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Abstract

Photometry of binary star and extrasolar planet transits offer an opportunity to char-

acterise their components and test stellar models. When investigating exoplanets, it is

important properly understand the host star otherwise large systematic errors will be

introduced. Radii predicted by models of low-mass and very low-mass are often too

low when compared with observations. This discrepancy between theory and obser-

vation as called the “radius inflation problem”. In this thesis I investigate how well

current stellar models of F/G stars predict the centre-to-limb variation (known as limb

darkening) observed and whether the M dwarf companions show signs of the radius

inflation problem. I use a class of eclipsing binary star with a low-mass companion

(EBLM).

I fit a transit model with the Claret 4-parameter law to TESS light curves for

19 EBLMs to parameterise the limb darkening. I combined this with observations

from Maxted (2023) for targets with transiting hot Jupiters in the Kepler and TESS

bands and compared with limb darkening parameters predicted by PHOENIX−COND

(Claret, 2018) and MPS−ATLAS (Kostogryz et al., 2022), testing for trends with

effective temperature and metallicity. I found a significant linear trend in model vs

observed limb darkening parameters with effective temperature for Kepler systems

from limb darkening parameters predicted by PHOENIX-COND. For other model and

band combinations, I find no such trends, only offsets between theory and observation,

likely caused by magnetic activity. I suggest trends are seen in the Kepler band but

not TESS due to line blanketing but further investigation is needed.

I calculate masses, radii, effective temperatures and gravities of the secondary

star from fit parameters and compare with MIST isochrones. By interpolating over

metallicity for models of 4 Gyr, I find an average radius inflation of 1.9 ± 1.0% over

my sample. Hence, my observations agree well with MIST models.
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1 Introduction

1.1 Eclipsing binaries and eclipsing binaries with

low mass companions

When one star orbits another they are referred to as a binary star. If the stars in a

binary cross in front of each other from our point of view, they are referred to as an

eclipsing binary star.

Eclipsing binaries are excellent laboratories for studying the properties of stars.

Due to their nature, we are able to precisely measure many properties of the stars

without making assumptions about the system and relying on models. We are able to

directly measure the mass and radius of binaries from photometric and radial velocity

analysis. This makes eclipsing binaries great benchmark stars for stellar science (eg,

Gómez Maqueo Chew et al. (2014); Higl & Weiss (2017).

Eclipsing binaries with low mass companions (EBLMs) are a class of binary star

consisting of a primary F/G/K star and a secondary M dwarf companion (Triaud et al.,

2013). This class of binary star is often found in surveys searching for transiting exo-

planets due to the low luminosity of the companion producing very shallow secondary

eclipses, much like hot Jupiters (Triaud et al., 2017). Because of this, it is quite com-

mon to use terms usually used when describing exoplanets instead of their binary star

analogue, for example, this thesis references impact parameter instead of inclination.

Extrasolar planets (or exoplanets) are planets that do not orbit our Sun. Hot Jupiters

are a class of exoplanet that are Jupiter mass and have an orbital period of less than

10 days causing a high surface temperature. A series of papers presented in Triaud

et al. (2013) called “The EBLM project” aims to characterise these objects containing

stars at the stellar-substellar border.
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1.2 Observing binary stars and exoplanets

A very powerful method for observing binary stars and exoplanets is photometry of

transits. Transit light curves show periodic dips in the brightness coming from a target.

In EBLM systems when the secondary (or companion) star transits across the primary

star, we see a dip in light of about 1% of the intensity outside of eclipse. When the

primary star eclipses the secondary star we usually see a small dip on the order of

0.2%. EBLM and hot Jupiter transit light curves are often confused as the hottest hot

Jupiters can have day-side effective temperatures as hot as the coolest stars (Gaudi

et al., 2017) making their light curves show similar dips in flux. The main difference

between EBLM and hot Jupiter transit light curves is that the latter usually do not

show a secondary eclipse. From these light curves we are able to calculate properties,

for example: radius ratio and surface brightness ratio.

There are a number of ground-based and space-based surveys which are used to

investigate binary stars and exoplanets, in this project I am specifically interested in

the space based telescopes Kepler and TESS.

The Kepler Mission was launched in 2009 with the purpose of finding Earth-

size planets in the habitable zone around Sun-like stars. It has a bandpass of around

400 − 900 nm (Borucki et al., 2008). Kepler light curves were not analysed in this

project, however, data from Maxted (2023)’s light curve analysis of Kepler band hot

Jupiter transits were used when investigating stellar atmospheres in Section 4.

The Transiting Exoplanet Survey Satellite (or TESS ) was launched in 2018 with

the purpose of recording exoplanet transits, but in its time has also observed many

eclipsing binary stars. For example, Prša et al. (2022) catalogue 4584 eclipsing binaries

in the first 2 years of TESS data. The TESS bandpass operates in the 600 − 1000

nm range (Ricker et al., 2014). As the mission was designed to monitor main-sequence

dwarf stars for planetary transits, the telescope is well suited to use to analyse high

precision photometry of EBLMs. For a TESS observation sector, each hemisphere of

the sky is split into 13 observation sectors, overlapping at the ecliptic poles as seen

in Figure 1.1. TESS continuously observes one sector for 27.4 days before moving on
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Figure 1.1: Graphics showing TESS field of view and how the sky is split up for obser-
vation. Left: TESS field of view with partitions per camera. Middle: sky partitions.
Right: time each area of the sky will be observed for over an all-sky survey. Image
credit: Ricker et al. (2014)

to the next sector, taking around a year to complete observing one whole hemisphere.

During the course of observation of one hemisphere, the portion of sky around 12◦ from

the ecliptic pole will is viewed continuously. This also means that areas of the sky near

the ecliptic poles will generally receive more observation time as can be seen in the

right panel of Figure 1.1. This project used TESS data at a cadence of 120 s. These

images are obtained by taking 2 s exposures 60 times and summing them to give the

effective exposure time of 120 s.

As mentioned in Section 1.1, we use impact parameter (b) instead of inclination

(i) to describe where the companion crosses in front of the host star. As can be seen

from Figure 1.2, an orbiting companion where the centre of the companion passes over

the centre of the primary star from the point of view of an observer happens when b

is zero and one when the centre of the companion grazes the edge of the host star. b

is defined by Equation (1.1), where a is the semi-major axis of the orbit and R1 is the

radius of the primary star.
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Figure 1.2: Schematic demonstrating the definition of the impact parameter, b. The
yellow disk represents the primary star and the transparent blue disks represent a
transiting companion at different corresponding impact parameters.

b =
a

R1

cos i (1.1)

1.2.1 Using EBLMs to investigate M dwarf stars

Due to their intrinsic faintness, analysing M dwarf stars is difficult. At the start of the

EBLM project, most observations that were used to calibrate M dwarf models relied

on interferometry of nearby M dwarfs or double M dwarf eclipsing binaries (Gómez

Maqueo Chew et al., 2014, and references within). EBLMs give the unique opportunity

to investigate a much larger sample of M dwarfs. While finding masses and radii of

the companion relies on models, as the primary F/G/K host is well understood in our

sample of EBLMs, the errors introduced before using empirical relations should be

minimal.

M-dwarfs have very complex spectra dominated by strong molecular bands so it

is difficult to obtain their metallicity. In binaries however, we can use the fact that both

stars will very likely have formed in the same region and are hence made from a similar
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composition of matter. This means if we have the metallicity of one star in the binary

we can assume that the companion star will have the same metallicity, allowing us to

investigate the effects of metallicity, use this metallicity when using empirical relations

to find masses and radii and not have to assume solar metallicity when comparing

results with models.

1.2.1.1 The radius inflation problem

Within the range of M dwarf stars, evolutionary models show that stars become com-

pletely convective (Limber, 1958). This border between fully-convective stars and the

start of radiative energy transport begins at stars of 0.35M⊙ (Chabrier & Baraffe,

1997). We use this boundary to define stars with mass ≲ 0.35M⊙ to be very low-mass

stars.

It is often seen in literature that the radii determined from observations of cool

stars (such as M dwarfs) are higher than those predicted by stellar models. This was

first noted in Hoxie (1970) for low-mass main sequence star models. They observed

radius inflation of up to 40% of the theoretical radius for their targets, leading many

people to investigate this phenomena in the decades since. Much more recent investi-

gations based on high precision light curves and radial velocity data are suggesting that

this problem is much less serious than previously thought (Maxted et al., 2023). The

EBLM project has worked to investigate this effect finding that systems with orbital

periods greater than 5 days show radius inflation for very low mass M dwarfs ≤ 3%

(Swayne et al., 2023) when comparing to the MIST grids of stellar isochrones (Dotter,

2016; Choi et al., 2016). Similarly, Wanderley et al. (2023) also find their sample of M

dwarf stars to show a subtle radius inflation from comparison with MIST models.
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1.3 Limb darkening

The angle that we observe a star leads to variation in intensity of light that is measured

from the centre to the limb by an observer. This effect is known as centre-to-limb

variation or limb darkening. An example of what this looks like is shown in Figure 1.3

for the Sun through an optical filter. Most of the light emitted from a star comes from

a region called the photosphere. For dwarf stars like the Sun, this is a narrow range

of radius where temperature drops to a minimum moving outwards. This temperature

gradient is directly related to the limb-darkening. So while the amount of star we see

through remains approximately constant, a higher proportion of what we see comes

from cooler areas of the star as we observe closer to the limb, seen in Figure 1.5. In

light curves (LCs), this effect can easily be seen in the curved section between the

second and third contact points, if there was no limb darkening, this section would

appear flat however we do not observe this, as can be seen in Figure 1.4. Inaccurate

treatment of limb darkening can lead to errors in estimating system parameters. For

example, as can be seen from Figure 1.6 in modelling the light curve, in order for the

case with no limb darkening to (on average) align with the limb darkened curves, the

radius of the companion input to the transit model would have to be reduced. As

methods to characterise stars from light curves and instruments collecting photometry

become more precise, the need to accurately characterise limb darkening becomes more

important to ensure unnecessary errors are not introduced.

1.3.1 Limb darkening laws

Many laws have been proposed to describe limb darkening. Some examples are listed

below in terms of µ which is the cosine of the angle between the normal to the surface

of the star and the line of sight of an observer.

1https://commons.wikimedia.org/wiki/File:2012_Transit_of_Venus_from_SF.jpg

https://commons.wikimedia.org/wiki/File:2012_Transit_of_Venus_from_SF.jpg
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Figure 1.3: Image taken in the visible spectrum during the transit of Venus cross the
Sun (2012) to show limb darkening. Image credit: Brocken Inaglory1.
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Figure 1.4: Labelled example primary eclipse light curve (TESS data for EBLM
J0723+79). Numbers in blue circles give contact points of an eclipse. Schematics
shown in orange is an example of what would be seen at that point in the light curve of
an eclipsing companion from left to right. Point 1: point when companion first begins
transiting. Point 2: the full disk of the companion is first over the host. Point 3:
companion starts to leave the disk of the host. Point 4: companion no longer eclipses
the host.
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Figure 1.5: Diagram to illustrate why we observe limb darkening. Image not to scale
and representative of the photosphere of a star. The white lines inside the star are
approximately the same length.

Iλ(µ) = 1− c (1− µ) (1.2)

Iλ(µ) = 1− c (1− µα) (1.3)

Iλ(µ) = 1−
4∑

j=1

aj(1− µj/2) (1.4)

Equation (1.2) is known as the linear limb darkening law (Schwarzschild, 1906).

This was the first law proposed to describe limb darkening, from observations of the

Sun. The coefficient c determines the limb darkening profile.

Equation (1.3) is known as the power-2 law (Hestroffer, 1997). The coefficients

c and α determine the limb darkening profile. The power-2 limb darkening law is

explored further in Section 1.3.2.

From the light curves of star and planetary transits we are able to obtain infor-

mation about the limb darkening of the primary star. If we are to compare with stellar

atmosphere models, we want to make as few assumptions about the limb darkening
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Figure 1.6: Light curves predicted by linear, power-2 and the Claret 4-parameter law
for h′

1 = 0.833 and h′
2 = 0.201 in comparison to no limb darkening. Purple dot dashed

line: uniform disk (i.e. no limb darkening). Solid red line: linear limb darkening
(Equation (1.2)). Light green dotted line: Power-2 law (Equation (1.3)). Dark green
dashed line: Claret law (Equation (1.4)). Period = 5 days, companion:host radius =
0.05, semi-major axis in terms of stellar radius = 14.9, inclination = 87◦, eccentricity
= 0. Generated using the BATMAN transit model (Kreidberg, 2015).
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of the star as possible. The limb darkening law used in this project was the Claret

4-parameter limb darkening law (Claret, 2000) shown in Equation (1.4). This law al-

lowed us to capture as much of the true shape of the limb darkening profile as possible

due to its flexibility (Espinoza & Jordán, 2016). The coefficients a1, a2, a3, a4, here

represented by aj determine the limb darkening profile.

The coefficients in these laws do not represent a physical parameter of the star

or system, they simply determine the shape of the limb darkening profile for their

respective laws.

1.3.2 The Power-2 law

The power-2 law has been identified as the best 2 parameter limb darkening law espe-

cially for cooler stars (Morello et al., 2017). This law can be very useful when analysing

cool stars, like the primary star in EBLMs. As it is only two parameters, Bayesian

methods are able to sample the limb darkening parameters faster than four parameter

laws, however, to specifically investigate limb darkening this law is not flexible enough

to capture the true profile. This is discussed further in Section 1.3.3.

In Maxted (2018) the summary parameters h1 and h2 were defined.

h1 = Iλ(1/2)
h2 = h1 − Iλ(0)

(1.5)

This selection of h1 and h2 gives much less correlated parameters allowing easy com-

parison to grids of stellar parameters when using the power-2 law. This selection of

h1 and h2 however has some drawbacks that cannot be ignored. This is talked about

further in Section 1.3.3.

1.3.3 Claret’s 4-parameter limb darkening law

This project mainly uses the Claret 4-parameter law or non-linear limb darkening

(subsequently referred to as the “Claret law”) as it is the law that gives us enough

flexibility to capture the true limb darkening profile (Espinoza & Jordán, 2016). Unlike
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Figure 1.7: The Limb-darkening profiles from a fit to the light curve for J0723+79 was
sampled using EMCEE and the intensity profile for the best fit and a random sample of
100 tested parameters plotted. The left panels show the intensity as a function of µ.
The right panels show the intensity as a function of radius. The grey lines are calculated
the values of the Claret limb darkening coefficients recovered from a random selection
of 100 chains. The green line gives the profile calculated with best fit parameters. The
purple dotted lines show where in the profile h′

1 and h′
2 are dependant.

the power-2 law, the Claret law allows us to have large uncertainties at the edges of the

star where the light curve contains less information about the limb darkening profile.

Negatives to using the Claret law is that the coefficients a1, . . . , a4 are highly

correlated. The value chosen for one of the coefficients will greatly affect the values

of the others that fit and multiple sets of values can produce the same or similar

profile (Morello et al., 2017; Maxted, 2023). This can cause a problem when trying

to compare the resultant coefficients from a fit to stellar atmosphere models. The

summary parameters h1 and h2 could be used for comparison instead however the

definition of h2 causes problems. h2 is dependent on the intensity at µ = 0 and as

can be seen in Figure 1.7, at this value of µ the limb darkening profile is not well

constrained by the light curve data.
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Instead the transformed parameters h′
1 and h′

2 were defined in Maxted (2023).

h′
1 = Iλ(2/3)

h′
2 = h′

1 − Iλ(1/3)
(1.6)

Their dependencies are given in Figure 1.7 by the purple dotted lines. Here we can see

that the profile is much more well defined. Looking at the left panels, one might try

to convince oneself that the limb darkening profile is generally not well defined for the

final third section of the star, however this is not truly the case. µ scales as
√
1− r2

where r is the linearly scaled radius of the star such that the centre is set at 0 and the

limb at 1. This means that this region where the profile is not well defined is actually

only a small portion (∼ 6%) of the profile right near the limb is not well defined. This

is shown in the right hand side set of panels.

1.3.4 Measuring limb darkening

Even the closest exoplanet host stars are barely resolved by the current generation of

long-baseline optical interferometers, we cannot directly see a star’s limb darkening

profile. Transiting companions offer a chance to measure this effect. As a companion

transits across a host star, a section of the flux from the host is blocked out meaning

the flux across the radius of the host can be sampled.

Maxted (2023) uses transits of hot Jupiters to parameterise limb darkening. Due

to the properties of hot Jupiters, we can assume the following two things.

• The hot Jupiter is appears as a circular opaque disc with a well-defined edge.

• As it is cool, the flux emitted from the hot Jupiter is negligible.

Maxted (2023) Uses this technique of measuring limb darkening, which this

project follows on from. A negative to only using transiting hot Jupiters is that Jupiter

mass exoplanets have been proven to more commonly orbit metal rich stars and has

been investigated thoroughly across the years. After the discovery of the first four ex-

oplanets, it was already suggested there was a trend between the likelihood of a giant
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planet orbiting a star (Gonzalez, 1997) and soon after efforts were made to quantify

this (Santos et al., 2000, 2001). Adibekyan (2019) provides their own study finding

that Jupiter mass planets are more likely to orbit metal rich stars than metal poor

stars. Osborn & Bayliss (2020) more recently confirm that hot Jupiters are more likely

to orbit high metallicity stars than low metallicity stars. It is hence important to ex-

tend our range of metallicities to investigate whether there are any trends in the limb

darkening profile with respect to the metallicity. EBLMs offer a chance for this as they

have very similar properties to transiting hot Jupiters so similar assumptions can be

made. By definition they were originally flagged as false positive hot Jupiter transits

(Triaud et al., 2017). But they do not appear to suffer as much from this same metal-

licity bias. The distributions of the metallicities of the EBLM targets investigated in

this project vs the hot Jupiter targets in Maxted (2023) is shown in Figure 1.8 (using

the data in Table 4.1 for the targets characterised in this thesis and data from Table

1 of Maxted (2023) for their targets). For their sample of stars the skew to a higher

metallicity can be seen where as our systems show a peak closer to solar metallicity

with each sample a mean metallicity of +0.147 and −0.092 respectively.

EBLMs tend to show secondary eclipses, they cause a dip in flux on the order of

∼ 0.1% versus the flux when neither star is eclipsed. This is enough such that we are

able to characterise these secondary eclipses, helping confirm eccentricities from radial

velocity analysis and estimate eccentricities that have not been measured yet.

1.4 Atmospheric models

Three types of atmospheric model treatment were initially investigated. These models

are called 1D plane-parallel, 1D spherically-symmetric and 3D radiative hydrodynamic.

This project ultimately focused on limb darkening profiles calculated from 1D plane-

parallel and 1D spherically-symmetric models so the final type of model is not discussed.

Each of these models comes with a set of assumptions and approximations which are

covered in the subsequent subsections.
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Figure 1.8: Histogram showing distribution of metallicities of targets used in this
project compared to those used in Maxted (2023).
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An important first step in discussing atmospheric models is to define what we

consider a stellar atmosphere. The lecture series by Niemczura et al. (2014) provides

useful summaries of building stellar atmosphere models and defines the stellar atmo-

sphere as the external layers from which radiation is able to escape freely. This is the

region from which we observe all photons coming from a star so a basic understanding

of how these models are formed is important when discussing how well they describe

limb darkening.

A general stellar atmosphere model is dependant mostly on effective tempera-

ture, composition, surface gravity and radius. All of the models we have used assume

local thermodynamic equilibrium (LTE) because this is much simpler than non-LTE

calculations. Non-LTE can be used to compute the strength of specific emission lines

using radiative transfer calculations for an atmospheric structure computed using LTE.

Inside stars, energy is transported via convection or radiation. In radiative trans-

fer, energy in the form of electromagnetic radiation travels through the medium of the

star. In convection, hot matter floats to the surface, cools and sinks back down. Mod-

elling convection is computationally very expensive so instead mixing length theory is

used to approximate the transport of energy due to the movement of matter. Both

models investigated here use this approximation. Mixing length theory says that en-

ergy transport is achieved by a bubble of gas raising in the atmosphere of a star and

after it has travelled a certain length, the energy is dispersed (Böhm-Vitense, 1958,

1960; Smalley, 2014).

Both of these models also ignore the affects of magnetism within the star. The

main difference between 1D plane-parallel and 1D spherically-symmetric models is that

the latter account for the curvature of the photosphere. While I previously stated that

radius is an important part of an atmospheric model, for the very low mass stars

investigated in this project, this is much less important than for much more massive

stars. The pressure scale height is the distance over which the pressure reduces by a

factor of Euler’s number. As the atmospheres of high mass stars are inflated compared

to very low mass stars, the scale height is a large fraction of the overall radius, where

as for very low mass stars, the scale height is much less than the radius meaning the
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radius becomes less relevant when modelling atmospheres for these stars.

The two models investigated in this thesis use the grids of limb darkening pa-

rameters calculated by Claret (2018) for the PHOENIX-COND model and parameters

calculated by Kostogryz et al. (2022) for their MPS-ATLAS model. Here “MPS” stands

for Merged Parallelised Simplified, referencing that their code calculates components

of their model simultaneously allowing the code to run faster than previous models.

PHOENIX-COND is how Claret (2018) refers to the code from Husser et al. (2013).

1.4.1 1D plane-parallel

The stellar atmosphere is typically representative of a small portion of the radius

(LeBlanc, 2010), hence the atmosphere can be considered very thin. This assumption

is especially true for the lower mass stars studied in this sample that do not suffer from

the same inflated atmosphere as their massive counterparts. Because of this, we can

consider the gravity in this layer to be constant and quantities to not be dependant

on radius. This means plane-parallel models ignore the curvature of the star they are

modelling, massively simplifying equations of state that have to be solved.

1.4.2 1D spherically-symmetric

Spherically-symmetric models use spherical shells to model the atmosphere hence al-

lowing a dependence on radius. This means the models are able to replicate the sharp

characteristic reduction in the specific intensity at the limb of the star very well unlike

1D plane-parallel models (Claret, 2018). This often means that the definition of the

limb of the star when using different types of models can be in different places. In this

project, the limb darkening parameters predicted by the spherically-symmetric model

in Claret (2018) were scaled as in Maxted (2023).

As discussed above, we are not able to very accurately characterise the region

close to the limb of the star As this area accounts for such a small percentage of the

star’s radius, perfect characterisation of this area is not necessary to consider here.
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1.5 Markov chain Monte Carlo sampling

1.5.1 Sampling theory

MCMC sampling allows us to generate random points in the parameter space that

sample a multi-dimensional probability distribution. This is a very powerful tool for

sampling multi-parameter models where direct sampling of the parameter space is

difficult or not possible.

Bayes’ theorem can be used to formulate the relationship between a model and

some data that is to be fit (Equation (1.7)). Here we will take θ to represent the

parameter set for some model and D to represent some data.

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.7)

In Equation (1.7) P is the probability of an event occurring, and P (θ|D) is the

probability of the model given the data and vice versa. P (D|θ) can be thought of

as the likelihood of the data fitting that iteration of the model, also referenced as:

L. P (θ|D) is the “posterior” (i.e. what we are aiming to sample), also referenced as

P . P (θ) contains information about the data we already know such as pre-published

parameters and is known as the “prior”, also referenced as ρ. P (D) is called the

“evidence” and is constant if we are comparing different models with the same data,

so is often ignored in this type of analysis.

Here I will briefly discuss two MCMC algorithms: Metropolis–Hastings (Metropo-

lis et al., 1953; Hastings, 1970) and Goodman-Weare (Goodman & Weare, 2010). The

first gives an introduction to the iterative method of MCMC algorithms, while the

second is a more advanced algorithm that avoids some of the problems with “classic”

MCMC.

The Metropolis–Hastings algorithm involves the following steps. First a random

point in the parameter space is chosen as an initial point, x1. The posterior is calculated

at this point and then the following steps are iterated over.



19

• Take the previous number in the chain as xn

• A second point is chosen randomly from xn as a “step”, xn+1 such that the

chance of xn+1 being selected after xn is the same as the chance of xn being

selected after xn+1.

• The posterior is calculated for this new point.

• A random number between 0 and 1 is generated, y.

• If the posterior probability of xn+1 is greater than the posterior probability

of xn: the step is accepted.

• If the posterior probability of xn+1 is less than than the posterior probability

of xn but the ratio of posterior xn+1 to posterior xn is greater than y: the step

is accepted.

• Else: the step is rejected and xn+1 is instead taken as xn again (i.e. xn is

repeated in the chain).

The Metropolis–Hastings algorithm does have a few drawbacks. For models with

large numbers of parameters to fit, the computational time before convergence becomes

very long. When trying to deal with parameters that are highly correlated, complex

calculations to change coordinate system or specific decisions about how each step is

taken may be necessary to reduce convergence time.

The EMCEE2 (Foreman-Mackey et al., 2013) package uses the Goodman-Weare

algorithm to perform MCMC sampling. This particular method is very useful as it is

affine-invariant, this means that the coordinate space that is chosen to sample does

not affect how the space is sampled. A number of so called “walkers” wander the

parameter space taking “steps” determined by the likelihood term in Equation (1.7)

and the position of the other walkers. As the movement of the walkers in EMCEE is

2https://emcee.readthedocs.io/

https://emcee.readthedocs.io/
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not dependant on the coordinate system, each step is usually referred to as a “jump”

At each of these jumps, the posterior is evaluated (i.e. a set of parameters are chosen

and the likelihood and prior terms are calculated hence the posterior for that point in

the parameter space). In this analysis we are able to directly measure the parameters

sampled from the light curve, meaning the parameter space is uncomplicated making

EMCEE a good choice to use to sample the posterior.

A set of starting parameters are given and walkers placed in an n-dimensional

ball around the point (n being the number of parameters varied by the sampler). The

walkers are initially placed tightly around this point, ensuring the walkers are less likely

to get stuck in areas of low probability. The parameters selected should be near where

we expect the area of maximum likelihood to be however accurate estimates are not

always available. For these reasons, the walkers are first given a period of burn-in.

This burn-in phase is completed when there are no trends in the mean and variance

of the chains and the chains from each walker look similar to each other. As with the

Metropolis–Hastings algorithm, this method does not solve convergence time problems

caused by multiplicity.

1.5.2 Likelihood and priors

If we assume uncorrelated Gaussian noise for the light curve data then we can compute

the likelihood using Equation (1.8). In this equation, we assume that the quoted errors

on the light curve data, ∆x, are underestimated by some factor f . x is the input flux

and µ is the flux predicted by the model.

L =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)

(1.8)

where σ = f ∆x

For n data points the equation becomes Equation (1.9), assuming all data points
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have the same standard error, σ.

L =

(
1

σ
√
2π

)n n∏
i=1

exp

(
−1

2

(
xi − µi

σ

)2
)

(1.9)

ln (L) = −n ln (σ)− 1

2

n∑
i=1

(xi − µi)
2

σ2
(1.10)

Taking the natural log of both sides simplifies the equation to Equation (1.10).

Where
∑n

i=1
(xi−µi)

2

σ2 = χ2 producing Equation (1.11).

ln(L) = −n ln (σ)− 1

2
χ2 (1.11)

For the priors, there are generally two different types that can be applied during

MCMC analysis: flat or functional. So-called flat priors apply a uniform probability of

a solution being in a large range around an estimate of the parameter value, or the full

allowed range of the parameter if there are physical limits. Functional priors assume

some function dictates the probability. In this project Gaussian priors were used on e

and ω where independent estimates of these parameters were available from an analysis

of the spectroscopic orbit. This is shown in Equation (1.12) where n is the number

of parameters we are applying Gaussian priors to, x is the fit parameter being tested,

y is the initial input parameter and ∆y is the standard deviation of the normalised

distribution which can be characterised by the standard error.

ln (ρ) =
n∑

i=1

−1

2

(xi − yi)
2

∆y2i
(1.12)

For the case where prior values on e were not available, and the time of mid

secondary eclipse visibly deviated from 0.5, non uniform priors were applied to e cos (ω)

and e sin (ω) to ensure that the implied prior on e is uniform while varying e cos (ω) and

e sin (ω). The transform on the probability distribution function is given by Equation

(1.13) as follows from methods describing prior calculations outlined in Carter et al.

(2008).

f(e cosω, e sinω) =
g(e, ω)

|J|
(1.13)
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Here, g(e, ω) is the combined probability distribution function on e and ω,

f(e cosω, e sinω) is the combined probability distribution function on e cosω and e sinω

and |J| is the Jacobian determinant of the matrix (1.14) given in Equation (1.15).

∣∣∣∣∂(e cosω, e sinω)∂(e, ω)

∣∣∣∣ (1.14)

|J| =
∣∣∣∣∂e cosω∂e

∂e sinω
∂e

∂e cosω
∂ω

∂e sinω
∂ω

∣∣∣∣ = e (1.15)

Dividing the prior distribution, e and ω by the eccentricity gives the prior distri-

bution that is uniform for g(e, ω) but non uniform for f(e cosω, e sinω).

The posterior distribution is then determined by the following equation by taking

the natural log of Equation (1.7).

ln (P) = ln (L) + ln (ρ) (1.16)
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2 Pre-analysis

2.1 Light curve processing

2.1.1 Target selection

The initial list of targets were taken from objects of interest found in the BEBOP

survey (Martin et al., 2019) and the EBLM project (Triaud et al., 2017). I use short-

cadence (120 s exposures) TESS data for my analysis so targets without this were

excluded. Accurate limb-darkening measurements need a lot of high-quality data in

order to increase the signal-to-noise ratio. Having multiple visits of transit data allows

the light curves to be folded at the period, increasing the signal to noise ratio. Data for

targets were downloaded using their TESS input catalogue identifier (TIC ID) cross

referenced using Simbad1. This folded light curve was visually inspected to ensure the

primary eclipses were central around time zero and all the eclipses were aligned.

The number of sectors of TESS data was checked using LIGHTKURVE2 (Lightkurve

Collaboration et al., 2018). Generally, if there were less than three sectors of TESS

data or an orbital period longer than 15 days, a system would be excluded as there

would not be enough transits to measure the limb darkening profile in any detail. The

long period system EBLM J1705+55 (P ≈ 23 days) was included as it had 21 sectors

of TESS data. A high proportion of targets selected were near the ecliptic poles as

TESS observes this location more often, hence, there is more data.

Systems with b > 0.8 were excluded as secondary stars that transit too far from

the centre of the primary star do not probe enough of the stars surface to obtain

accurate limb darkening parameters (Müller et al., 2013). Of the targets left, if there

was published evidence of drift in the radial velocities due to a third body, the system

was excluded to simplify interpretation of the results. The list of selected targets is in

Section 3.1.1, Table 3.2

1https://simbad.cds.unistra.fr/simbad/ 2https://docs.lightkurve.org/

https://simbad.cds.unistra.fr/simbad/
https://docs.lightkurve.org/
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2.1.2 Data processing

TESS pre-search data conditioning simple aperture photometry (PDCSAP) with a

cadence of 120s were downloaded using LIGHTKURVE. As LIGHTKURVE downloads TESS

sectors separately, the light curves were first combined.

Outliers 10 sigma from the median of the data set were excluded. Either side of

the time of mid primary eclipse, data within 1.5 times the primary eclipse duration

were kept for fitting. Similarly for the secondary eclipses, data within 1.5 times the

secondary eclipse duration was kept.

For each primary and each secondary eclipse, a straight line was fit to the data

either side of each eclipse and divided through the data to bring all the data onto a

consistent flux scale. Each of the primary and secondary eclipses found were plotted

with the straight line fits to visually check: the fit was sensible, the eclipses were being

aligned correctly and to look if any cycles containing bad data that could add noise

or new signals had been included. With the primary eclipses for each visit converted

in terms of phase to overlay multiple visits, the data were binned in 120s intervals.

Unbinned data points that fell outside of 5 times the standard error on their bin were

removed. This was repeated for the secondary eclipses. The data for the primary and

secondary eclipses were then saved into separate files. An example for EBLM J0723+79

is shown in Figure 2.1. The vertical green dashed lines allowed me to check the initial

estimate of the eclipse width was correct and the horizontal yellow dashed line allowed

me to check the initial estimate of the eclipse depth.

2.2 Atmospheric parameters

For analysis of stellar densities and comparing limb darkening parameters measured to

atmospheric models, access to effective temperatures (Teff), log of the gravities (log g)

and metallicities ([M/H]) was necessary. Analysis of stellar densities is described in

section 5. Limb darkening model comparisons are available in section 4.
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Figure 2.1: Cleaned primary eclipse light curve for EBLM J0723+79 folded at the
orbital period of the binary. The horizontal yellow dashed line gives the initial estimate
of the primary eclipse depth and the difference between the vertical green dashed lines
gives the initial estimate of the primary eclipse width.

2.2.1 Finding a data set

A large portion of the target stars appear in The Gaia survey, data release 3 (GDR3)

(Gaia Collaboration et al., 2021) so this sample was considered to provide atmospheric

parameters. To test the accuracy of the atmospheric parameters provided by GDR3, a

catalogue of published parameters for exoplanet hosts was used. SWEET-Cat (Santos

et al., 2013; Sousa et al., 2021) aims to provide a largely homogeneous catalogue of

these parameters. Parameters not from the homogeneous data set are generally taken

from high quality spectral analysis however sometimes, where none of the previously

mentioned sources were available, parameters from other methods are used such as

from photometry or asteroseismology.

The list of targets for this comparison was taken from Maxted (2023) as they

were known to appear in SWEET-Cat across a similar range of temperatures as the
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Figure 2.2: Graph comparing Gaia model Teff to spectroscopic Teff listed in SWEET-
Cat

targets selected for analysis. The metallicities from GSP-Phot were re-calibrated using

gdr3apcal3 as Andrae et al. (2022) found significant offsets between literature and the

model values.

Andrae et al. (2022) found, over their sample of stars, an average difference of

110 K and 0.2 − 0.25 (for Teff and log(g) respectively) between model and literature

values. Across our sample the mean average difference in Teff was found to be 187 K

with only 18.6% of Gaia values within one error bar of literature values. Versus the

mean average error on the effective temperatures determined by Gaia of around 19 K,

the average difference is very significant.

Figures 2.2, 2.3 and 2.4 show the difference between literature values and the

Gaia model parameters for 43 test stars with at least one orbiting exoplanet. In

the sample of targets, literature parameters for 15 came from the homogeneous study

(Sousa et al., 2021), 24 came from alternative high quality spectral analysis and 4 came

3https://mpi-astronomy.github.io/gdr3apcal/

https://mpi-astronomy.github.io/gdr3apcal/
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Figure 2.3: Graph comparing Gaia model log(g) to spectroscopic log(g) listed in
SWEET-Cat

Figure 2.4: Figures comparing Gaia model metallicities to spectroscopic metallicities
listed in SWEET-Cat
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from photometry.

The mean average difference in log(g) was 0.142 with 53.5% of targets within one

error bar of literature values. When considering the mean average Gaia error on log(g)

of 0.016, this discrepancy is very significant.

The metallicity had a mean average difference of 0.158 with only 18.6% of values

within one error bar of literature values. The mean average error on the metallicities

produced by Gaia was around 0.02 so when considering the difference between Gaia

and literature, the average difference is very significant

Estimates for log(g) offered the most consistent values but both log(g) and Teff

a seemingly linear offset trend with some scatter between Gaia models and literature

across our sample. Often the Teff and log(g) predicted by Gaia was too low in compar-

ison to literature especially for higher temperatures and values of log(g) respectively.

Before this conclusion could truly be drawn, a larger sample at lower Teff to fill the

gap and higher log(g) would be necessary, this however was beyond the scope of this

project. As the M dwarf in the binary contributes less than 1% of the flux in the wave-

length we are observing at, we could expect similar offsets in EBLM systems. There is

no discernible trends in the metallicity predicted by Gaia with a large scatter around

predictions being too high or too low.

In conclusion the offset, especially in Teff , was too large to reliably use the tem-

peratures, gravities and metallicities from Gaia in this project. Until this offset is

understood we cannot recommend using these parameters from Gaia for F/G/K stars

with companions. Parameters calculated from high quality spectroscopy are required.
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3 Light curves

3.1 Calculating light curves

The transit and eclipse models in the Python package BATMAN1 version 2.4.9 by Kreid-

berg (2015) were used to analyse the light curve data for the selected EBLM systems.

Characteristic parameters of the selected targets are given in Table 3.1. Spectral type

in Table 3.1 are assigned according to Pecaut & Mamajek (2013)

3.1.1 Starting parameters

For each star, the following orbital parameters were collected: time of mid primary

eclipse, T0; period, P ; primary and secondary eclipse width and depth; impact pa-

rameter, b; phase of secondary eclipse. These were used to calculate initial values for

the free parameters. Values for P were collected from literature from the references as

shown in Table 3.1, and where available, b was used from the same source. Where no

value for b was available, 0.5 was used as high impact parameter systems were filtered

out of the sample in Section 2. The rest of the parameters listed above were estimated

by looking at the LCs.

The primary eclipse depth, D, and secondary eclipse depth, L, can be used to

calculate an initial estimate of the secondary-primary star radius ratio, k.

k =
Rsec

Rpri

=

√
D

1− L
(3.1)

This equation can however be simplified in this case. As L for EBLMs is very low (on

the order of 0.001 normalised flux units), k can be approximated to Equation (3.2).

k =
√
D (3.2)

1http://lkreidberg.github.io/batman/docs/html/index.html

http://lkreidberg.github.io/batman/docs/html/index.html
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The estimate of the orbital semi-major axis in terms of the host star radius,

a/Rpri, was found using b, k from Equation (3.2) and the width of primary eclipse

(W ).

a

Rpri

=

√
(1 + k)2 − b2

πW
(3.3)

This equation assumes a circular orbit which is not always the case for these systems

but is a close enough approximation for small eccentricities, especially as an initial

estimate.

The estimate for the inclination in degrees i, was calculated from b and a/Rpri.

i = cos−1

(
b
Rpri

a

)
(3.4)

Equation (3.4) assumes circular orbits which is acceptable for the purpose of estimating

some initial starting values.

The transit and eclipse models from BATMAN were used to calculate model LCs

that were fit to the observed TESS light curves for each of the chosen systems. The

parameters that were always varied when fitting were T0; P ; k; Rpri/a; b; L; and

the limb darkening parameters from the Claret 4-parameter law (see Equation (1.4)),

a1, a2, a3, a4. Systems found in literature without significant eccentricity (e < 0.003)

had eccentricity, e and longitude of periastron, ω set to 0 and 90◦, respectively.

For systems with significant eccentricity, one of two approaches were taken when

fitting. For systems with published measurements of eccentricity, e; and longitude

of periastron, ω measured from a spectroscopic orbit, these values were used as free

parameters with Gaussian priors set to keep our fit consistent with the published values.

For systems without measurements for e and ω, the free parameters e cos (ω) and

e sin (ω) were used instead. These were selected as they are less correlated than e and

ω. This selection of e cos (ω) and e sin (ω) required a transformation when calculating

the prior distribution to produce a non uniform prior distribution to ensure a uniform

distribution for e. This is covered further in Section 1.5.2. The list of targets along

with how they were treated whilst fitting is shown in Table 3.2. From here onward,

the letters ‘EBLM’ will be omitted from star names for conciseness.
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Table 3.2: List of stars analysed with note of how they were analysed. Targets marked
“Circular” had no eccentricity variation in fitting. Targets marked “Eccentricity pri-
ors” had an eccentricity prior obtained from literature applied. Targets marked “No
available priors” had no eccentricity priors applied and instead e cos(ω) and e sin(ω)
were varied.

Target Treatment Reference
EBLM J0228+05 Circular −
EBLM J0247−51 No available priors −
EBLM J0400−51 Circular −
EBLM J0432−33 Circular −
EBLM J0440−48 Circular −
EBLM J0500−46 Eccentricity priors Triaud et al. (2017)
EBLM J0526−34 Eccentricity priors Triaud et al. (2017)
EBLM J0608−59 Eccentricity priors Triaud et al. (2017)
EBLM J0625−43 Circular −
EBLM J0627−67 Eccentricity priors Triaud et al. (2017)
EBLM J0709−52 Eccentricity priors Triaud et al. (2017)
EBLM J0723+79 No available priors −
EBLM J0829+66 No available priors −
EBLM J0941−31 Eccentricity priors Swayne et al. (2023)
EBLM J0955−39 Circular −
EBLM J1626+57 No available priors −
EBLM J1640+49 No available priors −
EBLM J1705+55 Eccentricity priors Gaia Collaboration (2022b)
EBLM J1850+50 No available priors −

The parameters that BATMAN accepts to calculate a primary eclipse light curve

are T0; P ; k; a/Rpri; inclination in degrees, i; e; ω; the name of the limb darkening law

and the corresponding coefficients. Modelling secondary eclipses required adding the

arguments fsec/fpri and time of secondary eclipse, T0, sec.

3.1.2 Initialising Models

The BATMAN transit model does not account for the time delay seen for a secondary

eclipse due to the finite speed of light. This is called the Rømer delay or light travel
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time (LTT). When the secondary star is at the point where it will be eclipsed, it is

at the furthest point in its orbit and so furthest from the Earth. This compared to

the distance when the secondary star is eclipsing the primary star leads to a delay in

the order of minutes. This was accounted for using Equation (3.5) (Fabrycky, 2010;

Borkovits et al., 2015). These equations give values in units of seconds when using

standard index units for the other values.

LTT =
a

R1

sin(i)

c

1− q

1 + q

1− e2

1− e sin2(ω)
(3.5)

As BATMAN was built with the main aim to calculate planetary transit LCs, the

programme is set to compute the primary and secondary eclipses separately. Because

of this, the final calculated primary and secondary LCs were combined to ensure the

whole LC was fit simultaneously instead of having two potentially different sets of fit

parameters.

The BATMAN primary eclipse model assumes that the companion emits no light.

The LC produced for the primary eclipse model is normalised where the flux from the

primary star is also unity. For the secondary eclipse model, the flux calculated outside

of eclipse is the combination of the flux from the primary and secondary stars with the

flux from the primary star set to unity. To combine these two parts of the model LCs,

the flux from the primary star (= 1) in the secondary eclipse model was subtracted,

leaving the flux measured from the secondary component. This was then added to the

primary eclipse LC and the final LC normalised.

3.2 Fitting

The Markov chain Monte Carlo sampler (MCMC) python package EMCEE was used to

sample the posterior probability distribution. I use this to examine the likelihood of

the value of a parameter of the model being at a particular point. The chain used

100 walkers and for most systems after 4000 burn-in steps, a 1000 step chain was used

to randomly sample the posterior distribution. The trail plots were visually inspected
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for convergence. The chains are considered converged when there is no relationship

between the mean or variance as a function of the step and all the chains are behaving

this way. At this point the trail plots look like there is no structure. Corner plots were

also generated using corner.py2 and visually inspected for multi-modal distributions.

For the target J0432−33 I used 19000 burn-in steps due to problems caused by

the chains for the impact parameter becoming bimodal. While bimodal distributions

in MCMC analysis can cause problems, as the function of impact parameter here is

symmetric around 0 (i.e. solutions at b = 0.5 are equivalent to solutions at b = −0.5)

the absolute value of the chains can be taken to get the distribution. Bimodal solutions

of the impact parameter occurred in systems with low impact parameters as the distri-

butions would overlap. This occurred for J0432−33 and J0608−59. While J0400−51

and J1640+49 did not strictly become bimodal as the impact parameter for these sys-

tems is so low the distributions overlap so much the peaks are indistinguishable. These

systems were however treated the same as their bimodal counterparts.

3.3 Best fit parameters

The best fit model parameters, i.e. the parameters where the log probability of the

chain was highest, were used to generate plots. Note that for the impact parameter,

the absolute value of the chain value was taken first. Finally, these best fit parameters

were used to generate lines of best fit for the light curves and then residuals calculated.

These plots were visually inspected to ensure the model parameters result in a good

fit to the data.

Tables 3.3, 3.4 and 3.5 give a summary of the fit results for each target. These use

the medians of the chains as the value and use the difference between the 15.87% and

84.13% percentiles of the sample as an estimate of the standard error on each parameter.

Targets with a standard error > 0.03 on h′
1 were removed from further analysis. Hence,

J0500−46 and J0709−52 are excluded in the comparison to atmospheric models.

2https://corner.readthedocs.io/

https://corner.readthedocs.io/
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Table 3.3: Light curve model parameters obtained from EMCEE fit of BATMAN to TESS
data. Values in parentheses are the standard errors on the final two digits of the
preceding value. D is the primary eclipse depth, W is the primary eclipse width, b is
the impact parameter and L is the secondary eclipse depth

Target D W b L
J0228+05 0.01648(13) 0.029853(88) 0.411(18) 0.000626(26)
J0247−51 0.01894(11) 0.05183(15) 0.273(17) 0.001110(14)
J0400−51 0.02749(17) 0.06616(19) 0.058(48) 0.001713(47)
J0432−33 0.01472(18) 0.05110(17) 0.174(77) 0.000926(27)
J0440−48 0.01588(21) 0.06336(28) 0.486(23) 0.000917(32)
J0500−46 0.02184(35) 0.02276(14) 0.619(15) 0.001213(50)
J0526−34 0.02719(33) 0.03063(12) 0.241(27) 0.002138(35)
J0608−59 0.05436(33) 0.018267(45) 0.094(45) 0.004111(29)
J0625−43 0.02992(30) 0.05468(20) 0.190(32) 0.002480(36)
J0627−67 0.02847(21) 0.020286(86) 0.5832(90) 0.001506(28)
J0709−52 0.03302(72) 0.03228(21) 0.5833(80) 0.002806(83)
J0723+79 0.03895(23) 0.019164(38) 0.4054(58) 0.002506(12)
J0829+66 0.05025(80) 0.02528(18) 0.341(21) 0.003518(85)
J0941−31 0.01795(19) 0.04101(17) 0.378(31) 0.001198(32)
J0955−39 0.04599(68) 0.02664(14) 0.442(25) 0.00290(14)
J1626+57 0.02145(17) 0.02579(13) 0.206(29) 0.000877(17)
J1640+49 0.014658(62) 0.04144(31) 0.041(35) 0.000645(21)
J1705+55 0.04093(37) 0.014308(46) 0.319(17) 0.003663(42)
J1850+50 0.02524(29) 0.03012(32) 0.080(62) 0.001472(50)
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Table 3.4: Limb darkening parameters obtained from EMCEE fit of BATMAN to TESS
data. Values in parentheses are the standard errors on the final two digits of the
preceding value. h′

1 and h′
2 are the limb darkening profile summary statistics as defined

in Equation (1.6).
Target h′

1 h′
2

J0228+05 0.9010(91) 0.130(18)
J0247−51 0.9035(32) 0.127(12)
J0400−51 0.8896(48) 0.116(19)
J0432−33 0.8818(48) 0.154(24)
J0440−48 0.927(10) 0.168(31)
J0500−46 0.877(34) 0.145(33)
J0526−34 0.8804(44) 0.186(27)
J0608−59 0.8801(22) 0.160(15)
J0625−43 0.8847(36) 0.152(24)
J0627−67 0.899(11) 0.191(17)
J0709−52 0.849(59) 0.153(42)
J0723+79 0.8723(42) 0.172(12)
J0829+66 0.8788(95) 0.161(38)
J0941−31 0.8947(92) 0.138(22)
J0955−39 0.885(24) 0.102(37)
J1626+57 0.8787(28) 0.159(16)
J1640+49 0.8876(35) 0.130(12)
J1705+55 0.8817(50) 0.168(21)
J1850+50 0.8671(56) 0.147(29)
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Table 3.5: Parameters obtained from EMCEE fit of BATMAN to TESS data. Values in
parentheses are the standard errors on the final two digits of the preceding value.
Where k is the radius ratio, and J is the surface brightness ratio

Target k R1/a sin i e J
J0228+05 0.12838(52) 0.08928(66) 0.999326(68) − 0.0380(16)
J0247−51 0.13761(39) 0.14744(70) 0.99919(11) 0.0037(11) 0.05860(78)
J0400−51 0.16580(52) 0.17867(76) 0.99995(10) − 0.0623(18)
J0432−33 0.12132(74) 0.1450(14) 0.99968(26) − 0.0628(18)
J0440−48 0.12602(83) 0.1960(20) 0.99545(51) − 0.0578(21)
J0500−46 0.1478(12) 0.07402(80) 0.998952(70) 0.22980(44) 0.0555(23)
J0526−34 0.1649(10) 0.08443(48) 0.999792(47) 0.12605(18) 0.0786(15)
J0608−59 0.23316(71) 0.04669(18) 0.9999903(87) 0.15625(30) 0.07561(62)
J0625−43 0.17298(86) 0.14841(86) 0.99960(14) − 0.0829(13)
J0627−67 0.16873(62) 0.06292(31) 0.999326(26) 0.15868(63) 0.05289(93)
J0709−52 0.1817(20) 0.09864(91) 0.998344(67) 0.3435(13) 0.0850(29)
J0723+79 0.19736(59) 0.05344(14) 0.9997654(76) 0.0629(26) 0.06434(49)
J0829+66 0.2242(18) 0.06753(61) 0.999735(35) 0.1605(51) 0.0701(21)
J0941−31 0.13399(71) 0.1205(12) 0.99896(19) 0.19841(36) 0.0668(18)
J0955−39 0.2145(16) 0.07399(83) 0.999466(71) − 0.0632(31)
J1626+57 0.14646(58) 0.07185(52) 0.999890(31) 0.0390(21) 0.04087(83)
J1640+49 0.12107(26) 0.11628(90) 0.999989(23) 0.0649(76) 0.0440(15)
J1705+55 0.20232(90) 0.03878(19) 0.9999235(89) 0.26455(12) 0.0895(12)
J1850+50 0.15886(93) 0.0819(10) 0.999979(36) 0.1081(80) 0.0583(21)
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4 Comparing to atmospheric models

4.1 Extracting theoretical parameters

The final sample of targets from this project contains 17 targets. Combined with

Maxted (2023), the final sample contained 27 targets in the TESS passband and 33 in

the Kepler passband. For each of the remaining targets, the parameters Teff , log (g) and

[M/H] were collected from Freckelton et al. (2023) and Fitzpatrick et al. (2024, in prep)

(Freckleton, private communication). This allowed us to compare our measurements

to the limb darkening parameters generated using the models in the following papers.

• ATLAS (Claret, 2017)

• MPS−ATLAS Set 1 (Kostogryz et al., 2022)

• MPS−ATLAS Set 2 (Kostogryz et al., 2022)

• PHOENIX−COND (Claret, 2018)

• Stagger-grid (Maxted, 2018)

Comparisons with the PHOENIX−COND and MPS−ATLAS Set 1 were focused on

as the results from the other models are similar.

Systems below an impact parameter of 0.65 from this project and Maxted (2023)

were used. The final sample contains 23 Kepler systems with ⟨Teff⟩ = 5944K ⟨[M/H]⟩ =
0.135 and ⟨log (g)⟩ = 4.31 and 27 TESS systems with ⟨Teff⟩ = 6136K ⟨[M/H]⟩ = 0.004

and ⟨log (g)⟩ = 4.05.

SCIPY’s LinearNDInterpolator was used to make a grid of theoretical limb

darkening parameters for each model with a linear interpolation between points. The

TESS and Kepler bands had their own grid of theoretical limb darkening parameters

dependant on Teff , log (g) and [M/H] for each model.



39

Table 4.1: Atmospheric parameters with relevant references
Target Teff [K] log (g) [M/H] Reference
J0228+05 6912± 134 4.15± 0.14 +0.08± 0.08 Freckelton et al. (2023)
J0247−51 6130± 191 3.97± 0.12 −0.43± 0.33 Fitzpatrick et al., 2024, in prep
J0400−51 6010± 180 3.96± 0.10 −0.21± 0.19 Fitzpatrick et al., 2024, in prep
J0432−33 6166± 134 3.55± 0.14 −0.61± 0.05 Freckelton et al. (2023)
J0440−48 6113± 286 4.08± 0.13 −0.31± 0.37 Fitzpatrick et al., 2024, in prep
J0500−46 5788± 116 4.22± 0.18 −0.15± 0.05 Freckelton et al. (2023)
J0526−34 6307± 128 3.97± 0.15 −0.05± 0.07 Freckelton et al. (2023)
J0608−59 5865± 103 3.69± 0.25 +0.01± 0.05 Freckelton et al. (2023)
J0625−43 5678± 118 4.01± 0.12 −0.10± 0.16 Fitzpatrick et al., 2024, in prep
J0627−67 6498± 117 4.24± 0.27 −0.16± 0.13 Freckelton et al. (2023)
J0709−52 6097± 312 3.96± 0.10 −0.21± 0.39 Fitzpatrick et al., 2024, in prep
J0723+79 6014± 121 4.01± 0.19 −0.08± 0.03 Freckelton et al. (2023)
J0829+66 5635± 126 4.13± 0.15 +0.16± 0.06 Freckelton et al. (2023)
J0941−31 6686± 134 3.77± 0.18 −0.26± 0.04 Freckelton et al. (2023)
J0955−39 6223± 165 3.90± 0.66 +0.32± 0.22 Fitzpatrick et al., 2024, in prep
J1626+57 5968± 118 3.92± 0.17 +0.04± 0.04 Freckelton et al. (2023)
J1640+49 6459± 127 3.76± 0.17 +0.01± 0.04 Freckelton et al. (2023)
J1705+55 5706± 112 3.63± 0.19 −0.15± 0.06 Freckelton et al. (2023)
J1850+50 5830± 103 3.63± 0.16 +0.24± 0.04 Freckelton et al. (2023)

The limb darkening parameters predicted by the individual model were extracted

for each target using the parameters in Table 4.1 to use for comparison with obser-

vations. Targets outside the parameter range of the model limits were excluded. A

Monte-Carlo simulation was performed to determine an error bar caused by the un-

certainty in the input parameters. A random sample of 100 points were taken for Teff ,

log (g) and [M/H] respectively with a Gaussian distribution and standard deviation

equal to the values and errors given in Table 4.1. The arrays were then fed into the

interpolator to produce a distribution of theoretical h′
1 and h′

2 to calculate errors on

the theoretical values for each system. The PHOENIX−COND coefficients are only

available for solar metallicity so a small linear correction was applied to theoretical

limb darkening parameters as per Maxted (2023). This was done using Equation (4.1)

for the TESS systems.
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h′
1,cal = h′

1,cal − 0.0027× [M/H]/0.23
h′
2,cal = h′

2,cal + 0.0035× [M/H]/0.23
(4.1)

Once the theoretical values and errors were extracted, the observed limb darken-

ing coefficients could be compared. The following parameters are defined for readability

during comparison.

∆h′
1 = h′

1,obs − h′
1,cal

∆h′
2 = h′

2,obs − h′
2,cal

(4.2)

Here h′
1,obs and h′

2,obs are the parameters h′
1 and h′

2 calculated from the light curves

in the analysis described in Chapter 3 and h′
1,cal and h′

2,cal are the parameters predicted

by a particular atmospheric model. ∆h′
1 and ∆h′

2 were then plotted against [M/H] and

Teff to determine relationships in the form of Equation (4.3) using a least squares fit.

Where Y is the parameter on the y axis (∆h′
1 or ∆h′

2) and X is the parameter on the

x axis ((Teff − 6000K)/1000K or [M/H])

Y = aX + bX X (4.3)

Temperature relations are also drawn only from targets with Teff > 5500K. This is

for continuity with Maxted (2023) and as the sample of systems Teff < 5500K was

not increased and so is too sparse to with any confidence state if the relation is truly

applicable below this.

4.2 Model Comparisons

4.2.1 PHOENIX−COND model

PHOENIX−COND is a 1D spherically-symmetric model. The limb darkening param-

eters were computed by Claret (2018) using the PHOENIX−COND model as gener-

ated by Husser et al. (2013). Henceforth, references to the “PHOENIX model” or

“PHOENIX coefficients” are referring to this set calculated in Claret (2018). All sys-

tems in the initial sample were within the bounds of the PHOENIX model coefficients.
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Table 4.2: Relationship from least-squares fit for a straight line (Equation (4.3)) deter-
mined for different models and bands and their respective limb darkening coefficient as
a function of (Teff − 6000K)/1000K. σX is the additional scatter added in quadrature
to the standard error on ∆h′

1 or ∆h′
2 to obtain χ2 = Ndf (which is equal to the number

of targets).
(*) Magnitude of the gradient trend is more than two times the standard error.
(1) Limb darkening parameters compared to Claret (2018).
(2) Limb darkening parameters compared to Kostogryz et al. (2022), Set 1.
# Band Model Coefficient aX × 103 bX × 103 σX

Maxted (2023)
1 Combined PHOENIX−COND1 h′

1 +9.5± 1.9 +15± 5∗ 0.0097
2 Combined PHOENIX−COND1 h′

2 +0.8± 3.1 −15± 8 0.0164

This work
3 Kepler PHOENIX−COND1 h′

1 11.7± 1.8 +19.8± 4.9∗ 0.0083
4 Kepler PHOENIX−COND1 h′

2 −2.9± 3.6 −18.6± 9.8 0.0164
5 TESS PHOENIX−COND1 h′

1 +15.0± 3.0 +0.8± 7.3 0.0138
6 TESS PHOENIX−COND1 h′

2 +0.6± 4.9 −5.7± 12.0 0.0228
7 Kepler MPS−ATLAS2 h′

1 +5.9± 1.8 +6.6± 5.0 0.0084
8 Kepler MPS−ATLAS2 h′

2 −11.4± 3.6 −3.5± 9.8 0.0165
9 TESS MPS−ATLAS2 h′

1 +8.4± 2.8 −7.8± 6.8 0.0129
10 TESS MPS−ATLAS2 h′

2 −9.6± 4.9 +6.0± 12.1 0.0229

4.2.1.1 Metallicity relation

Figure 4.1 shows ∆h′
1 and ∆h′

2 for TESS systems as a function of metallicity to see

if there is a relationship. The relation in Equation (4.4) was determined from the

combined using a least-squares fit. The value 0.01331 was added in quadrature to the

standard error on h′
1 to obtain χ2 = Ndf (which is equal to the number of targets).

∆h′
2 does not show any significant gradient across this sample.

∆h′
1 = (0.0152± 0.0025) + (−0.0119± 0.0106) [M/H] (4.4)
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Figure 4.1: Figure showing observed limb darkening profile in the TESS band compared
with the theoretical limb darkening profile as calculated by Claret (2018) as a function
of metallicity.
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Figure 4.2: Figure 10 from Maxted (2023). Blue points are results in the Kepler band
and red points in the TESS band. The green line is the line of best fit for all systems
plotted above 5500K (relations given in rows 1 and 2 of Table 4.2 in the form of
Equation (4.3)). Note, systems above an impact parameter of 0.65 were excluded.
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4.2.1.2 Temperature relation

Figure 4.2 shows the observed limb darkening parameters determined in Maxted (2023)

compared with the PHOENIX model limb darkening parameters. The figure displays

33 systems that were within the bounds of the PHOENIX model. Here a clear relation

between the temperature and the offsets in ∆h′
1 and ∆h′

2 can be seen. The relation

was determined from the combined Kepler and TESS systems and is shown in Table

4.2, rows 1 and 2.

Maxted (2023) only had a small sample of systems investigated in theTESS band

so when extracting a relation between the observed and actual limb darkening as a

function of Teff , both the Kepler and TESS data were combined. However, the results

in Fig. 4.2 suggest that the TESS systems might not follow the same trend for ∆h′
1 as

the Kepler systems.

Figure 4.3 shows the complete combination of the accepted systems from Maxted

(2023) and the accepted systems investigated in this project. From this split figure of

a larger sample it becomes obvious that the TESS systems are not following the same

trend as the Kepler systems hence the relationship is skewed to a lower trend than the

Kepler sample actually shows. The relation was redetermined here separately for both

samples. Rows 3 and 4 of Table 4.2 give the relation parameters for ∆h′
1 and ∆h′

2 for

the Kepler systems (∆h′
1,Kepler and ∆h′

2,Kepler respectively).

For reference, the green dotted line in Figure 4.3 gives the relation determined in

Maxted (2023) making the slight suppression caused by the TESS systems visible. This

does not change the relation significantly for ∆h′
1,Kepler or ∆h′

2,Kepler with the gradients

and y-intercepts having overlapping error bars. It is however worth noting that for

∆h′
1,Kepler, the gradient error bars only just overlap.

Rows 5 and 6 give the relation for ∆h′
1 and ∆h′

2 for the TESS systems (∆h′
1,TESS

and ∆h′
2,TESS respectively). This line of best fit was determined to justify the separation

of the TESS and Kepler systems so while the relations are displayed, it can be seen

that both ∆h′
1,TESS and ∆h′

2,TESS are consistent with having no gradient. The gradient

relation for ∆h′
2,TESS does overlap errors with with the original relation from Maxted
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Figure 4.3: Figure showing the observed limb darkening profile compared to the param-
eters predicted by the PHOENIX−COND model calculated in Claret (2018). Kepler
systems are in blue on the left panels and TESS systems are in red on the right panels.
Data from Maxted (2023) uses unfilled circles, data from this project uses filled circles.
The solid green line is the best fit for each set of systems for Teff > 5500 and the dotted
green line is the relation from Maxted (2023). The grey dashed line is the zero line.
Rows 3 and 4 of Table 4.2 in the form of (4.3) give the trends for the Kepler systems
and rows 5 and 6 give the trends for TESS.
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(2023) however the relation here is not statistically significant (not greater than three

times the error from zero) unlike the one from Maxted (2023).

4.2.2 MPS−ATLAS Set 1 and Set 2

MPS−ATLAS is a 1D plane parallel model that computes atmospheric parameters for

different stellar compositions and mixing lengths. Kostogryz et al. (2022) presents two

grids of limb darkening profiles. “Set 1” uses the same abundances and mixing-length

as Castelli & Kurucz (2003) Meanwhile “Set 2” uses the more recent Asplund et al.

(2009) abundances and treats the mixing-length parameter as a function of Teff , log g

and [M/H] from Viani et al. (2018). Note that they only use this functional mixing

length over the range used by Viani et al. (2018), outside this range the boundary

value from the relationship mixing length parameter was used. This boundary could

minimally affect the errors of values in Set 2 as the Gaussian sample will overlap the

edge of this boundary for some stars. This should not affect the actual values as the

best value falls within the boundary of the mixing length function for all systems. Here,

however, I focus on Set 1 as the results from both are extremely similar.

4.2.2.1 Metallicity relation

Figure 4.4 shows ∆h′
1 and ∆h′

2 for TESS systems as a function of metallicity to see

if there are any trends. All 27 TESS systems were within the bounds of the model

coefficients. Fitting a line to the data gives a gradient encompassing zero so on the

whole the data has no significant trend, just a small average offset.

4.2.2.2 Temperature relation

Figure 4.5 shows ∆h′
1 and ∆h′

2 as a function of Teff for systems in the Kepler band (left

hand side panels) and the TESS band (right hand side panels). Rows 7 and 8 of Table

4.2 give the relation and additional scatter for ∆h′
1 and ∆h′

2 for the Kepler systems
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Figure 4.4: Figure showing observed limb darkening profile in the TESS
band compared with the theoretical limb darkening profile as calculated by
Kostogryz et al. (2022) (Set 1) as a function of metallicity.
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Figure 4.5: Figure showing observed limb darkening profile compared with the the-
oretical limb darkening profile as calculated by Kostogryz et al. (2022) (Set 1) as a
function of Teff . Kepler systems are in blue on the left panels and TESS systems are in
red on the right panels. Data from Maxted (2023) uses unfilled circles, data from this
project uses filled circles. The solid green line is the best fit for each set of systems for
Teff > 5500K. The grey dashed line is the zero line. Rows 7 and 8 of Table 4.2 in the
form of (4.3) give the trends for the Kepler systems and rows 9 and 10 give the trends
for TESS.
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(∆h′
1,Kepler and ∆h′

2,Kepler respectively). ∆h′
2,Kepler gives a gradient consistent with zero

however, ∆h′
1,Kepler shows a very small (but statistically insignificant) gradient. The

TESS systems tell a very similar story but are provided for reference. Row 9 of Table

4.2 gives the relation and additional scatter for ∆h′
1,TESS and row 10 for ∆h′

2,TESS.

4.3 Discussion

From the initial sample of confirmed EBLM systems from BEBOP and the EBLM

project, 17 of these systems with the most precisely determined limb darkening param-

eters were combined with the sample of transiting hot Jupiters from Maxted (2023).

These 50 targets were used to compare with limb darkening coefficients from the

PHOENIX−COND and MPS−ATLAS atmospheric models and determine any trends.

The sample of metallicities were extended as well as number of targets in the TESS

band. This allowed the Kepler and TESS systems to now be analysed separately and

I found that they often showed different trends.

For the PHOENIX−CONDmodel, the TESS systems showed no significant trend

with temperature or metallicity for h′
1 or h′

2, only a small offset. The Kepler systems

however showed a significant trend for h′
1 with effective temperature. Even though

the Kepler and TESS wavelength bands largely overlap, they do operate over different

ranges, these can be seen in Figure 4.3. Areas of spectra where there are many spectral

features overlapping is called “line blanketing”. From Figure 4.3 we can also see ex-

ample spectra for a G dwarf star, much like those seen as the primary star in EBLMs,

there is a large section around 400 to 600 nm that contains one of these areas of line

blanketing. Only the Kepler band is sensitive to much of this area of the spectra so

I suggest that an insufficient characterisation of this area of the spectrum for similar

stars as a potential cause for the trend seen in the Kepler band for these systems.

For the MPS−ATLAS model no significant trends for h′
1 or h

′
2 with metallicity or

temperature were found for Kepler or TESS systems, only an offset. Kostogryz et al.

(2022) suggest that the cause of this offset is not accounting for magnetic activity,



50

Figure 4.6: Image credit: Zach Berta Thompson1 using data from Sullivan et al. (2015).
Figure shows a schematic of typical spectra of a G dwarf star and M dwarf star in blue
and red respectively compared to the Kepler and TESS bandpass response curves.

hence, for this discussion it is worth mentioning WASP−18. WASP−18 is a star with

a transiting 10MJup hot Jupiter with a period of 0.94 days, hence, this planet orbits

very close to its host star. This star exhibits a remarkably low level of magnetic activity,

it is suggested that this is caused by this close orbiting massive planet (Lanza, 2014;

Fossati et al., 2018). This has made it an interesting system to see if the current

discrepancies between models and observed parameters is caused by magnetic activity

as was investigated in Maxted (2023). WASP−18 has a temperature of 6599 ± 48K

and from Figures 4.3 and 4.5 we observe that the model predictions align very well

with observations. For the PHOENIX−COND model, the errors of ∆h′
1 and ∆h′

2 both

encompass the zero line and for the MPS−ATLAS model ∆h′
2 encompasses zero and

∆h′
1 is within 2.5 standard deviations of the zero line. So both these models in the

TESS band are doing well at describing what we observe for the low magnetic activity

1https://heasarc.gsfc.nasa.gov/docs/tess/the-tess-space-telescope.html

https://heasarc.gsfc.nasa.gov/docs/tess/the-tess-space-telescope.html
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cases. This means however that we will be able to measure magnetic activity from limb

darkening as is currently being worked on in literature (Kostogryz et al., 2022, 2023;

Maxted et al., 2023).
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5 Investigations into the radius inflation
problem

The radii predicted by stellar models for cool stars are often too small compared those

computed from observations. This discrepancy is dubbed the radius inflation problem.

I calculate gravities, temperatures, masses and radii for the M dwarf companion in

EBLM systems to investigate whether the stars in this sample show evidence of the

radius inflation problem when comparing to the set of MIST models (Dotter, 2016;

Choi et al., 2016).

5.1 Methods

5.1.1 Light curve fitting

The light curves for each target were re-analysed, instead fitting using the power-2

law. This was done to obtain the best possible precision on the radius compared to

what can be done with much looser constraints on the limb darkening from the highly

correlated limb darkening parameters of the Claret law. Specifically the power-2 law

is chosen as it is found to outperform other 2 parameter laws especially for cooler

stars (Morello et al., 2017) such as the hosts in our sample. Here we care more about

the limb darkening being precisely defined as opposed to complete accuracy as limb

darkening is no longer the focus.

Other than this different limb darkening law, the light curve analysis was the

same as in Section 3. Parameters from this were used to determine the parameters M1,

M2, R1, R2, ρ1, log g2 and Teff,2.
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5.1.2 Model isochrones

The stellar isochrones used for reference in this analysis are the MIST isochrones and

read in using the python package READ MIST MODELS1. The ages 1, 4 and 10 Gyr are

used and over this analysis and I use metallicities in the range −1.5 and +0.5. These

ages are chosen from looking at the Kepler LEGACY sample of solar-like main sequence

stars (Silva Aguirre et al., 2017) and these metallicities were chosen by looking at the

range of metallicities of our targets. Isochrones for M , log(Teff) and log(L) are read in

and transformed as follows.

We can use the Stefan-Boltzmann law in the form of Equation (5.1) to gain the

radius R by rearranging. Where L is the luminosity and σSB is the Stefan-Boltzmann

constant.

L = 4πσSBR2 Teff
4 (5.1)

The average stellar density was calculated using log(ρ) = log(M) − 3 log(R) with M

and R in solar units. The surface gravity is given by Equation (5.2).

g =
GM

R2
(5.2)

5.1.3 Determining primary star mass, radius and average den-
sity and secondary star mass, radius and gravity

From the fits described in Sections 3 and 5.1.1, the parameters: k, R1/a, e, J , sin i and

their relevant errors and P were collected along with Teff , log (g) and [M/H] and their

errors as in Table 4.1; K1 from Triaud et al. (2017) or the Gaia Collaboration (2022b),

and an initial mass estimate, M1, from Triaud et al. (2017) where available. Where no

initial mass was found in literature, the value 1.2 M⊙ was taken as this is around the

average mass of the primary star in EBLM systems. An initial estimate of the radius

of the primary star was calculated from Equation (5.2) using the primary star’s mass

and gravity.

1https://github.com/jieunchoi/MIST_codes/blob/master/scripts/read_mist_models.py

https://github.com/jieunchoi/MIST_codes/blob/master/scripts/read_mist_models.py
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The PYCHEOPS Mote Carlo simulation function, massradius was used to gain a

test sample of stellar densities for the primary star for 100,000 simulations. A Gaussian

sample of random numbers are generated for k, a/R1, e, K and sin i with standard

deviations equal to the quoted standard errors. The error on the orbital period is very

small and so was assumed to negligible. To get a sample of test primary densities, the

secondary mass was calculated across the sample of parameters. The mass function,

f(m), is calculated from the observables on the left hand side of the Equation (5.3)

and by rearranging, a cubic polynomial can be solved to determine M2.

f(m) =
P (1− e2)3/2

2πG
K3

1 =
M2

3 sin3 i

(M1 +M2)2
(5.3)

From this, the mass ratio could be calculated by dividing by M1 and for each set

of parameters, the test values of ρ1 were calculated using Equation (5.4) in solar units.

ρ1 =
ρ⊙

(1 + q)P 2

R1

a
(5.4)

I used the relation from Enoch et al. (2010) to gain M1 from ρ1, Teff and [M/H]

as shown in Equation (5.5) where X = log (Teff)− 4.1. Then to this test sample of

log(M1) I added scatter by adding a random number between 0 and 0.023 to each of

the test masses to account for the observed scatter around the relation determined

by Enoch et al. (2010) for primary star mass as a function of its density, effective

temperature and metallicity.

logM = 0.458 + 1.430X + 0.329X2

−0.042 log(ρ) + 0.067 log(ρ)2 + 0.010 log(ρ)3 + 0.044[M/H]
(5.5)

From this a test sample of R1 were calculated from the test densities from the

massradius function and the test masses above using R = (M/ρ)1/3. These primary

star test masses and radii were then passed back through the massradius function

along with the previous P , k, a/R1, e, K and sin i to ensure the sample of determined

parameters remain consistent with the fit parameters. From the Monte Carlo simula-

tion, the mean and standard error of M1, R1, ρ1, M2, R2 and log(g2) were extracted.
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Figure 5.1: Figure showing parameters determined for the primary and secondary stars,
plotted with isochrones for comparison. Dark blue points with error bars are EBLMs
analysed using synthetic photometry assuming solar alpha element abundance ([α/Fe]
= 0.0). The turquoise points and error bars show target J0432−33 which has α-element
abundance [α/Fe] = +0.24. The grey lines are MIST isochrones (Dotter, 2016; Choi
et al., 2016) plotted for ages 10Gyr and 1Gyr at solar metallicity. The top panels give
parameters for the primary star and the bottom panels for the secondary star.

The sample of M2 and R2 from this are saved as well as the sample of metallicities for

use in Section 5.1.5.
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Figure 5.1 gives plots showing the results for M1, R1, ρ1, M2, R2 and log(g2) as

well as with Teff,1 from Freckelton et al. (2023) and Teff,2 found in Section 5.1.4 below.

5.1.4 Determining secondary star temperature

To find Teff,2 I used synthetic photometry from the BT-NextGen (AGSS2009) model

grid accessed through the Spanish Virtual Observatory (SVO). This model assumes

solar abundances as computed by Asplund et al. (2009) and use the vapour line list from

Barber et al. (2006). The models are further described in Allard et al., (2012; 2011).

This model was chosen because of the range of effective temperatures, metallicities and

gravities available with some flexibility in α-element abundances, [α/Fe]. Note [α/Fe]

is measured relative to the solar abundance.

The LinearNDInterpolator function was used to make two separate grids of

values from the synthetic photometry to output the surface brightness as a function of

a star’s effective temperature, metallicity, α-element abundance and the gravity. The

resulting grids cover the following parameter ranges.

• Teff : grid 1: 2600 to 5000K, grid 2: 5000 to 8100K

• [M/H]: −1.0 to +0.5

• log(g): 3.0 to 5.5

• [α/Fe]: −0.2 to +0.6

As many of our systems did not have literature values for [α/Fe], this variable was cycled

over the range above (in increments of 0.2). With the list of α-element abundances

available, Teff,1, [M/H] and log(g1) from Table 4.1 were used to extract primary star

surface brightnesses (SB1 for associated α-element abundances). This used the higher

temperature range grid of synthetic photometry.

To obtain an error on the surface brightness, the value of Teff,1 had the error

bar added (or subtracted depending on if the error put the temperature outside of the
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grid range). The surface brightness was evaluated with [M/H] and log(g1) kept at their

best values and the surface brightness extracted from all parameters at their best value

subtracted. This gave an idea of the error contributed by the uncertainty on Teff,1. This

was repeated for [M/H] and log(g1) and then all three of these uncertainties added in

quadrature to give ∆SB1.

The surface brightness ratio J was multiplied by SB1 to get the surface brightness

of the secondary star and the fractional error on J and SB1 added in quadrature to give

SB2 ±∆SB2. These surface brightnesses were then converted into temperatures using

the cooler grid of synthetic photometry. The SCIPY root finding function, brentq, was

used to find Teff,2 and the same method as for ∆SB1 was used to find the error on Teff,2

except with this added step of interpolating over temperature to find the temperature

at that point of the grid.

Due to grid restraints, errors for Teff,2 could not be found for targets J0247−51,

J0440−48 and J0941−51 so their points are omitted for the secondary star parameters.

This means they are completely omitted from the bottom panels of Figure 5.1 even

though M2 and R2 were found. For the most part, systems are plotted for Teff,2 de-

termined using synthetic photometry at [α/Fe] = 0 unless a target had a particularly

high α-element abundance. This was true of J0432−33, shown in turquoise. Freckelton

et al. (2023) gives this target’s α-element abundance to be +0.24 as well as Steinmetz

et al. (2020) finding it to be +0.24± 0.19.

After generating Figure 5.1, it was noticed that the most apparent feature is

the large amount of scatter on the bottom left panel showing Teff,2 vs log(g2). To

test whether metallicity could be causing this, I have re-plotted Teff,2 vs log(g2) with

isochrones of different metallicity in Figure 5.2. It seems that metallicity could be a

contributing factor to the scatter shown in Figure 5.2, however, the scatter predicted

by the MIST models is greater than the scatter seen. Further investigation into the

cause of this scatter was beyond the scope of this project.
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Figure 5.2: Teff,2 vs log(g2) and errors plotted for 16 EBLMs from the analysis with
their colour corresponding to their metallicity (colour bar shown to the left hand side).
MIST isochrones at 4 Gyr, plotted for metallicity −0.5 (purple), +0.0 (orange) and
+0.25 (yellow), corresponding to the same colour mapping as the points plotted. See
Section 5.1.5 for brief description of isochrone +0.25.



59

Table 5.1: Data behind Figures 5.1, 5.2 and 5.3. Numbers in brackets give errors on
the lattermost digits.
Target log(ρ1/ρ⊙) log(g2) Teff,2 M1 R1 M2 R2

J0228+05 −0.417(9) 5.078(6) 3259(39) 1.38(9) 1.53(4) 0.168(7) 0.196(5)
J0247−51 −0.658(6) − − 1.20(8) 1.76(4) 0.224(9) 0.241(6)
J0400−51 −0.579(6) 4.977(5) 3245(61) 1.17(8) 1.64(4) 0.254(11) 0.271(6)
J0432−33 −0.882(13) 5.019(9) 3271(44) 1.27(9) 2.13(5) 0.254(11) 0.258(7)
J0440−48 −0.628(11) − − 1.20(8) 1.72(4) 0.182(8) 0.218(5)
J0500−46 −0.379(14) 5.059(10) 3122(40) 1.08(7) 1.37(4) 0.171(7) 0.202(5)
J0526−34 −0.765(7) 4.932(5) 3496(48) 1.33(9) 1.98(5) 0.335(14) 0.327(8)
J0608−59 −0.320(4) 4.951(2) 3329(37) 1.10(8) 1.31(3) 0.307(13) 0.306(7)
J0625−43 −0.674(7) 4.931(6) 3303(45) 1.13(8) 1.75(4) 0.287(12) 0.304(7)
J0627−67 −0.292(4) 5.062(3) 3303(36) 1.22(8) 1.33(3) 0.216(9) 0.226(5)
J0709−52 −0.890(11) 4.852(9) 3465(120) 1.31(9) 2.17(5) 0.398(16) 0.394(10)
J0723+79 −0.388(3) 4.973(4) 3278(39) 1.14(8) 1.40(3) 0.265(11) 0.278(6)
J0829+66 0.123(12) 5.084(12) 3221(46) 1.01(7) 0.91(2) 0.185(9) 0.204(5)
J0941−31 −0.670(13) − − 1.36(9) 1.86(5) 0.24(1) 0.249(6)
J0955−39 −0.005(14) 5.069(11) 3377(63) 1.16(8) 1.05(3) 0.218(9) 0.226(6)
J1626+57 −0.426(9) 5.039(11) 3047(34) 1.15(8) 1.45(3) 0.180(9) 0.212(5)
J1640+49 −0.719(10) 5.028(16) 3213(37) 1.36(9) 1.93(5) 0.209(12) 0.232(6)
J1705+55 −0.5033(99) 4.985(25) 3352(42) 1.09(8) 1.51(4) 0.33(3) 0.305(8)
J1850+50 −0.668(17) 5.013(38) 3197(38) 1.21(8) 1.78(5) 0.30(3) 0.282(8)

5.1.5 Quantifying radius inflation in the sample

We needed a way to extract model parameters to compare to to see if our observations

showed evidence of radius inflation. A grid of masses and metallicities were made to

extract expected radii. MIST model isochrones in metallicities −1.5, −1.0, −0.5, +0.0

and +0.5 were extracted for an age of 4 Gyr (as this is about halfway between the

ages previously plotted). The isochrone for metallicity +0.25 can be seen in Figure

5.2 for age 4 Gyr to not follow similar trends to the surrounding model, investigating

the reasons for this was beyond the scope of this project. Because of this, the +0.25

model was omitted from the interpolation to avoid potential extra scatter due to this
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unexplained feature. The MIST interpolator2 was used to interpolate these isochrones.

The SCIPY polyfit function was used to extrapolate up to metallicity +1.0 in order

to calculate errors on extracted parameters for some systems. For this I used MIST

outputs with metallicity +0.0 and +0.5 and then this array of masses and radii at

metallicity +1.0. The LinearNDInterpolator was used to put all these values into a

grid allowing for linear interpolation between the points.

The samples of M2, R2 and [M/H] from Section 5.1.3 were used to investigate the

offset between our observed radii and those predicted by the MIST models. Across the

sample, the test masses and metallicities were passed through the grid to find a sample

of MIST radii. The radius inflation was calculated for each target using Equation (5.6)

where, R2,obs is the observed radius and RMIST is the MIST model radius.

R% =
R2,obs −R2,MIST

R2,MIST

× 100 (5.6)

This was run through for each of the test radii, then the mean and standard deviation of

the sample of offsets calculated. These percentage offsets are plotted against observed

M2 in Figure 5.3. A metallicity colour bar was included to also check for a metallicity

trend across the sample.

The PYCHEOPS combine function was then used to sample the mean offset of the

sample and variance, helping us describe the radius inflation. As described in Maxted

et al. (2022), the combine function uses EMCEE and samples the posterior probability

using the function in Equation (5.7) where yi is the series of radius inflations and

si
2 = σy

2+σext
2. Here σy is the series of radius inflation errors and σext is the additional

standard deviation in the radius values due to unknown factors.

lnL = −1

2

n∑
i=1

(
(yi − µ)2

si2
+ ln (si

2)

)
(5.7)

The mean µ and ln σext were sampled assuming broad uniform priors. The func-

tion was run with 128 walkers for 3000 steps, discarding the first 2000 Taking the

2https://waps.cfa.harvard.edu/MIST/interp_isos.html

https://waps.cfa.harvard.edu/MIST/interp_isos.html
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Figure 5.3: Plot of the radius inflation (R%) vs mass (M2) for the secondary star in
the full sample of 19 EBLMs. Points are plotted with colour mapping correlated to
metallicity.
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mean and standard deviation of the µ chain, the mean R% was found to be 1.9± 1.0%.

The 95th percentile of the sample gives a radius inflation of 3.6%. From this we can

conclude that the radius inflation across our sample is minimal, hence our observations

align quite well with the MIST set of models. It should be noted that excluding the

higher metallicity points, would increase the radius inflation seen across our sample.

5.1.6 Population assignment

Due the enhanced α-element abundance of J0432−33 in comparison to the rest of the

stars in the sample, it was interesting to find out whether our targets were members

of the thin or thick disk. It is established that stars within the thick disk of the Milky

Way tend to have a higher α-element abundance than those in the thin disk (Bensby

et al., 2003, 2005).

STEPARKIN3 (Montes et al., 2001; Cortés-Contreras et al., 2020) uses the Galactic

space-velocity components to assign stars to parts of the Milky Way. For my targets and

those from Maxted (2023) I took equatorial coordinates, proper motions and parallaxes

with errors (Gaia Collaboration, 2020) and radial velocities (Dı́az et al., 2013; Gaia

Collaboration, 2018; Soubiran et al., 2018; Steinmetz et al., 2020; Jönsson et al., 2020;

Buder et al., 2021; Su et al., 2022; Gaia Collaboration, 2022a). STEPARKIN then uses

the method outlined in Johnson & Soderblom (1987) to calculate U, V and W in km s−1

and assign stars to various groups according to the criteria given in Bensby et al. (2003,

2005).

Stars are either flagged as thin disk, thick disk, intermediate between the thin

and thick disk or in the galactic halo. From the input stars, only Kepler−489 from the

Maxted (2023) sample is assigned between the thin and thick disks, we find the rest

are assigned to the thin disk.

3https://github.com/dmontesg/SteParKin/tree/main

https://github.com/dmontesg/SteParKin/tree/main
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5.2 Discussion

In this section of the project I found that the effect of radius inflation seen in this

sample of stars is very minimal. The 95th percentile of targets show a radius inflation

of only around 3%. This aligns well with current literature around the analysis of M

dwarf secondary stars in EBLM systems. This can be seen in Figure 7 of Maxted et al.

(2023) with masses, radii and temperatures falling well along the MIST isochrones.

From Figures 5.1 and 5.2 we observe scatter around the isochrones for the com-

panion parameters, especially for the log(g2) vs Teff,2 graph. This was investigated

further by obtaining isochrones for metallicity −0.5 and +0.25. The isochrones for

log(g2) and Teff,2 are seen to be quite sensitive to metallicity, leading to the conclusion

that this scatter is likely being caused by variations in metallicity. Visually inspecting

Figure 5.3 one can start to see a trend where lower metallicity targets (shown in blue

to purple) tend to show a higher radius inflation in comparison to solar and higher

metallicity targets (shown in orange to yellow). So, even when using models that take

into account for the M dwarf’s metallicity, we still see a small average radius inflation,

agreeing with findings in Swayne et al. (2023). Further investigation into the full affect

of metallicity on the sample was beyond the scope of this project.

We currently find that our samples of transiting hot Jupiters and EBLMs likely

originate from the thin disk in the Milky Way limiting the populations of M dwarfs we

are able to investigate.
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6 Conclusions

In this project I investigated how well atmospheric models predict limb darkening and

determined if our target secondary components showed evidence of the radius inflation

problem. From an initial list of known EBLMs, I characterised a total of 19 EBLM

systems with well-defined secondary eclipses.

6.1 Stellar atmospheric models

Inaccurate models of stellar atmospheres lead to inaccurate estimations of stellar pa-

rameters so it is important to test how accurately current models are predicting the

properties of stars. An important factor to consider that has been tested in this project

is the variation of specific intensity from the centre to the limb of the star.

As part of this analysis I took measurements of limb darkening, radius ratio,

scaled primary radius, inclination, surface brightness ratio, eccentricity, primary and

secondary eclipse depth, primary eclipse width and impact parameter. This was done

by fitting the BATMAN transit model to the light curves of the final sample of EBLMs

and using the Claret 4-parameter limb darkening law. Effective temperatures, gravities

and metallicities were then collected to enable comparison with various stellar atmo-

sphere models. 17 targets from this project and systems from Maxted (2023) were

combined to extract relations between h′
1, h

′
2 and Teff , [M/H] from a sample of 23 Ke-

pler systems and 27 TESS systems. It was determined that for TESS systems, both

the MPS−ATLAS model limb darkening parameters calculated in Kostogryz et al.

(2022) and PHOENIX−COND model parameters calculated in Claret (2018) show no

significant trends with temperature or metallicity, only an offset likely caused by mag-

netic activity. The MPS−ATLAS model limb darkening parameters for the Kepler

systems also only show a small offset. On the other hand, h′
1 determined from the

PHOENIX−COND model shows a significant trend with Teff and h′
2 as a function of

Teff shows a more significant trend than was found in Maxted (2023) from the com-
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bined Kepler and TESS sample. The trend with h′
2 however is only approximately 1.9

standard deviations from showing no trend, so much less significant than the 4σ of h′
1.

However, it should be noted that h′
2 is dependant on h′

1.

We suggest insufficiently defined spectral lines in the Kepler band due to line

blanketing as a potential cause of this trend in limb darkening parameter predictions

but further investigation is needed to determine if this is the case. The trends deter-

mined in this project can be used to help constrain limb darkening parameters fits for

similar stars and will hopefully contribute to the continued improvement of atmospheric

models.

6.2 Radius inflation

The radius ratio, scaled primary radius, surface brightness ratio, eccentricity, and or-

bital period of the EBLM’s were used to extract primary and secondary radii and

masses and secondary star temperatures and gravities. The gravities were calculated

directly from orbital parameters so were not reliant on models. Calculations of Teff,2

were reliant only on a set of synthetic photometry to give a relation between the surface

brightness observed in the TESS band and Teff . M2 and R2 were much more reliant

on determined empirical relations.

Masses and radii were found for all stars in the sample however Teff,2 was not

found for 3 systems due to constraints of the synthetic spectra. Across the sample, the

average radius inflation was found to be 1.9±1.0% when comparing to MIST models at

an assumed age of 4 Gyr at the same metallicity as the primary star. Systems within

the 95th percentile show less than 3% radius inflation. This means I have not found a

very significant discrepancy between models and observations which agrees with new

literature saying that radius inflation is a much smaller effect than previously believed.



66

A Light curve fits
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Figure A.1: TESS light curves (grey points) for J0228+05 with best fit of BATMAN from
my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s intervals
with errors equivalent to the mean absolute deviation are shown for reference in purple.
Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.2: Corner plots from best fits of BATMAN to TESS data using EMCEE from my
analysis in Section 3 for J0228+05.
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Figure A.3: TESS light curves (grey points) for J0247−51 with best fit of BATMAN from
my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s intervals
with errors equivalent to the mean absolute deviation are shown for reference in purple.
Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.4: Corner plots from best fits of BATMAN to TESS data using EMCEE from my
analysis in Section 3 for J0247−51.
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Figure A.5: TESS light curves (grey points) for J0400−51 with best fit of BATMAN from
my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s intervals
with errors equivalent to the mean absolute deviation are shown for reference in purple.
Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.6: Corner plots from best fits of BATMAN to TESS data using EMCEE from my
analysis in Section 3 for J0400−51.
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Figure A.7: TESS light curves (grey points) for J0432−33 with best fit of BATMAN from
my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s intervals
with errors equivalent to the mean absolute deviation are shown for reference in purple.
Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.8: Corner plots from best fits of BATMAN to TESS data using EMCEE from my
analysis in Section 3 for J0432−33.
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Figure A.9: TESS light curves (grey points) for J0440−48 with best fit of BATMAN from
my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s intervals
with errors equivalent to the mean absolute deviation are shown for reference in purple.
Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.10: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0440−48.
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Figure A.11: TESS light curves (grey points) for J0500−46 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.12: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0500−46.
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Figure A.13: TESS light curves (grey points) for J0526−34 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.14: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0526−34.
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Figure A.15: TESS light curves (grey points) for J0608−59 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.16: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0608−59.
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Figure A.17: TESS light curves (grey points) for J0625−43 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.18: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0625−43.
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Figure A.19: TESS light curves (grey points) for J0627−67 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.20: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0627−67.
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Figure A.21: TESS light curves (grey points) for J0709−52 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.



88

Figure A.22: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0709−52.
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Figure A.23: TESS light curves (grey points) for J0723+79 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.24: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0723+79.
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Figure A.25: TESS light curves (grey points) for J0829+66 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.26: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0829+66.
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Figure A.27: TESS light curves (grey points) for J0941−31 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.28: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0941−31.
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Figure A.29: TESS light curves (grey points) for J0955−39 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.30: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J0955−39.
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Figure A.31: TESS light curves (grey points) for J1626+57 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.32: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J1626+57.
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Figure A.33: TESS light curves (grey points) for J1640+49 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.34: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J1640+49.
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Figure A.35: TESS light curves (grey points) for J1705+55 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.36: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J1705+55.
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Figure A.37: TESS light curves (grey points) for J1850+50 with best fit of BATMAN
from my analysis in Section 3 (red line) from EMCEE analysis. Data binned in 120 s
intervals with errors equivalent to the mean absolute deviation are shown for reference
in purple. Top panel: primary eclipse. Bottom panel: secondary eclipse.
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Figure A.38: Corner plots from best fits of BATMAN to TESS data using EMCEE from
my analysis in Section 3 for J1850+50.
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