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Multimode long-wave approximation for a viscoelastic coating subject to antiplane shear
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Abstract. A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic
scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with
the coefficients depending on frequency parameters is derived. The associated dispersion relation also seems to be a fresh
development approximating its exact counterpart near the vicinities of all the cut-off frequencies. As might be expected,
the developed formulation is not valid for short wavelength patterns. At the same time, as it is shown for a d-type loading,
it proves to be robust for various scenarios dominated by long-wave response.
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1. Introduction

In this paper, we treat a deformable coating as a structure with one of the faces clamped and the other face
subject to a prescribed loading according to the definition in [1,2]. Coatings find numerous applications
in modern technology (see e.g. [3-7] and references therein). Dynamics of elastic coatings is reasonably
well studied within linear and linearized context (e.g. see [8-10]).

Our main focus is on a new type of long-wave approximations of the 2D equations of motion with a
typical wavelength much greater than the thickness and not imposing any restrictions on the vibration
frequency. It is well known that such structures as coatings do not exhibit low-frequency motions typical
only for thin elastic plates and shells having traction free faces or loaded by prescribed stresses (e.g. see
[11]). In case of clamped faces, only high-frequency, long-wave motions exist (see also [12]).

The high-frequency, long-wave vibrations relevant to the subject of the paper have been intensively
investigated in various contexts (e.g. see [10,11,13-17], and references therein). The associated local
single-mode approximations are only valid over the narrow vicinities of thickness resonances determining
the cut-off frequencies.

The authors’ strong desire is to establish a more general long-wave framework involving several vibra-
tion modes but not a single one as in the previous studies. This paper is aimed at deriving such multimode
long-wave approximations for the scalar set-up of the antiplane shear. The simplest viscoelastic Voight
model is adapted for tackling resonance phenomena. For the sake of simplicity, a typical wavelength is
expressed in terms of a small viscosity coefficient.

The idea underlying the presented analysis of a basic model problem has a clear potential to be
extended to many of the more sophisticated configurations in solid dynamics. The proposed approach
suggests a nontraditional asymptotic scheme oriented to global long-wave approximations as an alternative
to the existing local ones. Another example of a fresh insight into the asymptotic methodology utilized in
the theory of thin elastic structures is concerned with the composite models for plates and shells catching
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Fia. 1. A viscoelastic coating

both the canonical long-wave, low-frequency limit along with short-wave, high-frequency one related to
the surface Rayleigh wave, [18,19].

The main result of the paper is the derivation of a 1D multimode low-dimensional equation governing
the antiplane shear of a viscoelastic coating. It is remarkable that the coefficients in this equation are
dependent on the frequency parameter in contrast to all local single-mode formulations. The associated
dispersion relation is also of multimode nature approximating the long-wave behaviour of all the vibration
modes over a broad frequency range. Although the derived equation of motion, as might be expected,
is not able to describe the short wavelength behaviour, it proves to be robust even for evaluating the
dynamic response due to a d-type concentrated load. At the same time, this equation predicts a spurious
fundamental (low-frequency) mode, which is not a feature of a coating due to the clamping of one of its
faces.

The developed asymptotic formulation is thoroughly tested by comparison with the results obtained
using the explicit exact solution of the original 2D dynamic antiplane problem. The scenario of time-
harmonic free and forced vibrations is both studied.

2. 2D antiplane problem for a viscoelastic coating

We consider the dynamic response of a viscoelastic coating of thickness H occupying the region —oo <
x1, 3 < oo and 0 < z9 < H, where z,,, n = 1,2,3 denote the Cartesian coordinates (see Fig. 1).
The 2D equation of antiplane motion can be written as
031,z + 032,05 = PULL, (1)
where t is time, p is mass density, o3;, ¢ = 1,2 are shear stresses and u is the out of plane displacement.
The constitutive relations corresponding to the simplest viscoelastic behaviour are given by
031 = pu,1 + yu1e, (2)
032 = U2 + YU 2, (3)
where 1 is the shear modulus and ~ is the viscosity coefficient. The coating is assumed to be clamped

along its lower face and subject to dynamic shear loading along its upper face. The associated boundary
conditions become

u =0, zo =0, (4)
0'32:]37 JJQZH, (5)
where P = P(x1,t) denotes a prescribed load.
Let us seek the travelling wave solution of the formulated homogeneous problem (P =0 in (5)) in the
form
u=Ul(xq)exp{i(kzy — wt)} (6)

where ¢ = y/—1 is the complex unity, k is the wavenumber and w is the angular frequency.
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Substituting the expression (6) in Egs. (1)—(3), and specifying the dimensionless coordinate ( = x5/ H

we obtain
d?U

277
TCQ +a U = 0, (7)
where )
Q
2 2
=——-K
@ 1—1inQ ®)
in which I
K=kH, Q=22 (9)
C2
and N
n= ) 10
T Jio (10)
where 7 is the dimensionless viscosity parameter. Below, we often assume that n < 1.
The solution to Eq. (7) satisfying the boundary condition (4) is
U(¢) =sinac. (11)
Inserting the latter into the remaining boundary condition (5), we arrive at the dispersion relation
cosa = 0. (12)
Therefore,
2 0?2 2
K* = - Q 13
1—1inQ * (13)
with
2m — 1
Q= Bm=Ur a3 (14)

2 b
standing for the cut-off frequencies of the related elastic waveguide (7 = 0) corresponding to its thickness
shear resonances (e.g. see [11]).

In what follows, we also need the Fourier transform U of the time-harmonic solution of the original
inhomogeneous problem (1)—(5). Omitting the factor exp(—iwt), we can readily deduce

r P'H sin a(

15
“ uwo (1 —inQ)acosa (15)

where - -
uf' = / uet®¢d¢,  PF = / Pe'E g, (16)

—o0 —o0

with £ = x1/H standing for the dimensionless longitudinal coordinate and K, now, playing the role of
the Fourier transform parameter

It is worth noting that the factor « in the denominator of (15) does not define the fundamental
vibration mode given by a = 0 for which K = 0 at 2 = 0 in absence of viscosity, i.e. n = 0. Indeed,
the boundary condition (4) corresponding to a clamped lower face prohibits any low-frequency wave
propagation.

Obviously, the dispersion relation (13) and the first Fourier transform in (16) take the simple explicit
forms. Further insight into the asymptotic behaviour of the boundary value problem (1)—(5) underlining
the aforementioned relations, (13) and (16), may deemed unnecessary. However, such 2D formulation
seems to be optimal for developing a new type of 1D asymptotic set-up corresponding to long-wave
multimode approximation. In terms of the dimensionless parameters K and €2, this means that the
wavelength of interest are much longer than the thickness of the coating (K < 1), whereas there is
no restriction on the vibration frequency, i.e. all modes defined by (14) are taken into consideration.
To the best of authors’ knowledge, previous considerations of the systems, exhibiting high-frequency
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cut-offs (2, ~ 1), as those given by (14) in the current paper, dealt only with single-mode, long-wave
approximations in the narrow cut-off vicinities, [11]. The latter were usually referred to as high-frequency,
long-wave approximations (see also [13,14,16,17,20]). In addition, we remark that the traditional theories
for thin plates and shells (e.g. see [21,22]) may be treated as low-frequency, long-wave approximations
valid at small frequencies. The long-wave, low-frequency approximations are only a feature of structures
with traction free faces but not typical for coatings (see the references above).

3. Multimode asymptotic procedure

In this section, we reduce the original 2D problem (1)—(5) to a 1D equation along the upper face of the
coating xo = H. For the sake of simplicity, we assume that a typical wavelength is related to a small

dimensionless viscosity coefficient 7 as

=1 (17)

V1
Thus, the ratio H/L = ,/n will also be small. Also, we restrict ourselves to time-harmonic motions
assuming without loss of generality that the vibration frequency is order of unity (€ ~ 1). Under this
assumption, we are in position to treat several vibration modes (14) in contrast to previous considerations
(e.g. see [10,11,15,20]), oriented to narrow vicinities of chosen single cut-off frequencies €. (see (14)).
Let us scale the original coordinates as

T1 ZLf, $2:HC (18)
nondimensionalising the displacement and stress components, as well as the external force as
uw=Hu", o031 =+/Nuo3, 032 =pos,, (19)
and
P = puP*, (20)
where the starred quantities appearing in the formula above are assumed to have the same asymptotic
order. Substituting relations (18) and (19) in the equation of motion (1) and the constitutive relations
(2) and (3), they, respectively, become

n031 ¢ + 0s2.c + Qu* =0 (21)
and
o3 = (1— in)u (22)
049 = (1 — inQ)uj‘C (23)
The boundary conditions (4) and (5) expressed through the starred quantities are written as
u* =0, (=0, (24)
03y = P*, (=1 (25)
Now, specify the asymptotic expansions in the form
f:f(0)+77f(1)+.... (26)
where f = (u*, 0%, 0%).
At leading order, we have from (23)
0:(;(2)) = uf?). (27)

Then, we substitute this formula in Eq. (21). Next, integrating in the transverse variable ¢ and satisfying
the boundary condition (24) along the clamped lower face of the coating, we obtain

w9 = Bysin Q, (28)
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where By(€) denotes the unknown 1D displacement amplitude. Here and below, the time-harmonic factor
is omitted. The remaining stress takes the form
ol = By ¢ sin Q. (29)

Thus, as usual, the leading order approximation does not result in a differential equation for the sought

for vibration amplitude. Moreover, the substitution of (29) in the boundary condition (25) gives zero at

the cut-off frequencies 2 = Q. (see (14)). As a result, we have to proceed to the next order approximation.
At next order, Eq. (23) reduces to

aélz) = u(Cl) - iQuf?). (30)
Then, we insert the latter into (21) and integrate in ¢, having an inhomogeneous equation given by
u(clg + Q%) = —(By ¢e + 9% Bo) sin QC. (31)

Its solution, satisfying the boundary condition (24), is

Ccos )¢
20
The imaginary term in this formula corresponds to the effect of viscosity which does not appear at leading
order.
Now, using (28) and (32), we may present the two-term expansion (u* = u(®) +nu) +...) as

uM) = By sin Q¢ + (By g + i By) (32)

Ceos Q¢ + o),

u* = BsinQ{ +n (Bygg + iQ?’B) 50

(33)

where B = By + nB;.
Finally, substituting the derived expansion in the boundary condition (25) at the upper face, we arrive
at the 1D equation of interest. It is given by

nch;lj + OB = 20P". (34)
where
T=cosQ)—QsinQ, Q=0Q1—1iQ2 (35)
with
Q1 =292 cos Q, Q2 = 1 (cos Q + Nsin Q) (36)

4. Discussion and numerical visualization

Let us rewrite the Eq. (34) for the displacement at the upper face (¢ = 1). In a dimensional form, it
becomes ,

HQTd—qg +Quw = ﬁQ sin Q, (37)

dzy I

where w = BH sin {2 (see (33)). This equation has the form similar to those for high-frequency, long-wave
vibration governing a single mode in the vicinity of thickness resonance frequencies (e.g. see [10,11,15—
17,20]). However, in contrast to the latter equation, (37) is of multimode nature governing long-wave
behaviour near each of the cut-offs. This results in a sophisticated dependence of the coefficients T and
Q given by (35), (36) on the frequency parameter 2. To have a further insight, look at the associated
dispersion relation

TK? -Q =0. (38)
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F1G. 2. Dispersion curves (blue solid) for an elastic coating calculated from the asymptotic relation (38). The vertical dashed
lines correspond to T'= 0 (Eq. (35)) (Color figure online)

The dispersion curves for purely elastic set-up (n = 0) are displayed in Fig.2. It is remarkable that
the multimode formulation predicts a spurious fundamental (low-frequency) mode which is not the fea-
ture of the original antiplane problem (see Sect.?2). It is interesting that analysis of the denominator in
formula (15) corresponding to the exact solution of the time-harmonic problem for forced vibrations may
hypothetically assume that the dispersion relation takes the form

acosa =0 (39)

instead of the correct one determined by (12). It can easily be verified that the asymptotic behaviour
of (39) is given by the shortened dispersion relation (38) with both of them supporting a spurious
fundamental mode. The latter observation complements the discussion initiated in Sect. 2.

The short-wave limit of the dispersion curves in Fig.2 corresponds to the vertical asymptotes given
by T = 0 for which Eq. (37) degenerates. However, it happens outside the validity range of the developed
model oriented to long-wave motions near the cut-offs Q = Q. (see (14)). In this case, the dispersion
relation (38) can be reduced to

K% =~ Q2(Q% — Q2 +inf2,), (40)

which also determines a near cut-off asymptotic behaviour of the original dispersion relation (12) at n < 1.
The numerical data are presented in Fig. 3 for the real and imaginary parts of the squared wavenumber
at n = 0.01.

The results for the dispersion relations (12) and (38) are compared. As might be expected, the asymp-
totics in Fig. 3 for the real parts are applicable near the cut-offs. This observation is also true for the
imaginary parts (see Fig.4), but, to the best of our knowledge, such comparison has not been demon-
strated before.

Next, discuss the inhomogeneous Eq. (37) in application to modelling of long-wave forced vibrations
over a broad frequency range, including several propagating modes. In this case, the Fourier transform
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FIG. 3. The real part of K2 for exact (Eq. (12), solid blue lines) and asymptotic (Eq. (38), red dashed lines) dispersion

relations at n = 0.01 (Color figure online)

of the solution to the aforementioned equation, rewritten in the dimensionless variable &, becomes

F
wh = _1“1(25%62 sin Q, (41)
where we adapt the same definition of the Fourier transform as in Sect. 2.

It can readily be verified by applying Taylor series expansions at K < 1 that the asymptotic behaviour
of the exact Fourier transform of u!" given by (15) at ¢ = 1 is identical to (41). This observation motivates
comparison of the inverse Fourier transforms corresponding to (41) and (15) aiming at estimating the
accuracy of the former for dynamic loadings involving not only long-wave (K < 1) but also short-wave
components (K 2 1) for which the developed asymptotic model is generally not valid.

As an example, we consider the effect of d-like time-harmonic concentrated load for which

P = Pyé(§) (42)
in which
1
F
— - 4
E 1+eK?2 (43)

where the upper suffix F' denotes the Fourier transform as above, and ¢ is a relatively small quantity.
Below we compare numerically the following inverse Fourier transforms
o0 o0

u= %/chos(Kﬁ) dK, w= %/chos(Kf) dK, (44)

0 0
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Im(K?)

FIG. 4. The imaginary part of K2 for exact (Eq. (12), solid blue lines) and asymptotic (Eq. (38), red dashed lines) dispersion
relations at 7 = 0.01 (Color figure online)

where u!" and w’" are given by the expressions (15) and (41) at ¢ = 1, respectively, taking into account
(43). In Fig. 5, we plot the functions

(5,0) = 5 77l v)] (45)
versus the dimensionless frequency €2 at ¢ = 0.01 and n = 0.005. It is clearly seen that the jumps of
the function @ near the cut-offs Q = €, is reasonably well approximated by those of the function w. In
this case, both of the functions have a double pole at the origin K = 0 perturbed by a small imaginary
term with the factor in). As a result, the contribution of the related residues is ~ 1/,/7. Similar spikes are
typical for the time-harmonic vibrations of an elastic layer subject to a light fluid loading (see [11,20]). For
the latter, elastic vibrations are damped due to the acoustic radiation into the fluid. Figure 7 plotted at
the same value of 7 clearly demonstrates that the asymptotic model is highly accurate over the long-wave
domain, K < 1, at the first thickness resonance frequency Q. = /2.

At the same time, Eq. (37) does not pretend to describe the short-wave behaviour corresponding to
small amplitude plateaus of O(1) outside the observed sharp peaks. In addition, the derived 1D Eq. (37)
predicts spurious peaks in Fig. 5 at T'= 0 (e.g. for 2 ~ 0.86) where, as it has already been mentioned, it
degenerates. This effects the convergence of the second integral in (44) (see Fig. 6), illustrating a drastical
discrepancy of the Fourier transforms (15) and (41) at = 0.86 for n = 0.01.

5. Concluding remarks

The derived 1D Eq. (37) governs long-wave behaviour of all vibration modes (14). The price of such
generality is that the coefficients in this equation depend on the frequency parameter €2 (see (35) and (36)).
The time-harmonic set-up underlying (37) may be potentially extended to arbitrary time dependence by
the formal substitution Q = (—id/dt)\/p/uH. In this case, however, due to the presence of trigonometric
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F1G. 5. Comparison of the exact (solid blue line) and asymptotic (red dashed line) formulae in (45) for displacements at
e = 0.01 and n = 0.005 (Color figure online)

0.8

=

5 06
0.4

0.2

L e e LA s s s e e

0.0

K

F1G. 6. Comparison of the exact (blue line) and asymptotic (red line) Fourier transforms (see, (15) and (41)) at the first
spurious spike 2 = 0.86 at € = 0.01 and n = 0.01 (Color figure online)

F1G. 7. Comparison of the exact (blue line) and asymptotic (red line) Fourier transforms (see, (15) and (41)) at the first
thickness resonance frequency Q = Q4 = 7/2, ¢ = 0.01 and n = 0.01 (Color figure online)
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functions in the coefficients (35) and (36), the amended equation will have coefficients expressed through
pseudo-differential operators of time.

The associated dispersion relation (38) also seems to be a novel outcome. It nicely approximates the
dispersion curves near the cut-off frequencies ), given by (14), as illustrated by comparison with the
exact solution (13) (see Figs.3 and 4). At the same time, this dispersion relation supports an additional
low-frequency mode (see Fig.2), which obviously does not exist in the original 2D model of a coating.
This figure also demosntrates vertical asymptotes corresponding to the prohibited (within the developed
long-wave model) short-wave limit at T' = 0, where T is the coefficient of the senior derivative in equation
(37).

At the frequencies corresponding to the aforementioned asymptotes, the spurious peaks occur (see
Fig.5). This figure is aimed at testing the asymptotic predictions for the problem considering the effect
of a d-type concentrated load. It is more important, however, that all the peaks at the cut-offs in Fig. 5 are
accurately approximated (see also comparison in Fig. 7). The amplitude of these peaks is ~ 1/ exceeding
considerably the background level formed by short-wave patterns. Similar peaks arise in the problem for
a fluid-loaded elastic layer subject to a time-harmonic point force (see [20]). We also note that multimode
long-wave approximations are universally valid for smoothly distributed loads that do not induce short
wavelength vibrations (see [23]).

The proposed asymptotic methodology is apparently not restricted to the considered scalar problem.
The general idea of multimode long-wave approximations may be adapted for more elaborated scenarios,
including but not restricted to a similar problem for a 3D coating. The simplest Voight model implemented
in the paper may also be extended to more advanced formulations for viscoelastic behaviour, since only
a relatively small viscous damping near the cut-offs is essential.
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