Received: 12 April 2024

Revised: 22 August 2024

Accepted: 28 August 2024

DOI: 10.1002/btm2.10723

RESEARCH ARTICLE

BIOENGINEERING &
TRANSLATIONAL MEDICINE

ColMA-based bioprinted 3D scaffold allowed to study
tenogenic events in human tendon stem cells

Giacomo Cortella® |
Joseph Lovecchio?® |
Giovanna Della Porta'®

Translational NanoMedicine Laboratory,
Department of Medicine, Surgery and
Dentistry, University of Salerno, Baronissi, SA,
Italy

25chool of Science and Engineering, Reykjavik
University, Reykjavik, Iceland

3Institute of Biomedical and Neural
Engineering, Reykjavik University, Reykjavik,
Iceland

“Laboratory of Cellular and Molecular
Engineering “Silvio Cavalcanti”, Department of
Electrical, Electronic and Information
Engineering “Guglielmo Marconi” (DEI),
University of Bologna, Cesena, FC, Italy

5Advanced Research Center on Electronic
Systems (ARCES), University of Bologna,
Bologna, BO, Italy

éSchool of Pharmacy and Bioengineering,
Keele University, Stoke-on-Trent,
Staffordshire, UK

“Department of Trauma and Orthopaedics,
Faculty of Medicine and Psychology,
Sant'Andrea Hospital, “La Sapienza”
University, Rome, Italy

8Research Centre for Biomaterials BIONAM,
Universita di Salerno, Fisciano, SA, Italy

Correspondence

Giovanna Della Porta, Department of
Medicine, Surgery and Dentistry, University of
Salerno, via S. Allende, 84081 Baronissi, SA,
Italy.

Email: gdellaporta@unisa.it

Funding information
FARB 2021 Della Porta; FARB 2022 Della
Porta; P4 FIT, Grant/Award Number: 955685

Erwin Pavel Lamparelli® |
Emanuele Giordano*?

Maria Camilla Ciardulli® |
| Nicola Maffulli®” |

Abstract

The advent of bioprinting has enabled the creation of precise three-dimensional (3D)
cell cultures suitable for biomimetic in vitro models. In this study, we developed a
novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) com-
bined with tendon stem/progenitor cells (hTSPCs) derived from human tendon
explants. Although pure ColMa has not previously been proposed as a printable
hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting
this material. Indeed, we successfully fabricated a 3D bioengineered scaffold and cul-
tured it for 21 days under perfusion conditions with medium supplemented with
growth/differentiation factor-5 (GDF-5). This bioprinting pipeline and the culture
conditions created an exceptionally favorable 3D environment, enabling the cells to
proliferate, exhibit tenogenic behaviors, and produce a new collagen type | matrix,
thereby remodeling the surrounding environment. Indeed, over the 21-day culture
period under perfusion condition, tenomodulin expression showed a significant upre-
gulation on day 7, with a 2.3-fold increase, compared to days 14 and 21. Collagen
type | gene expression was upregulated nearly 10-fold by day 14. This trend was fur-
ther confirmed by western blot analysis, which revealed a statistically significant dif-
ference in tenomodulin expression between day 21 and both day 7 and day 14. For
type | collagen, significant differences were observed between day O and day 21, as
well as between day O and day 14, with a p-value of 0.01. These results indicate a
progressive over-expression of type | collagen, reflecting cell differentiation towards
a proper tenogenic phenotype. Cytokines, such as IL-8 and IL-6, levels peaked at
8566 and 7636 pg/mL, respectively, on day 7, before decreasing to 54 and 46 pg/mL
by day 21. Overall, the data suggest that the novel ColMa bioprinting protocol effec-
tively provided a conducive environment for the growth and proper differentiation of
hTSPCs, showcasing its potential for studying cell behavior and tenogenic

differentiation.
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1 | INTRODUCTION

In the dynamic and evolving landscape of regenerative medicine and tis-
sue engineering, bioprinting has emerged as a promising technology that
offers unprecedented precision and control in fabricating three-
dimensional scaffolds enriched with cells and nanocarriers.! The com-
bination of bio-inks, bioprinters, and bioreactors represented a multidis-
ciplinary approach in tissue engineering that offered a way to fabricate
synthetic extracellular matrices useful as 3D in vitro models mimicking
physiological and/or pathological environments.*® Among bioinks, sev-
eral methacrylated hydrogels are available to assure a fast crosslinking,
with high biocompatibility and bioactivity.””” Among these, methacry-
lated collagen (ColMa) emerges as a promising and versatile candidate,
offering distinct advantages that elevate its potential for use in bioprint-
ing applications, especially to resemble musculoskeletal extracellular
matrices (ECM).2°"3 Methacrylation modification of collagen chains
enables rapid photo-crosslinking and improves collagen's printability,
promoting a precise scaffold architecture control during the bioprinting
process.**15 It has also reported that ColMa promotes cellular adhesion,
proliferation, and differentiation, fostering a microenvironment mimick-
ing in vivo conditions crucial for musculoskeletal tissue regeneration.**
Despite its intriguing properties, a scaffold exclusively made from
ColMA has not yet been reported. Previous studies have explored the
use of CoIMA with others co-polymers in various tissue engineering
applications, but a solely ColMA-based printed scaffold remains unex-
plored. Our work is unique in its focus on optimizing bioplotting condi-
tions for ColMA scaffolds combined with human tendon stem/
progenitor cells ("TSPCs). This research provides a novel platform for
studying tenogenic processes under dynamic culture conditions. By
optimizing the ColMA bioplotting process, we aim to enhance its poten-
tial for bioprinting and expand its applications significantly. To establish
ColMA as a suitable bioink and successfully fabricate a 3D bioengi-
neered in vitro model, it is crucial to ensure that cells are effectively dis-
persed within the matrix.®> Seeding primary or stem cells in 3D in vitro
models significantly enhances their relevance and ability to mimic physi-
ological conditions. These cells interact with their microenvironment in a
way that closely resembles the architecture of native tissue. This setup
facilitates complex interactions between cells and their surrounding

matrix, including specific cell-matrix interactions. Such interactions can

3D collagen scaffold, extrusion-based 3D bioprinting, GDF-5, human tendon stem progenitor
cells, perfusion bioreactor system

Translational Impact Statements

Our research pioneers the use of methacrylated collagen—without the addition of co-poly-
mers—in 3D bioprinting for tissue engineering applications. By optimizing printing conditions
and incorporating human tendon stem/progenitor cells ("'TSPCs), we have developed a new 3D
bioplotting pipeline and created a biomimetic environment for studying tenogenic processes.
The integration of growth differentiation factor-5 and a perfusion bioreactor further advances
this in vitro model. Future directions include bioplotting primary cells from pathological explants
to explore impaired events in pathological conditions.

affect various aspects of tissue development, including cell proliferation,
differentiation, and ECM remodeling. Ultimately, these dynamics shape
the functional properties of the engineered tissue constructs.'>¢

A distinct cell population identified in human tendons, commonly
known as tendon stem/progenitor cells (TSPCs), has recently been
described and characterized.!”"*8 Initially recognized for their mesen-
chymal stem cell (MSC)-like attributes, such as typical surface antigen
expression, self-renewal capabilities, clonogenicity, and the potential
for multidifferentiation, human TSPCs are pivotal players in tendon
development, homeostasis, and healing processes. In vitro, hTSPCs
express markers associated with tendons and demonstrate the capac-
ity to generate tendon-like and enthesis-like tissues.*® Given that
existing treatment approaches for tendon disorders often fall short of

delivering optimal outcomes,?~2

the exploration and characteriza-
tion of hTSPCs present an intriguing avenue for unveiling the distinc-
tive attributes of tendon tissues. To address the differentiation of
hTSPCs the use of a growth factor (GF) was described because they
can play crucial roles in tissue repair and tenogenic events commit-
ment.?2 Among them, growth/differentiation factor-5 (GDF-5) stands
out for its ability to induce the expression of genes associated with
the neo-tendon phenotype.23'24 It has been shown by Ciardulli et al.z®
that GDF-5 was able not only to promote the expression of tenogenic
markers in human bone marrow-mesenchymal stem cells (hBM-MSCs)
but also in those derived by Wharton's Jelly (hWJ-MSCs). Specifically,
the concentration of 100 ng/mL resulted in the greatest tendon
markers expression.?* 28

Tridimensional culture also requires dynamic environment
assured by specific bioreactors to promote active mass transport
within the 3D environment.?’ Perfusion bioreactors can provide con-
stant medium flow®°! through the culture?® and successfully assure
adequate gas and metabolite exchanges.®?

Given that the 3D bioprinting of pure ColMa scaffolds is not
widely documented, the primary goal of this study was to develop an
effective, robust, and reproducible workflow for producing a homoge-
neous, printable, and cell-compatible master mix. PhotoCol® is not
typically listed as a bioprintable solution and is usually intended for
manual extrusion; this work aimed to overcome this limitation and
expand its potential applications. Additionally, the ultimate objective

was to fabricate bioengineered collagen 3D scaffolds to facilitate the
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study of tenogenic events in hTSPCs. To achieve this, we employed a
perfusion bioreactor and cultured the scaffolds for 21 days with
medium supplemented with GDF-5 at 100 ng/mL. Immunohistochem-
istry, quantitative real-rime polymerase chain reaction (QRT-PCR), and
western blot analyses were utilized to investigate stem cell commit-

ment towards the tenogenic phenotype in the proposed environment.

2 | MATERIALS AND METHODS

2.1 | hTSPCs harvesting and culturing

Three healthy semitendinosus (males: 28, 43, and 51 years old) were
obtained from non-suitable tissue parts of semitendinosus autologous
transplants after reconstruction of the anterior cruciate ligament, previ-
ous informed consent according to protocols approved by the Institu-
tional Review Board of “San Giovanni di Dio e Ruggi D'Aragona
Hospital” (Salerno, Italy) (Review Board prot./SCCE n. 151 achieved on
October 29, 2020). The presence of comorbidities and any previous or
concurrent tendon disease were considered exclusion criteria. hTSPCs
were harvested from biopsies using a previously optimized method, cul-
tured in minimum essential medium alpha (a-MEM, Corning Cellgro,
Manassas, VA, USA) supplemented with 1% Glutagro™, 1% penicillin/
streptomycin (Thermo Fisher Scientific, Waltham, MA, USA), and 10%
fetal bovine serum (FBS, Thermo Fisher Scientific, Waltham, MA, USA),
and incubated at 37°C in an atmosphere of 5% CO, and 95% relative
humidity. Cells at passage 2 were used for immunophenotype character-

ization (Figure S2) and all further experiments.

2.2 | Helacell culture

Hela cells (CCL-2™, ATCC) were cultured in Dulbecco's modified
eagle medium (DMEM) supplemented with high glucose (4.5 g/L)
(Thermo Fisher Scientific, Waltham, MA, USA) and supplemented with
10% fetal bovine serum (FBS, Thermo Fisher Scientific, Waltham, MA,
USA) and 1% penicillin-streptomycin solution (Thermo Fisher Scien-
tific, Waltham, MA, USA). Cells were maintained in a humidified incu-
bator at 37°C with 5% CO, atmosphere. The culture medium was
replenished every 48-72 h, and cells were passaged upon reaching
70%-80% confluence using 0.25% trypsin-EDTA solution (Thermo
Fisher Scientific, Waltham, MA, USA). Cells at passage 18 were used

for the 3D bioprinted culture preparation.

2.3 | ColMA scaffold and bioprinting process

Lyophilized PhotoCol® (Methacrylated Type | Bovine Collagen,
Advanced Biomatrix, CA, USA) was resuspended upon arrival in
20 mM acetic acid at a concentration ranging from 4 to 8 mg/mL, fol-
lowing the manufacturer's protocol, and stored at 4°C. Lithium
phenyl-2,4,6-trimethylbenzoylphosphinate (LAP, Advanced Biomatrix,
CA, USA) was dissolved in complete a-MEM (Corning Cellgro,
Manassas, VA, USA) for hTSPCs, or DMEM (Thermo Fisher Scientific,

Waltham, MA, USA) for Hela cells at 17 mg/mL. A mixture of 32.9 uL
of LAP, 146.7 uL of neutralization solution (provided in the PhotoCol®
kit, Advanced Biomatrix, CA, USA), and 1.5 mL of PhotoCol® was
prepared. Cells were then resuspended in the final master mix to
obtain a final cell concentration of 1 x 10° cells/mL of PhotoCol®, as
previously optimized and described elsewhere.?8:32

Rokit Dr. INVIVO 4D bioprinter (RokitHealthcare, Seoul, Republic
of Korea) was used to bioprint the final hydrogel mixture using a 22G
nozzle and the syringe dispenser head. The printing bed temperature
was set to 40°C, while the extrusion chamber temperature was set to
18°C. The printing speed of the extruder was set to 5 mm/s while the
travel speed was set to 7 mm/s. The infill pattern selected was “con-
centric”, and the angle of rotation, and between each layer was set to
90°. Finally, the fill density was set to 25%. Via the NewCreatorK
software (RokitHealthcare, Seoul, Republic of Korea, version
1.57.70), a concentric cylinder shape with a dimension of 5mm
diameter x 2 mm height, was created, sliced, and uploaded into the
bioprinter. The scaffolds were printed on microscope glass coverslips
and further crosslinked via UV radiation during bioprinting. The
obtained scaffolds were then transferred to the perfusion bioreactor

and cultured for up to 21 days.

24 | Scaffold architecture characterization

The investigation into the shape and morphology of the bioplotted
scaffolds was conducted using field emission-scanning electron
microscopy (FE-SEM, model LEO 1525; Carl Zeiss SMT AG, Oberko-
chen, Germany).

For SEM observation, on day 0O, 7, 14 and 21, samples were
whashed with PBS, fixed with 4% paaformaldehyde, dehydrated by mul-
tiple passages across ethanol:water solutions (10 minutes each) with
increasing percentages of ethanol and dried using a dense carbon diox-
ide at 200 bar and 38°C for 4 hours. Finally, were immersed in liquid
nitrogen and fractured with a needle, before to be placed on a double-
sided adhesive carbon tape previously glued to an aluminium stub.

Before imaging, the samples were coated with a gold film
(250&amp;#x02009;A thickness) using a sputter coater (model 108 A;
Agar Scientific, Stansted, UK). ImageJ (rel. 1.52p National Institutes of
Health, Bethesda, MD, USA) software was used to automatically cal-
culate Feret's diameter and distance of the four nearest pores. For the
latter, the external NND plug-in was used, following a described pro-
tocol.2334 The average Feret's diameter and the average distance dis-

tribution values were reported (Figure 1).

2.5 | Dynamic culture

A custom perfusion bioreactor made of poly(methyl methacrylate)
(PMMA, Altuglas® CN, La Garennecolombes, France), a biocompatible
material for biomedical applications, was employed. The bioreactor
consisted of a milled multi-well plate with two holes allowing the
insertion of silicon tubes (Tygon®, Charny, France) for continuous
flow provided by peristaltic pumps at a constant rate of 1 mL/min.
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This continuous flow was maintained throughout the whole experi-
ment. GDF-5 was diluted in the cell culture media to obtain a teno-
genic effect at a concentration of 100 ng/mL. The medium was
recycled from the peristaltic pump and replaced once a week with a
fresh one. The bioreactor system operated within a standard cell cul-
ture incubator (37°C with 5% of CO,).

2.6 | Live/dead assay

Cell viability in the PhotoCol® bioprinted scaffolds with Hela cells
was detected by live/dead assay immediately after the bioprinting
process, and on day 5 for Hela cells, and on days 7, 14 and 21 for
hTSPCs. Scaffolds were first washed three times in PBS 1x for
15 min, then immersed in the working solution composed of PBS
1x with 2% calcein AM solution (Cat. no. C1359, Sigma Aldrich,
Milan, Italy), and 1% ethidium homodimer | solution (Cat. no. E1903,
Sigma Aldrich, Milan, Italy), and placed in the incubator for 15 min.
Lastly, scaffolds were washed again in PBS 1x for 5 min and imaged
using a fluorescence microscope (mod. Eclipse, Nikon Corporation,
Tokyo, Japan). Images were taken at 4x and 10x magnification.
ImageJ (rel. 1.52p National Institutes of Health, Bethesda, MD, USA)
software was used to measure the intensity of the signals. Original
photos were taken in RGB format and then transformed into 16-bit
(gray-scale) images. The tagged areas were then expressed as an
average pixel intensity value between O (dark) and 255 (white).3®

2.7 | Hematoxylin and eosin staining

At the selected time points, scaffolds were fixed in 4% PFA for 2 h at
RT, cryo-protected in 30% sucrose (4 °C, overnight), included in the
optimal cutting temperature (OCT) compound, and cut into slices of
15 um thickness using a cryostat (CM 1950, Leica, Wetzlar, Germany).
Scaffolds sections were subjected to gradual hydration keeping them
at 54°C for 15 min, then at RT for 15 min, followed by a 5 min wash
in MilliQ water. Following hydration, the samples were incubated with
a hematoxylin and eosin staining solution for 60 min to visualize
tissue. Subsequently, the sections were subjected to dehydration
using an ascending ethanol gradient and then cleared in xylene for
5min to remove excess staining and prepare them for imaging.
The prepared sections were mounted onto slides using Eukitt
(Sigma-Aldrich) mounting medium to ensure optimal visualization and
preservation of the tissue structure. Imaging of the stained sections
was performed using an Olympus microscope BX53, equipped with a

ProgRes SpeedXT core five camera.

2.8 | Sirius red staining

Sirius red staining was conducted utilizing the Picrosirius Red Stain Kit
(Polysciences, Inc., USA). Tissue sections, each measuring 15 um in
thickness, were initially stained with hematoxylin for 8 min, followed
by a 2-min wash in water. Subsequently, the sections were
immersed in phosphomolybdic acid for 2 min, followed by another
2-min water wash. Next, they were incubated in Picrosirius Red
F3BA Stain for 60 min and then briefly dipped into a 0.1 M HCI
solution for 2 min. To complete the staining process, the sections
underwent dehydration in a series of ethanol gradients (70%, 75%,
95%, and 100%) before a final immersion in xylene for 5 min.
Finally, the samples were mounted using Eukitt medium for subse-
quent analysis. Picrosirius red staining brightfield and polarized
light images were captured using a Brunel polarization microscope
equipped with a Nikon D500 camera using three different magnifi-
cations: 5x, 10x and 20x.

29 | Immunofluorescence assay

Scaffold slices were permeabilized with 0.1% Triton X-100 for 10 min
and blocked with a 1% (w/v) solution of bovine serum albumin (BSA)
for 1 h. For type | and type Il collagen staining, slices were incubated
with a mouse monoclonal anti-type | collagen antibody (1:100, Sigma
Aldrich, Milan, Italy) and a mouse monoclonal anti-type Il collagen
antibody (1:50, Sigma Aldrich) overnight at 4°C. Subsequently, the
slices were incubated at room temperature for 1 h with the DyLight
488 goat-anti-mouse IgG (1:500, BioLegend, San Diego, CA, USA)
and the Alexa Fluor™ plus 594 goat-anti-mouse IgG (1:500; Thermo
Fisher Scientific) antibodies, respectively. For tenomodulin and scler-
axis staining, slices were incubated with a rabbit monoclonal anti-
tenomodulin antibody (1:100, Sigma Aldrich), and a rabbit monoclonal
anti-scleraxis antibody (1:100, Sigma Aldrich). The cell nuclei were
counterstained with 4',6-diamidino-2-phenylindole (DAPI). Single
images were captured using an inverted Leica laser-scanning confocal
microscope (mod. TCS SP5; Leica Microsystems, Wetzlar, Germany)
equipped with a plan Apo 63X/1.4 NA oil immersion objective. The
images were acquired with consistent light intensity, exposure time,

and gain settings.

210 | Gene expression and cytokine analysis

At each time point scaffolds were subjected to total RNA extraction

using QIAzol® Lysis Reagent (Qiagen, Hilden, Germany) and the

FIGURE 1

Advanced physicochemical characterization of empty ColMA bioprinted scaffolds at two different concentrations. Image of: the

printing process with UV-lights on and bioprinted scaffold after being cured and fully crosslinked (a); field-emission scanning electron microscopy
(FE-SEM) at a concentration of 4 mg/mL (b) and 8 mg/mL (c) of PhotoCol®; scale bar is 3 um; magnification: 20kx: average distance distribution
analysis (d), and average Feret's diameter (e) of the bioprinted scaffold at both 4 and 8 mg/mL. Data were extrapolated using ImageJ software.

****p < 0.0001.
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RNeasy Mini Kit (Qiagen, Hilden, Germany). Each sample utilized 1 pg
of total RNA, which was reverse transcribed using the iScript™ cDNA
synthesis kit (Bio-Rad, Milan, Italy). Relative gene expression anal-
ysis was conducted on a LightCycler® 480 Instrument (Roche,
Italy) employing the SsoAdvanced™ Universal SYBR® Green Super-
mix (Bio-Rad, Foster City, CA, USA) and validated primers for
SCX-A, TNC, COL1A1, COL3A1, and TNMD (Bio-Rad), following
the MIQE guidelines. Triplicate experiments were performed for
each studied condition, and the data was normalized to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression,
serving as the reference gene. The geNorm method®® was utilized
to determine the stability of the reference gene across different
conditions (calculated using CFX Manager software [v.3.1;
Bio-Rad, Milan, Italy]; M < 0.5). Fold changes were determined

using the 27AACt

method and presented as relative levels over day
0 (hTSPCs just after the bioprinting process). All experiments were
performed in biological triplicates (n = 3).

Circulating cell culture media were thawed and analyzed with
the human cytokine magnetic 10-plex panel (Invitrogen, Thermo-
Fisher Scientific), according to the manufacturer's instructions.
This kit is designed for the quantitative determination of GM-CSF,
IFN-vy, IL-18, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-a. The Lumi-

™

nex™ system uses microspheres marked with differing ratios of
two different fluorophores, conjugated with monoclonal anti-
bodies specific for different cytokines. In the assay, once the cyto-
kine of interest has bound, a secondary detection antibody specific
for the cytokine was added. The beads were read on a Luminex™
100™. A serial dilution of the standards for the standard curve was
added to the plate in duplicate. A positive sample was considered
if it was above the limits of detection as determined by the
manufacturer.

211 | Western blot

For total protein extraction, at each time point, the scaffolds were
subjected to a 15-min wash in PBS, and placed into Buffer RLT
(RNeasy® Micro Kit, QIAGEN, Germany). An equal volume of 70%
ethanol was added to the lysate, followed by immediate centrifu-
gation at 8000 g for 15 s. Subsequently, four volumes of ice-cold
acetone were introduced into the mixture and placed at —20°C for
30 min. The samples were then centrifuged at maximum speed
for 10 min at 4°C and allowed to air-dry. Finally, the samples were
reconstituted in RIPA buffer (containing 150 mM NaCl, 1% Triton
X-100 at pH 8.0, 0.5% sodium deoxycholate, 0.1% SDS, and
50 mM Tris at pH 8.0) supplemented with protease and phospha-
tase inhibitors (Merck, USA). The protein concentration was deter-
mined using the Bradford assay (Bio-Rad, Hercules, CA, USA), and
19 pg of total protein extracts were separated on SDS-PAGE gels
and subsequently transferred onto nitrocellulose membranes. The
nitrocellulose blots were blocked in TBS-T buffer (20 mM
Tris-HCI, pH 7.4, 500 mM NaCl, and 0.1% Tween-20) with 10%
nonfat dry milk. They were then incubated overnight at 4°C in

TBS-T with 5% nonfat dry milk with the following primary
antibodies: anti-tenomodulin antibody (ab203676, Abcam, USA),
anti-B-Tubulin antibody (F-1, sc-166729, La Santa Cruz Biotech-
nology, USA), and anti-collagen type | antibody (ab138492, Abcam,
USA). Immunoreactivity was detected by sequential incubation
with appropriate horseradish peroxidase-conjugated secondary
antibodies (Merck) for 1 h at room temperature, followed by expo-
sure to Pierce ECL detection reagents (Thermo Scientific, Rock-
ford, IL, USA) for 1 min, using X-ray film. Semi-quantitative
analysis of bands was conducted using Imagel) software (NIH,
Bethesda, MD, USA; version 2.0.0-rc-54/1.51h). The relative gray
area for each band was determined, and background values were
subtracted from the calculations.

212 | Statistical analysis

All experiments were performed at least three times, and the
results were presented as mean values + standard deviation (SD).
Before statistical analysis, data were assessed for normality using
Shapiro-Wilk's test, which is deemed suitable for small sample
sizes (<50 samples). This test evaluates the null hypothesis assum-
ing data are drawn from a population with a normal distribution. If
the resulting p-value exceeds 0.05, the null hypothesis is upheld,
indicating normal data distribution. This prerequisite enables the
application of parametric tests such as Student's t-test and
ANOVA. The normality test affirmed the normal distribution of the
data, allowing for statistical analysis utilizing two-tailed indepen-
dent Student's t-test for comparison between two independent
groups or one-way ANOVA, followed by Dunnett's multiple com-
parison test for differences among more than two independent
groups. Significance was determined by p-values <0.05. Statistical
analyses were conducted using GraphPad Prism software (version
8.0 for Windows, LLC, San Diego, CA, USA), and findings were
incorporated into the graphs along with legends.

3 | RESULTS
3.1 | Manufacturing protocol optimization and
workflow standardization

In the optimization of the bioprinting protocol, various formulation and
process parameters were examined. Collagen concentrations ranging
from 4 to 8 mg/mL were tested. Table 1 summarizes the primary chal-
lenges encountered during the initial phase of optimizing these parame-
ters, along with the solutions implemented. Key issues included
moisture absorption by the matrix, hydrogel collapse at lower collagen
concentrations, and crosslinking difficulties. To address these, the solu-
tions involved diluting the sponge matrix, increasing the collagen con-
centration, and setting specific temperature parameters. These
adjustments resulted in more homogeneous solutions, optimal collagen

concentrations, improved printability, and successful crosslinking at the
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TABLE 1 Main parameters optimized during ColMA's bioprinting.

Number Parameter tested Problem faced

1 Collagen concentration 4 mg/mL: collapsing hydrogel
2 Workflow temperature Crosslinking in the syringe

3 Printing temperature Crosslinking in the syringe

Solution adopted Outcome

Concentration increased
up to 8 mg/mL

8 mg/mL as optimal working
concentration

Low temperature (0-4°C) adopted Better printable master mix

during the whole protocol

Solution was crosslinking
at the right time

Syringe cage: 18°C
Printing bed: 40°C

Note: The main issues faced during the optimization of the workflow to obtain a sustainable and reproducible protocol to bioprint PhotoCol® are

summarized. The related solutions adopted are reported.

designated printing bed temperature. Furthermore, maintaining stable
temperature conditions ensured better final results and experimental
reproducibility, thus advancing scientific understanding and methodol-
ogy in the field. With regard to other printing parameters, we initially
focused on determining the optimal printing temperatures. Through
experimentation, we established that the most effective conditions were
40°C for the printing bed and 18°C for the syringe cage.

3.2 | Physical characterization and software
analysis of ColMA scaffolds

Advanced physicochemical characterization of the empty scaf-
folds was carried out using Fiel-emission scanning electron
microscopy (FE-SEM) and digital analysis to provide information
about their morphology and porosity. In more detail, Figure 1a
displays the printing process and the final scaffold obtained after
curing it in the cell incubator. Figure 1b,c display the FE-SEM
micrographs of the scaffolds obtained at 4 mg/mL and 8 mg/mL
of ColMA concentration, respectively. It can be seen that there
are several differences between the two concentrations as the
average distance distribution plot highlights (Figure 1d, up): pores
are higher in number (1915 pores vs. 2755 pores respectively),
denser, and smaller in the 8 mg/mL compared to the 4 mg/mL,
while the general structures of the filaments are comparable.
There is less empty space in the higher concentration, giving it
more niches to welcome cells, while remaining highly intercon-
nected. Before incorporating cells, a more in-depth analysis of the
thickness of the wall and the average Feret's diameters was con-
ducted through ImageJ software analysis. Specifically, the average
distance between the four nearest neighbors was calculated
(Figure 1d, low), and for the 4 mg/mL scaffold it averaged at
167 nm = 80 nm; for the denser scaffold, it averaged at 122 nm
+ 40 nm. The data collected between the two scaffolds were sta-
tistically different (Welch's test), confirming that the denser con-
centration is more packed with pores (which are also smaller
when compared to the 4 mg/mL concentration), and those pores
are closer to each other. Figure le depicts the average Feret's
diameter distribution of pores on the scaffold surface. For the
4 mg/mL scaffold was 201 £+ 225 nm; for the 8 mg/mL scaffold,
the average Feret diameter was 110 £ 122 nm.

Cells vitality >90% was observed along plotting ColMa at 8 mg/
mL in the case of Hela line (Figure S1); therefore, this condition was

adopted in the following.

3.3 | Perfused dynamic culture helped nutrient
exchanges during the cultivation of hTSPCs

hTSPCs were isolated following an established protocol* and inte-
grated at a concentration of 1 x 10° cells/mL. The bioprinting pro-
cess was successfully executed, with cell viability exceeding 90%
after processing. The successful bioplotting of primary cells to fabri-
cate a complex 3D in vitro model validated our workflow protocol.
The 3D scaffolds were cultured under dynamic conditions, with the
medium supplemented with 100 ng/mL of human growth/
differentiation factor-5 (hGDF-5) to induce tenogenic differentia-
tion.?>28 A flow rate of 1 mL/min was administered to assure con-
tinuous perfusion within the cell culture environment.®2 A finite
element modeling (FEM) approach was employed to assess nutrient
and waste product exchanges during the cell culture period. The
model incorporated considerations of laminar flow and mass trans-
port to accurately simulate the microenvironment conditions within
the scaffold,®2 with a permeability coefficient of hydrogel assumed
as 2 x 1077 cm?®” assumed as boundary conditions. Figure 2
shows that the dynamic environment results in a uniform distribu-
tion of both nutrients and waste products within the single culture

well and across the 3D construct.

3.4 | Live/dead assay with primary cells showed
good viability

Live/dead assay of hTSPCs at various time points along dynamic cul-
ture, including O, 7, 14, and 21 days was illustrated in Figure 3, with
semi-quantitative analysis of the live/dead signals. Living cells are
stained in green, while those non-viable in red. The data documented
highly cell viability just after the printing process (approximately 90%
viability) and also throughout the entire duration of dynamic culture,
where viability consistently exceeded 85%. Interestingly, as observed
in the zoomed micrographs, by day 21, cells exhibited an elongated

morphology, resembling mature tenocytes.?® It has to be added that
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waste

FIGURE 2 3D dynamic culture and FEM
analysis. hnTSPCs were cultured within the
ColMA scaffold under dynamic conditions
using a bioreactor. A perfusion bioreactor
was employed, and the culture medium was
supplemented with 100 ng/mL of hGDF-5.
Peristaltic pump settings included a flow
rate of 1 mL/min (a). Finite element
Modelling (FEM) analysis was utilized to
assess nutrient (b), and waste concentration
(mM/m?3) within the scaffold-media
interface (c).

%107
9.22

107
(b) 124 ()
nutrients
Ly 1.24 i*y
visible scaffold total volume reduction of about 40% was also

observed along the culture, suggesting cells interaction with external
collagen fibers belonging to the synthetic scaffold.

3.5 | Sirius red staining reveals collagen matrix's
remodeling

Sirius red staining revealed significant production of type | collagen,
which appeared red under normal light and bright yellow or orange
under polarized light (see Figure 4). Additionally, type Il collagen, which
should appear green under polarized light, was not detected in the 3D
matrix. Over the 21-day culture period, a notable transformation in the
architecture and structure of the PhotoCol® scaffold was observed.
Starting from day 7 (with the scaffold initially exhibiting almost complete
whiteness or pink coloration on day 0), cells began to produce new col-
lagen, a process that continued through to the day 21. Type Il collagen
was not detected within the 3D matrix.

3.6 | Type lll collagen showed up-regulation in
qRT-PCR assay

gRT-PCR was performed on scaffold samples collected on days O, 7,
14, and 21 to investigate the mRNA levels of specific tenogenic
markers, including SCX-A, COL1A1, TNC, TNMD, and COL3A1l
(Figure 5). Results indicate that by day 21, SCX (1.73 fold), TNMD
(0.84 fold) COL1A1 (5.05 fold), and COL3A1 exhibited upregulation.
However, among them, only COL3A1 displayed statistically significant
upregulation (40-fold, p < 0.05) on days 14 and 21.

9.21

3.7 | Evaluation of GDF-5 supplementation on
structural protein production

Immunofluorescence assays were performed to assess the expres-
sion of tenomodulin, type | collagen, scleraxis, and type Ill collagen
within the 3D ColMa scaffolds at each time point, with representa-
tive images presented in Figure 6. On day 21, the presence of col-
lagen type | was clearly observed, while tenomodulin remained
consistently visible throughout the experiment. Scleraxis showed
prominent expression at all time points. Collagen type Il was
detected on days O and 7, but its intensity decreased by days
14 and 21.

3.8 | Evaluation of GDF-5 supplementation of
circulating proteins

Western blot analysis was performed on proteins extracted from
cells seeded within collagen 3D scaffolds (Figure 7). A statistically
significant difference in tenomodulin expression between day
21 compared to both day 7 and day 14. This statistically signifi-
cance difference is reported for both forms: glycosylated (45 kDa),
and non-glycosylated (40 kDa) tenomodulin.3® For type | collagen,
a statistically significant difference was observed between day
0 and day 21, as well as between day 0 and day 14, with a p-value
of 0.01. Additionally, a significant difference was noted between
day 7 and day 21, with a p-value of 0.05. These results indicate a
clear trend of progressive over-expression of type | collagen,
reflecting the proper progression of cell differentiation towards a

tenogenic phenotype.
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FIGURE 4  Sirius red staining of hTSPCs
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3.9 | Evaluation of circulating cytokines in the be at 46 pg/mL. Of all the other cytokines tested, only interleukin 1p
culture media (IL-1p) was also detected, but there were traces of it at all time points

(<0.1 pg/mL).
Cell culture media was collected at each time point and tested for
cytokines detection (Figure 8). The findings revealed the presence of
interleukin 8 (IL-8) and interleukin 6 (IL-6) at day O, with concentra- 4 | DISCUSSION
tions of 278 and 263 pg/mL, respectively. On day 7 both pinned at
8566 and 7636 pg/mL, to then start to decrease from day 14 ahead. To mitigate one of the primary drawbacks associated with natural col-
At day 21 IL-8 was found to be at 54 pg/mL while IL-6 was found to lagen polymers, such as batch-to-batch variations, commercially

FIGURE 3 Live/dead assay on hTSPCs bioprinted scaffolds. hTSPCs were used to bioengineer 3D ColMA scaffolds and cultured under
perfusion for 21 days in a GDF-5-supplemented medium. Live/dead assay was performed at every culture time-point (0, 7, 14, and 21 days) and
images were acquired at both 4x and 10x magnification; live cells are stained in green while dead cells are stained in red. N = 3 (biological
replicates). Scale bar: 500 pm.
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available methacrylated collagen (PhotoCol®) has been utilized, which
is compatible with cell incorporation and manual extrusion, but was
not listed for bioprinting by the manufacturer (Advanced Biomatrix).

So, the primary objectives of this study were to establish a consis-
tent workflow and printing protocol for the commercial PhotoCol®
bioink using bioprinting technology. Indeed, ColIMA managing during
the bioplotting procedure is quite difficult and often unsuccessful due
to the lack of precise control of the hydrogel viscosity (due to its
peculiar thermal inertia); it happens both when loading printer syringe
and along plotting. This issue highly reduced the printing resolution
and proper scaffold final shape. Furthermore, this lack of proper
hydrogel viscosity control lowered its application in biofabricating 3D
in-vitro models with primary cells such hTSPCs, which are extremely
sensitive to the extrusion step.

To better manage ColMa viscosity issue, different collagen con-
centrations ranging from 4 to 8 mg/mL were tested, and the best
printability was observed at 8 mg/mL; in this condition, we obtained a
proper crosslinking with good printing resolution. Probably, this last
operative concentration facilitated the increase of thermic inertia of
the denser mixture, which needed to be maintained all at 10°C, avoid-
ing any temperature profile. Furthermore, adopting at least 1.5 mL of
the final mixture for each run, further enhanced the thermic inertia
of the system, making it easier to maintain the temperature of the
mixture below 10°C, along the printing workflow. On the other hand,
the syringe cage was set to 18°C to gradually heat the PhotoCol®,
while complete thermic crosslinking was achieved by setting the print-
ing bed at 40°C. These adjustments resulted in a robust and reproduc-
ible working protocol for extruding PhotoCol®, allowing progression
to the next stage.

Then, the subsequent focus was the optimization of the printing

39

speed and nozzle size. Experiments were conducted with

printing speeds ranging from 5 to 10 mm/s and nozzle sizes from

T T T T
COL1A1 TNC TNMD COL3A1

27 to 22 G. A printing speed of 5 mm/s was selected as the best,
using a nozzle size of 22 G (0.70 mm internal diameter); indeed in
these conditions, it was never observed any needle blockages coupled
with excellent cell vitality, suggesting that probably the shear stress
during the hydrogel extrusion is minimized. Indeed, a preliminary
study by live/dead assay on cell viability with HeLa line indicated via-
bilities between 90% and 95% of plotted cells when their concentra-
tion was maintained at 1 x 10°cells/mL of PhotoCol®28:3240
(Figure S1).

Morphological characterization of the collagen scaffold by
FE-SEM analysis indicated that the scaffold printed at a concentration
of 8 mg/mL had more pores (even if smaller in mean size) than the
one obtained at a lower concentration of 4 mg/mL (i.e., 2755 vs. 1193
casualties, respectively). The mean distance among the four nearest
neighbors was also smaller in the higher concentration (Figure 1). Due
to the better printability behavior and considering that the void
spaces were still suitable for cell culture, 8 mg/mL was chosen as the
best concentration for hTSPCs bioplotting.

hTSPCs were biofabricated in the same 3D environment and their
concentration was maintained at 1 x 10° cells/mL. This value was
chosen based on previous study with different stem cells even if in a
different hydrogel 3D environment.>4#?® Under these conditions,
hTSPCs were successfully bioplotted with a viability of 96% and were
subsequently cultured for 21 days using a perfusion bioreactor to
ensure adequate mass transport of nutrients and waste (Figure 2). Cell
viability remained consistently above 85% throughout the 21-day cul-
ture period, under perfusion. We fabricated a cylindrical scaffold
(5 mm in diameter; 2 mm in height) because its simple geometry,
defined by radius and height, makes it easier to model. The uniform
properties along the height of the scaffold simplify the analysis of flow
patterns. Additionally, the well-established equations governing cylin-

drical coordinates and the application of rotational symmetry help
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FIGURE 6 Immunofluorescence analysis of hTSPCs-
bioengineered ColMA scaffolds up to 21 days. Representative
immunofluorescence images of hTSPCs cultured under dynamic
conditions and treated with GDF-5. Tenomodulin is labeled in green,
while type | collagen is labeled in red (left panel). In the right panel,
type lll collagen is shown in red, and scleraxis is shown in green.
Nuclei are stained in blue. N = 3 (biological replicates). Scale

bar: 50 pm.

reduce computational complexity by allowing us to model only a por-
tion of the scaffold and then extrapolate the results to the entire
structure. Our mass transfer FEM indicated that the dynamic environ-
ment results in a uniform distribution of both nutrients and waste
products within the single culture well and across the 3D construct, at
the flow rate selected of 1 mL/min.

The medium was supplemented with 100 ng/mL of hGDF-5 to
promote tenogenic differentiation.?® This concentration was selected

based on prior studies showing its effectiveness in enhancing
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FIGURE 7 Western Blot and related semi-quantitative analysis of

proteins extracted from 3D bioprinted scaffolds bioengineered with
hTSPCs under dynamic culture conditions and GDF-5
supplementation. Glycosylated (45 kDa), and non-glycosylated

(40 kDa), forms of tenomodulin (a) and type | collagen (b) were
measured in hTSPCs on days O, 7, 14, and 21. Notably, tenomodulin
exhibits a statistically significant upregulation at day 7 compared to
days 14 and 21, while type | collagen displays a progressive over-
expression trend from day O to day 21. Data are shown as the mean
+ SD of N = 2 independent experiments (biological replicates).

*p < 0.05, **p < 0.01.

tenogenic differentiation of stem cells without adverse effects. Specif-
ically, 100 ng/mL of GDF-5 has been demonstrated to significantly
increase the expression of tenogenic markers in both hBM-MSCs and
those derived from hWJ-MSCs.?® Elongated-shaped cells were
observed within the 3D scaffold on day 21, indicating a positive evo-
lution of the cell phenotype (Figure 3).

hTSPCs behavior along the culture was further characterized by
histology assay with Sirius red. Optical microscope observation
showed clearly a structural and architectural remodeling of the colla-
gen within the 3D scaffold slices (Figure 4). Indeed, from day 7 new



CORTELLA ET AL

BIOENGINEERING &
TRANSLATIONAL MEDICINEM

Cytokines Concentration (pg/mL)

GM-CSFA 8000
IFN v+
IL-184

6000
IL-24
IL-54
TNF o

161 | . 2000
IL-44
IL-107

0

day0 day7 day14 day21

FIGURE 8 Heat map of 10 cytokines concentration extracted
from the culture media of 3D scaffolds bioengineered with hTSPCs,
cultured in a perfusion bioreactor, supplemented with GDF-5.
Circulating levels of interleukin 8 and interleukin 6, while initially
present, spiked on day 7 and then gradually decreased over day

14 and day 21. Among the other tested cytokines, only interleukin 1p
was found in traces (<0.1 pg/mL), thus not graphically appearing in
the image.

collagen fibrils are evident under polarized light, reasonably produced
by cells, given the fact that at day O almost no collagen is displayed,
under both normal and polarized light. In addition, mainly type | colla-
gen was detected, whereas, the absence of type Il collagen under
polarized light has to be underlined. Collagen type | is the preferable
type of collagen because it is associated with a higher quality given
that its tendon fibrils are wider and more structurally organized than
type Ill collagen. It is also possible to distinguish the collagen synthe-
sized by the cells from the collagen of the scaffold because it was
used a collagen type | antibody that specifically binds to human colla-
gen, distinguishing it from the bovine-derived collagen in the
hydrogel.

The gRT-PCR analysis revealed distinct patterns of gene expres-
sion, particularly notable for tenomodulin, which showed an upregula-
tion at day 7 followed by a decrease at days 14 and 21. This
fluctuation in gene expression, particularly for tenomodulin, may
reflect dynamic processes within the scaffold and temporal shifts in
cellular differentiation or response to environmental cues. The expres-
sion of the type | collagen gene also exhibited interesting trends,
showing an upregulation at day 14, coinciding with the upregulation
of other tendon-related genes (see Figure 5). On the other hand, type
Il collagen is usually associated with injiuries and scar tissue whiel an
increasing of type Ill/type | collagen is found higer in older subjiects.**
Type |l collagen showed a statistically significant difference at day
14 and 21 when compared to day 7, but also between day 14 and day
21. However, the immunofluorescence analysis did not conclusively
confirm the presence of these collagen type in the scaffold, with type
lll collagen observed only at earlier time points and type | collagen

detected only at day 21 (Figure 6). Interestingly, Western blot analysis

of tenomodulin production revealed a different temporal pattern com-
pared to qRT-PCR, with a slight decrease at day 7 followed by an
increase at days 14 and 21 (Figure 7). This discrepancy could under-
score the complexity of cellular responses within the scaffold. In addi-
tion to the gene expression and protein analysis, the investigation of
the cell culture media supplemented with GDF-5 provided further
insights into the cellular response within the collagen matrix
(Figure 8). Traces of IL-18 were found at all time points while a
very defined pattern could be drawn for IL-8 and IL-6. They were
detected at day O, spiked at day 7, and then gradually vanished at
day 21 where their concentrations were found to be 54 and
46 pg/mL respectively. IL-6 was found to actively being involved
in the development of tendon disease and tendon tears, alongside
an array of other cytokines.*? IL-8 on the other hand, was found to
not only be an active part of ECM remodeling, biomechanical adap-
tiveness, and tissue homeostasis,*® but also be a key factor in
some chronic diseases such as rheumatoid arthritis. In more detail,
it was found to play an essential role in various tissues in animal
models of arthritis.**

The observed steady decrease in IL-6 and IL-8 concentrations,
following an initial spike on day 7, suggests a mitigation of their
inflammatory role in our model. This pattern may reflect a dynamic
interplay between GDF-5 supplementation and the secretion of pro-
inflammatory cytokines, potentially influencing cellular behavior and
tissue remodeling processes within the engineered scaffold. The tem-
poral dynamics of cytokine secretion, in conjunction with gene
expression and protein production, underscore the complex regula-
tory mechanisms involved in tissue development and response to
growth factor stimulation. These findings highlight the need for
further investigation into the functional implications of cytokine
dynamics for tissue engineering applications. Conversely, our 3D
environment appeared to be highly promising for further studying

tenogenic events.

5 | CONCLUSIONS

This study introduces a novel and robust pipeline for bioprinting
ColMa hydrogels with primary cells. PhotoCol® bioink was suc-
cessfully developed, showcasing its potential for creating 3D
in vitro models to study tenogenic processes using hTSPCs. The
research provides valuable insights into the behavior of hTSPCs
within the printed scaffolds and their response to biochemical
stimuli, offering a foundation for future tissue engineering and
regenerative medicine research. Looking ahead, this work opens
the door to exploring 3D cultures constructed with pathological
hTSPCs, which could offer critical insights into the biochemical
alterations associated with tendon pathologies. Additionally, this
approach may facilitate the investigation of methods to restore
impaired biological functions. Future directions may include the
incorporation of nanoparticles and nanomedicine formulations into
the 3D printed environment, aiming to influence cell differentia-

tion or investigate cellular responses.
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