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Abstract 

The cause of spontaneous perceptual reversals of visually ambiguous 

stimuli has been attributed to several different mechanisms. One hypothesis 

suggests that adaptation, or “neural fatigue”, builds up while one interpretation is 

dominant and eventually triggers a reversal. Although there is behavioural 

evidence that adaptation to an unambiguous stimulus (e.g., directional motion) 

can bias subsequent perception of an ambiguous one, it is unclear whether that 

adaptation plays a role in spontaneous reversals. In three experiments, we used 

psychophysical, ERP and multivariate pattern analysis (MVPA) of EEG data. Our 

behavioural results confirmed that adaptation to directional motion does indeed 

bias subsequent perception of ambiguous motion. We then used MVPA of EEG 

data to test whether that adaptation is involved in spontaneous perceptual 

reversals. We did this by training a machine-learning classifier on the pattern of 

EEG scalp voltage during adaptation-induced reversals. We then tested this 

classifier on spontaneous reversal data and found above-chance decoding and 

similar activity patterns. To shed light on the statistical power of the MVPA 

technique used to generate our results, we ran a series of simulations that 

manipulated effect size and sample size. We found that statistical power of the 

MVPA pipeline employed in this thesis and commonly in the wider literature, 

indeed increased when larger sample sizes were used as well as when larger effect 

sizes were added to the simulated data. Taken together, the results from this thesis 

suggest that similar brain mechanisms mediate perceptual adaptation and 

spontaneous perceptual reversals, providing support for the “neural fatigue 

hypothesis” of multi-stable perception. Additionally, the analyses used to generate 
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this claim have been shown to be sufficiently powerful in which to detect these 

effects. 
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1.1 Multi-stable perception 

Our visual system is essential in creating a unified and practical, though 

not always accurate, depiction of the external environment. The information we 

gather through our senses is incomplete, due to the limited nature of our sensory 

inputs and factors such as occlusion, transparency, and illumination changes. To 

address this challenge, our visual system seems to utilise a wealth of pre-existing 

knowledge, encompassing statistical norms of the external world, to interpret and 

understand our surroundings (Carbon, 2014; Pastukhov et al., 2023) 

The reason for this ambiguity is that our sensory engagement with the 

environment is primarily through the proximal stimulus, that is, the two-

dimensional images formed on our retinas. This proximal stimulus is a direct 

result of physical interactions, representing the patterns and properties of physical 

stimuli within our sensory reach. It is, however, subject to variations depending on 

external factors like lighting and spatial orientation of objects. For instance, there 

is not a one-to-one mapping between the proximal stimulus (i.e., the 2D retinal 

projection) and the distal stimulus (i.e., the 3D scene we are viewing). This means 

that there are many distal stimuli that could give rise to the same proximal stimuli. 

The visual system, therefore, engages in a complex process of interpreting these 

proximal stimuli to construct mental representations of the distal stimuli - the 

actual objects and their states in the external world. This interpretation heavily 

relies on inferential mechanisms, drawing upon past experiences and contextual 

knowledge to make sense of the sensory input (Friston 2005, Petrovici et al. 2016, 

Summerfield & de Lange 2014). For instance, the perception of a tree involves the 

translation of the light patterns hitting the retina into a recognisable form of a tree. 

This interpretive process, while sophisticated and generally effective, is not 
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infallible. It can lead to discrepancies between the perceived image and the actual 

properties of the distal stimulus, highlighting the intricate and sometimes fallible 

nature of our visual perception system. 

Our understanding of the neural mechanisms that underpin this complex 

process of visual perception is still being developed in academic research. To put 

together information on this complex process, research has often focussed on the 

interaction between bottom-up and top-down mechanisms involved in visual 

perception. The "bottom-up" approach suggests that early visual processing is 

characterised by "passive" and automatic mechanisms (e.g., Köhler, 1940; 

Toppino & Long, 1987). On the other hand, the "top-down" approach suggests 

that perception is driven by "active", volitional processes that occur closer to 

conscious awareness (e.g., Horlitz & O'Leary, 1993; Leopold & Logothetis, 1999; 

Long & Toppino, 2004).  This presents an apparent contradiction between the two 

approaches in understanding the underlying causes of our perception, given that 

the bottom-up approach suggests that our perception is guided by automatic 

processes and the top-down approach suggests that it is instead driven by 

volitional ones. This initial contradiction has since moved toward more integrated 

theories of perception that are focussed on the dynamic relationship between the 

two seemingly opposing views (e.g., Blake & Logothetis, 2002; Kornmeier, Hein 

& Bach, 2009; Kornmeier & Bach, 2005, 2006, 2012). These approaches are 

discussed in full in Section 1.2, below.  

Given that visual perception is inherently ambiguous, therefore, this makes 

it possible for us to have multi-stable perceptual experiences. The term "multi-

stable perception" refers to the phenomenon whereby the incoming sensory 

information is compatible with different, equally probable perceptual 
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interpretations. This leads to multi-stability, meaning our perception 

spontaneously alternates between two (known as 'bistable') or several (referred to 

as 'multi-stable') interpretations despite the physical sensory input from the 

stimulus being constant (e.g., Tong, Meng, & Blake, 2006). To study this 

phenomenon, stimuli that are designed or selected to elicit this multi-stable 

perception are often used. These are known collectively as ambiguous stimuli and 

will be discussed in more detail below.  

 

1.1.1 Ambiguous stimuli 

Ambiguous stimuli are thought to offer a unique window into the 

mechanisms of subjective perceptual inference (Long & Toppino, 2004). This is 

because our perception of these stimuli can spontaneously alternate between two 

or more mutually exclusive subjective perceptual interpretations without any 

change in the sensory input. Thus, any changes in perceptual experience of 

ambiguous figures can be directly attributed to correlated brain activity changes 

without the confounding factor of changes in sensory input. For instance, when 

viewing Rubin’s faces-vase image (Figure 1.1 A; Rubin, 1921) we can see either 

two profile faces with a space between or a central, single vase. Our perception 

can spontaneously alternate between these two outcomes whilst the physical 

stimulus remains unchanged. The Necker cube (Necker, 1832), old/young woman 

(Boring, 1930), and the duck/rabbit (Wittgenstein & Anscombe, 1953; Figure 1.1 

B-D) are other examples of this perceptual multi-stability effect. This outcome can 

also be achieved by presenting conflicting images separately to the two eyes in a 

paradigm known as binocular rivalry (see Figure 1.1 E for an example). The 

binocular rivalry paradigm can evoke several outcomes. If the images are 



14 
 

sufficiently similar to one another they may be combined flawlessly as in normal 

binocular vision. Alternatively, they can combine in a “patchwork” pattern 

(Logothetis, Leopold & Sheinberg, 1996). Usually in experiments involving 

binocular rivalry the images are conflicting, such that one percept dominates over 

another at any point in time. This dominant percept then alternates over a given 

period.  

In addition to the stationary stimuli described above, perceptual multi-

stability can also be induced in response to ambiguous motion stimuli; an example 

of which is shown in Figure 1.1 F below (Kanai & Verstraten, 2005). This 

stimulus is created from a drifting sine-wave grating with a phase shift of ±180° in 

space on every frame, leading to the generation of ambiguous motion that can be 

perceived as moving either to the left or to the right. 
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Figure 1.1: Examples of visually ambiguous stimuli. (A) Rubin’s 

face/vase, showing two profile faces with a space between them, or a central vase 

(Rubin, 1921). (B) The Necker cube, which can be interpreted as having the lower 

left, or upper right square as its front face (Necker, 1832). (C) Boring’s old/young 

woman, which can be interpreted as being the right profile of an old woman 

facing towards the viewer, or the right profile of a young woman facing away 

from the viewer (Boring, 1930). (D) Wittgenstein’s duck/rabbit, which can be seen 

as a duck facing the left, or a rabbit facing the right with its ears to the left 

(Wittgenstein & Anscombe, 1953). (E) Binocular rivalry, whereby the images on 

each side of the dotted line are presented to one eye only using a mirror 
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stereoscope, for example. (F) Example of a still image from an ambiguous motion 

stimulus, in which the black and white regions can be seen moving either to the 

left or the right. The rows seen in this figure represent sequential frames of 

motion. Given that the lighter regions are replaced by dark regions on every 

frame, this leads to apparent motion to either the left or the right (Kanai & 

Verstraten, 2005). 

 

These alternations, or switches, in perception that occur during viewing of 

ambiguous stimuli are known as perceptual reversals. In the extant literature, 

reversals have been classified into two types: endogenous and exogenous. 

Exogenous reversals refer to switches in perception that occur due to some aspect 

of the ambiguous stimulus, or its viewing conditions, being physically changed to 

bias viewers’ perception in a certain way. For instance, adding cues that give the 

viewer information about the likely three-dimensional structure of the otherwise 

ambiguous Necker cube can bias perception towards one or the other percept. For 

example, as shown in Figure 1.2 below, cues on the likely light source and depth 

of the cube are used to bias perception. In Figure 1.2, Panel B, light cues are 

introduced (via the shading of the edges of the cube) that are suggestive of the 

bottom-right face of the cube as being frontal, whereas in Panel C light cues are 

added that suggest that the top-left face is frontal. 
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Figure 1.2 The Necker cube and biased variants, created by adding light 

and depth cues. (A) The ambiguous Necker cube. (B) Bottom-right face as frontal 

biased version. (C) Top-left face as frontal biased version. Adapted from 

Kornmeier and Bach (2005). 

 

 Endogenous reversals, on the other hand, are reversals in 

perception that occur spontaneously without any change to the physical stimulus 

or its viewing conditions. Endogenous reversals can occur when ambiguous 

stimuli are presented continuously to participants, but also when they are 

presented intermittently (these two presentation types are discussed in detail in 

Chapter 2, Section 2.2.2.1) with gaps between them. Trials aimed to elicit 

endogenous perceptual reversals are therefore created by either continuous or 

intermittent presentation of the same ambiguous stimulus (e.g., the Necker cube as 

in Figure 1.2 A). In contrast, trials aimed to induce exogenous perceptual reversals 

are generated by switching between two or more biased versions of the stimulus 

(e.g., between the two variants shown in Figure 1.2 A and B). This physical switch 

in stimulus can either occur during continuous viewing, or intermittent viewing. 

To generate exogenous periods of a stable perception therefore, the same version 

of the biased stimulus would be repeatedly presented, therefore there should be no 

change in perceptual experience and presumably the underlying neural activity 
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related to that experience. Whereas, to create exogenous reversals, different 

versions of the biased stimulus are presented which does induce a change in 

perceptual experience and again, presumably, the underlying neural mechanisms 

that underpin that experience. For endogenous reversals, the perceptual 

experience is only governed by the change in neural activity and not by any 

change in the stimulus. Thus, analyses of brain activity corresponding to 

perceptual reversals of the same visual stimulus (for example, seeing a face or a 

vase in Rubin's faces/vase, Figure 1.1 A) are not complicated by variations in the 

incoming sensory information, provided that the viewing circumstances (such as 

eye movement or position, and lighting conditions) are consistent. Examining 

behavioural and electrophysiological responses to this kind of stimuli can 

therefore provide an insight into the neurological bases of conscious perception. 

For this reason, much of the available research using ambiguous stimuli to study 

perception involves endogenous reversals. However, comparing behavioural and 

neural activity between endogenous and exogenous perceptual reversals can offer 

an insight into the activity that is related only to endogenous changes in 

perception rather than any perceptual change. This is of importance because it 

allows researchers an insight into subjective perception, in other words the 

changes that occur in the brain to alter our interpretation of the world whilst the 

physical representation of that world is unchanged. 

In addition to their use in inducing exogenous perceptual reversals, biased 

versions of ambiguous stimuli have also been used to study adaptation and 

priming effects (e.g., Toppino & Long, 1987). Trials designed to this effect are 

typically created by presenting a biased variant of the ambiguous stimulus for a 

given period, followed by its ambiguous counterpart. The effects of the pre-
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exposure to the biased variant are then examined. This concept, and a review of 

the current research around it, are discussed in detail in Section 1.2.1.  

Research around these induced or spontaneous reversals in perception 

have led to several theories around how we resolve the ambiguity we are faced 

with in multi-stable experiences. These theories will be discussed in the following 

section. 

 

1.2 Theories of multi-stability 

The complex nature of perceptual reversals has been examined by 

numerous psychophysical studies, leading to the identification of two main 

interpretative approaches: the top-down, cognitive approach (e.g., Leopold and 

Logothetis, 1999) and the sensory-driven bottom-up approach (e.g., Attneave, 

1971; Toppino & Long, 1987; Blake, 1989). More recently, researchers have 

advocated for a holistic perspective that integrates both top-down and bottom-up 

approaches (e.g., Long & Toppino, 2004; Kornmeier & Bach, 2012). This section 

will discuss the bottom-up, top-down and integrated mechanisms that have been 

theorised to underpin the perception of ambiguous figures and lead to perceptual 

reversals.  

 

1.2.1 Bottom-up approach 

The bottom-up theory emphasises the primary influence of the early visual 

areas, with factors such as adaptation, stimulus characteristics, and presentation 

mode shaping the perception of ambiguous figures (Kornmeier & Bach, 2012; 

Peterson, 2014). Several studies have aimed to investigate the effects of low-level 

manipulations on the reversal dynamics of ambiguous figures, in order to examine 
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the bottom-up mechanisms involved. Results from these studies have identified 

several factors that do indeed influence reversal dynamics and have led to the 

development of a theoretical understanding of multi-stable perception. This 

section will outline these in detail.  

 

 1.2.1.1 The Neural Fatigue Hypothesis 

Early models put forward to explain multi-stable phenomena were largely 

based on behavioural observations that reversal rate increases over time when 

ambiguous images are viewed (e.g., Babich & Standing, 1981; Long, Toppino & 

Kostenbauder, 1983). Kohler (1940) and later, Kohler and Wallach (1944), 

theorised that the perception of an ambiguous image invokes field effects in the 

brain and proposed a theory of “neural satiation”. This early model claimed that a 

reversal occurs because of a steady increase in resistance to the “field flow” that 

underpins the initial percept. This, the authors claim, continues until a point is 

reached whereby the “field” underlying an alternative percept becomes less 

resistant than that of the initial one, causing a rapid switch in the conscious 

perception of the image.  

Kohler’s original concept was further developed by Hock et al. (1996) and 

has since evolved into the “neural fatigue” (or neural adaptation; Long & Toppino, 

2004) and “cross inhibition” model. This model is based on the idea that each 

interpretation of an ambiguous stimulus has its own neural representation which 

inhibits the representations of other alternative percepts (Wilson, Alais & Blake, 

2005). Following periods of prolonged exposure, the neural representation 

underpinning the currently dominant percept becomes “fatigued” and so is no 

longer able to inhibit the alternative percept. At this point a threshold is reached 
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whereby the neural representation of the alternative percept is less fatigued than 

that of the current one. The alternative percept then becomes dominant (i.e., 

perception is reversed) and its representation becomes strongest and suppresses 

representations of alternative interpretations. Over time, this now-dominant 

alternative perceptual representation will also become fatigued and once it 

becomes weaker than that of the original percept, perception will switch again 

back. This cycle of adaptation and reversal can continue on indefinitely similarly 

to the cycle of perceptual reversals that is seen with ambiguous stimuli. 

The adaptive state of neurons can persist over time, leading to a decreased 

threshold for reversal and therefore increased reversal rates. This is thought to 

occur because as both percept representations become increasingly adapted over 

time, a slight recovery in the representation of one will lead to a switch in 

perception toward that percept and vice versa. However, the increase in reversal 

rate is significantly disrupted when the figure is moved to a different area on the 

retina (e.g., Babich & Standing, 1981; Kohler, 1940; Long et al., 1983; Toppino & 

Long, 1987). These findings suggest the presence of localised excitatory and 

fatigue-like processes, strongly supporting the influence of passive bottom-up 

processes in these perceptual phenomena (Long & Moran, 2007). 

To induce this state of adaptation, studies have used biased versions of 

ambiguous stimuli, such as the unambiguous Necker cube shown in Figure 1.2. 

These are used because they are thought to activate the neural representation that 

underpins a single percept of an ambiguous stimulus (such as the top-right face as 

frontal version of the Necker cube, or the faces in Rubin’s faces/vase). Research 

examining the effects of pre-exposure to these unambiguous variants of 

ambiguous stimuli (which generally follow a similar paradigm to that outlined in 
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Figure 1.3, below) have provided support for the neural fatigue/adaptation model. 

Conclusions drawn from these studies suggest that these effects can be divided 

into two main categories: increased sensitivity to the pre-exposed stimulus 

(priming; e.g., Long & Moran, 2007), or reduced sensitivity (adaptation; e.g., 

Long & Olszweski, 1999). Priming means that if pre-exposed to an unambiguous 

left-facing percept of the Necker cube stimulus, the same left-facing percept is 

more likely to be perceived upon presentation of a subsequent ambiguous image 

(see Figure 1.4, below). In contrast, in adaptation, pre-exposure to one version of 

an image would induce the opposite percept to become more likely upon 

ambiguous stimulus presentation. 

Presentation duration and inter-stimulus interval (ISI) have been found to 

be critical for the induction of one or the other of these effects (discussed in more 

detail in Section 1.2.1.1, below). Generally speaking, shorter exposure to the 

unambiguous stimulus has a priming effect whilst longer exposure durations lead 

to adaptation effects (e.g., Kanai & Verstraten, 2005; Long & Moran, 2007). The 

existence of the adaptation effect provides support for the bottom-up theory of 

neural fatigue. In the adaptation effect, if the neural representation underpinning a 

given percept is activated (by the unambiguous stimulus variant, referred to here 

as the ‘adapting stimulus’) to the point of adaptation before the ambiguous 

stimulus (referred to here as the ‘test stimulus’) is presented, the alternate percept 

will dominate upon presentation providing the inter-stimulus interval is short 

enough (Long & Moran, 2007; see Figure 1.4).  
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Figure 1.3 Typical trial procedure for studies examining the neural 

fatigue/adaptation hypothesis. 
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Figure 1.4 Schematic showing a typical trial structure used to induce 

either an adaptation effect (top) or a priming effect (bottom). In this example, 

participants would respond to indicate which face they saw as frontal on the 

second, ambiguous test image. In adaptation trials, this response would typically 

be the opposite face to the one they were pre-exposed to (in this case the top-right 

face) and in the priming trials this would typically be the same face as the pre-

exposed one (in this case the bottom-left face).  

 

Studies investigating adaptation effects in this way have shown that in 

order to induce the effect, participants are required to view the adapting stimulus 

for an extended period of time. For instance, Long & Moran (2007) asked 

participants to firstly view a clear, unambiguous version of a rotating Necker 

cube, followed by an ambiguous one, and then asked them to report their 

perception of the ambiguous stimulus. Their findings showed that adaptation 

effects (where the perception of the ambiguous stimulus contrasted with the 

prime) emerged only after lengthy (150 seconds) exposures to the adapting 

stimulus. However, for shorter exposures, a priming effect was observed. 

Specifically, after a 2-second exposure to the adapting stimulus, participants 

tended to perceive the ambiguous test stimulus in a manner consistent with the 

adapting stimulus. These results indicate that adaptation effects arise only after 

prolonged exposure to the adapting stimulus. Additional support for the claim that 

behavioural adaptation effect reflects the involvement of a bottom-up mechanism 

comes from the result that these effects diminish with extended ISIs (see Section 

1.2.1.1 below for a full discussion of the effects of ISI duration). Specifically, 

Long and Moran (2007) found that adaptation effects were strongest when the ISI 
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was 1s, but they had been completely replaced by a priming effect when the ISI 

was increased to 100s. Long and Moran (2007) suggest that these results provide 

evidence for the involvement of two, distinct neural mechanisms involved in 

adaptation and priming. Additional research has emphasised the brief nature of the 

adaptation effect, its sensitivity to the intervals between adapting and test stimuli, 

as well as the presentation duration of the adapting stimulus (Intaite et al., 2013). 

Studies have revealed that this effect can be significantly diminished by extending 

the ISI to approximately 10s (Long & Moran, 2007). If any of these conditions are 

altered, such as a shorter duration for the unambiguous adapting stimulus, 

presenting adapting and test stimuli at different retinal locations, or employing a 

prolonged delay between the stimuli, a priming effect is observed (e.g., Long et 

al., 1992; Long & Olszweski, 1999; Long & Moran, 2007). 

Studies have also indicated that adaptation is closely linked to specific 

attributes of objects. For adaptation to take place, both the adapting stimulus and 

the test stimulus must share certain configurational characteristics. For example, 

in the study described in the paragraph above, Long and Moran (2007) also 

examined the effects of changing the size of the adapting versus test stimuli. They 

found that when the size of the adapting stimulus differed from that of the test 

stimulus, adaptation effects were significantly diminished. This was an effect that 

was replicated from previous research (Toppino & Long, 1987). Other studies, 

too, have found similar effects. For instance, Spitz and Lipman (1962) showed 

that reversal rates when participants continuously viewed a Necker cube steadily 

increased over time. However, in their study, they firstly presented the stimulus 

in, for example, the left hemifield and then changed the stimulus location such 

that it was presented to the right hemifield. They found that this switch in location 
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reduced reversal rates back to nearly the same level as when participants first 

began their viewing with the previous hemisphere. They did not find such an 

effect when only the retinal position was changed, leading them to conclude that 

adaptation effects are governed by cortical, rather than retinal, mechanisms. 

Toppino and Long (1987) replicated these results using a rotating Necker cube 

stimulus, leading them to conclude that there are distinct neural mechanisms in 

place that work separately for the left and right visual field.  

For the priming effect, many experiments have shown that briefly 

presenting a biased, unambiguous version of an ambiguous stimulus can 

predispose an observer to perceive a subsequent ambiguous version in the same 

way (e.g., Botwinick, 1961; Bugelski & Alampay, 1961; Fisher, 1967; 

Leeper ,1935; Long et al., 1992). This priming effect has also been shown in 

studies that have used stimuli other than disambiguated ambiguous figures to 

influence subsequent perception of ambiguous stimuli. For instance, Goolkasian 

and Woodberry (2010) used primes that were either images of objects, or object 

names, that were related to one or the other interpretation of a subsequently 

presented ambiguous figure. They found that primes with a vague, indirect 

connection to one of the possible interpretations of an ambiguous figure did 

indeed bias the interpretation of the ambiguous stimulus towards the primed 

option. However, this effect occurred only when participants’ attention was 

specifically directed towards the semantic link between the prime and the 

ambiguous figure. Because of findings like these, researchers have suggested that 

priming effects could be supportive of more top-down approaches to explain 

perceptual reversals, therefore these will be discussed in more detail in Section 

1.2.2.1 below. 
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1.2.1.1.1 Visual motion priming and the rapid motion aftereffect 

 In addition to the relatively lengthy pre-exposure durations used in 

the studies described above, researchers have also shown priming and adaptation 

effects using very brief durations with motion stimuli. For instance, Pinkus and 

Pantle (1997) used ambiguous and unambiguous drifting sine-wave gratings to 

investigate visual motion priming (VMP). Behaviourally, VMP is a similar 

phenomenon to the priming effect described above, however it is induced when 

ambiguous motion is presented after a brief presentation of directional motion. 

The motion used by Pinkus and Pantle (1997) was created using sine-wave 

gratings that change their phase over time, for instance after x number of frames 

or after x milliseconds. To create directional motion, the phase is shifted by ±90° 

each time, leading to perceived directional motion to the left or the right (see 

Figure 1.5, top). To create ambiguous motion, the phase is instead shifted by 180° 

each time, leading to motion that can be perceived as moving in either a leftward 

or a rightward direction (see Figure 1.5, bottom).  
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Figure 1.5 Top: Space-time plot of a stimulus with directional apparent 

motion created by 90° phase shifts. Here, an example of 320ms adaptation is 

shown. Bottom: Space-time plot of a stimulus with ambiguous apparent motion 

created by 180° phase shifts. Taken from Kanai and Verstraten (2005). 
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Figure 1.6 Left: Space-time plot of a sine-wave grating whose phase is 

shifted 90° to the left at time, therefore creating rightward motion. Middle: Space-

time plot of a sine-wave grating whose phase is shifted 180°, therefore creating 

ambiguous motion. Right: Space-time plot of a motion priming sequence: an 

ambiguous 180° step follows a perceptually unambiguous 90° rightward step. 

Time increases vertically upwards. Taken from Pinkus and Pantle (1997).  

 

Pinkus and Pantle (1997) presented participants with 3 frames that created 

these kinds of motion. Specifically, frame 1 was presented for 1530ms and had a 

phase set to an arbitrary unit of 0. This was followed by frame 2, which was 

presented for a duration of between 192 – 1530ms and had its phase shifted by 

±90°, followed by a final frame that had its phase shifted by 180° compared to 

frame 2 (see Figure 1.6). Participants were asked to report the direction of motion 

that they saw. The idea being that the directional motion created by frame 2 would 

prime the direction that the ambiguous frame of motion was perceived as moving 

in. They found similar results to studies using stationary stimuli, in that shorter 

durations of the directional motion step led to VMP, whilst longer durations led to 

VMP being around chance level (in this case 50%).  
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Later work by Kanai and Verstraten (2005) used a very similar method of 

creating ambiguous and directional motion to investigate VMP and motion 

aftereffects. The motion aftereffect (MAE), also known as the waterfall illusion, is 

a phenomenon where exposure to a moving visual stimulus leads to the perception 

of motion in the opposite direction when observing a stationary scene 

immediately afterward (an effect reviewed by Anstis, Verstraten & Mather, 1998). 

This effect occurs after observing motion for a period of time, typically in the 

order of seconds. When the viewer then looks at a stationary object, it appears to 

move in the opposite direction of the original motion. Like adaptation to stimuli 

such as the Necker cube, the MAE typically arises from adaptation periods 

spanning several seconds to tens of seconds. Neurons that display similar 

temporal activation patterns (i.e., the neurons display reduced responsiveness after 

the subject has been presented with a motion stimulus in a given direction for an 

extended period of time) are considered to underlie the MAE, as indicated by 

studies from Barlow and Hill (1963), Hammond et al. (1988a, 1988b), and Kohn 

and Movshon (2003). In contrast to this slower adaptation process associated with 

the MAE, much faster forms of adaptation, occurring within hundreds of 

milliseconds, have also been reported in electrophysiological studies. For 

example, when the same stimulus is presented twice in rapid succession, the 

neural response to the second stimulus is significantly reduced (Nelson, 1991; 

Chance et al., 1998; Finlayson & Cynader, 1995; Stratford et al., 1996). This rapid 

adaptation phenomenon is also observed in area MT (middle temporal area of the 

extrastriate visual cortex; Priebe et al., 2002), which is closely linked to the 

subjective experience of visual motion (Newsome et al., 1989; Zeki et al., 1993; 

Logothetis & Schall, 1989; Bradley et al., 1998). In apparent contrast, some 
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studies have found that brief, direct electrical stimulation of neurons can lead to 

their responsiveness increasing during subsequent stimulation (e.g., Hempel et al, 

2000). In their research, Kanai and Verstraten (2005) aimed to examine this 

apparent conflict and note that behavioural results of studies into adaptation and 

priming like the ones described in the paragraphs above also require clarification 

given that very subtle changes in trial design (i.e., adaptor stimulus presentation 

duration and ISI) produce opposite effects. Therefore, Kanai and Verstraten (2005) 

presented participants with directional motion created from phase-shifting sine 

wave gratings by ±90° each frame (i.e., a direction motion prime), followed by an 

ISI and then ambiguous motion created by phase-shifting the gratings by 180° 

each frame (i.e., an ambiguous target stimulus). They systematically and 

orthogonally manipulated four directional motion presentation durations (80, 160, 

320 and 640ms) and 5 ISI durations (40, 120, 480, 1000 and 2000ms). At the end 

of each trial, participants were asked to report whether they saw the two stimuli 

moving in the same or different directions. Their results showed that brief 

presentation times (i.e., 80ms) led to VMP effects, providing support for the 

findings of Pinkus and Pantle (1997). Slightly longer presentation times, however 

(from 320ms upwards) led to an effect similar to the MAE, or in other words 

adaptation effects, but on a much faster timescale. This led them to use the term 

“rapid motion aftereffect” or rMAE to describe this effect. Additionally, in a 

separate experiment in the paper, they presented participants with pairs of 

ambiguous motion stimuli, with no directional motion at all in the trials. Here, 

they found effects similar to VMP in that participants were more likely to report 

that they perceived motion in the same direction, which they call “perceptual 

sensitisation” (PS), which increased with increasing ISI. In terms of the time 
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courses of each of these effects, VMP and rMAE occur directly after participants 

have been exposed to directional motion and then decay very quickly over the 

course of around a second. PS, however, has a longer time course as it develops 

over the course of several seconds, hence the requirement for longer ISIs to 

induce it. The authors suggest that their findings suggest that several mechanisms, 

at different processing levels, are involved in resolving ambiguous motion stimuli. 

Later work by Takeuchi et al. (2008) served to elaborate on the VMP and rMAE, 

using a similar design and manipulating the retinal luminance levels and speed of 

the adapting stimulus. These authors found that VMP was almost completely 

eradicated under low retinal luminance levels, whereas the rMAE was still present 

and unaffected by retinal luminance levels. Further, when the adapting stimulus 

was at a lower speed, the effects of VMP were greater whereas at higher speeds 

only the effects of rMAE were present. The authors suggest that their findings 

support the view that several mechanisms are at work during the resolution of 

ambiguous motion stimuli. Specifically, they suggest that the rMAE may be 

induced by lower order, directionally selective mechanisms whilst VMP may be 

elicited by a higher-order mechanisms, in support for the conclusions from studies 

such as Long and Moran (2007) and Goolkasian and Woodberry (2010).  

 

1.2.1.1 ISI effects 

In addition to the specific cases of investigations into adaptation described 

in the section above, the effects of presentation mode and ISI have been 

investigated more generally in the literature. Specifically, ambiguous stimuli can 

be presented continuously, or intermittently (i.e., with an ISI between 

presentations; discussed fully in Chapter 2). Long and Toppino (2004) recognised 
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presentation mode as a bottom-up factor influencing the reversal rates of 

ambiguous stimuli (e.g., Orbach et al., 1963; Kornmeier et al., 2002; Leopold et 

al., 2002; Maier et al., 2003; Noest et al., 2007). A method to investigate 

perceptual reversals is through intermittent or discontinuous stimulus 

presentation, which involves showing the ambiguous figure briefly with intervals 

of blank screen, instead of a constant, continuous display. This approach was first 

used with the Necker cube by Orbach et al. (1963), demonstrating that the rate of 

perception reversal of such figures changes depending on the ISI. Orbach et al. 

(1963) interpreted their results as evidence of bottom-up influence, involving the 

adaptation and recovery of neural groups representing competing perceptions. 

Later work by Kornmeier et al. (2007) extended these findings by systematically 

exploring how varying ISIs affect reversal rates. The authors showed that random 

ISI variations in the same session significantly impacted reversal rates. The 

authors presented their participants with a Necker Lattice (a Necker Cube variant) 

for 800ms, followed by a randomly selected ISI ranging from 14 to 390ms 

(Kornmeier et al., 2007). Their findings, together with those from other studies, 

indicated that short ISIs (up to 400ms), in contrast to continuous presentation, 

tend to increase reversal rates (Kornmeier et al., 2007; Kornmeier et al., 2002, 

Orbach et al., 1963) while reducing the duration of perceptual stability. 

Conversely, with longer ISIs (> 400ms), reversal rates significantly decline, even 

to zero (complete stabilisation; Leopold et al., 2002, Maier et al., 2003, Sterzer 

and Rees, 2008; see Figure 1.7).  
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Figure 1.7 Reversal rate (in number of reversals per minute) when viewing 

the Necker stimulus, as a function of ISI (‘off time’ – shown on the x axis). 

Reversal rates when the Necker cube is viewed continuously are represented by 

the triangle marker (from Orbach et al., 1963) and the square marker (from 

Kornmeier et al., 2002). Figure taken from Kornmeier and Bach (2007). 

  

Kornmeier et al. (2007) described the relationship between the stimulus 

presentation duration and ISI as an inverted-U-shape (Figure 1.6; Kornmeier et 

al., 2007). Kornmeier et al. (2007) viewed the ascending and descending parts of 

the function as indicative of two distinct neural processes driving perceptual 

reversals. Kornmeier and Bach (2012) suggested that for short ISIs (up to 400ms), 

the processes involved might resemble those involved in continuous stimulus 

presentation, while for ISIs over 400ms, the reversal dynamics are more akin to a 

perceptual decision regarding the representation of the ambiguous figure as it 

appears and disappears on a blank screen. The authors suggest that this implies 
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that for longer ISIs (> 400ms), perceptual reversals may be distinct percepts rather 

than spontaneous occurrences. 

 

1.2.1.1.1 Eye movement and blink effects 

The effect of eye movements, blinks, and fixation point on perceptual 

reversals has been a focus of several studies. Such studies have revealed that eye 

fixation position can bias the interpretation of ambiguous figures such as the 

Necker cube (Einhäuser, Martin & König, 2004; Toppino, 2003) and others 

(Ruggieri & Fernandez, 1994). Fixation location has also been shown to modulate 

reversal rate (Liu, Tzeng, Hung, Tseng & Juan, 2012) and dominant perception 

(Peterson and Gibson, 1991) of ambiguous stimuli. Although eye-movements are 

indeed conducive to perceptual reversals, they are not necessary. Removal of eye-

movement effects using afterimages has shown that reversals persist in the 

absence of image scanning via eye-movements (Gregory, 1970). Other eye 

movements such as blinks and saccades have also been associated with reversals 

during continuous presentation of ambiguous stimuli. Nakatani, Orlandi and van 

Leeuwen (2011) for example, found a peak in blinking rate around 1000ms prior 

to a reversal of the Necker cube, and a peak in saccade rate at around 150ms pre-

reversal. Further analysis of these saccades revealed that they were predictive of 

the upcoming percept, in that rightward saccades were associated with the upward 

perception of the Necker cube, and the opposite trend was demonstrated for 

leftward saccades.  
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1.2.2 Top-down approaches 

In contrast to the bottom-up approach described above, a second stance 

that emphasises the role of top-down, cognitive influence over perceptual 

reversals has also been adopted by researchers. This approach rejects the idea of 

automatic, stimulus-driven processes in favour of an active appraisal and 

modulation of sensory information based on cognitive resources such as attention, 

expectation and learning (Brascamp, Blake & Knapen, 2015; de Graaf et al., 2011; 

Pitts et al., 2009; Gregory, 1974; Rock et al., 1994; Horlitz & O'Leary, 1993; 

Leopold & Logothetis, 1999; Lumer & Rees, 1999). Findings supportive of the 

involvement of top-down influences on ambiguous stimulus perception will be 

discussed in the sections that follow.  

 

1.2.2.1 Priming effects  

As discussed briefly in the sections above, some researchers have 

suggested that observations of priming effects in the available behavioural 

research could reflect top-down mechanisms. Long and Moran (2007) varied the 

size of their Necker cube stimulus whilst also varying the ISI between successive 

stimulus presentations. When the ISI was short (1s), the authors found that 

adaptation effects were significantly pronounced, but only when the size of the 

adapting and test stimuli were matched (i.e., small adapting stimulus paired with 

small test stimulus). When a delay of 100s was introduced between the adapting 

and test stimuli, only priming effects were observed, regardless of the adapting 

and test stimuli being matched in size. The authors suggest that this is because 

adaptation effects are governed by bottom-up mechanisms and are therefore 

sensitive to local stimulus changes. Whereas, they claim, priming effects are 
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underpinned by higher order mechanisms and so are not altered by local stimulus 

changes such as a mismatch in the size of the adapting and test stimuli. This is 

also supported by the result that the priming, but not the adaptation, effects 

persisted even with a delay period of 100s. The authors suggest that this is 

indicative of the involvement of localised neural networks during the adaptation 

phase, but globalised, top-down channels in the priming phase. 

Other studies too, have supported the idea that behavioural priming effects 

are indicative of top-down mechanisms being involved in multi-stable perception. 

Takeuchi et al. (2011) found that when they lowered retinal luminance to scotopic 

levels whilst presenting their participants with directional adapting motion 

followed by ambiguous test motion (in the paradigm described in Section 1.2.1.1, 

above), priming effects were almost completely eradicated. When retinal 

luminance was high (photopic vision) priming effects were observed only when 

the speed of the motion stimuli was low (at 2 degrees per second). Otherwise, at 

higher velocities, adaptation effects dominated. The authors interpreted their 

findings considering other research in the area and suggested that the mechanism 

responsible for priming could be a higher-order motion system, such as a feature-

tracking mechanism or a third-order motion mechanism. Whereas, they suggest, 

that the mechanism responsible for adaptation effects could be a lower-order, 

directionally selective motion mechanism, which is known to be sensitive to 

higher velocities (e.g., Bowns, 2002; Derrington et al., 2004). They suggest that 

the dominance of the priming effect at lower velocities supports this idea, since 

the higher-order motion system has been shown to be insensitive to higher 

velocities (e.g., Lu & Sperling, 1995). 
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Further research supporting the idea that priming effects are indicative of 

higher-order involvement in perception has come from studies using adapting 

stimuli other than biased versions of an ambiguous stimulus. For instance, 

Balcetis and Dale (2007) asked their participants to read a paragraph that was 

loosely related to one of two possible interpretations of the ambiguous woman’s 

face/saxophone player figure (see Figure 1.8, below). Their participants were 

randomly assigned to either the music or the pornography condition. Those 

randomly assigned to the music condition read some text discussing the legality of 

the music-file-sharing service, Napster. Critically, the paragraph discussed legal 

issues for artists and producers and concerns for distribution of royalties but never 

mentioned specific artists (e.g., the saxophone player Kenny G) or groups of 

musicians (e.g., saxophone players). Those randomly assigned to the pornography 

condition read arguments concerning the legality of pornography and implications 

for basic human rights. Again, critically, participants were never exposed to terms 

referring to groups of people (e.g., women), or gender (e.g., female). Therefore, 

the participants were not provided with any direct linguistic cues on how to 

interpret the upcoming visual stimulus. After they had read the paragraph, they 

were presented with the ambiguous woman’s face/saxophone player figure as 

shown in Figure 1.8. The results showed that those who were in the music 

condition were significantly more likely to report the ambiguous figure as a 

saxophone player, and those who were assigned to the pornography condition 

were more likely to perceive the figure as a woman’s face (Balcetis & Dale, 

2007). These authors interpreted their results as an indication that the perception 

of an ambiguous stimulus can be influenced by conceptual primes. This is 

supportive of a higher-order mechanism being involved in priming effects as the 
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studies described previously have used perceptual primes -i.e., primes that are 

perceptually linked to a particular interpretation of the ambiguous stimulus (for 

instance, pre-exposure to a biased top-right face as frontal version of the Necker 

cube as a perceptual prime for an upcoming Necker cube stimulus). This study, 

however, extends these findings by successfully priming participants using only 

conceptual primes (i.e., paragraphs that are conceptually related to one or the 

other percept of the ambiguous test stimulus). Conceptual primes have also been 

successfully used in similar ways in other studies, demonstrating further support 

for the top-down involvement underpinning priming effects (e.g., Feist & Gentner, 

2007; Goolkasian & Woodberry, 2010). 

Figure 1.8 The ambiguous saxophone player/woman’s face stimulus used 

by Balcetis and Dale (2007). The figure can be seen as a saxophone player (made 

up of the black regions on the left hand side of the figure, against a white 

background) or a woman’s face (white regions on the right hand side of the image 

are the highlights of the face with the black regions being perceived as shadows). 
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Manipulations of more cognitive aspects of binocular rivalry stimuli have 

also been shown to produce pronounced effects on predominance, further 

supporting the role of top-down mechanisms in multi-stable perception. Stimuli 

that are recognisable (Yu & Blake, 1992), associated with reward (Mudrik, 

Deouell & Lamy, 2011; Dunning & Balcetis, 2013), emotionally arousing (Alpers 

& Pauli, 2006; Alpers & Gerdes, 2007; Sheth & Pham, 2008) or incongruent in 

some way (Mudrik, Deouell & Lamy, 2011) tend to dominate over alternatives. 

Kovacs, Papathomas, Yang and Fehér (1996) showed that coherent patterns tend 

to dominate conscious perception; even when those patterns are presented to 

different eyes, the brain can integrate coherent areas to form one percept. 

Integration of multiple sensory modalities has also been shown to be involved in 

predominance. Lunghi, Morone and Alais (2014) used dichoptic visual stimuli 

modulated at different temporal frequencies, then added sounds or vibrations 

congruent with one or the other visual temporal frequency to show that congruent 

auditory and/or tactile stimulation facilitates perceptual dominance. Higher-order 

cognitive processes such as mental imagery (Pearson, Clifford & Tong, 2008) and 

attention (Chong, Tadin & Blake, 2005) have also been shown to modulate levels 

of perceptual dominance.  

 

1.2.2.2 Attention, and volitional control 

In terms of ambiguous perception, selective attention can be defined as the 

enhancement of a particular percept and suppression of the alternative percept. 

Research has provided considerable evidence that shifts in selective attention can 

bias perceptual reversals of ambiguous stimuli (Tsal & Kolbet, 1985; Horlitz & 

O’Leary, 1993). For example, shifting attention to certain “critical” features of 
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ambiguous figures (such as drawing attention to the “nose” in Rubin’s faces/vase) 

is known to significantly bias perceptual outcome (Georgiades and Harris, 1997). 

However, selective attention has not been found to modulate dominant percepts in 

binocular rivalry paradigms to the same extent (Meng & Tong, 2004). 

Attention enhances the ability to process and differentiate between objects, 

especially in crowded settings. This improvement is attributed to changes in 

sensory processing, leading to better sensitivity, as shown in studies by Jehee et al. 

(2011) and Pratte et al. (2013). Such enhancements are a result of focusing 

attention on specific stimuli. Neurophysiological research, involving both single-

unit studies in monkeys and functional magnetic resonance imaging (fMRI) in 

humans, indicates that attention directed spatially towards a target stimulus is 

linked to increased activation of neurons across the extrastriate visual cortex and 

subcortical areas (Treue & Maunsell, 1996; Kastner, 1998). 

Leopold and Logthetis (1999) describe attention as akin to multi-stable 

perception, being an active and largely voluntarily controllable process. Similar to 

how voluntary actions can produce a motor response (like moving a finger), it was 

found that these voluntary processes can also determine the focus of attention on 

specific stimuli or features. In multi-stable perception, the observer's intention 

plays a crucial role in how the perception shifts (Peterson & Hochberg, 1983). 

Although voluntary control in binocular rivalry is less pronounced compared to 

other multi-stable stimuli (George, 1936), studies still highlight the significant 

influence of the observer's intention on perceptual switching and dominance 

(Meredith & Meredith, 1962). For example, individuals unfamiliar with multi-

stable stimuli can triple their rate of perceptual switches by intentionally trying to 

perceive rapid fluctuations rather than slower ones. Additionally, the ability to 
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control the rate of perceptual reversals improves with practice and exposure. In a 

study by Lack (1978), it was observed that the ability to control the rate of rivalry 

switches enhanced after a training period spanning ten days. 

In the context of ambiguous images like the Necker Cube (Necker, 1832), 

Pitts, Gavin, and Nerger (2008) also explored the role of attention as a key factor 

in multi-stable perception by incorporating voluntary control into their 

experimental design. The authors asked their participants to control their reversal 

rate whilst viewing ambiguous stimuli and found that they were able to do so. 

This approach aligns with several past behavioural studies which have 

demonstrated that an observer’s intentions can influence perceptual reversals. For 

instance, van Ee et al. (2005) investigated how voluntary control affects the 

reversal rates of various bistable stimuli. In their study, participants were 

instructed in one scenario to increase the frequency of reversals (‘speed up 

reversals’) and in another to maintain a single perception for as long as possible 

(‘hold one percept stable for as long as possible’) (van Ee et al., 2005). Van Ee et 

al. (2005) assigned their participants three different tasks involving control 

exertion. The first task required participants to simply observe the stimulus 

without attempting to control the reversal rate. In the second task, participants 

were asked to observe passively for six minutes and then maintain the same 

interpretation of the stimulus for three minutes. In the third task, they were to 

observe passively for three minutes before trying to maximise the reversal rate. 

The results indicated that participants could voluntarily control and modify the 

reversal rate of the Necker Cube and other ambiguous stimuli, increasing or 

decreasing it as per the instructions (Washburn & Gillette, 1933). Consistent with 

earlier studies (e.g., Long and Toppino, 2004; Meng and Tong, 2004; Rock et al., 
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1994; Struber and Stadler, 1999; Toppino, 2003; van Ee et al., 2005; Windmann et 

al., 2006), these findings imply that it is possible to exert some level of voluntary 

control over the reversal rates of the Necker cube. 

Previous research has highlighted that involuntary changes in selective 

attention play a role in the occurrence of perceptual reversals (Pitts et al., 2007). 

Selective attention increases the prominence of specific visual attributes such as 

location, colour, movement, or shape (Sperling, Reeves, Blaser, Lu, & 

Weichselgartner, 2001). Some theories propose that focusing attention on a 

particular location can impact attention to features in that area, determining which 

features are noticed and merged into a unified perception (Anllo-Vento and 

Hillyard, 1996; Treisman and Gelade, 1980). Regarding ambiguous figures, 

paying attention to certain parts of the figure may lead to a preferential processing 

of features at those locations, influencing the visual system’s interpretation of 

these features as ‘nearest’ and thereby swaying the perception of the bistable 

image. Recent fMRI studies provide evidence that attention aids in the voluntary 

reversal of bistable stimuli (Slotnick & Yantis, 2005). In their research, Slotnick 

and Yantis (2005) compared brain activity during voluntary Necker cube reversals 

with that during basic spatial (left-right) attention shifts. They found similar 

patterns of neural activation in both tasks, including brief increases in activity in 

the superior parietal lobule and intraparietal sulcus for both voluntary spatial 

attention shifts and voluntary Necker cube reversals. Slotnick and Yantis (2005), 

along with Pitts et al. (2008), propose that when observers try to control the rate 

of perceptual reversals of bistable stimuli, they are engaging an automatic, 

exploratory mechanism for refreshing perception. This results in a shift in the 
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features that are the focus of attention, leading to a re-evaluation of their 

perceptual interpretation of the stimulus. 

Pitts et al. (2008) align their findings with the 'environment exploration' 

theory proposed by Leopold and Logothetis (1999), which is based on a broad 

range of perceptual rivalry research. According to this theory, perceptual reversals 

result from a high-level "exploratory" process that directs selective attention, 

prompting lower-level perceptual systems to periodically renew or "refresh". Pitts 

et al. (2008) describe this exploratory mechanism as not being solely sensory or 

motor in nature but as serving the ultimate goal of interacting with and responding 

to information in the environment. This theory suggests that constant 

reorganisation and updating of perceptual processing aids in accurately 

interpreting visual stimuli. In this framework, while eye movements are usually 

the primary means of directing visual attention and quickly resolving ambiguity in 

everyday environments, multi-stable perception experiments typically require 

observers to fixate at a central point. This does not negate the 'environment 

exploration' theory; covert attention (attention without eye movements) can still 

be influenced by this central exploratory process. 

The necessity of ongoing exploration in the face of ambiguous stimuli, 

leading to regular perceptual reversals, is supported by van Ee et al. (2005). In 

their study, they examined the role of eye movements and blinks in experiencing 

the slant rivalry stimulus, an ambiguous visual stimulus. They found that neither 

microsaccades (small involuntary eye movements) nor saccades (rapid eye 

movements altering fixation points) are essential for experiencing a voluntary 

perceptual reversal. Interestingly, they observed that blinks and saccades, but not 

micro-saccades, are suppressed when participants induce a perceptual reversal. 



45 
 

Although Ellis and Stark (1978) noted a correlation between eye position and 

reversals of the Necker Cube, other studies, like those of Washburn & Gillette 

(1933) and Pritchard (1958), indicate that voluntary control over reversal rates is 

not exclusively linked to eye movements. For instance, Washburn and Gillette 

(1933) studied the effect of voluntary control on the afterimage of the Necker 

Cube, demonstrating that participants could induce and maintain a specific 

orientation of these afterimages without involving eye movements. While the 

central exploration theory operates largely unconsciously and automatically 

(Leopold & Logothetis, 1999), voluntary control over bistable perceptual 

reversals might still function through this same mechanism. For example, Leopold 

and Logothetis (1999) highlight similarities between controlling bistable 

perception and other voluntary actions, particularly in terms of improvement 

through practice and learning. 

Thus, mechanisms of selective attention and multi-stability might indeed 

be closely related. However, there are some key differences that suggest they are 

not one and the same. First, voluntary control in orienting attention is generally 

greater than in multi-stable vision. It is a lot easier to voluntarily control what you 

are attending to but it is not as easy to voluntarily control the rate of reversals of 

an ambiguous figure (Leopold & Logothetis, 1999; Meng & Tong, 2004). This is 

supported by findings that reveal that although perceptual reversals can be slowed 

down or decreased in number, they cannot be entirely stopped. Perceptual 

reversals continue regardless of the intent of the participant. This was reported in 

Slotnick and Yantis (2005)’s study where in the hold condition (maintaining one 

perceptual interpretation of the ambiguous figure through voluntary control) 

participants still experienced involuntary switches in their interpretation of the 
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ambiguous image. This was not the case when participants voluntarily controlled 

shifts in selective attention. Their behavioural results showed that the task 

difficulty across both conditions (voluntary control of reversals vs. voluntary 

control of attention shifts) was the same. However, this is due to the design of the 

experiment whereby the researchers, based on the results of a pre-training session, 

calibrated the features of the stimulus to yield an accuracy value that would 

ensure that task difficulty was well matched between conditions. In multi-stability, 

top-down influences are not limited simply to enhancing the visual processing of a 

particular object (or features of that object) or spatial location. Instead, top-down 

attentional influences spur organizational mechanisms to change perception 

completely, and thereby possibly feed into the neural fatigue mechanism described 

previously to enhance one representation over the other (i.e., by shifting the 

balance between mutually exclusive neural representations in the visual system 

itself; Mathes et al., 2006; Slotnick & Yantis, 2005). Finally, attentional shifts can 

proceed with a speed that is considerably faster than even the most rapid 

perceptual reversals. Attention can shift as fast as several times per second 

(Duncan, Ward, & Shapiro, 1994; Egeth & Yantis, 1997), whereas the transition 

between rivalling percepts may take seconds or even tens of seconds to complete 

(Pastukhov & Braun, 2007). 

 

1.2.2.3 Working memory load 

Top-down influences, shaped by our goals and expectations, play a 

significant role in how we perceive visual stimuli (Kumar, Soto & Humphreys, 

2009). Duncan and Humphreys (1989) proposed that an 'attentional template' (a 

representation of a visual stimulus' characteristics in working memory -WM) 
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biases our perception towards matching stimuli (Downing, 2000; Hodsoll & 

Humphreys, 2001; see Soto et al., 2008 for review). The link between visual 

selection and WM has been extensively studied, with neuroimaging revealing 

overlapping neural networks for attention and WM, especially around the 

intraparietal sulcus and frontal eye fields (McCarthy, 1995; LaBar et al., 1999; 

Pollmann & von Cramon, 2000). Behavioural studies have also shown WM's 

crucial role in suppressing distractions and maintaining focus on task-relevant 

information (de Fockert, 2001; Woodman et al., 2007; Woodman & Luck, 2004). 

Recent research into ambiguous figure perception has indicated WM's 

involvement in influencing the rate and choice of perceptual reversals. Paffen, 

Alais, and Verstraten (2006) observed a reduction in binocular rivalry reversal 

rates when WM and attentional resources were manipulated through a motion-

detection task. They presented a binocular rivalry stimulus alongside a concurrent 

task, manipulating WM by varying the task's difficulty. Their findings showed that 

while WM demands reduced reversal rates, they did not eliminate them, 

suggesting that perceptual ambiguity involves more than just attentional resource 

allocation. Intaite, Koivisto, and Castelo-Branco (2014) conducted an experiment 

with a secondary WM task (mental arithmetic) known to deplete attentional 

resources. Their study involved presenting ambiguous Necker Cube stimuli 

alongside WM tasks, finding that increased WM load delayed the latency and rate 

of reversals, yet reversals still occurred. This implies a link between mechanisms 

responsible for WM maintenance and perceptual reversals under top-down 

control. 

Further studies have also shown that secondary tasks requiring WM load 

can extend the time for reporting perceptual reversals and decrease their rate 
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(Reisberg & O’Shaughnessy, 1984; Wallace, 1986). Intaite, Duarte, and Castelo-

Branco (2016) expanded on this research using fMRI to investigate the neural 

responses to perceptual reversals under different WM loads. They observed 

overlapping activation in brain regions during perceptual reversals and the 

frontoparietal attention network, a finding consistent with earlier studies (Knapen 

et al., 2011; Lumer et al., 1998; Sterzer and Kleinschmidt, 2007; Weilnhammer et 

al., 2013). Previous research by Sterzer and Rees (2008) also reported similar 

activations in visual cortex and prefrontal and parietal regions in response to 

percept-specific signals and voluntary engagement in facial WM tasks (Courtney 

et al., 1997; Haxby et al., 2000). 

Intaite, Duarte, and Castelo-Branco (2016) also found that the right 

posterior Superior Parietal Lobule (pSPL) showed different responses to 

perceptual reversals under varying load levels and was more responsive to 

perceptual reversals than to stimulus changes. Previous studies have indicated the 

involvement of the Superior Parietal Lobule (SPL) in the perception of reversals 

(Baker et al., 2015; Carmel et al., 2010; Kanai et al., 2010). Stimulation of the 

right anterior SPL with transcranial magnetic stimulation (TMS) influenced the 

rate of reported reversals, suggesting a role in WM manipulation of stimulus 

content (Champod and Petrides, 2007; Carmel et al., 2010).  

 

1.2.2.4 Past experience 

Adaptation and priming studies, such as those by Long et al. (1992), 

support the notion that our perceptual system utilises past perceptual experiences, 

across various time scales, to clarify and interpret ambiguous information 

(Leopold et al., 2002; Maier et al., 2003; Pearson and Brascamp, 2008), as well as 
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in its neural processing (Kornmeier and Bach, 2006; de Jong et al., 2012b; Pitts 

and Britz, 2011). It has been shown that ambiguous stimuli often do not lead to 

perceptual reversals until participants are informed about the possibility of such 

reversals, indicating that this understanding is 'learned' (Girgus, Rock & Egatz, 

1977; Leopold et al., 2002; Maier et al., 2003; Orbach et al., 1963; Pearson and 

Brascamp, 2008; Rock & Mitchener, 1992). For example, knowing the different 

interpretations of Rubin's Face-Vase illusion (faces or vase) makes it easier, and 

sometimes only possible, for an individual to perceive these interpretations and 

experience perceptual switches. This dependence on past experiences is not 

limited to short-term exposure but extends over longer durations (Pastukhov and 

Braun, 2008; Pearson and Brascamp, 2008; Brascamp et al., 2009; de Jong et al., 

2012a). Some research has shown that naïve viewers do not experience perceptual 

reversals at all (Rock, Hall & Davies, 1994). Additionally, informing or prompting 

viewers has been shown to induce interpretations that are otherwise unlikely. For 

example, when two identical ambiguous figures are presented simultaneously, 

they are not usually interpreted differently. However, when viewers are provided 

with a simple verbal prompt, this “dual interpretation” becomes significantly more 

likely (Jensen & Matthewsen, 2011). This, along with the fact that reversals can 

be volitionally controlled at all (Kornmeier, Hein & Bach, 2009), provide 

evidence for the existence of top-down effects on perception. 

Furthermore, studies have indicated that instrumental learning shapes 

perceptual interpretation of an ambiguous stimulus. Fleming et al. (2010) found 

that participants were more likely to report seeing a house in ambiguous face-

house images when informed they would lose money for perceiving it as a face. 

Additionally, Wilbertz et al. (2014) used a binocular rivalry stimulus in a study 
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where participants could win or lose money based on their reported perception. 

They observed increased stable durations of the percept associated with reward 

and a decrease for the punishment percept. The authors suggest that their results 

indicate that perceptual inference is an adaptive process influenced by its 

consequences, akin to instrumental or reinforcement learning. 

Murphy et al. (2014), using a rotating Necker Cube stimulus, found that 

long-lasting perceptual biases, specific to certain retinal locations, emerged from 

the outset and remained stable for up to 40 minutes. They conducted experiments 

to see if long-term associative learning emerges naturally from repeated short-

term perceptual memory without explicit training. They found that biases can 

develop during training but also emerge without training, suggesting associative 

learning results from associations between different perceptual interpretations of 

the ambiguous stimulus and retinal locations, rather than the physical stimulus 

itself. In a subsequent experiment, they examined if periods of spontaneous 

reversals affected recently acquired perceptual biases in a retinotopically specific 

manner. The continuous presentation of an ambiguous stimulus abolished trained 

perceptual biases at the location where it was presented but not at a location left 

blank. Participants reported significant biases nearly equally divided between two 

interpretations of the stimulus at the retinal location where the continuous 

stimulus was presented. Meanwhile, the blank retinotopic location retained its bias 

from the unambiguous training experiment. During intermittent presentation, 

participants reported perceiving the interpretation most commonly experienced 

during the continuous presentation at its corresponding retinal location. These 

findings suggest that perceptual biases naturally arise and primarily reflect the 

brain's tendency to favour recent perceptual interpretations at a specific retinal 
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location. It indicates that an association between retinal location and perceptual 

state, rather than with a physical stimulus, is sufficient to generate long-term 

biases in perceptual organization. This is based on an individual’s past experiences 

with the ambiguous stimulus (de Jong et al., 2014), emphasising the influence of 

associative learning and the brain's adaptive processes in perception. 

 

1.2.3 Integrated approaches  

Given that strong evidence exists for the influence of both bottom-up and 

top-down processes on multi-stable perception, a further approach has been taken 

by many researchers, which adopts an integrative view. For instance, Long and 

Toppino, along with their colleagues, conducted a series of experiments (1981, 

2004, 1983, 1992; reviewed in Long & Toppino, 2005) providing robust evidence 

that perceptual reversals are affected by both bottom-up processes (like adaptation 

or fatigue) and top-down processes (such as learning, attention, and intention). In 

one such study (Toppino and Long, 1987, as mentioned in Chapter 1, section 

1.2.1.3), they discovered that the rate of reversal was high when the test stimulus 

resembled the adapting stimulus, but low when there were changes in the location 

and size of the test stimulus compared to the adapting one. This indicates that 

reversals of rotating Necker Cube stimuli are influenced by fatigue and recovery 

in multiple independent neural channels, with changes in size or location affecting 

the neural channels involved and nullifying the adaptation effect. Towards the end 

of each experimental session, Toppino and Long (1987) observed a notable 

increase in reversal rates. Long et al. (1983) had earlier examined this effect, 

having participants view rotating Necker Cubes over four weeks. They found a 

consistent increase in reversal rates over this period and even within individual 
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sessions. This suggested that besides neural fatigue and adaptation, a top-down 

learning process might be occurring during sustained perceptual reversals of the 

same stimulus. 

Toppino (2003) further explored the simultaneous influence of top-down 

and bottom-up processes, particularly the role of intentional control on reversal 

rates. In their first experiment, participants focused on specific points of a Necker 

Cube and either tried to maintain one interpretation (hold condition) or viewed it 

passively (no-hold condition). The findings showed that the time spent perceiving 

a particular orientation was influenced by where participants directed their gaze, 

and significantly, by the hold vs. no-hold instruction. This implies that participants 

could exert voluntary control over their perception of the cube. However, there 

was no interaction between the fixation location and hold conditions, suggesting 

that intentional control over the perception of an ambiguous image could be 

achieved through direct, top-down activation of the desired interpretation. In a 

second experiment, Toppino (2003) varied the cube size but found no effect of 

size on hold conditions. The results from both experiments indicated that factors 

other than focal-feature processing contribute to the effect of intentional control. 

Yet, Toppino (2003) also observed that reversals couldn't be completely prevented 

regardless of hold condition, hinting at the presence of uncontrollable processes 

like neural fatigue. This aligns with previous research on intentional control 

(Babich & Standing, 1981; Liebert & Burk, 1985; Suzuki & Peterson, 2000) and 

suggests an additive effect of adaptation and priming in influencing the perception 

of the Necker Cube. 

Based on findings like those described above, Long and Toppino (2004) 

offer an integrative model of perception, which is grounded in the idea that 
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researchers may have accessed different neural processes via the use of different 

methodologies, leading to the apparent discrepancies between top-down and 

bottom-up theories. The authors emphasise the dissociation between ambiguity 

and reversibility, arguing that a physical stimulus can be ambiguous in that its 

features give rise to more than one percept, but the act of reversal depends on 

whether the viewer has had past experience and knowledge of the figure (e.g., 

Rock, Hall and Davies, 1994). Therefore, Long and Toppino (2004) put forward a 

hierarchical hybrid model of perception. At the lower levels of the model, bottom-

up feature analysis occurs largely automatically. At higher levels of the model, 

top-down information is fed backward from non-sensory areas and coupled with 

the stimulus-derived information, leading to a particular perceptual representation. 

Reversals, therefore, can be initiated by bottom-up adaptive processes or top-

down cognitive processes. 

Kornmeier et al. (2009) also investigated the combined influence of 

different mechanisms on perceptual reversals, demonstrating an additive effect of 

voluntary control (a top-down mechanism) and discontinuous stimulus 

presentation (a bottom-up mechanism) on the rate of reversals. In their study, they 

conducted two experiments. The first was akin to Toppino's (2003) initial 

experiment but without designated focal points; participants simply focused on the 

centre of the cube. They replicated Toppino's (2003) results. In their second 

experiment, Kornmeier et al. (2009) used the same experimental setup as their 

first, but this time presented the ambiguous stimulus intermittently, varying the 

length of the Inter-Stimulus Interval and the stimulus presentation time. Their 

findings showed that combining voluntary control with discontinuous presentation 
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led to an increased rate of reversals compared to continuous presentation, 

demonstrating the full additivity of these two effects. 

This research adds to the ongoing debate about the roles of bottom-up and 

top-down processes in the perception of ambiguous figures, a discussion 

involving researchers like Hochberg & Peterson (1987), Leopold & Logothetis 

(1999), and Long et al. (1983), and the extent to which their effects are additive, 

as explored by Kornmeier et al. (2009), Long & Moran (2007), Long & Toppino 

(2004), and Toppino (2003). Recently, there has been a shift towards 

understanding multistable perception as a result of changes in attractor states 

within neural networks, as proposed by Lehky (1988), Noest et al. (2007), and 

Wilson (2003). Kornmeier and Bach (2012) used this model to explore the 

integrative relationship between top-down and bottom-up processes. 

Kornmeier and Bach (2012) offer a second integrative theory of multi-

stable perception. They propose that multi-stable perception is underpinned by 

cycles of percept destabilisation and re-stabilisation. According to this model, an 

ambiguous stimulus gives rise to an initial percept which undergoes a slow 

destabilisation process. The rate of this is not fixed but can be modulated by both 

top-down and bottom-up influences. This continues until a point of maximum 

instability is reached, following which a fast (40-60ms) percept re-stabilisation 

occurs. These stages are discussed in more detail in the subsections below.  

In their theoretical perspective, Kornmeier and Bach (2012) apply 

concepts from nonlinear dynamics to explain the mechanisms behind perceptual 

reversals, as discussed by Braun and Mattia (2010). They model object 

representations in the brain as attractors – essentially, neural representations of 

physical stimuli – and consider the depth of these attractors as indicative of the 
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stability of the current neural activity pattern that corresponds to a particular 

percept. For example, both the Necker cube and Rubin’s Face Vase would each 

have two attractors corresponding to their different interpretations. A specific 

interpretation is perceived when its representation is activated, meaning the 

perceptual system's state aligns with the attractor linked to that interpretation. A 

perceptual reversal occurs when the perceptual system moves out of one attractor 

state and enters the alternative one, particularly if the depth of the attractor is 

shallow enough to allow such a transition. Kornmeier and Bach (2012) propose 

that during prolonged observation of an ambiguous stimulus (over several 

minutes), a temporarily stable percept becomes destabilised (shifts from one 

percept to another) gradually and steadily. Once the percept becomes destabilised, 

a rapid re-stabilisation (disambiguation) occurs, leading to a change in the 

interpretation of the ambiguous stimulus. This integrative theory suggests that 

various bottom-up and top-down processes either collaborate or compete, 

ultimately leading to a perceptual reversal. 

Support for this theory comes from electrophysiological evidence. For 

instance, the Reversal Positivity (RP) is thought to be a marker of the 

disambiguation/restabilisation process. Additionally, other correlates identified in 

both pre-stimulus and post-stimulus periods are believed to be connected to the 

destabilization and disambiguation/restabilisation mechanisms of this theory. 

These physiological underpinnings will be discussed in more detail in section 1.3. 

Kornmeier and Bach (2012) propose that perceptual destabilisation 

involves both top-down and bottom-up processes. They describe this as a gradual 

decrease in the activation of the current attractor state, making the perceptual state 

more unstable. The shallower the attractor, the more susceptible it is to both 
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internal spontaneous fluctuations and external influences like blinks, eye 

movements, brief interruptions in stimulus presentation (Orbach et al., 1963), or 

light flashes (Kanai et al., 2005), which can trigger a perceptual reversal. In 

essence, a neural representation is conceptualised as an attractor within a state 

space in the brain. The depth of this attractor is influenced by factors such as the 

quality of visual input. For instance, an attractor has higher activation when the 

visual input is an unambiguous version of an ambiguous figure. In contrast, the 

activation is shallower for ambiguous stimuli, making the representation more 

responsive to spontaneous fluctuations and more prone to a reversal between 

attractors. Kornmeier and Bach (2012) suggest that with ambiguous inputs, the 

activated attractor is initially shallow and gradually flattens over time. Both 

bottom-up factors, like discontinuous stimulus presentation (e.g., Kornmeier et al., 

2009), and top-down factors, such as volitional control (e.g., Toppino, 2003), can 

modify the depth of the attractor or increase the noise level (Braun & Mattia, 

2010; Moreno-Bote et al., 2007). This alteration affects the rate of perceptual 

reversals, and the stability duration times, possibly in an additive manner (Braun 

and Mattia, 2010; Kornmeier et al., 2009). Therefore, this approach integrates 

bottom-up and top-down processes, suggesting that they are not mutually 

exclusive but rather interrelated in the perception of ambiguous stimuli. 

 

1.3 Physiological evidence 

In addition to the behavioural experiments focussed on in the sections 

above, a body of evidence supportive of the bottom-up, top-down, and integrative 

theories of multi-stable perception has also come from electrophysiological 

studies. Several studies have identified neurophysiological correlates of the 



57 
 

processes thought to underpin multi-stable perception. These have been identified 

in both the pre- and post-stimulus periods; this section will describe the evidence 

from each period in turn.  

 

1.3.1 Evidence from the pre-stimulus period 

Numerous research efforts have been undertaken to delve into the 

predictive characteristics of brain activity before a stimulus occurs. The aim is to 

determine whether such pre-stimulus activity might influence an individual's later 

perception of an ambiguous stimulus. This has been explored using various brain 

imaging methods.  

 

1.3.1.1 Pre-stimulus effects in fMRI studies 

Several studies in the current literature have pointed to the role of ongoing, 

pre-stimulus brain activity in upcoming perception. In a study examining the 

rhythmic nature of visual perception, Hanslmayr et al. (2013) used a combination 

of electroencephalography (EEG) and functional magnetic resonance imaging 

(fMRI) to explore how these brain oscillations influence perceptual processes. 

This study revealed that visual information is not processed continuously, but 

rather in a rhythmic manner, oscillating between 5-10 Hz. The EEG data indicated 

that this rhythmicity mirrors the phase of ongoing brain oscillations within the 

same frequency range. Crucially, the study demonstrated that the phase of a 7 Hz 

oscillation before the presentation of a stimulus can predict both perceptual 

performance and the functional connectivity between higher and lower-level 

visual processing areas, specifically between the left lateral occipital cortex and 

the right intraparietal sulcus. This was evidenced through psychophysiological 



58 
 

interaction and dynamic causal modelling. The authors suggest that these findings 

suggest a significant role of brain oscillations in periodically ‘gating’ visual 

perception at approximately 7 Hz, proposing a mechanism for transient time 

windows that facilitate long-distance cortical information transfer. They suggest 

that this rhythmic ‘gating’ may be a general mechanism underlying human 

perception.  

Earlier work by Rahnev, Bahdo, de Lange and Lau (2012) investigated 

how spontaneous changes in attention levels influence confidence in perceptual 

decisions. Using fMRI, the study measured activity in the dorsal attention network 

before presenting stimuli in a motion direction discrimination task. It was 

discovered that lower pre-stimulus activity in this network, indicative of reduced 

attention, correlated with higher confidence in perceptual decisions. This finding 

supported earlier work by Rahnev et al. (2011), that found increased endogenous 

attention could lead to lower subjective perceptual ratings. In the context of multi-

stable perception specifically, Hesselmann, Kell, Eger, and Kleinschmidt (2008), 

used fMRI to examine the link between brain activity preceding a stimulus and 

visual perception, using Rubin’s face-vase illusion. The findings indicated 

significant activation in the right Fusiform Face Area (rFFA) prior to the stimulus 

when participants later reported seeing faces, as opposed to when they perceived 

vase images. Furthermore, comparing baseline brain activity before and after the 

stimulus revealed a non-linear interaction. The conclusions drawn from 

Hesselmann et al. (2008)’s study point to two distinct yet interrelated factors 

influencing perceptual decisions: one associated with ongoing brain activity and 

the other with stimulus-driven responses (although, note the findings by Rassi et 

al., 2019 described in the section below). 
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1.3.1.2 Pre-stimulus effects in EEG studies 

While blood oxygen level-dependent (BOLD) responses measured in the 

fMRI studies described above provide detailed spatial resolution, they lack the 

temporal precision required for tracking rapid fluctuations in neural activity. In 

contrast, scalp voltage changes measured by EEG offer researchers the ability to 

observe neural dynamics on a millisecond-by-millisecond basis, thus capturing the 

rapid fluctuations of brain activity that are thought to underpin perception. 

Ronconi et al. (2017) examined how subjects perceived ambiguous stimuli 

created from two dots either appearing in the same location (leading to a 

perception of two flashes merging, called "two-flash fusion") or moving in space 

(perceived as "apparent motion"). The ISI was manipulated to induce perceptions 

of either integration (fusion/motion) or segregation (two distinct flashes). The 

authors found that information about participants’ upcoming perception was 

contained in the pre-stimulus EEG activity. Perceptual outcome could be 

determined based on the phase of pre-stimulus oscillations in the EEG data, 

specifically from right parieto-occipital channels. The findings indicated that for 

the two-flash fusion, with an ISI of 40ms, pre-stimulus oscillatory activity in the 

alpha band was most predictive of the perceptual outcome. Whereas, for the 

apparent motion, with an ISI of 120ms, the phase of theta oscillations (6–7 Hz) 

was most indicative of the upcoming perception.  

Modulations in oscillatory activity have also been shown to be predictive 

of upcoming percept in a later study by Rassi, Wutz, Muller-Voggel, and Weisz 

(2019). These authors used magnetoencephalography (MEG) to explore how 

spontaneous brain activity prior to a stimulus influences perception, specifically 
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using Rubin's Face-Vase illusion, following the experimental design of 

Hesselmann et al. (2008). Their study revealed that oscillatory power did not 

differ for percepts of the 'face' versus the 'vase' in the primary visual cortex (V1) 

or in the FFA, suggesting comparable neural excitability for both types of 

perception. This finding is in apparent contrast with those of Hesselmann et al. 

(2008) who found that activity in the rFFA increased during the pre-stimulus 

period preceding reports of the face percept of the same stimulus. Although the 

authors here note that the spatial resolution of MEG might not be sufficient to 

distinctly identify activity in these areas. Nonetheless, Rassi et al. (2019) did 

observe more robust low-frequency oscillatory connectivity between V1 and FFA 

during 'face' trials compared to 'vase' trials. The intensity of this pre-stimulus 

feedback connection from FFA to V1 was predictive of both the imminent percept 

(face or vase) and the magnitude of neural activity following the stimulus that 

corresponded with the reported perception. Particularly, it was noted that on trials 

where faces were reported, there was stronger feedback connectivity from the FFA 

to V1 before the stimulus appeared. This interaction occurred within the alpha and 

beta frequency ranges. The time-frequency period in which the FFA's connectivity 

most strongly indicated the perceptual result was in tandem with the strength of 

this pre-stimulus feedback. Similar pre-stimulus effects have been shown using 

EEG with a high spatial resolution (256 channels). In their study, Britz, Landis 

and Michel (2009) found that there was activity present in the right inferior 

parietal cortex in the pre-stimulus period of trials where a reversal in perception 

occurred but not when perception remained stable. These authors also showed that 

this activity was present only in the moments before stimulus onset, but not during 

stimulus presentation. Pre-stimulus power differences in the gamma frequency 
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band have also been shown to be indicative of upcoming perception of the 

ambiguous Necker lattice (Ehm et al., 2011; see Figure 2.1 in Chapter 2 for an 

illustration of this). Ehm et al. (2011) showed an increase in lower gamma-band 

activity (26–40 Hz) at the right-hemispheric central and parietal electrodes and an 

occipital decrease of higher gamma-band activity (40–65 Hz) on trials where 

participants reported a reversal in their perception of an intermittently presented 

Necker lattice. These modulations were absent in exogenous reversals of 

unambiguous lattice variants (i.e., where physical differences were introduced to 

the Necker lattice to render it unambiguous; Ehm et al., 2011). These results imply 

that preceding variations in brain activity can influence the resulting perception of 

a stimulus. 

 

1.3.2 Evidence from the post-stimulus period  

In addition to the pre-stimulus effects described above, a large body of 

electrophysiological research has focussed on the post-stimulus period. Event-

related potential (ERP) analysis of EEG data has focussed on the post-stimulus 

period, as the nature of this analysis technique means that it is not suited to 

analysing pre-stimulus effects (see Section 1.3.2.2, and Chapter 2 for more detail 

on this technique). Several correlates associated with the perception of multi-

stable stimuli have been identified from studies using fMRI and EEG data. These 

will be discussed in the sections that follow. 

 

1.3.2.1 Post-stimulus effects in fMRI studies 

Certain behavioural results have suggested that frontal brain regions are 

likely to be involved in the perception of multi-stable images (e.g., Balcetis & 
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Dale, 2007; Feist & Gentner, 2007; Goolkasian & Woodberry, 2010). Alongside 

this, a body of fMRI research has provided support for this notion. In particular, 

the inferior frontal cortex (IFC) is commonly cited as an active region during 

perceptual transitions (Brascamp, Sterzer, Blake & Knapen, 2018). One paradigm 

employed in these studies is known as the “replay condition”, whereby the pattern 

of endogenous perceptual alternations is firstly recorded for each participant 

(endogenous reversal condition). In this condition, participants are asked to 

respond to indicate their perception of ambiguous stimuli and the order in which 

they perceived each trial is recorded. This order is then “replayed” to participants 

using physical stimulus changes (replay condition). In this condition, biased 

versions of the stimuli are presented in the same order as the pattern of 

endogenous reversals from the endogenous block, and participants respond in the 

same way. Blood oxygenation level-dependent (BOLD) signals are then compared 

between the two conditions, with the assumption that any differences are due to 

the endogenous reversal process rather than the additional cognitive demands 

resulting from the reporting process. The use of the replay condition has revealed 

significant increase in IFC activation during the endogenous reversal condition 

compared to the replay condition, indicating the involvement of the IFC in 

reversals of apparent motion stimuli (Sterzer & Kleinschmidt, 2007). The role of 

the IFC in perceptual alternations during binocular rivalry (Lumer, Friston & 

Rees, 1998), and bistable motion stimuli (Weilnhammer, Ludwig, Hesselmann & 

Sterzer, 2013) has also been revealed using the replay condition in this way.  

However, an important caveat to the replay condition is that the physical 

stimulus changes that occur during it are easily distinguishable from endogenous 

reversals (Brascamp et al., 2018). This has led to some researchers modifying the 
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replay condition so that it more closely resembles the endogenous reversal 

condition; in doing so, no significant differences were found between the 

endogenous and replay reversal conditions (Knapen, Brascamp, Pearson, van Ee 

& Blake, 2011; Brascamp, Blake & Knapen, 2015). These results suggest that the 

role of the IFC is related to the reporting of the perceptual change, rather than its 

cause. More support for this comes from a study by Brascamp et al. (2015), who 

created binocular rivalry stimuli where each eye received a different input. 

Participants’ perception demonstrably switched between each input, yet the 

difference was so subtle that the participants did not consciously report it. In other 

words, the authors created perceptual reversals that only involved executive 

systems in a minimal way. When these were used, fMRI BOLD responses in the 

frontoparietal network were also minimised. The authors conclude that this 

finding is indicative of a consequential role of executive systems such as the 

frontoparietal network, rather than a causative one. However, Frässle, Sommer, 

Jansen, Naber, and Einhäuser (2014) employed a no-report condition in their 

fMRI study, using pupil size and eye movements to measure perception of rival 

binocular stimuli passively. In both the active and passive reporting conditions, 

the IFC remained significantly more active during perceptual alternations. Other 

prefrontal regions did show marked activation differences between the two 

conditions, however. The dorsolateral prefrontal cortex (dlPFC) was significantly 

activated during the active report condition, yet its activation levels did not reach 

significance in the passive report condition. The authors here posit that there are 

indeed areas of the prefrontal cortex that are enlisted for task monitoring and 

related processing only. The dlPFC has also been shown to be involved in the 

volitional control of reversals, suggesting it has a role in the voluntary control of 
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attention in multi-stable perception tasks (Raz, Lamar, Buhle, Kane & Peterson, 

2007).  

In addition to the frontal regions described above, parietal regions have 

also been identified by fMRI as being more active during multi-stable perception 

(Inui, Tanaka, Okada, Nishizawa, Katayama & Konishi, 2000). The posterior 

parietal cortex, for example, is more active during both voluntary shifts in 

attention and percept (Slotnik & Yantis, 2005). The authors here conclude that 

voluntary perceptual reversals involve a redistribution of spatial attention, which 

is mediated by the posterior parietal cortex. Additionally, anterior and posterior 

superior parietal lobes (aSPLs and pSPL, respectively) have been shown to have 

specific roles during perceptual reversals. Baker, Karapanagiotidis, Coggan, 

Wailes-Newson and Smallwood (2015) suggest that the aSPL contributes to multi-

stable perception through the inhibition of incongruent perceptual information, 

whilst the pSPL influences perception by supporting the current interpretation of 

an ambiguous stimulus. Further study has revealed that reciprocal interactions 

between bilateral aSPLs and higher order visual areas occur during perceptual 

ambiguity (Megumi, Bahrami, Kanai & Rees, 2015).  

Transient modulations in the activation of higher and lower order visual 

regions have been shown to occur during multi-stable perception. Kleinschmidt, 

Buchel, Zeki and Frackowiak (2002) showed an increase in activation of the 

ventral occipital and intraparietal higher order visual areas and a corresponding 

decrease in activation of lower order visual areas in the primary visual cortex 

during perception of both Boring’s old/young woman and Rubin’s face/vase. 

Watanabe, Masuda, Megumi, Kanai and Rees (2014) conclude that overall activity 

dynamics during multi-stable perception fluctuate between three distinct, spatially 
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distributed states: visual-area dominant, frontal-area dominant and intermediate. 

Those who tend to show more visual-area dominance experience more stable 

perception, and those with more frontal-area dominance were found to experience 

more reversals. The authors conclude that large scale activation dynamics are 

associated with multi-stable perception. 

Other studies using fMRI data have shown that large scale cooperation and 

coordination of brain regions are likely to mediate multi-stable perception, as 

category-specific brain regions are active during experiences of perceptual 

ambiguity. The fusiform face area (FFA), for example, has been shown to be 

significantly more active during instances of the face percept of Rubin’s face/vase 

(Andrews, Schluppeck, Homfray, Matthews & Blakemore, 2002; Wang, Sang, 

Hao, Zhang, Bi & Qiu, 2017). Tong, Nakayama, Vaughan and Kanwisher (1998) 

also report increased activation of the fusiform face area and parahippocampal 

place area during associated percepts of face/house rival binocular stimuli. A later 

study conducted by Sterzer and Rees (2008) used binocular rivalry to demonstrate 

that the FFA exhibits a sustained increase in activation in a delay period following 

a spontaneous perceptual switch toward a face stimulus but not during a replay 

condition. The authors suggest that this result could indicate that percept-specific 

mechanisms could be at least partially involved in the maintenance of a stable 

percept.  

 

1.3.2.2 Post-stimulus effects in EEG studies 

Whilst fMRI results provide spatially resolved insight into the neural 

underpinnings of multi-stable perception, additional data gathered using EEG can 

allow more temporal conclusions to be drawn. EEG can be used to analyse ERPs 
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elicited in response to perceptual reversals. However, due to the subjective nature 

of these reversals, the selection of a relevant time-window in which to analyse 

such ERPs is problematic. If an ambiguous stimulus is presented continuously, for 

example, participants may be asked to respond via a key press when they 

experience a perceptual reversal. Due to individual and trial-by-trial differences in 

reaction times, this paradigm can cause temporal jitter, meaning that ERP 

components that occur only briefly are missed (Kornmeier & Bach, 2004; 2012). 

As a result, an intermittent viewing paradigm is more widely employed in ERP 

studies, taking stimulus onset as the moment of reversal and therefore increasing 

the temporal resolution (see Chapter 2 for a full overview of this issue; Kornmeier 

& Bach, 2004; 2012). Following work using this paradigm, Kornmeier and Bach 

(2012) have suggested a possible timeline for what they call the disambiguation 

process. This is the process by which ambiguous visual information is resolved 

into a given perception. Using the intermittent viewing paradigm, they suggest 

that the disambiguation of ambiguous visual information starts at around 130ms 

post-stimulus onset and takes approximately 50-60ms. They suggest this as the RP 

(discussed in more detail below) occurs alongside a left-hemispheric reduction in 

alpha power at 130ms post-onset, and the reduction in alpha power lasts around 

60ms. The authors interpret this reduction in alpha power as being indicative of 

the disambiguation process, after which a resolution has been made in terms of the 

perception of the ambiguous stimulus. Further, they suggest that the decision 

about the perceptual outcome has taken place at least 340ms before the participant 

is able to indicate the consciously perceived reversal manually. Kornmeier and 

Bach (2012) discuss the presence of several ERP components when coming to 

these conclusions. For instance, a positivity at 80-100ms has been shown to occur 
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in response to both endogenously and exogenously induced perceptual reversals 

(Kornmeier, Pfäffle & Bach, 2011; Kornmeier & Bach, 2012). Additionally, 

several ERP components have been associated only with reversals that are 

endogenous in nature.  

To determine whether differences in ERP components differ between 

experimental conditions, a difference ERP (dERP) is calculated by subtracting the 

ERP waveform from one condition from that of another condition. In the EEG 

literature, two dERP components have been shown to be linked to perceptual 

reversals and discussed in the literature. These will be reviewed in the next two 

sections.  

 

1.3.2.2.1 Reversal positivity 

The Reversal Positivity (RP) is a dERP component discussed in studies by 

Kornmeier & Bach (2005, 2006), Kornmeier et al. (2007), and Britz et al. (2009). 

It appears around 130ms following stimulus onset. It is characterised by a 

relatively more positive amplitude during reversal trials compared to stable trials, 

predominantly at occipital electrode positions. The RP has been observed in 

response to reversals of various multi-stable stimuli, including the Necker Lattice 

(Kornmeier & Bach, 2005, 2006), the Necker cube (Kornmeier, Pfäffle, & Bach, 

2011), Boring’s Old/Young Woman (Kornmeier & Bach, 2014), and in binocular 

rivalry cases (Britz and Pitts, 2011). Notably, the RP is exclusive to endogenous 

reversals and absent in exogenous reversals, indicating its specific association 

with internally driven perceptual changes rather than alterations in sensory input. 

Additionally, the RP seems unaffected by low-level stimulus variations such as 

size (Kornmeier et al., 2011). However, its small amplitude means it is not 
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consistently observed across all studies (Pitts et al., 2007; Intaitė et al., 2010). 

Kornmeier and Bach (2012) propose that the RP signals the detection of 

perceptual ambiguity or decision conflict during perceptual transitions (Pomerantz 

and Kubovy, 1981; Kornmeier et al., 2011), marking it as an indicator of the 

previously described disambiguation process. However, later work by Abdallah 

and Brooks (2020) found that the RP was dependent on whether the participant 

was required to make a manual response to indicate that they experienced a 

perceptual reversal. When participants were not required to make a manual 

response to indicate a perceptual reversal, Abdallah and Brooks (2020) found a 

component with the same latency as the RP but with the opposite polarity. The 

authors suggest, therefore, that the RP is a marker of response-related processes 

rather than those related solely to the disambiguation process. 

 

1.3.2.1.2 Reversal negativity  

Following the RP is a later, negative-going ERP component known as the 

reversal negativity (RN; Kornmeier & Bach, 2004). This is elicited over posterior 

electrodes around 200-260ms in response to endogenous reversals and 40-50ms 

earlier in response to exogenous reversals of the Necker cube stimulus 

(Kornmeier & Bach, 2004; 2012; 2014; 50ms difference replicated in Kornmeier, 

Bach and Atmanspacher, 2004). The RN has been found in response to a range of 

other ambiguous stimuli including Rubin’s face/vase and Schröder's staircase 

(Pitts, Nerger & Davis, 2007). However, Boring’s old/young woman failed to 

elicit the RN component, instead revealing an occipito-temporal N170 component 

that is typically reported in response to face stimuli (Kornmeier & Bach, 2014). 

The authors suggest that the reason for this is that the disambiguation of Boring’s 
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stimulus is completed 90ms earlier than geometric figures, leading to the N170 

face ERP component. Source localisation techniques have suggested that the RN 

has a source in the occipito-temporal cortex (Pitts, Martinez, Stalmaster, Nerger 

and Hillyard, 2009). The amplitude of the RN has been shown to be enhanced 

during active volitional control of reversals (Pitts, Gavin & Nerger, 2008), and 

decreased in response to an increase in working memory load (Intaitė, Koivisto & 

Castelo-Branco, 2014) leading to conclusions that it reflects top-down influences. 

Other research has suggested that the RN reflects a reorganisation of the 

perceptual representation of the presented stimulus (Kornmeier, Bigalke & Bach 

(2005); Intaitė, Koivisto, Rukšėnas & Revonsuo, 2010).  

 

1.3.2.1.3 Late positive potentials 

Two further positive components have also been identified in endogenous 

reversals. The first occurs over frontopolar electrodes at 340ms (Kornmeier & 

Bach, 2012), the second at 470ms over parietal sites (Kornmeier & Bach, 2004). 

The frontopolar positivity has been suggested to reflect a possible role of working 

memory in perceptual reversals (Kornmeier & Bach, 2012), whilst the parietal 

positivity has been linked to the conscious appraisal of the reversal (Strüber & 

Herrmann, 2002; Kornmeier & Bach, 2006; 2012). This notion is further 

supported by other literature on conscious awareness, in which the 

spatiotemporally similar P3b component occurs only in response to a stimulus 

reaching conscious awareness (Dehaene & Changeux, 2011).  
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1.3.2.2 Evidence from EEG data in the time-frequency domain  

Although a great deal of temporal information can be gained from ERP 

data, often certain signals that are not temporally aligned (i.e., not stimulus-

locked) are lost to the averaging process involved in generating the ERP itself. 

Analysing data in the time-frequency domain can allow for the examination of 

these signals (Basar, Basar-Eroglu, Karakas & Schurmann, 1999).  

 

1.3.2.2.1 Alpha band effects 

The alpha frequency band refers to EEG oscillatory activity at 8 - 12 Hz 

(Herrmann, Grigutsch & Busch, 2005). EEG oscillations in the alpha band have 

been associated with visual processes. For example, a study conducted by 

Mathewson, Gratton, Fabiani, Beck and Ro (2009) used a metacontrast backwards 

masking paradigm which rendered a target detectable in 70% of trials despite 

stimulus parameters remaining constant throughout. Trials in which the target was 

detected were significantly associated with a decrease in alpha power. 

Additionally, the phase of the alpha oscillations in the pre-stimulus period were 

examined which revealed that, for trials with high alpha power, if a target was 

presented during the peak of an alpha wave it was significantly more likely to be 

detected than if it were presented during a trough. The authors conclude that alpha 

modulations reflect the momentary state of the excitability of the visual cortex.  

Other studies have used repetitive transcranial magnetic stimulation 

(rTMS; for further discussion see Section 1.3.3, below) to provide more causative 

evidence for the role of alpha oscillations in visual perception. Romei, Brodbeck, 

Michel, Amedi, Pascual-Leone and Thut (2007) found that rTMS was more 

reliably able to induce phosphenes (illusory visual images induced by stimulation 
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of the visual cortex) in the contralateral visual field when pre-stimulus alpha 

power was low compared to when it was higher. The authors suggest that alpha 

activity reflects momentary changes in the excitability of visual areas that are 

tuned to the contralateral visual field. This view is also supported by Romei, 

Gross and Thut (2010). They examined the effects of rTMS at alpha frequency 

over the left and right parietal and occipital sites on the detection rates of a 

lateralised target stimulus. The authors report that stimulation of both occipital 

and parietal sites of the contralateral hemisphere to target presentation impaired 

detection, whereas ipsilateral stimulation enhanced it, leading to conclusions that 

alpha activity has an inhibitory effect.  

Linked with visuospatial attention (Thut, Nietzel, Brandt & Pascual-

Leone, 2006), modulations within this band have also been reported alongside 

perceptual reversals. For example, a desynchronisation of alpha activity has been 

found to occur during the RP time window of perceptual reversals of the Necker 

cube (Isoglu-Alkaç, Basar-Eroglu, Ademoglu, Demiralp, Miener & Stadler, 2000). 

This activity has been shown to be separate from the motor-related activity 

involved in making a response (Mathes, Pomper, Walla & Basar-Eroglu, 2010). 

Alpha activity modulations have also been reported alongside the temporal 

dynamics of reversals; Piantoni, Romeijn, Gomez-Herrero, Werf and Someren 

(2017) used the Necker cube and found that local alpha power around the parieto-

occipital sulcus within the first second after a percept’s emergence predicted its 

duration. Moreover, experimentally inducing an increase in alpha power via sleep 

deprivation increased the average duration of representations. The authors suggest 

that an increase in alpha power supports the on-going stability of a particular 

percept. Strüber and Herrmann (2002) used magnetoencephalography (MEG) 
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alongside the presentation of bistable motion stimuli to generate both endogenous 

and exogenous perceptual reversal conditions. By comparing the pre-reversal 

oscillatory activity in the alpha and gamma ranges in each condition, they were 

able to show that a steady decrease in alpha activity occurs during the period 

before the manual indication of a perceptual reversal in the endogenous condition. 

In the exogenous condition however, alpha activity remains stable until a rapid 

decrease around 300ms before the change in motion is reported. Event-related 

fields (ERFs, comparable to ERPs in EEG studies) revealed a P300-like 

component elicited in response to both endogenously and exogenously induced 

reversals, which the authors propose is indicative of the moment of conscious 

appraisal of the change in percept. The authors suggest that their results support 

the view that the perceptual representation must reach a threshold value before a 

reversal can occur, with any involvement of higher-order brain areas being 

reflective only of the conscious realisation that perception has reversed rather than 

playing an active role in generating the reversal itself. Thus, providing support for 

the bottom-up approach to multi-stable perception. Although Strüber and 

Herrmann (2002) did not find significant differences in gamma band activity 

between the endogenous and exogenous reversal conditions, Ehm, Bach and 

Kornmeier (2011) saw a right-lateralised gamma modulation which occurred at 

least 200ms before an endogenously induced reversal only. Ehm et al. (2011) 

suggest that this modulation could be indicative of an unstable brain state.  

 

1.3.2.2.2 Gamma band effects 

Gamma band activity refers to oscillations in the range of 30 – 80 Hz 

(Herrmann, Grigutsch & Busch, 2005), and has been linked to higher level 
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cognitive functions such as attention (Ray, Niebur, Hsiao, Sinai & Crone, 2008) 

and declarative memory (Osipova, Takashima, Oostenveld, Fernández, Maris & 

Jensen, 2006).  Gamma band activity has also been studied in the literature on 

multi-stable perception. In a binocular rivalry task, Doesburg, Green, McDonald 

and Ward (2009) report that perceptual alternations are time-locked to gamma 

band synchronizations, concluding that the synchronisation facilitates the 

generation of a new percept. Further analysis showed that the generators of these 

gamma rhythms have prefrontal and parietal sources, suggesting integration of 

multiple brain regions are involved in perceptual reorganisation. Mathes, Strüber, 

Stadler and Basar-Eroglu (2006) demonstrate an increase in gamma band power 

during volitional slowing down of perceptual reversals compared to speeding up, 

suggesting that gamma activity is indicative of the focal attentional processes 

involved in preventing a reversal rather than the attentional shifts mediating 

volitional reversals. However, an increase in frontal gamma band power has been 

linked to the destabilisation of percepts, especially among high-rate reversers 

(Başar-Eroglu, Strüber, Kruse, Başar & Stadler, 1996; Strüber, Basar-Eroglu, Hoff 

& Stadler, 2000; Strüber, Basar-Eroglu, Miener & Stadler, 2001). Whether or not 

activity in the gamma frequency band has a role in the facilitation or inhibition of 

a percept is a matter of on-going debate, therefore (Sedley & Cunningham, 2013). 

Other research has offered the suggestion that there may be two classes of gamma 

responses: an early response that reflects sensory processes and a later response 

that is indicative of more cognitive processes (Karakaş, Başar-Eroğlu, Özesmi, 

Kafadar & Erzengin, 2001).  
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1.3.2.2.3 Beta and theta band effects 

Beta activity in the range 12 – 30 Hz has previously been shown to be 

linked to the semantic processing of visual images (Von Stein & Sarnthein, 2000), 

and has also been associated with multi-stable perception. Hipp, Engel and Siegel 

(2011) used ambiguous motion stimuli to demonstrate the coordination of large-

scale brain networks during perceptual reversals; synchronous beta activity in a 

fronto-parieto-occipital network was found to be reliably linked to perceptual 

state. A later study by Minami, Noritake and Nakauchi (2014) found a decrease in 

beta power with a parietal-posterior source was associated with perceptual 

transitions. The authors therefore suggest that beta desynchronisation reflects the 

period of disambiguation of multi-stable images.  

Despite theta activity (4 – 8 Hz) being linked to the coordination of brain 

activity over large areas (Von Stein & Sarnthein, 2000) relatively few studies have 

examined its role in multi-stable perception. One relatively recent study 

conducted by Mathes, Khalaidovski, Schmiedt-Fehr and Basar-Eroglu (2014) 

reports a transient increase in theta power during perceptual switches of both 

ambiguous and unambiguous stimuli. Thus, the authors conclude that theta may 

be involved in more general perceptual reconfiguration.  

 

1.3.3 Evidence from studies using transcranial stimulation 

As briefly touched upon above, the causal nature of EEG oscillations upon 

multi-stable perception can be examined via brain stimulation techniques. To 

entrain a certain cortical region to a certain frequency band, two main stimulation 

techniques are used: transcranial alternating current stimulation (tACS), and 

rTMS. tACS involves an electrical alternating current being applied transcranially 
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via electrodes placed onto the scalp. The frequency of this alternating current is 

set so that it corresponds to the EEG activity band of interest. rTMS is used in the 

same way, however a magnetic rather than an electrical field is used. rTMS can 

also be used to induce “virtual lesions” if particular patterns of pulses are 

employed (Pascual-Leone, 1999). An additional, less frequent technique that has 

been applied to the study of multi-stable perception is caloric vestibular 

stimulation (CVS), which involves stimulation of the vestibular system by 

introducing ice-cold water into the external auditory canal via a syringe. This has 

been shown in other research to induce unilateral hemisphere activation (Rossetti 

& Rode, 2002). Findings from studies employing tACS, rTMS and CVS 

techniques to investigate multi-stable perception are discussed in the sections 

below. 

 

1.3.3.1 tACS 

Using bistable apparent motion stimuli which could be interpreted as 

moving across a horizontal or vertical plane, Strüber, Rach, Trautmann-Lengsfeld, 

Engel and Herrmann (2014) applied tACS bilaterally over occipito-parietal areas 

at 40Hz; a frequency known to be in the gamma band activity range. The authors 

report that the tACS stimulation led to a decreased proportion of perceived 

horizontal motion only when coupled with a 180˚ phase difference in the AC 

waves, suggesting that desynchronisation of gamma band activity between 

hemispheres leads to biased ambiguous motion perception. Cabral-Calderin, 

Schmidt-Samoa and Wilke (2015) presented structure from motion stimuli 

alongside tACS at 60Hz (also in the gamma range) placed centrally over the 

occipital lobe in order enhance gamma band activity. The stimulation induced a 
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significant increase in the number of spontaneous perceptual reversals compared 

to alpha frequency stimulation (10Hz) at the same site, supporting the idea that 

gamma activity is involved in the formation of an unstable perceptual state.  

 

1.3.3.2 TMS 

Studies using single and repetitive pulse TMS have examined the effects 

of enhancing or disrupting the function of several cortical regions thought to be 

involved in perceptual reversals. For example, the right lateralised fronto-parietal 

network identified by fMRI (Brascamp et al., 2018) and EEG (Hipp et al., 2011) 

was examined in a more causal manner by Vernet, Brem, Farzan and Pascual-

Leone (2015). Here, single pulse TMS was applied over the right anterior 

intraparietal sulcus (IPS) 70ms before the presentation of an ambiguous stimulus. 

This led to an increased likelihood of a perceptual reversal. However, when 

stimulation in the same area was followed by a second pulse over the dlPFC, this 

effect became non-significant. This suggests that the IPS has a role in the 

stabilisation of the current percept and the dlPFC is involved in the triggering of 

perceptual reversals, and highlights the coordination between frontal and parietal 

regions in multi-stable perception. Additionally, rTMS applied over the right IPS 

has been shown to prolong periods of perceptual stability (Zaretskaya, Thielscher, 

Logothetis & Bartels, 2010), providing further support for the idea that it pays a 

critical role in the formation of a stable percept.  

 

1.3.3.3 CVS 

CVS is able to induce activation of the contralateral cerebral hemisphere 

(Rossetti & Rode, 2002) and as a result has been used to examine the 
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interhemispheric switch (IHS) model of multi-stability (Miller, Liu, Ngo, Hooper, 

Riek, Carson & Pettigrew, 2000). The IHS model proposes that each cerebral 

hemisphere contains a particular perceptual representation of rival or ambiguous 

stimuli and perceptual alternations arise from the relative activation of one 

hemisphere over another (Miller et al., 2000). It has been shown that hemispheric 

stimulation via CVS is able to significantly shift perceptual predominance levels 

of rival and ambiguous stimuli (Miller et al., 2000; Ngo, Liu, Tilley, Pettigrew & 

Miller, 2007), which provides support for this IHS model.  

 

1.3.4 Evidence from studies using Multivariate Pattern Analysis (MVPA) 

A more recent approach to the analysis of neuroimaging data is known as 

multivariate pattern analysis (MVPA). Rather than analysing a narrow temporal or 

spatial region of interest, this approach is focused on the analysis of whole-brain 

signal patterns. This is typically achieved using machine learning algorithms to 

identify patterns of signal across multiple brain regions that are associated with a 

particular cognitive function. This technique has been used for some time with 

fMRI data. Unlike traditional fMRI analysis, which uses a mass univariate 

statistical analysis to focus on the intensity of activation within certain brain 

regions, MVPA considers the pattern of activity across multiple voxels. This 

approach has been instrumental in understanding how the brain interprets 

ambiguous stimuli. For instance, Sterzer, Haynes, and Rees (2008) demonstrated 

the use of MVPA in analysing fMRI data to decode BOLD responses when 

participants were presented with a face or a house stimulus. The authors used a 

binocular rivalry paradigm such that either the face or the house was suppressed 

and therefore invisible to the participants. They found that overall responses of 
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high-level ventral visual areas were very weak and did not differ in amplitude 

between the two conditions (faces or houses). Despite this, MVPA within these 

areas allowed the authors to predict whether an observer was presented with face 

or house stimuli, not only when these stimuli were visible but also when they 

were suppressed and entirely invisible. Additionally, Brouwer and van Ee (2007) 

successfully used MVPA of fMRI data to distinguish between alternative 

directions of SFM sphere-rotation based on patterns of activity within area MT+, 

along with other dorsal visual and parietal areas. 

Based on the successful use of MVPA in decoding viewers’ perceptual 

state from fMRI data, research using EEG and MEG has also moved toward these 

types of analyses. Schhmiedt, Rotermund, Basar-Eroglu and Pawelzik (2009) used 

support vector machine (SVM) classifiers to successfully decode viewers’ 

perception of an ambiguous structure from motion stimulus from 30 channels of 

EEG oscillatory data. Additionally, Das et al. (2010) aimed to compare the 

efficacy of EEG pattern classification, using three distinct classifiers, against 

traditional, univariate ERP indices such as peak amplitude, mean amplitude, and 

peak latency. In their study, participants were engaged in a task where they were 

shown a face, or a car overlaid with Gaussian noise and had to rate their 

confidence in identifying the category of the stimulus (i.e., a face or a car). Earlier 

studies employing univariate methods of analysing EEG and MEG data have 

identified specific ERP components such as the N1 and N170 that are linked to 

face presentation as opposed to other objects (Gauthier et al., 2003; Taylor et al., 

1999) or the early trial averaged M100 in MEG related to face categorisation (Liu 

et al., 2002). However, diverging from these findings, Das et al. (2010) discovered 

that the neural activity indicative of correctly perceiving and reporting faces 
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versus cars was distributed over time, commencing at 120ms and persisting for 

over 400ms after stimulus onset. This broader temporal window for significant 

activity pattern classification differs from previous univariate observations, 

suggesting a more prolonged neural involvement in distinguishing between faces 

and cars. MVPA has also been shown to have revealed subtle effects in other 

research areas, for instance, decoding the focus of attention (local or global; e.g., 

List et al., 2017) from EEG data. It has also been used to successfully decode 

which of 16 orientations is being held in working memory, even when orientation 

is not currently relevant to the task (Bae & Luck 2018; 2019). 

Another benefit of MVPA is that it also operates within the time-frequency 

domain, as well as the time domain. Past research has identified oscillatory brain 

activity that is linked to the various stages of processing in perceptual reversals 

(see Section 1.3.2.2). MVPA, like univariate analyses, can detect frequency 

changes throughout the course of a trial that are associated with perceptual 

reversals. However, MVPA's advantage lies in its ability to consider multivariate 

patterns in time-frequency data from across the scalp, providing a broader 

perspective on the timing and frequency ranges that involve multiple brain 

mechanisms. In the time-frequency domain, MVPA compares the activity patterns 

of different perceptual states at each time point and frequency level, which could 

help identify the specific time-frequency windows where these activity patterns 

differ between reversal versus stable trials. In this way, MEG data has been used 

to successfully decode participants’ perception of the Rubin’s faces/vase stimulus 

(Rassi et al., 2019) and perception of face vs house in a binocular rivalry 

paradigm (Rassi et al., 2022).  
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In addition to its ability to detect differences in multivariate patterns of 

activity across the scalp, a second key advantage of MVPA over the more 

traditional univariate analyses is the ability to perform what is known as cross-

decoding (see Chapters 2 and 4 for more detail on this). Cross-decoding allows 

MVPA to also detect similarities between two or more different brain states 

evoked by experimental manipulation. For instance, Stokes et al. (2009) 

conducted an fMRI study where participants were shown or asked to imagine the 

letters "X" or "O" as well as trials on which participants were actually shown 

images of “X” or “O”. A classifier trained on visual (i.e., perceived) trial data 

could be used to accurately predict the imagined letter from the imagined trial 

FMRI data. Subsequent research by Stokes et al. (2011) confirmed this result, 

even when letters appeared in different visual field locations. Cross-decoding has 

also identified common neural patterns in motor action and observation. 

Oosterhof et al. (2012a) recorded fMRI data as participants performed or watched 

actions ("lift" and "slap") from various viewpoints. They discovered specific brain 

activity patterns in the ventral premotor cortex corresponding to the observed or 

executed actions, with significant cross-modal neural patterns for first-person 

perspectives correlating with action execution. However, these patterns did not 

hold for third-person perspectives. This distinction illustrates how MVPA, and 

cross-classification in particular, can discern subtle neural activity similarities and 

differences across conditions. 

MVPA has also been used to reveal insights into the pre-stimulus brain 

state that is predictive of a particular percept. Ronconi, Oosterhof, Bonmassar and 

Melcher (2017) demonstrated that pre-stimulus EEG oscillatory data could be 
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successfully decoded as predictive of a particular percept by a machine learning 

classifier.  

 

1.4 Aims and hypothesis of current thesis 

The evidence discussed in the sections above indicates that there are likely 

to be several processes involved in the reversals in perception that occur when 

ambiguous stimuli are viewed. Both top down and bottom-up mechanisms are 

likely to be involved. Bottom-up theories are largely centred around some form of 

neural adaptation – the neurons involved in maintaining the current percept 

become fatigued to the point at which the neurons involved in the other percept 

are less fatigued and therefore perception switches (e.g., Long & Toppino, 2004). 

Studies investigating the role of adaptation processes in multi-stable perception 

have induced adaptation by pre-exposing participants to a biased version of an 

ambiguous stimulus which induces the neurons underpinning a given percept into 

fatigue (e.g., Long & Olszweski, 1999; Long & Moran, 2007). Single cell studies 

have shown that adapting neurons in this way does indeed reduce the response to 

subsequent stimulation (e.g., Barlow & Hill, 1963; Hammond et al., 1988a; 

1988b; Kohn & Movshon, 2003). Behaviourally, this is shown because when the 

ambiguous stimulus is subsequently presented, it is more likely to be perceived in 

the alternate way (e.g., Kanai & Verstraten, 2005; Long & Moran, 2007). 

Studies have shown that the length of time that the adapting stimulus is 

presented for is critical in inducing this effect. In fact, presenting the adapting 

stimulus for a brief period has the opposite effect – the subsequent ambiguous 

stimulus is perceived in the same way as the adapting stimulus (priming; e.g., 

Long & Moran, 2007). Research suggests that priming may be a behavioural 
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reflection of top-down involvement in perception of ambiguous stimuli because it 

can also be induced by conceptual as well as perceptual primes (e.g., Goolkasian 

& Woodberry, 2010). For example, being primed by reading a paragraph, or 

otherwise being exposed to stimuli that are only conceptually related to one of 

two possible percepts, leads to the ambiguous stimulus being perceived in the 

same way as the prime (e.g., Balcetis & Dale, 2007; Feist & Gentner, 2007; 

Goolkasian & Woodberry, 2010). Priming effects have also been shown to persist 

for longer time periods than those involved in adaptation – again suggesting it 

involves higher level mechanisms (e.g., Long & Moran, 2007). This has been 

shown in studies that manipulate the ISI between adapting and ambiguous stimuli: 

priming effects persist after longer ISIs whilst adaptation effects diminish (e.g., 

Kanai & Verstraten, 2005; Long & Moran, 2007). This supports the idea that low 

level, neural fatigue is responsible for the adaptation effects seen behaviourally in 

studies that induce an adapted brain state via pre-exposure to an adapting stimulus 

(followed by a report of perception of an ambiguous test stimulus). 

What is not clear from the existing literature, however, is whether 

adaptation plays a role in the spontaneous perceptual reversals that occur when 

only ambiguous stimuli are intermittently viewed.  This is because previous 

adaptation studies have always involved pre-exposure to biased adaptors and thus 

there is no direct evidence that adaptation actually accumulates during the 

presentation of fully ambiguous stimuli which then affects the perception of 

subsequent ambiguous stimuli. It is this gap in the available research that the 

current thesis aims to fill, and therefore forms the overarching research question 

answered by the current work. The general approach to this question will be to 

train a machine learning classifier (see Section 1.3.4) to decode perceptual 
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reversals (i.e., reversal vs. stable trials) of an ambiguous stimulus from EEG data 

recorded during an adapted brain state which has been induced by exposure to 

unambiguous interpretations of an ambiguous stimulus (e.g., an altered Necker 

cube to make it appear right facing). This trained classifier will then be used to 

attempt to predict spontaneous (i.e., not induced by an unambiguous stimulus) 

perceptual reversals in a sequence of ambiguous visual stimuli. If these 

spontaneous reversals involve processes of adaptation similar to those induced by 

adaptation to unambiguous stimuli, then the trained classifier should be able to 

accurately predict perceptual outcomes based on the EEG data recorded during 

them. This approach thus uses a form of cross-decoding to address directly 

whether adaptation plays a role in spontaneous reversals that occur in sequences 

of fully ambiguous stimuli. 

The specific research aims to help to answer this research question will 

now be outlined. Full details of the background and rationale for each individual 

experiment can be found within empirical Chapters 3-5. 

 

1.4.1 What are the optimum timing parameters required to induce an 

adapted brain state?  

As there is a large body of evidence that EEG data can be reliably used to 

reveal patterns of activity associated with spontaneous perceptual reversals, this 

research will primarily involve recording EEG data during these reversals. 

Stationary stimuli such as the Necker cube take around 30-150 seconds to reliably 

induce adaptation, which is too long for them to be used practically in any EEG 

experiments that aim to investigate adaptation (e.g., Shulman, 1993; Long, 

Toppino & Mondin, 1992) due to the need for many repeated measurements in 
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EEG studies. In contrast, the rapid motion aftereffect (rMAE) has been shown to 

quickly evoke adaptation effects when participants view ambiguous motion 

stimuli after being shown unambiguous directional motion stimuli for only 640ms 

(Kanai & Verstraten, 2005). Therefore, motion stimuli highly similar to those used 

by Kanai and Verstraten (2005) will be used to examine the role of adaptation in 

spontaneous perceptual reversals here.  

This research aim, therefore, is to determine the optimal parameters for 

inducing the adaptation and priming effects described above. This was achieved 

by partially replicating the study by Kanai and Verstraten (2005). In contrast to the 

previous authors however, this experiment aimed to produce two clear trial types: 

one in which the adaptation effect is maximally induced and one in which the 

participants’ perception was unbiased (i.e., 50% of each interpretation). The 

temporal parameters evoking these two trial types will then be used to inform the 

subsequent EEG experiment investigating adaptation. 

It should be noted at this stage that one of the planned aims of this thesis 

was to investigate the roles of both adaptation and priming in perceptual outcomes 

when viewing ambiguous stimuli intermittently. However, as detailed and fully 

investigated in Chapter 3, the results of Experiment 1 led us to become uncertain 

about whether visual motion priming (VMP; see also Section 1.4.2; Pinkus & 

Pantle, 1997; Kanai & Verstraten, 2005) was indeed evoked using the paradigm 

employed (Kanai & Verstraten, 2005). Therefore, instead of moving forward with 

the planned investigation into the role of priming in the perceptual outcomes of 

ambiguous motion, this potential artefactual effect of task on behavioural VMP 

effects was fully investigated in Chapter 1, Experiment 2, and will be discussed in 

more detail within the next section. 
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1.4.2 Can the task that participants are asked to perform lead to 

artefactual VMP effects? 

As described above, whilst we were conducting Experiment 1 and 

analysing the results, we became aware of a possible confound in the way that 

Kanai and Verstraten (2005) phrased their task to their participants. More detail on 

this can be found in Chapter 3 but will also be presented briefly here in order to 

clarify this research aim. As described above, Kanai and Verstraten (2005) 

manipulated the presentation time and ISI when presenting unambiguous adapting 

motion followed by ambiguous test motion and found that when both were brief, 

strong VMP was shown. In their briefest condition, they used an adapting stimulus 

presentation time of 80ms, an ISI of 40ms, followed by 320ms of ambiguous 

motion. At the end of a trial, they asked participants to report whether the two 

stimuli were moving in the same or a different direction. Our task was phrased 

slightly differently in that we asked participants to report each direction that they 

saw the two stimuli move in (so they might report “left”, “left”, for instance). Our 

results did not show a strong VMP effect under these conditions as Kanai and 

Verstraten (2005) found, and anecdotal reports from our participants indicated that 

they didn’t see that there were two stimuli at all under these conditions.  

This research aim then, was to replicate Experiment 1 whilst 

experimentally manipulating the task that participants were asked to perform, as 

well as directly asking participants about the number of stimuli they were able to 

perceive. This aim allowed us to investigate the effects of task on VMP. The 

hypothesis was that task would impact the reports of the VMP effect and under the 
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briefest temporal conditions participants would be less likely to perceive two 

stimuli. 

 

1.4.3 Does adaptation play a role in spontaneous reversals in 

perception that occur during viewing of ambiguous motion? 

This research aim will be addressed by training machine learning 

classifiers to decode perception of ambiguous motion from EEG data recorded 

from an adapted brain state, as well as an unbiased brain state that will serve as a 

control, both induced by pre-exposure to biased interpretations of an ambiguous 

stimulus. The temporal parameters required to induce each of these states will be 

addressed by the research aim in Section 1.4.1. These classifiers will then be used 

to attempt to predict spontaneous perceptual reversals of the ambiguous-only 

motion.  

The hypothesis here then, if spontaneous perceptual reversals are driven 

by adaptation, the decoding accuracy of the classifier trained on the adapted brain 

state will be significantly greater than chance, and also significantly higher than 

the decoding accuracy of the classifier trained on the non-adapted brain state.  

 

1.4.4 Are ERP measures of reversal-related brain activity present 

during perceptual reversals of ambiguous stationary stimuli also present 

during perceptual reversals of ambiguous motion stimuli? 

Several studies have investigated the re-stabilisation and disambiguation 

processes occurring during the perception of ambiguous figures. These 

investigations have associated two ERP components, the RN and the RP, with 

perceptual reversals (e.g., Kornmeier & Bach, 2012). The exact characteristics of 
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these components and the mechanisms underlying them remain to be fully 

understood. Kornmeier and Bach (2012) highlight the need for research involving 

different types of ambiguous stimuli to be conducted, in order to establish whether 

these components are reflective of the mechanisms underpinning perceptual 

reversals in general or only the specific task designs that have investigated them 

so far. Work by Abdallah and Brooks (2020) has highlighted the need for such 

investigation as they found that the presence of the RP was dependent on whether 

the participant was required to respond. Therefore, highlighting the need for 

investigating whether these components are linked to reversal-related processes or 

other, non-related mechanisms. 

If these components are markers of the processes that underpin 

spontaneous perceptual reversals, it is hypothesised that they will also be present 

during reversals of the ambiguous motion stimuli used in the series of experiments 

described in this thesis. 

 

1.4.5 How powerful is MVPA to detect multivariate effects present in 

EEG data? 

This was an unplanned deviation from the initial plan to collect further 

EEG data and was due to the COVID-19 pandemic lab closures (see COVID 

Impact Statement for full details of this deviation). However, this aim still fits 

well to address the overarching gap in the current literature, as the thesis aims to 

draw conclusions about the role of adaptation in spontaneously occurring 

perceptual reversals, primarily using MVPA to directly address this aim. MVPA is 

a relatively new technique in the field of EEG research, and certainly provides 

many benefits over the more traditional univariate analyses (see Section 1.3.4). 
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However, the currently available literature is lacking in information regarding the 

number of participants required to detect an effect with adequate power – in other 

words, the number of participants required to detect a given effect in at least 80% 

of cases (Cohen, 1988). Therefore, to help clarify that the experiments detailed in 

this thesis are adequately powered as well as shed some light on this to fill the gap 

in the current literature, this research aim will be addressed using simulated null 

effect EEG data with multivariate effects of known sizes added. This is described 

fully in Chapter 5.  
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Various methods have been used in previous research aiming to understand 

the role of adaptation and priming in the perception of ambiguous stimuli. This 

chapter will outline and justify the methods used in the set of experiments that are 

to follow and discuss the more general issues that surround them. All materials 

used in the set of experiments described in this thesis can be found at the 

following OSF repository: https://osf.io/wbmyp/. 

 

2.1 Stimulus choice 

As discussed in Chapter 1, there are several stimuli that have been used 

when investigating adaptation and priming effects. The general paradigm that is 

employed when presenting stimuli in such investigations usually involves some 

biased, unambiguous version of the stimulus being presented for a given amount 

of time, followed by an ambiguous version. The biased stimuli are typically 

created by introducing physical features to the figure that mean that one 

interpretation is more likely to be perceived. For instance, elongating the faces in 

Rubin’s faces-vase, and the introduction of T-junctions that suggest to the viewer 

that the object creating the top of the 'T' is in front of the object forming the stem 

of the 'T'. These can be seen at the circled areas in Figure 2.1 (Abdallah & Brooks, 

2020). The introduction of these cues means that although the vase is still present 

in the image shown in Figure 2.1, Panel E, it is far more likely that the faces 

percept will be the one that is perceived (and vice versa for Panel F). Research 

shows that this is because there is a shared border between the two percepts (i.e., 

the line that can be perceived as belonging to either the profile of the face or the 

edge of the vase) and shared borders are assigned to a shape on just one of the 

sides they separate (e.g., Driver & Bayliss, 1995a, b; 1996). Similarly, introducing 

https://osf.io/wbmyp/
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depth cues via shading and transparency level of the edges of the Necker cube or 

Necker Lattice (e.g., Kornmeier & Bach, 2004, 2012; Abdallah & Brooks, 2020) 

image leads to the top left face being more likely to be perceived as shown in 

Figure 2.1, top, below. 

 

 

Figure 2.1: Examples of the Necker lattice (a) based on Kornmeier and 

Bach (2004) and Rubin's faces-vase (d), (b) A biased version of the reversible 

Necker lattice which is typically perceived with its front face toward the upper 

left. (c) A biased Necker lattice with its front face toward the lower right. (e) A 

modified faces-vase image biased toward the face interpretation. (f) A faces-vase 

image biased toward the vase interpretation. Red circles indicate where t-junctions 

have been introduced to serve as depth cues. Taken and slightly adapted from 

Abdallah and Brooks (2020). 
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One of the aims of this thesis is to use electroencephalogram (EEG) data 

to establish whether adaptation plays a role in the spontaneous reversals in 

perception that occur when viewing ambiguous stimuli. Therefore, it is important 

to select a method that is known to reliably induce adaptation in behavioural 

studies. Thus, the method of presenting pairs of ‘adaptor’ followed by 

‘ambiguous’ stimuli will be used in this set of experiments, in line with the well-

established practice in the currently available literature. It is important, therefore, 

when selecting the stimuli for investigating adaptation and priming effects, that a 

biased version of the chosen stimulus can be created that reliably reduces 

ambiguity so that adaptation or priming can be induced. Although stationary 

stimuli like those described above have been used to investigate adaptation and 

priming effects in behavioural studies, they have largely not been used in studies 

that have aimed to examine the neurophysiological correlates of such effects using 

neuroimaging techniques like EEG. The reason for this is because, as will be 

discussed in more detail below, many trials are required in these studies for the 

signal to noise ratio to be high enough to detect an effect (see Section 2.3 below; 

Luck, 2014). The issue with the use of the stationary stimuli described above is 

that the presentation duration required to induce adaptation effects can be upwards 

of 30 seconds (e.g., Shulman, 1993), which is too long to use in experiments that 

contain sufficient trial numbers to detect neurophysiological effects. It is not clear, 

however, whether the length of time required to adapt to these stationary stimuli is 

a general property of all stationary stimuli or only the ones that have as yet been 

used to investigate adaptation. However, in contrast to ambiguous stationary 

stimuli, ambiguous motion stimuli have been shown to reliably induce adaptation 

effects in as little as 2 seconds (e.g., Hoffman, Unsöld & Bach, 2001), and some 
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even as low as 0.64 seconds (e.g., Pinkus & Pantle, 1997; Kanai & Verstraten, 

2005; Takeuchi et al., 2008). As well as this, it is possible to create reliably 

unambiguous variants of ambiguous motion stimuli with minimal changes to the 

image as will be discussed in more detail later in this section. 

 

2.1.1 Mechanisms of motion perception 

Before justifying the choice of ambiguous motion stimulus used in this set 

of experiments, it is important to firstly outline the neural mechanisms that are 

thought to underpin the perception of such stimuli. The mechanisms behind 

motion processing have been substantially investigated in the current literature. 

Single cell studies have shown that, in macaque monkeys, a large amount of 

motion processing is carried out in areas V1, V2, V3 and the medial temporal 

complex (MT; these have been reviewed by DeYoe & Van Essen, 1988). Single 

cell recordings of motion detector responses in these areas have been shown to be 

direction specific, suggesting that these are true motion detectors (Borst & 

Egelhaaf, 1989). In humans, the neural correlates of motion perception have 

largely been studied with neuroimaging methods. In particular, the onset of visual 

motion induces the visual evoked potential in EEG studies (VEP; e.g., Bach & 

Ullrich, 1994; Snowden, Ullrich & Bach, 1995). Two VEP components are 

evoked by the onset of visual motion: a positivity from around 100-130ms at 

occipital/occipito-temporal electrodes (P1), and a negativity from around 150-

200ms at the same sites also including the vertex (N2; both components reviewed 

by Niedeggen & Wist, 1998). Studies into motion adaptation have typically 

looked at the difference in mean amplitudes of these two VEP components when 

motion is presented after a period of adaptation – if the amplitude reduces then 
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adaptation is said to have taken place (e.g., Hoffman, Dorn & Bach, 1999). These 

results are particularly prevalent for N2 (e.g., Hoffman, Dorn & Bach, 1999; Wist, 

Gross & Niedeggen, 1994; Bach & Ullrich, 1994), however there remains some 

uncertainly around the direction specificity of the P1 VEP component as it does 

not appear to show direction-specific adaptation (Hoffman, Unsöld & Bach, 

2001). Source analysis suggests that the N2 component originates in the human 

equivalent of the monkey MT area, referred to as hMT+/V5, further supporting 

the idea that it reflects direction specific mechanisms (Probst, Plendel, Paulus, 

Wist, & Scherg, 1993). These effects have been elicited by unambiguous random 

dot kinematograms (RDKs; e.g., Hoffman, Unsöld & Bach, 2001; Smith, Wall, 

Williams & Singh, 2006) as well as drifting square-wave gratings (e.g., Bach & 

Ullrich, 1994).  

In terms of the perception of ambiguous motion stimuli, Freeman, Sterzer 

and Driver, (2012) used transparent random-dot kinematograms representing 

either a cylinder rotating in depth (representing 3-dimensional motion) or two flat 

surfaces translating in opposite directions at apparently different depths 

(representing 2-dimensional motion). The authors used fMRI to compare the 

activation patterns when 2-dimensional (2D) versus 3-dimensional (3D) 

ambiguous motion was viewed. Their results showed that the hMT+/V5 complex 

shows reversal-related activity during presentation of both 2D and 3D ambiguous 

motion. In addition, their results showed that only 3D but not 2D ambiguous 

motion stimuli evoked reversal related activity in the lateral occipital complex 

(LOC), which is known for its sensitivity to 3-dimensional form (Welchman, 

Deubelius, Conrad, Bulthoff, & Kourtzi, 2005; Preston, Kourtzi, & Welchman, 

2009). Additionally, area MT shows adaptation to motion (Van Wezel & Britten, 
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2002) and this maps behaviourally onto adaptation results (Glasser, Tsui, Pack & 

Tadin, 2011). 

More broadly, the perception of ambiguous motion stimuli is also thought 

to reflect both top-down (knowledge-driven, e.g., planning of movement) and 

bottom-up processes (sensory-driven, e.g., environmental cues). For instance, the 

study by Piedimonte, Woods, and Chatterjee (2015) focused on how ambiguous 

motion is disambiguated using different sources of cues, both exogenous 

(external) and endogenous (internal). They found that, when there is an 

unambiguous exogenous cue presented alongside the ambiguous motion, this will 

strongly bias participants’ perception of that ambiguous motion. For example, if 

there is clear directional motion in a particular direction presented alongside the 

ambiguous motion, participants are likely to perceive the ambiguous motion 

moving in the same direction as the directional motion cue. This effect could not 

be modulated by the addition of competing endogenous cues, for example asking 

participants to perform or plan (i.e., involving top-down processes) movements in 

the opposite direction to the exogenous cue. This indicates that both bottom-up 

and top-down processes are involved in how we perceive and interpret motion in 

our environment with the interaction between the two streams of information 

showing a bias toward bottom-up information. However, the authors of this study 

also found that endogenous cues from learned associations were able to override 

even exogenous cues when the two were in competition. This indicates the 

widespread and complex interactions between several mechanisms when 

ambiguous motion is resolved. 
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2.1.2 Drifting sine wave gratings 

An example of ambiguous motion used when investigating adaptation and 

priming effects is that created from drifting sine wave gratings (e.g., in Pinkus & 

Pantle, 1997; Kanai & Verstraten, 2005; Takeuchi et al., 2011). Unambiguous 

motion from sine wave gratings is easily created by shifting the phase of the sine 

wave over time. For instance, motion to the right can be created by shifting the 

phase of the wave by 90º every 0.5s for example (see Figure 2.2 below). 

Ambiguous motion can also be created from drifting sine wave gratings by 

shifting the phase of the wave by 180º rather than 90º. This creates a stimulus 

where the lighter areas are replaced by the darker areas, and the motion can be 

perceived as moving either to the left or to the right because the phase shift does 

not provide a clear direction for the motion's progression. This ambiguity arises 

from the correspondence problem, as the visual system struggles to match 

elements from one frame to the next when the shift is 180º, making the direction 

of motion indeterminate. (see Figure 2.2 below).  
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Figure 2.2 Illustration demonstrating how the phase of sinewaves can be 

shifted over time to create directional and ambiguous motion. The top of the 

figure shows a phase shift of +90° in space, every arbitrary time unit, leading to 

the generation of motion to the right in this instance. The bottom of the figure 

shows a phase shift of ±180° in space, every arbitrary time unit, leading to the 

generation of ambiguous motion that can be perceived as moving either to the left 

or to the right. Adapted from Kanai and Verstraten (2005). 

 

These sine wave gratings have been successfully used to study adaptation 

and priming effects in behavioural studies, under temporal conditions that are 

suitable for use with EEG. For instance, Pinkus and Pantle’s (1997) design 

involved an adaptation phase where participants were exposed to directional 

motion created from a drifting sine wave grating (similar to that shown in the top 

diagram of Figure 2.2 above). This was followed by a variable inter-stimulus 
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interval (ISI) and then a test phase, where an ambiguous test grating (similar to 

that shown in the bottom diagram of Figure 2.2), was briefly shown. The authors 

were able to show that visual motion priming (VMP) was able to be induced in 

192ms and adaptation to the test stimulus (the directional motion generated by the 

sine-wave grating) was able to be induced in 1530ms. Using a similar design, 

Kanai and Verstraten (2005) were able to show that VMP was able to be induced 

in just 80ms and adaptation in 640ms; an effect they term the Rapid Motion 

Aftereffect (rMAE). These results were also replicated by Takeuchi et al. (2011), 

who used a similar design but removed the ISI. The results from these studies 

provide robust evidence that drifting sine wave gratings can create directional and 

ambiguous motion. These studies also show that this motion can be used to induce 

priming and adaptation effects in durations that are brief enough that a large 

number of trials can be used in an experiment, which is necessary to collect 

meaningful EEG data (see Section 2.3). 

In addition to these drifting grating stimuli being able to induce adaptation 

effects in an appropriate amount of time to be used with EEG studies, they are 

also of interest because it is not presently known whether they can induce the 

same event related potential components (ERP; see Section 2.3.1, below for more 

detail) that are known to be induced by reversals in perception of stationary 

ambiguous stimuli (when they are viewed intermittently, see Section 2.2.2.1 

below; as noted and discussed in Kornmeier & Bach, 2012). Using these stimuli 

in this set of experiments, therefore, will provide some evidence regarding the 

potential sharing of mechanisms between reversals of ambiguous stimuli that are 

stationary and those that involve motion perceived from drifting sine wave 

gratings. Additionally, information can also be gathered on whether any ERP 
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components associated with perceptual reversals of ambiguous motion stimuli 

differ according to whether that reversal occurred after a period of adaptation or 

was spontaneous. Using the ambiguous motion from sine wave gratings in this set 

of experiments will also allow this to be examined.  

 

2.1.2.1 Stimulus parameters 

Sine wave gratings can be configured in various ways to study different 

aspects of visual perception. Of relevance here are spatial frequency and contrast. 

Spatial frequency refers to the number of cycles (i.e., the dark and light bands) of 

the grating per unit of visual angle, usually measured in cycles per degree (cpd). 

Higher spatial frequencies have more black and white stripes in a given space, 

resulting in finer patterns, while lower frequencies have fewer cycles, resulting in 

broader patterns. Research has shown that gratings with high spatial frequencies 

may not be detected well under lower light conditions (e.g., Hess et al., 1990; 

such as those in an EEG laboratory). In terms of the effect of spatial frequency on 

motion priming and adaptation, Pinkus and Pantle (1997) found a small but 

significant effect, in that the gratings with higher spatial frequencies (above 

1.4cpd) showed slightly less sensitivity to VMP. Therefore, the sine wave gratings 

used in the set of experiments here will use a spatial frequency of 1cpd as we 

expect this to lead to a robust sensitivity to motion at this frequency. 

A second parameter to consider is contrast, which deals with the difference 

in luminance between the dark and light bands of the grating. High contrast 

gratings have a stark difference between the dark and light areas, making the 

pattern more pronounced, whereas low contrast gratings have a more subtle 

difference, making the pattern less distinct. Takeuchi et al. (2011) used a staircase 
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procedure with drifting sine-wave gratings to investigate the minimal detectable 

contrast at both low and high retinal illuminance levels. They found that the 

average Michelson luminance contrast thresholds of their participants were 0.097 

at high retinal illuminance and 0.83 at low retinal illuminance. Additionally, Kanai 

and Verstraten (2005) used a Michelson luminance contrast of 0.5 when creating 

their stimuli and it is this study that the set of experiments in this thesis is based 

upon. Therefore, a Michelson luminance contrast of 0.5 will be used when 

creating the sine wave grating stimuli to be used here. 

 

2.2 Response choice 

There are different considerations to be made when it comes to the choice 

of response in the set of experiments described in this thesis. Experiment 1 of 

Chapters 3 and 4 contain two block types – one containing pairs of directional 

followed by ambiguous motion, and one containing ambiguous motion only. 

There are slightly different considerations for each of these: the issue of when to 

mark the onset of a perceptual reversal (of relevance in the blocks containing only 

ambiguous motion) when analysing the EEG data from these trials, and the more 

general issue of how participants are asked to report their perception at the end of 

a trial.  

2.2.1 Time reference considerations 

EEG offers the capability to measure neural processes associated with 

perceptual reversals with millisecond accuracy, which could be crucial in 

determining whether these reversals are driven by bottom-up mechanisms or by 

more top-down cognitive processes. Nonetheless, the intrinsic nature of these 

perceptual changes makes it challenging to pinpoint an exact time reference for 
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EEG analysis. To address this, two main approaches have been developed, each 

having its own set of benefits and drawbacks. The following subsection will 

examine relevant studies in this context and compare their findings, then justify 

the choice of approach used in the set of experiments described in this thesis. 

 

2.2.2.1 The Manual vs Stimulus Onset paradigms 

As described in more detail in section 2.3.1 below, event-related potentials 

(ERPs) are created by isolating and averaging EEG data from around an event of 

interest. In experiments involving the perception of ambiguous stimuli the event 

of interest is typically the moment of a perceptual reversal. The issue here is that 

this is a purely subjective event, with no exogenous markers to reference. 

Therefore, to study these events using ERP and other analyses, researchers require 

an objectively observable marker for the subjective perceptual reversal. Exactly 

what to use as this marker is a subject that has been debated in the literature, and 

two main approaches to the problem have been developed. One approach is that 

the ambiguous stimuli are presented continuously, and participants are asked to 

respond with a button press (for example) as soon as they perceive a reversal. The 

button press is then used as the marker of the subjective reversal in perception and 

any analyses are relative to this. This approach is known as the manual response 

paradigm. The second approach involves presenting the ambiguous stimuli 

intermittently, with participants responding to indicate their perception of each 

presentation. This approach usually assumes that any reversals in perception occur 

at or near to the onset of the stimulus, and so it is this that serves as the marker for 

the subjective reversal and any analyses are instead time-locked to stimulus onset. 
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These two approaches will now be discussed in more detail, and the choice of 

approach used in this set of experiments will be justified. 

 

2.2.2.1.1 The ‘Manual Response’ paradigm 

As mentioned briefly above, the ‘Manual Response’ paradigm involves 

presenting an ambiguous stimulus continuously on the screen, and participants are 

asked to make some kind of manual response (e.g., key press, mouse click, button 

press etc.) when they experience a reversal in their perception. These manual 

responses are then used as a time reference with which to segment the EEG data. 

This is different from most ERP analysis pipelines in that the data of interest does 

not come after the event that serves as the time reference, but before it.  

Studies that have used the manual onset approach alongside a type of 

ambiguous motion stimulus known as stroboscopic alternative motion (SAM) 

have found a positive ERP component occurring maximally at right parietal 

electrodes around 250ms before the manual response (Basar-Eroglu et al., 1993; 

Strüber & Herrmann, 2002). This component was also found with stationary 

ambiguous stimuli such as the Necker cube (Strüber et al., 2001; Mathes et al., 

2006). These studies have interpreted this component as evidence for top-down 

processes as it appears to be closely related to the P300 component, which is 

known to reflect cognitive processes (e.g., Soltani & Knight, 2000). To infer more 

detail about the timing of this component, Strüber & Herrmann (2002) asked 

participants to continuously view SAM stimuli whilst magnetoencephalography 

(MEG) data was recorded. They used two variants of this stimulus: one 

ambiguous, and one disambiguated as the dots moved simultaneously in either a 

horizontal or a vertical direction. Using these stimulus variants, they induced 
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either endogenous (using the ambiguous SAM; i.e., any reversals in perception are 

due to changes in brain activity and not physical stimulus changes) or exogenous 

perceptual reversals (using the disambiguated SAM; i.e., any reversals in 

perception are due to physical stimulus changes), and found that this positive, 

parietal component was present for both. Participants’ reaction times after the 

exogenous reversals of the disambiguated stimuli were around 550ms. Thus, the 

temporal relationship between the three events was that the reversal event 

occurred, followed by the positive ERP component and then finally the button 

press. Therefore, the authors assumed that, as the P300-like ERP component 

occurs after the perceptual reversal itself, it is likely to reflect conscious 

recognition of the reversal.  

In addition to ERP components, studies using the manual response 

approach have found effects in both alpha and gamma power bands. For instance, 

in addition to their P300-like ERP component, Strüber & Herrmann (2002) also 

found a sudden drop in alpha-band power between 300 and 200ms before the 

participants made their manual response to the exogenously induced reversals of 

the SAM stimuli. For endogenous perceptual reversals, rather than a sudden 

decrease, the authors found a steady continual decrease in the 1000ms before the 

manual response. The authors interpreted these findings as being indicative of a 

steady bottom-up destabilisation of the percept in endogenous reversals (i.e., over 

the period of 1000ms before the manual response) rather than the sudden 

destabilisation caused by the exogenously induced reversals. This alpha power 

effect was later shown to be in the lower bands only (6-10Hz; İşoğlu-Alkaç & 

Strüber, 2006). In addition to the effects found in alpha-band power, Basar-Eroglu 

et al. (1996) also found an increase in right-frontal gamma-band power within the 
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1000ms leading to the manual response, for responses indicating a perceptual 

reversal (compared to stability) only. The authors interpreted this result as 

evidence for the cognitive destabilisation processes thought to underpin reversals 

in perception. The manual response paradigm, therefore, has been used to reveal 

alpha power decreases alongside gamma power increases in the 1000ms leading 

up to the manual responses made to indicate reversals in perception. This period is 

thought to reflect the destabilisation of the currently active percept. This is 

followed by the P300-like parietal positivity ERP component between 500-250ms 

before the manual response, thought to reflect the conscious recognition of the 

reversal event. Thus, if the P300-like component reflects the conscious 

recognition of the perceptual reversal, the actual reversal event must have 

occurred before this (Kornmeier & Bach, 2012). 

A problem, therefore, with the manual response paradigm is that results 

from studies using this approach can only point to quite a lengthy time-window in 

which the reversal itself may have occurred. The effects found in this window 

could be due to the reversal itself or any number of related processes such as 

response preparation. In addition, the very nature of the paradigm means that there 

is no discernible marker for the reversal event. Instead, data is backward averaged 

from the point of manual response. Studies have revealed that this backwards 

averaging process leads to a loss of signal due to an increase in the variability of 

individual ERP components based on a large amount of inter- and intra-participant 

variability in reaction time (e.g., Strüber et al., 2000; Strüber & Herrmann, 2002; 

Kornmeier and Bach, 2004b). Intra-participant variability is highlighted in 

Kornmeier and Bach’s (2004b) study, where participants were continuously 

presented with one of two unambiguous variants of the Necker cube (top right vs 
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bottom left front-facing cubes), whilst EEG data was recorded. Exogenous 

perceptual reversals were induced as the two variants would randomly switch, and 

participants were asked to respond to indicate this reversal in orientation as 

quickly as they could, using a key press. The median reaction time (from stimulus 

onset to key press) of these responses was 616ms, with an interquartile range 

between 530 and 733ms. When the EEG data was averaged relative to the onset of 

the stimulus switch (i.e., when a top-right as front-face variant was replaced with 

a bottom-left front-face variant), this resulted in several early visual ERP 

components related to the exogenous reversal. However, when that same data was 

what the authors call “backward averaged” relative to the participant’s response, 

the majority of these early visual ERP components were lost, leaving only the 

later, P300-like parietal positivity. Whilst this was initially shown for exogenous 

reversals, the authors went on to show that the same issues arise when ERPs are 

formed from averaging using the manual response paradigm from endogenous 

reversal data (Kornmeier & Bach, 2012). Therefore, the effect of the intra-

participant variability in reaction time was that the early ERP components were 

lost to the averaging process.  

One of the aims of the EEG experiment described in this thesis is to 

investigate whether the established ERP components associated with perceptual 

reversals occur during reversals of ambiguous drifting sine wave motion. These 

components (the reversal positivity, RP, and reversal negativity, RN; see Chapter 1 

and Section 2.3.1 below) occur before the P300-like ERP component, meaning 

that the backwards averaging process involved in the manual response paradigm 

is likely to lead to these two early visual components being missed (Kornmeier & 
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Bach, 2012). Therefore, this approach is not suitable to use as a means of time 

referencing the EEG data collected in Chapter 4. 

 

2.2.2.1.2 The Stimulus Onset paradigm 

In contrast to the Manual Response paradigm, the Stimulus Onset 

paradigm involves stimuli being presented intermittently and the onset of each 

stimulus being used to time-lock the ERP. The underlying assumption of this 

approach is that reversal events will occur at or very near to stimulus onset. This 

approach was taken by Orbach et al. (1966), who presented a Necker cube 

intermittently and varied the stimulus presentation time and inter-stimulus interval 

(ISI) to show that reversal rates (in number of reported reversals per minute) 

increased with ISIs up to 400ms where there was an average of around 40 

reversals per minute. These results were later replicated by Kornmeier et al. 

(2002). ISIs longer than this led to decreasing reversal rates, a finding confirmed 

by further studies which went on to show that reversals can even be stopped 

altogether when ISIs are in the range of seconds (e.g., Maier et al., 2003).  

The use of the onset paradigm to average EEG data was first implemented 

by O’Donnell et al. (1988). These authors presented participants with a mixed 

sequence of ambiguous and unambiguous Necker cube variants for 700ms, with 

an ISI of 3300ms. Participants were asked to report their perception of each 

stimulus at the end of each stimulus presentation with a key press. Therefore, 

there were two types of reversal in their experiment: endogenous (reversals 

occurring between two successive ambiguous Necker cube presentations) and 

exogenous (reversals occurring between two successive and opposite 

unambiguous Necker cube presentations). The authors found a late fronto-parietal 
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positivity for both endogenous and exogenous reversals, which was shown to be 

larger and earlier in the case of exogenous reversals. This component was similar 

to the P300-like positivity found with the manual response paradigm (e.g., Basar-

Eroglu et al., 1996; Strüber et al., 2002). However, Kornmeier and Bach (2004b, 

2012) identified several limitations in O’Donnell et al.’s (1988) original design 

and conducted a partial replication of their study with these issues addressed. 

Firstly, Kornmeier and Bach (2004b) pointed out that O’Donell et al.’s (1988) 

unambiguous variants of the Necker cube were not truly unambiguous and could 

instead be perceived in two different orientations. Kornmeier and Bach (2004b) 

addressed this issue by using a Necker lattice with depth and shading cues, that 

successfully reduced the perceptual ambiguity. Secondly, Kornmeier and Bach 

(2004b) argue that the fact that reversal rates increase with ISI up to 400ms and 

then decrease with increasing ISI after this, suggests that there are two processes 

at work. One which drives the increase in reversal rate and a second that drives 

the decrease in reversal rates. Therefore, the authors claim that O’Donnell et al.’s 

(1988) choice of ISI at 3300ms may only be examining the second of these 

processes and therefore might not serve as a good model for continuous viewing. 

Therefore, the authors used an ISI of 400ms to make their paradigm as close as 

possible to continuous viewing but still allowing participants enough time to 

respond within the ISI. Kornmeier and Bach (2004b) used a presentation time of 

800ms to allow sufficient time for the P300-like positivity to develop whilst also 

being brief enough to help prevent additional perceptual reversals within the 

stimulus presentation time. Finally, Kornmeier and Bach (2004b) asked 

participants to respond to indicate their perception in two conditions: one where 

they were asked to press a key only when they experienced the current stimulus as 
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being different from the previous one but not if it was the same (the reversal 

condition), and one in which they were asked to do the opposite (the stability 

condition). Kornmeier and Bach’s (2004b, 2006) partial replications of O’Donnell 

et al.’s (1988) experiment show that there were multiple ERP components 

associated with perceptual reversals, rather than only the P300-like component 

revealed by studies using the manual response paradigm. As shown in Figure 2.3 

below, the data from these studies revealed 4 ERP components associated with 

endogenous reversals and 3 with exogenous reversals.  

 

Figure 2.3 Representation of the ERP components associated with 

perceptual processing of Necker and unambiguous lattices. The timelines 

represent the sequence and timing of ERP components following the onset of 

stimuli for both a Necker lattice (top) and an unambiguous lattice (bottom), as 

reported by Kornmeier & Bach (2004). Stimulus onset is marked at time zero (0 

ms). Following the onset, the key ERP components are identified: Reversal 

Positivity, Reversal Negativity, Frontopolar Positivity, and Parietal Positivity, 

culminating in the Participant's Response. Each component is depicted with a blue 

bar (indicating a positive peak) or a red hatched bar (indicating a negative peak), 

with their respective time windows and peak latencies in milliseconds (ms). Taken 
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from Kornmeier and Bach (2012), with data from Kornmeier and Bach (2004b, 

2006). 

 

Chapter 1 discusses these in more detail but briefly, these are the reversal 

negativity (RN), frontopolar positivity, and parietal positivity for exogenous 

reversals, and these plus the additional reversal positivity (RP) for endogenous 

reversals. Kornmeier and Bach (2004b, 2006, 2012) suggest that the RP was likely 

missed in studies using the manual response paradigm due to the variability in 

participants’ reaction times but has been successfully reported in several other 

studies using the stimulus onset paradigm (Kornmeier & Bach, 2004a; 2005; 

2006; Kornmeier et al., 2007; 2011 and Britz & Pitts, 2011). These results 

highlight the increased sensitivity of the stimulus onset paradigm to detect events 

that would be missed due to the backwards averaging and reaction time variability 

caused by the manual response paradigm. The RP and RN are investigated in 

Chapter 4 of this thesis, and as the RP is not able to be detected using the manual 

response paradigm due to its relatively poor temporal precision, the stimulus onset 

paradigm is necessary to investigate these components (Kornmeier & Bach, 

2012). Additionally, multivariate pattern analysis (MVPA) is carried out on the 

EEG data gathered in the experiment described Chapter 4. The classification 

across time approach of MVPA compares identical time points within a trial (see 

Section 2.3.2, below). Therefore, for this to be successful, there needs to be a 

point in time with which to segment the EEG data used to train and test the 

classifier on, to reduce any variability between the events occurring in each trial. 

Additionally, ISI and presentation time have been robustly shown to be the key 

factors to manipulate to elicit priming and adaptation effects (e.g., Pinkus & 
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Pantle, 1997, Kanai & Verstraten, 2005). Therefore, it is vital that stimuli in the 

set of experiments described here, are presented intermittently, in order to 

manipulate these two variables empirically. The exact timing parameters used are 

thoroughly investigated and discussed in Chapter 3.  

 

2.2.2 General response considerations 

Previous studies have asked participants to respond to the pairs of 

adapting/ambiguous drifting sine wave motion stimuli by asking whether the two 

stimuli in each trial were moving in the same or a different direction (e.g., Kanai 

& Verstraten, 2005). This response is simple for participants; they press just one 

button, for example, at the end of a trial. Whilst this response does gather 

information on whether the participant experienced a reversal or stable trial, it 

does not allow any information beyond that to be extracted. For instance, 

information on the percept of each of the two stimuli presented is not collected. 

Instead, this is possible by asking participants to report their perceived direction 

of each of the two stimuli in the pair as Pinkus and Pantle (1997) did. Here, 

participants were asked to respond with a button to indicate motion to the left or 

the right for each of the two stimuli (‘left’, ’right’, for instance). Trials were then 

coded, post hoc by the experimenters, as reversal or stable according to whether 

the motion was perceived in the same direction or not. This dual response method 

means that trials can also be classified as “left followed by rightward motion 

reversal” and “left followed by leftward motion stable” trials, for instance. This is 

particularly important because the perception of motion in a leftward direction has 

been shown to elicit a different scalp voltage pattern than motion to the right (e.g., 

Bae & Luck, 2019).  Therefore, collapsing trials across reversal/stable in either 
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direction would preclude any examination of direction-specific reversal-related 

activity and allow examination of only non-directional reversal-related activity. 

Consequently, in Experiment 1 of Chapter 3 and the experiment described in 

Chapter 4, this dual response method was used.  

 

2.3 Electroencephalogram (EEG) data acquisition and analysis 

EEG data is particularly advantageous for examining the neural 

mechanisms underlying the perception of ambiguous motion, especially in the 

context of adaptation. The high temporal resolution of EEG allows for the 

tracking of rapid fluctuations in brain activity that accompany the perception of 

motion, which is crucial when studying phenomena that unfold on the scale of 

milliseconds, such as the immediate effects of adaptation on perception. 

Furthermore, EEG's sensitivity to the different frequency bands of neural 

oscillations enables the exploration of various aspects of neural processing, from 

the initial sensory responses to higher cognitive functions involved in interpreting 

motion. This allows for a detailed analysis of how adaptation might alter the 

temporal dynamics of the neural response to motion perception.  

 

2.3.1 Event-related potential (ERP) analysis 

One aim of this thesis is to explore whether previously established markers 

of perceptual reversals are present during perception of the ambiguous drifting 

sine wave motion; specifically, the RP and RN (Kornmeier & Bach, 2012). These 

two ERP components are thought to be markers of different stages of processing 

during perceptual reversals (see Chapter 1). Therefore, one of the aims of Chapter 

4 is to determine whether these two components are present during perceptual 
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reversals of ambiguous drifting sine wave stimuli, and whether they differ in their 

amplitude or latency (or indeed occur at all) compared to their appearance during 

the perception of stationary ambiguous stimuli.  

ERP analysis is a technique used in electrophysiological studies, 

particularly within the field of cognitive neuroscience, to measure the brain's 

electrical response to specific sensory, cognitive, or motor events. ERPs are 

derived from EEG data by aligning segments of the EEG to the onset of an event 

(such as a stimulus or a response) and then averaging these segments across many 

trials to enhance the signal-to-noise ratio (Luck, 2014). EEG data around this 

event is isolated to create an epoch for every instance of the event. This typically 

includes a portion of data from before the event, to be used as a baseline, and then 

a portion of data after the event of interest. This data is then averaged within 

conditions, so that noise/activity unrelated to the event-of-interest within the data 

is cancelled out, and only activity that is systematically time-locked to the event 

of interest remains. This averaging process reveals a series of voltage deflections, 

known as ERP components, which are thought to reflect specific neural processes 

associated with the event. 

Each ERP component is characterised by its polarity (positive or negative), 

latency (the time from the event onset to the peak of the component), and scalp 

distribution. The components are often named according to their polarity and the 

approximate latency. For example, an N170 component would be a negative-

going ERP component peaking around 170 milliseconds after the stimulus onset, 

typically associated with the processing of faces. 

ERP analysis is particularly useful for understanding the timing and 

sequence of cognitive processes because different ERP components are linked to 
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different aspects of perception, attention, memory, and decision-making. By 

comparing the ERPs elicited by different types of stimuli or in different 

experimental conditions, it is possible to infer how these cognitive processes 

differ across conditions. Luck (2014) emphasises the utility of ERP analysis in 

identifying when particular cognitive processes occur. This is particularly useful 

when the behavioural response of the participant is consistent across conditions, 

but the underlying neural mechanism might be different. 

For example, Pitts et al. (2008) used ERP analysis to compare the 

components associated with perceptual reversals of the Necker Lattice that were 

voluntary (i.e., participants were asked to voluntarily induce a reversal) with those 

that were spontaneous (i.e., participants passively observed the stimulus and any 

reversals occurred involuntarily). Pitts et al. (2008) found that there were 

differences in the latencies, amplitudes and scalp topographies of the ERP 

components associated with voluntary vs spontaneous perceptual reversals of the 

Necker Lattice. This study highlights the ability of ERP analysis to discern 

between different underlying neural mechanisms despite the behavioural response 

of the participant remaining the same across experimental conditions (i.e., 

voluntary vs spontaneous reversals). 

Thus, in the set of experiments described in this thesis, ERP analysis is a 

sensible approach to adopt to determine whether the mechanisms underpinning 

perceptual reversals that occur after adaptation are different to those that occur 

without a preceding adaptation period. However, ERP analysis is not suitable for 

investigating global brain activity patterns following a period of adaptation and 

determining whether these patterns are similar to those observed during perceptual 

reversals that occur without prior adaptation. Typical univariate ERP analysis 
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approaches excels in pinpointing the timing and location of brain responses to 

specific events, but it does not capture the full-brain activity patterns that are 

necessary to compare the overall neural dynamics associated with adaptation and 

spontaneous perceptual reversals.  

 

2.3.1.1 Limitations of ERP analysis 

According to Luck (2014), the limitations of ERPs stem from their 

relatively poor spatial resolution and the difficulty in interpreting the waveforms. 

ERPs are not ideal for precisely locating the sources of neural activity within the 

brain, as electrical signals are distorted when they pass through various tissues to 

the scalp. This issue is compounded by the 'inverse problem', where multiple brain 

activity patterns could result in the same scalp patterns, making accurate 

localisation challenging. 

Additionally, ERPs are most effective for analysing brain responses to 

discrete events and may not capture continuous cognitive processes or the 

complex patterns of ongoing neural communication effectively. By their nature, 

ERP components are only measurable under certain conditions. For example, 

many neurons must be activated concurrently, or the individual neurons must have 

similar orientations in the brain (Luck, 2014). The ERP waveform represents 

activity that is time-locked and phase-locked to an event, but responses that are 

not event-related or vary in phase can be obscured by the averaging process, 

which can eliminate non-phase-locked activities such as ongoing oscillations. 

Also, overlapping components from closely timed successive cognitive processes 

can obscure the determination of which ERP components are related to specific 

cognitive processes. 
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Furthermore, the ERP technique involves averaging responses across 

multiple trials to reduce noise, whilst assuming that the response is consistent 

across trials. This averaging process may not reflect variations in cognitive or 

perceptual state on a trial-by-trial basis and reduces the ability of the analysis to 

utilise the information contained in the activity from single trials when detecting 

effects.  

As mentioned previously, ERP analysis is also univariate in nature. This 

means that activity across the whole scalp is not considered and is instead reduced 

to an average of only a few localised positions. Given that research has shown that 

widespread neural mechanisms are likely to be involved in the occurrence of 

perceptual reversals, particularly with ambiguous motion stimuli (e.g., Piedimonte 

et al., 2015), considering a small subset of the available information is likely to 

exclude information that is relevant to the experimental manipulation. In the set of 

experiments described in this thesis, an aim is to establish whether an adapted 

brain state, induced by exposure to directional motion, occurs during passive 

viewing of ambiguous motion. This adapted state is likely to involve multiple 

scalp locations that should be considered in relation to one another, which is not 

possible to consider using ERP analyses. Therefore, in addition to using ERP 

analysis to determine whether the known components associated with perceptual 

reversals are present during reversals of ambiguous sine-wave motion, a different 

type of analysis is required to answer all the aims of this thesis. Multivariate 

pattern analysis, as the name suggests, is a type of analysis that considers multiple 

variables in parallel, at any given timepoint. In the context of EEG data, this type 

of analysis considers the whole-brain pattern of activity at each time point in a 



116 
 

trial without the need for averaging. To answer questions about an adapted brain 

state therefore, this type of analysis is more suitable. 

 

2.3.2 Multivariate pattern analysis (MVPA) 

Multi-voxel Pattern Analysis has been applied to functional magnetic 

resonance imaging (fMRI) blood oxygen level dependent (BOLD) responses to 

decode cognitive states from recorded neural activity (see Haynes & Rees, 2006 

and Haynes, 2015, for reviews) for over a decade. As the name here suggests, 

activation patterns across multiple voxels are taken into consideration, in contrast 

to the univariate approaches that examine the time course of each voxel 

independently. This allows patterns of activity over the entire brain (or indeed 

smaller subsections of it) to be analysed rather than only focusing on a single area 

at a time. In practice this leads to researchers being able to infer participants’ 

cognitive states from the BOLD response, for instance which stimulus is currently 

being attended (e.g., Haxby et al., 2001; Sterzer, Haynes & Rees, 2008) or which 

object is currently being imagined (Stokes et al., 2009). Recent years have seen 

the technique applied to neuroimaging more broadly, and the term MVPA is more 

widely known as multivariate pattern analysis, as it encompasses a range of 

methods that all take into consideration the relationship between multiple 

variables rather than treating them as though they are independent of one another. 

In M/EEG studies, the electrodes serve as variables rather than the voxels in fMRI 

studies, but the practice is the same. Just as with fMRI studies, traditional 

univariate analyses of EEG data often examine individual electrodes or averaged 

signals across specific electrode clusters, thus potentially missing the distributed 

patterns of neural activity. In contrast, MVPA of EEG data leverages the high-
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dimensional data space formed by multiple electrodes, offering a means to detect 

complex, spatially distributed neural signatures that might be overlooked in 

conventional analyses (Hebart & Baker, 2018). 

A typical multivariate analysis pipeline begins with training a machine 

learning classifier, such as a Support Vector Machine or Linear Discriminant 

Analysis based classifier (SVM and LDA, respectively). The set of trials is 

divided into two sets: a training set and a testing set. In EEG studies, from the 

training set, the classifier is provided with EEG scalp voltage data across multiple 

electrodes (i.e., “features” in machine learning terminology) at a given time point 

and the condition label (i.e., “class” in machine learning terminology) associated 

with the scalp pattern on each trial. From this, the classifier learns a decision 

boundary to discriminate between conditions based on the pattern of scalp EEG. 

The trained classifier is then tested by being provided with the remaining portion 

of the EEG scalp voltage data without class labels (for an illustration of this 

process, see Figure 2.4, below). It makes predictions for the test set and an 

accuracy is calculated. This is repeated independently, for each time point in the 

data.  

It is important to train and test the classifier on independent data (known 

as cross-validation) to avoid the phenomenon known as “double dipping’. If the 

classifier is trained and tested on the same set of trials, then there is a risk of 

overfitting the model based on noise that is present in the data and leading to an 

artificially inflated prediction accuracy (e.g., Kriegeskorte et al, 2009; Fahrenfort 

et al., 2017). Hence, during training, 10-20% of the trials are kept back to 

independently test the classifier on. The ability of the classifier to correctly predict 

class from this test data set alone is known as decoding accuracy. For an 
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experiment with two classes, a decoding accuracy of 50% is the level that would 

be expected by chance. Therefore, timepoints with decoding accuracies 

significantly greater than chance level are generally accepted as one in which the 

effect has been detected – in other words, sufficient information about the 

experimental manipulation (e.g., perception, stimulus category, attentional state, 

etc.) is contained in the patterns of brain activity (e.g., Kriegeskorte et al., 2009; 

Grootswagers, Ward & Carlson, 2017; Hebart & Baker, 2018). For an experiment 

with multiple participants, individual decoding accuracies are typically averaged 

to produce a ‘grand average’ plot of decoding accuracy across the time course of 

the trial.  

 

Figure 2.4: Schematic representation of the multivariate pattern analysis 

(MVPA) process. This figure outlines the key steps involved in conducting MVPA 

with neuroimaging data. (A) Stimuli are presented to participants while neural 

activity is recorded. (B) Patterns of activity are extracted from the recorded data, 
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with the different shapes here representing different conditions. The data points 

are represented in a multi-dimensional space with electrodes/channels as the 

dimensions for EEG data. (C) A classifier is trained on a subset of the data to 

differentiate between the conditions based on activity patterns. (D) The trained 

classifier is then tested on a separate set of data, with the percentage correct 

indicating its predictive accuracy. (E) In the context of EEG/MEG data, the 

classifier's accuracy is assessed over time, producing a time-course plot that 

reflects how neural discrimination of conditions changes. (F) For fMRI data, the 

procedure is repeated over different brain regions, which are color-coded based on 

the classifier's accuracy in each region, illustrating the spatial distribution of 

informative neural patterns. This process enables the identification of temporal 

and spatial patterns of brain activity that correlate with specific cognitive 

processes or stimuli presentations. Taken from Grootswagers et al. (2017). 

 

The use of MVPA in neuroimaging studies has led to considerable changes 

in the way that researchers understand the functional organisation of the brain. For 

instance, fMRI studies that use univariate analyses have long suggested that the 

brain is organised into distinct areas that are each specialised for different 

functions. For example, the perception of specific stimulus categories such as 

visual words (Cohen et al., 2002; Kleinschmidt & Cohen, 2006), or faces (e.g., 

Kanwisher et al., 1997; Kleinschmidt & Cohen, 2006; Hesselmann et al., 2008). 

These studies have shown that, for example, an area known as the visual word 

form area (VWFA) shows increased activation to visual words (Cohen et al. 2002) 

and is known to show reduced or absent responses in patients with pure alexia 

(Kleinschmidt & Cohen, 2006; pure alexia is the inability to read written text, 
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whilst other aspects of language processing are preserved). Additionally, the 

fusiform face area (FFA) robustly shows higher activation in the identification of 

faces compared to non-face objects, leading to conclusions that the FFA is critical 

for the perception of faces (e.g., Puce et al., 1996; Kanwisher et al., 1997; Marotta 

et al., 2001). However, the use of multivariate analyses has since altered the view 

that the brain is organised into discrete, category specific areas. For instance, 

Haxby et al., (2001) used MVPA to decode participants’ perception from the 

pattern of BOLD responses in an fMRI study. Specifically, whether they were 

viewing faces compared to non-face objects.  They found that they were 

successfully able to decode perception based on the pattern of activity across well-

established ‘face specific’ regions and critically, they were also able to do this 

when using the patterns of activity from regions that were outside of these 

category specific areas. Additionally, the authors found patterns of activity that 

could discriminate all categories within brain regions that had previously been 

thought to be highly category specific. For instance, the pattern of activation in 

the FFA contained enough information about non-face objects for it to be used to 

successfully discriminate between different stimuli, suggesting that the FFA is not 

only specific to human faces as the results from previous univariate studies had 

suggested. Instead, the results from Haxby et al. (2001) suggest that that the 

neural representation of different object categories is widespread throughout the 

brain and very much overlapping, rather than localised and discrete. The results 

from this study particularly highlight the ability of MVPA to pick up on 

differences based on whole-brain activity patterns across multiple voxels that 

univariate analyses might miss, as they focus on comparing relative activity levels 

of individual voxels independently.  
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In EEG studies, a similar increase in MVPA’s ability to detect otherwise 

latent effects has been demonstrated when it is compared to that of more 

traditional univariate techniques such as ERP analysis (see Section 2.3.1 above). 

For instance, List et al. (2017; see also Chapter 1) showed that univariate and 

multivariate analyses were both able to reveal an effect of perceptual state from 

EEG scalp activity. Specifically, both analyses could determine a difference 

between left versus right stimulus location, faces versus Gabor stimuli, and 

upright versus inverted faces. However, in a second experiment, the authors were 

able to show that only MVPA was able to successfully distinguish between local 

versus global attentional states. Univariate analyses failed to detect any significant 

effect of attentional state on scalp voltage activity. The authors highlight that their 

results demonstrate that MVPA reveals distinctive spatiotemporal patterns of 

neural activity discriminating between behavioural states, making it a sensitive 

tool for characterising the neural correlates of perception and attention and 

therefore a sensible choice for analysing the EEG data collected in the set of 

experiments described in this thesis. Additionally, Ronconi et al. (2017) used 

MVPA to train a classifier “searchlight” on the whole electrodes/frequencies/times 

domain. The “searchlight” technique involves systematically moving a spherical 

cluster (the "searchlight") across the brain volume in an fMRI study, or across 

sensors in EEG/MEG studies, to identify regions or sensor clusters where the 

local patterns of activity can reliably predict experimental conditions or 

behavioural outcomes. Using this technique, Ronconi et al., (2017) found that 

perception of a bistable stimulus could successfully be decoded from the phase of 

oscillations in the pre-stimulus period. Analysing the pre-stimulus period using 

univariate analyses is not possible in this way, as activity during this period this is 
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usually flattened by the averaging process (e.g., with ERP analysis the pre-

stimulus period is typically used as a baseline, see Section 2.3.1 above). MVPA 

has also been shown to be able to detect differences in participants’ perception 

much earlier than traditional ERP analyses, making it a sensible method to use to 

detect even brief temporal effects in EEG data (Cauchoix et al., 2012; 2014). 

In addition to the findings discussed above, the temporal resolution of 

EEG (i.e., the range of milliseconds) allows MVPA methods to be applied 

dynamically across different time points. This opens the possibility to explore 

how distributed patterns of neural activity evolve over time, thus offering a 

dynamic view of information processing that is particularly relevant for tasks 

involving perception, attention, and action (King & Dehaene, 2014). The temporal 

generalisation technique devised by King and Dehaene (2014) extends the 

application of MVPA, particularly for EEG and MEG data analysis. This method 

takes a machine learning algorithm, such as SVM or linear discriminant analysis 

(LDA), and trains it on brain activity data at a specific time point to distinguish 

between different experimental conditions (as described above). This trained 

classifier is then tested not just on the data from the time point it was trained on 

but across all time points in the experiment. The outcome is a temporal 

generalisation matrix where the rows correspond to the training time points and 

the columns to the testing time points, revealing the classifier's accuracy over time 

(see Figure 2.5, below). The diagonal of this matrix represents instances where the 

brain activity pattern accurately predicts experimental conditions at matching 

training and testing times, while the off-diagonal elements indicate how these 

patterns generalise across different times. By analysing the generalisation matrix, 

researchers can infer the temporal evolution of the neural representations 



123 
 

underlying cognitive processes, offering a dynamic view of how information 

processing unfolds in the brain over time.  

 

Figure 2.5: Illustrative temporal generalisation matrices for various 

cognitive processing scenarios. This figure showcases the application of temporal 

generalisation technique in decoding patterns of brain activity over time for 

different types of cognitive processes. Each matrix corresponds to a unique 

processing type: isolated, sustained, chain, reactivated, oscillating or reversing, 

ramping, and jittered activities. The 'isolated' panel shows high decoding accuracy 

only at specific time points, indicating transient neural representation. The 

'sustained' panel depicts uniform decoding accuracy, reflecting stable neural 

activity over time. The 'chain' illustrates sequential processing stages, while 

'reactivated' displays a return of a neural signature at a later time, suggesting 

memory or reactivation processes. 'Oscillating or reversing' implies cyclical 

neural activity, 'ramping' suggests a gradual increase in specific neural activity, 

and 'jittered' indicates variability in the timing of neural responses. These patterns 

provide insight into the temporal dynamics and flexibility of cognitive processes 

as captured by the temporal generalisation approach. Taken from King and 

Dehaene (2014). 
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In addition to decoding perceptual experience from brain activity, MVPA 

has the potential to offer deeper insight into the mechanisms mediating perceptual 

reversals and how these unfold across time. A technique known as cross-

classification, or cross-decoding, allows one to make inferences about the 

similarity of neural processing involved in one or more experimental conditions 

(e.g., Kaplan et al, 2015). This cross-decoding approach assumes that if similar 

neural processes are involved in two different experimental conditions (e.g., 

perception and imagery) then the two conditions will have similar EEG scalp 

distributions. Thus, for instance, a classifier trained to discriminate different 

stimuli (e.g., faces vs. houses) in perception should also perform well at 

discriminating imagined stimuli. Alternatively, if the two conditions involve 

different mechanisms, then their scalp distributions will differ and a classifier 

trained on one condition (e.g., perception) will decode the other condition (e.g., 

imagery) with poor or at chance accuracy. To the extent that two conditions 

involve similar electrophysiological mechanisms, one should observe above 

chance cross-decoding with higher accuracy indicating greater overlap of 

mechanisms. This approach to MVPA has proven successful in the literature. For 

instance, in an fMRI study, Stokes et al. (2009) presented participants with the 

letter “X” or “O” in one condition. In the second condition they asked participants 

to only imagine the letter “X” or “O”. They found that a classifier trained on data 

from the lateral occipital complex during trials in the visual presentation condition 

could correctly decode participants’ imagined letter from data during the trials in 

the imagined condition. In a follow up study, Stokes et al. (2011) showed that this 

was also the case even when the letters were physically presented in different 

parts of the visual field. Cross-decoding has also revealed similar neural patterns 
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involved in motor execution and action observation. For instance, Oosterhof et al. 

(2012a) recorded fMRI data whilst their participants performed and observed two 

object-directed actions ("lift" and "slap"). The actions were presented and 

executed in both first- and third-person perspectives. The experiment was 

designed to distinguish between actions observed and executed by participants, 

and whether there was any similarity in neural encoding based on the perspective 

of the observed action. The authors found that the researchers were able to 

identify distinct patterns of brain activity in the ventral premotor cortex (PMv) 

that corresponded to specific actions being either observed or executed. Crucially, 

the cross-classification approach allowed for the comparison of neural patterns 

across different modalities (visual observation and motor execution) and 

perspectives (first-person and third person). The findings revealed that actions 

observed from a first-person perspective produced significant cross-modal neural 

patterns in the PMv, mirroring those during action execution. In contrast, this 

cross-modal congruence was not observed for actions perceived from a third-

person perspective.  

MVPA, therefore, is a good choice of analysis technique to address the 

research questions posed in this thesis. To directly assess the role of adaptation in 

spontaneous reversals in perception, MVPA cross-decoding will allow the brain 

state during reversals due to adaptation to be compared to that occurring during 

spontaneous reversals.  
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2.3.3 Analysis of decoding accuracies 

2.3.3.1 Cluster-based permutation tests  

Cluster-based permutation tests have increasingly been employed to 

evaluate the time-course of decoding accuracies generated by MVPA when 

analysing EEG data. This statistical approach offers several methodological 

advantages that can enhance the rigour and interpretability of findings.  

Typically, MVPA generates a time-course of decoding accuracies that 

signify how well specific cognitive states or experimental conditions can be 

differentiated at each time point. However, these decoding accuracies are subject 

to multiple comparisons across time points, raising the risk of Type I errors. 

Therefore, these multiple comparisons need to be corrected. There are many 

approaches to this correction which include permutation tests (e.g., Blair & 

Karniski, 1993), cluster-based permutation tests (e.g., Maris & Oostenveld, 2007) 

and false discovery rate control procedures (FDR; e.g., Benjamini & Hochberg, 

1993; Benjamini, Krieger, & Yekutieli, 2006). The efficacy of such corrections in 

mass univariate ERP analysis was investigated empirically in a series of 

simulations by Groppe et al, (2011b). Here, realistic EEG background noise from 

real participants was used as a basis to simulate 1000 ERP experiments for each of 

4 simulated ERP effects. These were: the N170 (Bentin, Allison, Puce & Perez, 

1996; Bentin, Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999), the P3 

(Bentin et al., 1999), combined N170/P3 (i.e., both components were added to the 

data), and ERP null effects (i.e., no ERP effect was added to the null effect data). 

The authors then analysed the data from each of the 1000 simulated experiments 

for each of the 4 conditions, by concurrently applying two-tailed, one-sample t-

tests to all scalp channels. They then used 6 commonly cited multiple comparison 
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correction methods to correct for the multiple comparisons made. These were: 

Bonferroni-Holm, t-max permutation, maximum cluster-level mass permutation, 

permutation-based procedures, and 3 FDR control methods (as described in 

Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001; Benjamini, Kreiger, 

& Yekutieli, 2006). The number of false positives for each correction method 

across each of the 4 simulated effect types was systematically counted to establish 

false positive rates for each method. This was used to evaluate Type I error risk of 

each of the 6 correction methods, for each of the 4 simulated effect types. The 

simulation showed that all 6 procedures performed with sufficient conservativism 

so as not to inflate Type I error rate to a concerning extent. In a companion to this 

simulations paper, the authors made recommendations following their 

investigation (see Groppe et al., 2011a). Of relevance to the EEG experiments 

described in this thesis, their paper made recommendations for the use of cluster-

based permutation tests (Maris & Oostenveld, 2007). 

The cluster-based permutation approach itself involves the identification 

of clusters of adjacent time points where decoding accuracies are above a certain 

threshold. The sum of the accuracies within these clusters is then compared to a 

null distribution generated by permuting the labels of the conditions or states 

being decoded. This offers a rigorous way to test whether the observed patterns of 

decoding accuracies are statistically significant or merely a product of noise in the 

data. 

The application of cluster-based permutation tests also enables researchers 

to identify temporally contiguous periods of significant decoding, which can be 

critical for understanding the dynamics of cognitive processes. For instance, this 

technique allows for the definition of time intervals where the brain consistently 
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distinguishes between different experimental conditions, providing a more 

nuanced view of the temporal aspects of cognitive processing (e.g., King & 

Dehaene, 2014; see also Section 2.3.2 above). However, Sassenhagen and 

Draschkow (2019) critique the prevalent use of cluster-based permutation tests in 

cognitive neuroscience, particularly for MEG/EEG data. They argue that while 

these tests proficiently address the multiple comparisons problem and maintain 

Type I and Type II error rates, they may lead to overinterpretations regarding the 

temporal and spatial precision of effects. The authors demonstrate that these tests 

do not substantiate claims about effect latencies or locations, potentially leading to 

misleading conclusions about the neural underpinnings of cognitive processes. 

However, they acknowledge that cluster-based permutation tests are a powerful 

tool in handling the multiple comparisons problem. 

Additionally, the cluster-based permutation approach is non-parametric, 

making it less reliant on assumptions about the underlying distribution of the data. 

This flexibility makes it particularly suitable for EEG data, which may not always 

conform to the assumptions of parametric tests (Groppe, Urbach, & Kutas, 2011). 

Incorporation of cluster-based permutation tests in the analysis of MVPA-

generated decoding accuracies offers a methodologically sound and statistically 

rigorous approach. By controlling for multiple comparisons, enabling the 

identification of significant temporal clusters, and offering a non-parametric 

testing option, this method enhances the interpretability and validity of findings 

derived from MVPA of EEG data. As such, it is a suitable choice for assessing the 

statistical significance of the decoding accuracies generated from the MVPA in 

Chapter 4 of this thesis. 
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2.3.3.2 Error rates  

In the context of MVPA and cluster-based analyses of EEG data, the risk 

of Type I errors and inflated FWER is a significant concern. The use of 

simulations can effectively address this by providing a controlled environment to 

rigorously evaluate statistical methods. By simulating data with known 

characteristics, researchers can determine the likelihood that their analytic 

pipeline will yield false positives, thereby offering a quantitative measure of the 

method's reliability (Pernet, Chauveau, Gaspar, & Rousselet, 2011). 

Specifically, simulations can be employed to generate synthetic EEG data 

sets under null hypothesis conditions, i.e., data sets where no differences between 

conditions or cognitive states are present. These synthetic data sets can then be 

subjected to the same MVPA and cluster-based statistical analyses as the actual 

experimental data. By repeating this process numerous times, researchers can 

establish an empirical null distribution for decoding accuracies or other test 

statistics, thereby enabling a more robust assessment of the actual results' 

statistical significance (Maris & Oostenveld, 2007). 

Furthermore, simulations offer a mechanism to gauge the power and 

sensitivity of the chosen methods. By introducing known effects or differences 

into the simulated data, it is possible to assess how often the analytic pipeline 

correctly identifies these effects, thereby providing an estimate of Type II error 

rates in addition to Type I and FWER assessments. For example, Brooks, 

Zoumpoulaki and Bowman (2016) used simulations to examine the impact of 

different ROI selection methods on the Type I error rate and statistical power in 

ERP analysis. They compared traditional a priori-based ROI selection, which 

relies on hypotheses or independent information and may miss effects due to 
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experiment-specific variations, with data-driven ROI selection, which uses the 

data under analysis to determine ROI positions. In the set of simulations carried 

out, the authors used simulated null-effect EEG data to assess Type I and family-

wise error rates, but also added simulated effects at known time points, to that null 

data. This method can be used to assess Type II error rates of other statistical 

methods, such as the cluster-based statistics used both widely in the current 

literature on the MVPA of EEG data and in this thesis.   

One of the aims of this thesis is to assess the Type I (and familywise) and 

Type II error rates of MVPA pipelines when applied to EEG data. To assess this 

quantitatively and validly, simulations similar to those carried out by Brooks et al. 

(2016) can be employed but on a multivariate, rather than mass-univariate, scale. 

Simulating null-effect EEG data and inserting a multivariate effect of known size, 

can help to determine the power of cluster-based permutation tests to detect 

effects of this nature.  
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Chapter Three: Optimum temporal parameters required to induce the 

Rapid Motion Aftereffect and Visual Motion Priming 
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3.1 Introduction 

The perception of visually ambiguous stimuli is often only stable for a 

short time. and spontaneously fluctuates between two or more mutually exclusive 

outcomes (e.g., Blake & Logothetis, 2002; Kornmeier et al., 2009; Leopold & 

Logothetis, 1999; Schwartz et al., 2012). These stimuli are considered useful in 

the study of perception as perceptual alternations occur despite a physical 

stimulus that remains unchanged, therefore providing an insight into neural 

activity linked to subjective experience irrespective of visual input. Consequently, 

many types of visually ambiguous stimuli have been studied, including stationary 

stimuli such as the Necker cube (Necker, 1839) and motion stimuli such as 

ambiguous sine-wave gratings (such as those used by Kanai & Verstraten, 2005; 

Pinkus & Pantle, 1997).  

Given that alternations or “reversals” in subjective perception of these 

stimuli occur spontaneously, several theories have been put forward to attempt to 

explain this. One such theory is the Neural Fatigue Hypothesis, covered fully in 

Chapter 1 but will be briefly outlined again here.  

 

3.1.1 The Neural Fatigue Hypothesis 

Köhler (1940) theorised that the perception of ambiguous stimuli induced 

‘field’ effects in the brain. He suggested that all visual stimuli are underpinned by 

a visual ‘current’ in the brain, that behaves in the same way as a direct electrical 

current, and that viewing a particular figure causes changes to the resistance of 

brain tissue that extends beyond the locus of the current percept. Köhler (1940; 

and later Köhler & Wallach, 1944) therefore proposed a theory of “neural 

satiation”. This original concept has evolved into the “neural fatigue” (or neural 
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adaptation; Long & Toppino, 2004) and “cross inhibition/competition” model. 

This is based on the idea that each interpretation of an ambiguous stimulus has its 

own neural representation, which inhibits the representations of other percepts 

(Toppino & Long, 1987). Following periods of prolonged stimulation, the neural 

representations underpinning the currently dominant percept become “fatigued” 

and so are no longer able to inhibit the alternative. At this point a threshold is 

reached whereby the neural representation of the alternative percept is less 

fatigued than that of the current one, so perception is reversed. The idea of this 

neural competition being the underlying mechanism of multistable perception has 

since been investigated by modelling neuronal behaviour using computational 

neural networks. Such work has provided support for the idea that percepts 

compete with each other through mutually inhibitory networks operating at a low 

level, in the way that the Neural Fatigue Hypothesis suggests (e.g., Noest et al., 

2007; Shpiro et al., 2009). Neurophysiological studies have also revealed that the 

properties of motion sensitive neurons are changed when exposed to motion in a 

certain direction, in a manner consistent with neural fatigue (Pavan, 2009). More 

recently, these models have been examined by Kogo et al. (2021) using a hybrid 

system whereby a pair of physical pyramidal neurons interacted via a computer 

simulated, mutually inhibitory neural circuit. This showed that the dynamics of 

the pair of neurons in the system were consistent with the properties that the 

Neural Fatigue Hypothesis predicts.   

 

3.1.2 Priming and adaptation 

Behavioural studies examining the effects of pre-exposure to unambiguous 

variants of ambiguous stimuli have provided support for the Neural Fatigue 
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Hypothesis. For instance, presenting an unambiguous face stimulus before 

Rubin’s ambiguous faces-vase stimulus can systematically bias how the 

ambiguous stimulus is perceived. These studies suggest two main effects: 

priming, which involves a bias towards perceiving the ambiguous stimulus in the 

same way as the pre-exposed stimulus (e.g., presentation of an unambiguous face 

followed by a face interpretation of the ambiguous faces-vase stimulus; e.g., Long 

& Moran, 2007). In contrast, adaptation involves a bias towards perceiving the 

unambiguous stimulus in a different way than the pre-exposed stimulus (e.g., 

presentation of an unambiguous face followed by a vase interpretation of the 

faces-vase stimulus; e.g., Long et al., 1992, Long & Olszweski, 1999, Pavan et al., 

2009). 

Presentation duration, inter-stimulus interval (ISI), intensity (i.e. 

brightness), and size of the pre-exposed stimulus have been found to be critical for 

the induction of one or the other of these effects (Kanai & Verstraten, 2005; Long 

et al., 1992; Long & Moran, 2007; Takeuchi et al., 2011). Shorter pre-exposure to 

the unambiguous stimulus tends to have a priming effect whilst longer exposure 

durations typically lead to adaptation effects. These durations vary between 

different types of stimuli. For stationary ambiguous stimuli such as the Necker 

cube (Necker, 1839) for example, priming effects have been shown after exposure 

to an unambiguous variant of the stimulus is presented to participants for one 

second, whereas adaptation effects using the same stimulus takes as long as 150 

seconds (e.g., Long et al., 1992). For motion stimuli, such as moving sine-wave 

gratings (as used by Pinkus & Pantle, 1997), priming effects have been shown 

after pre-exposure durations of as little as 0.08s and adaptation effects after just 

0.64s (e.g., Kanai & Verstraten, 2005; Takeuchi et al., 2011).  
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Kanai and Verstraten (2005) highlighted the relationship between pre-

exposure duration and ISI when evoking either visual motion priming (VMP) or 

motion aftereffects. The authors used moving sine-wave gratings to create 

directional and ambiguous motion stimuli. Directional motion was created by 

shifting the phase of the sine wave by ±90º per frame, leading to energy-based 

motion either to the left or to the right. Ambiguous motion was created by shifting 

the phase of the sine wave by 180 º per frame, meaning that successive frames 

could be interpreted as motion to the left or to the right (see also Figure 3.1 

below).  

 

 

Figure 3.1 Illustration demonstrating how the phase of sinewaves can be 

shifted over time to create directional and ambiguous motion. The top of the 
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figure shows a phase shift of +90° in space, every arbitrary time unit, leading to 

the generation of motion to the right in this instance. The bottom of the figure 

shows a phase shift of ±180° in space, every arbitrary time unit, leading to the 

generation of ambiguous motion that can be perceived as moving either to the left 

or to the right. Adapted from Kanai and Verstraten (2005). 

 

Trials were created by presenting these stimuli sequentially in pairs 

(unambiguous followed by ambiguous) and asking participants whether they saw 

the pair moving in the same (i.e., stable) or different directions (i.e., reversal). 

These stimuli pairs were used across three experiments. In the first, the authors 

systematically varied the duration of pre-exposure to the directional, unambiguous 

motion, presenting this for between 0.08s and 0.64s. Additionally, the ISI between 

the directional and ambiguous stimuli was manipulated, with the shortest ISI 

being 0.04s and the longest being 2s. Results from this experiment demonstrated 

that shorter pre-exposure durations led to VMP (e.g., directional motion to the left 

and the ambiguous motion perceived as also moving to the left),  especially when 

coupled with short ISIs. When the ISI increased beyond 0.4s, the priming effect 

dissipated. In contrast, longer pre-exposure to directional motion induced an 

adaptation effect (e.g., directional motion to the left and the ambiguous motion 

perceived as moving to the right). Interestingly, the results also showed that with 

the same ISI, both priming and adaptation effects can be evoked by pre-exposure 

durations that differ by just 0.24s. This very quick adaptation, the authors state, is 

a form of motion aftereffect which they call the rapid motion aftereffect (rMAE) 

to distinguish from the much slower motion aftereffect in which pre-exposure to  

directional motion causes a stationary stimulus to appear to be moving in the 
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opposite direction (Anstis et al., 1998). To investigate whether this rMAE occurs 

at a low level related to the detection of motion energy or at a higher level related 

to perceptual decision making, the authors conducted a second experiment. Here, 

ISI was manipulated in the same way as with the first experiment, but all pre-

exposure durations were 0.32s. The key here was that, on half of the trials, the 

authors replaced the pre-exposed directional motion stimulus with ambiguous 

motion The hypothesis here was that if the rMAE involved lower-level processing 

then it should not be induced by the pre-exposure of motion with no directional 

energy. In contrast, if rMAE involves higher level processes then it will still be 

induced by the endogenous perception of motion even in the absence of any 

directional energy. The results showed that pre-exposure to the ambiguous motion 

led to an effect similar to VMP, in that participants were more likely to report that 

the stimuli were moving in the same direction. However, unlike VMP, this effect 

was especially apparent at longer ISIs which suggests that it increases over time 

after motion is perceived. The authors suggest two things from this result: the first 

being that rMAE is mediated by low level processing, as it was not induced by 

motion lacking in directional energy; the second being that a second form of 

priming exists that is induced by the perception of motion without needing any 

energy-containing motion. The authors called this second priming effect 

“perceptual sensitisation” (PS). To investigate this further, Kanai and Verstraten 

(2005) conducted a final experiment. The authors hypothesised that if PS is 

induced by the perception of motion, then it should also be induced by directional, 

energy-based motion stimuli as well as ambiguous stimuli because these too, lead 

to the perception of motion. The authors suggest that the reason this effect had not 

been seen with directional motion in their previous experiment could have been 
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because it was masked by the stronger, lower level rMAE. As PS appeared to 

increase in its effect over time, the authors replicated their second experiment but 

included much longer ISIs so that the rMAE could be allowed to dissipate so that 

PS could come through. Indeed, this is what they found. With ISIs of 2-5s, pre-

exposure to 0.32s of directional, energy-based motion led to a priming rather than 

the adaptation response seen at lower ISIs. The results from this study suggest that 

there are several levels of processing that may be involved in priming and 

adaptation effects. It shows that the relationship between level of pre-exposure to 

directional motion and ISI is key to inducing the behavioural effects indicative of 

the processes occurring at each level. 

A later study conducted by Takeuchi et al. (2011) used a very similar 

paradigm to Kanai and Verstraten (2005) to investigate the effects of retinal 

luminance and velocity of directional motion on VMP and rMAE and indeed 

found similar results. However, there were certain key differences in the way that 

this paradigm was employed. For instance, these authors suggested that because 

VMP effects seem to be stronger as ISI decreases, they removed the interval 

altogether. Instead, they asked participants to report the direction of the second 

‘test’ stimulus which was ambiguous motion created in a similar way to Kanai and 

Verstraten (2005). Additionally, the authors here presented their stimuli to the 

lower temporal retina rather than to the fovea as Kanai and Verstraten (2005) did. 

The authors found that both low retinal luminance and high velocity of the pre-

exposed directional motion eradicated VMP effects, whereas rMAE was apparent 

across all variations of retinal luminance and most velocities. The authors suggest 

that their results show that VMP is mediated by higher-level processes whilst 

rMAE involved directionally selective lower-level mechanism. This is broadly 
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consistent with Kanai and Verstraten’s (2005) conclusions around rMAE and their 

PS effect. 

 

3.1.3 The present experiment 

Experiment 3 (Chapter 4) will address the gap in the current knowledge 

identified above using multivariate pattern analysis (MVPA) of 

electroencephalographic (EEG) data. Briefly, Experiment 3 will involve training 

machine learning classifiers to decode perception of an ambiguous stimulus from 

EEG data recorded from either adapted or primed brain states, induced by 

exposure to biased interpretations of an ambiguous stimulus. These classifiers will 

then be used to attempt to predict spontaneous perceptual reversals of the 

ambiguous version of the figure. If these spontaneous reversals involve processes, 

for instance, of adaptation similar to those evoked in the training data, then the 

classifier should be able to accurately predict perceptual outcomes based on the 

EEG data recorded during them. Similarly, if priming processes are involved in 

spontaneous perceptual reversals, then the classifier trained on the primed brain 

state should be able to accurately predict perceptual states during spontaneous 

reversals (see Chapter 1 for a detailed overview).  

One aim of the present experiment, therefore, was to determine the 

optimal parameters for inducing rapid adaptation and priming effects for use in an 

EEG experiment (Chapter 4), by partially replicating the study by Kanai and 

Verstraten  (2005). In contrast to the previous authors however, this experiment 

aims to produce three clear trial types: one in which the adaptation effect is 

maximally induced, one in which the participant’s perception is unbiased (i.e., 

50% of each interpretation and equivalent or minimal adaptation and priming), 
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and a third where the priming effect is maximally induced. The unbiased trial type 

will serve as a control condition with which to compare the performance of each 

of the adapted- and primed-trained classifiers to. It is important that each of these 

conditions are generated within the same ISI, as they were in the previous study 

by Kanai and Verstraten (2005), to exert maximum control over the information 

that is passed to the classifier. The increased sensitivity of MVPA over univariate 

analyses (e.g., List et al., 2017; Bae & Luck, 2018;2019) can lead to the classifier 

using information that is unrelated to the independent variable to classify trials 

(Grootswagers et al., 2016). Therefore, it is important that the only element of the 

trials that differs between conditions in Experiment 3 is the independent variable – 

i.e., the presentation duration of the unambiguous stimulus. The temporal 

parameters evoking these three trial types will then be used to inform the 

subsequent EEG experiment (Chapter 4) investigating adaptation.  

A second aim of the current experiment is to determine whether the design 

used by Kanai and Verstraten (2005) can be replicated to reliably induce these 

priming and adaptation effects. Therefore the experiment will be replicated using 

all combinations of unambiguous stimulus presentation times and ISI that were 

used by Kanai and Verstraten (2005) so that results can be compared. 

Finally, a key aim of Experiment 3 (EEG) was to determine whether 

adaptation plays a role in driving perceptual reversals within a sequence of fully 

ambiguous stimuli in which there was no stimulus-driven basis for adaptation. 

Thus, it was important to include such a sequence in the present Experiment to 

verify the presentation parameters for achieving maximum ambiguity (i.e., 50/50 

left/right responses). Furthermore, the pattern of reversals in a fully ambiguous 

sequence can often be stochastic suggesting independence of outcomes between 
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successive trials (e.g., Hesselman, 2008). This will be assessed within the block of 

ambiguous trials. In the present experiment, the ambiguous trials will comprise 

two successive ambiguous sine-wave gratings. Kanai and Verstraten (2005) found 

that priming occurred in this type of trial and they attributed this to perceptual 

sensitisation (PS). However, they presented these ambiguous-only trials randomly 

interspersed amongst trials which contained unambiguous motion. This 

unambiguous motion, when presented with ISIs of 2-5s has been shown by the 

authors to induce PS effects. So, it could be the case that the trials containing the 

unambiguous motion presented in close temporal proximity (i.e., around 2-5s) to 

the trials containing the ambiguous only motion, could have been inducing this PS 

effect, rather than this being induced only by the ambiguous motion. To avoid this 

from being the case here, the present experiment will contain these ambiguous-

only trials within one block, with no unambiguous directional motion presented at 

all. This will determine whether this design can induce the spontaneous reversals 

in perception that are required for use in Experiment 3.  

 

3.2 Experiment One 

3.2.1 Methods 

3.2.1.1 Participants 

Eighteen undergraduate psychology students were recruited, in return for 

partial course credit. The a priori attention check criterion was that participants’ 

data would be excluded from analysis if they did not respond to at least 70% of 

attention check trials correctly. Based on this criterion, one participant’s data was 

excluded from the analysis. The remaining 17 participants’ data (13 female, 4 

male) were used in the experiment. This sample size was initially chosen based on 
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an increase from the sample size used by Kanai and Verstraten (2005). These 

authors used 10 participants in their experiment, but did not report any effect 

sizes, so it was not possible to run an a priori power analysis. Participants had a 

mean age of 20.78 years (aged between 18 and 34). All participants had normal or 

corrected-to-normal vision (mean logMAR: 0.01; SD logMAR: 0.02; Precision 

Vision Logarithmic ETDRS 2000 chart). The study was approved by Keele 

University’s Psychology Faculty Research Ethics Committee.  

 

3.2.1.2 Stimuli and apparatus 

3.2.1.2.1 Stimuli 

Two types of stimuli were used in this experiment: (Figure 3.2), directional 

motion (Figure3.2, top) and ambiguous motion (Figure 3.2, bottom). Both types of 

stimuli were sine-wave gratings with a spatial frequency of 1 CPD. Gratings had a 

Michelson contrast of 0.5 (maximum luminance of white regions was 

297.49cd/m2, for black regions 100.28 cd/m2) and were presented centrally on a 

mid-grey background (RGB: 128:128:128).  All stimuli were circular, with a 

diameter of 10°. The circular shape was created using a 2-D Gaussian mask.  

The motion of the stimuli was created by shifting the phase of the sine 

wave over time. Directional stimuli were created by a ±90° phase shift in the sine 

wave every 0.04s. Ambiguous stimuli were created by a 180° phase shift in the 

sine wave every 0.08s. This ensured that the speed of motion remained consistent 

in both stimulus types.  

A white cross (0.8° x 0.8°) presented in the centre of the screen before and 

during stimulus presentation served as a fixation target throughout the experiment. 
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PsychoPy3 v3.2.3 (Peirce et al., 2019) was used to create all stimuli, and 

to design and control the experiment. 

 

Figure 3.2: Example stimuli used in Experiment One. The stimuli were 

created from sine wave gratings which were phase-shifted to differing degrees. 

Panel A shows an example of directional motion. The phase was shifted by 90˚ to 

create the adaptation stimulus, which creates unambiguous motion towards (in 

this case) the right of the screen. Panel B shows ambiguous motion. Here, the 

phase was shifted by 180˚ to create the ambiguous motion stimulus, leading to 

two possible interpretations – one in which the gratings move to the left and one 

in which they move to the right. Note that the fixation cross shown here is not to 

scale, for accurate relative sizes in degrees, see Stimuli section above. Although 
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no actual difference can be seen in the stimuli themselves in this figure, the 

direction of the motion is indicated by the arrows. 

 

3.2.1.2.2 Apparatus 

The experiment was presented on a 24.5 inch BenQ Zowie XL2540 

computer monitor with 120Hz refresh rate and 1920 x 1080 pixels resolution. 

Participants used a standard PC keyboard to respond to trials. Participants used a 

chin rest to maintain a constant viewing distance of 57cm, and to aid fixation by 

reducing head movements.  

 

3.2.1.3 Design 

The independent variables in this experiment were the presentation time of 

the unambiguous motion stimulus, and the ISI between that and the ambiguous 

motion stimulus. This design broadly replicated Kanai and Verstraten’s (2005) 

first experiment, however an additional timing condition of 1.00s was included 

here to determine whether a stronger rMAE could be induced by longer pre-

exposure to unambiguous motion. These IVs were manipulated in a 5 

(presentation time: 0.08s, 0.16s, 0.32s. 0.64s and 1.00s) x 5 (ISI: 0.04s, 0.12s, 

0.48, 1.00s and 2.00s) factorial design, shown in Table 3.1 below.  

The experiment consisted of a random combination of 10 directional and 2 

ambiguous blocks. Directional blocks contained 50 trials each (two trials for each 

of the 25 timing conditions set out in Table 3.1). In total, 20 trials for each of the 

25 timing conditions were presented to each participant. Ambiguous blocks 

contained 50 ambiguous motion trials. 
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Each trial in the experiment consisted of the presentation of two stimuli. 

The type of stimuli presented depended on which block the trial was in. Trials in 

directional blocks consisted of one directional motion stimulus followed by a 

variable ISI, followed by an ambiguous motion stimulus (timings according to 

those shown in Table 3.1). Trials in ambiguous blocks consisted of one ambiguous 

motion stimulus presented for 0.32s, followed by a fixed ISI at 0.12s, followed by 

a second ambiguous motion stimulus presented for 0.32s. The ambiguous motion 

was presented for 0.32s firstly in order replicate the paradigm used by Kanai and 

Verstraten (2005) and secondly to ensure that this ambiguous motion presentation 

was equivalent to that in directional blocks. ISI did not vary in the ambiguous 

blocks as it has been shown to moderate reversal rate when viewing ambiguous 

stimuli (e.g., Kanai & Verstraten, 2005; Kornmeier & Bach, 2012). An ISI of 

0.12s was used to replicate the ambiguous blocks in Kanai and Verstraten’s (2005) 

original experiment. 

The dependent variable was whether trials were reported as a reversal in 

perception or stable perception. Trials were coded as either “reversal” or “stable” 

according to whether participants responded by pressing two different buttons (for 

example ‘up’, ‘down’) or the same button twice (for example, ‘up’, ‘up’) 

respectively.  

Interspersed randomly between experimental trials were attention check 

trials. Attention check trials were only presented during directional blocks, so that 

the unambiguous motion did not affect the perception of the ambiguous only 

motion in the ambiguous blocks. Directional blocks each contained 5 attention 

check trials. Therefore there were 50 attention check trials in total for each 

participant (5 trials x 10 directional blocks). These trials consisted of one 
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directional motion stimulus presented once for 0.64s, followed by a second 

directional motion stimulus presented for 0.32s. There was one attention check 

trial for each of the 5 ISIs in each block (i.e., an ISI of 0.04s, 0.12s, 0.48s, 1.00s 

and 2.00s). The longest available presentation time was used for attention checks 

to give participants the best chance of getting these correct. Attention check trials 

consisted of “stable” and “reversal” pairs, which were directional motion in the 

same or the opposite direction respectively. These trials, therefore, carried a 

correct answer and were used to monitor participants’ attention to the task.  
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Figure 3.3: Example trial types used in Experiment One. Panel A shows an 

example of a trial in a directional block, where unambiguous motion in a 

particular direction (in this case to the right) was presented for one of the 5 

presentation durations, followed by an ISI of one of the 5 ISI durations, before 

0.32s of ambiguous motion. Panel B shows a trial in an ambiguous block, where 

two ambiguous motion stimuli were both presented for 0.32s, between them was 

an ISI of 0.12s. Note that the fixation cross shown here is not to scale, for accurate 

relative sizes in degrees, see Stimuli section above. Panel C shows an example of 

an attention check trial, whereby directional motion to the right in this case is 

followed by further directional motion, again to the right in this case. 
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Table 3.1 

Timing parameters used in directional blocks to create the conditions for 

Experiment 1. These are a factorial combination of the ISI and directional 

stimulus durations. 

 

3.2.1.4 Procedure 

Participants were asked to respond to each trial using the ‘up’ and ‘down’ 

arrows on a standard PC keyboard to indicate motion towards the left or to the 

right. This was done so that counterbalancing of response key could be done 

without inducing strong stimulus-response compatibility effects for a reverse 

mapping (e.g., left button = right response). Response buttons were 

counterbalanced across blocks such that on 50% of trials ‘up’ indicated motion to 

the left and on 50% of trials ‘up’ indicated motion to the right. Response buttons 

remained consistent throughout each block. Participants were told which button 

meant what at the start of each block and reminded at the end of each trial. As 

each trial comprised two stimuli, participants were required to respond twice on 

each trial. For instance, if a participant saw leftward motion in the first stimulus, 

followed by rightward motion in the second, an example response could be ‘up’, 

‘down’. Similarly, if a participant saw leftward motion in the first stimulus, 
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followed by more leftward motion in the second stimulus, an example response 

could be ‘up’, ‘up’. Participants were given an inter-trial interval of 1.5s during 

which they could respond to each trial. Failure to respond within this time window 

generated a null response for that trial, and the next trial began. 

All participants completed the informed consent process, which included 

asking them if there were any medical reasons that they could not complete the 

experiment (for example photosensitive epilepsy). After providing written 

consent, participants completed a test of their visual acuity, whilst wearing glasses 

or contact lenses to correct their vision if required. 

Consenting participants with normal or corrected to normal vision then 

moved on to take part in the experiment. Instructions on how to complete the task 

were explained to the participant. During these, the experimenter ensured that the 

participant was able to perceive the two interpretations of the ambiguous motion 

stimulus (i.e., moving towards the left or towards the right). The experimenter 

also ensured that the participant knew how to respond to each trial, including 

whether they could respond within the 1.5s time window.  

Participants then completed a practice block of 35 trials comprising 25 

directional block type trials (one trial for each of the 25 timing conditions shown 

in Table 3.1 above) and 10 attention check trials (two for each of the 5 ISIs). The 

experimenter remained in the room during the practice block to ensure that 

participants were responding correctly to each trial. At the end of the practice 

block, participants were given feedback on how well they had performed on the 

attention check trials.  

Participants then were left alone to complete the experiment, whilst the 

experimenter monitored from the next room. In total, there were 650 trials 
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including the 50 attention checks. The whole experiment took participants around 

25-30 minutes to complete the instructions, practice and real trials. 

 

3.2.3 Results  

3.2.3.1 Attention check trials 

Participants’ responses to attention check trials were analysed. A priori 

behavioural exclusion criteria were set such that participants scoring less than 

70% correct on the 50 attention check trials in the main experiment, were 

excluded. Based on this criterion, one participant was excluded. The remaining 17 

participants correctly responded to 82.59% (SD = 7.34) of attention check trials.  

 

3.2.3.2 Response time 

The overall average response time (RT; to first response button press) for 

all participants across both block type (ambiguous and directional) and trial type 

(reversal and stable) was 0.517s (SD: 0.102s) after the onset of the second 

stimulus in the trial. 

A 2 (block type; ambiguous and directional) x 2 (reversal and stable) 

repeated measures ANOVA revealed that RTs were significantly faster in 

ambiguous blocks, M = 0.494s (SD = 0.114) than in directional blocks, M = 

0.540s (SD = 0.083), F(1,16) = 7.659, p = .014, hp2 = .354. However, there was no 

significant effect of trial type on RTs, p = .739. A significant crossover interaction 

effect between trial type and block type was also revealed, F(1,16) = 6.086, p = 

.027, hp2 = .303 (Table 3.2).  

To examine the interaction effect between trial type and block type, post 

hoc comparisons were conducted. In terms of the effect of block type for each 
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trial type, for stable trials, RTs in ambiguous blocks, M = 0.481s (SD = 0.113) 

were significantly faster than those in directional blocks, M = 0.556s (SD = 

0.081), t(16) = 3.679, p = 0.002. However, for reversal trials, there were no 

significant differences found between the RTs for ambiguous blocks, M = 0.506s 

(SD = 0.119) and directional blocks, M = 0.524s (SD = 0.084). In terms of the 

simple effect of trial type within each block type, for trials in the ambiguous 

block, RTs for reversal trials did not differ from those for stable trials (M and SDs 

as above). There were also no significant differences found between reversal and 

stable trials in the directional block (M and SDs as above). Table 3.2 below shows 

all RTs across block type and trial type. 

 

Table 3.2 

Mean Response Times across Block Type and Trial Type 

 
 Mean (s) SD 

Block Type 
Directional 0.540 0.083 

Ambiguous 0.494 0.114 

Trial Type 
Reversal 0.515 0.101 

Stable 0.519 0.104 

Block Type x Trial Type 
Directional, Reversal 0.524 0.084 

Directional, Stable 0.556 0.081 

Ambiguous, Reversal 0.506 0.119 

Ambiguous, Stable 0.481 0.113 
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3.2.5.3 Ambiguous block trials 

Participants responded to indicate a reversal on ambiguous block trials on 

50.57% (SD = 6.68) of trials and indicated stability on 49.43% (SD = 6.75) of 

trials. Participants responded to indicate that they had perceived leftward motion 

on 49.65% (SD = 8.38) of trials and rightward motion on 50.35% (SD = 7.94). 

Any trials where the participant failed to respond within the allocated 1.5s time 

window were excluded from the analysis. Neither reversal nor stable response 

percentages were found to be significantly different from chance, with both 

resulting in the same values for t(16) = 0.126, p = .901. The percentage of left and 

right responses were also not significantly different from chance, again both 

resulting in the same values for t(16) = 0.179, p = .860. 

 

To examine the stochasticity of responses (i.e., independence between 

responses on subsequent trials), the distribution of response run lengths (i.e., 

number of same responses in a row for either left or right responses) was 

analysed. This was done to determine whether participants’ responses in the 

ambiguous block were independent of one another. The ambiguous block was 

designed to evoke perceptual reversals that occur spontaneously, in a manner as 

close to that of continuous viewing as possible. Therefore, responses to the stimuli 

should be stochastic, as this would indicate that there was no bias toward one or 

the other direction of motion when the stimuli were perceived (Hesselmann, 

2018). A repetition in response meant that a participant responded to indicate, for 

example, leftward motion on two or more successive trials. This ‘run’ of 

repetitions would be broken when the participant responded to indicate motion to 

the left then motion to the right, or vice versa. So, a response pattern of “left”, 
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“left”, “left”, “right” would mean that there had been 2 repetitions before that run 

was broken. To assess this quantitatively, the distribution of response repetitions 

was fitted to a geometric distribution. A geometric distribution represents the 

frequency of different run lengths expected by chance in a sequence given only 

two random outcomes (i.e., left vs. right here) and a certain probability of each 

outcome (i.e., 50% chance here). For example, you would use this to estimate the 

number of times that you could expect to observe fair coin to land heads 4 times 

in a row in a sequence of 100 tosses. Therefore, if the response repetition data fits 

well to this distribution, this suggests that participants are responding in a random 

and unbiased manner in which responses to one stimulus are independent of those 

to preceding stimuli. The response repetitions from the ambiguous block were 

fitted to a geometric distribution and found to be well fitted (see Figure 3.4), 

R2(16) = .97, p <.001.   

 Figure 3.4 Solid grey line shows the probability density of the number of 

repeated responses across both trial types (i.e., left or right) in ambiguous blocks 
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(e.g., for 3 repetitions responses could be “left”, “left”, “left”). Dashed black line 

shows the probability density of the geometric distribution.  

 

3.2.5.4 Directional block trials 

Data from the directional blocks were separated into the 25 timing 

conditions (5 directional stimulus presentation times x 5 ISIs) and the average 

percentage of stable and reversal trials per participant was calculated for each 

condition. These results were submitted to a 5 x 5 repeated measures ANOVA 

with unambiguous stimulus presentation (s; 0.08, 0.16, 0.32, 0.64, 1.00) and ISI 

(s; 0.04, 0.12, 0.48, 1.00, 2.00) as factors. This revealed a significant main effect 

of directional stimulus presentation time, F(2.26,64) = 7.72, p < .001, hp2 = .320 

and of ISI, F(1.84,64) = 13.78, p < .001, hp2 = .463. The Greenhouse-Geisser 

correction was applied in both cases as Mauchly’s test of sphericity was 

significant at the p = .05 level. However, no significant interaction between the 

two factors was found, p = .077. 

To explore the significant main effects, post hoc comparisons were 

conducted. For the effect of ISI, these revealed that the percentage of reversals 

was significantly lower for the 0.04s ISI, M = 36.47% (SD = 8.73), when 

compared to the 0.12s ISI, M = 56.42% (SD = 9.20), t(16) = 6.08, p < .001, the 

0.48s ISI, M = 57.32% (SD = 4.23), t(16) = 6.35, p < .001, the 1.00s ISI, M = 

54.91% (SD = 2.25), t(16) = 5.62, p < .001, and the 2.00s ISI, M = 52.71%  (SD = 

4.28), t(16) = 4.95, p < .001. All other comparisons of ISI were not significant (all 

p > .994). For the effect of directional stimulus presentation time, the percentage 

of reversals in the 0.08s presentation time, M = 43.90 (SD = 10.86), was 

significantly lower than those for the 0.32s presentation time, M = 54.22 (SD = 
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6.84), t(16) = 3.95, p = .001, the 0.64s presentation time, M = 56.34% (SD = 

8.51), t(16) = 4.76, p < .001, and the 1.00s presentation time, M = 54.35%  (SD = 

8.29), t(16) = 4.00, p = .001. All other comparisons of presentation time were not 

significant (all p > .348). The mean percentage of reversals for each timing 

condition can be found in Figure 3.5, and full ANOVA results in Table 3.3.  

 

 

Figure 3.5 The percentage of reversal responses (i.e., trials where 

participants perceived the ambiguous stimulus moving in the opposite direction to 

the directional stimulus) are plotted as a function of ISI for each presentation time 

of the directional stimulus. Error bars show standard error (SE).  
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Table 3.3 Full repeated measures ANOVA results for the percentage of reversals in 

the directional blocks (significant p-values are indicated in bold font) 

 df1 df2 F p hp2 

Directional 

stimulus 

presentation 

time 

2.262 64 7.541 .001 .320 

ISI 1.835 64 13.776 < .001 .463 

Directional 

stimulus 

presentation 

time x ISI 

6.980 256 2.040 .056 .113 

 

3.2.5.5 Optimum timing parameters  

As the ISI is required to be consistent across trials for Experiment 3, the 

ISI that induced the strongest adaptation response (i.e., greatest percentage of 

reversals) was submitted to a one-way repeated measures ANOVA with 

directional stimulus presentation (s; 0.08, 0.16, 0.32, 0.64, 1.00) as the factor and 

ISI = 0.12, to determine the optimum temporal parameters for use in Experiment 

3. This revealed a significant effect of directional stimulus presentation time, 

F(2.26,64) = 6.23, p = .002, hp2 = .280.  

Post hoc comparisons showed that the percentage of reversals in the 0.08s 

directional stimulus presentation time M = 46.86% (SD = 26.66), was significantly 

lower than those in the 0.64s, M = 66.65% (SD = 22.34), t(16) = 3.79, p = .002, 
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and 1.00s directional stimulus presentation times, M = 62.98% (SD = 21.09), t(16) 

= 3.09, p = .030. In the 0.16s directional stimulus presentation time M = 46.73% 

(SD = 21.46), the percentage of reversals was significantly lower than those in the 

0.64s, t(16) = 3.82, p = .002, and 1.00s directional stimulus presentation times, 

t(16) = 3.11, p = .007 (both means and SDs above). 

Overall, the greatest mean percentage of reversals was evoked by the 

0.64/0.12s condition (66.65%). The lowest mean percentage of reversals which 

also involved the same 0.12s ISI was in the 0.16/0.12s condition (46.73%). The 

condition within the ISI = 0.12s conditions with a mean closest to chance was 

0.08/0.12s (46.85%).  

To determine whether the percentage of reversals in the 0.64s and 0.16s 

conditions were significantly higher and lower than chance (50%) and therefore 

indicated behavioural responses associated with the rMAE and VMP, respectively, 

two one sample t-tests were conducted. These revealed that the percentage of 

reversals in the 0.64/0.12s condition was significantly greater than would be 

expected by chance, t(16) = 3.07, p = .007, however those in the 0.16/0.12s 

condition were not, t(16) = 0.851, p = .407. The percentage of reversals in the 

0.08/0.12s condition were also tested against chance and found not to significantly 

differ, t(16) = 0.928, p = .367.  

 

3.2.6 Interim discussion 

The primary aim of this experiment was to determine the optimum 

temporal parameters to evoke the visual motion priming (VMP), rapid motion 

aftereffect (rMAE/adaptation; Kanai & Verstraten, 2005) and unbiased responses, 

within the same ISI, for use in Experiment 3. Behavioural responses indicated that 
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the rMAE was found in the 0.64s/0.12s condition as reversals occurred 

significantly more often than would be expected by chance. This means that 

participants were more likely to perceive the ambiguous motion in the second 

stimulus as moving in the opposite direction as the directional motion presented in 

the first stimulus. However, behavioural responses indicating VMP were not 

found within the 0.12s ISI as they were in the original study. A potential reason 

for this is discussed in more detail below. Responses indicating an unbiased 

perception following directional motion occurred in the 0.08/0.12s condition. This 

means that participants’ responses did not differ significantly from those expected 

by chance, indicating that the directional motion did not bias perception of the 

ambiguous motion.  

A second aim of this experiment was to determine whether the overall 

results produced by Kanai and Verstraten (2005) could be replicated. The results 

presented here did generally agree with those from Kanai and Verstraten (2005). 

VMP was elicited when directional motion was briefly presented and followed by 

a short ISI, meaning that participants were more likely to perceive the ambiguous 

motion in the second stimulus as moving in the same direction as the directional 

motion presented in the first stimulus. Additionally, as discussed above, the rMAE 

was induced when directional motion was presented for a longer time.  

The final aim was to establish whether the perceptual sensitisation (PS) 

effect found by Kanai and Verstraten (2005) would influence participants’ 

perception of ambiguous motion stimuli pairs when these trials were presented 

exclusively in one block type with short ISIs (i.e. without interspersion of any 

directional motion). Results showed that PS did not influence perception of 

ambiguous motion stimuli when they were presented in this way. 
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 Although the results presented here do broadly agree with Kanai and 

Verstraten’s (2005), significant VMP was not found in the same ISI as maximal 

rMAE in the present experiment. Furthermore, there was overall weaker VMP in 

the present experiment compared to Kanai & Verstraten (2005). An important 

difference in task instructions could help to explain this together with an 

observation about the displays in the short ISI conditions. 

Upon visual examination of the displays in the shortest ISI conditions 

(0.08s and 0.12s) where VMP was expected to be strongest, the experimenter 

observed that it was very difficult to detect two distinct stimuli in these displays. 

Informal observations from several other observers corroborated this assessment. 

Most of them clearly perceived these displays as a single continuous stimulus 

rather than as two separate stimuli. This effect was reported as being strongest 

when the directional stimulus duration was also short. In fact, in those cases, it 

was often reported as not possible to even detect either the directional stimulus or 

the ISI separately from the ambiguous stimulus.  

Kanai and Verstraten (2005) asked participants to respond to trials 

according to whether they saw the two stimuli within each trial moving in the 

same or opposite directions. If participants perceived just one stimulus in the short 

ISI conditions as is suggested by our informal observations outlined above, we 

would expect that participants would be biased to respond “same” more often in 

these conditions simply because they only perceived one single stimulus and 

because they may not have even been able to detect the motion of the motion of 

the direction stimulus in such short displays. For example, under these very brief 

timing conditions, a participant might only notice the 0.32s of ambiguous motion 

and not perceive the 0.04s ISI between that and the preceding 0.08s of 
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unambiguous motion. Given the forced choice between “same” and “different”, 

they might respond to indicate that they saw stimuli moving in the same direction, 

simply because they did not notice that there were two stimuli to compare. On 

average, one would have expected this to artificially increase the number of 

“same” responses in conditions where this happened.  

In the present experiment, participants were forced to consider and report 

the motion of the directional stimulus. This requires a more specific answer than 

the same/opposite task in Kanai & Verstraten. This could lead to several different 

strategies. One option is for participants to simply report the same direction that 

they perceived in the second stimulus as outlined above. This type of response 

would increase the number of “stable”/”same” responses. In contrast, participants 

may be inclined to guess about the direction of the first stimulus. In this case, 

participants might assume that they missed the first stimulus and would be forced 

to randomly guess its direction because two directions are required in the 

response. This strategy would, on average, artificially reduce the number of 

“stable”/”same” responses because guessing, if random, is equally likely to be the 

same or different from the ambiguous stimulus perception. This would then push 

the percentage of same responses towards 50%.   

If participants are indeed employing the second strategy described here, it 

could explain why at these very brief timing conditions, the results from Kanai 

and Verstraten’s (2005) study were not replicated as strongly here. Whether or not 

participants were guessing about the direction of the first unambiguous motion 

stimulus can at least partly be assessed by the paradigm used in Experiment 1, by 

examining the percentage of trials in which the unambiguous motion was reported 

correctly (i.e., leftward motion was presented, and the participant indicated that 
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they saw the first stimulus in the pair moving to the left) for each presentation 

time. Therefore, we examined whether the presentation duration of the directional 

stimulus (i.e., first stimulus in directional-ambiguous pairs) influenced 

participants’ ability to identify the correct direction of motion. To do this, the 

average number of correct responses to the directional stimuli (i.e., first response 

of two in each trial) in each timing condition was submitted to a 5 x 5 repeated 

measures ANOVA with directional stimulus presentation time (s; 0.08, 0.16, 0.32, 

0.64, 1.00) and ISI (s; 0.04, 0.12, 0.48, 1.00, 2.00) as factors. This revealed a 

significant effect of directional stimulus presentation time on the percentage of 

trials that participants correctly identified the direction of motion, F(1.48,64) = 

20.392, p < .001, hp2 = .560. A significant main effect of ISI was also revealed, 

F(4,64) = 3.065, p = .023, hp2 = .161. There was no interaction effect, p = .613.  

Post hoc comparisons of the effect of presentation time collapsed across 

ISI revealed that the 0.08s presentation time M = 46.82% (SD = 5.59),  led to 

significantly fewer correct responses to directional motion stimuli than the 0.16s 

presentation time, M = 60.19% (SD = 17.08), t(16) = 4.73, p < .001, the 0.32s 

presentation time, M = 68.24% (SD = 22.25), t(16) = 6.98, p < .001, the 0.64s 

presentation time, M = 68.65% (SD = 22.89), t(16) = 7.09, p < .001, and the 1.00s 

presentation time, M = 71.65% (SD = 24.53), t(16) = 7.92, p < .001. Additionally, 

the 0.16 presentation time led to significantly fewer correct responses than the 

0.64s condition, t(16) = 3.13, p = .006 and the 1.00s condition, t(16) = 3.55, p = 

.004 (means and SDs as above).  All other combinations of presentation times did 

not differ significantly (all p > .141)  

Post hoc comparisons of the effect of ISI collapsed across unambiguous 

stimulus presentation time revealed that significantly fewer correct responses to 
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directional motion occurred in the 0.04s ISI, M = 60.55% (SD = 21.33), than the 

0.48s ISI, M = 64.88% (SD = 22.53), t(16) = 3.08, p = .007. All other comparisons 

were not significant (all p > .069). See also Figure 3.6 below. 

To directly test the assumption that at the shortest presentation times 

participants were simply guessing about the direction of motion of the first 

stimulus, the percentage of correct responses at each presentation time were 

compared against chance (i.e., 50%; collapsed across all ISIs, to avoid an 

unnecessary number of comparisons, and given that we are assuming that the 

presentation time is the driving factor) in a series of one-sample t-tests. These 

revealed that participants’ responses to the directional motion were significantly 

greater than would be expected by chance at presentation times of 0.16s, t(16) = 

2.356, p = .032; 0.32s, t(16) = 3.379, p = .004; 0.64s, t(16) = 3.976, p = .001; and 

1.00s, t(16) = 3.994, p = .001. However, these correct responses were not 

significantly different from chance levels at the shortest presentation time (0.08s), 

t(16) = 1.259, p = .226 (all means and SDs reported above). 
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Figure 3.6 The percentage of responses made where the response to the 

unambiguous motion stimulus was correct. For example, if the unambiguous 

motion was moving to the left, participants reported this correctly, regardless of 

the direction that they perceived the ambiguous motion moving in. Error bars 

show standard error (SE).  

 

This analysis of directional-only responses clearly indicates that 

participants were significantly less accurate when the directional stimulus was 

presented for shorter durations. This suggests that participants could have been 

less likely to notice two stimuli in these conditions, and that they were making a 

guess about the motion of the first stimulus. Furthermore, these results raise 

uncertainty about whether the results of Kanai and Verstraten’s (2005) experiment 

actually reflect VMP. If the participants were unable to discriminate the direction 

of motion of the first stimulus, as is indicated by our results, then they may have 

been only making their reports based on the second stimulus. In a same/different 

task, participants would then have been more likely to report “same” because they 
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only saw one direction of motion. This could mean that at least some of the VMP 

effect at the very shortest ISI and directional stimulus durations may have been 

artefactual. This will be explored further in Experiment 2 below.  

The issue raised above for VMP, does not apply to rMAE. Participants 

were above chance at discriminating direction of the directional stimuli for 

conditions that evoked rMAE. Thus, the temporal parameters for rMAE from this 

experiment will be taken forward to Experiment 3, along with the parameters 

required to induce an unbiased perception of an ambiguous stimulus following 

directional motion.  

 

3.3 Experiment Two  

3.3.1 Introduction 

Experiment 1 raised questions about whether the temporal parameters 

reported by Kanai and Verstraten (2005) can evoke visual motion priming (VMP) 

in the way that is described by the authors. Furthermore, although Experiment 1 

did broadly replicate the pattern of results shown by Kanai and Verstraten (2005), 

the strong VMP effect presented by the authors, particularly when an inter-

stimulus interval (ISI) of 0.12s was used, was not present at all in Experiment 1. A 

possible reason for the inconsistency between these results is that the task that the 

participants were asked to complete in Experiment 1 differed from the one used 

by Kanai and Verstraten (2005). Experiment 1 asked participants to report the 

direction of motion in each of the stimulus pairs within a trial and were therefore 

encouraged to consider the direction of motion of each of the two stimuli in the 

trial. In contrast, Kanai and Verstraten (2005) asked participants to report only 

whether the two stimuli were moving in the same or different directions. This 
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meant that it would have been possible for participants in Kanai and Verstraten’s 

(2005) study to report that they saw motion in the same direction (i.e., a VMP 

response) simply because they had only perceived one stimulus. Intuitively, this 

seems like it would be particularly true when very brief stimuli are presented or a 

very short ISI is used, because under these conditions the end of one stimulus and 

the beginning of another might be difficult to distinguish. Therefore, asking 

participants to compare two stimuli when they notice only one, could lead to 

invalid responses.  

Experiment 2 aimed to address this issue through more detailed 

investigation of how participants perceive the stimulus displays. This was done 

through varying the task instructions. First, participants were directly asked about 

the number of stimuli that they perceived under the temporal parameters that have 

been shown to elicit VMP. If participants are likely to see one stimulus rather than 

two, then this may lead to artefactual “same” responses which have previously 

been interpreted as VMP. This account can be directly tested here by directly 

measuring the number of stimuli perceived.  

Second, whether participants perceive one or two stimuli under these 

conditions was also addressed by including a block of trials which gave them 

more options with which to respond. Rather than restricting participants to answer 

a question such as “which direction were the two stimuli moving in?” or “were the 

stimuli moving in the same or different directions?”, when they may feel that they 

only saw one stimulus and therefore can’t honestly answer, this experiment 

included a block which allowed participants to respond to indicate the motion of 

any stimuli that they saw, without restriction. 
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Lastly, a detailed consideration of the task in Experiment 1 also raises the 

issue of where in time do participants draw the line between stimulus 1 

(directional) and stimulus 2 (ambiguous) especially when the ISI is short and 

potentially not perceived. This is important because if stimulus 1 responses are, 

unintentionally, based on perceptual experiences of stimulus 2 then this 

presumably will bias responses towards “same” because sampling perceptual 

experience during the same stimulus will be more likely to result in the same 

outcome. This would artificially inflate estimate of same responses and thus VMP. 

To estimate same/different responses whilst reducing the likelihood of this 

artefact, Experiment 2 also included a partial replication of the approach taken by 

Takeuchi et al. (2011). Takeuchi et al. (2011) asked their participants only about 

their perception of the second, ambiguous stimulus in each trial. This was then 

compared against the known direction of the first, unambiguous stimulus. This 

approach reduces variability or artefacts caused by problems with the perception 

of the first stimulus. Thus, this should provide a purer measure of any VMP that is 

present. It is difficult to directly compare the results from the Takeuchi et al. 

(2011) study to either Kanai and Verstraten’s (2005) or Experiment 1 because they 

also varied other parts of the paradigm such as having no ISI at all, not presenting 

the stimulus to the fovea, and modulating luminance. Thus, Experiment 2 will 

adopt their task but with the same stimulus design as Experiment 1 in order to 

address the issues here.  Asking participants about only their final perception of 

the ambiguous stimulus means that they are not asked to make a judgement about 

whether they saw one or two stimuli, or to compare them in any way (for example 

being asked “were the two stimuli moving in the same direction?” as they were in 

Kanai and Verstraten’s study; 2005). 



167 
 

 

3.3.2 Methods 

3.3.2.1 Participants 

Twenty-three participants took part in Experiment 2. The participants that 

took part in this experiment were not the same as those who took part in 

Experiment 1. The same exclusion criteria applied in Experiment 2 as in 

Experiment 1. The a priori attention check criterion was that participants’ data 

would be excluded from analysis if they did not respond to at least 70% of 

attention check trials correctly. Based on this criterion, one participant’s data was 

excluded from the analysis. The remaining 22 participants’ data was included (19 

females, 3 males; average age 29.76; age range between 21 and 49). All 

participants had normal or corrected to normal vision (mean logMAR: 0.01; SD 

logMAR: 0.03; Precision Vision Logarithmic ETDRS 2000 chart). Ethical 

considerations were identical to those in Experiment 1.  

 

3.3.2.2 Stimuli & Apparatus 

The stimuli used in this experiment were identical to those used in 

Experiment 1 with the exception that the number of ISIs was reduced only to the 

short ISIs where priming was expected and where perception of the ISI was found 

to be difficult in anecdotal reports. Furthermore, the number of directional 

stimulus durations was reduced by one (details below). Figure 3.7 below serves as 

a brief reminder of these. As with Experiment 1, one trial consisted of two stimuli: 

an unambiguous, directional motion stimulus that varied in its presentation time, 

followed by an inter-stimulus interval that also varied, followed by 0.32s of 

ambiguous motion. The apparatus was also identical to that used in Experiment 1.  
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An online example of the two of the trial types used in this experiment can 

be seen at: https://run.pavlovia.org/KimberleyDundas/stimulus_example/; 

however these are for illustrative purposes only and the timing within a browser 

has not been tested. 

 

Figure 3.7 Examples of the directional motion (panel A, where the sine 

wave gratings move towards the right) and the ambiguous motion stimuli (panel 

B, where the sine wave grating can be viewed as moving in either direction). 

 

https://run.pavlovia.org/KimberleyDundas/stimulus_example/
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3.3.2.3 Design 

The independent variables in this experiment were the inter-stimulus 

interval (ISI) and the time that the unambiguous, directional motion stimulus was 

presented before the ambiguous motion stimulus. This was very similar to 

Experiment 1, although the ISIs used in Experiment 2 were reduced to be only the 

ones where the visual motion priming (VMP) effect of interest was strongest 

( 0.04s and 0.12s). In terms of the unambiguous stimulus presentation time, a 

subset of presentation times was used to allow for more trials to be included 

within each condition whilst also allowing for the VMP and rapid motion 

aftereffect (rMAE) effects from Experiment 1 to be replicated with the ISIs used 

here. Therefore, the unambiguous stimulus presentation times used in Experiment 

2 were 0.08s, 0.16s, 0.32s and 0.64s. The longest duration was not used as it was 

not part of the original Kanai & Verstraten study and was not expected to show 

VMP. 

To investigate the effects of the instructions and task given to participants 

on the responses they made to these stimulus pairs, there were four different 

blocks used in Experiment 2. Other than the instructions given to participants, and 

the way they were asked to respond, all stimuli in every block were identical and 

consisted of 24 trials in each of the 8 timing conditions (2 ISIs x 4 unambiguous 

stimulus presentation times). An additional 10 attention check trials were included 

in every block type (these are described within the descriptions of each block, 

below), which meant that in total there were 202 trials in each block, and 808 

trials in total for the experiment. There was a total of 40 attention check trials in 

the experiment. Any participant scoring less than 70% on attention check trials 



170 
 

was excluded from the analysis. The details of each of the four blocks are 

described below. 

 

3.3.2.3.1 Replication block 

The first block type was the replication block, which carried the same 

instructions as Experiment 1. This block was referred to as the “Two Directions 

Task” to participants. In this block, participants were asked to report the direction 

of motion of each of the two stimuli in the pair using the up and down arrow keys 

in the same way as Experiment 1. The up and down arrow keys represented the 

directions left and right; these were counterbalanced such that on half of the trials 

up represented left and down represented right, and vice versa. This again is 

identical to Experiment 1. The replication block was included here as this 

experiment was conducted on an independent set of participants to Experiment 1, 

and under slightly different circumstances as this experiment had a lot more tasks 

to complete and a lot more instructions. Therefore, it was important to make sure 

that the results of Experiment 1 were replicable. In this block, attention check 

trials consisted of trials in which 0.64s of unambiguous motion was followed by 

0.32 of more unambiguous motion rather than 0.32s of ambiguous motion. For 

example, 0.64s of motion to the left, followed by 0.32s of motion to the right. 

These trials therefore carried a correct answer and were scored for each 

participant. Using 0.64s for the presentation time of the first unambiguous 

stimulus was chosen as this gave participants the maximum amount of time to 

detect the correct direction of motion.   
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3.3.2.3.2 Counting block 

The second block type was the “Counting Task” block. In this block, 

participants were instructed to use the up and down arrow keys to report whether 

they saw one stimulus or two stimuli. These responses were again 

counterbalanced such that on half of the trials up represented one stimulus and 

down represented two stimuli, and vice versa. Participants were reminded that one 

stimulus, with no perceived gap, could potentially reverse in perceived direction 

but that would still be counted as one stimulus. Similarly, a display perceived as 

having two stimuli separated by a gap could move in the same direction but that 

would still be counted as two stimuli. This block contained attention check trials 

whereby there was actually no ISI, resulting in one continuous motion stimulus 

containing directional and ambiguous motion. Otherwise on actual trials, there 

were always two stimuli, separated by an ISI of either 0.04s or 0.12s, presented 

under the same conditions as every other block. The purpose of this block was to 

directly assess whether participants were more likely to perceive the stimulus pair 

at the shortest presentation time and ISI as one stimulus rather than two.  

 

3.3.2.3.3 Dual task block 

The third block type was the dual task block. This was referred to as the 

“One or Two Directions” block to participants. In this block, participants were 

instructed to respond using the up and down arrow keys to indicate how many 

stimuli they saw, and in which direction they saw them moving. In this block, the 

arrow keys again represented the directions left and right, and again were 

counterbalanced so that on half of the trials up represented right and down 

represented left and vice versa. Participants were asked to respond only to the 
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stimuli that they saw. So, for example, if they saw one stimulus moving to the 

right they would respond to indicate right only once. But if they saw two stimuli 

both moving to the right they would respond to indicate right twice. Using 

responses in this way meant that although the participants were only making one 

set of responses, information about both the number of stimuli and the direction in 

which they were perceived as moving in could be gathered. If a participant 

responded to indicate that they saw only one stimulus, this was coded as “one 

stimulus”. If participants reported seeing two stimuli, these responses were coded 

in the same way as the replication block and as Experiment 1. Responses from 

this block allowed more detailed information on the subjective responses of 

participants without being told to focus on one element of the task.  

 

3.3.2.3.4 Final perception block 

The final block type was a partial replication of the task used by Takeuchi 

et al (2011). This was titled the “Final Direction” block for participants. In this 

block, participants were instructed to report only the direction of their perception 

of motion that they were experiencing right at the end of the trial. Participants 

were asked to do this again by using the up and down arrow keys to represent the 

directions left and right. Again, these keys were counterbalanced in the same way 

as the other blocks. The task in this block reduced the potential artefact of 

participants only reporting a VMP response because they didn’t perceive two 

stimuli at all. Instead, by reporting only their final perception of motion, 

participants’ attention was focused on how they perceived the second, ambiguous 

stimulus. This meant that trials were coded as a reversal if the ambiguous motion 

was reported as moving in the opposite direction as the known preceding 
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directional motion. For example if the directional motion was moving to the right 

and the participant responded to indicate that they saw the ambiguous stimulus 

moving to the left then this would be coded as a reversal. By contrast, trials were 

coded as stable (i.e., consistent with VMP) if the ambiguous motion was reported 

as moving in the same direction as the directional motion (i.e., the directional 

motion was moving to the left and then the participant reported that they also saw 

the ambiguous motion moving to the left). By removing the need to report the 

direction of the first stimulus at all, this block was thought to be a more pure 

measure of whether participants were experiencing a priming effect or not. 

Attention checks in this block were the same as the ones used in the replication 

block, in that they consisted of 0.64s of unambiguous motion followed by 0.32s of 

more unambiguous motion. Therefore, participants’ responses to the direction of 

motion of the second stimulus could be scored as being correct or incorrect. 
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Table 3.4 Instructions provided to participants in each block 
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3.3.2.4 Procedure 

The procedure for this experiment was very similar to that of Experiment 

1; the consent procedure and medical background check (including a visual acuity 

test), were identical to Experiment 1. Consenting participants with normal or 

corrected to normal vision then moved on to take part in the experiment.  

Before each block of trials, the experimenter entered the testing room and 

fully explained the instructions for that block to the participant. The experimenter 

remained in the testing room throughout the practice trials to check that the 

participant fully understood both the task and how to respond in each block. The 

order of the blocks was randomised across participants. 

 

3.3.3 Results 

3.3.3.1 Attention check trials 

The a priori attention check criterion was that participants’ data would be 

excluded from analysis if they did not respond to at least 70% of attention check 

trials correctly. Based on this criterion, one participant’s data was excluded from 

the analysis. The remaining 22 participants’ data was included. Overall, 

participants correctly responded to 83.52% (SD = 6.26) of attention check trials. 

Although data from any participants who did not achieve at least 70% 

accuracy overall on attention check trials were excluded from analyses, it was 

important to establish whether responses to attention check trials differed across 

block type as a deviation from this assumption could indicate that there was an 

unwanted effect of attentional differences as well as the experimental 

manipulation of task. Therefore, the percentage correct attention check trials in 

each of the four blocks were submitted to a repeated measures ANOVA. This 
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revealed that there was no effect of block type on the percentage of attention 

check trials answered correctly ( p > 0.358). Means and standard deviations are 

presented in Table 3.5 below. 

Table 3.5 Percentage of attention check trials answered correctly across 

each block type, standard deviations are shown in parentheses. 

 Block type 

 Replication 
block 

Dual task 
block 

Final direction 
block Counting block 

Percentage 
of correct 
attention 

check trials 

82.273 
(7.516) 

81.818 
(7.327) 

85.000 
(8.591) 

81.818  
(6.645)  

 

3.3.3.2 Replication block 

In the replication block, trials were coded as reversal or stable in the same 

way as in Experiment One (responses where the same button was pressed twice 

were coded as stable trials and those where two different buttons were pressed 

were coded as reversals). The percentage of stable trials for each combination of 

ISI (0.04 and 0.12s) and unambiguous stimulus presentation time (0.08, 0.16, 0.32 

and 0.64s) were submitted to a 2x4 repeated measures ANOVA. This revealed 

significant main effects of both ISI, F(1,21) = 116.886, p < .001, hp2 = .848 and 

presentation time, F(2.03,63) = 50.337, p < .001, hp2 = .706, but there was no 

interaction found between the two, p = .314. See Figure 3.8 below. The 

Greenhouse-Geisser correction was applied as Mauchly’s test of sphericity was 

significant at the p = .05 level. 

To explore the main effects, post hoc comparisons were conducted. These 

revealed that there were significantly fewer stable responses with an ISI of 0.12s, 
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M = 43.85% (SD = 19.76), compared to 0.04s, M = 63.26% (SD = 18.67), t(21) = 

10.811, p < .001, d = 1.228. For the effect of unambiguous stimulus presentation 

time, the percentage of stable responses in the 0.08s condition, M = 67.07% (SD = 

17.53), was significantly higher than in the 0.32s, M = 45.47% (SD = 19.53), t(21) 

= 8.408, p < .001, d = 1.366, and the 0.64s, M = 39.99% (SD = 17.81), t(21) = 

10.544, p < .001, d = 1.713, conditions. The percentage of stable responses in the 

0.16s condition, M = 61.69% (SD = 19.12), was also significantly higher than in 

the 0.32s, t(21) = 6.311, p < .001, d = 1.025, and the 0.64s, t(21) = 8.447, p 

< .001, d = 1.372, conditions. All other comparisons were not significant (all ps 

>.219). See Figures 3.8 and 3.9 below. For the full RM ANOVA results see Table 

3.6. 

To determine whether responses indicated VMP or rMAE, the percentage 

of responses that indicated a stable perception were compared against chance 

(50%) using one-sample t-tests. If the percentage of stable responses were greater 

than chance, this is indicative of VMP, whereas a percentage significantly less 

than chance indicates rMAE. These t-tests revealed that, within the 0.04s ISI, the 

percentage of VMP responses greater than chance occurred within presentation 

times of 0.08s, M = 75.06% (SD = 12.74), t(21) = 9.226, p < .001, d = 1.967 and 

0.16s, M = 72.59% (SD = 14.27), t(21) = 7.427, p < .001, d = 1.583. Within the 

0.12s ISI, responses greater than chance occurred only with a presentation time of 

0.08s, M = 59.09% (SD = 18.25), t(21) = 2.336, p = .029, d = 0.498. In the 0.12s 

ISI, responses significantly lower than chance occurred with presentation times of 

0.32s, M = 36.87% (SD = 16.78) , t(21) = 3.672, p = .001, d = 0.783, and 0.64s, M 

= 28.65% (SD = 10.96) , t(21) = 9.138, p < .001, d = 1.948. All other 
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combinations of ISI and presentation time were not significantly different from 

chance level (all ps > .314). These are marked on Figure 3.8, below. 

 

 

 

 Figure 3.8 The percentage of stable responses plotted as a function 

of ISI for each presentation time of the unambiguous stimulus, for the replication 

block. Green markers highlight conditions leading to above-chance stable 

responses (therefore indicating VMP) and red markers highlight conditions 

leading to below-chance stable responses (therefore indicating rMAE). Error bars 

show standard error (SE). 
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Figure 3.9 The percentage of stable responses for each ISI of the 

unambiguous stimulus collapsed across all presentation times of the unambiguous 

stimulus, for the replication block. Error bars represent SE.  

 

Figure 3.10 The percentage of stable responses for each presentation time 

of the unambiguous stimulus collapsed across ISI, for the replication block. Error 

bars represent SE. 
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Table 3.6  

Full repeated measures ANOVA results for the percentage of stable trials 

in the replication block (significant p-values are indicated in bold font) 

 df1 df2 F p hp2 

Unambiguous 

stimulus 

presentation time 

2.030 21 50.337 < .001 .706 

ISI 1 21 116.886 < .001 .848 

Unambiguous 

stimulus 

presentation time x 

ISI 

3 63 1.208 .314 .054 

 

3.3.3.2.1 Replication block – Correct responses to directional motion 

In the same way as with Experiment One, the average percentage of 

responses where the participant responded correctly to the unambiguous 

directional motion stimuli on each trial were submitted to a 2 x 4 repeated 

measures ANOVA. This revealed a significant main effect of directional stimulus 

presentation time on the percentage of trials that participants correctly identified 

the direction of motion, F(3,63) = 16.222, p < .001, hp2 = .436. There was no 

effect of ISI, p = .712 and no interaction effect present, p = .504.  

Post hoc comparisons of the effect of presentation time collapsed across 

ISI revealed that the 0.08s presentation time M = 45.47% (SD = 14.96),  led to 

significantly fewer correct responses to directional motion stimuli than the 0.16s 

presentation time, M = 58.99% (SD = 20.17), t(21) = 4.479, p < .001, d = 0.710, 
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the 0.32s presentation time, M = 65.47% (SD = 18.17), t(21) = 6.626, p < .001, d 

= 1.051, and the 0.64s presentation time, M = 60.88% (SD = 21.54), t(21) = 5.103, 

p < .001, d = 0.809. All other combinations of presentation times did not differ 

significantly (all p > .214). See also Figure 3.11 below. 

To determine whether participants were able to determine the correct 

direction of unambiguous motion more often than would be expected by chance 

(50%), the percentage of correct responses for each combination of ISI and 

presentation time were submitted to individual one-sample t-tests. These revealed 

that, within the 0.04s ISI, correct responses greater than chance occurred within 

presentation times of 0.16s, M = 60.12% (SD = 15.73), t(21) = 3.017, p = .007, d 

= 0.643 and 0.32s, M = 64.11% (SD = 15.51), t(21) = 4.266, p < .001, d = 0.910 

but not within presentation times of 0.08s, p = .167 and 0.64s, p = .097. Within the 

0.12s ISI, correct responses to the directional motion greater than chance occurred 

within presentation times of 0.32s, M = 66.83% (SD = 20.77), t(21) = 3.803, p = 

.001, d = 0.811 and 0.64s, M = 63.15% (SD = 20.02), t(21) = 3.080, p = .006, d = 

0.657 but not 0.08s, p = .178, and 0.16s, p = .141. These are marked on Figure 

3.11, below. 
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Figure 3.11The percentage of correct responses to the unambiguous 

directional motion stimuli in the replication block. Those greater than chance are 

marked with green markers. Error bars represent SE.  

 

3.3.3.3 Final perception block 

In the final perception block, trials were coded as stable or reversal 

depending on whether the participant’s response matched the direction of the 

unambiguous stimulus. The percentage of stable trials for each combination of ISI 

(0.04 and 0.12s) and unambiguous stimulus presentation time (0.08, 0.16, 0.32 

and 0.64s) were submitted to a 2x4 repeated measures ANOVA. This revealed 

significant main effects of both ISI, F(1,21) = 44.050, p < .001, hp2 = .677, and 

unambiguous stimulus presentation time, F(3,63) = 6.953, p < .001, hp2 = .249. A 

significant interaction effect was also found, F(3,63) = 3.833, p = .014, hp2 = .154. 

See Figure 3.12 below for a graph showing the full results. For the full RM 

ANOVA table see Table 3.7 below.  
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Overall, participants were more likely to report a stable perception when 

the ISI was 0.04s, M = 52.07% (SD = 13.02), compared to 0.12s, M = 39.97% (SD 

= 14.90), t(21) = 6.637, p < .001, d = 0.917. To further explore the interaction 

effect, two one-way ANOVAs were conducted to examine the effect of 

presentation time, separately for each ISI. Within a 0.04s ISI, an effect of 

presentation time was revealed, F(3,21) = 6.670, p = .002, hp2 = .241. Post hoc 

comparisons showed that participants were more likely to report stability in their 

perception when the presentation time was 0.08s, M = 54.34% (SD = 8.34), than 

they were when the presentation time was 0.64s, M = 45.36% (SD = 13.84), t(21) 

= 2.821, p = .038, d = 0.736. Additionally, when the presentation time was 0.16s, 

M = 58.84% (SD = 8.34); this also led to a significant increase in reports of a 

stable perception compared to both the 0.32s, M = 49.74% (SD = 13.56, t(21) = 

2.857, p = .009, d = 0.745, and 0.64s, t(21) = 4.234, p < .001, d = 1.104, 

conditions. All other pairwise comparisons within the 0.04s ISI condition were not 

significant (all ps > .921). In the 0.12s ISI condition, an effect of presentation time 

was also revealed, F(3,21) = 5.294, p = .007, hp2 = .201. Here, participants were 

more likely to report a stable perception when the presentation time was 0.08s, M 

= 48.36% (SD = 7.72), than they were when the presentation time was 0.32s, M = 

34.18% (SD = 15.27), t(21) = 3.728, p = .001, d = 1.003, and 0.64s, M = 36.72% 

(SD = 18.06), t(21) = 3.061, p = .006, d = 0.824, but all other pairwise 

comparisons within the 0.12s ISI condition were not significant (all ps > .274). 

To determine whether responses indicated VMP or rMAE, the percentage 

of responses that indicated a stable perception were compared against chance 

(50%) using one-sample t-tests. If the percentage of stable responses were greater 

than chance, this is indicative of VMP, whereas a percentage significantly less 
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than chance indicates rMAE. These t-tests revealed that, within the 0.04s ISI, the 

percentage of VMP responses greater than chance occurred within presentation 

times of 0.08s, M = 54.34% (SD = 8.34), t(21) = 2.442, p = .024, d = 0.521 and 

0.16s, M = 58.84% (SD = 12.29), t(21) = 3.374, p = .003, d = 0.719. Within the 

0.12s ISI, stable responses significantly lower than chance level were shown with 

presentation times of 0.16s, M = 40.60% (SD = 13.43), t(21) = 3.282, p = .004, d 

= 0.700, 0.32s, M = 34.18% (SD = 15.27), t(21) = 4.859, p < .001, d = 1.036, and 

0.64s, M = 36.72% (SD = 18.06), t(21) = 3.449, p = .002, d = 0.735. All other 

combinations of ISI and presentation time were not significantly different from 

chance level (all ps > .131). These are marked on Figure 3.12, below. 

 

Figure 3.12 The percentage of stable responses for each ISI of the unambiguous 

stimulus at all presentation times of the unambiguous stimulus, for the final 

perception block. Green markers highlight conditions leading to above-chance 

stable responses (therefore indicating VMP) and red markers highlight conditions 
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leading to below-chance stable responses (therefore indicating rMAE). Error bars 

represent SE.  

Table 3.7  

Full repeated measures ANOVA results for the percentage of stable trials 

in the final perception block (significant p-values are indicated in bold font) 

 df1 df2 F p hp2 

Unambiguous 

stimulus 

presentation time 

3 63 6.953  <.001 .249 

ISI 1 21 44.050 < .001 .677 

Unambiguous 

stimulus 

presentation time x 

ISI 

3 63 3.833 .014 .154 

 

3.3.3.3 Counting block 

Responses in the counting block were coded simply as a report of 

perceiving one or two stimuli on each trial. The percentage of reports of 

perceiving one stimulus, for each combination of ISI (0.04 and 0.12s) and 

unambiguous stimulus presentation time (0.08, 0.16, 0.32 and 0.64s) were 

submitted to a 2x4 repeated measures ANOVA. This revealed significant main 

effects of both ISI, F(1,21) = 575.230, p < .001, hp2 = .965, and unambiguous 

stimulus presentation time, F(2.01,63) = 30.192, p < .001, hp2 = .590. A significant 
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interaction effect was also found, F(3,63) = 27.084, p < .001, hp2 = .563. For the 

full RM ANOVA table see Table 3.8 below. 

Overall, participants were significantly more likely to report that they saw 

one stimulus in the 0.04s ISI condition, M = 64.26% (SD = 18.09), compared to 

the 0.12s, M = 8.68% (SD = 6.55), t(21) = 23.984, p < .001, d = 4.973. To further 

explore the interaction effect, two one-way ANOVAs were conducted to examine 

the effect of presentation time, separately for each ISI. Within a 0.04s ISI, an 

effect of presentation time was revealed, F(3,18) = 36.040, p < .001, hp2 = .632. 

Post hoc comparisons showed that there was no significant difference in the 

likelihood of participants reporting one stimulus when the presentation time was 

80ms, M = 76.19% (SD = 13.10), compared to 160ms, M = 74.01% (SD = 10.18), 

p > .999. Nor was there a difference when the presentation time was 0.32s, M = 

56.24% (SD = 15.74) compared to 0.64s, M = 50.62% (SD = 17.95), p = .395. 

However, participants were more likely to report seeing one stimulus when the 

presentation time was 0.08s, than they were when the presentation time was 0.32s 

t(21) = 6.640, p < .001, d = 1.372, or 0.64s, t(21) = 8.512, p < .001, d = 1.759. The 

same was true when the presentation time was 0.16s; this also led to a significant 

increase in reports of one stimulus compared to both the 0.32s, t(21) = 5.917, p 

< .001, d = 1.223, and 0.64s, t(21) = 7.788, p < .001, d = 1.609, conditions. In the 

0.12s ISI condition, an effect of presentation time was also revealed, F(3,18) = 

5.548, p = .007, hp2 = .209. Here, participants were more likely to report seeing 

one stimulus when the presentation time was 0.08s, M = 12.56% (SD = 7.92), than 

they were when the presentation time was 0.32s, M = 6.28% (SD = 4.80), t(21) = 

3.830, p < .001, d = 1.011, and 0.64s, M = 7.46% (SD = 6.71), t(21) = 3.114, p 
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= .017, d = 0.822, but all other pairwise comparisons within the 0.12s ISI 

condition were not significant (all p > .086). 

Figure 3.13 The percentage of trials in which participants reported that 

they saw one stimulus, for each ISI and presentation time of the unambiguous 

stimulus. Error bars represent SE.  
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Table 3.8  

Full repeated measures ANOVA results for the percentage of trials in 

which participants reported perceiving only one stimulus in the counting block 

(significant p-values are indicated in bold font) 

 df1 df2 F p hp2 

Unambiguous 

stimulus 

presentation time 

2.010 63 30.192 < .001 .590 

ISI 1 21 575.230 < .001 .965 

Unambiguous 

stimulus 

presentation time x 

ISI 

3 63 27.084 < .001 .563 

 

 

3.3.3.4 Dual task block 

In the dual task block, participants were asked to respond to indicate the 

direction of motion of all the stimuli that they perceived in the trial (for full 

instructions given to participants and a full description of the trial see section 3.2, 

Methods, above). If the participant responded with two key presses, that indicated 

they saw two stimuli. For example, a participant might respond to indicate motion 

to the left followed by motion to the right, by pressing “up” then “down”, or 

motion to the right followed by motion to the right, by pressing “down” then 

“down”. Both would be examples of a response that indicated two stimuli were 

perceived. If the participant responded with one key press, that indicated they saw 
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one stimulus. For example, participants might respond to indicate motion to the 

left by pressing “up”.   

Therefore, because participants’ responses provided information on how 

many stimuli they saw and in which direction they saw them moving, they were 

coded according to three categories. The first category was one stimulus, meaning 

participants responded to indicate that they saw only one stimulus moving in any 

direction. The second category was two stimuli stable, meaning that participants 

responded to indicate that they saw two stimuli and that they were moving in the 

same direction. The final category was two stimuli reversal, meaning that 

participants responded to indicate that they saw two stimuli, and those stimuli 

were moving in the opposite directions.  

The aim of this block was to examine whether participants would respond 

to indicate that they saw one stimulus at short presentation times and ISIs, and 

two stimuli at longer durations, when they were only instructed to report their 

subjective experience on each trial. In other words, when they were not asked to 

focus on a particular aspect of the trial (i.e., how many stimuli there were as they 

did in the counting block, which direction each of the two stimuli were moving as 

in the replication block, or which direction the final stimulus was moving as in the 

final direction block).  

 

3.3.3.4.1 Dual task block – “One stimulus” responses 

As described in the Design section above, in this block there were always 

two stimuli presented to participants. Therefore, any reports of participants 

perceiving only one stimulus were erroneous. To address the aim of investigating 

whether participants were more likely to make this erroneous report of “one” 
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stimulus at shorter presentation times and ISIs, the percentage of “one stimulus” 

responses, for each combination of ISI (0.04 and 0.12s) and unambiguous 

stimulus presentation time (0.08, 0.16, 0.32 and 0.64s) were submitted to a 2x4 

repeated measures ANOVA. This revealed significant main effects of both ISI, 

F(1,21) = 163.112, p < .001, hp2 = .886, and unambiguous stimulus presentation 

time, F(2.12,63) = 9.751, p < .001, hp2 = .317. A significant interaction effect was 

also found, F(1.91,63) = 22.847, p < .001, hp2 = .521 (see Figure 3.15, below). For 

the full RM ANOVA table see Table 3.10 below.  

Overall, participants were significantly more likely to report that they saw 

one stimulus in the 0.04s ISI condition, M = 59.97% (SD = 20.19), compared to 

the 0.12s, M = 17.05% (SD = 10.53), t(21) = 12.772, p < .001, d = 2.917 (see also 

Figure 3.15, below). To further explore the interaction effect, two one-way 

ANOVAs were conducted to examine the effect of presentation time, separately 

for each ISI. Within a 0.04s ISI, an effect of presentation time was revealed, 

F(1.89,18) = 17.600, p < .001, hp2 = .456.  Post hoc comparisons showed that 

there was no significant difference in the likelihood of participants reporting one 

stimulus when the presentation time was 80ms, M = 69.32% (SD = 18.02), 

compared to 160ms, M = 69.20% (SD = 19.85), p > .999. Nor was there a 

difference when the presentation time was 0.32s, M = 49.40% (SD = 14.85) 

compared to 0.64s, M = 51.94% (SD = 19.59), p > .999. However, participants 

were more likely to report seeing one stimulus when the presentation time was 

0.08s, than they were when the presentation time was 0.32s t(21) = 5.480, p 

< .001, d = 1.096, or 0.64s, t(21) = 4.781, p < .001, d = 0.956. The same was true 

when the presentation time was 0.16s; this also led to a significant increase in 

reports of one stimulus compared to both the 0.32s, t(21) = 5.448, p < .001, d = 
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1.089, and 0.64s, t(21) = 4.748, p < .001, d = 0.949, conditions. In the 0.12s ISI 

condition, an effect of presentation time was also revealed, F(2.21,18) = 7.476, p 

= .001, hp2 = .263. Here, participants were more likely to report seeing one 

stimulus when the presentation time was 0.64s, M = 23.00% (SD = 11.03), than 

they were when the presentation time was 0.32s, M = 14.26% (SD = 10.23), t(21) 

= 4.219, p < .001, d = 0.865, 0.16s, M = 15.45% (SD = 9.79), t(21) = 3.642, p 

= .003, d = 0.746, and 0.08s, M = 15.50% (SD = 9.29), t(21) = 3.619, p = .002, d = 

0.742, but all other pairwise comparisons within the 0.12s ISI condition were not 

significant (all ps > .999). 

 

 

Figure 3.15 The percentage of “one” responses in the dual task condition, 

for each ISI and presentation time of the unambiguous stimulus. Error bars 

represent SE. 
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Table 3.10  

Full repeated measures ANOVA results for the percentage of trials in 

which participants reported perceiving only one stimulus in the dual task block 

(significant p-values are indicated in bold font) 

 df1 df2 F p hp2 

Unambiguous 

stimulus 

presentation time 

2.116 63 9.751 < .001 .317 

ISI 1 21 163.112 < .001 .886 

Unambiguous 

stimulus 

presentation time x 

ISI 

1.910 63 22.847 < .001 .521 

 

 

3.3.3.4.2 Dual task block - “two stimuli” responses 

To examine participants’ perception on trials where they correctly 

identified that there were two stimuli, these trials were examined independently of 

the erroneous “one stimulus” response trials detailed above. These trials were 

analysed in the same way as the replication block, in order to determine whether 

VMP was evoked when participants were completely free to report their 

subjective perception without being restricted by task instructions. 

Firstly, the proportion of stable trials, of the trials where two stimuli were 

identified, for each combination of ISI (0.04 and 0.12s) and unambiguous 

stimulus presentation time (0.08, 0.16, 0.32 and 0.64s) were submitted to a 2x4 
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repeated measures ANOVA. This revealed significant main effects of both ISI, 

F(1,21) = 13.261, p = .002, hp2 = .387, and unambiguous stimulus presentation 

time, F(3,63) = 7.501, p < .001, hp2 = .263. A significant interaction effect was 

also found, F(3,63) = 7.654, p < .001, hp2 = .267 (see Figure 3.16, below). For the 

full RM ANOVA table see Table 3.11 below.  

To further explore the interaction effect, two one-way ANOVAs were 

conducted to examine the effect of presentation time, separately for each ISI. 

Within a 0.04s ISI, an effect of presentation time was revealed, F(3,22) = 3.273, p 

= .027, hp2 = .135. Post hoc comparisons showed that participants were more 

likely to report a stable perception when the presentation time was 0.32s, M = 

41.70% (SD = 23.85), than 0.64s, M = 23.35% (SD = 16.68), t(21) = 3.073, p 

=.019, d = 0.807. However, all other pairwise comparisons of presentation times 

were not significant (all ps > .312; see also Figure 3.16). In the 0.12s ISI 

condition, an effect of presentation time was also revealed, F(3,22) = 17.868, p < 

.001, hp2 = .460. Here, participants were more likely to report a stable perception 

when the presentation time was 0.08s, M = 54.45% (SD = 18.60), than they were 

when the presentation time was 0.32s, M = 35.86% (SD = 20.99), t(21) = 4.827, p 

< .001, d = 0.972, and 0.64s, M = 28.91% (SD = 17.16), t(21) = 6.630, p < .001, d 

= 1.335. Similarly, participants were more likely to report a stable perception 

when the presentation time was 0.16s, M = 47.82% (SD = 19.60), than they were 

when the presentation time was 0.32s, t(21) = 3.105, p = .005, d = 0.625, and 

0.64s, t(21) = 4.909, p < .001, d = 0.988. All other pairwise comparisons within 

the 0.12s ISI condition were not significant (all ps > .457; see also Figure 3.16). 

To determine whether responses indicated VMP or rMAE, the percentage 

of responses that indicated a stable perception were compared against chance 
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(50%) using one-sample t-tests. If the percentage of stable responses were greater 

than chance, this is indicative of VMP, whereas a percentage significantly less 

than chance indicates rMAE. These t-tests revealed that there were no conditions 

that led to stable responses greater than chance, therefore no combination of ISI 

and presentation time led to responses consistent with VMP. However, the t-tests 

revealed that several conditions led to the percentage of stable responses being 

significantly lower than chance and so indicative of rMAE. Within the 0.04s ISI, 

these were presentation times of 0.08s, M = 33.28% (SD = 28.21), t(21) = 2.780, p 

= .011, d = 0.593, 0.16s, M = 29.87% (SD = 20.62), t(21) = 4.579, p < .001, d = 

0.976, and 0.64s, M = 23.35% (SD = 16.68), t(21) = 7.493, p < .001, d = 1.598. 

Within the 0.12s ISI, presentation times of 0.64s, M = 28.91% (SD = 17.16), t(21) 

= 5.766, p < .001, d = 1.229, and 0.32s, M = 35.86% (SD = 20.99), t(21) = 3.161, 

p = .005, d = 0.674, also led to significantly lower percentages of stable responses 

than would be expected by chance. All other combinations of ISI and presentation 
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times did not result in a percentage of stable responses significantly different from 

chance (all p > 117; these are marked on Figure 3.17 below). 

Figure 3.16 The percentage of stable responses given, for each 

combination of ISI and presentation time, out of the trials only where participants 

reported seeing two stimuli. Green markers highlight conditions leading to above-

chance stable responses (therefore indicating VMP) and red markers highlight 

conditions leading to below-chance stable responses (therefore indicating rMAE). 

Error bars represent SE. 
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Figure 3.17 The percentage of stable responses given at each presentation 

time, for the 0.04s ISI condition only, out of the trials only where participants 

reported seeing two stimuli. Error bars represent SE. 
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Figure 3.18The percentage of stable responses given at each presentation 

time, for the 0.12s ISI condition only, out of the trials only where participants 

reported seeing two stimuli. Error bars represent SE. 
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Table 3.12  

Full repeated measures ANOVA results for the percentage of trials in 

which participants reported perceiving two stimuli, and the stimuli were moving in 

the same direction (i.e., a “stable” response) in the dual task block (significant p-

values are indicated in bold font) 

 df1 df2 F p hp2 

Unambiguous 

stimulus 

presentation time 

3 63 7.501 < .001 .263 

ISI 1 21 13.261 .002 .387 

Unambiguous 

stimulus 

presentation time x 

ISI 

1.910 63 7.654 < .001 .267 

 

3.3.4 Discussion            

Informal observations of the Experiment 1 stimuli with short ISIs and 

short directional stimulus durations suggested that participants may not always be 

able to resolve two separate stimuli in these displays and may, at least sometimes, 

perceive only one stimulus. However, based on the a priori assumption that 

participants would perceive two stimuli, in Experiment 1, they were required to 

make two responses to indicate the perceived direction for each of the two stimuli. 

This creates an ambiguity in the interpretation of the results. Did participants 

make “same” responses (e.g., left/left) because they perceived two stimuli and 

both were moving left and thus potentially priming? Or, alternatively, were 
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participants making “same” responses because when they saw only one stimulus 

moving in one direction then their best response option was to respond twice with 

the same answer? This second account is much less compatible with the idea of 

priming and indicates that at least some of the “same” responses associated with 

priming in Experiment 1, and previous work, may be artefactual and arising from 

incompatibility of the perceptual experience and response options. Several 

different response options were used in Experiment 2 to clarify this issue. 

First, results from the replication block suggest that Experiment 2 was 

successful in replicating the pattern of results from Experiment 1 at short ISIs and 

short directional stimulus durations. There were a greater number of VMP 

(“same”) responses to ambiguous motion stimuli when presented following brief 

presentation of unambiguous motion after a shorter ISI.  

Next, the results from the counting block clearly showed that participants 

were more likely to report perceiving only one stimulus when directional stimulus 

presentation and ISI were brief. For the 0.04s ISI, on average, over 60% of trials 

were incorrectly reported as having just one stimulus. When the ISI was increased 

to 0.12s, the percentage of “one stimulus” responses dramatically fell to below 

10%, on average. The duration of the directional stimulus also had an effect with 

shorter directional stimuli leading to more “one stimulus” responses. In the 

condition with both the shortest ISI and the shortest directional stimulus duration, 

nearly 75% of trials were reported as “one stimulus”, on average. These results are 

in line with the hypothesis that participants are largely unable to resolve two 

separate stimuli in displays with short ISIs and short duration directional stimuli. 

They overwhelmingly perceive just one stimulus. This clearly undermines direct 

interpretation of the Experiment 1 data as simply reflecting priming. These results 



200 
 

were further supported by the results of the dual task block. Overall, participants 

were more likely to report seeing one stimulus in the 0.04s ISI condition than in 

the 0.12s ISI condition. This effect was particularly prominent in the 0.04s ISI 

condition when coupled with shorter directional stimulus presentation times. 

When the ISI increased to 0.12s and participants responded to indicate that they 

saw two stimuli, they were more likely to respond to indicate VMP at shorter 

presentation times and rMAE at longer ones in a pattern similar to that seen in the 

replication block. As there were always two stimuli presented in the dual task 

block, any “one stimulus” responses were erroneous. By removing the erroneous 

“one stimulus” responses, we can get a purer estimate of the amount of priming 

that was present. This showed that there were no combinations of ISI and 

directional stimulus presentation time that led to responses indicating VMP. In this 

case, even short presentation times and ISIs led to responses indicative of rMAE 

(i.e., more reversals in perception than expected by chance) rather than VMP.  

Finally, we followed an approach by Takeuchi et al. (2011) to get an 

estimate of VMP which should be less sensitive to whether participants perceive 

both stimuli. This is done by focusing just on the final perception of the second 

stimulus. If VMP is taking place, then it should be observable in the reports of the 

second stimulus regardless of whether the first stimulus is perceived. Results from 

the final perception block showed that participants were more likely than chance 

to report VMP when the ISI was 0.04s and the directional stimulus was presented 

for 0.08 or 0.16s. Although, this effect was much weaker than in the replication 

block where around 75% of trials led to a VMP response when the presentation 

time was 0.08s, compared to 54% in the final perception block. Additionally, the 

strongest VMP response in this block was evoked with a presentation time of 
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0.16s, rather than 0.08s as in the replication block. When the ISI increased to 

0.12s, only rMAE was shown when the directional stimulus was presented for 

longer durations. Unlike in the replication block, no VMP was indicated at all in 

this condition, even when the presentation time of the directional stimulus was 

very brief. 

In addition to affecting the interpretation of the results from Experiment 1, 

these results have implications for the results of Kanai and Verstraten’s (2005) 

study. Kanai and Verstraten (2005) reported that when ambiguous motion is 

preceded by brief directional motion for 0.08s with a 0.04s ISI participants 

responded to indicate VMP on most trials, when asked if the stimuli were moving 

in the same or different directions. The results from the counting block in 

Experiment 2 suggest that under the same conditions, participants report that they 

only perceive one stimulus at all on most trials. This means that when Kanai and 

Verstraten (2005) asked their participants whether the stimuli in each trial were 

moving in the same or different directions, they could have been responding to 

indicate that they were moving in the same direction (i.e., a VMP response) whilst 

only perceiving one stimulus at all. Moreover, during the dual task block where 

participants were instructed to report their perception completely subjectively, 

they were also far more likely to report that they saw only one stimulus under 

these conditions. One possible explanation for the results that are seen in the 

counting and dual task blocks is that the participants are responding with their 

‘best guess’ under these very brief timing conditions. For instance, if the 

participant has noticed only one stimulus but is asked a question that requires 

them to consider the motion of two stimuli (i.e., by being asked whether the two 

stimuli were moving in the same or different directions, or being asked to report 
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the direction of the two stimuli), it is logical to assume that the best guess in this 

case would be to respond to indicate that you saw motion in the same direction. In 

other words, if participants only saw one stimulus but are being asked about two, 

they assume that those two stimuli must have been moving in the same way and 

respond accordingly. If the results from the correct responses to directional motion 

from Experiment 1 and the replication block in Experiment 2 are considered along 

with this assumption, this could be likely. In both cases, participants were 

significantly more able to correctly respond to the unambiguous directional 

motion stimulus when the stimulus presentation time and ISI were longer but were 

less able to do so when the ISI and presentation times were shorter. This result 

indicates that under these circumstances, participants may be unsure about the 

direction of motion that they see in the trials and therefore the responses that they 

make on them may be based on a guess. For example, in trials where the 

participant has incorrectly reported the direction of the unambiguous motion this 

suggests that they did not perceive that motion. Therefore, if they also responded 

to indicate VMP on such trials, this is likely to be due to a failure to perceive one 

of these stimuli rather than a genuine VMP response.  

The results from the final perception block do not show the same pattern 

as the replication block in Experiment 2, nor the pattern from Experiment 1. As 

well as being much weaker overall, the strongest VMP response in the final 

perception block was induced by presenting unambiguous motion for 0.16s with 

an ISI of 0.04s, rather than presenting for just 0.08s as was the case in both 

Experiment 1 and the replication block of Experiment 2. The results from this 

block also do not replicate those of the original authors. Takeuchi et al. (2011) 

reported results that were comparable to Kanai and Verstraten’s (2005), however 
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these are not seen here. As noted previously however, the exact conditions of the 

present experiment may not have been close enough to those used by Takeuchi et 

al (2011) to directly compare the results. For instance, Takeuchi et al (2011) 

instructed their participants to fixate away from the stimulus to avoid foveal 

stimulus presentation. Here, participants were instructed to fixate in the centre of 

the stimulus in the same manner as in Kanai and Verstraten (2005).  

The results from this experiment are clearly relevant when interpreting the 

results of experiments involving a direct replication of Kanai and Verstraten’s 

(2005) design. However, these results should also urge caution to be taken when 

interpreting the results of experiments where participants are forced to make a 

judgement about a stimulus that they might not be able to perceive, leading to the 

“best guess” effect described above. Many studies investigating VMP have 

avoided this by directly comparing participants’ reports of the direction of an 

ambiguous stimulus with the known direction of a priming stimulus (e.g., Long, 

Toppino & Mondin, 1992; Pinkus & Pantle, 1997; Pantle, Gallogly & Pieler, 

2000; Takeuchi et al., 2011; Piedimonte et al., 2015). However, there are studies 

that have employed a similar method to Kanai and Verstraten (2005) and asked 

participants to report whether they perceive two stimuli moving in the same or 

different directions. For instance, Pavan et al. (2009) directly replicate the results 

by Kanai and Verstraten (2005) and extend these findings to second-order motion. 

However, for judgements of both first and second order motion, the authors 

determined whether VMP was present by asking participants to report whether 

they saw the sine-wave stimulus pairs moving in the same or different directions. 

The results of this study show that these results could be affected by this “best 

guess” effect. The recommendation here would be to replicate such studies, using 
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a paradigm whereby the reported direction of the ambiguous stimulus is compared 

directly to the known motion of the directional stimulus. 

It should be noted however, that in both experiments described in this 

chapter participants generally did not reliably discriminate the direction of the 

unambiguous motion presented in the first stimulus in each trial. Attention check 

trials were included in this task, with a pre-defined pass rate of 70%. This 

suggested that the participants whose data were included in analysis were paying 

attention throughout the task but perhaps found the required response confusing 

given that they were asked to respond using the up and down arrow keys to report 

left- and right-ward motion. It was acknowledged before collecting data for this 

experiment that this response method would add a given amount of difficulty to 

the task, but that this difficulty would be consistent across all conditions and 

participants. Therefore, it could be this added burden on the cognitive load of 

participants that was causing the decreased ability to discriminate the direction of 

the unambiguous motion generally across all conditions. However, we cannot be 

certain of this with the current design. This response protocol was originally used 

so that responses indicating motion in a particular direction were able to be 

decoded. For instance, responses to indicate a reversal from right- to left-ward 

motion. Therefore, response buttons needed to be counterbalanced to avoid any 

signal from the manual response itself being responsible for any increase in 

decoding accuracy. However, there were not sufficient trial numbers in each class 

to run this analysis. So, in future experiments, the response protocol could be 

simply to press the left arrow to indicate motion to the left and vice versa, as there 

would be no need for counterbalancing. This would reduce the cognitive load of 

participants and help to determine whether it was indeed the difficulty of the 
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response protocol that was causing the reduction in participants’ ability to reliably 

discriminate the unambiguous directional motion.  

Requiring participants to report the direction of each of the two stimuli in 

the pair, however, did allow us to determine some measure of response accuracy. 

For example, we were able to analyse the number of trials in each condition where 

the direction of the first stimulus was correctly reported. In contrast, by asking 

participants only to report whether the two stimuli were moving in the “same” or 

“different” directions, Kanai and Verstraten (2005) did not provide such an 

analysis. 

A further limitation of Experiment 1 in this chapter lies in the large 

number of conditions examined, which subsequently led to a reduced number of 

trials within each individual condition. Specifically, within the 25 distinct timing 

conditions detailed in section 3.2.1.3, each condition contained only 20 trials 

which was lower than the 40 trials per condition in Kanai and Verstraten (2005). 

This constraint was necessary to prevent participants from experiencing fatigue or 

disengagement due to the longer response duration, and demand of our response 

regime which, unlike Kanai and Verstraten (2005), required information about the 

motion direction of both stimuli rather than just a same/different judgement. 

Additionally, we included an extra presentation time of 1s, that was not previously 

examined by Kanai and Verstraten (2005). Therefore, as well as being more 

demanding in terms of its response regime, our experiment also contained more 

conditions (25, compared to Kanai & Verstraten’s 20). However, this 

methodological choice affected the resolution in measuring the reversal rate. For 

instance, a change in response to only one trial corresponds to a 5% variation in 

the reversal rate (compared to 2.5% resolution in Kanai & Verstraten). 
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Nonetheless, we were able to replicate the adaptation results observed by Kanai 

and Verstraten (2005) which suggests that the power of the study for this effect 

was not significantly affected.  However, this coarser measure may have obscured 

other subtle but potentially meaningful differences in participants’ responses 

across conditions. Future studies could address this by either increasing the 

number of trials per condition and splitting into separate sessions, thereby 

enhancing the sensitivity of the reversal rate measurements, or by refining the 

experimental design to reduce the number of conditions without sacrificing the 

scope of the research question. 

Overall, the results presented here are in support of the hypothesis that 

participants’ responses to paradigms investigating VMP using very short ISIs (i.e., 

below 0.12s) may not be valid. This is particularly true when these short ISIs are 

combined with a short presentation time of a preceding unambiguous stimulus. 

One of the initial aims of this chapter was to determine the optimum temporal 

parameters to evoke VMP and rMAE, for use in a subsequent experiment 

involving EEG. The results from Experiment 1, further bolstered by those of 

Experiment 2, suggest that this paradigm may not be able to reliably investigate 

VMP. However, an ISI of 0.12s and presentation times greater than 0.32s have 

been shown to reliably induce rMAE. Therefore, rMAE will be investigated using 

EEG but VMP will not.  
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Chapter Four: Testing for adaptation in spontaneous perceptual reversals 

using multivariate pattern analysis of EEG data 
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4.1 Introduction 

A considerable amount of research has been carried out with the aim of 

identifying the factors that drive perceptual reversals of ambiguous stimuli, (e.g., 

the Necker cube, Boring’s Old-Young woman, or Rubin’s Faces-Vase). Candidate 

mechanisms for perceptual reversals include top-down (e.g., Pitts et al., 2008), 

bottom-up (e.g., Kornmeier & Bach, 2004), and integrative approaches (e.g., 

Kornmeier et al., 2009; Kornmeier & Bach, 2012; Long & Moran, 2007). These 

approaches have presented several electrophysiological correlates that are 

modulated by top-down and bottom-up influences but have primarily used 

univariate methods of analysing electrophysiological data that focus on a 

particular set of scalp locations and time points (for example, event-related 

potential components; ERP). These sorts of approaches can shed light on whether 

a given experimental condition evokes changes in or presence of these 

electrophysiological correlates, but it is more difficult to attribute these to a 

particular underlying mechanism. This is because the univariate methods that 

generate such correlates do not consider the holistic, whole-brain pattern of 

activity across different conditions. This is discussed in more detail below.  

A problem associated with such univariate analysis techniques of 

electroencephalographic (EEG) data, for example ERP analyses, is that the 

selection of an appropriate and reliable time-window in which to analyse ERP 

components linked to spontaneous perceptual reversals is problematic. If an 

ambiguous stimulus is presented continuously, for example, participants may be 

asked to respond via a key press when they experience a perceptual reversal. Due 

to individual and trial-by-trial differences in reaction times this paradigm can 

cause temporal jitter, meaning that ERP components that occur only briefly may 
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be lost in the trial and participant averaging process and do not appear in the 

grand average ERP results (see Chapter 2 for more detail; Kornmeier & Bach, 

2004; 2012). As a result, an intermittent viewing paradigm is more widely 

employed in ERP studies of multi-stable perception, taking stimulus onset as the 

moment of reversal, and therefore significantly increasing the temporal resolution 

(the “Onset Paradigm”; see also Chapter 2; Kornmeier & Bach, 2004; 2012). 

Experiments employing the Onset Paradigm have identified several components 

that are thought to be related to both top-down and bottom-up influences on 

perceptual reversals (see Chapters 1 and 2 for a review of these). Two in 

particular, have been widely studied in the literature. The first has been termed the 

‘Reversal Positivity’ (RP; Kornmeier et al., 2011; Kornmeier & Bach, 2004; 

2012). This component occurs around 120ms post- stimulus onset at occipital 

electrode sites. The RP has been reported in response to the Necker cube 

(Kornmeier et al., 2011), Boring‘s old/young woman (Kornmeier & Bach, 2004) 

and binocular rivalry stimuli (Britz et al., 2011). The RP has been suggested to be 

reflective of the detection of a processing conflict resulting from the ambiguity of 

the presented stimulus (Kornmeier et al., 2011; Kornmeier & Bach, 2004, 2012). 

The second component is known as the ‘Reversal Negativity’ (RN; Kornmeier & 

Bach, 2004) which occurs around 200-260ms post-stimulus onset over posterior 

electrode sites. The RN has been found in response to reversals of the Necker 

cube (Kornmeier & Bach, 2004; 2012; 2014), face/vase and Schröder's staircase 

(Pitts, Nerger & Davis, 2007). The RN is thought to reflect top-down influences 

over perception as it has been shown to be enhanced during active volitional 

control of reversals (Pitts et al., 2008). 
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Evidence from behavioural studies too, have aimed to identify some of the 

top-down and bottom-up factors driving reversals in perception. As fully 

described in Chapter 1, the neural fatigue (Blake et al., 2003; Freeman, 2005; 

Long & Toppino, 2004; Wilson, 2003) and cross inhibition model is based on the 

idea that each interpretation of an ambiguous stimulus has its own neural 

representation which, when active, inhibits the representations of alternative 

interpretations of the same image. Following periods of prolonged stimulation, the 

neural representation underpinning the currently dominant percept becomes 

increasingly fatigued (adapted) and thus is no longer able to inhibit the alternative 

percept. At a critical point, perception reverses and the interpretation that is not 

adapted becomes dominant with its neural representation becoming strongest and 

inhibiting the alternative(s). This then restarts the process and will continue as a 

cycle of reversals. Studies examining the effects of pre-exposure to unambiguous 

variants of ambiguous stimuli have provided support for the neural 

fatigue/adaptation model. These studies show that prolonged pre-exposure to 

unambiguous variants of ambiguous stimuli (for example to an unambiguous left-

facing Necker cube) reliably induce the opposite percept to become more likely 

upon subsequent ambiguous stimulus presentation (Kanai & Verstraten, 2005; 

Long et al., 1992; Toppino & Long, 1987; Verstraten et al., 1994). These 

behavioural experiments provide evidence that neural adaptation plays a role in 

perceptual reversals when it is induced by the pre-exposure of biased stimuli, 

however they do not shed light on whether it is a factor in the reversals in 

perception that occur spontaneously when viewing only a sequence of ambiguous 

figures as in the onset paradigm.  
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The currently available literature, therefore, provides evidence that 

adaptation to unambiguous stimuli can lead to behavioural adaptation effects. 

However, what is not currently determinable from the available research, is 

whether adaptation arises during the viewing of only ambiguous stimuli, either 

continuously or intermittently. Evidence from univariate EEG studies suggests 

that there could be several top-down and bottom-up mechanisms involved in the 

perception of purely ambiguous stimuli (e.g., Kornmeier & Bach, 2012). 

However, these univariate techniques described above focus on a particular region 

of interest (ROI) on the scalp where the component of interest (for example the 

RN or RP described above) is known to appear. This is done to avoid inflating 

Type I error rate, which is associated with multiple comparisons of activity at 

many scalp locations (e.g., Groppe et al., 2011, see Chapters 2 and 5 for more 

detail). In contrast to this univariate approach, multivariate pattern analysis 

(MVPA; fully described in Chapter 2) takes advantage of the holistic pattern of 

activity across the whole scalp. This technique has been used for some time to 

analyse data from functional magnetic resonance imaging (fMRI) studies and has 

more recently also been used to analyse EEG data (see below).  

MVPA involves training a machine learning classifier (e.g., a Support 

Vector Machine or linear discriminant analysis; SVM and LDA respectively) to 

recognise patterns in scalp activity that distinguish between different cognitive or 

perceptual states (e.g., whether a person is looking at a face or a house). In this 

approach, a classifier is trained on a subset of EEG trials which are labelled to 

indicate which one of the, typically, two states were present on each trial. The 

classifier learns what patterns of EEG activity distinguish the two classes of trials 

and produces a model which takes the pattern of EEG data on a given trial and can 
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make a prediction about the class to which it belongs. The model is then cross 

validated by testing how well it predicts the class for each trial on an independent 

subset of the data. Significantly above chance performance on this classification 

indicates that there is useful information in the pattern of EEG data that is 

predictive of trial class. This classifier can be used to decode the perceptual or 

cognitive state from the brain activity alone.  

There are some important distinctions to be made between MVPA and 

traditional univariate analyses, therefore. Firstly, classification can be done 

separately at each time point (i.e., time-resolved) to take advantage of the high 

temporal resolution of EEG data. Secondly, classification is applied to each 

subject separately, and the time courses of decoding accuracies are what is 

averaged across subjects. This means that MVPA can pick up on the differences 

between the two classes at any electrode sites that are relevant for that subject. 

Univariate analyses, in contrast, require there to be very similar changes in scalp 

voltages at specific and often pre-determined electrode sites, for the effect to be 

detected. Additionally, the machine learning classifiers used in MVPA consider 

whole-brain patterns of EEG activity that most optimally separate the two classes 

of interest, making MVPA more sensitive to detect very subtle effects (e.g., Bae & 

Luck, 2018; 2019). 

Indeed, research using MVPA has shown that it can be used to analyse 

EEG and magnetoencephalography (MEG) data in more nuanced ways than are 

possible with univariate analyses (e.g., Cauchoix et al., 2012; List et al., 2017). 

For example, Das et al. (2010) aimed to compare the efficacy of EEG pattern 

classification, using three distinct classifiers, against traditional, univariate ERP 

indices such as peak amplitude, mean amplitude, and peak latency. In their study, 
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participants were engaged in a task where they were shown a face, or a car 

overlaid with Gaussian noise and had to rate their confidence in identifying the 

category of the stimulus (i.e., a face or a car). Earlier studies employing univariate 

methods of analysing EEG and MEG data have identified specific ERP 

components such as the N1 and N170 that are linked to face presentation as 

opposed to other objects (Gauthier et al., 2003; Taylor et al., 1999) or the early 

trial averaged M100 in MEG related to face categorisation (Liu et al., 2002). 

However, diverging from these findings, Das et al. (2010) discovered that the 

neural activity indicative of correctly perceiving and reporting faces versus cars 

was distributed over time, commencing at 120ms and persisting for over 400ms 

after stimulus onset. This broader temporal window for significant activity pattern 

classification differs from previous univariate observations, suggesting a more 

prolonged neural involvement in distinguishing between faces and cars. MVPA 

has also been shown to have revealed subtle effects in other research areas, for 

instance, decoding the focus of attention (local or global; e.g., List et al., 2017) 

from EEG data. It has also been used to successfully decode which of 16 

orientations is being held in working memory, even when orientation is not 

currently relevant to the task (Bae & Luck 2018; 2019). 

In terms of the perception of ambiguous stimuli, MVPA has been able to 

decode viewers‘ perception of ambiguous stimuli from EEG data, such as the 

Necker cube (e.g., Hramov et al., 2017). MEG data too, has been used to 

successfully decode participants’ perception of the Rubin’s faces/vase stimulus 

(Rassi et al., 2019) and perception of face vs house in a binocular rivalry 

paradigm (Rassi et al., 2022). As well as being used to analyse MEG data in the 

time domain (i.e., the information used to train the classifier is the scalp voltages 
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at each point in time), MVPA has also been used to analyse MEG and EEG data in 

the time-frequency domain. In this case, the classifier receives information about 

the voltage at each electrode across time and about the power within each 

frequency band. This type of analysis has been used to reveal that, for instance, 

there is an increase in information flow from the fusiform face area (FFA) to the 

primary visual cortex before participants subsequently report seeing faces rather 

than a vase in the Rubin face/vase illusion (Rassi et al., 2019).  

In addition to simply decoding perceptual experience, MVPA has the 

potential to offer deeper insight into the mechanisms mediating perceptual 

reversals and how these unfold across time. Specifically, the studies described 

above provide evidence that MVPA is a powerful tool to detect differences 

between given brain states. However, recent use of MVPA has also shown that it 

is also a tool with which to detect similarities among brain states. In particular, a 

technique known as cross-classification, or cross-decoding, allows one to make 

inferences about the similarity of neural processing involved in one or more 

experimental conditions (e.g., Kaplan et al, 2015). Cross-decoding assumes that if 

similar neural processes are involved in two different experimental conditions 

(e.g., perception and imagery) then the two conditions will have similar EEG 

scalp distributions. Thus, for instance, a classifier trained to discriminate different 

stimuli (e.g., faces vs. houses) in perception should also perform well at 

discriminating imagined stimuli. Alternatively, if the two conditions involve 

different mechanisms, then their scalp distributions will differ and a classifier 

trained on one condition (e.g., perception) will decode the other condition (e.g., 

imagery) with poor or at chance accuracy. To the extent that two conditions 

involve similar electrophysiological mechanisms, one should observe above 
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chance cross-decoding with higher accuracy indicating greater overlap of 

mechanisms. This approach to MVPA has proven successful in the literature. For 

instance, in an fMRI study, Stokes et al. (2009) presented participants with the 

letter “X” or “O” in one condition. In the second condition they asked participants 

to only imagine the letter “X” or “O”. They found that a classifier trained on data 

from the lateral occipital complex during trials in the visual presentation condition 

could correctly decode participants’ imagined letter from data during the trials in 

the imagined condition. In a follow up study, Stokes et al. (2011) showed that this 

was also the case even when the letters were physically presented in different 

parts of the visual field. Cross-decoding has also revealed similar neural patterns 

involved in motor execution and action observation. For instance, Oosterhof et al. 

(2012a) recorded fMRI data whilst their participants performed and observed two 

object-directed actions ("lift" and "slap"). The actions were presented and 

executed in both first- and third-person perspectives. The experiment was 

designed to distinguish between actions observed and executed by participants, 

and whether there was any similarity in neural encoding based on the perspective 

of the observed action. The authors found that the researchers were able to 

identify distinct patterns of brain activity in the ventral premotor cortex (PMv) 

that corresponded to specific actions being either observed or executed. Crucially, 

the cross-classification approach allowed for the comparison of neural patterns 

across different modalities (visual observation and motor execution) and 

perspectives (first-person and third-person). The findings revealed that actions 

observed from a first-person perspective produced significant cross-modal neural 

patterns in the PMv, mirroring those during action execution. In contrast, this 
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cross-modal congruence was not observed for actions perceived from a third-

person perspective.  

 The goal of the experiment in this chapter is to use MVPA cross-decoding 

to more directly explore the role that adaptation (as described in the neural fatigue 

hypothesis) plays in spontaneously occurring perceptual reversals. Testing the 

mechanisms behind spontaneous perceptual reversals presents unique challenges 

due to the inherently unpredictable nature of these events. However, by using 

MVPA, it is possible to attempt to tease apart the neural patterns associated with 

these spontaneous reversals and compare them to those observed during induced 

perceptual shifts.  

Testing adaptation in an EEG paradigm requires rapid adaptation so that 

sufficient trial numbers can be recorded, to maximise the signal to noise ratio 

(Luck, 2014). The work presented in Chapter 3 clearly indicates that relatively 

brief exposures of an unambiguous stimulus in the fast adaptation paradigm of 

Kanai & Verstraten (2005) can create adaptation which subsequently affects the 

perception of an ambiguous stimulus. Furthermore, the amount of adaptation can 

be reduced or removed parametrically by varying presentation duration of the 

adaptor stimulus. In the present experiment, based on the results of Experiment 1 

in Chapter 3, we can identify optimum temporal parameters required to induce 

adaptation as well as parameters that do not induce adaptation.  

In the present experiment, there are 2 block types. The first block type is 

the directional block, where each trial comprises two stimuli: an unambiguous 

adaptor stimulus with either left or rightward motion followed by an ambiguous 

stimulus (see Figure 4.1). To induce adaptation, the unambiguous adaptor stimulus 

will be set to a long duration (640ms). Based on the results of Experiment 1 (see 
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Chapter 3), we expect this stimulus to induce adaptation and bias perception of the 

second ambiguous stimulus towards the opposite direction in a majority of the 

trials (approximately 60-70%). We call this condition the “adapted” condition. In 

contrast, in the “unbiased” condition, the unambiguous adaptor stimulus will be a 

shorter duration (80ms). Based on the results of Experiment 1, we expect 

perceptual responses for the ambiguous stimulus to be unbiased (approximately 

50% left and 50% right responses). Although the ambiguous stimuli in these two 

conditions are physically identical, their trial history induces different perceptual 

processes and outcomes. The second block type is the ambiguous block, which 

contains trials that only contain pairs of ambiguous motion stimuli. 

 

Figure 4.1 Representation of the 2 trial types that will be used to train 2 

separate classifiers. The only difference between the 2 trial types is the length of 

time that the directional motion stimulus is presented for. The top panel shows an 
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example of a trial that will be used to induce adaptation, by presenting the 

directional motion (represented by the blue directional arrow) for 640ms. The 

middle panel shows an example of an unbiased trial, where directional motion is 

presented for 80ms (represented by the yellow directional arrow). The 2 classifiers 

are trained only on the data from the ambiguous stimulus (bottom panel; 

ambiguous motion represented by the pink arrow), which is always presented for 

320ms, in each trial type.  

 

Two machine learning classifiers will be trained on the data generated 

from the two trial types in the directional blocks (i.e., the adapted and unbiased 

trial types). The first classifier will be trained to predict whether the ambiguous 

stimulus perception was a reversal or non-reversal (compared to the preceding 

unambiguous stimulus) based on the EEG voltage from the long adaptation trials 

(i.e., adapted trials). This classifier will learn the pattern of scalp voltage that is 

predictive of an adaptation-driven reversal independently of the direction of 

motion of the adapting stimulus or the direction of the reversal. The second 

classifier will be trained to predict perceptual reversals (vs. non-reversals) of the 

ambiguous stimulus based on EEG data during the unbiased trials. This classifier 

will learn the pattern of EEG scalp voltage that is associated with reversals that 

are only weakly driven by adaptation, if at all. Instead, other unknown 

mechanisms are presumably driving reversals on these trials. Both classifiers will 

be trained on brain activity only during the ambiguous stimulus (i.e., second 

stimulus) in each trial. Thus, although their trial histories differ, the visual 

stimulation during the training periods will be physically identical.  
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Both classifiers will then be tested on their ability to decode perceptual 

outcomes (i.e., reversal vs. stable) from EEG scalp patterns in the trials from the 

ambiguous block, which comprise 2 sequential ambiguous stimuli. Reversals in 

this condition are spontaneous reversals in perception, in other words they are not 

induced by prior exposure to an unambiguous stimulus. Nonetheless, they could 

be driven by a build-up of adaptation from the perceptual interpretation of the 

preceding ambiguous stimulus (i.e., the first of the two stimuli in each trial). If 

spontaneous perceptual reversals are indeed driven by adaptation, then the 

decoding accuracy of the adapted-trained classifier should be significantly greater 

than chance because that classifier was trained on a brain state that involved 

adaptation-driven reversals. It should also be significantly higher than the 

decoding accuracy of the unbiased-trained classifier which was trained to decode 

reversals driven by factors other than adaptation. This cross-decoding approach 

will allow more direct conclusions to be drawn on the role that adaptation plays in 

spontaneously occurring perceptual reversals. We hypothesise that spontaneous 

reversals, like induced reversals, are underpinned by adaptation processes. By 

comparing the decoding accuracy of our two classifiers — one trained on 

adaptation-driven reversals, the other on unbiased trials — we hope to shed light 

on the mechanisms driving spontaneous perceptual reversals. 

The second aim of this chapter is to again use MVPA cross-decoding 

techniques, but this time to train and test the classifiers in a slightly different way 

(see Figure 4.2, below). The aim here is to assess whether the pattern of EEG 

scalp voltages in spontaneously occurring reversals (i.e., those in the ambiguous 

block) is more like that occurring during reversals due to adaptation (i.e., reversals 

in the adapted condition), or reversals occurring due to some other process (i.e., 
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those in the unbiased condition). Here, one classifier will be trained to distinguish 

adapted reversal trials from unbiased reversal trials. In other words, the class 

labels provided to the classifier will not be “reversal trial” and “stable trial” as in 

the first analysis described above, as only reversal trials were being used. Instead, 

the class labels will be “adapted reversal” and “unbiased reversal”.  The trained 

classifier will then be provided with data from the spontaneously occurring 

reversals from the ambiguous only block. Now, rather than recording the accuracy 

of the classifier’s predicted class labels about which trial type the data came from 

(i.e., reversal or stable) the predicted class labels themselves will be recorded (i.e., 

adapted reversal or unbiased reversal). In this analysis, decoding accuracy will not 

be recorded at all, as it is impossible for the classifier to correctly predict the true 

class of the testing data as it was never provided with adapted or unbiased reversal 

data – only spontaneous reversal data. Therefore, it can never give the true class 

label. This analysis will allow us to draw further conclusions around whether the 

pattern of brain activity during spontaneously occurring perceptual reversals is 

more like that occurring during adaptation-induced reversals than those occurring 

due to some other processes. As we predict that adaptation processes are driving 

spontaneously occurring reversals, we hypothesise that this classifier will predict 

that the data from the spontaneously occurring reversals are more likely to have 

come from the adaptation-induced reversal class than the unbiased reversal class. 
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Figure 4.2 The training and testing method used in the second MVPA 

analysis. The training phase involved the SVM classifier being trained to 

distinguish adapted vs unbiased reversals. The testing phase involved that trained 

classifier being provided with data from spontaneously occurring reversal trials, 

and the class labels it predicted from that data (i.e., adapted reversal or unbiased 

reversal) were recorded. 

 

The MVPA of EEG data also allows for more insight into the stages of 

processing of a perceptual reversal via a technique known as temporal 

generalisation (King & Dehaene, 2014; see Chapter 2 for a more detailed 

overview of this technique). Temporal generalisation is a classification technique 

that allows conclusions to be drawn about whether the pattern of brain activity is 

similar at different points in a trial. For instance, whether the same pattern of 

activity that occurs early in a trial is also generated towards the end of a trial. This 
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is achieved in a manner similar to the cross-decoding technique described above. 

A classifier is trained to distinguish between different experimental conditions 

(here, reversal vs stable percepts) from data at a given time point. This trained 

classifier is then tested, not only on the data from the time point it was trained on 

but all other time points within the trial. This reveals whether the whole-brain 

activity patterns at a given time point are also predictive of activity occurring at 

other time points. Therefore, this technique will allow conclusions to be drawn 

regarding whether processes are sustained, isolated, reactivated and/or ramping up 

over the time course of the trial (see Figure 2.5 in Chapter 2 for more detail on 

this). Additionally, standard MVPA decoding techniques compare each time point 

in a trial independently, whereas temporal generalisation is also more sensitive to 

effects that may be temporally misaligned between trials (King & Dehaene, 2014). 

The ability of temporal generalisation to deal with this potential misalignment 

deals with the issue that the same neural processes may unfold at different speeds 

or with slightly different temporal profiles in the two conditions used for 

decoding. If only standard decoding techniques are used, any similarity in 

processes are missed if they are not temporally aligned in different conditions. 

Employing this technique here therefore will not only provide more information 

than is currently available on the processing stages involved in perceptual 

reversals but also account for effects that could be missed by univariate analyses 

and standard MVPA classification across time. Therefore, temporal generalisation 

will be performed for each of the MVPA analyses described above. 

In addition to the multivariate techniques, this chapter will also aim to 

establish whether the ERP components (i.e., the RP and RN) thought to be 

markers of spontaneous perceptual reversals are present during the spontaneous 
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reversals of the ambiguous motion stimulus described in Chapter 3 and used here. 

Kornmeier and Bach (2012) highlight that extensive research has been conducted 

that shows the presence of these components in response to stationary stimuli, but 

that further research is needed to establish whether these are also elicited by other 

ambiguous stimuli, such as the ambiguous motion used in this chapter. To our 

knowledge, only continuous viewing of stroboscopic alternative motion (SAM) 

stimuli has been used to investigate the potential ERP components associated with 

reversals of ambiguous motion (e.g., Basar-Eroglu et al., 1993; Strüber & 

Hermann, 2002). These studies used continuous viewing of SAM stimuli and 

revealed only the later parietal positivity component rather than the RP and RN 

components (see Chapter 2 for a full overview of the methods used). However, 

because the participants’ manual response was used as the time reference when 

averaging the EEG data, the RN and RP, if present at all, were likely lost among 

the backwards averaging process (see above and Chapter 2). Therefore, as 

stimulus onset will be used as the time reference in this experiment, if the RN and 

RP are present during the perception of the ambiguous motion stimuli used in this 

experiment they should be induced by this design. 

 

4.2 Methods 

4.2.1 Participants 

Twenty-five (21 female, 4 male; 2 left, 23 right-handed) undergraduate 

psychology students were recruited using Keele University’s Research 

Participation Time scheme in return for partial course credit. This sample size was 

chosen as it is in line or greater than the sample sizes typically used in EEG 

literature investigating perceptual reversals, and that using MVPA of EEG data 



224 
 

(e.g., Kornmeier, Hein & Bach, 2009; Das et al., 2010; List et al., 2017; Bae & 

Luck, 2018). Thus, 25 participants were recruited. Participants had a mean age of 

21.48 years (range: 18-60 years; SD: 8.16 years). All participants had normal or 

corrected-to-normal vision (mean logMAR: -0.04; SD: 0.07; Precision Vision 

Logarithmic ETDRS 2000 chart). The study was approved by Keele University’s 

Psychology Faculty Research Ethics Committee. 

 

4.2.2 Stimuli and apparatus 

4.2.2.1 Stimuli 

The same two types of stimuli were used in this experiment as in 

Experiment 1 (see Chapter 3 and Figure 4.3 below): directional motion (Figure 

4.3, top) and ambiguous motion (Figure 4.3, bottom). The stimuli were sine wave 

gratings with a spatial frequency of 1 CPD. Gratings had a Michelson contrast of 

0.5 (maximum luminance of white regions was 297.49cd/m2, for black regions 

100.28 cd/m2) and were presented centrally on a mid-grey background (RGB: 

128:128:128).  All stimuli were circular, with a diameter of 10°. The circular 

shape was created using a 2-D Gaussian mask. As in Experiment 1, these stimuli 

were presented in pairs to form one trial (see below for a full description). A 

white, 0.8° x 0.8° fixation cross was always presented in the centre of the screen 

throughout trials to serve as a fixation target. The experiment and stimuli were 

designed and controlled using PsychoPy3 v3.2.2 (Peirce et al., 2019).  
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Figure 4.3 Examples of the directional motion (panel A, where the sine 

wave gratings move towards the right) and the ambiguous motion stimuli (panel 

B, where the sine wave grating can be viewed as moving in either direction). 

Although no actual difference can be seen in the stimuli themselves in this figure, 

the direction of the motion is indicated by the arrows. 

 

4.2.2.2 Apparatus 

The experiment was presented on a 24.5 inch BenQ Zowie XL2540 

computer monitor with 120Hz refresh rate and 1920 x 1080 pixels resolution. 

Participants used a standard PC keyboard to respond to trials. Participants used a 
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chin rest to maintain a constant viewing distance of 57cm and to reduce head 

movements that could result in artefactual EEG data.  

A 24-bit DC-coupled Bio Semi Active Two Measurement System 

(Biosemi; Amsterdam, Netherlands) was used to record EEG scalp voltages from 

64 Ag-AgCl active scalp electrodes, with a sampling rate of 512Hz (see Figure 

4.4, below for a map of electrode locations). Low-pass filtering was performed 

within the hardware’s Analogue to Digital Converter’s decimation filter, which 

has a fifth order cascaded integrator-comb filter response with a -3dB point at 

1/5th of the sample rate.  Electrodes were fixed in place using a cloth cap and 

positioned according to the 10-10 system (Klem et al. 1999; Nuwer 1998). Three 

additional electrodes were placed on the face, using adhesive pads, to record 

horizontal (HEOG; via two electrodes placed next to each lateral canthus) and 

vertical (VEOG; via one electrode placed 2cm below the centre of the left eye) 

electro-oculogram voltages. These facial positions were prepared using an 

isopropyl alcohol wipe to facilitate the adherence of the pads. For all electrodes, 

Parker SignaGel was used as the electrolyte gel (Parker Labs; 

https://www.parkerlabs.com/). Electrode offset was maintained within a -10 to 10 

µV range of the common mode voltage. All data were recorded relative to the 

feedback loop formed between the Common Mode Sense (CMS) active electrode 

and the Driven Right Leg (DRL) passive electrode. All re-referencing of the data 

was performed offline (see Section 4.2).  
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Figure 4.4 Electrode layout map showing the positions of the 64 

electrodes used in this experiment (taken from biosemi.com; Biosemi, 

Amsterdam, Netherlands). 

 

4.2.3 Design 

Trials were arranged in two distinct block types. Directional blocks (i.e., 

trials that contained directional motion stimuli), containing only adapted and 

unbiased trials but no ambiguous trials, and ambiguous blocks which contained 

ambiguous trials only (see below and Figure 4.5). The two block types were 

chosen, over randomly mixing the three trial types, so that perception on the 

ambiguous trials would not be biased by any directional motion. Each directional 

block contained 60 trials, and each ambiguous block contained 52 trials. The 

experiment consisted of 6 directional blocks and 4 ambiguous blocks. Directional 
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blocks contained 30 adapted trials, and 30 unbiased trials. This resulted in a total 

of 180 adapted trials, 180 unbiased trials, and 208 ambiguous trials for each 

participant.  

Each experimental trial consisted of the presentation of 2 stimuli in 

temporal succession, in much the same way as Experiment 1. A total of 3 trial 

types were used, with temporal parameters derived from the results of Experiment 

1 (see Figure 4.5). One trial type was adaptation trials, in which directional 

motion was presented for 640ms, followed by a 120ms ISI, and ambiguous 

motion presented for 320ms; these temporal parameters evoked the desired 60-

70% adaptation responses in Experiment 1. A second trial type was unbiased 

trials, in which directional motion was presented for 80ms; these temporal 

parameters evoked the necessary unbiased responses in Experiment 1 (i.e., 

participants responded to indicate reversals on around 50% of trials). All other 

aspects of these unbiased trials were identical to the adaptation trials. The third 

trial type was ambiguous trials, in which only ambiguous motion stimulus pairs 

were presented for 320ms each, with an ISI of 120ms between them in the same 

way as with the adaptation and unbiased trials. 

As in Experiment 1, participants were required to respond to trials by 

reporting their perceived direction of motion (leftward vs. rightward) for each 

stimulus in the pair. To allow response buttons to be fairly counterbalanced and 

reduce spatial compatibility effects on response (e.g., Ulmita & Nicoletti, 1990; 

Alluisi & Warm, 1990), participants responded to trials using the ‘up’ and ‘down’ 

arrow keys in the same way as in Experiment 1. For clarity this will be briefly 

described again here. The ‘up’ and ‘down’ arrow keys represented the directions 

‘left’ and ‘right’ and were swapped around between blocks, on 50% of trials (i.e., 



229 
 

trials within each block always required the same response). In other words, on 

50% of trials ‘up’ would indicate perceived motion to the left and on 50% of trials 

‘up’ would indicate perceived motion to the right. This response method was 

chosen in preference to using the ‘left’ and ‘right’ arrow keys as counterbalancing 

these (i.e., swapping the response keys on 50% of trials) would lead to 50% of 

trials being more difficult as participants would be required to respond using the 

opposite arrow key to their perceived direction of motion.  
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Figure 4.5: The three trial types used in this experiment. A: Adaptation 

trials, containing a long presentation of directional motion followed by ambiguous 

motion. B: Unbiased trials, containing directional motion presented for a shorter 

time, designed to evoke unbiased responses to the ambiguous motion that 

followed. C: Ambiguous trials, in which only ambiguous motion stimulus pairs 

were presented. 

 

Additionally, attention check versions of the adaptation and unbiased trials 

were included in a similar way to Experiment 1. Attention check trials were only 

presented during directional blocks, so that the unambiguous motion did not affect 

the perception of the ambiguous only motion in the ambiguous blocks. Directional 

blocks each contained 6 attention check trials (3 for each of the adapted and 

unbiased presentation time parameters). Therefore there were 36 attention check 
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trials in total for each participant (6 trials x 6 directional blocks). These trials 

consisted of one directional motion stimulus presented once for either 640ms or 

80ms, followed by a 120ms ISI, followed by a second directional motion stimulus 

presented for 320ms (i.e., directly replacing the ambiguous motion that was 

presented on the real trials). 

 

4.2.4 Procedure 

As with Experiment 1, participants completed the informed consent 

process upon entry to the EEG laboratory. In this experiment, this also included an 

assessment of whether participants were able to take part in an EEG experiment 

by checking that they did not have thick or braided hair, have any metal implants 

in their upper body, or have any neurological conditions that would affect their 

ability to take part. Those meeting these criteria performed a visual acuity 

assessment, and those with normal or corrected-to-normal vision were taken 

forward to the experiment.  

Eligible participants were then fitted with the EEG recording equipment. 

The three facial electrodes were attached first, followed by the cloth cap. The cap 

was held in place via two straps attached to a chest strap. To ensure that the cap 

was located centrally, the experimenter measured the nasion-inion distance and 

positioned the cap so that the Cz electrode was located at the halfway point. The 

intra-tragal distance was then measured, and again the cap adjusted to ensure that 

the Cz electrode was at the halfway point. When the cap was correctly placed, the 

experimenter fitted the scalp electrodes by systematically filling each electrode 

port with SignaGel electrolyte and inserting the electrode. Once fitted, the 

electrodes were connected to the BioSemi ActiveTwo recording system. 
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Connectivity checks (checking for noise in the data from each channel, checking 

for large electrode offset values) were then conducted, to establish that CMS/DRL 

feedback loop was correctly connected as well as the electrode offsets. Any 

electrodes showing an offset outside of the -1 to 10 µV range was addressed by 

taking measures to improve connectivity with the scalp, for example by adding 

more electrolyte gel or moving hair that was between the electrode and scalp. 

Participants were then positioned correctly so that their chin sat comfortably on 

the chin rest, by adjusting the height of the table, chair or both. The eye-tracker 

was then calibrated and set up to record fixation throughout experimental blocks. 

A final check of cap position and electrode offset was then conducted. 

The experimenter then explained the task, including how to respond and 

checking whether participants were able to perceive both versions of the 

ambiguous motion. Participants then completed a set of practice trials as with 

Experiment 1, to check that they understood the task and how to respond to trials 

correctly. The practice block consisted of 24 trials: 8 adaptive trials, 8 unbiased 

trials and 8 attention check trials. The experimenter remained in the room with 

participants during the practice block to address any issues or answer questions. 

Participants were provided with feedback on their performance on attention check 

trials at the end of the practice block.  

The experimenter then left the testing room whilst the participant 

completed the main experiment. Throughout this time, the experimenter remained 

in the control room connected to the testing room. Constant monitoring of the 

participant was achieved through a video feed and a two-way audio system. Five 

self-timed breaks occurred between blocks. Upon completion, the experimenter 
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removed EEG apparatus from participants and fully debriefed them on the aims 

and hypotheses of the experiment.  

 

4.2.5 Data analysis methods 

4.2.5.1 Behavioural analysis 

Trials were coded as either “reversal” or “stable” according to whether 

participants responded by pressing two different buttons (e.g., ‘up’, ‘down’) or the 

same button twice (e.g., ‘up’, ‘up’) respectively. Participants’ responses to 

attention check trials were analysed. An a priori behavioural exclusion criterion 

was set such that participants scoring less than 70% correct on the attention check 

trials in the main experiment were excluded. Based on this criterion, no 

participants were excluded from the experiment. 

The average number of stable and reversal trials in ambiguous blocks were 

calculated for each participant. To examine the stochasticity of those responses 

(i.e., independence between responses on subsequent trials), the distribution of 

response run lengths (i.e., number of same responses in a row for either left or 

right responses) was analysed in the same way as in Experiment 1, Chapter 3 and 

will be described again here for clarity. This analysis of stochasticity was done to 

determine whether participants’ responses in the ambiguous block were 

independent of one another. The ambiguous block was designed to evoke 

perceptual reversals that occur spontaneously, in a manner as close to that of 

continuous viewing as possible. Therefore, responses to the stimuli should be 

stochastic, as this would indicate that there was no bias toward one or the other 

direction of motion when the stimuli were perceived (Hesselmann et al., 2008). A 

repetition in response meant that a participant responded to indicate, for example, 
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leftward motion on two or more successive trials. This ‘run’ of repetitions would 

be broken when the participant responded to indicate motion to the left then 

motion to the right, or vice versa. So, a response pattern of “left”, “left”, “left”, 

“right” would mean that there had been two repetitions before that run was 

broken. To assess this quantitatively, the distribution of response repetitions was 

fitted to a geometric distribution. A geometric distribution represents the 

frequency of different run lengths expected by chance in a sequence given only 

two random outcomes (i.e., left vs. right here) and a certain probability of each 

outcome (i.e., 50% chance here). For example, you would use this to estimate the 

number of times that you could expect to observe fair coin to land heads 4 times 

in a row in a sequence of 100 tosses. Therefore, if the response repetition data fits 

well to this distribution, this suggests that participants are responding in a random 

and unbiased manner in which responses to one stimulus are independent of those 

to preceding stimuli.  

Data from the directional blocks were then separated into the two 

conditions (adapted and unbiased) and the average number of stable and reversal 

trials per participant was calculated for each condition.  

 

4.2.5.2 EEG analysis 

Offline pre-processing of the EEG data was carried out using EEGLAB 

(Delorme & Makeig, 2004) implemented in Matlab r2020a. The data were high-

pass filtered at 0.01Hz and referenced to the Cz electrode (in line with Abdallah & 

Brooks, 2020). Data were then segmented into 620ms epochs (-120ms to 500ms, 

relative to the onset of the second stimulus in each trial). Artefactual eye-blink 

components were removed in two stages. Firstly, independent component analysis 
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(ICA) was run on each participants data. The ICA component indicative of blinks 

was removed, and then any remaining trials containing blinks were removed via 

manual inspection. Each trial was also manually examined for artefactually noisy 

data i.e., with amplitude variations of ±100µV. Any identified trials were removed 

from the dataset; 1.98% of trials were removed (range: 0 – 3.75%) on average, per 

participant. 

The epochs were coded as ‘reversal’ or ‘stable’ according to the system 

outlined in the ‘Behavioural analysis’ section above and then sorted into six 

conditions. These conditions were derived from the combination of trial type (i.e., 

adapted, unbiased or ambiguous) and response type (i.e., reversal or stable).  

 

4.2.5.2.1 ERP Analysis 

To generate ERPs, additional pre-processing steps to those outlined above 

were conducted on the data. Epochs were baseline corrected using the average 

amplitude from the period -100ms to 0ms relative to stimulus onset, then filtered 

with a low-pass filter at 30Hz. Epochs were then averaged within each of the six 

conditions to create ERPs. The ERPs were then averaged across participants, 

forming grand-average waveforms for each condition.  

Analyses of ERP components were carried out in line with previous 

experiments (e.g., Abdallah & Brooks, 2020; Kornmeier & Bach, 2012). As 

detailed in the Introduction above, two ERP components were of interest: the RP 

and RN. The RP was defined a priori with a temporal region of interest (ROI) of 

100ms – 200ms over channels O1, O2 and Oz. The RN was defined a priori with a 

temporal ROI of 200ms – 400ms over channels O1, O2, Oz, PO7 and PO8. For 

each participant and condition, the average amplitude within each temporal ROI 
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above was calculated for each of the channels. These average amplitudes were 

then submitted to two separate repeated measures ANOVAs (one 3x3x2 ANOVA 

for the RP, one 5x3x2 for the RN) with channel, trial type (adapted, unbiased or 

ambiguous) and response type (reversal or stable) as factors.   

 

4.2.5.2.2 Multivariate EEG analyses 

Multivariate pattern analyses (MVPA) were carried out on the single-trial 

data using the MVPA-Light toolbox (Treder, 2020) implemented in Matlab 

r2020a. Several of these analyses were conducted, and the same pre-processing 

steps were taken in all of them. Firstly, under-sampling was conducted on the 

data. Under-sampling was used to balance the number of trials in each class, by 

randomly subsampling from the majority class. For instance, if there were 55% of 

reversal trials and 45% stable trials for a given participant, then the majority class 

(here, reversals) would have a random subsample taken from it on every training 

run. Next, dimensionality reduction was performed on the data via principal 

component analysis (PCA). PCA is a statistical method used for dimensionality 

reduction. By transforming correlated variables into a smaller set of linearly 

uncorrelated variables called principal components, PCA helps to retain the most 

significant variance in the data while removing redundancy and noise. Here, the 

MVPA Light Toolbox use of PCA takes the 20 components that explain the most 

variance in the data forward for analysis. 

To determine whether the pattern of EEG scalp voltages differed during 

spontaneous reversal and stable trials, the first analysis was conducted on the data 

from ambiguous only blocks. A linear support vector machine (SVM) classifier 

was trained to classify trials as reversal or stable. To avoid overfitting that can 



237 
 

arise from training and testing on the same data, a five-fold cross-validation 

procedure was used. This meant that the trials were firstly split into five equal 

groups, and trials from four of the groups were used to train the classifier (the 

‘training’ data), with those from the fifth group being used to test the trained 

classifier’s performance (the ‘testing’ data). In the training phase the classifier was 

provided with the pattern of EEG scalp voltages from 63 electrodes along with the 

true class label of the trial that pattern came from (i.e., stable or reversal). This 

was repeated separately for each timepoint in the trial, and each trial in the 

training data. The trained classifier was then provided only with the pattern of 

scalp voltages at each time point in the testing data (i.e., no true class label), and 

measured on its ability to correctly predict the true class label of the trial from the 

pattern of scalp voltages alone. This resulted in a decoding accuracy value for 

each timepoint, given as the percentage of the total number of trials in the testing 

data subset that were correctly classified. If enough class-related information 

exists in the data, we would expect the decoding accuracy to be significantly 

greater than would be achieved by chance. For data with two classes, this chance 

value would be 50%. The training and testing process was repeated a further four 

times with different training and testing data subsets, and the results averaged at 

each 1ms time point to produce a time course of decoding accuracy across the 

whole trial for each participant. These individual participant decoding accuracies 

were then averaged to produce a grand average decoding accuracy time series.  

The second analysis, cross-decoding, involved training two separate SVM 

classifiers: one to decode reversal vs stable trials from the adapted condition and 

one to decode reversal vs stable trials from the unbiased condition. Then, each of 

the two classifiers in turn were separately provided only with the EEG scalp 
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voltage data from the ambiguous condition (i.e., the spontaneously occurring 

reversal or stable trials) and were each tested on their ability to correctly predict 

the true class label of these trials. As in the first analysis, this resulted in a 

decoding accuracy value for each 1ms timepoint in each trial and for each 

participant. These values were averaged for each trial, then averaged across 

participants to produce a grand average decoding accuracy time-series. No cross-

validation procedure was necessary due to the training and testing data being 

independent. 

The third analysis involved the SVM classifier being trained to distinguish 

adapted reversal trials from unbiased reversal trials. The trained classifier was 

then provided with data from the spontaneously occurring reversals from the 

ambiguous only block. Now, rather than recording the accuracy of the classifier’s 

predicted class labels about which trial type the data came from (i.e., reversal or 

stable) the predicted class labels themselves were recorded (i.e., adapted reversal 

or unbiased reversal). In this analysis, decoding accuracy was not recorded at all, 

as it was impossible for the classifier to correctly predict the true class of the 

testing data as it was never provided with adapted or unbiased reversal data – only 

spontaneous reversal data. As the classifier in this case was already being trained 

and tested on two independent datasets, there was again no need for the cross-

validation procedure described in the first analysis above. Instead, the percentages 

of each type of reversal (adapted and unbiased) predicted by the classifier were 

averaged for each trial, and then a grand average time series again produced by 

averaging across participants.  

Temporal generalisation plots were then produced for each of the analyses 

described above. Temporal generalisation is a classification technique that can 
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provide insight into whether information is shared across different time points in a 

trial (King & Dehaene, 2014). For instance, whether the information that the 

classifier uses early in a trial is the same that it uses later in the trial (for a full 

description see Chapter 2). This was achieved by training the SVM classifier at a 

given 1ms timepoint and then testing the trained classifier at that same timepoint 

but also at every other timepoint in the trial. This was performed for each of the 

three analyses described above and averaged in the same way, to produce 3-

dimensional (317x317 timepoints) temporal generalisation plots of classifier 

performance at each training timepoint x testing timepoint. 

 

4.2.5.2.2 Significance testing of multivariate EEG analyses 

To evaluate the performance of the SVM classifier accuracy whilst 

controlling Type I error rate, cluster-based permutation tests were conducted in 

Matlab r2020a (for full details see Chapters 2 and 5).  

 

4.3 Results 

4.3.1 Behavioural results 

4.3.1.1 Attention check trials 

The a priori attention check criterion was that participants’ data would be 

excluded from analysis if they did not respond to at least 70% of attention check 

trials correctly. Based on this criterion, there were no participants that needed to 

be excluded from the analysis. Participants correctly responded to an average 

82.11% (SD = 5.01) of attention check trials.  
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4.3.1.2 Response time 

The overall average response time (RT; to first response button press) for 

all participants across all trial types (adapted, unbiased, and ambiguous) and 

response types (reversal and stable) was 0.482s (SD: 0.108s), relative to the onset 

of the second stimulus in each trial. 

A 3 x 2 repeated measures ANOVA (3 trial types x 2 response types; see 

Figure 4.6) revealed a significant main effect of trial type on RT, F(1,24) = 

22.137, p < .001, hp2 = .480. However, there was no significant effect of response 

type, p = .354 and no significant interaction effect, p = .197. 

To examine the main effect of trial type, post hoc t-tests with a Bonferroni 

correction were applied. These revealed that unbiased trials, M = 0.576s (SD = 

0.093), were responded to significantly more slowly than both the ambiguous, M 

= 0.451s (SD = 0.123), t(24) = 5.926, d = 1.192, p < .001 and adapted, M = 0.450s 

(SD = 0.098), t(24) = 5.978, d = 1.203, p < .001, conditions. 
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Figure 4.6 Bar chart showing the mean response time for reversal vs stable 

responses across each of the 3 trial types (adapted, unbiased and ambiguous). 

Error bars show standard error. 

 

4.3.1.3 Ambiguous block trials 

Participants responded to indicate a reversal on ambiguous block trials on 

51.41% (SD = 21.56) of trials and indicated stability on 48.58% (SD = 21.56) of 

trials. Participants responded to indicate that they had perceived leftward motion 

on 52.21% (SD = 8.19) of trials and rightward motion on 47.79% (SD = 5.29). 

Null responses (i.e., trials where the participants had failed to respond within the 

1.5s window) were removed from the analysis. On average, 5.87% (SD = 5.54) of 

all ambiguous trials were recorded as null and removed from the analysis. 

Neither reversal nor stable responses were significantly different from 

chance, with both resulting in the same values for t(24) = 0.327, and p = .746. A 
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Bayesian one-sample t-test was also conducted to assess the extent to which the 

data was supportive of the null hypothesis (H0), i.e., that the percentage of 

reversals did not differ from chance. The resulting Bayes factor indicated evidence 

for H0, with BF01 = 4.516, which means that the data were approximately 4.5 

times more likely to occur under H0 than H1. As BF01 and BF10 are inversely 

related, the value for BF10 (i.e., the likelihood of the outcome occurring under H1 

compared to H0) was therefore 0.221. This indicates that there is moderate 

evidence for the null hypothesis, according to the ranges indicated by Lee and 

Wagenmakers (2013). Neither left nor right responses were significantly different 

from chance, with both resulting in the same values for t(24) = 0.120, p = .905. 

To examine the stochasticity of those responses (i.e., independence 

between responses on subsequent trials), the distribution of response run lengths 

(i.e., number of same responses in a row for either left or right responses) was 

analysed in the same way as in Experiment 1, Chapter 3. This analysis of 

stochasticity was done to determine whether participants’ responses in the 

ambiguous block were independent of one another, indicating that there was no 

bias toward one or the other direction of motion when the stimuli were perceived 

(Hesselmann et al., 2008). The number of response repetitions (for left and right 

responses) were found to be well fitted to a geometric distribution (see Figure 

4.7), R2(24) = .81, p <.001.  
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 Figure 4.7 Solid grey line shows the probability density of the number of 

repeated responses across both response types (i.e., left or right) in ambiguous 

blocks (e.g., for 3 repetitions responses to 3 consecutive trials could be “left”, 

“left”, “left”). Dashed black line shows the probability density of the geometric 

distribution.  

 

4.3.1.5 Directional block trials 

In the adapted condition, participants responded to indicate a reversal on 

61.58% (SD = 13.92) of trials. This is significantly greater than would be 

expected by chance (i.e., 50%), t(24) = 2.421,  p = .023, d = .484. This is also 

significantly greater than the percentage of reversal responses in the unbiased 

condition (47.58%, SD = 8.67), t(24) = 2.984,  p = .006, d = .597. 

In the unbiased condition, participants responded to indicate a reversal on 

47.58% of trials (SD = 8.67). This is not significantly different from the responses 
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that would be expected by chance, t(24) = 1.394,  p = .176. A Bayesian one-

sample t-test was also conducted to assess the extent to which the data was 

supportive of the null hypothesis (H0), i.e., that the percentage of reversals did not 

differ from chance in the unbiased condition. The resulting Bayes factor indicated 

evidence for H0, with BF01 = 2.009, which means that the data were 

approximately twice as likely to occur under H0 than H1.  The value for BF10 (i.e., 

the likelihood of the outcome occurring under H1 compared to H0) was therefore 

0.498 (as it is the reciprocal of BF01). This indicates that there is anecdotal 

evidence for the null hypothesis, according to the ranges indicated by Lee and 

Wagenmakers (2013). As with responses in the ambiguous only block, the number 

of response repetitions (for either left or right responses) were found to be well 

fitted to a geometric distribution (see Figure 4.8), R2(24) = .98, p <.001. 

As with the ambiguous block, null responses in the directional block were 

also removed from the analysis. This led to an average of 6.72% of trials (SD = 

5.96) being removed. 
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Figure 4.8 Solid grey line shows the probability density of the number of 

repeated responses across both response types (i.e., left or right) in unbiased trials 

in directional blocks. Dashed black line shows the probability density of the 

geometric distribution.  

 

4.3.2 Electrophysiological results 

4.3.2.1 ERP  

Figure 4.9 shows the grand average ERP waveforms for reversal and stable 

trials in the ambiguous block only. The RP and RN ROIs are represented by the 

shaded regions. The RP was defined a priori with a temporal ROI of 100ms – 

200ms over channels O1, O2 and Oz. The RN was defined a priori with a 

temporal ROI of 200ms – 400ms over channels O1, O2, Oz, PO7 and PO8 

(Kornmeier & Bach, 2012; Abdallah & Brooks, 2020). For each participant and 

condition, the average amplitude within each temporal ROI above was calculated 

for each of the channels.  For all analyses outlined below, the Greenhouse-Geisser 
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correction was applied when Mauchly’s test of sphericity was found to be 

significant at the p = .05 level.  

Figure 4.9 Both panels plot the grand average ERP waveforms for reversal 

(dashed line) and stable (solid line) trials in Experiment Three. Panel A: ERP 

waveforms averaged over the RP ROI (channels O1, Oz and O2). Panel B: ERP 

waveforms averaged over the RN ROI (channels O1, Oz, O2, PO7 and PO8). The 

grey boxes indicate the time-windows used to define the RP and RN mean 

amplitudes (mean amplitudes shown in Figure 4.10 below; see 4.2.4 Data analysis 

section for more detail). 
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4.3.2.1.1 Reversal positivity 

The mean amplitude over the RP spatio-temporal ROI was calculated for 

each response type (i.e., reversal and stable) for each participant. These are shown 

in Figure 4.8 below, for both reversal (grey bars) and stable (black bars) trials.  

A 3x2 (Channel x Response Type, i.e., reversal or stable) repeated 

measures ANOVA, revealed a significant main effect of Channel, F(2, 48) = 

9.212, p < .001, hp2 = .277. No other factors or interactions were revealed to be 

significant, all p > .486 (for full ANOVA results for the RP ROI see Table 4.2 

below). 

 

 

 

Table 4.2  

Full repeated measures ANOVA results for the mean ERP amplitude over 

the RP ROI  

 df1 df2 F p hp2 

Channel 2.000 48 9.212 < .001 .277 

Response Type 1.000 24 0.085 .773 .004 

Channel x Response 

Type 
1.360 48 0.617 .486 .025 
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Figure 4.10 Mean ERP amplitudes in the RP ROI for reversal trials (grey 

bar) and stable trials (black bar). Error bars represent the standard error of the 

mean. 

 

4.3.2.1.2 Reversal negativity 

The mean amplitude over the RN spatio-temporal ROI was calculated for 

each response type (i.e., reversal and stable) for each participant. Grand average 

amplitudes in the ROI are shown in Figure 4.11 below, for both reversal (grey 

bars) and stable (black bars) trials.  

A 3x2 (Channel x Response Type, i.e., reversal or stable) repeated 

measures ANOVA, revealed a significant main effect of Channel, F(2, 48) = 

9.212, p < .001, hp2 = .227. No other factors or interactions were revealed to be 

significant, all p > .626 (for full ANOVA results for the RN ROI see Table 4.3 

below). 
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Table 4.3  

Full repeated measures ANOVA results for the mean ERP amplitude over 

the RN ROI  

 df1 df2 F p hp2 

Channel 2.198 48 7.064  .001 .227 

Response Type 1.000 24 0.061 .806 .003 

Channel x Response 

Type 
2.071 48 0.461 .626 .019 

 

 

Figure 4.11 Mean ERP amplitudes in the RN ROI for reversal trials (grey 

bar) and stable trials (black bar). Error bars represent the standard error of the 

mean. 
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4.3.2.2 Multivariate analyses 

4.3.2.2.1 Predicting spontaneous reversal vs stable trials in the ambiguous 

condition 

To determine whether the pattern of EEG scalp voltages differed during 

spontaneous reversal and stable trials, the first analysis was conducted on the data 

from ambiguous only blocks. A linear support vector machine (SVM) classifier 

was trained to classify trials as reversal or stable. If enough class-related 

information exists in the data, we would expect the decoding accuracy to be 

significantly greater than would be achieved by chance.  

Cluster based statistics (see Data Analysis Methods for a detailed 

explanation of these) of the MVPA revealed that the SVM classifier did not 

correctly distinguish between reversal and stable trials at a level significantly 

greater than chance (i.e., significantly greater than 50%) at any point throughout 

the ambiguous only block trials. The average decoding accuracy value across the 
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whole trial was 50.07% (min = 48.61%, max = 52.11%). A time series of grand 

mean decoding accuracy is shown below in Figure 4.12. 

Figure 4.12 Plot of mean reversal vs. stable trial classifier decoding 

accuracy across time in the ambiguous only block. 

 

4.3.2.2.2 Predicting adapted/unbiased trial type from spontaneous reversal 

data 

To address whether spontaneous reversals in the ambiguous trial sequence 

are driven by adaptation, we trained a classifier to distinguish between adapted 

and unbiased reversal trials and then tested this on ambiguous reversal trials, 

recording which class label it predicted from the data (for a full explanation see 

Section 4.5 and Figure 4.3 in particular). Our hypothesis was that, if spontaneous 

reversals are driven by adaptation, then the classifier should predict that the data 

from reversals in the ambiguous trials come from the adapted class significantly 
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more often than chance. Here then, rather than decoding accuracy, the percentages 

of each class label (i.e., adapted and unbiased) that the classifier predicted at each 

time point were averaged for each trial and across participants. Cluster-based 

statistics were then used to determine whether the classifier predicted that the 

spontaneously occurring reversal data came from the adapted reversal data class 

more often than chance. This revealed three significant clusters, during which the 

classifier predicted that the spontaneously occurring reversal data came from an 

adapted reversal trial significantly more often than expected by chance (i.e., 50%). 

The first cluster occurred in the pre-stimulus period between -84ms and – 68ms, 

tcluster(24) = 24.55, p = .0397 with the mean percentage of adapted class labels in 

the cluster being 58.05% (min = 54.42%, max = 58.05%). The second cluster 

occurred between 45ms and 68ms, tcluster(24) = 35.57, p = .0022 with the mean 

percentage of adapted class labels in the cluster being 55.32% (min = 53.68%, 

max = 57.04%). The final cluster occurred between 234ms and 250ms, tcluster(24) 

= 25.72, p = .0311 with the mean percentage of adapted class labels in the cluster 
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being 54.66% (min = 53.20%, max = 56.21%). See Figure 4.13 below for an 

illustration of these results. 

Figure 4.13 Plot to show the percentage of each predicted trial type (i.e., 

adapted trials or unbiased trials) across time when the classifier was provided with 

data from spontaneously occurring reversals from the ambiguous only trials. Grey 

boxes indicate the significant clusters obtained from the cluster-based permutation 

tests of the prediction percentages. These clusters represent time periods where a 

significantly higher percentage of trials were labelled as being more like the 

adapted reversal data than can be expected by chance.  

 

4.3.2.2.3 Cross-decoding between conditions 

The cross-decoding approach used in this analysis was conducted in order 

that more direct conclusions can be drawn on the role that adaptation plays in 
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spontaneously occurring perceptual reversals. This analysis involved training two 

separate SVM classifiers: one to decode reversal vs stable trials from the adapted 

condition and one to decode reversal vs stable trials from the unbiased condition. 

Then, each of the two classifiers in turn were separately provided only with the 

EEG scalp voltage data from the ambiguous condition (i.e., the spontaneously 

occurring reversal or stable trials) and were each tested on their ability to correctly 

predict the true class label of these trials. If spontaneous reversals, like induced 

reversals, are underpinned by adaptation processes then we hypothesise that the 

classifier trained to decode reversal vs stable trials from the adapted condition 

should perform significantly better than that trained on trials in the unbiased 

condition, when decoding the spontaneously occurring reversals in the ambiguous 

condition. 

Therefore, to assess this, the decoding accuracy of each classifier was 

recorded and compared relative to one another as opposed to being measured 

against chance. Cluster-based statistics of the decoding accuracy values revealed 

one significant cluster, during which the classification accuracy of the classifier 

trained on the adapted data was significantly higher than that of the classifier 

trained on the unbiased data. This cluster occurred between 64ms and 78ms, 

tcluster(24) = 38.00, < .001 where the mean decoding accuracy of the adapted-

trained classifier was 52.98% (min = 52.41%, max = 53.42%) and that of the 

unbiased trained classifier was 50.13% (min = 49.48%, max = 50.57%). See 

Figure 4.13 below for an illustration of each classifier’s performance compared 

relative to one another. 

Each classifier’s performance was then also measured separately, relative 

to chance level (i.e., 50%). Here, for the adapted-trained classifier, the cluster-
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based statistics revealed one significant cluster during which that classifier’s 

performance was above chance level. This cluster occurred between 60ms and 

99ms, tcluster(24) = 21.77, p < .001 with a mean decoding accuracy of 52.53% (min 

= 51.52%, max = 53.42%; see Figure 4.13, panel A below). However, for the 

classifier trained on the unbiased data, no significant clusters were revealed. Mean 

decoding accuracy across the trial was 50.12% (min = 48.35%, max = 52.04%; 

see Figure 4.15, panel B). 

Figure 4.13 Mean reversal vs stability decoding accuracy across time for 

two classifiers. The adapted trained classifier, trained to distinguish reversal vs 

stable trials that are due to adaptation, and the unbiased trained classifier. 

Decoding accuracy values come from testing each of the two classifiers separately 

on data from spontaneously occurring reversal vs stable trials from trials in the 

ambiguous condition. The shaded region shows the time points where the 

performance of the adapted-trained classifier was significantly greater than that of 

the unbiased-trained classifier. 
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Figure 4.15 Plot showing the performance of the adapted-trained classifier 

(panel A) to correctly predict reversal vs stable trials when tested on data from 

ambiguous trials, the grey box shows the time period identified as significantly 

greater than chance level by the cluster-based statistics. Panel B shows the same 

performance of the classifier trained on data from unbiased trials. 
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4.3.2.2.4 Predicting reversal vs stable trials within the adapted and 

unbiased conditions 

This analysis was performed to determine whether there was an inherent 

difference in the data quality in the adapted or unbiased conditions (for instance 

an increase in the signal to noise ratio in the adapted condition) that could be 

causing any increase in their performance when decoding spontaneous reversals 

from the ambiguous trial data.  

To do this, a linear SVM classifier was trained and tested on its ability to 

classify trials as reversal or stable using data from trials within the adapted 

condition, in the same way as was performed in the ambiguous condition (see 

Section 4.3.2.2.1). Another classifier was then trained and tested in the same way, 

on data from trials within the unbiased condition. To determine whether the 

performance of one was significantly better than the other, cluster-based statistics 

were used to compare the decoding accuracy time series against each other. These 

revealed no significant differences in classifier performance across the post-

stimulus period, however they did reveal two pre-stimulus periods where the 

performance of the adapted-trained classifier was greater than that of the 

unbiased-trained classifier. The first cluster occurred between -120ms and -116ms, 

tcluster(24) = 18.64, p = .002 with a mean decoding accuracy of 51.42% (min = 

50.99%, max = 51.74%). The second cluster occurred between -71 and -67ms, 

tcluster(24) = 28.32, p < .001 with a mean decoding accuracy of 51.82% (min = 

51.63%, max = 52.01%; see Figure 4.16). 
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Figure 4.16 Mean reversal vs stability decoding accuracy across time for 

two classifiers; one trained and tested on data from the adapted condition and one 

trained and tested on data from the unbiased condition. The shaded region shows 

the time points where the performance of the adapted-trained classifier was 

significantly greater than that of the unbiased-trained classifier. 

 

 

 

4.3.2.2.5 Temporal generalisation: Predicting spontaneous reversal vs 

stable trials 

In these temporal generalisation analyses, an SVM classifier was trained to 

distinguish between reversal vs stable trials from data at a given time point. This 

trained classifier was then tested, not only on the data from the time point it was 

trained on but all other time points within the trial. This technique is more 
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sensitive to effects that may be temporally misaligned between trials, as well as 

providing information on the time course of neural processes (i.e., whether they 

are sustained, isolated, reactivated and/or ramping up over the time course of the 

trial; King & Dehaene, 2014). Therefore, the technique was used here to help 

draw conclusions about the time course of adaptation in spontaneously occurring 

reversals, as well as provide a more sensitive measure to detect any effects that 

may not be temporally aligned. 

Cluster-based statistics conducted on the temporal generalisation results 

(see Data Analysis Methods above for an explanation of temporal generalisation) 

revealed one cluster of testing/training time points where the classifier performed 

at a level greater than chance, tcluster(24) = 490.32, p < .001. The mean decoding 

accuracy within this cluster was 52.01% (min = 50.85%, max = 54.13%). The 

cluster is illustrated in Figure 4.17 below. 



260 
 

Figure 4.17 Temporal generalisation plot showing the significant cluster of 

reversal vs stability decoding accuracy values from a classifier trained and tested 

on data from ambiguous trials. Non-significant areas are masked out by the dark 

blue areas. The yellow areas represent training x testing time points with the 

highest levels of decoding accuracy and the light blue areas represent those with 

the lowest.  

 

4.3.2.2.6 Temporal generalisation: Cross-decoding between conditions 

To test whether the activity differentiating reversals and stable during 

ambiguous trials was more similar to that during adapted or unbiased trials, we 

used the same cross-decoding approach taken and described in Section 4.3.2.2.3 

above. Temporal generalisation plots were generated by training and testing two 

classifiers in the same way as described in Section 4.3.2.2.3 above. Namely, two 
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separate SVM classifiers were trained: one to decode reversal vs stable trials from 

the adapted condition and one to decode reversal vs stable trials from the unbiased 

condition. Then, each of the two classifiers in turn were separately provided only 

with the EEG scalp voltage data from the ambiguous condition (i.e., the 

spontaneously occurring reversal or stable trials) and were each tested on their 

ability to correctly predict the true class label of these trials. For an explanation of 

the temporal generalisation technique, see Section 4.2.5.  

Cluster-based statistics conducted on the decoding accuracy values of the 

adapted-trained classifier revealed a cluster of testing/training time points where 

the classifier performed at a level significantly greater than chance, tcluster(24) = 

1.066 x 103, p < .001. The mean decoding accuracy within this cluster was 

52.39% (min = 50.93%, max = 55.36%). This is shown in Figure 4.18 below. 

However, no significant clusters were revealed from the decoding accuracy values 

of the unbiased-trained classifier, the mean decoding accuracy across each 

combination of training and testing timepoints was 50.42% (min = 48.39 %, max 

= 53.37%). As the significance mask omits all decoding accuracy values, the 

resulting plot is not shown here. 
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Figure 4.18 Temporal generalisation plot showing the significant cluster of 

reversal vs stability decoding accuracy values from a classifier trained on data 

from adapted trials and tested on data from ambiguous trials. Non-significant 

areas are masked out by the dark blue areas. The yellow areas represent training x 

testing time points with the highest levels of decoding accuracy and the light blue 

areas represent those with the lowest.  

 

4.4 Discussion 

The aim of this chapter was to use multivariate analysis of EEG data and 

cross-decoding techniques to investigate the role of adaptation in spontaneously 

occurring perceptual reversals. Three trial types were used to induce three 

different ‘brain states’ by varying the presentation time and use of the adaptor 
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stimulus. These created reversals in perception that occurred due to adaptation to 

directional motion, reversals that occurred after directional motion was presented 

but did not induce any behavioural adaptation effects and finally, reversals that 

occurred spontaneously. Training the classifier to distinguish between reversal vs 

stable trials in the adapted condition provided sufficient information for that 

classifier to correctly decode spontaneous reversals occurring in the ambiguous 

condition. This suggests that similar mechanisms underpin both and thus that 

adaptation may be playing a role in spontaneous perceptual reversals even when 

an explicit adaptor is not present. Moreover, a classifier that was trained to 

adapted and unbiased reversal trials and then tested on ambiguous reversal trials, 

was more likely to classify those ambiguous trials as adapted trials than as 

unbiased trials. Taken together these results suggest that a similar adapted brain 

state occurs during both reversals due to adaptation and those occurring 

spontaneously. 

The behavioural results from Experiment 3 showed that presenting the 

ambiguous motion stimuli, using the parameters established in Experiment 1, 

successfully induced the adaptation effect in participants. Participants were more 

likely to perceive ambiguous motion as moving in the opposite direction as 

preceding unambiguous motion when that unambiguous motion was presented for 

640ms (see Figure 4.2 for trial structure). Although this was already shown in 

Experiment 1, it was important to ensure that the effect could be replicated here to 

address the aims of this chapter. This further bolsters the support provided by 

Experiment 1, for this rapid adaptation effect found by Kanai and Verstraten 

(2005). The behavioural results also showed that when the preceding 

unambiguous motion was presented for 80ms as it was in the unbiased condition, 
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this did not significantly bias participants’ perception of subsequently presented 

ambiguous motion. Moreover, this unbiased condition induced stochastic response 

patterns, suggesting that participants were not responding in a biased or 

systematic way. This was important to establish as this condition was necessary to 

serve as a control to compare classifier performance against. This was necessary 

so that any differences in the performance of the adapted-trained classifier and the 

unbiased-trained classifier cannot be attributed to stimulus differences. This is 

because the stimulus during the decoding period was physically identical between 

these two conditions. Instead, what differed was the trial history such that clear 

adaptation was built up in the adapted condition whereas there was no evidence of 

this in the unbiased condition. Behavioural analysis of responses to trials in the 

ambiguous block also showed that presenting two successive ambiguous motion 

stimuli did not bias participants’ perception. Instead, here too, participants 

responded in an unbiased and stochastic manner. Again, this was previously 

shown in Experiment 1 but important to also replicate here to show that 

uncontrolled factors were not significantly influencing participants’ perception. 

Another aim of this chapter was to establish whether ERP components 

previously associated with endogenous, spontaneous perceptual reversals in a 

range of stationary ambiguous stimuli (Kornmeier & Bach, 2004, 2005, 2012), 

were also present when an ambiguous motion stimulus is used. However, neither 

the RP nor the RN components were found to be present in the ERPs from data 

captured during the spontaneously occurring reversals in ambiguous blocks. The 

RP has been found to be robust enough to remain unaffected by a number of low-

level stimulus differences (Kornmeier et al., 2011; Kornmeier & Bach, 2012), and 

has been replicated across a number of stimuli (e.g., Britz et al., 2009; Kornmeier 
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et al., 2007). However, perhaps because of its relatively low amplitude making it 

highly sensitive to averaging processes, it has not been replicated across all 

studies employing ERP methods (e.g., Intaite et al., 2010; Pitts et al., 2007) and 

has recently been shown to be linked to participants manually responding to a 

reversal rather than being linked to the perceptual reversal event itself (Abdallah 

& Brooks, 2020). Therefore, the absence of the RP component in Experiment 

Three could be due to a number of these factors or indeed a combination of 

several. The RN component has been equally replicated across various ambiguous 

stimuli (e.g., Britz et al., 2009; Intaite et al., 2010; Kornmeier & Bach, 2004) but, 

like the RP, not universally so (Kornmeier & Bach, 2014). It could be that a more 

widely distributed pattern of scalp activity is associated with the disambiguation 

of ambiguous motion compared to that of stationary stimuli, and ERP analyses are 

not capable of detecting this.  

However, the MVPA classification across time results for the same data 

(i.e., the spontaneously occurring reversals in the ambiguous only block) also 

yielded null results. MVPA classification across time does indeed consider the 

pattern of activity across the whole scalp, rather than being confined to a subset of 

electrodes as with ERP analysis. However, it also faces somewhat similar issues to 

ERP analysis, in that the pattern of scalp activity is compared independently at 

each timepoint. So, this still requires some degree of temporal alignment of the 

effects on each trial. It could be the case here that the mechanisms at play at one 

time point are not active at exactly the same time on every trial. This idea is 

supported when the results from the temporal generalisation analysis are 

considered. In these results, there is a period of significant temporal generalisation 

beginning ~200ms where the classification performance at the training time 
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generalises to other time points. The fact that this effect is only revealed with the 

temporal generalisation technique and not with the classification across time could 

suggest that there is a certain amount of temporal jitter in the effect’s onset. In 

these experiments, in line with previous research (e.g., Britz et al., 2011; Intaite et 

al., 2010; Pitts et al., 2007), Kornmeier and Bach’s (2005) Onset Paradigm was 

used. It is assumed in this paradigm that a reversal in perception occurs at, or very 

close to (with an accuracy of ±30ms; Kornmeier & Bach, 2005), stimulus onset. 

This Onset Paradigm has been used extensively with stationary ambiguous 

stimuli, but not with the ambiguous motion stimuli created by using sine-wave 

gratings as are employed here. It may be the case that, in stimuli like these, 

participants could require slightly different presentation times before a reversal 

occurs, leading to the results seen. The temporal generalisation pattern itself is 

similar to the ‘ramping’ pattern identified by King and Dahaene (2014; see Figure 

4.19 below). King and Dahaene (2014) suggest that this pattern could represent a 

slowly increasing pattern of activity. When this is considered against the 

hypothesis that neural fatigue is a mechanism that builds up over sustained 

viewing of a stimulus, the results here provide support for this. It is also similar to 

the ‘jittered’ pattern identified by the same authors, supporting the idea that the 

onset of the reversal event itself could differ across participants. 



267 
 

Figure 4.19 Figure from King and Dahaene (2014) showing seven 

simulated possible temporal generalisation matrices, each representing a different 

type of brain process. Isolated, indicating three separately activated processes; 

Sustained, indicating one process maintained over time; Chain, indicating a chain 

of distinct processes; Reactivated, where a given process is reactivated at a later 

time in the trial; Oscillating, where alternate above and below chance performance 

indicates a reversing component; Ramping, representing a slowly increasing 

process over time; and Jittered, indicating a difference in activation onset. 

 

When the SVM classifier was trained to distinguish between reversals in 

the adapted and unbiased conditions (i.e., between reversals occurring due to 

adaptation and reversals occurring due to processes other than adaptation), that 

classifier identified three time periods in the time course of spontaneously 

occurring reversals where the pattern of scalp activity was significantly more like 

that of an adapted reversal. Two of these periods occurred post-stimulus onset, 

and one occurred in the pre-stimulus period. With regards to the two post-stimulus 

occurrences, the first of these occurred between 45 - 68ms and the second 

between 234 - 250ms. This indicates that, at these time points, the pattern of scalp 

activity during a spontaneously occurring reversal was significantly more like the 

pattern during an adapted reversal. This suggests that the underlying processes 
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driving the scalp activity during spontaneous reversals are more similar to those 

underpinning adaptation, than those underpinning reversals occurring following 

directional motion that does not induce adaptation. This provides further support 

for the idea that adaptation plays a role in spontaneously occurring reversals. It 

should be noted too that the later significant time window here (234 - 250ms) 

occurs within the temporal ROI for the RN component (200 – 400ms). There is 

debate around the processes reflected by the RN, as it has been shown to be 

modulated by both top-down (Pitts et al., 2008) and bottom-up (Kornmeier et al., 

2007) factors. So, the finding here, that there is a period of time during 

spontaneously occurring reversals where the brain activity within the RN window 

is similar to that in adaptation, could provide support for the idea that the RN at 

least partially represents bottom-up processes. This period also overlaps with the 

period during which there was significant above chance decoding of the 

ambiguous stimulus (i.e., spontaneous reversals) in the results from the temporal 

generalisation analysis.  

With regards to the pre-stimulus period, between -84 and -68ms the 

classifier predicted that the scalp activity in the period preceding a spontaneous 

reversal was significantly more like that of an adapted reversal. However, it 

should be firstly noted that this period overlaps with that in which the signal to 

noise ratio in the adapted trials could be increased compared to unbiased trials. 

This is suggested because from -71 to -67ms a classifier trained to distinguish 

reversal vs stable trials from the adapted condition performed significantly better 

than an equivalent classifier trained and tested on data from unbiased trials. This 

suggests that there could be an increase in the signal to noise ratio in trials from 
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the adapted condition at this time. Therefore, although other potential 

explanations for this result will be discussed, they should be taken with caution. 

 The result that, between -84 and -68ms, the classifier predicted that the 

scalp activity in the period preceding a spontaneous reversal was significantly 

more like that of an adapted reversal, could be interpreted in several ways. Firstly, 

this could indicate that in spontaneously occurring reversals neural fatigue has 

been built up during the previously presented ambiguous motion stimulus such 

that the brain state is already similar to that of an adapted reversal even before the 

stimulus has been presented.  Secondly, in line with previous research 

(Hesselmann et al., 2008; Ronconi et al., 2017), this could be indicative of more 

of a spontaneously occurring oscillatory process in which this particular time 

period happens to be similar to that of an adapted reversal. If this were the case 

however, it could be expected that this time window would also lead to successful 

classification when the classifier was trained and tested on the same 

spontaneously occurring reversal data, but this was not shown.  

The SVM classifier that was trained to distinguish adapted reversal vs 

stable trials was successfully able to predict spontaneously occurring reversal vs 

stable trials between ~60 – 78ms (classifier performance was above chance level 

from 60ms onwards, and above that of the unbiased control from 64ms onwards). 

This indicates that, during that time window, the pattern of brain activity was 

sufficiently similar in both the adapted trials and ambiguous-only trials. 

Importantly, the adapted-trained classifier can not only do this significantly better 

than would be expected by chance, but also significantly better than the 

performance of the classifier trained on the unbiased, control trials. Moreover, this 

result is not due to an underlying difference in the data quality in trials in the 
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adapted condition over those in the unbiased condition. If that were the case, we 

would expect that when within-condition reversal vs stable classification 

performance in the adapted trials would be significantly better than that in the 

unbiased trials during this period. In other words, if there was an increase in the 

signal to noise ratio between ~60-78ms in the adapted trials compared to the 

unbiased trials this might lead to the adapted-trained classifier being able to 

perform generally better than the unbiased-trained classifier. However, when the 

performance of classifiers trained to decode reversal vs stable trials from within 

each of these two conditions was compared, no differences were found across the 

whole post-stimulus period. This indicates that it is not an increase in the signal to 

noise ratio at this point that is causing the adapted-trained classifier to be able to 

predict spontaneous reversal vs stable outcomes from trials in the ambiguous 

condition more accurately than the unbiased-trained classifier (and also than 

would be expected by chance).  

It is important to clarify that the findings here are also not caused by any 

potential imbalance in the number of trials across different classes and conditions. 

Specifically, in both the unbiased and ambiguous conditions, the distribution of 

stable and reversal trials is approximately even, with each category representing 

about 50% of the trials. However, in the adapted condition, by design, there is a 

higher proportion of reversal trials, around 60%, compared to stable trials. This 

imbalance is proactively addressed during the pre-processing stage, prior to 

training the classifiers. We employ an undersampling technique during pre-

processing to ensure equity between classes. In practical terms, this involves 

randomly selecting a subset of the majority class for each training fold—in the 

case of the adapted condition, this means selecting from the reversal trials—so 
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that the number of trials in each class is equal. If this corrective step were omitted, 

the classifier trained on the adapted condition data would be predisposed to 

predict reversal trials more frequently, simply because they are more common in 

that set, which could bias the results. 

During this time window (60-78ms), the adapted-trained classifier 

performs better when cross-decoding spontaneous reversal data from the 

ambiguous trials, than a classifier trained and tested only on the ambiguous trials 

themselves. This result is initially surprising, however, as discussed above, this 

could be due to a potential temporal jitter in the onset of a spontaneous reversal 

meaning that the standard classification across time analysis may be unable to 

detect the effect. This again seems to be confirmed by the results of the temporal 

generalisation matrices. The adapted-trained classifier can decode most other time 

points in the spontaneous data, including the pre-stimulus period. It can do this 

particularly well when the data from early in the adapted trial is used to predict 

later time points in the spontaneous data. Using the exemplar matrices provided 

by King and Dehaene (2014), this could suggest that the underlying mechanism 

that is driving decoding accuracy early on in an adapted trial is again active at 

later points in a spontaneous trial. In other words, the pattern of activity (and 

therefore underlying mechanisms) occurring when a participant has adapted to 

directional stimuli is sufficiently similar to that occurring towards the end of 

viewing an ambiguous stimulus. This could also provide additional support for the 

neural fatigue hypothesis as it suggests that the fatigue that is thought to be 

accumulated by the viewing of the directional stimulus may be similar to that 

building up when viewing an ambiguous stimulus and leading to a reversal in 

perception. 
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A potential confounding issue with the design of the experiment in this 

chapter is that, to induce adaptation effects, the duration of directional motion 

(i.e., the first stimulus in each trial) that participants were exposed to in the 

adaptation condition was longer than that in the unbiased condition (640ms vs 

80ms, respectively). This was necessary to induce different levels of adaptation 

between the two conditions. To ensure that there were no stimulus confounds 

between the two conditions, the EEG results were based solely on the data during 

the ambiguous stimulus period (i.e., the second stimulus) which was identical 

(including duration) across the two conditions. Nonetheless, it is possible that the 

different durations of the first stimulus created a significant difference in motion 

energy which could have led to sensory carryover effects other than adaptation 

which affected neural activity during the second stimulus period. This could 

confound the comparison between adaptation and unbiased conditions during the 

unambiguous (i.e., second stimulus) despite perfect equating of stimulus 

characteristics during that period. One way to address this in future experiments 

could be to change the stimuli used, for example to random dot kinematograms 

(RDKs) in which the dots move in a random fashion without a coherent direction. 

These stimuli have been used in previous studies to investigate how different 

areas of the visual cortex, particularly the middle temporal area (MT+), process 

complex motion patterns. By using RDKs with varying levels of coherence and 

directionality, researchers have isolated responses to motion without the influence 

of a specific directional cue (Huk & Heeger, 2002). Therefore, these stimuli could 

be used as an alternative to the drifting sine-wave gratings in this set of 

experiments. For example, for the unbiased condition, one could replace the first 

stimulus with low coherence RDKs which should not induce adaptation because 
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they do not contain coherent directional motion energy. This should be true 

regardless of how long it is presented. In contrast, for the adaptation condition, the 

first stimulus would comprise high coherence RDKs with coherent motion in 

either the left or right direction and should lead to adaptation to directional 

motion. This would allow one to equate the duration and cumulative motion 

energy of the first stimulus between the two conditions whilst still inducing a 

difference in adaptation. 

When considered together, these results suggest that adaptation does have 

some role in driving spontaneously occurring reversals in perception. Decodable 

scalp activity patterns towards the end of a spontaneously occurring reversal or 

stable trial appear to represent a ‘ramping up’ mechanism that could be interpreted 

as neural fatigue. Periods of time exist in spontaneously occurring reversal trials 

where the pattern of scalp activity are similar to those occurring in reversals due 

to adaptation, suggesting that similar underlying mechanisms could be driving 

both. From these results alone however, it is not possible to say that adaptation is 

the only factor that drives spontaneous perceptual reversals. Future research could 

employ similar paradigms to those used here to explore the extent to which other 

factors could influence perception, for example volitional control or attentional 

factors. Replicating a similar paradigm using adaptation to other stimuli should 

also be encouraged, to determine whether the findings here are applicable to 

reversals in general, or reversals of ambiguous motion only.   
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Chapter Five: Simulations to examine error rate control and statistical 

power of multivariate pattern analysis pipelines 
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5.1 Introduction 

Electroencephalography (EEG) data are inherently multivariate, capturing 

a complex interaction of brain activities across time and space. This 

multidimensional nature of EEG is rooted in its ability to simultaneously record 

electrical signals from multiple scalp electrodes with temporal precision in the 

order of milliseconds. Consequently, EEG data encompass a rich array of 

information that reflects both spatial and temporal variations in brain activity and 

researchers have developed a range of methods to make this vast amount of 

information interpretable in the context of a given research question. 

In the field of cognitive neuroscience, making EEG data interpretable has 

traditionally been achieved via analyses of variance (ANOVA), or similar 

techniques, run on the mean or peak amplitudes in temporal and/or spatial 

regions-of-interest (ROIs) that are ideally defined a priori (e.g., Dien & Santuzzi, 

2005) via a process known as spatiotemporal averaging (Luck, 2014). Analysing a 

result (such as mean or peak amplitude, or mean power of a given frequency band 

for instance) at a single time/space point without considering its relationship with 

other space/time points is known as a univariate approach. One example of such 

an approach, that is widely used in the literature, is the analysis of the event-

related potential (ERP; Luck, 2014, see Chapter 2 for a full overview, however a 

brief description will be provided here). ERPs are voltage fluctuations in the EEG 

data that are time-locked to the onset of a particular event (e.g., stimulus onset, 

participant response). The mean amplitude differences between conditions are 

then compared. To generate the ERP, data from many trials are averaged (within 

conditions) to increase the signal to noise ratio and leave behind a waveform that 

reflects only the voltage pattern associated with the event (Luck, 2014). 
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Waveforms arising from different experimental manipulations are then statistically 

compared to determine if there are significant differences between conditions.  

This method has been effective in revealing many ERP components that 

are associated with certain experimental manipulations. For instance, the 

negative-going N170 component associated with the viewing of faces (Bentin, 

Allison, Puce & Perez, 1996). However, the ERP method requires an ROI, which 

specifies the temporal and/or spatial focus of the analysis, to be set a priori. This is 

because running multiple significance tests on several ROIs without the 

appropriate corrections, carries a risk of drastically inflating Type I error rate (α; 

e.g., Kriegeskorte, Simmons, Bellgowan, & Baker, 2009; Kilner, 2013). Type I 

error rate refers to the probability of declaring a significant result when in fact 

none exists: in other words, a false positive result. It is accepted in the literature 

that a Type I error rate of 5% is sufficient to deem an analysis appropriate for 

assessing significance. Type I error rate can be increased if researchers use biased 

techniques with which to select their ROI (Kilner, 2013; Luck & Gaspelin, 2017; 

Brooks, Zoumpoulaki & Bowman, 2017); for instance, choosing the ROI a 

posteriori based on the largest difference between the amplitudes of ERP 

waveforms. To illustrate the effects of defining the ROI using such biased 

methods, Kilner (2013) conducted a series of simulations. The study generated 

null (i.e., no difference between conditions) EEG data for 16 subjects and 

conducted Student's t-tests to examine the null hypothesis that the value at a 

specific time point across subjects was equal to zero. When the time-window and 

electrodes were selected randomly, the false positive rate was around 5% (i.e., the 

accepted rate). However, when these parameters were selected based on where the 

'effect' (i.e., difference between conditions in the data) was largest, the Type I 
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error rate increased to over 95%. The study also demonstrated that averaging over 

different time-windows reduced, but did not eliminate, this bias. These results 

highlight the need for the ROI in ERP studies to be selected completely 

independently. Additionally, Luck and Gaspelin (2017) used simulations to show 

that using multifactorial ANOVAs to analyse ERP data can also lead to an 

increase in Type I errors, even when the ROI is chosen independently and a priori. 

For example, their null-effect simulation results revealed that using a four-way 

ANOVA to analyse their simulated data led to a false positive rate of 

approximately 53.3%, meaning that over half of the experiments yielded at least 

one significant but false effect. Therefore, the authors strongly advise against the 

uncritical use of multifactorial ANOVAs in ERP research, even if the ROI is 

selected a priori. An additional issue with ROI selection is that differences such as 

stimulus characteristics can lead to considerable disparities in the onset of certain 

effects (e.g., Brisson, Robitaille, & Jolicoeur, 2007; Kiesel, Miller, Jolicoeur & 

Brisson, 2008) as well as other factors that have no relevance to the study (e.g., 

Kutas, McCarthy, & Donchin, 1977), therefore making the a priori selection of an 

ROI problematic. Moreover, if novel research is being conducted with little or no 

previous work to guide the ROI selection, there might be no indication of which 

ROI to select at all.  

In addition to data reduction via ROIs having the potential to inflate Type I 

error, another limitation of approaches like these is that the averaging process 

involved in creating measures like ERPs can lead to a loss of meaningful signal in 

the data (Luck, 2014; see Chapter 2 for more detail). This carries the potential of 

inflating the Type II error rate (β). Type II error rate is the probability of 

erroneously reporting that there is a null effect when in fact there is an effect 
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present in the data. This is of particular importance because Type II error rate (β) 

and statistical power (1 - β) are inversely related. In other words, as the Type II 

error rate decreases, statistical power increases, and vice versa. Statistical power is 

the probability that a study will detect an effect if that effect truly exists (Cohen, 

1988). A study with high statistical power, therefore, reduces the risk of 

committing a Type II error. The power of a study is influenced by several factors, 

including the sample size, the effect size, and the significance level set by the 

researcher. A widely recognised standard for power is 80% (Cohen, 1988). This 

standard stems from the concept that when using an alpha level of 0.05 (i.e., the 

accepted 5% Type I error rate), the ratio between a Type II error and a Type I error 

is 0.20/.05. This implies that mistakenly identifying an effect when none exists is 

deemed four times more critical than failing to recognise an effect when one is 

present in the population (Lakens, 2013). However, the current replicability crisis 

within psychological research (e.g., Ioannidis, 2005; Button et al., 2013; 

Colquhoun, 2014; Open Science Collaboration, 2015), indicates that studies are 

often underpowered. Indeed, Button et al. (2013) make the claim that, due to 

relatively expensive and often noisy data collection measures, low powered 

studies can be thought of as the norm, at least in cognitive neuroscience. Ensuring 

adequate power is crucial as it not only increases the validity of the study's 

findings but also contributes to the ethical conduct of research, preventing 

wastage of resources on studies that are unlikely to produce meaningful results. 

Adequate power is also important because it allows researchers to make a priori 

decisions about the number of participants required to detect a given effect. When 

a study is adequately powered, it means that the statistical tests used are sensitive 

enough to reliably identify true effects if they exist. This sensitivity allows 
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researchers to determine the appropriate sample size required to achieve a balance 

between the risk of Type I and Type II errors while maintaining the precision and 

reliability of their findings. In practical terms, having adequate power ensures that 

researchers can design experiments with the confidence that they will have a 

sufficiently large sample size to detect meaningful effects, ultimately enhancing 

the robustness and credibility of their research outcomes. Thus, univariate 

approaches such as ERP analysis carry the potential to reduce power given that (a) 

they require an a priori ROI to be selected which may not be at the location of the 

effect and (b), they require some form of signal averaging which could lead to the 

effect, even if present within the selected ROI, to be cancelled out (Luck, 2014).  

To help solve at least some of these issues, mass univariate analyses can be 

used (e.g., Woolrich, Beckmann, Nichols, & Smith, 2009), in which many 

univariate tests (such as t-tests, for example) are conducted in parallel. For 

example, when looking for a difference in N170 amplitude, one could test all time 

points between 150-200ms and all PO and O electrodes to determine whether 

there are any significant differences in that spatio-temporal region. This will result 

in a p-value for each time x electrode point. If there is no a priori information 

about the potential location of an effect in space and time, then all time and space 

points can be tested. Although mass univariate approaches involve analysis of 

multiple dependent variables (time x space points, in this case), this approach is 

different from a multivariate approach (discussed in more detail below). In a mass 

univariate approach, the statistical outcome for each time x space point is still 

calculated independently from that of the other time x space points being tested. 

In contrast, a multivariate analysis assesses the pattern of results across multiple 

time x space points.  
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Because a mass univariate analysis can include many concurrent statistical 

tests, a correction for multiple comparisons is necessary. There are many 

approaches to this correction which include permutation tests (e.g., Blair & 

Karniski, 1993), cluster-based permutation tests (e.g., Maris & Oostenveld, 2007) 

and false discovery rate control procedures (FDR; e.g., Benjamini & Hochberg, 

1993; Benjamini, Krieger, & Yekutieli, 2006). The efficacy of such corrections in 

mass univariate ERP analysis was investigated empirically in a series of 

simulations by Groppe et al, (2011b). Here, EEG background noise was derived 

from 23 real participant EEG datasets, recorded from 26 channels, during the 

completion of a linguistic, text-based, priming task (Groppe, Choi, Topkins, & 

Kutas, 2009). On average, each participant’s data contained 223 trials. The authors 

then computed ERPs from epochs that were time-locked to the onset of the text 

prime stimuli. The resulting ERP waveform was then subtracted from each epoch 

to produce trials of zero mean, null effect, EEG background noise. The authors 

used this realistic background noise as the basis to simulate 1000 ERP 

experiments for each of 4 simulated ERP effects. These were: the N170 (Bentin, 

Allison, Puce & Perez, 1996; Bentin, Mouchetant-Rostaing, Giard, Echallier, & 

Pernier, 1999), the P3 (Bentin et al., 1999), combined N170/P3 (i.e., both 

components were added to the data), and ERP null effects (i.e., no ERP effect was 

added to the null effect data). To simulate a single ERP experiment, ERPs for each 

of the 23 participants were derived by randomly selecting a subset of that 

participant's background noise trials, removing the mean pre-stimulus voltage, and 

averaging the trials. The authors then analysed the data from each of the 1000 

simulated experiments for each of the 4 conditions, by concurrently applying two-

tailed, one-sample t-tests to all scalp channels. They then used 6 commonly cited 
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multiple comparison correction methods to correct for the multiple comparisons 

made. These were: Bonferroni-Holm, t-max permutation, maximum cluster-level 

mass permutation, permutation-based procedures, and 3 FDR control methods (as 

described in Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001; 

Benjamini, Kreiger, & Yekutieli, 2006). The number of false positives for each 

correction method across each of the 4 simulated effect types was systematically 

counted to establish false positive rates for each method. This was used to 

evaluate Type I error risk of each of the 6 correction methods, for each of the 4 

simulated effect types. The simulation showed that all 6 procedures performed 

with sufficient conservativism so as not to inflate Type I error rate to a concerning 

extent. In a companion to this simulations paper, the authors made 

recommendations following their investigation (see Groppe et al., 2011a). Of 

relevance to the EEG experiments described in this thesis, their paper made 

recommendations for the use of cluster-based permutation tests (Maris & 

Oostenveld, 2007). For a full discussion of these see Chapter 2, but briefly; 

cluster-based permutation tests involve grouping neighbouring data points (or 

'clusters') that exhibit a significant effect, and then evaluating the statistical 

significance of these clusters through permutation testing. Groppe et al (2011a) 

recommend that these can be used in more exploratory analyses where there may 

not be a clear a priori hypothesis about the location (in time or space) of an effect 

and are particularly suitable for analyses where one is interested in capturing the 

spatial or temporal structure of the data (e.g., continuous time or space), rather 

than reducing the analysis to a small number of discrete tests. Fields and 

Kuperberg (2020) however, suggest that mass univariate approaches may have a 
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place in EEG analyses as more standard practice and may even be more 

appropriate than spatiotemporal averaging approaches (i.e., ROIs). 

Mass univariate analyses of ERPs, therefore, offer researchers an 

additional perspective on the analysis of EEG data. Specifically, they allow 

researchers to perform more exploratory analyses when an a priori ROI cannot be 

established, providing the appropriate correction for multiple comparisons is used. 

This has the potential to increase power over standard univariate techniques, as it 

avoids the problem of the incorrect ROI being selected (therefore missing the 

location of the real effect) based on a priori assumptions. However, some 

researchers have cautioned that the use of cluster-based permutation tests 

alongside mass univariate analyses may lead to the overestimation of the spatial 

and temporal precision of statistical claims made about any detected effect 

(Sassenhagen & Draschkow, 2019). Additionally, as is the case in standard 

univariate analyses of ERPs, they do not take full advantage of the whole-brain 

pattern of activity contained within the EEG dataset (Groppe et al., 2011; Hebart 

& Baker, 2018). In contrast, multivariate approaches involve the simultaneous 

analysis of multiple dependent variables in a statistical analysis. In a univariate 

analysis, each dependent variable is examined separately, while in a multivariate 

approach, multiple dependent variables are considered together as a set. This 

approach allows researchers to investigate complex relationships and interactions 

among variables, capturing the interdependencies that may exist between them. A 

subset of this approach is multivariate pattern analysis (MVPA) which, in contrast 

to univariate and mass univariate approaches, does examine whole-brain activity 

patterns across time. MVPA has been shown to be more sensitive in detecting 

effects that are missed by univariate analyses (i.e., leading to a reduction in Type 
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II error rate and therefore increased power; e.g., List, Rosenberg, Sherman & 

Esterman, 2017; Hebart & Baker, 2018). For a full description of MVPA and its 

reported advantages over univariate approaches see Chapter 2, however a brief 

overview will be provided here.  

A typical multivariate analysis pipeline begins with training a classifier, 

for instance a machine learning classifier, such as a Support Vector Machine or 

Linear Discriminant Analysis based classifier (SVM and LDA, respectively). 

During the training process, the classifier is provided with EEG scalp voltage data 

along with the label of the class that those voltages are associated with. For 

instance, EEG data might be recorded from 64 channels during viewing of face vs 

house stimuli. To train a classifier, it would be provided with data from all 64 

channels (although a smaller subset of channels can also be used), independently 

for each time point that was sampled and provided with a label for that pattern of 

scalp voltages. This process leads to the classifier ‘learning’ which patterns of data 

can best distinguish between the classes. This training process is conducted on 

around 80-90% of the total number of trials in the experiment. The trained 

classifier is then tested by being provided with the remaining 10-20% of the EEG 

scalp voltage data without class labels, and ‘asked’ to decode which class the 

unlabelled data came from. It is important to train and test the classifier on 

independent data to avoid the phenomenon known as “double dipping’. In other 

words, overfitting the model based on noise that is present in the data and leading 

to an increase in Type I errors (e.g., Kriegeskorte et al, 2009). Hence, 10-20% of 

the trials are kept back to independently test the classifier on. This leads to a time 

course of decoding accuracies, which are interpreted as a measure of how much 

information was present in the unlabelled data that was relevant to the class labels 
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of interest (i.e., in this example, the viewing of faces vs house stimuli). If at a 

given time point, the trained classifier can predict which of (for instance) 2 classes 

the unlabelled data came from with an accuracy greater than chance, it can be 

concluded that the data must have contained sufficient class-specific information. 

Therefore, a difference between the pattern of scalp voltages associated with the 2 

classes, at that time point, must exist. For an experiment with 2 classes, an 

accuracy of 50% is the level that would be expected by chance. Thus, timepoints 

with decoding accuracies significantly greater than this are generally accepted as 

one in which the effect has been detected – in other words, sufficient information 

about the experimental manipulation (in this example, the stimulus currently 

being viewed) is contained in the patterns of brain activity (e.g., Kriegeskorte et 

al., 2009; Grootswagers, Ward & Carlson, 2017; Hebart & Baker, 2018, though 

for a contrasting view see Combrisson & Jerbi, 2015). For an experiment with 

multiple participants, individual decoding accuracies are typically averaged to 

produce a ‘grand average’ plot of decoding accuracy across the time course of the 

trial. Finally, to determine which timepoints in an experiment lead to a decoding 

accuracy that is significantly greater than chance, a correction for multiple 

comparisons must be conducted given that a trial can consist of hundreds of time 

points. Although such correction methods are typically similar to those examined 

in the simulations by Groppe et al. (2011b), the currently available literature does 

not contain equivalent guidance on the power and FWER of these methods when 

they are applied to time series MVPA decoding accuracy data. Therefore, making 

a priori decisions about sample size is difficult when designing studies using 

MVPA.  
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The technique of MVPA originated in the field of computer science, 

primarily for use in the development of brain-computer interfaces (BCIs). In BCI 

applications, the focus is on predicting behaviour based on patterns of voltage 

across scalp electrodes; the number of participants is generally not a critical 

factor. This approach has been adapted for neuroimaging data, operating on the 

premise that if decoding accuracy exceeds chance levels, sufficient information 

about the experimental manipulation of interest is contained in the patterns of 

brain activity (Grootswagers et al., 2017; Hebart & Baker, 2018). While BCIs 

prioritise achieving high decoding accuracy that generalises across individuals, 

irrespective of the nature of the signal being decoded, MVPA in neuroimaging 

seeks to understand the structured representation of stimuli in underlying brain 

activity (Hebart & Baker, 2018). It is crucial to recognise that these two 

applications of MVPA are underpinned by different assumptions. For instance, in 

BCIs, the primary aim of MVPA is to achieve as close to 100% decoding accuracy 

as possible so that the algorithms generalise widely across different individuals. 

On the other hand, neuroimaging applications of MVPA aim to identify structure 

in the data related to the conditions under study, without necessarily requiring 

high levels of decoding accuracy, providing these levels are significantly greater 

than can be expected by chance (e.g., Grootwagers et al., 2017). 

Because of this relative infancy as a technique in neuroimaging studies 

compared to BCI studies, the methodological rigour of MVPA in this context has 

not been as thoroughly scrutinised as that of ERP analysis pipelines. For instance, 

the currently available literature does not provide researchers with sufficient 

guidance on the number of participants required to detect an effect within a given 

ROI, where one exists. Therefore, the first aim of this chapter is to use simulated 
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EEG data to investigate the power of a typical MVPA pipeline. Specifically, to 

establish how varying the size of a multivariate effect affects the resulting 

decoding accuracy and power of cluster-based statistics to detect the effect. 

Specifically, three effect sizes (in terms of Cohen’s d) will be assessed: small, 

medium, and large. Additionally, power will be calculated; that is, if any of the 

simulated experiments detect the added effect at any time point in the ROI then 

that will be counted as an experiment in which the effect has been detected. This 

will provide some much-needed general guidance on the necessary sample sizes 

to detect multivariate effects using MVPA pipelines on EEG data. Additionally, as 

MVPA alongside cluster-based permutation tests have been used in Chapter 4 of 

this thesis to draw conclusions on the role of adaptation in spontaneously 

occurring perceptual reversals, this aim will also shed light on how powerful this 

analysis pipeline is. Power is influenced by various critical components, including 

the predefined significance level (here set at 0.05 in line with the accepted rate), 

which represents the acceptable risk of Type I error (false positive); the effect size, 

which quantifies the magnitude of the true effect under investigation, and the 

sample size, which reflects the number of observations or participants in the study. 

Therefore, it is expected that the power of this analysis pipeline will increase 

along with an increase in participant number, as well as an increase in the size of 

the underlying effect. 

The second aim of this chapter is to use simulated null effect EEG data to 

investigate the family-wise error rates associated with the same MVPA analytical 

pipeline. The purpose of this is to provide more information on the FWER of 

cluster-based permutations, specifically when analysing decoding accuracy values 

resulting from MVPA. Additionally, the analysis aims to establish whether the 
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cluster-based permutations sufficiently correct for multiple comparisons, again 

within the specific context of analysing decoding accuracy values resulting from 

MVPA. Again, as with the previous aim, this will shed light on the Type I error 

rate associated with the analysis pipelines used in Chapter 4 of this thesis. Given 

that previous research has shown that when cluster-based permutations are used to 

correct for the multiple comparisons made in mass univariate analyses of ERP 

data (Groppe et al., 2011b), they do so with an acceptable level of conservativism, 

it is expected that they will also correct for the multiple comparisons in the 

context of analysing decoding accuracy values resulting from MVPA. 

The general approach to address these aims will be to generate EEG data 

in a series of simulations in which effect size (in terms of Cohen’s d) and sample 

size (i.e., participant number) are systematically varied. Three effect sizes will be 

used: small, medium and large (see below for an explanation of how these are 

calculated), and five sample sizes: 5, 10, 20, 40 and 80 virtual participants. 

Therefore, this leads to a 3 (effect size) x 5 (sample size) design, thus 15 

simulations in total. Each of the 15 simulations will contain 1000 simulated 

experiments. Each simulated experiment will comprise simulated, independently 

generated EEG background noise data for each of the given number of 

participants (i.e., 5, 10, 20, 40 or 80). Each participant’s dataset will contain 50 

trials for each of 2 conditions and, at a specific ROI, these trials will contain an 

effect that is either a small, medium or large difference between the 2 conditions 

(see Figure 5.1 for an overview of the simulations; see below for a description of 

how the effects were calculated).  
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Figure 5.1 Diagram showing details of each of the 15 simulations 

conducted in this Chapter.  

 

The noise-only, null hypothesis data will be generated during the process 

outlined above. Specifically, a subset of 1000 experiments will be taken from the 

total 15 000 simulated experiments, however an ROI outside of the added effect 

will be analysed. Therefore, this ROI will contain only the independently 

generated, simulated background EEG noise with no effect at all. The simulated 

experiments in the large effect/sample size of 80 simulation were arbitrarily 

chosen as the subset of experiments to use here. The choice of experiments to use 

here is arbitrary because the way that the simulated background EEG noise was 

generated was identical in all 15 simulations. 

The data from each simulated experiment will firstly be analysed using 

MVPA, to generate time series data of decoding accuracies for each participant 

according to how well the classifier is able to distinguish between the 2 simulated 

conditions. To assess statistical power, one-sample t-tests alongside cluster-based 

permutation tests will be used to determine whether this resulting decoding 
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accuracy is significantly above chance level at any of the time points within the 

ROI containing the added effect. This will be done for each of the 15 simulations 

(i.e., 3 effect sizes x 5 sample sizes shown in Figure 5.1). To assess FWER, again 

one-sample t-tests alongside cluster-based permutation tests will be used to 

determine whether this resulting decoding accuracy is significantly above chance 

level at any of the time points within the ROI outside of the added effect (and 

therefore contains noise-only, null hypothesis data). This will be done only for the 

1000 simulated experiments in the large effect/sample size of 80 simulation. 

Therefore, in the noise-only, null hypothesis simulation, the proportion of 

experiments (out of 1000 total) in which a significant effect is found by this 

pipeline will determine the FWER. As there is no effect present in the noise-only 

ROI, any significant increase in decoding accuracy is a false positive. In the 

simulations containing the addition of a multivariate effect, the proportion of 

experiments in which the effect is detected will determine the statistical power of 

this pipeline. Thus, using this approach, both aims outlined above will be 

addressed. This approach will therefore lead to 15 power values, as proportions 

out of 1000 experiments whereby the added effect was detected in the effect ROI 

(one for each of the 3 effect sizes x 5 sample sizes). The approach will also lead to 

one FWER value, as a proportion out of 1000 experiments whereby an effect was 

incorrectly detected in the ROI containing only noise (from the large 

effect/sample size of 80 simulation).  

The way that the simulated effect is added to the noise-only data in these 

simulations differs from the way that previous simulation work has introduced 

univariate effects when examining univariate approaches. For example, the 

addition of a univariate effect involves introducing a mean difference in amplitude 
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at given electrodes and timepoints, across 2 (or more) different simulated 

conditions. Therefore, to generate effects of various sizes, the mean amplitude 

difference between the 2 conditions can simply be increased. Here, a multivariate 

effect involving 32 channels was used. That is, the 2 simulated conditions contain 

a difference in the overall pattern of voltage changes, spanning 32 channels 

simultaneously. Therefore, generating multivariate effects of differing sizes is 

slightly more complex than when dealing with univariate effects. The general 

approach taken to generate the multivariate effect will now be outlined. 

To achieve the addition of a multivariate effect, datapoints will be 

generated based on a multivariate Gaussian distribution (Hotelling, 1933; see 

Figure 5.2, below). In the set of simulations described in this chapter, this 

multivariate effect involves 32 channels. However, to outline the concept here, an 

example involving just 2 channels will be used. In Figure 5.2, below, hypothetical 

voltage recordings from 2 EEG channels are plotted on the x and y axes of the 

graph. The 2 ellipses shown on the graph represent 2 multivariate Gaussian 

distributions. The means of these distributions are known as centroids and are 

represented by the red and blue circle markers in the centre of each ellipse. The 

red ellipse will represent the distribution underlying hypothetical condition 1, and 

the blue ellipse will represent that of hypothetical condition 2. If these were used 

to generate data that represents a multivariate effect (in this case spanning 2 

channels), then possible voltage pairs for electrodes 1 and 2 could be (3.5, 2) or 

(4, 1.5) for data in condition 1. These are represented by the red cross markers 

shown in Figure 5.1. Similarly, voltage pairs of (1.5, 3) or (2.5, 4) could represent 

data in condition 2. In the simulations described in this chapter, there were 32 
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channels, so the data are contained on a unit hypersphere that has 32 dimensions. 

The concept, however, remains the same as this 2-dimensional representation.  

To generate effects of varying sizes therefore, it is the difference between 

these centroid means across the simulated conditions that is manipulated. Another 

simple visualisation of this is shown in Figure 5.3, below. A small difference in 

centroid means is represented in Figure 5.3 Panel B, where it can also be seen that 

the 2 multivariate distributions overlap, meaning that some points drawn from 

each separate distribution could belong to either of the 2 conditions. In contrast, a 

large difference in centroid means is represented in Figure 5.3 Panel A, where the 

distributions are distinct from one another.  

 

 

Figure 5.2 A graphical representation of 2 multivariate Gaussian 

distributions of voltages from 2 EEG electrodes, each represented by an ellipse 
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(red and blue ellipses). The ellipses themselves represent the spread of each 

distribution. The centroids of these distributions, indicated by the points at the 

centre of each ellipse, are the means of the distributions. The x markers represent 

4 values that might be drawn from the distributions. Blue x markers represent 

values that might be drawn to generate the representation of condition 1, and red x 

markers indicate the same for condition 2.  
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Figure 5.3 A graphical representation multivariate Gaussian distributions 

representing two multivariate effects spanning 2 electrodes. Panel A represents an 

effect with a large difference in the centroid means between the two 

conditions/distributions. Panel B represents an effect with a smaller difference in 

the centroid means between the two conditions/distributions. 

 

Again, this is a simplified representation, but the concept of introducing 

multivariate effects that vary in size remains the same as that used in this chapter.  
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5.2 Methods 

5.2.1 Participants 

There were no human participants. In this simulation we varied the number 

of virtual participants. Five participant sample sizes were used, these were: 5, 10, 

20, 40 and 80. It was not practically possible to run all possible sample sizes due to 

the computing time required to do so, thus focus was given to the range of sample 

sizes typically used in the currently available literature on the decoding of EEG data 

using MVPA. In single lab EEG studies, a sample size greater than 80 is uncommon 

and unpractical due to the length of time it takes to collect EEG data; therefore, we 

capped the range at this number. 

 

5.2.2 Design 

The independent variables in the multivariate effect simulation were effect 

size and participant number.  

As well as the zero effect, null-hypothesis data, 3 effect sizes, in terms of 

Cohen’s d, were used to assess power. These were: small (d = 0.2), medium (d = 

0.5), and large (d = 0.8; Cohen, 1988). Cohen’s d is a measure commonly used in 

the literature, to quantify the differences across conditions (Cohen, 1988). The 

formula to calculate effect size in this way is: 
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This equation was used to generate the differences in centroid means 

necessary to generate multivariate effects of given sizes, in terms of Cohen’s d. In 

this equation, the within-condition noise is known, as this noise is generated by 

the simulation. The standard deviation of this within-condition noise was 

calculated to be 1.59µV. Therefore, to calculate the required difference between 

the centroid means to generate effects of the 3 sizes, the following calculations 

were used: 

 

Therefore, the mean difference between conditions to represent a small 

effect in terms of Cohen’s d value was represented in the multivariate pattern by a 

difference in the centroid means of 0.318. A medium effect was represented by a 

difference of 0.795, and a large effect by a difference of 1.272. The units here are 

arbitrary, as they represent the relative difference between the means in unit 

hyperspace (Treder, 2020). 

These multivariate effects were added to simulated noise-only EEG data at 

50 consecutive timepoints. Trials in the simulated experiment contained 512 
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samples and had a sampling rate of 256Hz, therefore these 50 consecutive 

timepoints spanned a temporal ROI of 200ms.  

To assess FWER, a 200ms window (containing 50 time points) outside of 

the added effect was analysed in the same way as the data containing the effect. 

This window contained no added effect and therefore represented null effect only. 

A 200ms time window containing 50 sampled time points was chosen so that it 

equated to that used in the multivariate effect simulations.  

Scripts to generate the simulated data and to analyse the results of each 

simulated experiment were written in MATLAB (MathWorks, 2023).  MATLAB’s 

Parallel Processing Toolbox (MathWorks, 2023) was used when running the 

simulations so that each core of the computer could execute the code to simulate 

each experiment in parallel to greatly reduce the processing time to practical 

levels. The generation of the multivariate effect as well as the MVPA 

classification itself were both conducted using functions from within the MVPA 

Light toolbox (Treder, 2020).  

 

5.2.2 Simulations with multivariate differences between conditions 

5.2.2.1 Generation of noise-only data 

Each virtual participant’s data contained 2 conditions with 50 trials per 

condition. These trials each had 64 channels and 512 time points. Because the 

sampling rate was 256Hz, the trial duration was therefore 2.00 seconds. This 

duration was chosen to allow time within a trial for approximately two full cycles 

of the lowest frequencies in the power spectrum of the data (1Hz). The sampling 

rate of 256Hz was chosen to maintain a practical processing timescale given the 

available computational resources. Simulated EEG noise-only time series data for 
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each individual trial were generated using an approach following previous EEG 

simulation work (Yeung, Bogacz, Holroyd, & Cohen, 2004, Brooks, 

Zoumpoulaki, & Bowman, 2017) . This approach generated EEG noise time series 

data with a power spectrum approximating that of human EEG data. The 

generation process involved, for each trial, creating 50 sine waves at randomly 

chosen, without replacement, frequencies between 1-125Hz, with random phases. 

Each of the sine waves was scaled according to the relative amplitude of that 

frequency in the human EEG spectrum with the highest amplitude frequency 

having an amplitude of 1. The resulting noise was then multiplied by 10µV to 

increase the amplitude to a range congruent with that of normal human EEG 

(between -40 to 40µV). The noise in each trial was created independently of other 

trials (i.e., different set of random frequencies and phases). The noise was also 

generated independently across channels, participants, and the 2 conditions. 

 

5.2.2.2 Addition of multivariate effects 

One thousand experiments were simulated for each combination of 

participant number and effect size (see Figure 5.1). This number was chosen in 

line with previous work by Groppe et al., (2011a; 2011b) who performed similar 

simulations using ERP data. This meant that in total, 15 000 experiments were 

simulated (3 effect sizes x 5 sample sizes x 1000 experiments).  

This set of simulations investigated statistical power, therefore the datasets 

needed to contain a difference between conditions so that we could estimate the 

probability of detecting this effect. To do this, we generated noise-only data 

following the procedure outlined in Section 5.2.2.1 above, and then added a 

multivariate difference between conditions to a 200ms time window (at 50 



298 
 

timepoints, between timepoints 100-150). This effect was generated according to 

the 3 sizes set out in Section 5.2.2: a small effect in terms of Cohen’s d was 

produced by generating 2 multivariate Gaussian datasets with a difference 

between their centroid means of 0.318 (arbitrary units), a medium effect by a 

difference of 0.795, and a large effect by a difference of 1.272. This multivariate 

effect spanned 32 channels and was generated using MVPA Light’s 

simulate_gaussian_data function (Treder, 2020).  

 

5.2.2 Null hypothesis data  

To generate null hypothesis data, a subset of 1000 out of the 15 000 total 

simulated experiments were used. The simulated experiments in the large 

effect/sample size of 80 virtual participants were arbitrarily chosen as this subset. 

The choice of experiments to use here is arbitrary because the way that the 

simulated background EEG noise was generated was identical in all 15 

simulations. Although these 1000 experiments contained an added effect, this 

effect was added at the same 50 time points (between timepoints 100-150, 200ms 

duration) for every trial in every experiment (i.e., there was no jitter between the 

time points where the effect was added). Therefore, null hypothesis data was taken 

from a 50 time point window outside of this added effect (between time points 49-

99, 200ms duration). 

 

5.2.4 Analysis of effects 

The same analysis pipeline was used for all simulated experiments. This 

ensured that there were no potential confounding effects of the type of filtering or 

dimensionality reduction (e.g., PCA; see Chapter 2 for details) on the performance 
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of the classifier, no pre-processing of the data was carried out and only the raw 

simulated data was passed through the pipeline.  

Firstly, classification was performed across the entire time course of each 

trial, such that data from 64 virtual EEG channels from every time point that was 

sampled (i.e., 256 samples per trial) was analysed independently. This 

classification was carried out using MVPA Light’s mv_classify_across_time 

function (Treder, 2020). In line with current use in the field, and in order to 

maintain consistency between the empirical work described in Chapter 4 and in 

these simulations, a support vector machine classifier was used to perform this 

classification (SVM; e.g., List et al, 2017). For more detail on the appropriateness 

of SVMs for the classification of EEG data see Chapter 2, but for clarity these will 

be summarised here. Support vector machines are known to perform well in high 

dimensional spaces, such as those occupied by multi-channel EEG data (e.g., 

Orrù, Petterson-Yeo, Marquand, Sartori & Mechelli, 2012; Treder, 2020). They 

are effective in finding the optimal hyperplane that separates classes of data, even 

in such high dimensional spaces, and are less sensitive to overfitting (Treder, 

2020). As is recommended, to avoid overfitting due to “double dipping” 

(Kriegeskorte et al., 2009), k-fold cross validation was used, with 5 folds. K-fold 

cross-validation is a technique that divides data into k distinct subsets, or "folds”, 

with one-fold (out of the 5 in this case) being left out of the data used to train the 

classifier, and instead used to test the classifier’s performance. The result of this 

step was a time series of decoding accuracy values.  

Next, the decoding accuracy values at each time point within the ROIs 

were assessed in terms of their deviation from chance level (i.e., 50% here since 

there were 2 classes of data). This assessment was the same across both the effect-
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containing ROI and the noise-only ROI. To do this a cluster-based one-sample t-

test identical to that used in Chapter 4 was conducted. This used cluster-based 

statistics to correct for the multiple comparisons made across the time course of 

the ROI. The decoding accuracy was compared to the chance level at each time 

point across the ROI, using a one-sample t-test, resulting in a t-value for each time 

point that represented the deviation of the decoding accuracy from chance. A 

threshold of 0.05 was applied to these t-values to identify contiguous time points 

where the t-values exceeded the threshold, forming clusters. For each identified 

cluster, the sum of the t-values within the cluster was calculated, forming the 

cluster t-statistic. To assess the significance of the observed clusters, permutation 

testing was performed by randomly shuffling the class labels and recalculating the 

cluster t-statistics 5000 times and using the maximum cluster t statistic (tmax) 

from each permutation to create a null distribution against which the observed 

cluster t-values were compared to determine their p-values. Clusters with p-values 

below 0.05 were considered statistically significant, representing time windows 

within the trial where the SVM classifier's decoding accuracy significantly 

differed from the chance level. 

The statistical power of the analysis was determined by focusing on the 

ROI where an effect was intentionally introduced. The power analysis specifically 

investigated whether an effect was detected at any point within the known 

effective time window. Therefore, if there was just one point of significance at any 

of the time points within the 50 time point ROI, then the effect was deemed 

detected. The results from this approach were therefore a series of 1s and 0s 

according to the outcome from each simulated experiment. A result of 1 indicated 

that the experiment had yielded at least one point of significance at any of the 
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time points within the ROI, and a result of 0 indicated that no significant time 

points had been detected. From this the percentage of detected effects could be 

calculated. 

Finally, the FWER of the analysis was determined by focusing on the ROI 

outside of the added multivariate effect, in the subset of 1000 experiments from 

the large effect/sample size of 80 simulation. This was conducted by running the 

cluster-based permutation tests in the same way as described above, but on a 

200ms, 50 timepoint window outside of the known added effect (between time 

points 49-99). The number of simulated experiments that yielded at least 1 

significant result were then totalled and a percentage calculated, to produce the 

FWER for the procedure. 

 

5.3 Results 

5.3.1 Null data results 

The distribution of resulting decoding accuracy values from the noise-

only, null hypothesis data was firstly assessed for its normality using the Shapiro-

Wilk test. This test revealed that these decoding accuracy values significantly 

deviated from a normal distribution, W = 0.996, df=1000, p = .025. The mean 

decoding accuracy value was 50.24% (min: 43.19%, max: 58.68%, SD: 0.019). 

The distribution of the decoding accuracies within the time point is shown in 

Figure 5.3, below. The skewness of the decoding accuracy values was calculated 

to be 0.168, suggesting that the distribution is very slightly skewed to the right, 

but is close to being symmetric. The kurtosis of the decoding accuracy values was 

3.050, suggesting that the distribution is close to that of a normal distribution. 
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The same data were then assessed in terms of family-wise error rate 

(FWER). The number of experiments yielding at least one significant cluster were 

calculated. This resulted in a proportion of 0.011 experiments leading to at least 

one significant cluster, or in other words a FWER of 1.1%. 

Figure 5.3: Histogram showing the distribution of decoding accuracy 

values from the noise-only ROI in 1000 experiments, each with 80 participants 

and 50 trials for each of 2 conditions. 

 

5.3.2 Classifier performance 

To examine whether the effect size manipulation had the intended effect 

(i.e., that increasing the difference between the centroid means meant that the 

patterns in each of the 2 conditions were more easily distinguishable by the 

classifier), we tested whether the decoding accuracy of the SVM classifier 
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significantly increased with an increase in multivariate effect size. To achieve this, 

an assessment of the homogeneity of variances was firstly conducted. This was 

done via Levene’s test. Levene's test for equality of variances was significant, 

F(14, 14985) = 284.146, p < .001, indicating that the variances across the groups 

were not equal. Therefore, the effects of participant number and effect size on 

classifier performance were assessed via a two-way ANOVA with robust variance 

estimation. This was employed due to the violation of the assumption of 

homogeneity of variances, as indicated by a significant Levene's test. The robust 

variance estimation method used, HC3, specifically adjusts the standard errors of 

the ANOVA F-tests to account for the presence of unequal variances among 

groups (Hoaglin & Welsch, 1978). The HC3 estimator is a heteroscedasticity-

consistent standard error estimator that offers an improved approach for dealing 

with variance inequality by applying a bias correction to the conventional 

standard errors. This adjustment is crucial for ensuring that the statistical 

inferences drawn from the ANOVA are robust and valid, even in scenarios where 

the data fail to meet the critical assumption of equal variances across groups. 

Employing the HC3 method thus provides a more reliable analysis framework 

under conditions where the homogeneity of variances assumption is 

compromised, as in this analysis.  

This revealed a significant and large main effect of effect size, F(2, 15 

000) = 52774.54, p < .001, ηp2 = 0.876. Note that the residual degrees of freedom 

here are 15 000 given that there are 3 effect sizes x 5 sample sizes x 1000 

experiments. No significant main effect of participant number on decoding 

accuracy was found, p = .270. The interaction between effect size and participant 

number was not significant, p = .825. See Figure 5.4. 
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Table 5.1: Full robust ANOVA results showing the effects of participant 

number and effect size on SVM classifier performance 

 df1 df2 F  p ηp2 
effect size 2 15 000  52774.54 < .001 0.876 
participant number 4 15 000 1.290 .270 0.0003 
effect size × 
participant number 

8 14985.0 0.54 .825 0.0002 

 

 

Figure 5.4: Violin plot showing the means and spread of the mean SVM 

classifier decoding accuracy values within the ROI across each combination of 

participant number and effect size. 
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5.3.3 Power 

To determine whether our experimental manipulation of an increase in 

effect size and sample size had the expected effect of increasing power, Chi-

squared tests were conducted. These were used due to the categorical nature of the 

data (i.e., 1s and 0s based on whether the experiment detected the effect or not) 

and the interest in assessing the independence between these categorical 

predictors (i.e., effect size and sample size) and binary outcomes. The analysis 

revealed a significant association between effect size and power; with power 

increasing significantly with increasing effect size, χ²(1, N = 1000)= 2911.97, p 

< .001. Similarly, a significant association was observed between sample size and 

power, with power increasing significantly with increasing participant number, 

χ²(1, N = 1000) = 5468.72, p < .001. See Figure 5.5. 
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Figure 5.5: Line plot showing the means and standard error (represented 

by the shaded regions around each line) for the statistical power in each 

combination of participant number and effect size. 

 

5.4 Discussion 

The simulation results demonstrate that effect size has a significant impact 

on the decoding accuracy of the SVM classifier. Specifically, an increase in the 

size of the multivariate effect enhances the performance of the classifier. To assess 

power, cluster-based permutation tests were employed to pinpoint the specific 

timepoints within the ROI at which the classifier exceeded statistical chance 

levels. To assess the statistical power of this widely used statistical method in 

MVPA studies, the number of experiments where the classifier outperformed 

chance, as indicated by at least one significant cluster, was counted. The findings 

revealed that for a large effect, 80% statistical power can be achieved with as few 

as 10 participants. However, a medium effect requires 20 participants to reach the 

same level of power, and a small effect fails to reach 80% power even with 80 
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participants when employing cluster-based tests.  In experiments involving only 5 

participants, no effect at all was detected within the ROI (i.e., power was 0%). 

The simulations also showed that the FWER, when using cluster-based 

permutation tests in this way with 80 simulated participants, was 0.011. 

Although the pattern of effect and sample size effects on the power results 

were in line with expectations, the fact that results with a sample size of 5 

participants didn’t lead to the detection of any effect (i.e., 0% power), was 

surprising. We would have expected results in line with the 5% alpha error rate. 

Cluster-based permutation tests have indeed been shown to be conservative when 

it comes to Type I error but have still led to around a 5% chance of false positives, 

especially with low sample sizes (e.g., Fields & Kuperberg, 2020). Although they 

have been shown to lead to a much lower chance of false positives with null data, 

zero chance has not been shown (e.g., Groppe et al., 2011b).  

To further investigate these unexpected findings, additional post hoc 

analyses were performed. The unexpected result of a 0% FWER with a sample 

size of 5 is suggestive of an over-correction for multiple comparisons. Therefore, 

it was necessary to determine whether this issue was indeed with the correction 

step, or whether there was some issue with the data itself. If there was no issue 

with the data, we would expect that running uncorrected t-tests on an expanding 

null effect time window would lead to the expected increase in false positives 

(i.e., if just one time point was compared then the false positive rate would be low, 

but if 20 time points were compared then the false positive rate would be high as 

multiple comparisons have been made without correction). To investigate this, the 

null effect 200ms time window outside the ROI, ranging from time points 49-99 

(as detailed in Section 5.3.1), was examined. Since Type I error rates are 
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cumulative, the inclusion of additional timepoints increases the probability of 

encountering a false positive (i.e., the reason it is necessary to correct for multiple 

comparisons at all). To explore this, the null data were examined over an 

expanding time window, thereby increasing the number of comparisons. Initially, 

uncorrected t-tests were used to assess if the observed decoding accuracies were 

significantly greater than 50% for a single timepoint (one single timepoint at all 

experiments). This was then extended to 2, 10, 20, 30, 40 and then 50 timepoints. 

The number of participants was also increased according to the original design 

(i.e., 5, 10, 20, 40 and 80 participants).  

By increasing the number of comparisons without applying corrections, 

the risk of incorrectly identifying a timepoint as being greater than chance 

correspondingly escalated (see Figure 5.7). This resulted in an expected 

cumulative rise in the Type I error rate, with the lowest recorded at 5% with 1 

time point and the highest at 95% at 50 time points.  
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Figure 5.6: Line plot showing the mean number of Type I errors resulting 

from the uncorrected t-tests ran on each combination of sample size and number 

of time points included in the sample.  

 

However, when cluster-based corrections were used across the same 50 

sample, 200ms time window (including all 50 time points), the FWER fell to 0 

when the sample size was 5. When the sample size was increased to 80 

participants, the highest recorded Type I error rate was 0.011 or 1.1% (see Figure 

5.7). The surprising thing here is that it was expected that the FWER would fall 

with an increasing number of participants (e.g., Fields & Kuperberg, 2020) but 

this was not the case, although FWER was far below the accepted 5% for all 

cases.  
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Figure 5.7: Line plot showing the mean family wise error rate (FWER) of 

null effect data resulting from the cluster-based permutation tests ran with each 

sample size. 

 

So, while the use of uncorrected t-tests led to a cumulative increase in 

Type I error rates, the implementation of cluster-based corrections markedly 

reduced these errors, with them falling to 0 when the sample size was low.  

When examining the results in light of Groppe et al. (2011a), it is 

suggested by these authors that cluster-based tests offer weak control of FWER 

when applied to mass univariate testing of ERP data. However, when these tests 

are applied within MVPA pipelines, the simulation results here imply otherwise 

and that the approach may be overly conservative. 

Another important finding from the results of this simulation is regarding 

the necessary sample size for achieving robust statistical power. Specifically, the 

results indicate that to achieve a power of 80% when dealing with medium or 

large effects using this MVPA pipeline, a sample size of at least 20 participants is 
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required. This is a significant point to consider, especially when planning 

experiments or interpreting results, as an inadequate sample size can greatly 

reduce the reliability and generalisability of findings. 

Moreover, there are inherent challenges when dealing with smaller effect 

sizes. The simulation suggests that even when employing a relatively large sample 

of 80 participants, there remains a considerable likelihood, around 60%, of 

missing such small effects. This underscores the nuances and complexities 

associated with detecting subtle changes or differences in data and warrants 

caution when interpreting null results or when the anticipated effect size is 

modest. 

Current methodologies and interpretations of MVPA operate under a 

crucial assumption: that if data adequately represents information about a given 

condition, then the decoding accuracy should reliably exceed chance levels. 

However, the findings here highlight what is a perhaps overlooked aspect of 

MVPA of EEG data - the significance of statistical power. While much of the 

existing literature has centred around minimising Type I error, there's a growing 

necessity to address issues of power. Studies that neglect to ensure adequate 

power not only risk producing unreliable results but also limit the replicability and 

broader implications of their findings.  

It is important to note that, in the conducted study, simulated data was 

used, with the effect consistently introduced at specific time points. Despite this 

controlled approach, when comparing identical time points across different 

conditions, the effect was undetectable with a sample of just 5 participants. 

Therefore, if the effects were not fixed, but rather fluctuated in its timing, one 

might expect that any attempt to detect such an effect with low sample sizes might 
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become even more difficult when using standard classification across time. 

Although, this is speculation at this stage and requires further work to establish 

the claim. This does, however, help to highlight the need for techniques such as 

temporal generalisation to be employed where appropriate (see Chapters 2 & 4; 

King, 2014). Because temporal generalisation involves training a classifier at each 

time point, for example at 1ms, and then testing that classifier on all other time 

points in the trial (for example at each time point from 1-100ms), it is a suitable 

technique to use in detecting effects in neuroimaging data that are not strictly 

aligned in time (King & Dehaene, 2014). This technique has been shown to be 

particularly effective in its ability to accommodate temporal variability across 

trials and individuals (King & Dehaene, 2014). By allowing for the analysis of 

how neural representations evolve over time, temporal generalisation enhances the 

understanding of cognitive processes beyond what is possible with static analyses 

such as the standard measure of decoding accuracy time series data. Future work, 

therefore, would be beneficial in simulating experiments with added multivariate 

effects placed at jittered temporal locations across participants or trials and then 

using techniques like temporal generalisation to determine power under these 

conditions.  

In this chapter we ran 15 simulations to assess the statistical power of 

MVPA pipelines in the context of decoding patterns of EEG data. We varied the 

size of the multivariate effect added to simulated noise-only EEG data, alongside 

varying the sample size used in each simulated experiment. We found that an 

increase in sample size and effect size led to an increase in statistical power, as we 

hypothesised. In this chapter we also examined FWER of the same analysis 

pipeline and found FWER to be conservatively controlled using cluster-based 
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corrections. We showed that this conservatism was potentially over-corrective 

when sample size is low.  

 

5.4.1 Interim Discussion 

 

The code used to run the simulations described in this chapter was 

designed to be generalisable to future experiments. However, this generalisability 

meant that it was more difficult to pin down any issues in the code that could have 

been causing the unexpected results produced above. To investigate this further, 

the code was simplified extensively such that it was only applicable to the 

simulations described in this chapter. This investigation led to the discovery of an 

error in the lowest level of the script.  

When initially investigating the unexpected result that, with 5 participants, 

there was a Type I error rate of 0%, we hypothesised that the cluster-based 

statistics may have been conducted on the entire epoch rather than just on the 

ROI. We had previously explored this in the code and concluded that this was not 

the problem. However, after simplifying the code and re-investigating this issue, 

we discovered this was indeed what was happening; the cluster-based statistics 

were performed on the entire 256 sample epoch. This meant that the cluster 

correction would be for 256 samples rather than the smaller 50 sample time 

window comprising the ROI. Thus, more samples in the cluster test meant a 

stronger correction and one that would be far too strong for the smaller ROI of 50 

samples.  

Furthermore, given that the cluster-based statistics were being conducted 

across the entire 256 sample epoch, this meant that the cluster correction was also 
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influenced by data in the ROI that had a true effect inserted. This would cause the 

cluster t distribution to be wider and thus increase the t-threshold for a significant 

effect, adding to the already increased conservativeness of the test due to the 

extended time window included in the correction procedure. 

In sum, in the original code, this error led to a twofold effect that caused 

the cluster-based statistics to be far more conservative than necessary. This effect 

was strongest in the 5-participant condition in which power was weakest and there 

were fewer possible permutations of the data. Therefore, we corrected this error 

such that the cluster-based statistics were conducted only on the 50 timepoint 

sample, rather than the 256 timepoint sample.  

Secondly, we discovered a further error that was not necessarily adding to 

the unexpected results but was still an issue for the results overall. This was that, 

in calculating the standard deviation of the background noise for use in the effect 

size calculations, the noise was erroneously averaged across the 50 timepoint 

window before the standard deviation was calculated. Therefore, this was also 

corrected and the new value for the within-condition noise was used to calculate 

the necessary difference in centroid means to generate the 3 effect sizes required. 

The correct value for the within-condition noise was re-calculated at 

6.3097 µV. Therefore, when this was used in the same calculations as those 

described in section 5.2.2 above, the following differences in centroid means were 

calculated to generate each of the 3 effect sizes (all in arbitrary units): 

 

Small Effect = 1.2619 

Medium Effect = 3.1548 

Large Effect = 5.0477 
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5.4.2 Results 

5.4.2.1 Null effect data 

 

One thousand experiments for each sample size were simulated that 

contained no added multivariate effect, and therefore contained noise-only, null 

data.  

The null effect data were assessed in terms of family-wise error rate 

(FWER). The number of experiments yielding at least one significant cluster were 

calculated for each sample size (see Figure 5.8, below). The average FWER 

across all sample sizes was 0.047, or 4.7%. 

 

 

 

5.4.2.1 Classifier performance 
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To examine whether the effect size manipulation had the intended effect, 

we tested whether the decoding accuracy of the SVM classifier significantly 

increased with an increase in multivariate effect size. As we had no a priori reason 

to believe that participant number would influence decoding accuracy, the results 

were collapsed across participant number, and we looked only at the effect of 

effect size in a one-way ANOVA. To achieve this, an assessment of the 

homogeneity of variances was firstly conducted. This was done via Levene’s test. 

Levene's test for equality of variances was significant, F(14, 14985) = 100.970, p 

< .001, indicating that the variances across the groups were not equal. Therefore, 

the effect of effect size, collapsed across each level of sample size, on classifier 

performance was assessed via a one-way ANOVA with robust variance estimation.  

This revealed a significant main effect of effect size, F(2, 14997) = 

7046.61, p < .001, ηp2 = 0.484, see Figure 5.9.  
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Figure 5.9: Violin plot showing the means and spread of the mean SVM 

classifier decoding accuracy values within the ROI across each combination of 

participant number and effect size. 

 

5.4.2.2 Power 

To determine whether our experimental manipulation of an increase in 

effect size and sample size had the expected effect of increasing power, Chi-

squared tests were conducted. The analysis revealed a significant association 

between effect size and power; with power increasing significantly with 

increasing effect size, χ²(2, N = 15000)= 1521.19, p < .001. Similarly, a 

significant association was observed between sample size and power, with power 
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increasing significantly with increasing participant number, χ²(4, N = 15000) = 

4996.91, p < .001. See Figure 5.10, below. 

 

 

Figure 5.10: Line plot showing the means and bootstrapped 95% 

confidence intervals (represented by the bars around each point) for the statistical 

power in each combination of participant number and effect size. 

 

 

 5.4.3 Discussion 

The corrected simulation results broadly agree with the conclusions drawn 

in section 5.4 above. The corrected results again demonstrate that effect size has a 

significant impact on the decoding accuracy of the SVM classifier. Specifically, as 

expected, an increase in the size of the multivariate effect enhances the 

performance of the classifier. To assess power, cluster-based permutation tests 
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were again employed to pinpoint the specific timepoints within the ROI at which 

the classifier exceeded statistical chance levels. The number of experiments 

containing at least one significant cluster within the ROI was counted to assess 

statistical power. This revealed that, for both large and medium effects, 80% 

statistical power requires at least 20 participants, whilst for a small effect, 80% 

power can only be achieved with at least 80 participants. For null effect data, the 

FWER was calculated at 4.7%, which is in line with the accepted 5% alpha error 

rate. Overall, these results are in line with those presented previously and in line 

with expectations. These results provide specific guidance about sample sizes for 

studies using MVPA and cluster-based statistical approaches on EEG data.  
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Chapter Six: General discussion 
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6.1 Overview 

This thesis set out to examine the role of adaptation in driving 

spontaneously occurring perceptual reversals. Specifically, we were interested in 

whether adaptation, according to the neural fatigue hypothesis, played a role in the 

spontaneously occurring reversals of ambiguous motion created from drifting sine 

wave gratings. The first chapter of this thesis examines the background literature 

on multi-stable perception in general, as well as studies that have examined the 

behavioural effects of adaptation and priming via pre-exposure to unambiguous 

stimuli. Particularly, the literature suggests that behavioural adaptation and 

priming effects can be induced rapidly when participants are pre-exposed to 

directional motion before they view ambiguous motion. The induction of one or 

the other of these effects is governed by the relationship between the pre-exposure 

duration and interstimulus interval (ISI) between the presentation of directional 

and ambiguous motion stimuli. In summary, the literature strongly suggests that 

reversals in perception can be induced using this pre-exposure paradigm, but it is 

not clear what role, if any, adaptation plays in reversals in perception that occur 

spontaneously, without prior exposure to unambiguous stimuli. 

In this thesis, this issue has been directly addressed using multivariate 

pattern analysis (MVPA) cross-decoding techniques of electroencephalogram 

(EEG) data. Chapter 3 confirmed that behavioural adaptation could indeed be 

induced rapidly as suggested by the background literature, but shed doubt on 

whether the same technique could be used to induce visual motion priming as the 

literature claims. The second experiment in Chapter 3 investigated this doubt, 

whilst the timing parameters to successfully induce adaptation established from 

this chapter were used to inform the EEG experiment in Chapter 4. In the EEG 
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experiment in Chapter 4, a cross-decoding technique was employed to draw more 

direct conclusions around whether the pattern of brain activity during reversals 

driven by adaptation were similar to the pattern of brain activity during 

spontaneously occurring reversals. Temporal generalisation techniques were also 

employed to draw conclusions around the neural processes underpinning 

perceptual reversals. Given that the use of MVPA of EEG data has not been as 

thoroughly scrutinised in the existing literature, when compared to more standard 

univariate analyses such as the event-related potential (ERP), Chapter 5 sought to 

clarify the power and error rates associated with the use of MVPA of EEG data. 

This chapter provides much needed guidance on the sample sizes required to 

detect a given effect when using the analysis pipelines employed in this thesis and 

the wider literature in this area. 

The following sections in this chapter will summarise the findings of the 

experiments described in this thesis, to address the five questions posed in 

Chapter 1. These were: 1) What are the optimum timing parameters required to 

induce adapted and primed brain states? 2) Can the task that participants are asked 

to perform lead to artefactual VMP effects? 3) Does adaptation play a role in 

spontaneous reversals in perception that occur during viewing of ambiguous 

motion? 4) Are ERP measures of reversal-related brain activity present during 

perceptual reversals of ambiguous stationary stimuli also present during 

perceptual reversals of ambiguous motion stimuli? And 5) How powerful is 

MVPA to detect multivariate effects present in EEG data? For each of these 

questions, these findings will be interpreted in relation to the wider literature and 

existing theories of the driving forces behind perceptual reversals, Limitations of 
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the experiments used in this thesis will be discussed, as well as recommendations 

for future research based on the results shown. 

6.2 Summary of results and discussion 

6.2.1 What are the optimum timing parameters required to induce 

adapted and primed brain states? 

In Chapter 3 we aimed to investigate the claim made in the existing 

literature, that behavioural adaptation and priming effects can be induced rapidly 

(in the order of milliseconds) when participants are pre-exposed to directional 

motion before viewing ambiguous motion. Specifically, we aimed to investigate 

the visual motion priming (VMP) and rapid motion aftereffects 

(rMAE/adaptation) reported by Kanai and Verstraten (2005). Literature suggests 

that the induction of one or the other of these effects requires the relationship 

between the pre-exposure duration and ISI between the presentation of directional 

and ambiguous motion stimuli to be tightly controlled (e.g., Pinkus & Pantle, 

1997; Kanai & Verstraten, 2005). VMP is typically induced by shorter pre-

exposure durations, whilst the rMAE is induced by longer ones, and the effects of 

extending the ISI differ depending on the pre-exposure duration (Kanai & 

Verstraten, 2005). Therefore, this aim was addressed by systematically varying the 

duration of pre-exposure to directional motion, and the ISI between the directional 

and ambiguous motion. We then recorded the number of VMP and rMAE 

responses in each of the combinations of pre-exposure duration and ISI. A VMP 

response was one in which participants reported the two stimuli moved in the 

same direction, in other words a stable trial. In contrast, a rMAE response was one 

in which participants reported the two stimuli moving in opposing directions, in 

other words a reversal trial. This allowed us not only to establish whether the 
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VMP and rMAE effects could indeed be induced as quickly as the literature 

suggests, but also to determine the optimum combination of pre-exposure duration 

and ISI to induce these two effects. This was because we aimed to use these 

parameters in the EEG experiment in Chapter 4. The aims of this EEG experiment 

meant that the optimum pre-exposure durations to induce the rMAE and the VMP 

within the same ISI needed to be established, as well as determining which, if any, 

duration of pre-exposure to directional motion led to participant’s perception of 

the ambiguous stimulus being unbiased, also within that same ISI (i.e., 50% stable 

vs reversal responses).  

Our results broadly agreed with those from Kanai and Verstraten (2005). 

VMP was elicited when directional motion was briefly presented and followed by 

a short ISI, and the rMAE was induced when directional motion was presented for 

a longer time. We found that an ISI of 120ms best separated the rMAE and VMP 

responses. Within this ISI, pre-exposing participants to directional motion for 

640ms before presenting them with ambiguous motion led to participants 

responding to indicate the rMAE. Responses indicating an unbiased perception 

were also found, following directional motion pre-exposure of 80ms. However, 

behavioural responses indicating VMP were not found within the 120ms ISI as 

they were in the original study by Kanai and Verstraten (2005). We also found a 

much weaker VMP effect overall. 

This finding was surprising, given the strength of the VMP response 

reported by Kanai and Verstraten (2005) as well as other authors (e.g., Pinkus & 

Pantle, 1997; Takeuchi et al., 2011). Our experiment differed in only one aspect 

compared to Kanai and Verstraten (2005): the way that participants were asked to 

respond. Kanai and Verstraten (2005) asked their participants to respond 
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according to whether the two stimuli in the trial were moving in the “same” or 

“different” directions. “Same” responses were counted as indicating VMP, whilst 

“different” responses indicative of the rMAE. In our experiment, participants were 

asked to report the direction of motion of each of the two stimuli in the trial. 

Example responses in our experiment therefore include “left”, “right” which 

would be counted as a response indicating the rMAE, and “left”, “left”, which 

would be counted as indicating VMP. Therefore, our participants, but not Kanai 

and Verstraten’s (2005), were forced to consider the direction of each motion 

stimulus in the pair independently as well as relative to one another. Anecdotal 

reports from our participants as well as experimenter observations, suggested that 

at the combinations of pre-exposure duration and ISI that were suggested to evoke 

VMP (i.e., the briefest) could be unintentionally leading to the perception of just 

one stimulus rather than the intended two. If this were the case, participants in 

Kanai and Verstraten’s (2005) study could have been biased to respond “same” 

more often in these conditions simply because they did not notice that there were 

two stimuli to compare, given the forced choice between “same” and “different”. 

On average, one would have expected this to artificially increase the number of 

“same” responses in conditions where this happened and potentially lead to the 

strong VMP results shown by Kanai and Verstraten (2005).  

In our experiment however, participants were forced to consider and report 

the motion of a directional stimulus that they may not have perceived. This could 

feasibly lead to participants guessing about the direction of that stimulus. In this 

case, participants might assume that they missed the first stimulus altogether and 

would be forced to randomly guess its direction because two directions were 

required in our response. If this were the case then on average, it would artificially 
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reduce the number of VMP responses because guessing, if random, is equally 

likely to be the same or different from the ambiguous stimulus perception. This 

would then push the percentage of same responses towards 50%. Because our 

response method allowed us to examine whether participants had reported the 

correct direction of the directional stimulus, we examined the accuracy of 

responses to the directional motion. We found that the briefest durations (i.e., 

those where VMP was most strongly reported by Kanai & Verstraten, 2005) led to 

participants’ accuracy being at chance levels, which supported the notion that 

participants could simply be guessing when reporting their perception of the 

directional motion. 

This aim was addressed in Experiment 1, Chapter 3. The results here 

demonstrate that rapid adaptation to directional motion can indeed be induced 

using the paradigm employed by Kanai and Verstraten (2005). The optimum 

parameters to induce this rMAE involve pre-exposure to directional motion for 

640ms and an ISI of 120ms. However, the results from this experiment threw into 

doubt whether VMP could be evoked by this paradigm in the same way. VMP has 

been shown in previous literature to be eradicated in response to low luminance 

levels and increases in motion speed (Takeuchi et al., 2011). Therefore, it could be 

the case that this paradigm only appears to induce it because of the artefactual 

responses mentioned above. Therefore, whilst the paradigm was not used to 

investigate VMP in the subsequent EEG experiment, it was necessary to 

investigate these anecdotal claims that were being made about the paradigm 

empirically. 
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6.2.2 Can the task that participants are asked to perform lead to 

artefactual VMP effects? 

Informal observations of the Experiment 1 stimuli with short ISIs and 

short directional stimulus durations suggested that participants may not always be 

able to resolve the two separate stimuli that are present in these displays. This 

creates an ambiguity in the interpretation of the results from both Experiment 1 

and the wider literature. This ambiguity was addressed in the second experiment 

in Chapter 3. Based on the results and observations from Experiment 1, we 

formed the hypothesis that the task that participants were asked to complete could 

be influencing how they responded to indicate their perception of a directional 

motion stimulus that they may not have perceived at all. Kanai and Verstraten 

(2005) asked participants to report only whether the two stimuli were moving in 

the same or different directions. This meant that it would have been possible for 

participants in Kanai and Verstraten’s (2005) study to report that they saw motion 

in the same direction simply because they had only perceived one stimulus. 

Intuitively, this seems like it would be particularly true when very brief stimuli are 

presented or a very short ISI is used, because under these conditions the end of 

one stimulus and the beginning of another might be difficult to distinguish. 

Therefore, it was hypothesised that differences in this response requirement could 

be leading to artefactually inflated VMP responses in the study by Kanai and 

Verstraten (2005) and random responses in Experiment 1. 

Therefore, Experiment 2 directly manipulated the way that participants 

were asked to respond to the pairs of motion stimuli whilst keeping the stimuli 

themselves constant across the different response requirements (i.e., tasks). This 

was done to draw more direct conclusions around participants’ perception 
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compared to the way that they were responding. Specifically, task was 

manipulated across four blocks which differed only in their response 

requirements. The first block type was called the ‘replication block’. This block 

required participants to respond in the same way as in Experiment 1, by answering 

the question “please report the direction of motion of each of the two stimuli”. 

The purpose of this block was to make sure that the results of Experiment 1 were 

replicable, given that an independent set of participants completed Experiment 2. 

The second block type was termed the ‘counting block’. This block required 

participants to respond to the question “how many stimuli did you see in the 

trial?”. The purpose of this block was to directly assess whether participants were 

more likely to perceive the stimulus pair at the shortest pre-exposure time and ISI 

as one stimulus rather than two, as we hypothesised. The third block type was 

what we called the ‘dual task block’. In this block, participants were instructed to 

respond to indicate how many stimuli they saw, and in which direction they saw 

them moving. This meant that they were without the restraint of being told to 

focus on one element of the task. For instance, if they were being asked about two 

stimuli (either by being asked to report the direction of each of them or to 

compare their motion relative to one another) but were only perceiving one, this 

block allowed them to simply report what they saw. The final block was termed 

the ‘final perception block’. This block was a partial replication of the task used 

by Takeuchi et al (2011). This was titled the “Final Direction” block for 

participants. In this block, participants were instructed to report only the direction 

of their perception of motion that they were experiencing right at the end of the 

trial (i.e., the motion of the ambiguous stimulus). This was then compared with 

the known direction of the directional stimulus to determine whether the response 
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was indicative of VMP (i.e., the ambiguous motion was perceived as moving in 

the same direction as the directional stimulus) or rMAE (i.e., the ambiguous 

motion was perceived as moving in the opposing direction to the directional 

stimulus). The purpose of this block was to get an estimate of VMP which should 

be less sensitive to whether participants perceive both stimuli. If VMP is taking 

place, then it should be observable in the reports of the second stimulus regardless 

of whether the first stimulus is perceived. 

Our results from the replication block suggest that Experiment 2 was 

successful in replicating the pattern of results from Experiment 1 when ISI and 

pre-exposure duration were brief. There were a greater number of VMP responses 

to ambiguous motion stimuli when presented following brief pre-exposure to 

unambiguous motion after a shorter ISI.  

The results from the counting block clearly showed that participants were 

more likely to report perceiving only one stimulus when directional stimulus 

presentation and ISI were brief. When the ISI was increased, the percentage of 

“one stimulus” responses dramatically fell. The pre-exposure duration of the 

directional stimulus also had an effect with shorter directional stimuli leading to 

more “one stimulus” responses. In the condition with both the shortest ISI and the 

shortest directional stimulus duration, most trials were reported as containing only 

one stimulus rather than two. These results are in line with the hypothesis that 

participants are largely unable to resolve two separate stimuli in displays with 

short ISIs and short duration directional stimuli. This result clearly undermines 

direct interpretation of the Experiment 1 data as being indicative of a weak VMP 

effect compared to Kanai and Verstraten (2005) and instead provides support for 
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the hypothesis that participants are making their best guess about a directional 

motion stimulus they did not perceive. 

These results were further supported by the results of the dual task block. 

Overall, participants were more likely to report seeing one stimulus when ISI was 

brief. This effect was particularly prominent when coupled with shorter 

directional stimulus presentation times. When the ISI increased, and participants 

responded to indicate that they saw two stimuli, they were more likely to respond 

to indicate VMP at shorter presentation times and rMAE at longer ones in a 

pattern similar to that seen in the replication block. As there were always two 

stimuli presented in the dual task block, any erroneous “one stimulus” responses 

were removed to get a purer estimate of the amount of any VMP that was present. 

This showed that there were no combinations of ISI and directional stimulus 

presentation time that led to responses indicating VMP. In this case, even short 

presentation times and ISIs led to responses indicative of rMAE rather than VMP. 

Results from the final perception block showed that participants were 

more likely than chance to report VMP when the ISI and pre-exposure durations 

were brief. Although, this effect was much weaker than in both our replication 

block and in the authors’ original study. We took this block to be a purer measure 

of any VMP effect given that participants were not asked about the direction of 

the first, unambiguous stimulus (that we are hypothesising they did not perceive). 

Therefore, any VMP responses that were seen in this block should not have been 

due to the artefactual “best guess” effect described above. So, the fact that there 

was a much weaker VMP response in this block compared to our replication block 

could support the idea that participants were guessing under brief timing 

conditions in Experiment 1. This is because, one potential strategy participants 
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could employ if they are uncertain about the direction of the first stimulus is 

simply to report that it was moving in the same direction as the second. Thus, a 

weaker VMP effect is seen in the final perception block because this strategy 

cannot be employed. Instead, the results from this block could indicate that VMP 

is only weakly evoked by this paradigm (i.e., pre-exposure to directional motion 

followed by ambiguous motion).  

One possible explanation for the results that are seen in the counting and 

dual task blocks is that the participants are again responding with their ‘best 

guess’ under these very brief timing conditions. The results from the correct 

responses to directional motion from Experiment 1 and the replication block in 

Experiment 2 make this assumption more likely. In both cases, participants were 

significantly more able to correctly respond to the unambiguous directional 

motion stimulus (i.e., correctly report that it was moving to the left if indeed it 

was) when the pre-exposure duration and ISI were longer but were less able to do 

so when they were shorter. This result indicates that under these circumstances, 

participants may be unsure about the direction of motion that they see in the trials 

and therefore the responses that they make on them may be based on a guess. 

Indeed, the accuracy of responses to the first, directional stimulus in Experiment 1 

did not differ from chance level at the briefest pre-exposure durations. This 

strongly suggests that participants were guessing about its direction because they 

did not perceive it.  

One possible counterargument here is that participants might not have 

consciously perceived the directional stimulus, but it could still have had a 

priming effect on their perception of the ambiguous stimulus. This could well be 

the case, as results from the final perception block do indeed show an indication 
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of VMP under brief conditions. However, in our partial replication here that VMP 

effect was far weaker than that found by the original authors (Takeuchi et al., 

2011). It should be noted, however, that the exact viewing conditions used in our 

partial replication did not mirror those used by the original authors. As priming 

effects have been shown to be very sensitive to changes in viewing conditions, 

this could have led to the discrepancies between our results and theirs. 

This aim then, was addressed by Experiment 2 in Chapter 3. Our results 

suggest that indeed, task can lead to artefactual VMP effects. These results suggest 

that caution should be taken when interpreting the results of experiments where 

participants are forced to make a judgement about a stimulus that they might not 

be able to perceive, leading to the “best guess” effect described above. The 

recommendation here would be to replicate studies that force participants to make 

these sort of judgements, using a paradigm whereby the reported direction of the 

ambiguous stimulus is compared directly to the known motion of the directional 

stimulus in order to examine any true effects present. 

 

6.2.3 Does adaptation play a role in spontaneous reversals in 

perception that occur during viewing of ambiguous motion? 

Traditional, univariate analyses do not consider the multivariate nature of 

EEG data. In event-related potential (ERP) analyses for instance, differences 

between experimental manipulations are often evaluated via a comparison of 

amplitude means generated from the a priori selection of a spatio-temporal region 

of interest (ROI). This means that effects outside of these ROIs may be missed. 

Also, some important signals that differentiate between conditions or brain states 

may not be apparent as large differences at isolated locations on the brain/scalp 
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but rather may be present as spatially-distributed patterns of activity. In contrast, 

multivariate approaches allow the holistic pattern of brain activity to be 

considered, leading to these approaches being more sensitive to detect effects that 

may be missed by univariate techniques (e.g., List et al., 2017; Bae & Luck, 

2019). In Chapter 4, we used multivariate pattern analysis (MVPA) of EEG data, 

in particular cross-decoding methods, to draw more direct conclusions about the 

role of adaptation in spontaneously occurring perceptual reversals.  

Based on our results from Chapter 3, Experiment 1, three trial types were 

established in Chapter 4. These were designed to elicit distinct perceptual states 

by manipulating the presentation duration and application of adapting directional 

motion, resulting in three types of perceptual reversals: those due to adaptation 

from directional motion, those after directional motion without behavioural 

adaptation, and spontaneous reversals. The experiment in Chapter 4 arranged 

these three trial types into two block types. The 'directional block', which involves 

trials with a long pre-exposure to an unambiguous adaptor stimulus (640ms) to 

promote adaptation, expected to bias perception of a subsequent ambiguous 

stimulus towards the opposite direction (with an estimated 60-70% effectiveness). 

This is termed the 'adapted' condition. In the 'unbiased' condition, a shorter 

adaptor stimulus (80ms) precedes the ambiguous stimulus, anticipated to evoke an 

unbiased response distribution (around 50% for each perception). Despite 

identical ambiguous stimuli in both conditions, their preceding trial histories 

tended to prompt different perceptual interpretations. The second block type, the 

'ambiguous block', consists solely of ambiguous motion stimuli pairs with no 

directional motion at all. 
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Using these trial types, we employed three distinct methods to train 

classifiers for the analysis of the brain activity patterns associated with perceptual 

reversals. Firstly, we trained a classifier to differentiate between reversal and 

stable trials using only data from ambiguous trials, employing decoding across 

time techniques. Secondly, we used a cross-decoding approach to train two 

classifiers: one to identify stable versus reversal trials within the context of the 

adapted condition, and another to perform the same task within the unbiased 

condition. Each classifier was then evaluated on its ability to accurately classify 

stable versus reversal trials that occurred spontaneously within the ambiguous 

condition. Thirdly, we again used a cross-decoding approach and trained another 

classifier specifically to discern between reversals that resulted from adaptation 

(i.e., using trials in the adapted condition) and those that arose from other 

processes (using trials in the unbiased condition). Finally, we tested this 

classifier's performance on spontaneous reversals within the ambiguous condition, 

noting whether it attributed the observed brain activity patterns to the 'unbiased' or 

'adapted' category. For each training and testing method described above, we also 

used the temporal generalisation technique to detect any effects that may not have 

been completely aligned in time and to draw conclusions around the processes 

that underpin perceptual reversals.  

Our results from the classifier trained to differentiate between reversal and 

stable trials using only data from ambiguous trials did not find any significant 

differences between the patterns of brain activity associated with spontaneously 

occurring reversal vs stable trials. Whilst MVPA classification across time does 

indeed consider the pattern of activity across the whole scalp, also faces 

somewhat similar issues to ERP analysis, in that the pattern of scalp activity is 
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compared independently at each timepoint. So, this still requires some degree of 

temporal alignment of the effects on each trial. It could be the case here that the 

mechanisms at play at one time point were not active at the same time on every 

trial.  

This idea is supported when the results from the temporal generalisation 

analysis for this training method are considered. Here, we found a period of 

significant temporal generalisation towards the end of a trial, where the 

classification performance at the training time generalises to other time points. 

The fact that this effect was only revealed with the temporal generalisation 

technique and not with the classification across time could suggest that there was 

a certain amount of temporal jitter in the effect’s onset. The temporal 

generalisation pattern itself is indeed similar to the ‘jittered’ pattern identified by 

King and Dahaene (2014), supporting the idea that the onset of the reversal event 

itself could differ across participants and therefore lead to the null effects that we 

found in the classification across time analysis. The pattern of activity revealed by 

the temporal generalisation method was also similar to the ‘ramping’ pattern 

identified by King and Dahaene (2014). The authors suggest that this pattern 

could represent a slowly increasing pattern of activity. When this is considered 

against the hypothesis that neural fatigue is a mechanism that builds up over 

sustained viewing of a stimulus, our results support this hypothesis.  

The classifier that was trained to distinguish adapted reversal vs stable 

trials was successfully able to predict spontaneously occurring reversal vs stable 

trials between ~60 – 78ms (classifier performance was above chance level from 

60ms onwards, and above that of the unbiased control from 64ms onwards). This 

indicates that, during that time window, the pattern of brain activity was 
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sufficiently similar in both the adapted trials and ambiguous-only trials. This 

result was established not to be due to an underlying difference in the data quality 

in trials in the adapted condition over those in the unbiased condition, because 

within-condition reversal vs stable classification performance in the adapted trials 

was not significantly better than that in the unbiased trials during this period. This 

indicates that it is not an increase in the signal to noise ratio at this point that is 

causing the result. 

During the 60-78ms time window, the classifier trained on adapted trials 

was more effective at cross-decoding spontaneous reversal data from ambiguous 

trials than one trained and tested solely on ambiguous trials. While surprising, this 

may be attributed to the temporal variance in the spontaneous reversal onset, 

which could elude detection by standard classification across time analysis 

methods. Supporting evidence comes from the temporal generalisation matrices in 

this training method, where the adapted-trained classifier successfully decodes 

various time points in the spontaneous data, especially when early adapted trial 

data is used to predict later spontaneous data points. Following the process models 

by King and Dehaene (2014), this implies that the neural mechanisms active early 

in adapted trials may also be engaged later in spontaneous trials. The similarity in 

brain activity patterns during adaptation and at the end of ambiguous stimulus 

viewing may again corroborate the neural fatigue hypothesis, suggesting that the 

fatigue accumulated from viewing directional stimuli resembles that during 

ambiguous stimulus viewing, potentially causing perceptual reversals. 

Finally, the classifier trained to differentiate between reversals occurring 

due to adaptation (from reversal data in the adapted trials) vs reversals occurring 

due to other processes (i.e., from reversal data in the unbiased trials), pinpointed 
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three significant periods where the spontaneous reversals' scalp activity patterns 

resembled those of adapted reversals more closely. Of these, two were after the 

stimulus onset (45 - 68ms and 234 - 250ms), suggesting that spontaneous 

reversals share similar underlying processes with adapted reversals rather than 

with reversals following non-adaptive directional motion. This coincides with the 

period of above-chance decoding in the temporal generalisation analysis of the 

spontaneously occurring reversals in the ambiguous only trials, suggesting that 

adaptation may play a role in spontaneously occurring reversals. 

Additionally, in the pre-stimulus phase (-84 to -68ms), the classifier's 

predictions indicated a pre-existing similarity in scalp activity to adapted 

reversals, which could suggest an anticipatory neural state akin to adaptation. 

However, this period also coincides with a potential signal-to-noise ratio increase 

in adapted trials, complicating interpretations. This pre-stimulus prediction could 

reflect a build-up of neural fatigue or align with theories of spontaneous 

oscillatory processes, though the latter lacks corroborative evidence from 

classification success in the same time window. These interpretations must be 

approached with caution due to the overlapping signal-to-noise considerations. 

Therefore, this research aim was addressed in Chapter 4, using a trial 

design based on the results of Experiment 1 in Chapter 3. The results from the 

three classifier training methods used in Chapter 4 provide substantial support for 

our hypothesis that adaptation is likely to play a role in spontaneously occurring 

reversals in perception of ambiguous motion. These results have important 

theoretical implications, as they provide direct support for the neural fatigue 

hypothesis that has previously not been shown. 
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6.2.4 Are ERP measures of reversal-related brain activity present 

during perceptual reversals of ambiguous stationary stimuli also present 

during perceptual reversals of ambiguous motion stimuli? 

Kornmeier and Bach (2012) have highlighted that extensive research has 

been conducted that shows the presence of two main ERP components in response 

to perceptual reversals of stationary stimuli (for example, the Necker cube). The 

first has been termed the ‘Reversal Positivity’ (RP), occurring around 120ms post- 

stimulus onset at occipital electrode sites. The RP has been suggested to be 

reflective of the detection of a processing conflict resulting from the ambiguity of 

the presented stimulus (Kornmeier et al., 2011; Kornmeier & Bach, 2004, 2012). 

The second component is known as the ‘Reversal Negativity’ (RN) which occurs 

around 200-260ms post-stimulus onset over posterior electrode sites. The RN is 

thought to reflect top-down influences over perception as it has been shown to be 

enhanced during active volitional control of reversals (Pitts et al., 2008). 

Kornmeier and Bach (2012) suggested that further research is needed to establish 

whether these two markers of perceptual reversals are also elicited by other 

ambiguous stimuli, such as the ambiguous motion used in this thesis. Therefore, in 

addition to the multivariate analyses conducted in Chapter 4, an ERP analysis was 

also carried out to establish whether the RN and RP were present in response to 

spontaneous perceptual reversals of ambiguous motion created from drifting sine-

wave gratings.  

However, neither component was found to be present in the ERPs from 

data captured during the spontaneously occurring reversals in the ambiguous-only 

blocks from the EEG experiment described in Chapter 4. In the currently available 

literature, the RP has shown resistance to differences in low-level stimulus 
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characteristics (Kornmeier et al., 2011; 2012) and has been replicated with various 

stationary ambiguous stimuli (e.g., Britz et al., 2009; Kornmeier et al., 2007). 

However, its replication using ERP methods is not universal (e.g., Intaite et al., 

2010; Pitts et al., 2007), which has been suggested to be because of its relatively 

low amplitude making it particularly prone to being lost in the spatio-temporal 

averaging process involved in the generation of the ERP (Luck, 2014). 

Additionally, recent findings suggest it may be associated more with participants’ 

manual responses to indicate the reversal, rather than being linked to the 

perceptual reversal event itself (Abdallah & Brooks, 2020). As ambiguous motion 

was used as the stimulus in our experiment, it is reasonable to assume that the 

reversal event itself could occur at a slightly different time point within the trial 

both within and between participants. Therefore, the lack of the RP here could 

indeed be due to the averaging process and indicative that the RP may not be 

robust enough to be detected when ambiguous motion stimuli are used.  

Like the RP, the RN has been replicated across different ambiguous stimuli 

(e.g., Britz et al., 2009; Intaite et al., 2010; Kornmeier & Bach, 2004) but not 

universally so (Kornmeier & Bach, 2014). Again, the reason for its absence here 

could be due to the potential jittered onset of the reversal event and therefore the 

loss of the component during the averaging required to produce the ERP. It should 

be noted, however, that the MVPA results (see Section 6.2.3 for a summary of 

these) reveal a time window where spontaneously occurring reversal vs stable 

trials can reliably be decoded by a classifier trained to decode adapted reversal vs 

stable trials, and that time window occurs within the temporal ROI for the RN 

component. There is debate around the processes reflected by the RN, as it has 

been shown to be modulated by both top-down (Pitts et al., 2008) and bottom-up 
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(Kornmeier et al., 2007) factors. So, the finding here, that there is a period of time 

during spontaneously occurring reversals where the brain activity within the RN 

window is similar to that in adaptation, could provide support for the idea that the 

RN at least partially represents bottom-up processes. 

This aim then was addressed in Chapter 4, via the ERP analysis of the 

EEG data collected during spontaneously occurring reversal vs stable trials from 

the ambiguous-only block. It was found that, potentially due to a jittered onset of 

the reversal event itself, these two ERP markers of perceptual reversals were not 

detected.  

 

6.2.5 How powerful is MVPA to detect multivariate effects present in 

EEG data? 

The currently available literature on the use of MVPA on 

electrophysiological data does not provide researchers with sufficient guidance on 

the number of participants required to detect an effect within a given ROI, where 

one exists. Therefore, in Chapter 5 we used simulated EEG data to investigate the 

statistical power of a typical MVPA pipeline. Specifically, to establish how 

varying both sample size, and the size of an added multivariate effect affects the 

resulting decoding accuracy and power of cluster-based corrections to detect the 

effect. Small, medium and large effects (in terms of Cohen’s d) were investigated, 

as well as 5 sample sizes (5, 10, 20, 40 and 80 participants). Additionally, Chapter 

5 also used simulated null effect EEG data to investigate the family-wise error 

rates (FWER) associated with the same MVPA pipeline. The purpose of this was 

to provide more information on the FWER of cluster-based permutations, and to 

establish whether the cluster-based permutations sufficiently correct for multiple 
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comparisons within the specific context of analysing decoding accuracy values 

resulting from MVPA. These simulations were particularly relevant to the work 

presented in this thesis, as the claims made in relation to the role of adaptation in 

spontaneously occurring perceptual reversals are based upon MVPA with cluster-

based corrections for Type I errors. 

The simulation results demonstrated that effect size had a significant 

impact on classifier decoding accuracy. Specifically, an increase in the size of the 

multivariate effect increased decoding accuracy. To assess power, cluster-based 

permutation tests were employed to pinpoint the specific timepoints within the 

ROI at which the classifier exceeded statistical chance levels. The findings 

revealed that for a large effect, 80% statistical power can be achieved with as few 

as 10 participants. However, a medium effect requires 20 participants to reach the 

same level of power, and a small effect fails to reach 80% power even with 80 

participants when employing cluster-based tests.  In experiments involving only 5 

participants, no effect at all was detected within the ROI (i.e., power was 0%). 

The simulations also showed that the FWER of the cluster-based permutation tests 

was 0.011, which is far below the accepted 5% false positive rate.  

The surprising result of 0% power with 5 participants was investigated 

further in Chapter 5 as it was suggestive of an over-correction for multiple 

comparisons. Therefore, it was necessary to determine whether this issue lay with 

correction step, or whether there was some underlying issue with the data itself. If 

there was no underlying issue with the data, we expected that running uncorrected 

t-tests on an expanding null effect time window would lead to the expected 

increase in false positives (i.e., if just one time point was compared then the false 

positive rate would be low, but if 20 time points were compared then the false 
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positive rate would be high as multiple comparisons have been made without 

correction). This was indeed the case, suggesting that the use of cluster-based 

corrections in this way may be overly conservative, however further work is 

required to confirm this.  

The results of the simulation conducted in Chapter 5 also have an 

influence on how we interpret the results in Chapter 4. These results suggest that, 

with a sample size of 25, we are likely to have missed any small effects contained 

in the data. This sample size was originally selected as it is consistent with others 

using this technique in the literature (e.g., Kornmeier, Hein & Bach, 2009; Das et 

al., 2010; List et al., 2017; Bae & Luck, 2018). However, our simulation results 

here suggest that this may have been underpowered for small effects. Running 

underpowered experiments has been identified as a problem as it can cause 

systematic overestimation of true effect size over the long term (e.g., Button et al., 

2013; Vadillo et al., 2016). Therefore, we should ensure that future experiments 

use the results of Chapter 5 to determine an adequate sample size to detect even a 

small effect. (i.e., 80 participants). 

This aim then, was addressed in Chapter 5, where we ran 15 simulations to 

assess the statistical power of MVPA pipelines in the context of decoding patterns 

of EEG data. We found that an increase in sample size and effect size led to an 

increase in statistical power. In this chapter we also examined FWER of the same 

analysis pipeline and found FWER to be conservatively controlled using cluster-

based corrections. We showed that this conservatism was potentially over-

corrective when sample size is low. 
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6.3 Limitations and future directions 

Throughout this thesis, several different paradigms have been used to 

explore the role of adaptation in spontaneously occurring perceptual reversals. 

The individual limitations and considerations for future research that are relevant 

to each paradigm are discussed within each of the relevant chapters. More general 

limitations and potential directions for future research will now be outlined here. 

One of the main challenges faced when running the experiments described 

in this thesis is participant fatigue and/or inattention. This is particularly true of 

the EEG experiment described in Chapter 4; however, it is also relevant to the 

behavioural experiments described in Chapter 3. The EEG experimental 

procedure firstly requires that participants are set up with the EEG cap and 

electrodes. This procedure can take up to 40 minutes, meaning that the participant 

has sat very still for an extended period before the experimental phase has even 

begun. The EEG experiment in Chapter 4 contained 604 trials in which 

participants were repeatedly asked to report the direction of motion of two drifting 

sine wave gratings. The experimental trials in this experiment took around 30 

minutes for participants to complete, in addition to the ~40 minutes that they were 

sat in the chair being set up with the EEG equipment. Although we did introduce 

regular breaks in an attempt to reduce boredom here, because of the limitation of 

movement due to the EEG cap and electrodes, participants were essentially sat 

very still in a dimly lit room for upwards of an hour. In addition to the amount of 

time that participants were required to sit still for, another source of inattention 

could come from the task itself, as the stimuli presented and responses required 

were extremely repetitive. This did lead to noticeable signs of fatigue in 

participants, such as yawning etc. As mentioned above, the repetitive nature of the 
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task and the restriction of being sat still for extended periods of time was true of 

all of the experiments described in this thesis, but the effects of this boredom have 

a particular influence on EEG results. For instance, when participants are fatigued, 

their alpha activity increases and this has been shown to have a suppressive effect 

on spontaneous perceptual reversals (of a Necker cube stimulus; Piantoni et al., 

2017).   

In addition to this, a further challenge faced during this set of experiments 

was the element of task difficulty in Experiment 1 in Chapter 3 and the 

experiment in Chapter 4. In order to counterbalance responses, participants had to 

remember that the up and down arrows were to be used to make left/right 

responses. Moreover, these would switch between blocks. Although this was not 

difficult for the participants to understand, it could have been difficult for them to 

maintain the level of focus required to respond in this way. The results from our 

attention check trials suggest that participants were generally able to keep up with 

the demands of this response pattern, but anecdotal reports from participants 

suggest that they did find it difficult to remember how to respond. This overall 

difficulty could have been added to because the results from Experiment 2, 

Chapter 3 suggest that participants were failing to perceive one of the two stimuli 

that they were being asked about in such experiments. 

A possible direction for future research, related to this element of task 

difficulty, is to repeat the experiment conducted in Chapter 4 using the response 

paradigm employed by Takeuchi et al. (2011). In this paradigm, participants are 

asked only to report the direction of the ambiguous stimulus in each trial rather 

than to make any sort of comparison between two stimuli they may not have 

noticed. This would decrease the demands on the participant to compare two 
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stimuli and instead this comparison would be made by the experimenter during 

analysis (by comparing the known direction of the adaptor stimulus to the 

reported direction of the ambiguous stimulus).  

An additional limitation of the set of experiments described in this thesis is 

that we did not directly explore the impact of eye-movements on perception. 

Throughout the experiments, participants were advised to maintain fixation, 

monitored by an experimenter using a camera to observe their eyes. Compliance 

with this instruction was generally observed. Additionally, in the pre-processing 

phase of the EEG data analysis, independent component analysis (ICA) was 

carried out to remove eye-movement components, and any remaining trials 

containing eye-movements were discarded. This approach provides us with 

substantial confidence that the SVM classifiers were analysing neural rather than 

ocular movement signals. However, some research has shown that there are 

certain eye-movements that cannot be detected using these techniques. For 

instance, Dimigen et al. (2009) showed that microsaccades (i.e., small, 

involuntary eye-movements) could go undetected by typical eye-movement 

artefact rejection procedures as they are small (~2-3μV) and do not lead to typical 

artefactual EEG traces. This could be directly assessed in future work if eye-

position was recorded via concurrent eye-tracking. If eye-tracking data were 

simultaneously recorded during the experiment described in Chapter 4, for 

instance, the spontaneous stable vs reversal decoding analysis could have been 

conducted using EEG data as it was here, and then separately conducted using 

eye-position data in order to examine the amount of information in eye-position 

that was predictive of perception. Indeed, research has indicated that these 

microsaccadic movements during fixation are predictive of perception of 
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ambiguous apparent motion stimuli involving a grid of moving dots (Laubrock et 

al., 2008). Therefore, this could be investigated in relation to the ambiguous 

drifting sine wave stimuli used here.  

Moreover, previous research has actively cautioned against the over-

reliance of ocular artefact rejection methods in EEG data processing and 

interpretation (e.g., Plochl et al., 2012). It has been highlighted that eye 

movements go hand in hand with neural activity and should not be considered to 

only introduce artefacts to the EEG signal. Overlooking this could lead to 

misinterpretation of the data, given that our natural way of viewing the world does 

indeed include many eye movements. Therefore, instead of being considered as 

interferences, eye-movements should instead be thought of as a part of natural 

human behaviour. Therefore, a sensible direction for future research using MVPA 

decoding and cross-decoding as in this thesis, would be to run these analyses both 

with and without including eye-movements as a feature fo 

 the classifier to use. This sort of analyses could lead to the identification 

of novel mechanisms involved in spontaneous reversals in perception. 

The general paradigm employed in Chapter 4 has the potential to be used 

in a body of future work. Here, we used this paradigm to induce an adapted brain 

state using directional drifting sine-wave motion. However, this could be taken 

forward and used alongside a variety of other ambiguous motion stimuli to assess 

whether these results are generalisable across them. If they are, this would be 

suggestive of a shared mechanism underpinning a general adapted brain state, 

rather than being specific to drifting sine-wave gratings. These results would 

provide further evidence in assessment of the neural fatigue hypothesis. 

 



347 
 

 

6.4 Conclusions 

In conclusion, the experiments described in this thesis involved the 

collection of behavioural and electrophysiological data to investigate the role of 

adaptation in spontaneously occurring perceptual reversals of ambiguous motion 

created from drifting sine-wave gratings. Additionally, the simulations used in this 

thesis sought to provide guidance on the statistical power of multivariate pattern 

analysis in the context of EEG data. Overall, our behavioural results indicated that 

a rapid adaptation to directional motion can indeed occur in under a second, 

however the visual motion priming effect thought to be evoked by a shorter pre-

exposure to directional motion was thrown into doubt. Some of our behavioural 

results as well as reports from our participants led us to hypothesise that there 

could be an artefactual priming effect resulting from asking participants to report 

on their perception of a stimulus that they may not have noticed. A further 

empirical behavioural investigation suggested that this could indeed have been the 

case when participants reported priming effects but not when they were reporting 

adaptation effects. Our electrophysiological findings showed that previously 

known markers of spontaneous perceptual reversals of ambiguous stationary 

stimuli may not be sufficiently temporally aligned to be detected in response to 

reversals of ambiguous motion stimuli. This result was supported by the finding 

that any information contained in brain activity that was predictive of perceptual 

state (i.e., stable or reversal) was only revealed when temporal generalisation 

methods were employed. The patterns of predictive activity suggested a jittered 

and ramping up process, which is suggestive of a build-up of adaptation in a 

manner consistent with the neural fatigue hypothesis. This suggestion was 
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supported by our result that brain activity recorded during perceptual reversals 

that were driven by adaptation was predictive of perceptual state during 

spontaneously occurring reversals. Finally, the results of our simulations showed 

that multivariate pattern analysis pipelines are a sufficiently powerful analysis 

technique, that may be overly conservative when low sample sizes are used. 
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