
its nodes with unit stiffness for their interconnecting links having a unit length. The equations
involve the complex amplitudes of the displacements of the system that satisfy a collection
of linear difference equations. The physical system, which is further discussed in electronic
supplementary material A [41], is formed from point nodes of a given mass interconnected
by linear elastic rods/springs with a uniform stiffness. The anti-plane deformations we study
in the quadrant are akin to those encountered in the regime where the point force produces
out-of-plane displacements that are small and displacements in the principal directions of the
lattice are negligible in comparison. We note that one can also consider material or geometric
nonlinearities in the lattice brought by the links and their material properties [43], which can be
tackled through the study of the associated Lagrangian of the system.

We use the notation un1,n2 = u(n1,n2), to represent the dimensionless displacement ampli-

tude of the node associated with the index multi-index (n1,n2) ∈ ℤ2, n1,n2 ≥ −1. Note that the
dimensionless time-dependent displacements are given by

U(n1,n2) = Re(un1,n2eiωt), (n1,n2) ∈ ℤ2,n1 ≥ − 2,n2 ≥ − 1 .

For n1,n2 ≥ 0, the displacement amplitudes un1,n2 satisfy

(2.2)un1,n2 + 1 + un1,n2 − 1 + un1 + 1,n2 + un1 − 1,n2 + (ω2 − 4)un1,n2 = 0,  for n1,n2 ≥ 0 .

Along the boundary associated with n1 ≥ 0, n2 = −1, the masses displace according to the
equations

(2.3)un1 + 1, − 1 + un1, 0 + un1 − 1, − 1 + (ω2 − 3)un1, − 1 = δn1,n1
∗ ,  for n1 ≥ 0 ,

with n1
∗ ≥ 0, n1* ∈ ℤ representing the location of the point load. The symbol δn1,n2 is the Kronecker

delta with

δn1,n2 =
1,  if n1 = n2 ,
0,  otherwise ,

and this has been incorporated into (2.3) to represent the forcing of the node at n1 = n1*,n2 = 0.
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In addition, for n1 = −1, n2 ≥ −1, the node displacements are governed by

(2.4)u0,n2 + u−1,n2 + 1 + (1 − δ−1,n2)u−1,n2 − 1 + (ω2 − 4 + δ−1,n2)u−1,n2 = 0

which embeds the condition that the nodes along n1 = −2 are fixed, i.e. u−2,n2 = 0, n2 ∈ ℤ withn2 > −1. Before moving on, we note the analogous equations and quantities governing the lattice
in terms of dimensional variables can be obtained through the substitution of

(2.5)ω = Mϰ ω̂ , t = ϰM t̂ , un1,n2 =
ûn1,n2L = û(Ln1, Ln2)L , kj = Lkj^ , j = 1, 2 ,

into (2.2)–(2.4), where those variables with the hat on the above right-hand sides carry
the appropriate dimensions. Furthermore, in electronic supplementary material A [41], we
demonstrate how problems (2.2), (2.3) and (2.4) can be derived from the transient regime, where
it is also shown how the small dissipative term that appears with the normalized frequency in
these equations.

3. Fourier transform of the governing equations
We demonstrate how the governing equations for the lattice can be reduced to a single
functional equation through the application of the discrete Fourier transform with respect to
the principal coordinates of the lattice system.

(a) Transformed equations along n1 = −1
In what follows, we use the following notation

(3.1)Ψn1
+ (y) = ∑n2 ≥ 0

un1,n2yn2 , n1 ≥ − 1,n1 ∈ ℤ ,

to represent the transformed solution with respect to the vertical lattice coordinate only.

Adopting (3.1), we multiply (2.4) through by yn2 + 1 and sum over n2 ≥ 0, n2 ∈ ℤ. In using the
identities:

∑n2 ≥ 0
u0,n2yn2 + 1 = yΨ0

+(y),

∑n2 ≥ 0
u−1,n2 + 1yn2 + 1 = Ψ−1

+ (y) − u−1,0,

∑n2 ≥ 0
(1 − δ−1,n2)u−1,n2 − 1yn2 + 1 = y2[Ψ−1

+ (y) + u−1, − 1y−1]

and

∑n2 ≥ 0
(ω2 − 4 + δ−1,n2)u−1,n2yn1 + 1 = (ω2 − 4)yΨ−1

+ (y)

we obtain the equation

(3.2)(y2 + (ω2 − 4)y + 1)Ψ−1
+ (y) + yΨ0

+(y) − u−1, 0 + u−1, − 1y = 0 ,

where y ∈ Cy with

(3.3)Ct := {t ∈ ℂ: | t| = 1} ,

representing the unit circle in the complex plane associated with y.
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(b) Transformed equations along the free boundary
Next, we transform the condition (2.3) and to enable this, we define:

(3.4)Φn2
+ (x) = ∑n1 ≥ 0

un1,n2xn1, n2 ∈ ℤ with n2 ≥ − 1 .

Then, we take (2.3), multiply through by xn1 + 1 and sum the result with respect to n1 ≥ 0,n1 ∈ ℤ.
Employing:

∑n1 ≥ 0
un1 + 1, −1xn1 + 1 = Φ−1

+ (x) − u0, −1 ,

∑n1 ≥ 0
un1, jxn1 + 1 = xΦj+(x) ,  for j ≥ − 1

and

∑n1 ≥ 0
un1 − 1, −1xn1 + 1 = x2{Φ−1

+ (x) + u−1, −1x−1} ,

then gives the transformed equation

(3.5)(1 + x2 + (ω2 − 3)x)Φ−1
+ (x) + xΦ0

+(x) − u0, − 1 + u−1, − 1x = xn1
∗ + 1 ,

where the right-hand side appears due to the transform of the loading term in (2.3) and x ∈ Cx.
(c) Transformed equations in the bulk lattice

The final transformed equation we require follows from (2.2). Multiplying this by xn1 + 1yn2 + 1,
summing over n1,n2 ∈ ℤ,n1,n2 ≥ 0 and utilizing the formulae:

∑n1,n2 ≥ 0
un1 + 1,n2xn1 + 1yn2 + 1 = y{U(x, y) − Ψ0

+(y)} ,

∑n1,n2 ≥ 0
un1 − 1,n2xn1 + 1yn2 + 1 = xy{xU(x, y) + Ψ−1

+ (y)}

and

∑n1,n2 ≥ 0
un1,n2 + 1xn1 + 1yn2 + 1 = x{U(x, y) − Φ0

+(y)} ,

∑n1,n2 ≥ 0
un1,n2 − 1xn1 + 1yn2 + 1 = xy{yU(x, y) + Φ−1

+ (y)} ,

where

U(x, y) = ∑n1,n2 ≥ 0
un1,n2xn1yn2 ,

then gives the transformed equation:

A(x, y)U(x, y) − yΨ0
+(y) − xΦ0

+(x) + xy(Φ−1
+ (x) + Ψ−1

+ (y)) = 0 .

Here

(3.6)A(x, y) = x + y + x2y + y2x + (ω2 − 4)xy .

This together with (3.2) and (3.5) then provides the functional equation:
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(3.7)

A(x, y)U(x, y) + A(x, y) − yx Ψ−1
+ (y) + A(x, y) + x(y − 1)y Φ−1

+ (x)

= u0, − 1 + u−1, 0 − (x + y)u−1, − 1 + xn1
∗ + 1 .

Employing the condition in (2.4) that embeds the equation governing the behaviour of the
corner node of the quadrant for n2 = −1, we also have that the preceding may be written as:

(3.8)A(x, y)U(x, y) + A(x, y) − yx Ψ−1
+ (y) + A(x, y) + x(y − 1)y Φ−1

+ (x) = F(x, y,n1
∗) ,

for x ∈ Cx and y ∈ Cy, with

(3.9)F(x, y,n1
∗) = − (x + y + ω2 − 3)u−1, − 1 + xn1

∗ + 1 .

4. Derivation of a Wiener–Hopf equation along the quadrant’s free boundary
In this section, we derive the Wiener–Hopf equation for the function Φ−1

+ (x) corresponding
to the transformed displacements along the free boundary. Beforehand, we discuss some
preliminary results required for this.

(a) Dispersion relation and auxiliary results
Next, we consider when

(4.1)A(x, y) = 0 ,

which is the dispersion relation for the bulk medium. The preceding equation yields the
dispersion surface governing the appearance of propagating waves in the bulk of the medium,

if we set x = eik1 and y = eik2 in (4.1) to obtain:

(4.2)ω2 = 4 − 2cos(k1) − 2cos(k2) ,

where in the preceding equation ω, k1 and k2 are real quantities. This dispersion surface is
shown in figure 3a as a function of the wavenumbers kj, j = 1,2. Furthermore, the selection of ω
determines the wavenumbers kj, j = 1,2, where (4.2) is satisfied through the analysis of so-called
slowness contours, shown in figure 3b. These contours also embed information about the group
velocity of waves and direction of wave propagation in the medium (see also [15]). However,
here we deal with the complex transform variables x and y ∈ C and roots of (4.1) determine
singular features of subsequently transformed functions. Hence, for ω = ω0 − i0, solutions y = y1

and y2 of (4.1) in terms of the variable x can be written as

(4.3)y1 = P1(x), y2 = P2(x) ,

with

(4.4)P1(x) = f(x) + 1 − f(x) − 1f(x) + 1 + f(x) − 1
, P2(x) = 1P1(x) ,

and |P1(x)| < 1. The notation ⋅ above represents the usual square root with the branch point at
the origin and cut located along the negative real axis in ℂ. Additionally,

(4.5)f(x) = − 1
2 x + 1x + ω2 − 4 .
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Similarly, by the symmetry of A(x, y), we can conclude (4.1) also holds when x = x̂1 and x̂2, such
that

(4.6)x̂1 = P1(y), x̂2 = P2(y) ,

where |P1(y)| < 1. We also exploit these relations in deriving the Wiener–Hopf equation
involving the transformed displacements along the free boundary. Finally, we note that owing
to (4.3) and (4.6), the function A(x, y) in (4.1) may take the alternate representations:

(4.7)A(x, y) = y(x − P1(y))(x − P2(y)) = x(y − P1(x))(x − P2(x)) .

(b) Properties of Pj(y), j = 1,2
Note that the function P1(y) has the asymptotes

(4.8)P1(y) = − y + (ω2 − 4)y2 + O(y3) ,  as y → 0 ,

and

P1(y) = −y−1 + (ω2 − 4)y−2 + O(y−3) , as y ∞ .

Similarly, given the interconnection between P1(y) and P2(y), we can write

P2(y) = −y−1 + 4 − ω2 + O(y2) , as y 0 ,

and

P2(y) = −y + 4 − ω2 + O(y−2) as y ∞ .

As we consider ω having a small imaginary part, the functions Pj(y), j = 1,2 also have branch
cuts; each of these functions has one inside and one outside the unit circle Cy. To describe these

corresponding branch points, we introduce

gj = ( − 1)j + 4 − ω2

2 , j = 1, 2 .

The branch points of Pj(y), j = 1,2, are then defined by the following set
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Figure 3. (a) Dispersion surface based on (4.2) for the bulk lattice in the quadrant and (b) slowness contours corresponding
to ω values stated on the inset of the plots.
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(4.9)B = B+ ∪ B−

where

B± = gj + 1 ∓ gj − 1gj + 1 ± gj − 1
, j = 1, 2 .

The set B+ (B−) represents two points connected by a branch cut of Pj(y), j = 1, 2, situated inside

(outside) the unit circle. To illustrate the branch cuts of P1(y), we plot Im(y) using (4.4) in figure
4. There it can be seen that the branch points in (4.9) and associated cuts are either contained
inside or outside the unit circle.

(c) A lifted analogue of the transformed bulk equations and the Wiener–Hopf equation
In taking (3.8) and putting x = P1(y), owing to (4.1), we obtain the so-called lifted equation (see
[1]):

(4.10)Ψ−1
+ (y) − (P1(y))2(y − 1)y−2Φ−1

+ (P1(y)) = − P1(y)y−1F(P1(y), y,n1
∗) ,

with y ∈ Cy. Furthermore, setting x = P2(y) in (3.8) (which can be carried out due to analytical

continuation [1]), we obtain

(4.11)Ψ−1
+ (y) − (P2(y))2(y − 1)y−2Φ−1

+ (P2(y)) = − P2(y)y−1F(P2(y), y,n1
∗) .

where y ∈ Cy.
In both of the preceding equations, y is a continuous variable along the contour Cy. The

dependency on Φ−1
+  on y in both equations occurs through two functions (Pj(y), j = 1,2). Both

functions have branch cuts located on either side of the unit-circle in ℂ. One of these functions
takes values inside the unit disk of ℂ, whereas the other takes values outside the unit disk in ℂ.
Hence, the second terms on the above left-hand sides are distinct for y ∈ Cy.

In addition, Ψ−1
+ (y) is a continuous function for y ∈ Cy as well as being analytic inside this

contour and we may use the above equations to eliminate this function. In doing so, subtracting
equation (4.10) from (4.11), we have an equation for Φ−1

+  in the form:

(4.12)(P1(y))2Φ−1
+ (P1(y)) − (P2(y))2Φ−1

+ (P2(y))
= (y − 1)−1y[P1(y)F(P1(y), y,n1

∗) − P2(y)F(P2(y), y,n1
∗)] ,

for y ∈ Cy. Finally, we can map from variable y to variable x by setting y = P1(x). Noting that

P1(P1(x)) = x and P2(P1(x)) = x−1
allows us to transform (4.12) to the following Wiener–Hopf equation for Φ−1

+ (x)

(4.13)x2Φ−1
+ (x) − x−2Φ−1

+ (x−1) = xR(x) − x−1R(x−1)

where x ∈ Cx and

(4.14)

R(x) = σ(x)F(x, P1(x),n1
∗)

= − ((x + ω2 − 2)σ(x) + ζ(x))u−1, − 1 + xn1
∗ + 1σ(x) .

Here,

σ(x) = P1(x)P1(x) − 1  and ζ(x) = P1(x) .
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5. Solution of the Wiener–Hopf equation
Next, we aim to partition the right-hand side in (4.13) into the sum of two functions, with one
function being analytic inside the contour Cx and the other analytic outside this contour.

(a) The additive split of σ and ζ
First, to perform the required split of (4.13), we need to create the analogous split of the
functions σ(x) and ζ(x). Note that these functions have zero index for x ∈ Cx, which can be

proved following similar steps to those presented in [15, chapter 10]. Denoting p = σ or ζ, these
functions take the representations:

(5.1)p(x) = p+(x) + p−(x) , p± = ± 1
2πi Cx

p(ξ)ξ − x dξ ,

where p+(x) (p−(x)) represents the function that is analytic inside (outside) Cx. Additionally, asp(x) = p(x−1), for p = σ and ζ (see (4.4) and (4.5)), following the application of the Wiener–Hopf
technique, one can show that:

(5.2)p−(x) = p+(x−1) − p+(0) , p = σ and ζ .

(b) Determination of Φ−1(x) and the displacement of the lattice corner point
Based on §5a, one can check that the Wiener–Hopf equation (4.13) can be written as:

(5.3)x2Φ−1
+ (x) − x−2Φ−1

+ (x−1) = xN (x) − x−1N (x−1)

for x ∈ Cx, where

(5.4)N (x) = − [Mσ(1)(x) + (ω2 − 2)Mσ(0)(x) +Mζ(0)(x)]u−1, − 1 +Mσ(n1
∗ + 1)(x) .

Additionally,

3
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0 2
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)

4 6
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Figure 4. Contour plot of Im(P1(y)) as a function of the real and imaginary parts of y for the loading frequency ω0 = 0.8
(such that ω = 0.8 − 0.05i, see (2.1)). The computations have been performed using (4.4). Branch points of the function
defined in (4.9) are shown as red dots inside the unit circle (indicated in white) and by red squares outside this circle. Branch
cuts connecting these points are shown by white dashed lines.
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(5.5)Mp(n)(x) = xn(p+(x) − p+(0) + p0
(n)(x−1)) − x−n − 2[p+(x) − p0

(n + 1)(x)] ,

with

(5.6)p0
(n)(x) = ∑j = 0

n 1j!
djp
dxj (0)xj ,

for p = σ or ζ. The right-hand side in (5.3) now employs the required additive split into two
functions, one analytic inside the unit circle Cx and the other analytic outside this circle. The

sketch of the proof of the right-hand side of (5.3) is given in the electronic supplementary
material B [41].

We therefore rewrite (5.3) to define:

(5.7)J(x) := Q+(x) = Q−(x)  for x ∈ Cx ,

where

Q+(x) := x2Φ−1
+ (x) − xN (x) , Q−(x) = x−2Φ−1

+ (x−1) − x−1N (x−1) .

We use Q+(x) (Q−(x)) to extend the definition of J(x) inside (outside) the circle Cx.
Note, Φ−1

+ (x) u0, −1, a bounded quantity, as x 0 owing to the definition (3.4). Likewise
Φ−1

+ (x−1) u0, −1 as x ∞. Furthermore, using (5.4), we have that:

(5.8)N (x) = C0 + O(x) , x → 0 ,

with C0 being a constant given as the bounded quantity

(5.9)C0 = − [Mσ(1)(0) + (ω2 − 2)Mσ(0)(0) +Mζ(0)(0)]u−1, − 1 +Mσ(n1
∗ + 1)(0) ,

where

Mp(n)(0) = limx → 0
Mp(n)(x) , p = σ, ζ ,  for n ≥ 0 .

We choose u−1, −1 in such a way that C0 = 0, requiring that

(5.10)u−1, − 1 =
Mσ(n1

∗ + 1)(0)

Mσ(1)(0) + (ω2 − 2)Mσ(0)(0) +Mζ(0)(0)
.

Consequently, both terms in Q+(x) (Q−(x)) go to zero as O(x2) (O(x−2)) when x 0 (x ∞).

Hence, by applying Liouiville’s theorem, we deduce J(x) ≡ 0 = Q−(x) = Q+(x−1), leading to

(5.11)Φ−1
+ (x) =

N (x)x ,

whereas we also deduce

(5.12)Φ−1
+ (x−1) = xN (x) .

Finally, we note that due to the choice of corner point displacement u−1, −1 in (5.10) that Φ−1
+

defined through (5.11) remains analytic at x = 0.
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6. Solution to the problem for a constrained quadrant
(a) Identifying the remaining transformed functions

Having determined Φ−1
+ (x), one can then identify the function Ψ−1

+ (y) from the lifted transformed
bulk equation (see §4c). Thus we take (4.10) and write

(6.1)Ψ−1
+ (y) = P1(y)(y − 1)y−2N (P1(y)) − P1(y)y−1F(P1(y), y,n1

∗) ,

for y ∈ Cy, where the right-hand side now utilizes (5.4) owing to (5.11). Furthermore, one can

check through the above representation that Ψ−1
+ (y) is bounded as y 0 as a result of (4.8) and

(5.8)–(5.10).
In addition, the function U(x, y) representing the transformed bulk displacements in the

constrained quadrant n1,n2 ≥ 0 can then be found from (3.8):

(6.2)U(x, y) = − BΨ(x, y)Ψ−1
+ (y) − BΦ(x, y)Φ−1

+ (x) + BF(x, y,n1
∗) ,

with

BΦ(x, y) = 1y 1 + (y − 1)
(y − P1(x))(y − P2(x)) ,

(6.3)BΨ(x, y) = 1x 1 − 1
(x − P1(y))(x − P2(y)) ,

and

BF(x, y,n1
∗) = xn1

∗ + 1 − (x + y + ω2 − 3)u−1, − 1y(x − P1(y))(x − P2(y)) ,

owing to the representation of A(x, y) in (4.7).

(b) The lattice displacements
The lattice displacements are then identified through the inversion of the discrete Fourier
transform(s). Therefore, the displacements along the free boundary of the quadrant are found
from

(6.4)un1, − 1 = 1
2πi CxΦ−1

+ (x)x−n1 − 1 dx , n1 ≥ 0 ,

with Φ−1(x) given by (5.11). Similarly, the displacements along the vertical lattice chain at n1 = −1
neighbouring the fixed boundary are obtained from

(6.5)u−1,n2 = 1
2πi CyΨ−1

+ (y)y−n2 − 1 dy , n2 ≥ 0 ,

with Ψ−1
+ (y) taken from (6.1). Completing the description of the lattice quadrant’s response along

its frontiers is the value of the corner point u−1, −1 provided in (5.10).
Finally, the displacements in the quadrant n1,n2 ≥ 0 are found from the double transform

inversion applied to U(x, y) in (6.2) as follows:

(6.6)un1,n2 = − 1
4π2 Cy CxU(x, y)x−n1 − 1y−n2 − 1 dxdy , n1,n2 ≥ 0 .
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7. Unconstrained quadrant subjected to a point force
Having solved the problem of the constrained lattice quadrant subjected to a force along its free
boundary (see figure 2b), we now tackle the problem when both boundaries of the quadrant are
free to move, with a forced lateral boundary. Below, we detail the modifications to the above
method to provide the solution for this problem.

(a) Transformed equations for the quadrant with a free boundary
In this case, in the problem formulation detailed in §§2 and 3, the governing equation (2.4) is
replaced with the condition:

(7.1)u0,n2 + u−1,n2 + 1 + (1 − δ−1,n2)u−1,n2 − 1 + (ω2 − 3 + δ−1,n2)u−1,n2 = 0

and upon applying the Fourier transform in y in (3.1), we obtain

(7.2)(y2 + (ω2 − 3)y + 1)Ψ−1
+ (y) + yΨ0

+(y) − u−1, 0 + u−1, − 1y = 0,

which is derived in an analogous way to (3.5). Now, following the approach of §3c and using
(3.5) and (7.2), we can derive a functional equation for the transformed bulk displacements as:

(7.3)

A(x, y)U(x, y) + A(x, y) + y(x − 1)x Ψ−1
+ (y) + A(x, y) + x(y − 1)y Φ−1

+ (x)

= G(x, y,n1
∗) .

for x ∈ Cx and y ∈ Cy, with

(7.4)G(x, y,n1
∗) = − (x + y + ω2 − 2)u−1, − 1 + xn1

∗ + 1 ,

that incorporates the transformation of the loading term representing the point load across the
lateral boundary.

(b) The Wiener–Hopf equation for the quadrant with a free boundary subjected to a
point load

Following analogous steps to §4c, we perform the lift [1] of (7.3) with x = P1(y) and P2(y).
Using the resulting equations to eliminate the transformed function Ψ−1

+ (y), one obtains the
Wiener–Hopf equation for Φ−1

+ (x) as:

(7.5)x(1 − x)Φ−1
+ (x) − x−1(1 − x−1)Φ−1

+ (x−1) = (1 − x)S(x) − (1 − x−1)S(x−1),

where x ∈ Cx and

(7.6)

S(x) = σ(x)G(x, P1(x),n1
∗)

= − ((x + ω2 − 1)σ(x) + ζ(x))u−1, − 1 + xn1
∗ + 1σ(x) .

In the left-hand side (7.5), the first and second terms are analytic inside and outside Cx and we

seek the analogous split of the right-hand side. In achieving this, one obtains:

(7.7)x(1 − x)Φ−1
+ (x) − x−1(1 − x−1)Φ−1

+ (x−1) = (1 − x)T (x) − (1 − x−1)T (x−1) ,

for x ∈ Cx, with
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(7.8)T (x) = − [Qσ(1)(x) + (ω2 − 1)Qσ(0)(x) +Qζ(0)(x)]u−1, − 1 +Qσ(n1
∗ + 1)(x) ,

and

(7.9)Qp(n)(x) = xn(p+(x) − p+(0) + p0
(n)(x−1)) − x−n − 1[p+(x) − p0

(n)(x)] ,

for p = σ and ζ, where (5.6) is also used. The proof of (7.7) follows the same lines as that for (5.3)
outlined in the electronic supplementary material B [41] with obvious modifications.

(c) Solution to the transformed problem
The solution to the Wiener–Hopf equation (7.7) then can be obtained in an analogous fashion to
§5b, which gives:

(7.10)Φ−1
+ (x) =

T (x)x ,

where the corner point displacement appearing in (7.8) needs to be chosen as:

(7.11)u−1, − 1 =
Qσ(n1

∗ + 1)(0)

Qσ(1)(0) + (ω2 − 1)Qσ(0)(0) +Qζ(0)(0)
.

so that the right-hand side of (7.10) remains analytic at x = 0. In the above,

Qp(n)(0) = limx → 0
Qp(n)(x) , p = σ, ζ , for n ≥ 0 .

With (7.10) in hand, we can derive the function Ψ−1(y) from the lifted analogue of (7.3) obtained
by setting x = P1(y), so that:

(7.12)Ψ−1
+ (y) = − P1(y)(y − 1)y2(P1(y) − 1)

T (P1(y)) + P1(y)y(P1(y) − 1)G(P1(y), y,n1
∗) .

Using (7.3), (7.10) and (7.12), we then derive the transformed bulk displacements as:

(7.13)U(x, y) = − BΦ(y,x)Ψ−1
+ (y) − BΦ(x, y)Φ−1

+ (x) + CF(x, y,n1
∗) ,

with

CF(x, y,n1
∗) = xn1

∗ + 1 − (x + y + ω2 − 2)u−1, − 1y(x − P1(y))(x − P2(y)) ,

and BΦ(x, y) is given in (6.3). Finally, we use the inversion formulas (6.4), (6.5) and (6.6) to obtain
the displacements for the lattice quadrant with a free boundary subjected to a point force.

8. Numerical illustrations of the lattice response
In this section, we implement the solutions presented in §§6b and 7 in the computation of the
quadrant’s response to the point load along the free boundary. For a quadrant with either a free
boundary or having one side clamped, we also identify unique dynamic responses attributed
to the quadrant’s underlying microstructure. We focus our study on the case when the point
source is chosen to be situated near the quadrant’s corner point, where one can observe how
the load promotes high stress concentrations and investigate the sensitivity of the form of
these concentrations to changes in the loading frequency. Therefore, in this section, we consider
the case when n1* = 2, i.e. the point is situated at x1 = 2,x2 = −1. Note that in all computations
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described here, we adopt the normalization described in §2a, which leads to a lattice with links
of unit length and stiffness and nodes with unit mass.

Before continuing, we mention that the results presented here and in §1 have been checked
using the governing equations for the medium given in §§2 and 7. In all cases, the computed
displacements produce a small error in the governing finite difference equations in the rangeO(10−3) to O(10−4), indicating a very high accuracy in the numerical computations shown. The
small discrepancy appears naturally due small errors incurred numerically when executing the
Wiener–Hopf split required by the solutions and the inversion of the double discrete Fourier
transform.

(a) Total displacement of the quadrant microstructure
We begin with analysis of the total displacement of each node in the lattice quadrant. Several
plots of the total displacement for the constrained quadrant and the free quadrant are shown
in figure 5 for a range of frequencies. The total displacement provides an overall indication of
how both the real and imaginary parts of the solutions, given in §§6 and 7c, behave spatially. It
also highlights regions of the structure possessing high strain concentrations. In correspondence
with this and as expected on physical grounds, figure 5 shows the node loaded by the point
forces undergoes a large displacement.

An overall feature in figure 5a,c,e,f is that the displacement in the vicinity in the constrained
left-hand boundary is small due to the presence of the clamping conditions. Figure 5b,d,f,h,
also show that the quadrant with a free boundary allows high deformations to persist along its
vertical boundary as this is free to move and to sustain vibration.

Furthermore, as shown in figure 5, our solution helps to indicate (i) those regions exhibiting
strains comparable to those found near the location of the point source, and (ii) the location
of such regions and the dependency of their size, shape and number with respect to the
loading frequency. All computations shown in figure 5 indicate that the geometry of the region
possessing high strains and localized to the quadrant’s corner is very distinct. For low frequen-
cies relative to ωc, a single stress concentration appears in the vicinity of the load (see figure
5a,b). With increase of the loading frequency, it can happen that the concentration can assume
several preferential directions that persist in the bulk lattice and their direction depends on
the load frequency and boundary conditions of the structure. For example, figure 5c shows
there are strain concentrations near the corner which are aligned at approximately 0∘ and 60∘,
whereas at a higher loading frequency, figure 5e shows there are concentrations aligned at
approximately 0∘, 40∘ and 60∘. This effect is linked to the to topology of the slowness contours in
figure 3, which at high frequencies relative to ωc do not possess a circular shape as expected in
the low-frequency regime where the structure has an isotropic response.

In particular, for both quadrants considered, the localized stress concentrations dictate the
bulk lattice response. They also promote the appearance of regions bounded by inclined rays
emanating from the lattice corner point where deformations in the structure can persist. For
instance, see figure 5e,f where three such bulk regions exist. Within these regions, the lattice
deformations behave like O(r−1/2) where r is the radial distance from the corner point (see also
[30]). Note that intermediate to these regions, the displacement of the system is small.

Finally, at higher frequencies, the bulk lattice exhibits strong anisotropy in its dynamic
response, e.g. see figure 3 where the slowness contours are almost square. In this case, the load
produces two highly concentrated modes that propagate at 45∘ and 135∘ in the medium. Outside
of these rays, the lattice response is small. It is noted that both ray directions are consistent with
the group velocity vector associated with the slowness contours [15]. One of the rays is reflected
by the left-hand quadrant boundary and propagates parallel to the ray travelling at 45∘ relative
to the positive x1-axis from the point load. It is noted for the case of the free quadrant, the total
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displacement along the majority of these rays is higher than in the case of the quadrant with a
fixed boundary, as expected on physical grounds.

60

(a) (b)

(c) (d)

(e) (f)

(g) (h)

un
1
,n
2

un
1
,n
2

un
1
,n
2

un
1
,n
2

un
1
,n
2

un
1
,n
2

un
1
,n
2

un
1
,n
2

50

40

30

20

10

0

0 10 20 30 40

x 2

50 60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

60

50

40

30

20

10

0

0 10 20 30 40

x 2

50 60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

60

50

40

30

20

10

0

0 10 20 30 40

x 2

50 60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

60

50

40

30

20

10

0

0 10 20 30 40

x
1

x 2

50 60

60

50

40

30

20

10

0

0 10 20 30 40
x
1

50 60

0.2

0.4

0.6

0.8

1

0.2

0

0.4

0.6

0.8

1

0.1

0

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5. Total displacements for the constrained quadrant, with a fixed vertical boundary (see (a), (c), (e) and (g)), and the
free quadrant (see (b), (d), (f) and (h)) when subjected to a point force along their lateral boundaries at x1 = 2. The loading
frequency is taken as (a, b) ω0 = 0.5, (c, d) ω0 = 1, (e, f) ω0 = 1.5 and (g, h) ω0 = 2. The computations for the constrained
quadrant are based on (5.11), (6.1) and (6.2), whereas those for the free quadrant have been computed with (7.10), (7.12)
and (7.13).
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Figure 6. Real part of the displacement fields for the constrained quadrant, with a fixed vertical boundary (see
(a), (c), (e) and (g)), and the free quadrant (see (b), (d), (f) and (h)) when subjected to a point force along their lateral
boundaries at x1 = 2. The loading frequency is taken as (a, b) ω0 = 0.5, (c, d) ω0 = 1, (e, f) ω0 = 1.5 and (g, h) ω0 = 2.
The computations for the constrained quadrant are based on (5.11), (6.1) and (6.2), whereas those for the free quadrant have
been computed with (7.10), (7.12) and (7.13).
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(b) Wave propagation in the quadrant
In addition, we note the computations in figure 5 do not indicate the behaviour of potential
waveforms propagating in the medium. For this, one must consider the real or imaginary parts
of the derived complex displacement amplitudes. These quantities exhibit oscillations and both
carry an additional spatially dependent phase factor that modulates the amplitudes presented
in figure 5. Wave patterns corresponding to the total displacement fields of figure 5 are shown
in figure 6.

For low frequencies of the point load, the lattice sustains a response analogous to the
corresponding continuum model [44], obtained when ω +0. In this case, waves having
circular wave fronts (see figure 6a,b) propagate outwardly from the free boundary’s source.
In particular, and in direct correspondence to the total displacements shown in figure 5a,b,
the circular wave fronts have amplitudes that are modulated in the direction tangential to
the wavefront. The amplitude of these waves is largest in those regions of the quadrant
that undergo the highest total displacement which are attributed to the orientation of stress
concentrations occurring at the quadrant’s corner. This is also common feature of the remaining
plots in figure 5.

Furthermore, when the frequency is increased, the wave fronts propagating in the medium
assume almost elliptical wavefronts as we transition from a low-frequency regime with the
isotropic dynamic response to one with strong anisotropy. Once more, the effect can linked to
the slowness contours of the bulk system observed in figure 3. In particular, even in regimes
where one would expect strong localization such as in the case of figure 6g,h, we still observe
the presence of some small oscillations in the lattice outside of the localized deformations. For
example, see above and below the highly localized wave form propagating at 45∘ measured
from the x1-axis in figure 6h. There it is apparent there are small oscillations in the structure
which is consistent with the fact that at this frequency, the structure has slowness contours with
some small curvature (see figure 3).

Finally, we mention that while the slowness contours may provide information about the
topology of the waveforms propagating in the bulk lattice, they cannot predict the deformations
these waveforms induce when interacting with the boundary of the quadrant. On the other
hand, the analytical solution presented here, based on the application of the Wiener–Hopf
technique, provides the information required to understand (i) how waves in the structure
interact with abruptly changing boundaries and (ii) the phase and spatially varying amplitude
of such waves in the time harmonic regime.

9. Conclusions
In the present article, we have considered two problems concerning the response of a lattice
quadrant subjected to point load along its free lateral boundary, while the vertical boundary
is fixed or free to move, with the intention of exploiting the method developed in [1] in the
solution of such problems. The solution to these canonical problems has been developed using
the discrete Fourier transform with respect to the principal lattice directions. This has led to
the bulk lattice equations providing a transformed equation, involving two transform variables,
incorporating knowledge of the boundary conditions and loading along the quadrant’s free
boundary. Utilizing the dispersion relation for wave motion in the lattice bulk, the transformed
equation is then ‘lifted’ [1] to equations connecting only the boundary response of the system.
This equation then enables one to determine a Wiener–Hopf problem involving the transformed
displacements along the lateral boundary. After solving the Wiener–Hopf equation, we are then
able to determine the entire lattice response.

The solutions for the considered problems have been implemented in numerical schemes
and they have been used to determine the quadrant’s response for a range of frequencies
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and load positions. In each, the computations reveal how the waves generated by the point
load propagate in the lattice, which may admit non-trivial topological features in frequency
regimes where dynamic anisotropy is present. They also show how those waveforms interact
with multiple lattice boundaries. An important feature of this investigation has involved the
analysis of the high strains produced as a result of the loading near the corner point of the
medium. These high strains occur in regions having a preferential direction within the bulk. At
low frequencies, the corner of the lattice acts as a stress concentrator in the system, whereas in
regimes with strong dynamic anisotropy this point appears to be relatively undisturbed with
the majority of the dynamic response being concentrated in highly localized waveforms (e.g. see
figures 5g,h and 6g,h).

In achieving the above analytical and numerical results, we have validated the theoretical
technique developed in [1] to handle dynamic problems in stratified systems with abruptly
changing geometries. We note the method adopted here has further extensions to a range of
problems concerning structured systems having different geometries, mechanical responses
(e.g. in-plane motions and flexural deformations) and a range of boundary conditions embed-
ding numerous mechanical features (e.g. elastic supports, internal resonances and gyroscopic
features). The work presented has applications in the analysis of structures commonly found in
materials science and civil engineering, where an important paradigm in their study involves
understanding their dynamic responses and wave scattering properties.
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