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ABSTRACT

Developments in bioengineering and nanotechnology have ignited the research on biological

and molecular communication systems. Despite potential benefits, engineering communication

systems to carry data signals using biological messenger molecules and engineered cells is

challenging. Di↵using molecules may fall behind their schedule to arrive at the receiver,

interfering with symbols of subsequent time slots and distorting the signal. Existing theoretical

molecular communication models often focus solely on the characteristics of a communication

channel and fail to provide an end-to-end system response since they assume a simple

thresholding process for a receiver cell and overlook how the receiver can detect the incoming

distorted molecular signal. In this paper, we present a model-based and computational

framework called BioRxToolbox for designing di↵usion-based and end-to-end molecular

communication systems coupled with synthetic genetic circuits. We describe a novel framework

to encode information as a sequence of bits, each transmitted from the sender as a burst of

molecules, control cellular behavior at the receiver, and minimize cellular signal interference

by employing equalization techniques from communication theory. This approach allows the

encoding and decoding of data bits e�ciently using two di↵erent types of molecules that

act as the data carrier and the antagonist to cancel out the heavy tail of the former.

Here, BioRxToolbox is demonstrated using a biological design and computational simulations

for various communication scenarios. This toolbox facilitates automating the choice of

communication parameters and identifying the best communication scenarios that can produce

e�cient cellular signals.
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INTRODUCTION

Cells communicate with the environment and each other to maintain life [1]. Examples

include single-cell organisms, such as bacteria, that are organized in microsocieties. Naturally,

signaling molecules are used as information carriers. Understanding and controlling the

mechanisms between sender and receiver cells are essential for communications engineers

to design novel applications. Synthetic genetic circuits [2, 3] can o↵er a rewarding tool for

molecular communication systems to go beyond the di↵usion of signaling molecules to carry and

modulate information between sender and receiver cells. However, the application of integrative

approaches that consider both intracellular and intercellular dynamics of signaling molecules to

develop robust and biological communication systems, minimizing noise and signal distortion,

is limited.

Incorporating the dynamics of underlying transmission channels has several advantages

in developing nano- and micro-scale biological communication systems. Inspired by nature,

molecular communication systems are bio-compatible [4]. The transmitted molecules propagate

freely, and molecular communication via di↵usion (MCvD) has no external energy requirements

[5].

A well-known model of a communication system developed by Shannon and Weaver [6]

consists of five key elements: an information source that generates the message, a sender or

transmitter (Tx) that encodes the message into a communication signal, a communication

channel in which the signal propagates, a receiver (Rx) that decodes or translates the received

signal back to information, and a destination node that processes the incoming information

(Figure 1). A message in an MCvD context can be considered as a sequence of bit-0 and bit-1

symbols. Generally, communication is carried in a time-slotted manner, and the duration for

the transmission of a single symbol is called symbol duration. A bit-1 symbol can be encoded

using a group of signaling molecules that are released from a sender for a given duration and

propagate through the communication channel, and a zero-bit symbol represents the state

when no molecules are released.

Developing communication channels and encoding information can be a↵ected by inherent

noise and interference due to other molecules in the intercellular environment and the dispersion

of the molecules over time during di↵usion [7]. Noise is undesired and can be defined as any

interference that changes the received signal, typically in a destructive way [6]. Di↵using

molecules may not arrive at a receiver cell on their predestined time slots and may interfere

with the subsequent bit transmissions [8]. As a result, when molecules are released from a
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Fig. 1. The dashed box shows the Shannon and Weaver’s model of communication. Here,

this model is adapted for MCvD. The message encoded as a signal by the sender is sent

through a communication channel where noise may a↵ect the signal before it is delivered. As

demonstrated, the example 1100 message with four symbols is incorrectly decoded as 1110 by

the receiver due to molecules arriving late in subsequent slots and choosing a short symbol

duration. The situation is known as ISI.

sender to encode a particular symbol, the receiver may decode this symbol incorrectly (Figure

1). This situation causes significant intersymbol interference (ISI), which is considered one of

the major challenges in di↵usion-based communication systems that hinder communication

[9, 10].

Engineering an MCvD system and ISI mitigation can become even more challenging when

living cells act as receivers. Signaling molecules moving in the intercellular medium can trigger

adverse cellular responses, propagating and amplifying the inherent noise [11]. Moreover, due to

di↵erent timescales in intercellular di↵usion dynamics and intracellular biochemical reactions,

received signals may further interfere with the subsequent cellular signals. Although these issues

have been studied in the molecular communications literature, extending or implementing

proposed mechanisms inside the cell remains an ongoing challenge. One way to facilitate the

design of predictable systems is to apply model-based design approaches, which may involve

integrating multi-scale mathematical models [12, 13] to simulate the dynamics of and cellular

response to messenger molecules that carry information for signaling and di↵use across a

communication channel.

Di↵erent theoretical approaches have been proposed to handle ISI [14, 15, 16]. However, these

approaches do not address the issue of how di↵using molecules are converted to intracellular

signals that a↵ect a system’s response and noise when genetic receivers are employed. For
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example, Noel et al. [17] proposed adding enzymes into the propagation channel. Enzymes

degrade information molecules and prevent stray molecules from interfering with future

transmissions. However, the signal’s intensity may also be reduced, and the cellular response

is not controlled. Tepekule et al. [18] proposed a molecular transition shift keying technique

in which the presence of two di↵erent types of molecules (type-A and type-B) is used to

encode a bit-1 symbol, and the absence of these molecules represents a bit-0 symbol. The

choice of molecule type to encode bit-1 depends on the following bit-0 or bit-1 symbol. If the

next symbol is bit-0, type-B molecules are sent. If the next symbol is bit-1, type-A molecules

are sent. This strategy ensures that only type-B molecules are released before bit-0, and

the accumulation of molecules and ISI are restrained [18]. Another proposed solution is the

pre-equalization method [19], which involves transmitting two di↵erent molecule types from

a sender: type-A information encoding molecules and type-B destructive molecules. In this

approach, type-B molecules eliminate the e↵ect of the stray type-A molecules. The impact

of the destructive molecule is imitated by employing a subtraction operation at the receiver.

However, this theoretical approach also does not address minimizing ISI at the cellular level.

Di↵erent modulation techniques have also been proposed to encode information using

molecular communication systems. These techniques involve controlling the concentration of

the transmitted molecules from the sender [20], the type of the transmitted molecules [21], and

the release time of the transmitted molecules within a communication time slot [22].

The movement of transmitted molecules in a molecular communication channel can be

modeled by the di↵usion process or the Brownian motion. In a fluidic environment without

any flow, molecules move randomly [23]. When di↵using molecules reach receiver cells, they

may activate some processes or yield information bits after a demodulation process. Therefore,

evaluating the expected number of received molecules is critical for designing an e↵ective

MCvD system that involves receiver cells. Moreover, the selection of genetic parts and their

interactions may a↵ect the activation of a synthetic genetic circuit inside a receiver. It is

desirable to incorporate models of genetic circuits to design e�cient molecular communication

systems and understand the e↵ect of ISI on cellular response.

Various modeling formalisms exist to analyze the dynamic behavior of genetic circuits. For

example, the Systems Biology Markup Language (SBML) [24] standardizes the representation

of biochemical reactions. Tools such as COPASI [25] can simulate SBML models to gain

insight into emerging cellular behavior. Moreover, standardization e↵orts are essential to

exchange information between tools without data loss. Synthetic genetic regulatory circuits
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can be computationally represented using the Synthetic Biology Open Language (SBOL)

[26, 27]. SBOL designs can include constraints to capture the sensing of external molecules and

descriptions of intended biochemical reactions. This qualitative information can consequently

be used to create quantitative models that can be simulated.

SBML and SBOL are increasingly used for the model-driven design of synthetic genetic

circuits. Moreover, the Virtual Parts Repository (VPR) [28, 29] converts annotated SBOL

documents to SBML models to automate the generation of computational models of genetic

circuits [30, 29]. VPR provides reusable, modular, and mathematical models of biological

components such as promoters, ribosome binding sites (RBSs), and coding sequences (CDSs).

These models can be connected to create hierarchical and simulatable models of desired

systems. This model-driven approach is ideal for designing and optimizing genetic circuits

and computationally exploring large design spaces of biological systems.

Here, we present a computational modeling approach to facilitate the design of molecular

communication systems that can be coupled with engineered cells to encode and send

information using biological molecules. This approach is workflow based and integrates the

modeling e↵orts in molecular communications and synthetic biology. Our modeling framework,

called BioRxToolbox, can aid in producing e�cient data signals, allowing computationally

optimizing key communication parameters (such as symbol duration and the number of

molecules released) via design space exploration and computational simulations. Furthermore,

the Period Finder algorithm presented in this paper minimizes signal interference by extending

the pre-equalization method [19] to address the e↵ects of intercellular and intracellular signaling

processes.

MATERIALS AND METHODS

BioRxToolbox was implemented in MATLAB and Java. Di↵usion and cellular models were

integrated in a multi-scale approach, and the evaluation of di↵erent communication scenarios

was automated via simulations. The cellular response to di↵using signaling molecules was

controlled via a genetic circuit. Di↵usion parameters and the initial model of the circuit were

used as parameters, and the resulting models were customized for each scenario.

Di↵usion modeling

According to Brownian motion, the movement of particles in a three-dimensional space can

be represented via three independent displacements, one for each dimension, where each



BioRxToolbox • 7

displacement follows a normal distribution with zero mean and �2 variance, denoted as

�x,�y,�z ⇠ N (0, �2) (1)

where � =
p
2D�t, t is time, and D is the di↵usion coe�cient that describes the mobility of

molecules [23].

Assuming a simple MCvD channel without flow, the expected fraction of di↵using type-A

molecules (Ae), which will reach and be absorbed by an Rx receiver during the time frame tk,

can be calculated as

E[NRx
Ae

(tk)] = NTx
Ae

{FRx(t+k )� FRx(t�k )} (2)

where E[·] is the expectation operator, NTx
Ae

is the number of emitted molecules, FRx(t) is the

time-dependent formula for the expected cumulative fraction of arriving molecules [31], t�k is

the start and t+k is the end of time frame tk [18]. For a simple and symmetric topology like a

point transmitter and a single spherical absorber, FRx(t) is known analytically [31].

In the general model shown in Figure 2, the resulting proteins inside Rx (Ai and Bi,

respectively) can bind together. Therefore, Bi can eliminate the e↵ect of stray molecules at

the receiver. If Ai exceeds a certain concentration level (�) in time slot tk, Rx interprets the

received symbol as bit-1, and bit-0 otherwise. This process can be represented as

S[tk] =

8
<

:
bit-1 NRx

Ai
[tk] � �

bit-0 NRx
Ai

[tk] < �

where S[tk] is the received or decoded symbol in the time slot tk.

Modeling the cellular behavior

The genetic circuit design builds upon gene regulatory networks involving transcriptional and

translational processes. Molecular interactions between di↵erent circuit components convert

the intercellular signals into corresponding cellular signals to control cellular response. VPR2

[29] was used to create models of biological parts and interactions, and connect them in

order to create simulatable SBML [32] models. Automating the model construction process

was facilitated by the SVPWrite language [29] to specify the order and types of biological
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parts. For example, the “prom1:prom;rbs1:rbs;cds1:cds;ter1:ter” input specifies a single

transcriptional unit where “prom1” is a promoter, “rbs1” is an RBS; “cds1” is a CDS and “ter1”

is a terminator. The SVPWrite descriptions were then converted into an SBOL document

[26], which was extended with information about molecular interactions and annotated with

parameters. Hierarchical system models were derived via VPR2’s SBOL-to-SBML conversion.

Di↵usion dynamics were integrated via molecular communication parameters for design space

exploration, and customized SBML events were added for input signals using the JSBML [33]

Java library to analyze and evaluate cellular dynamics for each communication scenario. The

simulation of resulting SBML models was automated using the COPASI Java bindings [25].

Evaluating communication scenarios

Parameters, such as the number of molecules released by the sender and the delay between

input signals, were used to derive custom genetic circuit models, each representing a possible

communication scenario. The MOL-eye [34] performance metric was adopted to evaluate these

scenarios. MOL-eye is similar to the ‘eye’ diagram that is used for measuring the quality of

signals in conventional communication schemes and is adapted to molecular communications.

RESULTS

The computational modeling approach presented here was developed to design communication

systems using molecular and biological communication channels. This process involves coupling

intracellular and extracellular processes with di↵usion dynamics and three-dimensional

molecular channel propagation. Hence, BioRxToolbox facilitates designing biologically

plausible and di↵usion-based cellular reception processes, which are generally overlooked in the

molecular communications research community. The information is encoded as sequential bits,

each representing a group of molecules a sender releases. As a result, a response signal is created

at the receiver via the accumulation of cellular molecules. The coupling of intercellular and

intracellular mechanisms is implemented as a workflow in which an MCvD system with a new

pre-equalizer method minimizes cellular ISI. We demonstrate this approach computationally

using a receiver design based on synthetic and bacterial genetic regulatory networks to decode

information.

A Pre-equalizer for Engineered Receiver Cells

In this work, we also present a cellular pre-equalizer method based on previous work [8, 19].

This new method involves two input signals emitted from the sender and two additional cellular
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signals inside the receiver (Figure 2A). The external input signals (Ae and Be) together carry

a single bit of data to reduce intersymbol interference. Bit-0 corresponds to no transmission,

while bit-1 implies both Ae and Be molecules being sent over a specific period. The first input

signal (type-A) is the data carrier, and the second input signal (type-B) removes the heavy

tail of the former (Figure 2B). Ae and Be signals are transformed into intracellular Ai and Bi

signals. Ai is the observable molecule that relays the signal, and Bi is the antagonist to cancel

out the right amount of Ai and mitigate the adverse e↵ects of ISI.

It is crucial to comply with the processing rates of receiver cells when sending sequential data

bits. This process requires maintaining a specific level of messenger molecule concentration.

Moreover, to eliminate the heavy tail of Ai at the Rx receiver, Be is emitted tshift seconds after

Ae is released from the Tx sender.

Biological Use Case

Employing a pre-equaliser to minimize interference requires a subtraction operation. Inside

the receiver cell, Ae activates the production of Ai, and Be activates the production of Bi.

The di↵erence between Ai and Bi molecules is evaluated using a design pattern involving two

molecules that can bind together [35]. Bi sequesters Ai and reduces the number of stray Ai

molecules remaining after the symbol duration. The Ai molecules that are not bound represent

the result of the subtraction operation.

BioRxToolbox can be parameterized with di↵erent Ae and Be signals and models of genetic

circuits that sense these signals. To demonstrate our approach, IPTG and aTc di↵using

molecules were selected to represent Ae and Be signals (Figure 3). LacI and TetR repressors

inhibit the production of Ai and Bi, respectively. Hence, IPTG activates the production of Ai

by inhibiting LacI, and aTc activates the production ofBi by inhibiting TetR. Molecules such as

ExsD and ExsA that can bind together represent the Ai and Bi molecules [36, 37]. Here, ExsD

and ExsA were chosen since they can act as transcription factors (TFs) to control cellular

response. Hence, the genetic circuit’s inputs are data bits formed from external Ae and Be

signals, and its outputs are Ai and Bi transcription factors. With appropriate communication

parameters, the deteriorating e↵ects of ISI molecules can be eliminated by considering the

Ai�Bi di↵erence.

Communication Period Finder Algorithm

The Period Finder algorithm within BioRxToolbox implements the proposed cellular pre-

equalizer method to e�ciently design communication channels. It evaluates the communication
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Fig. 2. A) The schematic representation of the general framework for BioRxToolbox, where

intercellular Ae and Be signals are converted to intracellular Ai and Bi signals. B) This is

a hypothetical illustration where bit-0 represents no transmission and bit-1 represents the

transmission of Ae and Be molecules. In the upper graph, tAe is the transmission time of

Ae, tBe is the transmission time of Be, tBe-tAe is the tshift delay, and ts denotes the symbol

duration, the time slot that the receiver can detect a bit-1 or bit-0 symbol. Ae is converted to

Ai with a delay due to di↵usion and cellular processes. Bi molecules mitigate the heavy tail

of Ai by sequestering Ai molecules. The remaining Ai signal denotes the result of the Ai-Bi

biological subtraction operation.

performance and optimizes the pre-equalizer’s parameters, including e↵ective Ae/Be ratios,

to minimize the degrading e↵ects of ISI. Initially, Period Finder generates possible signal

propagation scenarios and then evaluates these scenarios to ensure that each bit-1 or bit-0
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Fig. 3. Representation of the system model used in simulations to perform the biological

subtraction operation. Remaining Ai molecules over a defined symbol duration period represent

a data bit and act as TFs to regulate cellular response. IPTG and aTc are examples of Ae and

Be. The expression of Ai and Bi is activated upon sensing IPTG and aTc.

symbol persists for a desired duration. These communication scenarios are then scored using

MOL-eye diagrams and ranked to identify the most e↵ective scenarios.

Algorithm. Potential communication scenarios are explored according to the total number

of molecules (M) sent per bit-1 symbol, various Be/M ratios (↵), and various delay values

between Ae and Be signals (tshift) at the sender, together with parameters to optimize the ts

symbol duration (Figure 2B). The algorithm to find the best communication scenarios is shown

in Algorithm 1. BioRxToolbox initially determines the default states of Ai and Bi in a receiver

cell without any inputs. After a warm-up period [38], the system reaches an equilibrium state

(Figure 4A). Hence, each simulation is started with two bit-0 symbols corresponding to the

warm-up period in order to allow the system to stabilize. It then simulates sending a one-

shot signal (Figure 4B) for various communication scenarios, where a single bit-1 symbol is

transmitted to infer optimum ts values before sending complex data bits. Each simulation in

the algorithm corresponds to a communication scenario and involves modeling di↵usion, Ae

(IPTG) and Be (aTc) signal construction at the receiver for di↵erent bit-1 and bit-0 symbols

of the message, and modeling the dynamics of the genetic circuit. Simulation results are saved

for further processing, including generating plots and evaluating scenarios according to the

MOL-eye performance metric. The algorithm is explained further in the following sections.
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Algorithm 1 Identifying the best communication scenarios

1: Obtain the receiver’s native state parameters (basal Ai and Bi values) when Ae=0 and
Be=0 and calculate the Bi/Ai ratio at the end of the simulation.

2: Start all future simulations with the 00 data bits to let the system reach the native state
before sending any bit-1 symbol.

3: Initialize system parameters.
4: ↵: Percentage of Be molecules as a vector (e.g. [0.15, 0.6] \ 0.05Z for ten di↵erent ↵

values between 15% and 60%).
5: tshift: Delay between Ae and Be as a vector (e.g. [0, 1000] \ 100Z for 11 di↵erent tshift

values between 0 and 1000 s).
6: For each ↵ and tshift pair, simulate sending a one-shot signal (e.g. 0010000000000 data

bits).
7: Obtain the Ai and Bi values using an initial and unoptimized tsDefault long enough to

observe a full bit-1 symbol (e.g. 1500 s).
8: Calculate the optimum ts when the Bi/Ai ratio is close to the native state value after

the bit-1 symbol is sent.
9: If ts < tsMax

10: Simulate the system for the intended data bits (e.g. 0010111100101) using the ts, ↵,
and tshift values.

11: Calculate the MOL-eye performance score of the communication scenario.
12: Rank the selected communication scenarios using the MOL-eye scores.

Table 1. Simulation parameters and values

Parameter Value

Diameter of Rx 2 µm [39]

Total number of molecules

(M = Ae +Be) 3,500,000 [40]

Distance between Tx and Rx 200 µm [4]

Di↵usion coe�cients for

IPTG (Ae) and aTc (Be) {600, 870} µm2/s [41]

Maximum symbol duration 2000 s

Di↵usion-based signal construction. The cumulative number of di↵using molecules that

arrive at a receiver is calculated using the initial quantities of external Ae and Be released from

the sender according to the di↵usion parameters in Table 1. For example, Figure 5A shows the

cumulative numbers when Ae is 85% and Be is 15% (↵ = 0.15) of molecules released. These

cumulative data are then used to calculate the derivative values, representing the number of Ae

or Be molecules that reach the receiver during a single bit-1 symbol. This signal construction

process is repeated for each bit-1 symbol of the message. For example, Figure 5B demonstrates

the Ae and Be signals arriving at the receiver for the 0010111100101 data bits. A moving

average with a sampling rate of 40 s is used to finalize the results. This process is repeated for
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Fig. 4. A). Native state of the Rx response Ai (blue lines) and Bi (orange lines) for the 0000000

signal when using a long ts (3000 s). B) The Rx response for a one-shot signal (0010000000000)

for the simulation parameters in Table 1. The tshift is 900 s to keep the Ai signal large enough

(tsDefault = 1500 s and ↵ = 0.15). The first two symbol durations are marked with yellow to

indicate the warm-up period.

each communication scenario, and the results for Ae and Be are saved in individual CSV files

for integration with cellular modeling.

Modeling the genetic circuit. BioRxToolbox utilizes the VPR [29] framework to design

and model the genetic circuit (Figure 3). The circuit comprises three devices. The first device

senses IPTG (Ae) and aTc (Be), and produces LacI and TetR proteins. The second device,

controlled by LacI, produces Ai, while the third device, controlled by TetR, produces Bi.

The devices were initially specified using SVPWrite (Table S1). An overview of biological



14 • Merve Gorkem Durmaz et al.

!"#"$%&#'($!

!"

#" !"#"$%&#'($!
! !
"#$
%&
'
(")
"*
+,
+-
./
01
2

! !
"#$
%&
'
(

3 !
"#.
&4
(")
"*
+,
+-
./
01
2

3 !
"#.
&4
(

&0,2"#5( &0,2"#5(

&0,2"6708/ &0,2"6708/

!"#"$%&#'($""!"!!!!""!"! !"#"$%&#'($""!"!!!!""!"!

Fig. 5. An example signal construction for the 0010111100101 data bits (↵ = 0.15, tshift =

600 s, tsDefault = 1500 s). A) The cumulative time series data for IPTG (Ae) and aTc (Be)

molecules that arrive at the receiver during a single bit-1 symbol. B) The derivative IPTG (Ae)

and aTc (Be) signals arriving at the receiver for all bit-0 and bit-1 symbols are constructed with

a sampling rate of 40 s. This process is repeated for all six bit-1 symbols of the 0010111100101

data bits.

interactions represented in each model is summarized in Table S2. These interactions include

the production of mRNAs and proteins, TF-promoter inhibition, complex formation, binding,

unbinding, and degradation. Parameters from an existing toggle switch design [29] and nominal

values were used, assuming each device is deployed using low-copy plasmids (ten copies).

The resulting hierarchical SBML model is customized using di↵erent ↵, tshift, ts, and data

bit values for each scenario to integrate di↵usion dynamics of molecules released from the

sender and arriving at the receiver. BioRxToolbox creates an SBML event for each IPTG and

aTc value in CSV files from the signal construction step. These values represent the expected

IPTG and aTc molecules at the receiver. BioRxToolbox then automates the simulations to

determine Ai and Bi values for evaluations.

Optimizing symbol durations. Due to using di↵erent amounts of Ae and Be and the

resulting cellular dynamics, receivers require di↵erent symbol durations in each scenario to
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identify data bits correctly without any interference. To infer optimum ts values, BioRxToolbox

initially determines native or basal state parameters with respect to the cellular Bi/Ai ratio

using the 0000000 data bits when there are no Ae and Be present (Figure 4A).

BioRxToolbox then infers the optimum ts values. The system is simulated for each ↵ and

tshift pair using a single bit-1 symbol, followed by bit-0 symbols with the 0010000000000 one-

shot signal (Figure 4B). Employing a single bit-1 symbol prevents intersymbol interference, and

a default ts (e.g. 1500 s), long enough to observe the bit-1 symbol, is selected. The native state

information is used to determine the optimum ts that takes the system to return to equilibrium,

which is the base state of the cell after the bit-1 symbol is received, as demonstrated in Figure

6. Additional examples are shown in Supplementary Figure S1.

Fig. 6. An example of inferring a ts value (↵ = 0.15, tshift = 900 s, tsDefault = 1500 s, and

data bits = 0010000000000) for the scenario in Figure 4B. Ai values are scaled to [0-1000] s

to standardize comparisons for di↵erent simulation durations. The figure is annotated with tB

(when Bi/Ai is maximum), tA (when Ai is maximum), and tR values. tR is the first time point

after both tB and tA that Bi/Ai is close to the native state’s rate. The inferred and scaled ts

for the bit-1 symbol is shown using the red line, excluding the initial warm-up period for the

first two bit-0 symbols. This inferred value is then multiplied by �t (tsDefault⇤ lengthbits/1000)

to calculate the unscaled and optimum ts value.

The corresponding communication scenario is discarded if the achieved ts value is greater

than the maximum ts value. Waiting for the equilibrium state to be achieved ensures the system

is on hold until the channel is cleared out to send the subsequent symbol, decreasing the e↵ect

of ISI. BioRxToolbox reports optimized ts values using a heatmap (Figure 7). Out of the 110
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scenarios explored, ten communication scenarios that satisfy the ts < tsMax requirement were

retained for further evaluations using data communications.

Fig. 7. The heatmap shows the optimum ts values inferred using the 0010000000000 data

bits for 110 di↵erent communication scenarios corresponding to 10 ↵ and 11 tshift values. A

communication scenario is discarded if ts > tsMax. Hence, ten scenarios represented in red are

retained.

Minimizing Interference in MCvD. BioRxToolbox simulates the communication

scenarios that satisfy the optimum symbol duration criteria using the intended data bits. The

simulation results of Ai and Bi for a scenario when the Be pre-equalizer is not incorporated are

shown in Figure 8A. The bit sequence for this simulation is 0010111100101, and the simulation

parameters from Table 1 are applied. The first two bit-0 symbols represent the warm-up period.
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The absence of the pre-equalizer leads to ISI. After the fifth symbol, consecutive bit-1 symbols

result in the accumulation of stray molecules. Consequently, the concentration of Ai data

carrier molecules at the ninth symbol (bit-0) is misleadingly higher than expected.

The same communication scenario is shown in Figure 8B when the Be pre-equalizer is added

to the system. As expected, when the 0010111100101 bit sequence is sent, consecutive bit-1

symbols in the middle no longer result in the accumulation of molecules. Moreover, each bit-1

and bit-0 information is exchanged clearly, demonstrating that the e↵ects of ISI are drastically

reduced.

Identifying the best communication scenarios. BioRxToolbox evaluates the selected

communication scenarios by calculating MOL-eye scores and ranking them using the simulation

results for the Ai data carrier signal. The results are scaled into the 0 to 1000 s range to

standardize the performance evaluations (Figure 9A). An example MOL-eye diagram of a

scenario with a high score is shown in Figure 9B, where the subsequent signals for each bit are

superimposed to a single composite graph. The area between the minimum of Ai values during

all bit-1 symbols and the maximum of Ai values during all bit-0 symbols is used to evaluate

the eye-opening pattern [34]. The di↵erences between the minimum of bit-1 and the maximum

of bit-0 values for each time point are added to calculate the score, ignoring negative values.

This score is then multiplied by the optimum ts value. A scenario is considered better if the

corresponding area score is greater. Noise is expected to be the highest when the eye pattern is

in the most closed form, making it challenging to distinguish bit-1 and bit-0 symbols. However,

the best scenarios identified by the Period Finder algorithm show that the eye-opening is still

clear even when the minimum of bit-1 and maximum of bit-0 values are used.

DISCUSSION

Molecular communication systems o↵er several advantages in developing biological

applications. However, it is challenging to create such applications, which involve encoding

and decoding information in environments subject to high noise and external interference. The

complexity increases when these communication systems are coupled with cells that act as

receivers due to the large number of genetic parts that can be chosen to decode information and

control cellular response. Moreover, di↵usion-based and cellular processes can be complex and

have di↵erent timescales. Conducting trial and error-based wet-lab experiments can be costly

and out of reach for most researchers due to the need for specialized laboratories, equipment,

and sta↵ [42].
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Fig. 8. The Rx response Ai (blue lines) and Bi (orange lines) of the 0010111100101 signal using

the optimum symbol duration inferred (1443 s) without and with the pre-equaliser to minimize

ISI. The first two ts symbol duration slots for the warm-up period are shown in yellow. A)

Response without using the Be pre-equalizer. After a train of consecutive bit-1 symbols, the

signaling molecules accumulate in the channel. The concentration of signaling molecules at

the 9th symbol (bit-0) is misleadingly high due to the e↵ect of ISI, which is likely to cause

an incorrect detection at the receiver. B) Rx response using the Be pre-equalizer (↵ = 0.15

and tshift = 600 s). As desired, signaling molecules do not start accumulating after the 5th

symbol duration. Furthermore, the concentration of signaling molecules at the 9th symbol is

as expected since the pre-equalizer mitigates the e↵ect of ISI.

Simulation environments can provide valuable insights into developing and testing novel

communication models. The work presented here involves algorithms, design patterns, and a
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Fig. 9. Example demonstrating the MOL-eye performance evaluation for the scenario

described in Figure 8B. Red lines represent Ai when bit-0 symbols are sent, and blue lines

represent Ai when bit-1 symbols are sent. A) Ai values are scaled to [0-1000] s to standardize

the evaluation of scenarios. B) MOL-eye diagram, where successive bit-1 (seven blue lines) and

bit-0 (four red lines) values of Ai are superimposed. The first two bit-0 symbols during the

warm-up period are not included. The figure shows the opening between the maximum of Ai

values during bit-0 symbols and the minimum of Ai values during bit-1 symbols.

simulation approach to overcome the obstacles in engineering receiver cells that function via

molecular communications and di↵usion of molecules to encode and send information.

One of the main challenges in using engineered receiver cells and di↵usion-based systems

is decoding information due to inherent noise. Our work extends the previously proposed

pre-equalizer approach [18] by incorporating two additional cellular signals. A biological
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subtraction operation for these cellular signals has been defined as a genetic circuit design

to improve the molecular channel response, reduce cellular noise, and control cellular response.

BioRxToolbox, using its Period Finder algorithm, can search for successful communication

scenarios based on the transmission time di↵erences between the input signaling molecules

and their ratios. These scenarios are ranked using the MOL-eye performance metric. Hence,

BioRxToolbox can be ideal for automating the exploration of di↵erent communication

parameters via computational simulations. Other BioRxToolbox parameters, such as the

number of total molecules and di↵usion parameters, can also be adjusted. For example,

Supplementary Figure S4 shows the variation of symbol durations for di↵erent distance

parameters. When the distance between the sender and the receiver is increased, fewer

molecules reach the receiver due to di↵usion. As a result, the number of molecules transmitted

may need to be increased, and Be may need to be released with a higher delay not to fully

suppress Ae.

It may be challenging to meet the expectations of generic communication systems while

developing biological applications. Here, we explored minimizing ISI by optimizing symbol

durations, which can be minutes due to the di↵usion of molecules and accumulation of cellular

molecules via transcription and translation processes [43]. As a result, a communication

scenario involving a series of data bits may take hours.

Another challenge in our experiments is establishing the warm-up period. In a discrete-

event system, the system is initially empty and idle. The situation is di↵erent in biological

systems and can cause inaccurate results due to the leakiness and basal expression of biological

molecules [44]. To improve a molecular channel’s e�ciency, decoding information in receiver

cells should start after a su�cient warm-up period for the system to reach an initial steady

state. Hence, the first two symbols are chosen as bit-0 in simulations, and results within the

warm-up period are ignored to improve the accuracy of results.

BioRxToolbox, the cellular pre-equalizer, and the genetic circuit design patterns presented

here can be utilized in the development of various cellular and molecular communication

systems. For example, these concepts can be used in experimental contexts to create and

control cellular delivery systems, biological information processors, and biological clocks.

In the future, we plan to extend the BioRxToolbox modeling framework by incorporating

stochastic simulations. In this work, deterministic models were used to understand the overall

system behavior due to the large number of molecules involved, assuming that the molecules

inside the receiver are well-stirred [45]. We also did not consider the chemical nature of Ae and
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Be molecules in membrane di↵usion [46]. In the future, models can be fine-tuned to incorporate

such mechanisms.

BioRxToolbox presented here demonstrates how e↵orts in molecular communications and

synthetic biology can be combined to provide an integrated view of intracellular and

intercellular processes to design novel communication systems. Our approach allows validating

molecular communication designs in silico and identifying suitable system parameters

computationally to inform wet-lab experiments.
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