
 

 

 Title Page (with Author Details) 

Risk spillovers and diversification benefits between crude oil and 

agricultural commodity futures markets  

  

Walid Mensia,b,d, Mobeen Ur Rehmanc,d,1, Remzi Göke, Eray Gemicif, Xuan Vinh Vog  

a Department of Finance and Accounting, University of Tunis El Manar and IFGT, Tunisia.  
b Department of Economics and Finance, College of Economics and Political Science, Sultan 

Qaboos University, Muscat, Oman. walidmensi1@gmail.com  

c Keele Business School, Keele University, Staffordshire, UK  
d Institute of Business Research, University of Economics Ho Chi Minh City, Vietnam 

Mobeenrehman@live.com  
e Department of Business Administration, Dicle University, Turkey remzi.gok@dicle.edu.tr  

f Department of Business Administration, Gaziantep University, Turkey gemici@gantep.edu.tr  
g Institute of Business Research and CFVG, University of Economics Ho Chi Minh City, 

Vietnam vinhvx@ueh.edu.vn  

  

Abstract  

This study examines the dependence structure and risk spillovers between crude oil and eight 

major agricultural futures (wheat, corn, soybean coffee, cotton, lumber, cocoa, and live cattle) 

markets. It also analyzes the potential conditional diversification benefits using a variety of 

copula functions and Conditional Value at Risk (CoVaR) measure. The results show significant 

crisis-sensitive and temporal dependence between oil and agricultural markets. Moreover, 

crude oil shows a symmetric tail dependence with both wheat, corn, soybeans, and cotton 

futures, whereas oil exhibits an average dependence with coffee. A strong dependence is 

observed between oil and cocoa (lumber) during bearish (bullish) market conditions. Oil and 

Live cattle have a symmetric dependence during bearish and bullish market conditions. On the 

other hand, we find asymmetric and bidirectional risk spillovers from oil to agricultural 

markets. Furthermore, the wheat futures contract appears to be the most dominating and 

vulnerable asset to oil price shocks, followed by lumber and corn futures, respectively, while 

the live cattle contracts are the least. Finally, an equally weighted portfolio offers the highest 

diversification benefits at a 5% expected shortfall.   
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This study examines the dependence structure and risk spillovers between crude oil and eight major 

agricultural futures (wheat, corn, soybean coffee, cotton, lumber, cocoa, and live cattle) markets. It also 

analyzes the potential conditional diversification benefits using a variety of copula functions and 

Conditional Value at Risk (CoVaR) measure. The results show significant crisis-sensitive and temporal 

dependence between oil and agricultural markets. Moreover, crude oil shows a symmetric tail dependence 

with both wheat, corn, soybeans, and cotton futures, whereas oil exhibits an average dependence with 

coffee. A strong dependence is observed between oil and cocoa (lumber) during bearish (bullish) market 

conditions. Oil and Live cattle have a symmetric dependence during bearish and bullish market conditions. 

On the other hand, we find asymmetric and bidirectional risk spillovers from oil to agricultural markets. 

Furthermore, the wheat futures contract appears to be the most dominating and vulnerable asset to oil price 

shocks, followed by lumber and corn futures, respectively, while the live cattle contracts are the least. 

Finally, an equally weighted portfolio offers the highest diversification benefits at a 5% expected shortfall.   
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1. Introduction  

Over the past decade, the global financial system has faced increased uncertainty, resulting in 

heightened volatility in both crude oil and agricultural commodity markets, with significant 

implications for financial system stability (Ziadat et al, 2023; Luo and Ji, 2018). The high volatility 

of crude oil prices can be attributed to various factors, including global demand and supply 

dynamics, financial crises, and geopolitical conflicts (Alomari et al., 2022; Kang et al., 2017; 

Mensi et al. 2023). As crude oil serves as a primary energy source for agricultural production (Jiang 

et al., 2022, Shahzad et al., 2018) rising oil prices impact agricultural commodity prices through 

higher production costs driven by increased energy requirements, affecting inputs such as fertilizer 

https://www2.cloud.editorialmanager.com/ribaf/viewRCResults.aspx?pdf=1&docID=8828&rev=1&fileID=136481&msid=eb18a3d0-0301-4c8c-a6d9-2cb0f611db60


 

and transportation (Natanelov et al., 2011; Silvennoinen and Thorp, 2016; Yip et al., 2020). 

Therefore, there is a direct link between the energy sector and crop production costs due to the 

energy intensive nature of agriculture (Koirala et al, 2015; Reboredo, 2012), and this link further 

extends to impact the pricing of alternative oil substitutes, including biofuels such as Ethanol and 

Biodiesel, derived from agricultural outputs (Shahzad et al., 2018).  

Between September 2003 and July 2008, crude oil prices experienced a significant surge, rising 

from less than $30 per barrel to reach a record high of approximately $147 (Ji et al., 2018; Sun 

and Shi, 2015). The prices of agricultural products exhibit similar fluctuation patterns to crude oil 

(Fowowe, 2016; Gong et al., 2023; Rezitis, 2015). For instance, the volatility in oil prices has had 

a cascading effect on crucial agricultural commodities, such as soybean, maize, and wheat, leading 

to a reversion of their prices to 2007 levels (Fasanya and Akinbowale, 2019; Nazlioglu and Soytas, 

2011). Additionally, during the recent COVID-19 pandemic, commodity prices, including 

agricultural commodities, experienced notable increases. For instance, rice prices rose by 217%, 

wheat prices by 136%, corn prices by 125%, and soybean prices by 107% (El Montasser et al, 

2023).   

The main driving force behind this increase is the rising cost of oil substitutes, such as biofuels, is 

driving agricultural commodity prices higher (Dahl et al., 2020; Shahzad et al. 2018; Tiwari et al., 

2022). Moreover, changes in biofuel prices can also affect fossil fuel prices by affecting demand 

through the substitution channel, which can lead to bidirectional volatility spillovers across 

markets, and a better understanding of these relationships can benefit consumers and producers in 

the long run (Han et al., 2020; Mensi et al., 2014). The substitution relationship between fossil 

fuels and biofuels is economically reasonable. For example, as a result of the substitution effect 

between fuel and bio-energy, an increase in biofuel production would exert downward pressure on 

high oil prices (Su et al., 2019). On the other hand, higher oil prices increase the demand for 

ethanol, a type of biofuel, leading to higher prices for agricultural products in a mechanism that 

accepts agricultural products as inputs to energy sources (Paris, 2018; Peñaranda and Micola, 

2009). Therefore, producing biofuels to supplement conventional fuels could increase food prices 

and create sharp increases and volatility in the futures prices of corn, soybeans and crude oil (Chang 

and Su, 2010).  

Notably, the US ethanol policy in 2005 (expanded in 2007 by the Energy Independence and 

Security Act to include more renewable fuel mixes), envisioning a preference for clean and lowcost 

ethanol over traditional hydrocarbons, has increased interest in examining the dynamics between 

energy and agricultural commodity markets. A serious of studies indicate that presence of 

unidirectional return/volatility spillovers from crude oil to agricultural commodity markets (e.g., 

Ji et al., 2018; Pal and Mitra, 2020; Zhang and Qu, 2015) while others find evidence that there is 

both unidirectional and bidirectional return/volatility spillovers from agricultural commodity 

markets to crude oil markets (e.g., Dahl et al., 2020; Du et al., 2011; Han et al., 2020; Kang et al., 

2019; Nazlioglu et al., 2013; Naaem et al., 2022; Shahzad et al., 2018; Tiwari et al., 2022; Yip et 

al., 2020). This paper extends the understanding of linkages between crude oil and agricultural 

commodity markets.   

Amidst the heightened interdependence of international equity markets brought about by the global 

financial crisis of 2007-2008, investors have been actively exploring alternative instruments to 



 

diversify their portfolios and mitigate equity risk (Rehman et al. 2023; Makkonen et al., 2021). 

While the increased volatility spillover between crude oil and agricultural markets complicates 

risk management for portfolio managers and agricultural producers (Yip et al., 2020), the 

historically low correlation between energy and agricultural commodities, along with conventional 

financial assets, has drawn the interest of investors seeking diversification opportunities (Pal and 

Mitra, 2019). This has led to the recognition of commodity futures as a distinct financial asset 

class, contributing to effective portfolio diversification (Rehman and Vo, 2020; Kang et al., 2017; 

Silvennoinen and Thorp, 2016). Particularly, agricultural commodity futures, as an early and 

crucial component of the futures market, provide a means to hedge or mitigate price risk, 

minimizing potential losses resulting from adverse price fluctuations (Dai et al., 2022; Liu et al., 

2019; Makkonen et al., 2021).  

A voluminous literature has considered the returns and/or volatility connectedness between 

agricultural commodity markets and crude oil (e.g., Dahl et al., 2020; Diebold and Yilmaz, 2017; 

Hung, 2021; Ji and Fan, 2012; Khalfaoui et al., 2023; Mensi et al., 2014; Nazlioglu et al., 2013; 

Shahzad et al., 2018; Sun et al., 2021; Tiwari et al., 2022). However, there is no study investigates 

the pricing dynamics of related markets in terms of tail dependency, risk spillovers and 

diversification benefits. Therefore, the main motivation of this paper is to fill the gap in the existing 

literature by examining tail dependency, risk spillovers and diversification benefits between crude 

oil and agricultural commodity futures markets. In doing so, this study enhances our understanding 

of the relationship between crude oil and agricultural commodity futures markets, uncovers 

asymmetric spillovers between these markets, and evaluates the potential diversification benefits 

of including agricultural commodity futures in an oil portfolio using a dynamic conditional 

diversification benefit approach.   

This study makes significant contributions to the existing literature on three key aspects. Firstly, 

we explore the relationship between WTI crude oil and various agricultural commodity futures 

(such as wheat, corn, soybeans, coffee, cocoa, cotton, lumber, and live cattle) across different 

market conditions.  Our analysis focuses on different types of copulas, namely the Normal copula, 

Student-t copula, Clayton copula, rotated Clayton copula, Gumbel copula, rotated Gumbel copula, 

and Symmetrized Joe-Clayton (SJC) copula. Each copula captures different aspects of dependence, 

including zero tail dependence, symmetric tail dependence, asymmetric tail dependence, and 

upper/lower tail dependence.    

Secondly, we employ the CoVaR (Conditional Value at Risk) method, as introduced by Adrian and 

Brunnermeier (2016), to analyze risk spillovers. Unlike traditional Value at Risk (VaR), CoVaR 

captures asymmetric bidirectional spillovers (downside/upside) between markets, offering a more 

precise evaluation of risk in uncertain portfolios. CoVaR measures the maximum potential loss that 

an investor may experience within a specific time horizon and confidence level, considering both 

long and short positions. This approach is widely used to examine systemic risk and the 

transmission of failures across financial markets.  

Thirdly, we investigate the potential diversification benefits of adding agricultural commodity 

futures to an oil portfolio using the conditional diversification benefit (CDB) method introduced 

by Christoffersen et al. (2012, 2017). This approach considers changing correlation and spillover 

patterns between oil and agricultural commodity futures, allowing us to examine non-linear 



 

dependence and higher-order moments, especially during extreme market events. The CDB 

measure overcomes the limitations of static models by providing time-varying optimal weights for 

diversification, thereby accurately estimating the underlying diversification benefits in different 

market conditions.  

The next section provides related studies in current literature. Section 3 describes data and 

summarizes descriptive statistics. Section 4 introduces the econometric framework. Section 5 

presents and discusses the results obtained from the study. Section 6 concludes the paper.  

2. Related studies  

Following the 2007-2008 global financial crisis (GFC), examining the transmission dynamics 

between crude oil and agricultural commodities has become a focus of interest for researchers. 

There is a significant number of studies using various datasets and econometric methods in this 

field, but the literature gives heterogeneous results. Given the extensive literature on the topic, we 

confine the literature to only those studies that focus on spillovers in commodity markets. Table 1 

provides a brief overview of the main findings and methodologies used in previous studies.  
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Table  1   : Summary of previous studies   

Study   Data   Method   Commodity   Key findings     
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Another strand of research that models the dependence between crude oil and agricultural 

commodities using copula functions has gained significant momentum in recent years. To 

accurately managing portfolio risk, it is necessary to measure investor dependencies and tails 

(Rehman et al., 2022). Copula analysis improves the capture of tail dependencies by accounting 

for deviations from normality in extreme market conditions, providing a more comprehensive 

approach (Rehman et al., 2023; Ji et al., 2018; Supper et al., 2020). Reboredo (2012), for example, 

finds weak dependence between world oil and maize, soybean and wheat prices. Koirala et al. 

(2015) emphasize that a strong positive correlation between energy futures prices and agricultural 

commodity futures prices. Mensi, Tiwari et al. (2017) report that time-varying asymmetric tail 

dependence between the pairs of cereals and between oil and cereals across short-term, 

mediumterm, and long-term investment horizons. Mensi, Hammoudeh et al. (2017) examine the 

dependence structure and risk spillovers between crude oil prices and major regional developed 

stock markets and find that there is a tail dependence between crude oil prices and all stock markets 

for the raw return series. Jiang et al. (2018) conclude that agricultural raw material markets lead 

the global oil market, which, in turn, leads metal markets, the dependence structure varies over 

time, and the financial crisis has a notable impact on the interdependencies among these markets. 

Yahya et al. (2019) show that the connectedness between oil and agricultural products has 

increased post-2006 across all frequencies, particularly for longer investment horizons. Mokni and 

Youssef (2019) reveal that a stronger immediate impact of crude oil prices on agricultural 

commodity prices compared to delayed effects. Kumar et al. (2021) conclude that a strong 

correlation between oil market crashes and declines in agricultural commodities during crisis 

periods.   

The energy sector plays a key role in causing significant impacts  

 on other areas, and there are close connections among energy,  

 industrial metals, and precious metals. 
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3. Data and summary statistics   

Our dataset, spanning from January 1, 2000 to May 5, 2022, includes daily closing prices of oil 

and eight agricultural futures, i.e. WTI crude oil and cocoa, coffee, corn, cotton, live cattle, lumber, 

soybean, and wheat. We extracted it from DataStream terminal. The daily return series are 

calculated as logarithmic first difference of indices and we plot the price and return dynamics of 

futures in Figures 1 and 2, respectively. We observe that futures prices, see Figure 1, follow 

different trend before 2013 and a sudden peak observed around 2007 or 2010, coinciding with the 

2007-2009 global financial crisis and Eurozone debt crisis, characterizes futures series. In addition, 

the effect of health crisis in 2020 on evolution of prices becomes evident for all but cotton futures; 

U.S. oil futures contract prices had dropped in negative territory and back in positive territory soon 

after while the agricultural assets, except for cocoa, marked a sharp surge with the onset of the 

COVID-19 pandemic. Evidence of volatility clustering and fat tails in return series, plotted in 

Figure 2, prompt the use of nonparametric models.   

 



 

 

  

Figure 1: Price dynamics of WTI oil and Agricultural commodity futures  
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 Figure 2: Return dynamics of WTI oil and Agricultural commodity futures  



 

Table 2: Summary statistics of commodity futures price returns  

  Wheat  Corn   Soya beans  Coffee  Cocoa  Cotton  Lumber  Live cattle  WTI  

 Mean  0.0002   0.0002  0.0002  0.0001  0.0001  0.0001  0.0002  0.0001  0.0004  

 Maximum  0.2391   0.1680  0.0757  0.3154  0.1938  0.0953  0.2696  0.0664  0.3002  

 Minimum  -0.2467   -0.1619  -0.1674  -0.2626  -0.1928  -0.1040  -0.4006  -0.1595  -0.2822  

 Std. Dev.  0.0241   0.0185  0.0156  0.0210  0.0176  0.0195  0.0246  0.0112  0.0266  

 Skewness  -0.0728   -0.1372  -0.7279  0.4651  -0.1842  0.0096  -0.4205  -1.1385  0.2926  

 Kurtosis  9.3260   4.9377  6.9595  20.6006  13.3852  1.8276  21.7742  13.3416  16.5329  

 JB  21771.4***   6121.55***  12652.5***  106411.0***  44869.1***  836.7572***  118816.0***  45840.4***  68484.8***  

Correlation  0.1346***   0.1721***  0.1824***  0.0903***  0.0446***  0.1631***  0.0545***  0.0581***  -  

ADF  -18.8217***  -16.2502***  -17.2142***  -19.4443***  -19.2537***  -17.7918***  -16.4279***  -18.4695***  -16.1425***  

PP  -6335.49***  -6120.46***  -6476.01***  -5683.37***  -6249.95***  -6266.45***  -5417.42***  -5527.04***  -5979.94***  

ARCH [20]  870.791***  847.237***  816.335***  598.043***  777.239***  1118.60***  86.211***  143.397***  5716.41***  

Q [20]  78.972***  43.051***  38.202***  38.442***  37.780***  37.455**  93.282***  66.263***  71.072***  

Notes: ***, ** and * represent significance level at 1%, 5% and 10%, respectively.  



 

We delineate the descriptive statistics of each return series in Table 2. Results reveal that all futures 

contracts post a positive average return, closes to zero during the sample period. As indicated by 

standard deviations, the crude oil market is more volatile than agricultural commodity markets. 

The lumber has the highest volatility, whereas the live cattle contract has the lowest volatility 

among agricultural futures. Coffee, cotton, and WTI have a right-skewed distribution, while the 

remaining variables exhibit negative skewness. All futures returns are leptokurtic given positive 

extreme kurtosis values. Neither agricultural nor oil futures contract follow a normal distribution, 

as suggested by the JB statistics. Oil market is positively and moderately correlates with all 

agricultural market contracts, with the strongest and least correlations coefficients for soybeans 

and cocoa, respectively. Both market returns become stationary given the rejection of null 

hypothesis of ADF and PP tests at the 1% significance level. The results of ARCH and Ljung–Box 

tests provide evidence of ARCH and serial correlations effects up to 20 lags in all return cases.  

  

4.  Empirical methodology  

3.1 Time varying copulas  

To detect the presence of average and extreme tail dependence between oil and agriculture 

commodities, we use bivariate copulas. These copulas2 are based on Sklar’s theorem, which states 

that the joint distribution function i.e. 𝐹𝑋𝑌(𝑥, 𝑦) for two continuous random variables X and Y can 

be expressed in the form of copula functions 𝐶(𝑢, 𝑣) and the marginal distribution function of 𝐹𝑋 

and 𝐹𝑌 acting as random variables.   

 𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶(𝑢, 𝑣)  (1)  

Above equation comprises of 𝑢 = 𝐹𝑋(𝑥) and 𝑣 = 𝐹𝑌(𝑦) which highlights copula as a multivariate 

function with uniform marginal representing dependence between two random variables. This 

function is based on 𝑅𝑎𝑛𝐹𝑥 ∗ 𝑅𝑎𝑛𝐹𝑦 under continuous margins. We can also use copulas in 

connecting marginal to multivariate distribution function and later decompose into its respective 

copula to measure dependence along with its univariate marginal distributions. We can extract joint 

probability density of the variables X and Y using copula density  as highlighted 

below.  

  (2)  

 
2
  Cherubini et al. (2004) introduce copulas. Readers are also referred towards Joe (1997) and Nelson (2006) for 

understanding copulas.  

𝑓 𝑋𝑌 ( 𝑥 , 𝑦 ) = 𝑐 ( 𝑢 , 𝑣 ) 𝑓 𝑌 ( 𝑦 ) 𝑓 𝑋 ( 𝑥 )   



 

Equation (2) presents  as marginal densities of variables Y and X, respectively. 

Therefore, in order to explain joint densities of the two random variables, information about 

marginal densities and the copulas is crucial. Another feature of copula is that it contains 

information about the probability of variables experiencing not only average but joint extreme 

upward or downward (tail) movement. We illustrate equations for upper (right) and lower (left) 

tail dependence extracted from the copulas as follows.  

 (3)  

 (4)  

In Equation (3) and (4), . The lower (upper) tail dependence suggests a non-zero 

probability for an extreme (small) large value on first series along with the extreme small (large) 

value for the second series.   

In this paper, we use wide range of copulas with different dependence structures under time varying 

parameters. This combination comprises of symmetric as well as asymmetric copulas. Among 

symmetric copulas, these include bivariate Frank copula, Plackett copula with tail independence 

(or zero tail dependence), Student-t copula with equal lower and upper tail dependence and the 

Normal copula. The class of asymmetric copula includes Gumbel copula with upper tail 

dependence and lower tail independence, Symmetrized Joe Clayton with a special case of 

symmetric tail dependence, rotated Gumbel copula with upper tail independence and lower tail 

dependence and Clayton copula having upper tail independence and lower tail dependence. Time 

varying dependence for all the above-mentioned copulas is estimated by allowing dependence 

parameters to vary across time according to an evolution equation. For student t and Gaussian 

copula, we specify linear dependence parameter , which develops following an ARMA  

process3 as follows.   

  (5)  

In Equation (5),   presents a modified logistic transformation for 

keeping  in (-1,1). The dependence parameters in Equation (5) are presented through ,  and 

  denoting a constant, an autoregressive term and an average of the product over the last q 

observations of the transformed variables, respectively. For student-t copula, the parameter 

dynamics are presented again in Equation (5) however  is replaced by . Similar to 

 
3
 For more information, see Patton (2006)  

𝜌 𝑡 =   ∧   ( 𝜓 0 + 𝜓 1 𝜌 𝑡 − 1 + 𝜓 2 
1 

𝑞 
∑ ( ∅ − 1 ( 𝜇 𝑡 − 𝑗 ) ) 

𝑞 

𝑗 = 1 

( ∅ − 1 ( 𝑣 𝑡 − 𝑗 ) ) )   



 

Gaussian and Student-t copula, dynamics of Gumbel and rotated Gumbel copulas follow an ARMA 

 as per the following specification.   

 (6)  

The specification for the tail dependence of Symmetrized Joe Clayton (SJC) copula is as follows.   

(7)  

(8)  

In Equations (7) and (8),  which presents logistic transformation for keeping  

and  in the range .   

3.2 Value at risk and conditional value at risk   

We quantify risk spillover between oil and agricultural commodity futures contracts utilizing 

upside and downside value at risk (VaR) and conditional value at risk (CoVaR) based on copula 

estimates. The VaR quantifies maximum amount of loss that an investor may experience for a 

specific period and confidence interval by getting into a long (downside) or a short (upside) 

position. We highlight expression for downside VaR at period t under the confidence interval  

 as , estimated using marginal models as . The terms 

  and   represent conditional mean and standard deviation, respectively derived from the 

dependence model (i.e. ARFIMA-GARCH in our case). Similarly, we present expression of upside  

VaR using   which results in  . Both 

equations consists of  which highlights th quantile of the student t distribution.  

To measure risk spillover from oil market to agricultural commodities, we use CoVaR measure 

proposed by Adrian and Brunnermeier (2011) which was later generalized by Girardi and Ergün 

(2013). The CoVaR measure is capable to highlight risk spillover as it increases with the 

transmission of failure between the associated markets (see Bisias et al. 2012). In our study, the 

CoVaR of agricultural commodzities (oil) present the sensitivity of the VaR of agricultural 

commodity(oil) market due to extreme movements in the oil (agricultural commodity) market(s). 

Suppose  and  as returns on agricultural and oil market, then the resulting downside CoVaR 

for agricultural market is appended as follows.  

 (9)  



 

In Equation   provides  th quantile distribution of the oil returns with 

 measuring maximum amount of loss that the oil market may undergo for  

any specific period under the confidence interval of  . Similarly, the upside CoVaR for 

agricultural market results due to extreme upward returns movements in oil market can be specified 

as   

 (10)  

In the above equation,  measures maximum amount of loss by considering a short position 

for a period under the confidence interval of . To present CoVaR in equations (9)-(10) in 

terms of copulas, the resulting conditional probabilities are as follows.    

  (11)  

  (12)  

The expressions   and   highlight marginal distribution for oil and agricultural returns, 

respectively. According to Reboredo and Ugolini (2015), two steps are involved in the estimation 

of CoVaR. First step involves solving equation (11) or (12) to get value of  for 

copula function and the significance level of VaR and CoVaR i.e.  and , respectively. Second 

step computes CoVaR as   with the help of distribution function for 

agricultural commodities using ARFIMA-FIGARCH marginal model. Furthermore, to add 

robustness to our results, we apply K-S test proposed by Abadie (2002) for measuring systemic 

risk comparison between  and the CoVaR (  for both agricultural and oil 

markets. The application of K-S test enables us to measure difference between two quantile 

functions based on the empirical distribution function, however, does not rely on any underlying 

distribution function (Li and Wei, 2018).   

 (13)  

 and  in the above equation denotes distribution functions for VaR and CoVaR,  

respectively whereas n and m highlight size of the two samples.  

The null hypothesis of no systemic impact between oil and agricultural commodities and the 

alternative hypothesis can be described below:  



 

 (14)  

 (15)  

3.3 Conditional diversification benefits (CDB)  

Christoffersen et al. (2012) and Christoffersen and Simutin (2017) proposed a test statistic to 

measure diversification benefits of assets in a portfolio. This test, commonly known as conditional 

diversification benefit, uses expected shortfall measure to quantify diversification benefits under 

probability q and at time t as follows.  

  (16)  

In the above equation,  represent weight of the financial asset i at time t in portfolio p whereas 

ES denotes expected shortfall.  

 (17)  

In the above equation, z = i, g where  represents an inverse distribution function for asset z 

at time t,  represents an upper bound for the portfolio’s expected 

shortfall, . The  gives information about value at risk (VaR) in a 

portfolio provided by the qth quantile of lower bound of expected shortfall. For this reason, the 

CDB measure provides value in the range [0,1]. The increasing value of CDB implies greater 

diversification benefits in a portfolio however such diversification benefits depend on the asset’s 

composition and the probability q of the portfolio. For such reasons, we measure CDB under 

different combinations of assets weight in a portfolio under a passive trading strategy. The weights 

are kept constant over time at 5% and 50% corresponding to lower tail and median distribution of 

returns. The equation for expected shortfall for our multivariate marginal distribution function 

under Student t distribution is as follows.  

 (18)  

Above equation consists of H and h which highlights cumulative distribution function and standard 

Student density with  degrees of freedom, respectively for which the associated VaR is appended 

below.  

 (19)  



 

5. Empirical results   

5.1. Dependence analysis  

A preliminary and essential step for the estimation of dependence between oil and agricultural 

futures return is to define the marginal model and we present the results in Table 3. It should be 

noted that the results are based on an ARFIMA-FIGARCH model with skewed student-t 

distributions since it allows long memory in futures returns without violating normality 

assumption, where the optimal values of p, q, r and m parameters are defined by minimizing the 

ACI (p=0,1,2 considered). The findings in Panel A demonstrate evidence in favor of persistence in 

mean for wheat, corn, and live cattle futures contracts, pointing out the existence of long-range 

dependence in returns and therefore rendering them predictable. We also find that the AR(1) 

parameter in the conditional mean equation is statistically significant only for wheat, corn, and live 

cattle, indicating that past information is rapidly impounding into their current futures prices. 

Looking at the results from the conditional volatility equation in Panel B, we observe that volatility 

is quite persistent for the most of returns—wheat, corn, soybeans, coffee, cotton, lumber, and live 

cattle—as indicated by statistically significant GARCH[Beta1] parameter. Such result shows the 

volatility in agricultural markets depends not only on past volatility, but also on concurrent shocks 

to returns. In addition, the estimated fractional differencing parameter d (d-FIGARCH) is 

statistically significant for both market futures returns, indicating the presence of high degree of 

persistence in volatility, with crude oil futures being the most persistent, followed by wheat, 

soybeans, and corn, and cocoa being the least persistent among variables. Asymmetric volatility 

(leverage) effects are quite evident in most of futures, i.e., wheat, soybeans, coffee, cotton, lumber, 

live cattle, and WTI contracts. The statistically significant coefficients of the tail parameter reveals 

evidence of leptokurtic behavior for both markets, indicating that agricultural and oil markets 

significantly deviate downside or upside from current price levels. With the exception of soybeans 

and coffee, diagnostic test findings in Panel C demonstrate no ARCH effects in residuals in all 

cases. In addition, we find evidence against the presence of serial correlation in all but lumber 

cases in the residuals (Q[20]) and other than soybeans, coffee, and cocoa in the squared residuals 

(Q2[20])  of marginal distribution models. Overall, the results suggest no misspecification errors 

in marginal models for oil and agricultural futures returns.   

  



 

Table 3: Estimate results of marginal model  
   Wheat  Corn  Soybeans  Coffee  Cocoa   Cotton  Lumber  Live cattle  WTI  

Panel A: Mean Equation             

Cst[M]  0.0003  0.0004  0.0006***  -0.0000   0.0003*  0.0002  -0.0004  0.0006***  0.0010***  

  (0.0001)  (0.0003)  (0.0002)  (0.0002)   (0.0002)  (0.0002)  (0.0003)  (0.0002)  (0.0003)  

d-Arfima  -0.0973**  0.0737*  0.0352  0   0.0236  0.0069  0.0205  0.0858***  0.0324  

  (0.0404  (0.0431)  (0.0221)  (0.022)   (0.0176)  (0.0289)  (0.0163)  (0.0211)  (0.0315)  

AR[1]  0.6312***  0.5076***  0.0656  -0.1639   -0.1221  0.218  -0.176  0.8655***  0.3064  

  (0.1195)  (0.0988)  (0.2829)  (0.4669)   (0.3879)  (0.1392)  (0.1408)  (0.023)  (0.1898)  

MA[1]  -0.5662***  -0.5982***  0.0022  0.2119   0.0861  -0.3131**  0.2390**  -0.9101***  -0.3691*  

  (0.1139)  (0.1198)  (0.3011)  (0.4468)   (0.3988)  (0.1545)  (0.1334)  (0.015)  (0.204)  

Panel B: Variance Equation             

Cst[V]  -0.5662***  0.1324***  0.0662***  0.3217**   0.6758  0.1505***  0.2009***  0.1308**  0.0656  

  (0.1139)  (0.05)  (0.0238)  (0.1324)   (0.4387)  (0.0563)  (0.0559)  (0.0583)  (0.0502)  

d-Figarch  0.4881***  0.4277***  0.4627***  0.2633***  0.2055***  0.3723***  0.2737***  0.3381***  0.8674***  

  (0.1228)  (0.0744)  (0.0885)  (0.0472)  (0.0498)  (0.0534)  (0.0295)  (0.0834)  (0.2521)  

ARCH[Phil1]  0.3349***  0.3099***  0.3131***  0.4283***  0.1393  0.3922  0.6264***  0.4146***  0.1259  

  (0.0715)  (0.0564)  (0.0416)  (0.0999)  (0.3194)  (0.0559)  (0.0643)  (0.1266)  (0.1629)  

GARCH[Beta1]  0.7023***  0.6506***  0.7184***  0.6120***  0.2984  0.6841***  0.7686***  0.6202***  0.8849  

  (0.0826)  (0.0872)  (0.0692)  (0.1125)  (0.3533)  (0.0717)  (0.0496)  (0.1441)  (0.0968)  

Asymmetry  1.4897***  -0.0205  -0.4480***  0.4028***  0.0241  0.0866***  0.1846***  -1.2431***  -0.3541***  

Tail  31.467***  3.1867***  4.2492***  5.4378***  5.8651***  4.3866***  8.5650***  14.340***  2.6976***  
Panel C: Diagnostics tests            



 

LL  14351.4  15643.9  16756.9  15308.4  16151.1  15124.9  14305.3  18829.2  14156.4  
AIC  -4.9185  -5.3618  -5.7435  -5.2467  -5.5357  -5.1838  -4.9027  -6.4541  -4.8516  

ARCH[20]  0.1047  1.0672  1.7844  1.6686  1.5552  0.9178  0.7371  0.5626  1.0665  

  [1.0000]  [0.3775]  [0.0170]  [0.0310]  [0.0543]  [0.5640]  [0.7908]  [0.9392]  [0.3783]  

Q[20]  20.3533  27.7038  12.1496  24.5521  15.079  11.5929  30.1618  28.8291  12.4423  

  [0.3133]  [0.0667]  [0.8394]  [0.1377]  [0.6565]  [0.8675]  [0.0359]  [0.0505]  [0.8236]  

Q2[20]  2.0468  22.5434  36.1602  32.4909  32.7032  18.4309  14.441  9.7474  21.7972  
   [0.9999]  [0.2087]  [0.0067]  [0.0192]  [0.0181]  [0.4276]  [0.6999]  [0.9398]  [0.2411]  

 

Notes: The above table presents estimates of maximum likelihood along with the standard deviations of parameters under marginal distribution of the model. We use combination of different values 

between “0” and “2” for selecting the p, q, r and m lag values. LL is the Log-likelihood values of marginal distribution models while Q[20] and Q2[20] denote empirical Ljung Box statistics as 

autocorrelation of commodities returns and squared return series. ARCH [20] highlights autoregressive conditional heteroscedasticity. ***, ** and * indicates the rejection of the null hypothesis at a 1%, 

5% and 10% significance level, respectively.  
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i) Oil  

Figure 3: Volatility estimates of commodity futures.  

  

In the next step, we calculate time-varying copulas between oil and agricultural futures markets. 

Parameter estimates to model the dependence structure through seven copula functions are given 

in Table 4. The best-fitted copula model for each asset pair, including the crude oil and one 

agricultural futures contract, are determined by minimizing AIC value as was the case in Wen et 

al. (2017), Reboredo (2018), Mensi et al. (2021), etc. The results, reported in Table 4, demonstrate 

that the Symmetrized JC copula emerges as the best fit for wheat, corn, soybeans, and cotton 

futures, whereas the Gaussian copula is the best fit for coffee; the Clayton copula for cocoa; the 

Rotated Gumbel for lumber, and the Student-t copula for live cattle. Our result differs from Mensi 

et al. (2017), who discover no tail dependence for undecomposed series of oil-wheat and oil-corn 

pairs but find evidence of asymmetric tail dependence for oil-corn pair in the long-term. More 

precisely, four out of eight markets are featured concurrently by the existence of lower and upper 

(symmetric) tail dependence (see Panel F), while the coffee market is described as the symmetric 

no-tail dependence (see Panel A). Likewise, the lower tail dependence but upper tail independence 

emerges for cocoa and lumber, whereas the live cattle market exhibits symmetric—with equal 

lower and upper—tail dependence. Although both the cocoa and lumber futures contracts co-move 

with oil market during bearish market circumstances, the results suggest a decoupling pattern when 

markets are bullish. The time varying SJC copula estimates for wheat, soybeans, and cotton reveal 

that all parameters βU, βL, αU, αL are statistically and significantly negative. These findings imply 

the presence of a high level (βU and βL) and time-variant persistence (αU and αL) in the dependence. 

Likewise, the conditional upper tail dependence ὼU and conditional lower tail dependence ὼL for 

wheat and cotton significantly negative but positive for soybeans. The results show a higher 

possibility of joint extreme events during both bearish and bullish circumstances for these markets.  

Conversely, the time-varying estimated parameters (Ψ1 and Ψ2) for Clayton and Student-t copulas 

appear to be statistically significant for cocoa and live cattle and this result confirms that the 

dependence between oil markets with cocoa and live cattle varies in time. This result confirms 

Wen et al. (2017), who find a dynamic dependence and thus time-variant diversification benefits 

between energy stocks and commodity futures.  
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Table 4: Results of time varying copulas between WTI oil and agricultural commodity futures returns   

   Wheat  Corn  Soybeans Coffee  Cocoa  Cotton  Lumber  Live cattle  

Panel A: Gaussian Copula (no tail dependence, tail independence)      

ὼ  -0.0004***  -0.0019***  0.6229***  0.0007***  0.0014***  0.5379***  0.1752***  0.2415***  

  (0.0005)  (0.0005)  (0.0777)  (0.0004)  (0.0010)  (0.0804)  (0.0619)  (0.0533)  

α  0.0092***  0.0089***  0.2448***  0.0121***  0.0107***  0.1754***  0.1950***  0.1492***  

  (0.0029)  (0.0025)  (0.0722)  (0.0036)  (0.0046)  (0.0702)  (0.0770)  (0.0575)  

β  2.0112***  2.0255***  -1.5624***  1.9996***  1.9724***  -1.5047***  -1.2185***  -1.9805***  

  (0.0071)  (0.0045)  (0.2988)  (0.0057)  (0.0204)  (0.3973)  (0.8124)  (0.0697)  

AIC  -153.981  -210.28  -239.888  -133.562  -29.482  -172.095  -32.697  -33.467  

Panel B: Clayton Copula (lower tail dependence)        

Ψ0  0.2738***  0.7747***  1.0317***  0.8769***  0.7381***  0.4128***  0.7826***  0.2463***  

  (0.0558)  (0.1520)  (0.1179)  (0.0389)  (0.0290)  (0.0686)  (0.0260)  (1.0900)  

Ψ1  0.9987***  -0.8141***  -0.6151***  -0.4751***  0.3372***  0.6954***  -0.8855***  1.1313  

  (0.1388)  (0.4211)  (0.1959)  (0.0878)  (0.0345)  (0.0870)  (0.1310)  (17.3400)  

Ψ2  -0.1205***  -0.5877***  -1.4132***  -1.3344***  -1.6439***  -0.3676***  -1.2869***  -0.1423  

  (0.1222)  (0.3864)  (0.3355)  (0.1130)  (0.0568)  (0.1778)  (0.0509)  (15.1837)  

AIC  -107.068  -165.614  -217.335  -105.856  -45.053  -179.078  -41.642  -51.416  

Panel C: Rotated Clayton Copula (upper tail dependence)       

ὼ  0.3435***  0.3951***  1.1239***  0.3744**  0.5155***  0.7098***  0.4881***  0.8018***  

  (2.2398)  (0.0218)  (0.0813)  (44177.2)  (0.0651)  (0.1688)  (0.1397)  (0.1046)  

α  0.8397***  0.7644***  -0.8779***  0.826  0.6007***  -0.5246***  0.5145***  -1.1763***  

  (5.5204)  (0.0426)  (0.1536)  (16317.4)  (1.3893)  (0.5269)  (0.5150)  (0.1524)  

β  -0.2543***  -0.3884***  -1.6563***  -0.4115***  -1.1442***  -0.6425***  -0.8515***  -1.7914***  

  (1.6657)  (0.0286)  (0.3165)  (7419.30)  (0.7190)  (0.3644)  (0.1495)  (0.2293)  

AIC  -117.689  -154.423  -183.57  -83.135  -12.817  -130.011  -30.15  -22.063  

Panel D: Gumbel Copula (upper tail dependence)        

ὼu  -1.0651***  -0.5769  1.8081***  -0.7524***  -0.2432***  -0.6272***  -0.6019***  0.0341  

  (136.8242)  (10.8581)  (0.3264)  (27.9327)  (0.3346)  (0.1464)  (0.1521)  (2.4357)  

αu  1.2799***  0.9156  -0.9705***  1.0474***  0.6993***  0.9333***  0.9629***  0.2287***  

  (116.1672)  (0.3875)  (0.2790)  (53.1095)  (0.2430)  (0.1021)  (0.1013)  (2.2852)  

βu  -0.0992  -0.3838  -1.2270***  -0.3232***  -1.1006***  -0.2645***  -0.6641***  -0.1686***  

  (13.7639)  (71.2054)  (0.2723)  (7.6773)  (0.3422)  (0.1151)  (0.1753)  (0.2175)  

AIC  -140.819  -180.108  -220.765  -103.483  -20.125  -173.158  -46.462  -47.485  

Panel E: Rotated Gumbel Copula (lower tail dependence)       

ὼL  -1.0707***  -0.7073***  1.6701***  -0.6490***  -0.0127**  -0.6096***  0.5114***  -1.1894***  

  (0.2011)  (0.6962)  (0.2974)  (0.0052)  (0.3913)  (0.1150)  (2.3554)  (11.4022)  

αL  1.2846***  1.0018***  -0.8614***  0.9730***  0.5304  0.9198***  -0.0304  1.3937***  

  (0.1627)  (0.4358)  (0.2511)  (0.0015)  (0.3015)  (0.0793)  (2.0342)  (9.7239)  
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βL  -0.1000***  -0.2517***  -1.1351***  -0.3860***  -1.1493  -0.2640***  -0.8154  -0.1453**  

  (0.0841)  (0.9409)  (0.2241)  (0.0421)  (0.3280)  (0.0948)  (0.7462)  (5.2767)  

AIC  -134.341  -193.49  -249.907  -123.834  -44.885  -211.553  -54.467  -72.157  

Panel F: Symmetrized Joe-Clayton Copula (asymmetric tail dependence, upper and lower tail dependence)   

ὼU  -1.9607***  3.0752  2.1672***  -1.8850***  -17.6777***  -0.6338***  -16.4722  -17.9473**  

  (1.0875)  (0.0000)  (1.6400)  (2.5125)  (169.4849)  (1.4907)  (59.8665)  (592.9723)  

βU  -5.7111***  -24.9990***  -18.7030***  -11.1784***  -0.7289  -12.2094***  -2.4543  -1.6729  

  (3.7725)  (0.0000)  (8.5105)  (8.2149)  (57.5066)  (7.5179)  (30.3869)  (161.1151)  

αU  6.3283***  -4.8725  -6.0066***  -3.3676***  0.0168  3.8596***  -0.0118***  -0.0049  

  (3.6769)  (0.0000)  (3.2444)  (33.6485)  (1.6359)  (2.2254)  (1.0019)  (1.1288)  

ὼL  -2.8264***  -3.0959  0.4443***  0.0657***  0.0168***  -0.7068***  2.2315  -0.5886  

  (1.7852)  (0.0000)  (1.0399)  (1.2709)  (1.1759)  (1.3991)  (2.2012)  (1.5337)  

βL  -4.4374***  -1.2736  -9.0260***  -11.6438***  -24.9999***  -7.7976***  -24.9926  -13.49  

  (5.8212)  (0.0000)  (3.9458)  (4.0734)  (5.2122)  (4.5663)  (11.0955)  (7.0381)  

αL  11.1837***  10.9586  -6.4895***  -0.6151***  -3.8245***  2.4789***  -6.9475  4.4664  

  (12.6654)  (0.0000)  (4.2766)  (5.5010)  (1.9079)  (3.5243)  (6.6655)  (2.8559)  

AIC  -156.763  -222.129  -273.329  -119.793  -35.328  -224.655  -42.666  -62.292  
Panel G: Student-t Copula (symmetric tail dependence)       

Ψ0  -0.0002***  -0.0017***  -0.0013***  0.0007***  0.1980***  -0.0020***  0.0709***  0.0322***  

  (0.0005)  (0.0008)  (0.0051)  (0.0003)  (0.0634)  (0.0016)  (0.0541)  (0.0637)  

Ψ1  0.0063***  0.0048***  0.0056***  0.0067***  0.0570***  0.0036***  0.0394***  0.0164***  

  (0.0023)  (0.0019)  (0.0188)  (0.0025)  (0.0589)  (0.0027)  (0.0287)  (0.0243)  

Ψ2  2.0074***  2.0229***  2.0228***  2.0026***  -1.7510***  2.0266***  0.7884***  1.4898***  

  (0.0078)  (0.0086)  (0.0401)  (0.0050)  (0.5269)  (0.0155)  (0.8667)  (0.9973)  

υ  5.0000***  4.9954***  4.9947***  5.0000***  5.0000***  4.9926***  5.0000***  5.0000***  

  (0.2856)  (0.2465)  (0.2497)  (0.2745)  (0.3352)  (0.2345)  (0.2450)  (0.3300)  

AIC  -130.447  -135.59  -216.789  -95.346  65.169  -204.407  -23.024  -133.599  

Notes: ***, ** and * indicates the rejection of the null hypothesis at a 1%, 5% and 10% significance level, respectively. The minimum AIC value 

(in bold), adjusted for small-sample bias, indicates the best fit for copulas and q parameter for the time-varying framework is “8”. Values in the first 

row represent parameter estimates for each copula model and values in the second row and parenthesis are standard errors. U and L stands for upper 

and lower tail dependence, respectively.  

  

Figure 4 demonstrates the evolving dependence structure under the best-fit copula specifications 

given in Table 4 and it provides deeper insights into time-varying tail dependence between 

agricultural commodity futures and oil markets. A visual inspection suggests the level of tail 

dependence is not constant but time-varying throughout the sample period, intensifying during the 

major events, such as the 2007-2009 financial crisis; the 2010-2012 Eurozone sovereign debt 

crisis; the 2014 oil prices shock, and the COVID-19 period, supporting Yahya et al. (2019), who 

show the financial and economic crisis periods considerably affect the oil-agricultural nexus. The 

two copula specifications that produce the best fit are the Symmetrized JC copula with three and 

the Rotated Gumbel with two pairs of agricultural commodities. More precisely, the results provide 

evidence of symmetric tail dependence for live cattle futures (student-t copula); asymmetric tail 
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dependence for wheat, corn, and cotton futures (Symmetrized JC copula), and zero tail dependence 

for coffee futures (Gaussian copula) with oil markets. We may infer from zero dependence on 

coffee futures that it provides a safe-haven property for investors in the oil market during a 

downturn, where the effect is more prominent during the global financial crisis. The strengthening 

of lower dependence demonstrates that cotton investors suffer the largest losses, followed by live 

cattle, corn and wheat futures during difficult times. Conversely, the Clayton and Rotated Gumbel 

copulas show lower tail dependence but upper tail independence for soybean, cocoa, and lumber 

futures with the oil markets, indicating that oil market returns co-move in extreme negative returns 

but decouple from the respective futures during bullish market conditions. This suggests a higher 

loss potential during a downturn and a lower profit diversification potential when markets are 

bullish for soybean, cocoa, and lumber futures investors combined with the oil market.  
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Figure 4: Temporal dependence between WTI oil and agricultural commodities.  

  

5.2. Risk spillovers analysis  

The calculation of the conditional VaR (CoVaR) enables us to evaluate the impact of upside and 

downside price spillovers on the agricultural futures markets from the crude oil market and vice 

versa. To do so, the temporal dynamics of the downside and upside CoVaR and VaR estimates for 

0.05 and 0.95 values for both α and β, are calculated and given in Figure 5. As indicated by 

Reboredo (2018), the price spillover effects, determined by the dependence structure between the 

oil and agricultural markets, emerge in the case of deviations in CoVaR from VaR values. The 

wider the departure, the stronger the spillover risk effect that occurs between two markets. We 
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should note that the red and green solid lines indicate the downside VaR and CoVaR of agricultural 

or oil market futures, while the blue and gray solid lines reflect the upside VaR and CoVaR of the 

same.  

It is obvious that the extent of spillover effects varies over time for each futures contract and in 

both directions, with dramatic increases following or during large event occurrences (Reboredo, 

2018; Ji et al., 2018; Mensi et al., 2021). The results in Panels A and B indicate that in virtually all 

situations, downside and upside VaR, as well as conditional VaR values, follow similar upward 

and downward trends, with minor differences in magnitude in two directions, indicating limited 

evidence of price spillovers for all but soybeans and cocoa futures with the crude oil market. The 

visual inspection shows relatively low co-movements between oil and agricultural futures and 

therefore underscore the presence of tail diversification effects for one market against extreme 

price fluctuations in other market. Regarding spillovers from the agricultural markets, 

unconditional downside VaR values for agricultural markets mostly and systematically larger than 

CoVaR values, and this is true for the unconditional upside VaR compared to CoVaR values, thus 

reinforcing the findings from Ji et al. (2018). As for spillovers from oil market, however, the results 

in Panel A suggest that unconditional VaR values are larger than that of CoVaR values for the 

downward spillovers from the oil market, whereas the opposite is true for the upward spillovers, 

confirming Meng et al. (2020) for a comparable finding between crude oil and Chinese commodity 

futures. Overall, the limited evidence of price spillovers and low co-movement between the oil 

and agricultural markets, driven by a narrower gap between the CoVaR and VaR, have implications 

for investors in both markets, as they may benefit from the hedging capabilities of oil or 

agricultural futures during periods of extreme market movements.  

  
Panel A: Spillovers from WTI oil to agricultural markets  Panel B: Spillovers from agricultural to WTI oil markets  
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Figure 5: Time-varying downside and upside price spillovers between WTI oil and agricultural futures markets   

   

Table 5 provides the average upside and downside VaR and CoVaR values for both cases, where 

the relatively small average values confirms the results depicted in Figure 5. In addition, the 

average downside and upside VaR values from WTI to agricultural futures range from -0.0453 to 

0.0450, but they remain constant for all agricultural futures in the opposite direction for downside 

and upside risks, with an average of 0.0488 and -0.0471, respectively. The difference between the 

CoVaR and VaR values suggests a higher spillover effect from agricultural futures to the oil market 

rather than the other way around, and wheat appears to be by far the most sensitive asset to the 

upside and downside shocks emanating from the oil market, whereas both downside and upside 

soybeans risk shocks are the most influential asset on oil market than other agricultural 

commodities, supporting Ji et al. (2018) for their wheat and soybeans commodities with oil and 

gas markets.  

  

Table 5: Static upside and downside spillovers between oil and agricultural futures  

   Upside VaR  Downside VaR  Upside CoVaR  Downside CoVaR  
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 Wheat  0.0450  -0.0453  0.0617  -0.0273  
  (0.0169)  (0.0169)  (0.0231)  (0.0102)  

Corn  0.0359  -0.0352  0.0449  -0.0400  

  (0.0107)  (0.0107)  (0.0134)  (0.0140)  

Soybeans  0.0301  -0.0291  0.0206  -0.0551  

  (0.0095)  (0.0096)  (0.0064)  (0.0180)  

Coffee  0.0376  -0.0376  0.0421  -0.0277  

  (0.0100)  (0.0100)  (0.0104)  (0.0069)  

Cocoa  0.0347  -0.0340  0.0291  -0.0339  

  (0.0085)  (0.0085)  (0.0070)  (0.0087)  

Cotton  0.0378  -0.0373  0.0518  -0.0398  

  (0.0094)  (0.0093)  (0.0129)  (0.0101)  

Lumber  0.0439  -0.0445  0.0415  -0.0444  

  (0.0146)  (0.0145)  (0.0132)  (0.0131)  

Live cattle  0.0234  -0.0226  0.0258  -0.0130  

  (0.0062)  (0.0063)  (0.0070)  (0.0037)  

Panel B: Spillovers from agricultural to WTI oil markets     

Wheat  0.0488  -0.0471  0.0340  -0.0629  

  (0.0251)  (0.0254)  (0.0168)  (0.0319)  

Corn  0.0488  -0.0471  0.0386  -0.0594  

  (0.0251)  (0.0254)  (0.0195)  (0.0334)  

Soybeans  0.0488  -0.0471  0.0287  -0.0869  

  (0.0251)  (0.0254)  (0.0140)  (0.0423)  

Coffee  0.0488  -0.0471  0.0292  -0.0458  

  (0.0251)  (0.0254)  (0.0163)  (0.0287)  

Cocoa  0.0488  -0.0471  0.0250  -0.0484  

  (0.0251)  (0.0254)  (0.0124)  (0.0247)  

Cotton  0.0488  -0.0471  0.0388  -0.0584  

  (0.0251)  (0.0254)  (0.0186)  (0.0298)  

Lumber  0.0488  -0.0471  0.0262  -0.0592  

  (0.0251)  (0.0254)  (0.0129)  (0.0304)  

Live cattle  0.0488  -0.0471  0.0269  -0.0398  

   (0.0251)  (0.0254)  (0.0141)  (0.0230)  

Note: The table presents the average VaR and the corresponding CoVaR values. The p-values are presented in brackets.   

  

Afterwards, we utilize the K-S test considering three different tests to find out whether the impact 

of spillovers under VaR and CoVaR specifications changes or not and report the test statistics 

alongside with the probability values given in square brackets in Table 6. Given the reported 

pvalues in the first and second columns are lower than any conventional significance level, we can 

strongly reject the null hypothesis of equality and thus confirm the existence of statistically 

difference between unconditional downside/up VaR and conditional downside/up VaR (CoVaR) 

for both markets and conclude that investors react differently to upside and downside trends. This 



31  

  

result confirms those of Kumar et al. (2021), who show the evidence of inequality between the 

downside/upside VaRs and their respective the downside/upside CoVaR values for all commodity 

returns and argue that rising uncertainty in oil market will negatively affect the commodity returns. 

Similarly, the results of Test 3, shown in the third column, show an asymmetry of upside and 

downside risk spillovers between oil and agricultural markets, indicating that the extent of the 

upside risk spillover is significantly greater than the downside risk spillover for all agricultural 

commodity futures. This suggests disentangling downside and upside risks to avoid losses when 

taking risk and portfolio management decisions. Our findings are partly in line with Shahzad et al. 

(2018) for the existence of significant and strong asymmetry of upside and downside risk spillovers 

between oil and agricultural markets, including soybeans and wheat.  

  

Table 6: Tests of equalities and asymmetries of upside and downside VaR-CoVaR  

 

 

  [0.0000]  [0.0000]  [0.0000]  

Soybeans  0.749  0.5558  0.9988  

  [0.0000]  [0.0000]  [0.0000]  

Coffee  0.5876  0.3032  0.9206  

  [0.0000]  [0.0000]  [0.0000]  

Cocoa  0.0708  0.4156  0.5509  

  [0.0000]  [0.0000]  [0.0000]  

Cotton  0.1211  0.5133  0.6918  

  [0.0000]  [0.0000]  [0.0000]  

Lumber  0.0451  0.1031  0.3034  

  [0.0000]  [0.0000]  [0.0000]  

Live cattle  0.831  0.2204  0.9818  

 

Note: Table provides the K-S statistic for equality of two cumulative distribution functions. P-values are given in square brackets. Column 1 tests 

for the equality of VaR and CoVaRs in the down market while Column 2 performs the same test in the up market. Column 3 reports the test results 

for the asymmetry of upside and downside risks.    

  

5.3. Conditional diversification analysis  

  Testing  Downside Risk Spillover   Testing  Upside Risk Spillover   Testing  the  a symmetry  of upside and downside risk   

  𝑯 𝟎 :   𝑪𝒐𝑽𝒂𝑹 𝑫 = 𝑽𝒂𝑹 𝑫   𝑯 𝟎 :   𝑪𝒐𝑽𝒂𝑹 𝑼 = 𝑽𝒂𝑹 𝑼   𝑯 𝟎 :   
𝑪𝒐𝑽𝒂𝑹 𝑫 

𝑽𝒂𝑹 𝑫 
= 

𝑪𝒐𝑽𝒂𝑹 𝑼 
𝑽𝒂𝑹 𝑼 

  

    𝑯 𝟏 :   𝑪𝒐𝑽𝒂𝑹 𝑫 ≠ 𝑽𝒂𝑹 𝑫   𝑯 𝟏 :   𝑪𝒐𝑽𝒂𝑹 𝑼 ≠ 𝑽𝒂𝑹 𝑼   
  

𝑯 𝟏 :   
𝑪𝒐𝑽𝒂𝑹 𝑫 

𝑽𝒂𝑹 𝑫 
< 

𝑪𝒐𝑽𝒂𝑹 𝑼 
𝑽𝒂𝑹 𝑼 

  

Wheat   0.6352   0.4535   0.9955   
  [0.0000]   [0.0000]   [0.0000]   
Corn   0.1629   0.3316   0.5539   

    [0.0000]   [0.0000]   [0.0000]   
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Table 7 reports the summary statistics of CDBs for various portfolio weights, based on the 

suggestions in Christoffersen et al. (2012) and Christoffersen and Simutin (2017) and at the 5% 

(Panel A) and 50% (Panel B) probability levels for the expected shortfall. The empirical evidence, 

based on the average values, suggest a reverse V-shaped pattern for all agricultural futures at the 

5% and 50% levels, with the exception for live cattle futures offering virtually a same 

diversification benefits to investors at portfolio compositions of 50% and 80%. In addition, the 

averaged CDBs values are larger for all cases at the 5% level. The results reveal that the averaged 

CDBs for wheat, corn, coffee, and cotton are quite similar, whereas the CDBs for the remaining 

markets differ somewhat in magnitude. The benefits of diversification peak at portfolio 

compositions of 50% oil and 50% agricultural futures and then declines as the portfolio weights 

rise. Explicitly, we obtain the least and highest CDBs for portfolio weights of 5% and 50%, 

respectively, for all agricultural markets, with the exceptions for lumber and live cattle futures. In 

line with Hanif et al. (2023), lumber attains the highest CDBs for portfolio weights from 0.05 to 

0.50, whereas live cattle futures contract acts as the derivative asset offering the highest 

diversification benefits for the remaining portfolio weights. Lumber (soybeans) futures evidently 

offers higher (lower) diversification benefits and risk reduction, given a relatively lesser (larger) 

standard deviation of 0.0246 (0.0602), for an equally weighted portfolio composition when both 

markets are in bearish circumstances. This result suggests that bivariate portfolios including 

lumber (soybeans) and oil futures are the most (least) attractive in diversifying the extreme risks 

of oil markets. However, this is true only for the lumber futures in the normal return quantiles, i.e. 

at the 50% expected shortfall.  

  

Table 7: Conditional diversification benefits  

      Wheat  Corn  Soybeans  Coffee  Cocoa  Cotton  Lumber  Live cattle  

Panel A: Expected Shortfall at 5%           

Portfolio Weight            

0.05  mean  0.1833  0.1494  0.1242  0.162  0.1548  0.1561  0.2026  0.1113  

  

0.2  

sd  [0.0598]  [0.0461]  [0.0417]  [0.0563]  [0.0468]  [0.0438]  [0.0587]  [0.0349]  

mean  0.4599  0.4094  0.3639  0.43  0.4271  0.4215  0.4947  0.3494  

  

0.5  

sd  [0.0841]  [0.0788]  [0.0798]  [0.0903]  [0.0800]  [0.0724]  [0.0732]  [0.0726]  

mean  0.6091  0.5899  0.5667  0.602  0.6247  0.594  0.6372  0.5964  

  

0.8  

sd  [0.0455]  [0.0497]  [0.0602]  [0.0583]  [0.0414]  [0.0382]  [0.0246]  [0.0528]  

mean  0.4747  0.4931  0.5105  0.4903  0.5368  0.4824  0.4834  0.5981  

  

0.95  

sd  [0.0874]  [0.0774]  [0.0791]  [0.0667]  [0.0560]  [0.0631]  [0.0713]  [0.0423]  

mean  0.198  0.217  0.2421  0.2089  0.2438  0.204  0.194  0.3185  

  sd  [0.0781]  [0.0748]  [0.0834]  [0.0610]  [0.0683]  [0.0597]  [0.0591]  [0.0680]  

Panel B: Expected Shortfall at 50%           
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Portfolio Weight            

0.05  mean  0.0445  0.0349  0.0283  0.0385  0.0363  0.0366  0.0499  0.025  

  

0.20  

sd  [0.0173]  [0.0123]  [0.0107]  [0.0160]  [0.0127]  [0.0117]  [0.0179]  [0.0089]  

mean  0.1514  0.1263  0.1067  0.1371  0.1347  0.1314  0.1692  0.1004  

  

0.50  

sd  [0.0410]  [0.0343]  [0.0322]  [0.0426]  [0.0366]  [0.0324]  [0.0393]  [0.0288]  

mean  0.2422  0.228  0.2127  0.2382  0.254  0.2302  0.2632  0.2332  

  sd  [0.0319]  [0.0324]  [0.0373]  [0.0410]  [0.0283]  [0.0262]  [0.0186]  [0.0356]  

 0.80  mean  0.16  0.169  0.1793  0.1663  0.1928  0.1616  0.1629  0.2335  

  
 sd  

Notes: We compute the conditional diversification benefit (CDB) for each bivariate portfolio including oil against agricultural futures contract 

considering expected shortfall values at the 5% (Panel A) and 50% (Panel B) probability levels. The table reports portfolio weights in first column 

and CDBs in columns 3–10. In addition, the time-average of the conditional diversification benefit and the standard deviation are given in the first 

and second row [in square bracket].  

  

6. Conclusion  

Crude oil and agricultural markets have been marked by high uncertainty after the financialization 

of commodities.  Furthermore, the geopolitical conflicts and the economic and energy crises have 

contributed to the large swings of commodity prices. Oil is one of the most important input of 

agriculture sector. A surge in oil prices leads to an increase in agricultural prices. This linkage 

requires better understanding and measuring the spillover effects and the changes in the 

dependence structure between crude oil and major commodity futures. This paper aims to examine 

the dependence (average and extreme or tail) as well as risk spillovers between crude oil futures 

and eight major agricultural commodity futures wheat, corn, soybean coffee, cotton, lumber, 

cocoa, and live cattle. Furthermore, it investigates the potential diversification benefits using a 

variety of copula functions and Conditional Value at Risk (CoVaR) measure.  

We obtain the following results. First, it show evidence of mean and volatility persistence in market 

returns, where oil market emerges as the most persistence and cocoa is the least. Furthermore, 

corn, cotton, soybeans, and wheat futures prices have symmetric tail dependence, whereas the 

coffee market has an average dependence on the oil market. Both cocoa and lumber markets show 

lower tail dependence, while the live cattle market exhibits concurrent lower and upper tail 

dependence. They co-move with oil market during bearish market circumstances but decouple 

when markets are bullish. Time-varying copula results reveal a statistically significant and time-

variant dependence for cocoa and live cattle with oil market, confirming Wen et al. (2017). Besides, 

in line with Yahya et al. (2019), the level of tail dependence is not constant but time varying and 

intensifies during the major financial. Apart from other markets, the dependence level of coffee 

and live cattle markets switch sing from positive to negative for shortly periods, coinciding with 

the general strike in Venezuela, the Iraq war, and the onset of the pandemic, indicating the presence 

[0.0471]   [0.0436]   [0.0464]   [0.0368]   [0.0349]   [0.0344]   [0.0387]   [0.0298]   
0.95   mean   0.0495   0.0549   0.0631   0.0519   0.0629   0.0504   0.0475   0.0884   
    sd   [0.0260]   [0.0249]   [0.0292]   [0.0196]   [0.0241]   [0.0189]   [0.0181]   [0.0262]   
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of safe-haven property for investors in oil market.  The results show asymmetric and bidirectional 

risk spillovers from oil to agricultural markets and demonstrate that the effects of return spillover 

are more prominent during the COVID-19 pandemic, followed by the GCF and the oil price shock 

in 2014, with a larger impact during bearish market rather than bullish market conditions. The 

spillover effect from agricultural markets to oil market is larger than the other way around, 

indicating that oil market is more susceptible to volatility than agricultural markets during extreme 

conditions. We find that conditional (CoVaR) and unconditional VaR values exhibit similar upward 

and downward trends, with minor differences in magnitude, and unconditional downside/upside 

VaR values mostly and systematically larger than CoVaR values, reinforcing the findings existing 

literature such as Ji et al. (2018) and Meng et al. (2020). The wheat futures contract, followed by 

lumber and corn futures, respectively, appears to be the most dominating and vulnerable asset to 

oil price shocks, while the live cattle contract emerges as the least sensitive. The empirical evidence 

from the conditional diversification benefits suggest a reverse V-shaped pattern for all agricultural 

futures at the 5% and 50% expected shortfall levels. The highest benefits are available in equally 

weighted bivariate portfolios for all cases. Finally, yet importantly, lumber (soybeans) futures 

evidently offer higher (lower) diversification benefits and risk reduction when both markets are in 

bearish circumstance.   

Our results hold multifaceted implications for agricultural investors and policymakers. From 

investors’ point of view, the asymmetric dependence between oil and agricultural futures markets 

during extreme market conditions calls for dynamic portfolio management and asset allocation 

decisions to achieve better diversification benefits. In addition, the presence of dependence linkage 

of agricultural commodities drives the need for a better understanding of its hedging effects 

towards uncertainty in oil markets and allows for the precise pricing of futures contracts over 

various market circumstances. On the other hand, our results will help policy makers to design 

appropriate policies to minimize the effects of spillover shocks as well as reduce vulnerabilities of 

the agricultural markets to oil shocks and vice versa. First of all, understanding the major dynamics 

behind downside and upside risk propagations will enable policymakers to establish effective 

policies and maintain stability in closely related and mutually dependent markets. Policymakers 

should first identify whether oil-related risks to agricultural commodity markets are caused by 

nonmarket or market-specific variables such as supply, demand, or others, and then develop 

appropriate policies. It is essential to note that the upward and downward dependency observed 

between the two markets cannot be avoided (Shahzad et al., 2018), given the importance of oil as 

a global production cost and some agricultural items as a main input for alternative fuels to oil. 

Therefore, actions to mitigate the potential consequences of events that might disrupt the 

supplydemand balance of the oil market, which is highly sensitive to geopolitical and economic 

events, on the country's economy, agricultural production, and investors should be conducted. 

Excessive speculation on agricultural prices to hedge against the negative consequences of global 

or regional market variations may result in strong demand and hence excessive volatility in both 

spot and futures prices. It is proposed that futures markets be more effectively regulated, 
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agricultural production be increased through subsidies, and non-oil energy sources be developed, 

or productions be supported through legislation against upside risks; thus, it is possible to reduce 

the burden on consumers caused by rising inflation due to excessive price fluctuations. On the 

other hand, for countries that rely heavily on commodity export income, it should be noted that 

decreases in agricultural commodity prices caused by the oil market may result in a decrease in 

agricultural production (a fall in producer income), an increase in poverty, and thus a decline in 

economic growth, as well as long-term social unrest. Investigating the impacts of different 

uncertainty factors on the risk spillover and dependence linkage between agricultural and oil 

futures markets over various investment horizons remains on the research agenda.  
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Highlights 

• We examine dependence structure and risk spillovers between crude oil and eight major 

agricultural futures markets.   

• Conditional diversification benefits, copula functions and Conditional Value at Risk 

(CoVaR) measure are used.   

• Results show significant crisis-sensitive and temporal dependence between oil and 

agricultural markets.   

• Moreover, crude oil shows a symmetric tail dependence with both wheat, corn, 

soybeans, and cotton futures  

• An equally weighted portfolio offers the highest diversification benefits at a 5% 

expected shortfall.   

  


