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Abstract

Thin-film fluid flows are central to a number of biological, industrial and chemical

applications and processes. Thin films driven by external forces are highly susceptible

to instabilities leading to the break-up of the film into fingering-type patterns. These

fingering-type patterns are usually undesirable as they lead to imperfections and dry

spots. This behaviour has motivated theoreticians to try to understand the behaviour

of the flow and the mechanisms by which these instabilities occur.

This work focuses on modelling the dynamics of a thin viscous droplet spreading down

an inclined pre-wetted plane due to gravity and surfactant-related effects. We use high

resolution numerical simulations combined with analytical solutions to describe the

influence of different competing physical effects on the spreading behaviour. We also

obtain the spreading and thinning rates for the droplet based on fluid and surfactant

conservation arguments where a power-law behaviour is not assumed a priori. In

particular, a quasi-steady similarity solution is obtained for one-dimensional flow at

the leading edge of the droplet. A linear stability analysis shows that this base state

is linearly unstable to long-wavelength perturbations in the transverse direction. This
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suggests that the onset of the fingering instabilities originate from this region. The

influence of surfactant, particularly, the Marangoni effect is shown to increase the

growth rate and band of unstable wavenumbers compared to gravity-driven spreading

alone. Moreover, with the addition of insoluble surfactant it is shown that this region

is linearly unstable for all inclination angles. This is in contrast to gravity-driven

spreading where it has been shown that there is a threshold angle below which this

region is linearly stable. Stability criteria are obtained in the small wave number

limit. For gravity-driven spreading, capillary effects are shown to be responsible for

the instability in this limit as reported by previous studies. The Marangoni effect

is shown to be behind this instability at small inclination angles and in the small

wave number limit when surfactant effects are included. Two-dimensional simulations

undertaken here support the linear stability results and are useful in exploring the

nonlinear stability of the flow.
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Chapter 1

Introduction

Thin fluid films are omnipresent in nature and their flow is important in a wide range of

biological, industrial and chemical applications and processes where the understanding

of the physics behind their spreading is of great importance. They are used in many

simple applications ranging from paint coating and drying and rain droplets flowing

down a window to more complicated industrial processes such as dip coating, pro-

duction of contact lenses. Myers [49, 50] provides a nice review of these applications.

Thin-film flows are also used in the production of computer components [57]. Thin

films also have many biological applications, such as, in the formation of tear films and

within the thin mucus layer coating the walls of mammalian lungs. The mucus layer

plays a vital role in trapping small particles of toxic material and therefore stopping

them from entering the airways. They also play an important function in stabilising

the lung. Thin-film flow can occur on a length scale much larger than the examples

1
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cited above. In geophysical and environmental engineering thin-film flows occur in

mudslides and lava flow [6, 22].

The above applications have provided motivation for a substantial amount of research

to be undertaken within this area of fluid dynamics. Thin-film flow consists of a stretch

of liquid bounded either by two solid substrates (e.g. lubricating oil between bearings)

or one solid substrate and one free surface (e.g. a rain droplet or sheet flowing down

a windscreen) or between two free surfaces (e.g. a soap film). The area of research

conducted as part of this thesis is related to a thin film bounded by one solid substrate

with the main driving force being gravity. However, as the film thins, surface tension

effects becomes more prominent. Surface tension is defined as ‘The tension of the

surface film of a liquid caused by the attraction of the particles in the surface layer by

the bulk of the liquid, which tends to minimise surface area’ [19]. Surface tension is

a measure of the strength of intermolecular forces of attraction between the molecules

that lie on the surface. Surface tension of a fluid is often constant, however, it can be

altered due to, for example, heating of the fluid which induces thermo-capillary effects

or, alternatively, the addition of surfactants. Surfactants (surface-active-agents) are

chemicals that, when present in low concentration, adsorb on the liquid-air interface

and lower the surface tension there [53]. Surfactants are amphiphiles, i.e., chemicals

that possess both a hydrophobic (water ‘hating’) functional group and a hydrophilic

(water ‘loving’) functional group. This means that the hydrophilic head is soluble and

typically remains within the bulk of the fluid whereas the hydrophobic tail wishes to



3

remain outside the main bulk of the fluid. Not all surfactants are insoluble and can

therefore be characterised by their solubility from insoluble (where the surfactant is

only found on the liquid-air interface) to highly soluble (where the surfactant exists on

the interface as well as in the main bulk of the fluid). When surfactants are present in

high concentration they clump together and form spherical type structures known as

‘micelles’. As surfactants lower surface tension locally, non-uniformities in surfactant

concentration lead to surface tension gradients. Fluid is drawn by these surface tension

gradients and is called the Marangoni effect and the ensuing flow is referred to as

Marangoni flow [40].

Surfactants have been used in many aspects of technology and industry to control the

wetting properties of liquids due to their ability to modify surface tension. They are

used in detergents (in the form of fatty acids), crop spraying, coating processes and

oil recovery. Surfactants also occur naturally, for example in the mammalian lung as

briefly aforementioned. They reduce the surface tension within the liquid lining the

airways, which assists in preventing the collapse of the smaller airways [23, 24]. In

the lungs of premature infants the quantity of surfactant produced is insufficient as

the lungs are under-developed. This leads to a respiratory distress syndrome which

is treated by surfactant replacement therapy (SRT). SRT involves delivering artificial

surfactant into the lung exogenously and orientating the infant to ensure that the

surfactant coats the airways as uniformly as possible.
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3 4

Figure 1.1: Photographs of a liquid sheet flowing down an inclined plane at various
times (increasing from top left to bottom right). An initially uniform sheet breaks up
into fingers. Reproduced from experiments by Kondic [34].

Thin films also exhibit intriguing instabilities that form under different conditions,

resulting in the formation of a range of striking patterns. This provides extra moti-

vation to theoreticians to understand the formation of these instabilities. The flow of

a droplet or sheet spreading down an inclined substrate develops a fingering instabil-

ity as shown in panels 1-4 in Fig. 1.1. A simple example of this is observed when

rainwater flows down the windscreen of a car. An experiment into the spreading of
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a droplet or sheet down an inclined plane was first conducted by Huppert [27] and

then built on by Silvi and Dussan [58]. They observed that an initially uniform flow

breaks up into fingers due to any perturbations in the flow or substrate irregularities.

Other patterns such as ‘saw tooth’-like patterns have also been observed experimen-

tally [58, 27, 33]. ‘Saw tooth’ instabilities are generally visible at shallow angles of

inclination but, as the angle of inclination is increased, the instabilities look more like

fingers shown in Fig. 1.1 with the sides of the fingers almost parallel. These fingering

instabilities are usually undesirable in many applications as they lead to dry areas and

imperfections. For example, one would prefer to uniformly coat a wall with paint and

not see fingers for obvious reasons. Therefore understanding their mechanisms and

how to suppress them will enable their prevention. A completely different fingering

instability is observed in the case when surfactant is present. Figure 1.2 shows an ex-

periment by Afsar-Siddiqui and co-workers where a fluid droplet laden with surfactant

spreads on a horizontal plane [3, 4, 5]. In contrast to the fingering instability observed

during gravity-driven spreading, the fingers here are more dramatic (often referred to

as ‘dendritic’) and are of a much smaller length scale. Gravity-driven fingering has

a lengthscale of centimetres or meters compared to the millimetre scale observed in

surfactant-driven fingering. The mechanism behind this fingering is believed to be due

to the Marangoni effect. This is related to surface tension gradients at the air-liquid

interface created by non-uniformities in surfactant concentration there as they are ad-

vected along by the underlying liquid film flow. This fingering behaviour was first

observed by Marmur and Lelah [41] and a significant amount of experimental work has
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Figure 1.2: The development of fingering-type patterns in a surfactant laden drop.
Reproduced experiments a paper by Afsar-Siddiqui et al. [3].

been done by several researchers [3, 4, 5]. These works show that at surfactant con-

centrations below a critical surfactant level, stable spreading occurs. However, above

this critical concentration, fingering behaviour like the one shown in Fig. 1.2, is ob-

served [3]. For a detailed review of this see Asafar-Siddiqui et al. [2]. As the angle of

inclination is increased from the horizontal slightly, the effects of gravity will begin to

compete with that due to surfactant. However, if the angle of inclination is too large,

gravity will dominate. To the best of our knowledge, there are no experiments for

surfactant and gravity-driven spreading on inclined planes to describe these competing

effects.
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Mathematical modelling enables us to describe real-world phenomena using mathe-

matical concepts. It aids us in understanding the mechanisms behind the phenomena.

The governing equations for the flow of viscous Newtonian fluids (viscous fluid stress

is proportional to the local strain rate) are given by the Navier-Stokes equations,

ρ

(
∂u∗

∂t
+ u∗ · ∇u∗

)
= −∇∗P ∗ + ρ∗g∗ + µ∗∇∗2u∗, (1.1)

0 = ∇∗ · u∗, (1.2)

where P ∗ is the fluid pressure, ρ∗ is the fluid density, µ∗ is the fluid viscosity, g∗ is

the acceleration due to gravity and u∗ is the fluid velocity vector. We assume slow

viscous flow in the following analysis so inertial terms on the LHS are neglected. This

is the same as taking a small Reynolds number. The convective-diffusion equation for

insoluble surfactant transport was derived by Stone [60] and built upon by Wong et al.

[67]:

∂Γ∗

∂t
+∇∗

s · (Γ∗u∗
s) + Γ∗(∇∗

s · n∗)(u∗ · n∗) = D∗
s∇∗

s
2Γ∗, (1.3)

where Γ∗ in the surfactant concentration, u∗
s is the surface velocity, D

∗
s is the surfactant

diffusivity, n∗ is the unit outward normal at the interface and ∇∗
s is a surface diver-

gence operator. Theoretical modelling of fluid mechanics problems applies the ‘no slip’

boundary condition at the liquid-solid interface (e.g. on the substrate) [1]. This sets

the velocity of the fluid on the solid substrate equal to the velocity of the substrate.



8

For a stationary substrate we have

u∗ = 0. (1.4)

At the free surface (fluid-air interface) the kinematic condition is applied. This states

that fluid particles that lie on the interface must always remain on the interface. This

implies that

D

Dt∗
[z∗ − h∗(x∗, y∗, t∗)] = 0, (1.5)

where the free surface is represented by z∗ = h∗(x∗, y∗, t∗) and D/Dt∗ is the total

derivative. The final boundary condition which is applied is the surface stress condition

[55],

−(T ∗
1 − T ∗) · n∗ = 2R∗σ∗n∗ −∇sσ

∗, (1.6)

where T ∗
1 and T ∗ are the stress tensors in the air and fluid, respectively, R∗ is the radius

of curvature of the free surface and σ∗ is the surface tension. The normal surface stress

balances the surface curvature and the tangential surface stress is zero when surface

tension is constant. However when surfactants are introduced surface tension is no

longer constant and is a function of surfactant concentration. Here, tangential surface

stress balances changes in the surface tension. Finally, when surfactant is present we

need an equation of state to relate surfactant concentration to the surface tension.

Many different equations of states can be used. The linear equation of state is valid for
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dilute surfactant concentration [17] and is used in many similar problems [12, 15]. The

equation of state is chosen for simplicity to implement, however, there are others that

are also used, particularly at higher surfactant concentrations. A couple of examples of

adsorption isotherms are Langmuir [37] and Frumkin [20] (an extension of Langmuir)

which are nonlinear and applicable to soluble surfactants.

When there is moving contact line (where the liquid, solid and air interfaces intersect),

relevant in many spreading problems, imposing a no slip condition at the solid substrate

leads to a non-integrable stress singularity. Physically, this amounts to applying an

infinite force at the contact line in order to move it [11, 26]. This is referred to as

the contact line paradox. Various regularisations have been proposed to remedy this.

These are:

(i) allowing the liquid to ‘slip’ on the solid substrate (referred to as the ‘slip’ con-

dition). The so-called Navier condition proposed by Navier [51], is widely used

which assumes that the tangential fluid velocity relative to a substrate is pro-

portional to the tangential stress applied at the substrate. The constant of pro-

portionality is referred to as a slip length which is empirically determined. This

condition was first used in the context of thin-film-flow theory by Greenspan

[21]. Once a choice of slip model is made a boundary condition at the contact

line needs to be imposed. Greenspan [21] proposed that the speed of the contact

line is related to the contact angle. A contact line condition generally used is the

so called Tanner’s Law [61] which states the contact line speed is proportional to
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the cube of the contact angle.

(ii) assuming that the solid substrate is pre-wetted with a precursor liquid film. In-

corporating a precursor film, such that the spreading front of the droplet only

has ‘effective’ or ‘apparent’ contact with the precursor film, allows the ‘no slip’

boundary condition to be still imposed without being contradictory.

This area remains highly contentious. We will therefore follow the last regularisation

and assume that the spreading is always over a pre-existing precursor film. This is due

to the simplicity in its implementation in comparison to the other regularisations.

Within the modelling of thin liquid films, it is typical to use lubrication or long-

wavelength theory. The main characterising factor of thin film flows is the small aspect

ratio (i.e., the length of the film , L (say), is much greater than its thickness, H (say)).

This is the key factor in lubrication theory. An expansion of the governing equations

and boundary conditions in terms of the small aspect ratio, ϵ = H/L, and then neglect-

ing the higher order terms enables one to reduce the governing equations and boundary

conditions. However depending on the system studied or the physical effects that one

wishes to explore higher order terms may be included. An example of which is capillary

(or surface tension)effects whose suppression would mathematically turn the problem

into a singular perturbation problem. Lubrication theory is generally employed to de-

scribe several aspects of the thin-film flow problems to predict the evolution of the free

surface (for a nice review see Oron, Davis and Bankoff [52]).

The above modelling ideas have been used to theoretically describe many problems in
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thin-film fluid dynamics. The thesis focuses on the spreading dynamics and stability of

a viscous fluid droplet laden with an insoluble surfactant down an inclined pre-wetted

substrate. The spreading of a viscous droplet or fluid sheet due to gravity alone has been

studied extensively over the past 30 years. The key studies investigating the spreading

dynamics of a droplet of constant volume were discussed by Huppert [27], Troian et al.

[63] and Hocking [25]. These studies have shown that the existence of a multi-region

locally self-similar structure, particularly at late-time (see Fig. 2.8). This problem was

first studied by Huppert [27] who identified a similarity solution for the droplet height,

h:√
x (where h is the droplet height and x is the distance in the flow direction), where

the horizontal component of gravity is the dominant spreading mechanism. This work

was extended, particularly, by Troian et al. [63] and Hocking [25] who identified the

existence of short transition regions at the leading and trailing edges of the spreading

droplet. In these transition regions, capillary effects are important and are comparable

to the horizontal component of gravity. The transition region at the leading edge of the

droplet is characterised by a family of quasi-steady solution parametrised by the ratio

of the downstream precursor film thickness and the droplet height far upstream of this

region. These solutions accommodate a bulge in the droplet height referred to as the

capillary ridge. Troian et al. [63] and Hocking [25] also performed a linear stability

analysis of this region to transverse perturbations by extracting the growth of these

perturbations to a ‘frozen’ in time base state represented by a particular solution curve

in the family of quasi-steady solutions. This type of linear stability analysis is typical

of such spreading problems where the base state is typically non-uniform and time-
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dependant and assumes that the perturbations grow on a much quicker timescale than

the evolving base state. They showed that this region is linearly unstable to a fingering

instability with a well-defined maximum growth rate and wavenumber. Hocking [25]

also showed that the droplet increases in length like t1/3 and thins like t−1/3 at time t.

It is worth noting that the solution structure at the leading edge of the spreading

droplet is similar to a model problem of a fluid sheet spreading down an inclined pre-

wetted plane from a constant flux source first studied by Bertozzi and Brenner [8].

They showed the existence of a travelling wave solution whose structure is described

by a boundary-value-problem. They also analysed the stability of this travelling wave

solution and showed it to be linearly unstable to small amplitude transverse pertur-

bations. They performed a small wavenumber analysis to obtain a stability criterion

which shows that the capillary ridge is necessary for the instability. They also showed

that there is a critical angle beyond which the flow is linearly stable. This contradicts

what is observed experimentally as fingering-type instabilities are shown to occur a all

inclination angles above the horizontal. It has been postulated by Bertozzi and Bren-

ner [8] that a possible explanation for this is that infinitesimally small perturbations

that are present initially, particularly at the contact line, have a growth rate similar to

the evolution of the flow. The transient growth of these perturbations could result in

the contact line becoming unstable leading to the development of the fingering insta-

bilities. Spaid and Homsy [59] were interested in the spreading of a viscoelastic fluid

sheet down an inclined plane. They have compared the effects of a precursor film and
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slip condition at the moving contact line on the spreading dynamics and subsequent

fingering instabilities. They found that the results are similar, particularly when the

precursor film thickness is made sufficiently thin.

Two-dimensional numerical studies have focused upon the stability of a thin viscous

fluid film flowing down an inclined plane due to gravity from a constant flux source.

Schwartz [54] focussed on the case of a completely wetting fluid and showed the evo-

lution of the instability into triangular-shaped patterns. Kondic and Deiz [35, 36]

revisited the problem and showed that by varying the inclination angle the shape of

the fingering instabilities and the surface coverage varied considerably. Decreasing the

angle of inclination resulted in saw-tooth, or triangular-type patterns being observed.

As the angle of inclination was increased the fingers were more rounded with paral-

lel sides. This gave quantitative agreement to the experimental work undertaken by

Huppert [27] and Jerrett and de Bruyn [33]. To the best of our knowledge, there are

no studies on two-dimensional numerical simulations of a droplet of constant volume

spreading gown an inclined plane due to gravity.

In comparison, the theoretical study of surfactant-driven spreading is still relatively

young, and has only developed over the past 20 years. Surfactant-driven droplet

spreading on horizontal pre-wetted surfactant free substrate has been the focus of

several experimental and theoretical studies [31, 29, 42, 43, 44, 45, 62] mainly to bet-

ter understand the the dendritic fingering instability observed near the drop’s edge

(see Fig. 1.2). Troian et al. [62] first investigated theoretically the one-dimensional
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flow structure which included a propagating fluid front ahead of the leading edge of

the spreading bulk droplet. The initial surfactant concentration gradients that exists

between the droplet and the surfactant-free precursor film causes fluid to be ‘sucked’

from the precursor film resulting in these Marangoni driven fluid front. Jensen and

Grotberg [30] showed how an insoluble surfactant monolayer spreading on an initially

planar film can be described using a variety of similarity solution (see also Jensen

[28]). In particular for a planar geometry, they showed that a fluid front similar to that

mentioned above increases in length like t1/3 at time t.

Troian at al. [62] also proposed qualitatively a physical mechanism giving rise to the

observed fingering. Identifying an ‘adverse mobility gradient’ (between the bulk droplet

and precursor film) they suggested an analogy with the viscous fingering in a Hele-Shaw

cell where more mobile (less viscous) displaces a less mobile (more viscous) one.

Warner et al. [65] examined the stability of a surfactant-laden droplet spreading over

a surfactant free precursor film using two coupled nonlinear partial differential equa-

tions for the evolution of the film thickness and the surfactant concentration. Their

1-D simulations revealed a structure broadly similar to that described by Troian [62],

with the bulk droplet connecting to the fluid front via an ultra-thin film. The severe

thinning of the droplet resulting in the formation of an ultra-thin film is due to the

fluid being sucked into the fluid front by the Marangoni effect. Their numerical so-

lutions showed the fluid front to spread like t1/3 with the solution structure following

the similarity solution described by Jensen and Grotberg [30] for a planar geometry.



15

They also showed the examined the stability of their 1-D solution to small amplitude

transverse perturbations using a transient growth analysis for spatially non-uniform

and time dependent base states where the growth of perturbations is measured by a

suitable norm. Their stability analysis showed sustained growth of disturbances con-

centrated around the edge of the droplet (it’s so-called ‘effective’ contact line). They

also performed 2-D computations that showed fingering patterns resembling those seen

in experiments.

More recently, Jensen and Naire [32] built on the work by Warner et al. by exploiting

high-resolution numerical simulations to describe the late-time multi-region asymptotic

structure of the spatially 1-D spreading flow. They were able to obtain similarity solu-

tions for each of these regions by using asymptotic analysis using which the spreading

and thinning rates were determined. In particular, they were able to show that the local

solution of the drop’s ‘effective’ contact line can be described using the Landau-Levich

equation. They examined the linear stability of this region to transverse perturba-

tions and showed it to be linearly unstable with a well defined maximum growth rate

and wavelength. Using long-wavelength asymptotics, they derived a stability criterion

which revealed the de-stabilising influence of surfactant via the Marangoni effect.

Only a few studies have examined theoretically the spreading of drops on inclined

planes including surfactant [12, 13, 14, 15, 46, 47, 48]. Gravity and surfactant related

effects were first studied by Edmonstone et al. [12, 13, 14, 15]. They investigated,

as we will, the spreading of thin viscous droplet laden with insoluble surfactant down
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an inclined pre-wetted plane. Their 1-D numerical simulations showed the bulk fluid

droplet with a capillary ridge at its leading edge. Ahead and behind the leading and

trailing edges of the spreading droplet, respectively, there are fluid fronts driven by the

Marangoni effect. They used transient growth analysis to explore the stability of their

1-D solution to small amplitude transverse perturbations. They found that the flow is

linearly unstable with sustained growth of disturbances concentrated near the droplets

leading edge ‘effective’ contact line. They also showed that by increasing the angle

of inclination destabilises the flow further. This research was built upon to include

surfactant solubility effects [14] which included an addition equation for the surfactant

transport in the fluid bulk. They showed that solubility effects add to the destabilising

influence of surfactants. There have also been continuing interest in the climbing of a

surfactant-laden film against the influence of gravity [14, 46, 47, 48]. Mavromoustaki

et al. [46, 47, 48] investigated this problem under both constant volume and flux

conditions. They obtained the power-law time dependence of the fluid film climbing

against the influence of gravity. They also explored the linear and non-linear stability

of the of the flow using linear stability analysis and two dimensional simulations. They

found that the surfactant concentration gradient behind the leading edge ‘effective’

contact line was important in the development of the fingering instability.

It is worth noting that the local solution at the leading edge of the surfactant spreading

droplet of constant volume is similar to the model problem of a fluid sheet laden with

surfactant spreading down an inclined pre-wetted plane from a constant flux source.
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This configuration has been studied by Levy an Shearer [38] who showed the existence

of travelling wave solutions. They expanded upon this research to include surface

tension effects that show the existence of a capillary ridge at the leading edge of the

spreading film [39].

To the best of my knowledge there are no experimental studies of a surfactant-laden

droplet spreading down a pre-wetted inclined plane. We believe that the interaction

between gravity and surfactant-related effects are important in several applications,

particularly these related to the lung airways described previously. Moreover, mathe-

matically describing the transition between the two distinct fingering patterns is also

of interest to us. Hence, this motivates the research conducted in this thesis.

The outline of this thesis is as follows. Chapter 2 explores the one dimensional or

base state flow of a viscous fluid droplet down an inclined pre-wetted plane. We

obtain an equation for the evolution free surface (represented by a nonlinear partial

differential equation) from the Navier-Stokes equations neglecting inertial terms and

using lubrication theory. We then use high-resolution numerics to obtain the 1-D

numerical solution for the evolution of the spreading droplet. We discuss the effect

that variations in the parameters have on the flow of the droplet. The one dimensional

numerical simulations reveal a multi-region self similar solution structure at late time.

We divide the solution structure into regions that have different dominant physical

effects and are characterised by key variables describing the evolution of each region.

We then derive approximate solutions for each region by reducing the governing PDE
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to an ODE which can be solved either numerically or analytically. We finally derive an

ODE model for the key variables to obtain the spreading and thinning rates. Although

most of the results for this problem have already been obtained in previous works, the

methodology followed here is new and novel and forms the basis when investigating

the spreading of a fluid droplet of constant volume laden with insoluble surfactant in

Chapter 4.

Chapter 3 discusses the two-dimensional stability to small amplitude transverse per-

turbations of the time dependent base-states obtained in Chapter 2. We undertake a

linear stability analysis of the ‘effective’ contact line at the leading edge of the droplet.

We also undertake two-dimensional simulations to validate the linear stability anal-

ysis as well as a paramateritic study to understand the influence of key parameters

on the fingering instability. This approach is undertaken as it allows for the physical

mechanism of the growth of the perturbations to be fundamentally understood. Using

the approach of the transient growth of optimum perturbations allows one to obtain

an understanding of the relevant physics involved in the growth of the perturbations

however one is unable to obtain a stability criterion for the flow.

Chapter 4 discuss the spreading of a viscous droplet due to gravity and surfactant-

related effects. We obtain a coupled pair of partial differential equations for the evo-

lution of the free surface of the droplet and the surfactant concentration from the

Navier-Stokes equations and the surfactant transport equation obtained by Stone [60]

and using lubrication theory and a linear equation of state. We then use high-resolution
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numerical simulations to obtain the 1-D numerical solutions for the evolution of the

spreading droplet and surfactant concentration. We discuss the effect that variations

in the parameters have on the flow of the droplet. The one-dimensional simulations re-

veal a multi-region self-similar structure at late time. We divide the numerical solution

into regions that have different dominant physical effects and are characterised by key

variables describing the evolution of each region. We then derive approximate solutions

for each region by reducing the governing PDEs to ODEs which can be either solved

numerically or analytically depending on the region. We finally derive a differential

algebraic system of equations for the key variables to obtain the time evolution of the

characteristic variables numerically and analytically.

Chapter 5 discusses the two-dimensional stability of the flow to small amplitude trans-

verse perturbations to the base-states obtained in Chapters 4. We undertake a linear

stability analysis of the ‘effective’ contact line at the leading edge of the droplet. We

also undertake two-dimensional simulations to validate the linear stability analysis as

well as a parameteritic study to understand the influence that the variables have on

the fingering behaviour.

We draw conclusions and present future work in Chapter 5. We analyse the main

findings of this thesis and describe the natural extension to the work undertaken.



Chapter 2

Viscous fluid droplet spreading

down an inclined pre-wetted plane:

base state.

In this chapter we will consider the spreading of a thin viscous droplet, of constant

volume, down an inclined pre-wetted plane. We will derive the evolution equations

for the droplet height using the lubrication approximation. We use high-resolution

numerics to provide an insight into the important physical mechanisms. Asymptotic

analysis is used to obtain approximate solutions based on the dominant physical mech-

anisms in each region. The spreading and thinning rates are naturally obtained from

our asymptotic analysis and are not assumed to be known a priori.

20
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2.1 Mathematical formulation

g

Air

Fluid

Solid

z*,w*

y*,v*

x*,u*

z*=h*(x*,y*,t*)

θ*

b* (precursor flm thickness)

g*

Figure 2.1: Schematic representation of the model studied.

Consider the spreading of a thin fluid droplet, of constant volume, down an inclined

plane. The fluid has viscosity µ∗, density ρ∗ and surface tension σ∗. The plane is pre-

wetted with a thin precursor film of thickness b∗. We choose a Cartesian co-ordinate

system (x∗, y∗, z∗) with x∗ and y∗ along the plane, and z∗ along the thickness of the

drop. θ is the angle of inclination. The velocities in the x∗, y∗, z∗ directions are given

by u∗, v∗, w∗, respectively. The free surface is given by z∗ = h∗(x∗, y∗, t∗) and the

fluid-solid interface is at z∗ = 0. All starred variables are dimensional.

2.1.1 Governing equations

The equations of motion in the bulk fluid are given by the Stokes equations,

0 = −∇∗P ∗ + ρ∗g∗ + µ∗∇∗2u∗, (2.1)

0 = ∇∗ · u∗. (2.2)
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Eqs.(2.1), (2.2) represent conservation of momentum and mass, respectively. The

fluid in the bulk is assumed to be very slow viscous flow, so inertial effects have

been neglected in Eq. (2.1). In Eq. (2.1), u∗ = (u∗, v∗, w∗) is the fluid velocity

and P ∗ is the fluid pressure relative to atmospheric pressure. Without loss of gen-

erality, we take the pressure in the air to be zero. The gravitational acceleration,

g∗ = (g∗ sin(θ), 0,−g∗ cos(θ)), where g∗ is the magnitude of gravitational acceleration.

We assume that both the fluid viscosity µ∗ and its density ρ∗ are constant.

2.1.2 Boundary conditions

On the fluid-solid interface, z∗ = 0, the no slip boundary condition is applied. This

states that the velocity of fluid on the solid equals the velocity of the solid itself. Hence

u∗ = v∗ = w∗ = 0, at z∗ = 0. (2.3)

On the free surface, z∗ = h∗(x∗, y∗, t∗), which is also referred to as the fluid-air interface

the boundary conditions are less well known. Scriven [55] describes this interface as

a ‘two dimension molecular world analogous to the three dimensional system’. The

boundary condition is prescribed by a stress balance at the free surface. This can be

written as

−(T ∗
1 − T ∗) · n∗ = 2R∗σn∗, (2.4)
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where T ∗
1 = −P ∗

1 , is the stress tensor in the air phase, which is assumed to be inviscid.

P ∗
1 is the air pressure. Since pressure is measured relative to atmospheric pressure,

without loss of generality, P ∗
1 = 0. T ∗ = −P ∗I + τ ∗ is the stress tensor in the fluid

phase, where P ∗ is the liquid pressure, τ ∗ = µ∗(∇u∗+∇u∗T ) is the viscous component

of the stress tensor and I is the identity tensor. σ∗ is the surface tension at the air

liquid interface. σ∗ is constant since the free surface is assumed to be free of any

contaminants. 2R∗ is the mean curvature of the surface and n∗ is the unit outward

normal to the surface (pointing out of the liquid).

The unit outward normal to the surface z∗ = h∗(x∗, y∗, t∗) is

n∗ = ∇∗ · (z∗ − h∗(x∗, y∗, t∗)) =
1√

h∗2
x∗ + h∗2

y∗ + 1

(
−h∗

x∗ ,−h∗
y∗ , 1

)
. (2.5)

The two unit tangents to the free surface, z∗ = h∗(x∗, y∗, z∗) are

t∗1 =
1√

h∗2
x∗ + 1

(1, 0, h∗
x∗) , (2.6)

t∗2 =
1√

h∗2
x∗ + h∗2

y∗ + 1
√
h∗2
x∗ + 1

(
−h∗

x∗h∗
y∗ , h

∗2
x∗ + 1, h∗

y∗

)
. (2.7)

The mean curvature of the surface is 2R∗ = ∇∗
s ·n∗, where ∇∗

s = (I−n∗n∗) ·∇∗ is the

surface gradient operator [16]. This is analogous to the gradient operator ∇∗. Using

the above, the curvature of the free surface can be written as,

2R∗ =
h∗
x∗x∗(−h∗2

y∗ − 1) + h∗
y∗y∗(−h∗2

x∗ − 1) + 2h∗
x∗h∗

y∗h
∗
x∗y∗

(h∗2
x∗ + h∗2

y∗ + 1)
3
2

. (2.8)
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The normal component of the stress balance at the free surface (Eq. (2.4)) is

h∗2
x∗(P ∗ − 2µu∗

x∗)− 2µh∗
x∗h∗

y∗(v
∗
x∗ + u∗

y∗) + 2h∗
x∗µ(w∗

x∗ + u∗
z∗) + 2µh∗2

y∗(w
∗
y∗ + v∗z∗) +

h∗2
y∗(P

∗ − 2µv∗y∗) + P ∗ − 2µw∗
z∗

= −
h∗
x∗x∗(h

∗2
y∗ + 1) + h∗

y∗y∗(h
∗2
x∗ + 1)− 2h∗

x∗h∗
y∗h

∗
x∗y∗

(h∗2
x∗ + h∗2

y∗ + 1)
1
2

σ. (2.9)

The two tangential components of Eq. (2.4) are

2µh∗
x∗(u∗

x∗ − w∗
z∗) + µ(h∗2

x∗ − 1)(w∗
x∗ + u∗

z∗) + µh∗
y∗(v

∗
x∗ + u∗

y∗)

+µh∗
x∗h∗

y∗(v
∗
z∗ + w∗

y∗) = 0, (2.10)

2µh∗
y∗(h

∗2
x∗(v∗y∗ − u∗

x∗)− w∗
z∗ + v∗y∗) + µh∗

x∗(h∗2
x∗ + 1− h∗2

y∗)(v
∗
x∗ + u∗

y∗)

+2µh∗
y∗h

∗
x∗(w∗

x∗ + u∗
z∗) + µ(h∗2

y∗ − h∗2
x∗ − 1)(w∗

y∗ + v∗z∗) = 0. (2.11)

The final boundary condition at z∗ = h∗(x∗, y∗, t∗) is the kinematic condition. This

states that fluid particles that lie on the interface must always remain on the interface.

This implies that

D

Dt∗
[z∗ − h∗(x∗, y∗, t∗)] = 0 or

∂

∂t∗
(z∗ − h∗(x∗, y∗, t∗)) + u∗

s ·∇∗(z∗ − h∗(x∗, y∗, t∗)) = 0. (2.12)

Here u∗
s = (u∗

s, v
∗
s , w

∗
s) is the velocity vector at the free surface, given by (u∗

s, v
∗
s, w

∗
s) =

(u∗|z∗=h∗(x∗,y∗,∗t), v
∗|z∗=h∗(x∗,y∗,∗t), w

∗|z∗=h∗(x∗,y∗,∗t)). Hence the kinematic condition on
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the interface can be written as

−h∗
t∗ + (u∗

s, v
∗
s , w

∗
s) · (−h∗

x∗ , h∗
y∗ , 1) = −h∗

t∗ − u∗
sh

∗
x∗ − v∗sh

∗
y∗ + w∗

s = 0. (2.13)

Hence,

h∗
t∗ = −u∗

sh
∗
x∗ − v∗sh

∗
y∗ + w∗

s . (2.14)

2.1.3 Nondimensionalisation

We nondimensionalise the equations based on length scalesH∗, L∗, a characteristic drop

thickness (e.g. the initial drop height) and length (e.g. the initial drop length), respec-

tively, a characteristic speed U∗ = (ρ∗g∗ sin(θ)H∗2)/µ∗ (balancing viscous forces with

the horizontal component of gravity), a characteristic pressure P ∗ = (µ∗U∗L∗)/H∗2

(pressure gradient balancing viscous forces) and a characteristic time T ∗ = L∗/U∗.

Typical values along with fluid properties are shown in Table 2.1. Hence we nondimen-

sionalise the variables as

(x, y) =
(x∗, y∗)

L∗ , (z, h) =
(z∗, h∗)

H∗ , (u, v) =
(u∗, v∗)

U∗ , w =
w∗

ϵU∗ ,

P =
ϵH∗P ∗

µU∗ , t =
t∗U∗

L∗ , ϵ =
H∗

L∗ . (2.15)

Here, ϵ is the aspect ratio, which is typically much less than one for these problems. It is

worth mentioning that there is an intrinsic length scale h∗ = (σ∗/(ρ∗g∗))1/2, referred to
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as the capillary length scale. This is the length scale over which surface tension balances

gravity and is much less than 1 for most liquids. Other nondimensionalizations have

been used (e.g. see Kondic [34] and Hocking [25]). We prefer to use the above, but the

final form of the equations are similar. Substituting the above dimensionless variables

Physical quantities Typical value
Viscosity, µ∗ (for silicon oil) 0.5 kg/ms

Surface tension, σ∗ (for silicon oil) 0.0021 N/m
Density, ρ∗ (for silicon oil) 960 kg/m3

Characteristic Height, H∗ 0.001m
Characteristic Length, L∗ 0.01m

Characteristic speed, U∗ = ρ∗g∗ sin(θ)H∗2

µ∗ 0.02 m/s

Characteristic pressure, P ∗ = µ∗U∗L∗

H∗2 100 kg/(m s2)
Characteristic time, T ∗ = L∗

U∗ 0.05 s
Capillary lengthscale, ( σ∗

ρ∗g∗
)1/2 10−4m

Table 2.1: Typical values of the dimensional quantities.

into the fluid bulk equations and boundary conditions produces a set of dimensionless

equations

ux + vy + wz = 0, (2.16)

−Px + ϵ2uxx + ϵ2uyy + uzz + 1 = 0, (2.17)

−Py + ϵ2vxx + ϵ2vyy + vzz = 0, (2.18)

−Pz + ϵ4wxx + ϵ4wyy + ϵ2wzz − ϵ cot(θ) = 0. (2.19)

On the free surface, z = h(x, y, t), the nondimensionalized normal stress balance is

1

ϵ2h2
x + ϵ2h2

y + 1
[P (ϵ2h2

x + ϵ2h2
y + 1)− ϵ4h2

xux − 2ϵ4hxhy(vx − uy) + 2ϵ2hx(ϵ
2wx + uz)
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+2ϵ3(ϵ2wy + vz)− 2ϵ3h2
yvy + 2ϵ2wx] =

−Ca
hxx(1 + ϵ2h2

y) + hyy(1 + ϵ2h2
x)− 2ϵ2hyhxhxy

(ϵ2h2
x + ϵ2h2

y + 1)
3
2

. (2.20)

Where Ca= (ϵ3σ∗)/(µ∗U∗), is the capillary number and is assumed O(1). The nondi-

mensional tangential interfacial stress boundary conditions are

2ϵ2hx(ux + wz) + (ϵ2h2
x − 1)(ϵ2wx + uz) + ϵ2hy(vx + uy) + ϵ2hxhy(vz + ϵ2wy) = 0,(2.21)

2ϵ2hy(ϵ
2h2

x(vy − ux)− wz + vy) + ϵ2hx(ϵ
2h2

x − ϵ2h2
y − 1)(vx + uy) + 2ϵ2hyhx(ϵ

2wx + uz)

+(ϵ2h2
y − ϵ2h2

x − 1)(ϵ2wy + vz) = 0. (2.22)

The nondimensional kinematic condition is,

ht + hxu|z=h(x,y,t) + hyv|z=h(x,y,t) − w|z=h(x,y,t) = 0. (2.23)

The no slip boundary condition on z = 0 in dimensionless form is

u = v = w = 0. (2.24)

2.1.4 Lubrication theory

Eqs. (2.16-2.24) can be simplified using the fact that the aspect ratio ϵ≪1. The equa-

tions obtained at leading order in ϵ are referred to as a long wavelength or lubrication

approximation. We seek solutions in the form of a regular perturbation expansion in
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powers of ϵ2 as

(u, v, w, P, h) = (u0, v0, w0, P0, h0) + ϵ2(u1, v1, w1, P1, h1) + .... (2.25)

Substituting this series into Eqs. (2.16-2.24) gives, at leading order, in the fluid

u0x + v0y + w0z = 0, (2.26)

−P0x + u0zz + 1 = 0, (2.27)

−P0y + v0zz = 0, (2.28)

−P0z −D(θ) = 0, (2.29)

where D(θ) = ϵ cot(θ), and is assumed O(1). We include this effect at leading order

even though it is of order ϵ. At z = h0(x, y, t) we have

h0t + h0xu0 + h0yv0 − w0 = 0, (2.30)

−Ca(h0xx + h0yy) = P0, (2.31)

u0z = 0, (2.32)

v0z = 0. (2.33)

At z = 0 the leading order no slip boundary condition is

u0 = v0 = w0 = 0. (2.34)
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We now follow a sequence of steps to reduce Eqs. (2.26-2.34) to a single evolution

equation for h0(x, y, t). Integrating Eq. (2.29) with respect to z and applying Eq.

(2.31), we obtain the leading order equation for pressure,

P0 = D(θ)(h0 − z)− Ca(h0xx + h0yy). (2.35)

Differentiating the above equation with respect to x and substituting it into Eq. (2.27)

gives

u0zz = −1 +D(θ)h0x − Ca(h0xxx + h0yyx). (2.36)

Integrating with respect to z twice and applying the two boundary conditions for u0

in Eqs. (2.32, 2.34) gives

u0 = [Ca(h0xxx + h0yyx)−D(θ)h0x + 1]

[
h0z −

z2

2

]
. (2.37)

To obtain the equation for v0, we differentiate Eq. (2.35) with respect to y then

substitute it into Eq. (2.28). Integrating the resulting equation with respect to z twice

and applying the boundary conditions for v0 in Eqs. (2.33, 2.34) gives,

v0 = [Ca(h0xxy + h0yyy)−D(θ)h0y]

[
h0z −

z2

2

]
. (2.38)

Differentiating Eqs. (2.37, 2.38) with respect to x and y, respectively, and substituting
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it into Eq. (2.26) gives on integration with respect to z,

w0 = −[Ca(h0xxx + h0yyx)−D(θ)h0x + 1]x

(
h0

z2

2
− z3

6

)
−[Ca(h0xxx + h0yyx)−D(θ)h0x + 1]h0x

z2

2

−[(Cah0xxy + h0yyy)−D(θ)h0y]y

(
h0

z2

2
− z3

6

)
−[Ca(h0xxy + h0yyy)−D(θ)h0y]h0y

z2

2
. (2.39)

Finally substituting the expressions for the velocities into the kinematic condition pro-

duces an equation for the evolution of the free surface. This can be written in compact

form as

h0t +∇ ·
[
Ca

h0
3

3
∇∇2h0 −D(θ)

h3
0

3
∇h0

]
+

[
h3
0

3

]
x

= 0. (2.40)

We have thus reduced the problem to a single parabolic PDE for the evolution of

the free surface due to fluid fluxes driven by surface tension (second term) vertical

gravity (third term) and horizontal gravity (fourth term). The evolution equation is

characterized by two parameters the typical values of which are provided in Table 2.2.

In the next section we seek 1D solutions of Eq. (2.40) by assuming that h only varies

in the x-direction with no dependence in y. This will provide the base state whose

linear stability in the transverse y direction will be investigated in Chapter 4.
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Nondimensional quantities Typical value
ϵ 0.1

Ca = ϵ3σ∗

µ∗U∗ 2.23× 10−3

D(θ) 0 ≤ D(θ) ≤ ∞

Table 2.2: Typical values for the dimensionless parameters calculated using values in
Table 2.1.

2.2 1D drop spreading: numerical results.

We first consider the spreading of the droplet in the x-direction with no variation in

the y-direction. The 1D version of Eq. (2.40) is then given by

ht +Qx = 0; Q =

[
Ca

h3

3
hxxx −D(θ)

h3

3
hx +

h3

3

]
. (2.41)

This partial differential equation are suplimented by four boundary conditions, which

are,

h = b, hx = 0 at x = ±L, (2.42)

where b ≪ 1 is the precursor film thickness and L is an arbitrary length. This char-

acterises a flat precursor film far upstream and downstream of the spreading droplet.

The initial conditions are chosen as: (see Fig. 2.2)

h(x, 0) = (1 + b− x2)[H(1− x)−H(−1− x)] + b[H(x− 1) +H(−1− x)], (2.43)

where H(x) is the Heaviside function. The initial condition for the fluid droplet
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Figure 2.2: The initial shape of the droplet

assumes a parabolic shape connecting to a precursor film ahead and behind it. We

seek the time evolution of the free surface keeping the precursor thickness, capillary

number and inclination angle θ fixed. We will compute numerical simulation varying

these parameters to understand the influence they have on the spreading of the droplet.

We first discretise the spatial derivatives in Eq. (2.41) keeping the time derivative

continuous. We define a forward difference and backward difference by,

hx,i =
hi+1 − hi

∆x
, hx̃,i =

hi − hi−1

∆x
, (2.44)

respectively, where hi = h(xi, t), i = 0, 1, ..., N . N is the number of discretisation

points and ∆x is the grid size. Using these forward and backward differences we can

discretise Eq. (2.41) such that,

ht,i +
[
Ca a(hi+1, hi)hx̃xx̃,i − D̂(θ)a(hi+1, hi)hx̃,i

]
x
+

[
h3
i

3

]
x̃

= 0, (2.45)
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where,

a(hi+1, hi) =
h3
i+1 + h3

i

6
, (2.46)

so that these are second order approximations hence Eq. (2.45) are second order accu-

rate. The finite difference scheme used in the above discretisation uses a 5-point stencil.

This has the advantage of a smaller bandwidth (in comparison a 7-point stencil using

the standard centred-difference scheme) while still maintaining second order accuracy.

This scheme is commonly used in thin film problems (see [34, 38]). Our numerical

scheme employed a fixed and spatially uniform grid. We used implicit timestepping

and validated convergence using grid refinement. The resulting differential equations

are solved using the ODE solver ODE15i [56] in Matlab. The overall features of the

flow are as reported by Huppert [27], Troian et al. [63] and Hocking [25].

Figure 2.3 shows the late time evolution (t = 102 − 2× 103) of the droplet height h for

θ = 90o, Ca = 10−3 and b = 10−2. Inspection of this figure reveals there are several

main features of the droplet. The first is the main bulk droplet spreading under the

influence of horizontal gravity. Towards the leading edge of the spreading droplet is a

short region in which horizontal gravity balances capillary forces. This region contains

the so-called capillary ridge where there is an abrupt jump in fluid height as the main

bulk connects onto the precursor film ahead of the fluid droplet. Ahead of the fluid

droplet the precursor film remains undisturbed. At the trailing edge of the droplet is

another small transition region where capillary forces balance gravity.
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Figure 2.4 compares the droplet height h for t = 2 × 103. The parameter values are:

Ca = 10−3, b = 10−2, θ = 90◦ (dashed line), θ = 60◦ (dotted line) and θ = 3◦ (solid

line). We can see that the overall droplet height remains unchanged, except for the

amplitude of the capillary ridge which decreases as the angle of inclination θ (see inset

Fig. 2.4).

Figure 2.5 the droplet height h at t = 2 × 103, with θ = 90o and b = 10−2. The solid

line shows the fluid where Ca = 10−3 and dashed line Ca ≈ 0. The case where Ca = 0

would lead to a a shock to form which would not be resolved numerically. We can see

that the overall droplet height remains unchanged, except within short regions such

as the capillary ridge shown in insets in Fig. 2.5. Therefore the solutions obtained,

downstream of the trailing edge of the droplet are robust for a variety of parameters

and persist at late-late times.

Figure 2.3: The evolution of the spreading droplet angle of inclination θ = 90o, b = 10−2

and Ca = 10−3 for t = 100, 500, 1000, 1500, 2000.
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Figure 2.4: Comparing the droplet height h for t = 2× 103. The parameter values are:
Ca = 10−3, b = 10−2, θ = 90o (dashed line), θ = 60o (dotted line) and θ = 3o (solid
line).

Figure 2.5: Comparing the droplet height h for t = 2× 103. The parameter values are:
b = 20−3, θ = 90o Ca = 10−3 (solid line) and Ca ≈ 0 (dashed line).
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2.3 Gravity-driven spreading without capillary ef-

fects.

The long time evolution of the droplet, when capillary effects are neglected, can be

described using the method of characteristics. Hence, Eq. (2.41), can be written as

ht +

[
h3

3

]
x

= 0. (2.47)

This first-order quasilinear PDE can now be solved using the method of characteristics.

Along the characteristic curves λ = λ(t) we have

dx

dt
= h2, (2.48)

dh

dt
= 0. (2.49)

Equation (2.49) implies that h is constant along the characteristic curves i.e., h(x(t), t) =

h0(ξ), where h0 = h(x, 0) and x(0) = ξ. Integrating Eq. (2.48) along the characteristics

gives

x = h02t+ ξ, (2.50)

Figure 2.6 shows the plots of the characteristic curves given by Eq. (2.50) using the

initial condition in Eq. (2.43). For this initial condition, there is an intersection of the

characteristic curves near the leading edge of the droplet resulting in the formation of a
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Figure 2.6: The characteristic curves for Eq. 2.47 using the initial condition in Eq.
(2.43).

shock like structure. After determining a shock is formed we use Whitham’s equal area

rule [66] to construct a shock solution (or a weak solution to Eq. (2.47)) as follows.

As the flow develops there is a point in time where the solution ‘breaks’ and becomes

multivalued. At this point there exists a weak solution which is discontinuous. Both

the multivalued curve and the discontinuous curve must conserve the volume of the

drop, hence the discontinuity must ‘cut off’ lobes of equal area as shown in Fig. 2.7.

Consider the conservation equation written in the form

ht + qx = 0, (2.51)

where the flux q = q(h) and c(h) = q′(h). Let x = s(t) be the position of the shock

and, h0
1 = h0(ξ1) and h0

2 = h0(ξ2) be the initial values of h at a point ξ1 and ξ2 ahead

and behind the shock respectively. The equations for the equal area rule can then be
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Figure 2.7: Equal area construction showing the transformation to the breaking profile

written as following (Whitham [66])

[
(q02 − q01)− (h0

2c
0
2 − h0

1c
0
1)
] ξ1 − ξ2
c01 − c02

=

∫ ξ1

ξ2

h0dξ, (2.52)

s(t) = ξ1 + c01t, (2.53)

s(t) = ξ2 + c02t. (2.54)

Using q(h) = h3

3
and c(h) = h2, we then solve Eqs. (2.53,2.54) for t to obtain,

t =
ξ1 − ξ2
c02 − c01

, (2.55)

using which Eq. (2.52) can be written as ,

2

3
(h03

2 − h03

1 )t =

∫ ξ1

ξ2

h0dξ. (2.56)

The integral term would take into account the precursor film and we only wish to

conserve the volume of the fluid droplet. Hence by subtracting off the contribution
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from the precursor film and substituting Eq. (2.55) into the above equation produces,

2t

3
(h03

2 − h03

1 )− bt(h02

1 − h02

2 ) =

∫ ξ1

ξ2

h0 − b dξ. (2.57)

As we need the long time solution then we can take limits as time tends towards infinity.

As time increases ξ1 exceeds 1 and then h0
1 = b and therefore q01 = b3

3
and c01 = b2. Note

that as t → ∞ ξ2 → −1 because the characteristic curve that originates from x = −1 is

the last to intersect the other characteristic curves (characteristics that originate from

x < −1 do not intersect). Substitute these values into Eq. (2.57),

2t

3
(h03

2 − b3)− bt(h02

2 − b2) =

∫ 1

−1

h0 − b dξ = A, (2.58)

where A is the volume of the drop. Hence,

h03

2 − 5

3
b3 +

3

2
bh02

2 − 3A

2t
= 0. (2.59)

As h0
2 ≫ b, then Eq. (2.59) gives the relationship for the thinning of the bulk drop as,

h0
2 ≈

(
3A

2t

)1/3

, (2.60)

From Eq. (2.54) we can approximate the position of the shock as,

s(t) ≈ c02t = h02

2 t, (2.61)
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because ξ → −1 ≪ h02

2 t. Substituting the approximation for the height of the leading

edge (Eq. (2.60)) into the above equation gives the long time position of the shock,

s(t) ≈
(
9

4
A2t

)1/3

. (2.62)

Taking the equation of the charecteristic curves (Eq. (2.50)) and rearranging for h(x, t)

we obtain a similarity solution for the height of the bulk drop,

h(x, t) =

(
x− ξ

t

)1/2

. (2.63)

Rearranging Eq. (2.62) for t and substituting it into the above equation leads to an

equation for the evolution of the main bulk drop,

h(x, t) ≈ h0
2

(
x− ξ

s(t)

)1/2

. (2.64)

This is the similarity solution calculated from the asymptotic analysis by Huppert [27].

Note the position of the shock (s(t)) and the height of the shock (h0
2) here can be

thought of as the position and height of the ‘effective’ contact line, denoted in the

following analysis by xL and hL. This analysis conducted here has successfully repro-

duced the spreading and thinning rates and similarity solution obtained by Huppert

[27].
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2.4 Description of the late-time self-similar struc-

ture.

Figure 2.8: Late-time self-similar structure of the spreading fluid droplet.

The numerical solution described in §2.2 shows a multi-region locally self-similar struc-

ture for the droplet height, particularly at late-time. As mentioned previously the

self-similar structure observed is robust to variation in the parameters which char-

acterise the droplet shape. We describe each region in turn below along with their

relevant physics, scalings and approximate solutions. The spreading of the droplet is

controlled predominantly by the horizontal component of gravity. Capillary or surface

tension effects become important in short transition regions especially in the forma-

tion of the capillary ridge at the leading edge of the spreading droplet (see Fig. 2.5

comparing spreading with and without capillary effects). The flow domain of the drop

is divided into the following regions (see Fig. 2.8):
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• Region I: The bulk droplet region. This long region contains the bulk of the

spreading droplet. The dominant flow mechanism in this region is the horizontal

component of gravity. It is characterised by the location of its leading edge (the

‘effective’ contact line ahead of the droplet), x = xL(t), the height at the leading

edge, h = hL(t), and the location of the trailing edge (the ‘effective’ contact line

behind the droplet), x = xT (t).

• Region IIIa: The ‘effective’ contact line region at the leading edge of the droplet.

Here surface tension effects are of similar magnitude to the horizontal component

of gravity. This region is characterised by the position of the effective contact line

xL(t), the droplet height upstream of the capillary ridge hL(t) and the precursor

film thickness b.

• Region IIIb: The ‘effective’ contact line region at the trailing edge of the droplet.

Here surface tension effects are of a similar to the horizontal forces of gravity.

This region is characterised by the position of the capillary wave at the trailing

edge of the droplet denoted by xT (t) and the precursor film height b.

• Region II: The precursor film region. This region is a passive region containing

the precursor film ahead and behind the spreading droplet. This region remains

undisturbed.

The flow is characterised by 3 variables hL, xL and xT . These variables will be used

to describe the solutions of the regions described previously. We will also use these

variables to determine the spreading and thinning rates not known a priori. We obtain
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xL by locating where the position of the capillary wave downstream of the capillary

ridge. hL is obtained by the global maximum in fluid height in the absence of capillary

effects. xT is the location of the capillary wave at the trailing edge of the droplet. We

will now discuss each region in turn, neglecting hereafter the effects vertical component

of gravity everywhere except in the capillary ridge region where it appears as a second-

order diffusion term smoothing the capillary ridge. We use the numerical solution of

the PDE shown in Fig. 2.3 to illustrate the self-similar structure by showing the data

collapses when rescaled using the scalings appropriate to each region. We also use this

data to validate any assumptions made in the analysis.

2.4.1 Region I: The bulk fluid droplet

This long region between xT (t) ≤ x ≤ xL(t) contains the majority of the spreading

droplet. The dominant spreading mechanism is due to the horizontal component of

gravity. The numerical solutions shown in Fig. 2.3 suggest a self-similar solution is

likely. We now describe this self-similar solution. We set,

x = xT (t) + ξxL(t), h(x, t) = hL(t)H(ξ). (2.65)

Figure 2.9 shows that the numerical solution to Eq. (2.41), shown in Fig. 2.3, scale

under these scaling’s. We now derive an approximate solution for this region. Substi-
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tuting the above scaling’s into Eq. (2.41) we obtain at leading order in 1/xL

−V̂ (ξH)ξ +

[
H3

3

]
ξ

= 0, (2.66)

where V̂ = ẋL/h
2
L is related to the speed of the ‘effective’ contact line at the leading

edge of the droplet. We will continue to use the the dot above a variable (i.e. 2̇) to

denote the time derivative of a function of time only. In the above equation we assume

in the above equation that the fluid volume is conserved (i.e. ˙(xLhL) = 0, confirmed

from numerical simulations and will be validated in §2.5) and that the trailing edge

of the droplet is pinned (i.e. ẋT = 0). Integrating the above equation with respect

to ξ and applying the boundary condition H = 1 at ξ = 1 also assuming V̂ = 1/3 at

leading order in precursor film (validated in §2.4.2), we obtain

H(H2 − ξ) = 0. (2.67)

The solutions of which are H = 0,±
√
ξ. As H = 0 is a trivial solution and H = −

√
ξ

is an unrealistic one, the solution is,

H =
√
ξ. (2.68)

The dashed line in Fig. 2.9 shows this similarity solution. It can be seen that the

similarity solution has good agreement with the rescaled numerical solutions. In the
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Figure 2.9: Evolution of droplet height h using data from Fig. 2.3 rescaled using Eq.
(2.65). The dashed lines show the similarity solution in Eq. (2.68).

original variables this can be written as,

h(x, t) = hL(t)

√
x− xT

xL(t)
. (2.69)

Hence, h(x, t):√
x (where ‘:’ means ‘goes like’), which is consistent with numerics

(see Fig. 2.3). This solution was first obtained by Huppert [27] and also Troian et al.

[63]. We observe from Eq. (2.69) that hx, hxx → ∞ as x → xT . This implies that the

above similarity solution breaks down near x = xT . This means that surface tension

and vertical gravity can no longer be neglected in Eq. (2.41) and a transition region

including this is required. This is discussed in §2.4.3.
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2.4.2 Region IIIa: The ‘effective’ contact line ahead of the

drop.

This region includes the capillary ridge and connects to the precursor film (region

II) ahead of it and the bulk drop (region I) behind. The length scale of this region,

X (say), is obtained by balancing surface tension with the horizontal component of

gravity. Hence,

X = (CahL)
1
3 . (2.70)

We introduce the following scalings for this region as follows.

x = xL + (CahL)
1/3ξ, h(x, t) = hLH(ξ, τ), τ =

h5/3t

3Ca1/3
. (2.71)

Figure 2.10 show a family of quasi-steady solutions when the numerical solution in

Figure 2.10: Evolution of the droplet height h in region IIIa using data from Fig. 2.3
rescaled using Eq. (2.71).
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Fig. 2.3 is scaled using the above scalings. The maximum height of the capillary ridge

decreases in time while the film thickness downstream increases. As hL is decreasing in

time (see Fig. 2.3) s(t) = b/hL(t) is an increasing function of time as the precursor film

thickness is fixed. We now derive an approximate solution for this region. Substituting

the above scalings into Eq. (2.41) and assuming the solution to be quasi-steady (i.e.

assuming ḣL ≈ 0), we obtain,

−V̂ Hξ +

[
H3

3
Hξξξ − D̂(θ)

H3

3
Hξ +

H3

3

]
ξ

= 0, (2.72)

where V̂ = ẋL/h
2
L is the dimensionless ‘effective’ contact line speed and D̂(θ) =

(ϵ cot(θ)h
2/3
L )/Ca1/3. These are supplemented by the boundary (or matching) con-

ditions that,

H → 1 as ξ → −∞, H → s as ξ → ∞. (2.73)

Equation (2.73) assumes that h is constant far upstream and downstream where is

matches onto regions I and II, respectively. This is reasonable considering that h is only

weakly ξ dependent under these scalings. While this matching condition is approximate

for the main bulk region (region I) it is exact for region II. Then integrating Eq. (2.72)

with respect to ξ and using the above boundary conditions gives,

V̂ =
1

3

(
1 + s+ s2

)
. (2.74)
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Using this gives the following ODE,

Hξξξ = −
[
s2 + s

H3

]
+

[
1 + s+ s2

H2

]
+ D̂(θ)Hξ − 1,

H → 1 as ξ → −∞,

H → s as ξ → ∞. (2.75)

Hence complex PDE to a single third order ODE in this region parameterised by s(t).

Varying s gives the full family of quasi-steady solutions shown in Fig 2.10. Equation

(2.75) was first derived by Troian et al.. We solve this ODE numerically using the

shooting method as outlined below. We linearise Eq. (2.75) about the upstream

boundary condition, i.e., H → 1 as ξ → −∞. This provides the three initial conditions

along with a shooting parameter which we use to integrate Eq. (2.75). The shooting

parameter is adjusted so as to satisfy the downstream boundary condition, H → s(t)

as ξ → ∞. Details of the shooting method for these kind of problems can be found in

Tuck and Schwartz [64]. Taking,

H = 1 + δH1(ξ). (2.76)

Substituting into Eq. (2.75) gives at O(δ),

H1ξξξ =
(
−2 + s+ s2

)
H1 + D̂(θ)H1ξ. (2.77)
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The characteristic equation of the above ODE has three roots, one of which is always

negative. This root is discarded since we avoid exponentially growing solution as ξ

becomes large and negative. The remaining two roots are always positive (i.e. have

positive real part). Depending on the angle of inclination θ, we have 3 cases: complex

conjugate, real and equal and real and distinct roots.

Case 1: Complex conjugate roots (α± iβ). The solution of Eq. (2.77) can be written as,

h1:1 + Aeαξ cos(β(ξ − ξ0)), as ξ → ∞. (2.78)

Since the ODE in Eq. (2.75) is translationally invariant, we can fix ξ0 (large

and negative) such that cos(β(ξ− ξ0)) = 1. This gives a one parameter family of

solutions and one can shoot by varying the parameter A to satisfy the downstream

boundary condition. It can be shown that there is a unique solution in this case.

Case 2: Real and equal (α1 say). The solution of Eq. (2.77) can be written as,

h1:1 + eα1ξ(A+Bξ), as ξ → ∞. (2.79)

There is a two parameter family of solutions in this case. One can fix a parameter

(say A) and shoot with the other parameter to satisfy the downstream boundary

condition. There is also a unique solution in this case.

Case 3: Roots are real and distinct (α1, β1 say). The solution of Eq. (2.77) can be written
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Figure 2.11: The solution to the ODE in Eq. (2.75) for inclination angles θ = 90, 60,
45, 30, 15, 5, 4 and 3 degrees. The parameter s = 0.01.

as,

h1:1 + Aeα1ξ +Beβ1ξ as ξ → ∞. (2.80)

The shooting method is the same as in case 2 and also gives a unique solution.

Figure 2.11 plots the numerical solution to Eq. (2.75) for various angles θ. The

parameter s(t) = 0.01 is fixed.We observe that behaviour of the numerical solutions in

Fig. 2.11 is the same as in Fig. 2.10. We also note that the magnitude of the capillary

ridge decreases as θ decreases. The solution to Eq. (2.75) provides a quasi-steady

base state for each angle θ whose linear stability to transverse perturbations will be

discussed in §3.1.
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2.4.3 Region IIIb: The ‘effective’ contact line region behind

the drop.

This short transition region matches the bulk of the drop onto the precursor film

at its trailing edge. This region does not actively influence the evolution dynamics.

However, for completeness we will discuss the appropriate scalings valid for this region.

The dominant mechanism is surface tension and the horizontal component of gravity.

This region has very short length scale, X (say), can be obtained by considering where

the Region I solution given by Eq. (2.69) breaks down. Here, the neglected surface

tension is now of comparable magnitude to the horizontal component of gravity, so

Ca
h3

3
hxxx:h3

3
. Using Eq. (2.69), h:hL

√
x
xL
, and comparing the above two effects

gives,

X: Ca2/5
h2/5

L

x1/5
L

and h:Ca1/5h
6/5
L

x
3/5
L

. (2.81)

We now introduce the following scalings:

x = xT + Ca2/5
h
2/5
L

x
1/5
L

ξ, h(x, t) =
Ca1/5h

6/5
L

x
3/5
L

H(ξ). (2.82)

Substituting this into Eq. (2.41) and assuming that ḣL ≈ 0 gives,

−9

5
V̂ H − 3x

6/5
L

Ca2/5h
12/5
L

ẋTHξ +
3

5
V̂ ξHξ +

1

3

[
H3Hξξξ +H3 +O

(
1

x
2/5
L

)]
ξ

= 0, (2.83)
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where V̂ = ẋL/h
2
L. Assuming that the trailing edge of the droplet is pinned and that

the vertical component of gravity is small (both of which are true at large inclination

angles), or at leading order in 1/x
2/5
L , we obtain

Hξξξξ =
3V̂

5

(
3

H2
− ξ

Hξ

H3

)
− 3Hξ

H
Hξξξ −

3

H
Hξ,

H → bx
3/5
L

h
6/5
L Ca1/5

, Hξ → 0 as ξ → −∞ H → ξ1/2, Hξ →
1

2
ξ−1/2 as ξ → ∞.(2.84)

Equation (2.84)is similar to that derived by Hocking [25]. Figure 2.12 shows the

rescaled solutions to the PDE shown in Fig. 2.3 and the scalings in Eq. (2.82)

gives a family of quasi-steady solutions. Equation (2.84) is difficult to solve as it

is non-autonomous and has non-constant boundary conditions and will be considered

as future work. We note that there would be an additional transition region between

this region and region I where surface tension balances both the vertical and horizon-

tal components of gravity this is also not discussed here and will be a topic of future

investigation.

2.5 Time evolution of the characteristic variables-

spreading and thinning rates

Each of the above described regions are characterised by hL and xL. An equation for

its time evolution is required to fully describe each region and determine the spreading
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Figure 2.12: Evolution of the droplet height h in region IIIb using data from Fig. 2.3
rescaled using Eq. (2.82).

and thinning rate of the drop, which is not known a priori. We derive the evolution

equations for hL and xL as follows. The volume of the fluid in the drop is conserved.

So,

A =

∫ L

−L

(h− b)dx =

∫ xL

xT

hL

√
x− xT

xL

dx− b(xL − xT ), (2.85)

where A is the total fluid volume. In the above we neglect the contributions in the two

transition regions because they are negligible in comparison to the fluid contained in

region I. Assuming b ≪ 1,

A ≈
∫
xT

xL

hL

√
x− xT

xL

dx =
2

3
hLxL

(
xL − xT

xL

)3/2

. (2.86)
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Due to the fact that xT ≪ xL, the above equation can be reduced to,

hL =
3

2xL

A. (2.87)

This provides us with an equation for hL. Now Eq. (2.74) implies,

ẋL =
1

3
(h2

L + bhL + b2) (2.88)

Assuming b ≪ 1 and using Eq. (2.87), and integrating Eq. (2.88) with respect to time

gives,

xL =

(
9

4
A2(t− t0) + x3

L0

) 1
3

, (2.89)

where xL0 = xL(t = t0), t0 is some initial time. Using Eq. (2.89) in Eq. (2.87) then

gives,

hL =
3A

2

 1(
9
4
A2(t− t0) + x3

L0

) 1
3

 . (2.90)

This shows that xL:t1/3 and hL:t−1/3. Figures 2.13(a,b) plot xL, hL versus t using

Eqs. (2.88, 2.90) (dashed line), with A = 4/3 and t0 = 103, and compares with the

corresponding numerical data (solid lines). The choice of t = 103 is to allow the self-

similar structure to fully develop. The agreement is good and the power-law behaviour

for the spreading and thinning rates are as predicted above (see Figs. 2.14 (a,b)). This

was first obtained by Huppert [27] except he assumed a power-law time dependence a

priori and we have managed to extract it naturally from our asymptotic analysis.
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Figure 2.13: Comparing (a) xL and (b) hL obtained from the numerical solution of the
PDE’s (dashed lines) with Eqs. (2.89,2.90)(solid lines).
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Figure 2.14: Comparing (a) xL and (b) hL obtained from the numerical solution of
the PDE’s (dashed lines) with Eqs. (2.89,2.90)(solid lines)on a log-log plot with the
power-law behaviour displayed.
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2.6 Concluding remarks

This chapter analyses the spreading of a constant volume thin viscous fluid droplet

down a pre-wetted inclined plane using numerical simulations and asymptotic analysis.

This problem was first studied by Huppert [27] who identified the similarity solution

for the drop height, h:√
x, of the spreading droplet where the horizontal component

of gravity is the dominant spreading mechanism. Subsequent studies, particularly,

by Troian [63] and Hocking [25] identified short transition region (so called effective’

contact line regions) at the leading edge (region IIIa) and trailing edge (region IIIb) of

the spreading droplet where surface tension forces are also important. At the leading

edge, the quasi-steady evolution is described by the boundary value problem in Eq.

(2.75) parametrised by either the ‘effective’ contact line speed, ẋL, or its upstream

height, hL which decreases as a function of time. It is worth mentioning that this

local problem is similar to a model problem of a fluid sheet spreading down an inclined

pre-wetted plane from a constant flux source first studied by Bertozzi and Brenner [8].

They showed that a travelling wave solution exists for this problem whose structure

is described by the boundary value problem in Eq. (2.75) parameterised by either a

constant contact line speed (travelling wave speed) or constant upstream thickness.

The quasi-steady BVP at the trailing edge of the droplet (Eq. (2.84)) was first derived

and partially analysed by Hocking [25] although he assumes a known time dependence

for the spreading and thinning rates in the scalings for this region (as well as other

regions).
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The methodology followed here is based on Troian’s work and does not assume a priori

the spreading and thinning rates as done by Hocking. The novelty in our approach

is being able to fully describe the evolution of each region through two charecteristic

variables xL and hL. The evolution of xL and hL are then obtained by conservation

of fluid volume. We have been able to reproduce all the previous results including the

late-time droplet spreading rate t1/3 and thinning rate t−1/3 using this methodology.

This concludes our analysis of this problem. The next chapter we will discuss the

stability of the ‘effective’ contact line region to transverse perturbations.



Chapter 3

Viscous fluid droplet spreading

down an inclined pre-wetted plane:

stability.

As mentioned in the introduction, droplet spreading due to gravity develop ‘fingering’-

type instabilities. The stability of a spreading droplet of constant volume, discussed

in Chapter 2, spreading due gravity will be explored to investigate the conditions that

result in fingering instabilities to develop. We will particularly focus on the stability of

the droplet’s leading edge (region IIIa) where the fingering instabilities are speculated

to originate from. We will do this by first performing a linear stability analysis of the 1D

base state flow to obtain dispersion relation curves (relationship between growth rate

and wavenumber of transverse perturbations) numerically and compare the results to

59
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a small wavenumber analysis (§3.1). The linear stability analysis analyses the stability

of a base state to transverse perturbations where we ‘freeze’ the base state in time and

assume that the perturbations grow faster than the base state evolves. To validate

these results further we will run two-dimensional simulations (§3.2). Finally, we will

discuss the effect of the selected parameters on the fingering behaviour.

3.1 Linear stability analysis of region IIIa

Previously we made the assumption that the free surface was independent of the trans-

verse y direction, this is true initially however as the droplet develops, perturbations

in the leading edge grow leading to the fingering behaviour shown in both Hocking[25]

and Kondic[34]. As was discussed by Troian [63], Hocking [25] and Bertozzi and Bren-

ner [8] (for constant flux) we believe the onset of the fingering instabilities originated

from the ‘effective’ contact line region, region IIIa. To investigate this we consider the

linear stability analysis to transverse perturbations of region IIIa. We first write the

two-dimensional equivalent of the governing equation, Eq. (2.72). This can be written

as

Hτ − V̂ Hξ +∇(ξ,η) ·
[
Ca

H3

3
∇(ξ,η)∇2

(ξ,η)H − D̂(θ)
H3

3
∇(ξ,η)H

]
+

[
H3

3

]
ξ

= 0, (3.1)

where η =
y

(CahL)1/3
and ∇(ξ,η) =

(
∂

∂ξ
,
∂

∂η

)
. We use the solution to Eq. (2.75) as the

base state and initiate perturbations of this base state in the transverse y direction.
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Hence, we impose a small perturbation in the transverse η-direction as

H(ξ, η, τ) = Hs(ξ) + ϵĤ(ξ)eiqη+βτ , (3.2)

where Hs is the quasi-steady base state for H obtained by solving Eq. (2.75), q =

(CahL)
1/3q∗ is the scaled wavenumber and β is the growth rate, and ϵ ≪ 1. We seek

a class of perturbations Ĥ to be such that Ĥ → 0 as ξ → ±∞ and Ĥ is periodic in η.

Substituting this into the Eq. (3.1) at leading order in ϵ gives Eq. (2.78). At O(ϵ) we

obtain the eigenvalue problem:

−βĤ = LĤ, (3.3)

where L is a linear operator defined by

L =
H3

s

3

∂4

∂ξ4
+

(
H3

s

3

)
ξ

∂3

∂ξ3
− [D̂(θ) + 2q2]

H3
s

3

∂2

∂ξ2
+
[
2V̂
] ∂

∂ξ

+

[
(1− 3V̂ )

Hs

−
(
H3

s

3

)
ξ

(D̂(θ) + q2)

]
∂

∂ξ

+
H3

s

3
q2[D̂(θ) + q2]− (1− 3V̂ )

H2
s

Hsξ. (3.4)

One can solve the eigenvalue problem, given by Eq. (3.3), numerically to find the

dispersion relation. The numerical solutions of Eq. (3.3) is a non-trivial task due to

its stiff nature. An alternative is to solve the corresponding linear PDE: (Ĥt = −LĤ),

where the linear operator is defined in Eq. (3.4) as an initial value problem (IVP).

We use finite differences on a uniform grid to discretise the spatial derivatives the
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discretisaton used is the same as that described in §2.2 keeping the time derivatives

continuous. The resulting system of ODE’s is solved using a stiff ODE solver in MAT-

LAB (ODE15i[56]). We track the evolution from an initial condition Ĥ = Ae−Bξ2

where A = 0.1 and B = 5 for a prescribed wavenumber q, inclination angle θ and

downstream film thickness s. We seek perturbations such that Ĥ → 0 as ξ → ±∞.

Figure 3.1 shows the evolution of Ĥ (solid lines) for q = 0.3 and θ = 90o emanating

from the base state (dashed line) corresponding to s = 0.0884. It is observed under

suitable conditions that the disturbances can grow rapidly perturbations are larger im-

mediately after the capillary ridge and behind the ‘effective’ contact line. At late times

the growth of the disturbances is approximately exponential with Ĥ ∝ exp(βτ). This

is repeated varying wavenumber to obtain the dispersion relationship. The computed

growth rate β is shown in Fig. 3.2 as a function of wavenumber q for θ = 90o and base

states evaluated with s = 0.0523, 0.0656, 0.0884, 0.1106. The simulations demonstrate

convincingly that the most linearly unstable mode has a wavenumber comparable to the

width of region IIIa, that as time increases the base state becomes less linearly unstable

(as seen in Fig. 3.2 that the maximum growth rate and band of unstable wavenumbers

decrease as time increases), and that sufficiently short-wavelength disturbances are lin-

early stable. Figure 3.3 shows the dispersion relation for varying inclination angles

θ = 3o, 4o, 5o, 15o, 30o, 60o, 90o. It is observed that decreasing the angle of

inclination has a stabilising effect with both the maximum growth rate and bandwidth

of unstable decreasing. Furthermore, there is a critical inclination angle θ below which

the base state is linearly stable for all wavenumbers.
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3.1.1 Small-wavenumber analysis

In this section we examine instabilities with large wavelength (or small wavenumber).

Numerical dispersion relations (see Fig. 3.2) suggest that the growth rate is quadratic

at small wavenumbers, we write Ĥ = Ĥ0 + q2Ĥ1 + q4Ĥ2 + ... and β = β0 + q2β1 + ... .

At leading order in q we get,

[
H3

s

3
Ĥ0ξξξ − D̂(θ)

H3
s

3
Ĥ0ξ + 2V̂ Ĥ0 +

(1− 3V̂ )

Hs

Ĥ0

]
ξ

= −β0Ĥ0. (3.5)

A solution of Eq. (3.5) is

Ĥ0 = −Hsξ, β0 = 0. (3.6)

This is just a translation of the base solution Hs. At O(q2),

−β1Ĥ0 =
H3

s

3
Ĥ1ξξξξ +

(
H3

s

3

)
ξ

Ĥ1ξξξ − D̂(θ)
H3

s

3
Ĥ1ξξ − 2

H3
s

3
Ĥ0ξξ

+2V̂ Ĥ1ξ +
1− 3V̂

Hs

Ĥ1ξ −
(
H3

s

3

)
ξ

D̂(θ)Ĥ1ξ −
(
H3

s

3

)
ξ

Ĥ0ξ +
H3

s

3
D̂(θ)Ĥ0. (3.7)

Integrating with respect to ξ, using Ĥ0 = −Hsξ and all derivatives of Ĥ0, Ĥ1 → 0 as

ξ → ±∞ gives,

β1 =
1

3 (1− s)

∫ ∞

−∞
(Hs − s) (Hs − 1) (Hs + 1 + s) dx. (3.8)

For the base solution to be linearly unstable, β1 > 0. Hence a necessary condition for

this to happen is that H0 > 1 over some part of the domain. Computing the above
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integral for the base solutions shown in Fig. (2.11) shows that the capillary ridge is

necessary for the fingering instability to be initiated [63]. As θ decreases, there is a

slight bulge above one but is not large enough for β1 to be positive. Hence, H0 > 1 may

not be sufficient for the instability to develop. This is consistent with the dispersion

relation shown in Fig. 3.3. Figure 3.4 compares the numerically obtained dispersion

relation to that obtained from Eq. (3.8) we see that there is good agreement at small

wavenumber however the two lines begin to deviate as the wavenumber exceeds the

small wavenumber limit. A correction could theoretically be obtained by calculating

the o(q4) growthrate.

Figure 3.1: Solid lines show solutions of linearised PDE of Eq. (3.3) for q = 0.3, θ = 90o

using a base state Hs (dashed line shows Hs/10) corresponding to s = 0.0884. Arrows
show increasing time between τ = 10− 100.
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Figure 3.2: Growth rate β versus wavenumber q for s = 0.0523, 0.0656, 0.0884, 0.1106
for θ = 90o.

Figure 3.3: Dispersion relation obtained by solving IVP of Eq. (3.3) for s = 0.01 for
inclination angles of θ = 3o, 4o, 5o, 15o, 30o, 60o, 90o.
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Figure 3.4: Growth rate β versus wavenumber q for s = 0.0884 for θ = 90o. The
dotted line shows the numerically obtained dispersion relation and the solid line is that
obtained using Eq. (3.8)

In the next section we will validate the linear stability results and explore the stability

of the other regions using two-dimensional simulations.

3.2 Two-dimensional numerical simulations and non-

linear stability.

In this section, we examine the nonlinear stability to transverse perturbations of the

base state flow discussed in detail in Chapter 2 using two-dimensional numerical sim-

ulations. The two-dimensional problem is Eq. (2.40) and can be written as,

ht +

[
Ca

h3

3
(hxxx + hyyx)− D̂(θ)

h3

3
hx

]
x
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+

[
Ca

h3

3
(hyyy + hxxy)− D̂(θ)

h3

3
hy

]
y

+

[
h3

3

]
x

= 0, (3.9)

for −L1 ≤ x ≤ L2 and −1/q ≤ y ≤ 1/q, where q is the wavenumber of a perturbation

in the y direction and L1, L2 are arbitrarily chosen lengths. This PDE was derived in

§2.1 for the droplet height. This equation is supplemented by four boundary conditions

in the x direction which are

h = b, hx = 0, at x = L1, L2, (3.10)

and periodic boundary conditions in the transverse y direction. We start our simu-

lations from two initial conditions: (i) the parabolic droplet shape (Eq. (2.43)) used

in the one dimensional simulations (ii) the quasi-steady one dimensional base states

at specific times obtained numerically in Chapter 2. We introduce localised periodic

transverse perturbations of wavenumber to the initial conditions of the form:

h(x, y, 0) = hb(x) +

P,Q∑
k=1,l=1

Ak cos(qkπy) exp[−K(x− x0l)
2], (3.11)

where hb(x) is the initial condition . P is the number of modes imposed and Q is the

number of locations in the x direction across which perturbations are applied denoted

by x0l. Ak and qk denote the amplitude and wavenumber of mode k, respectively, and

K controls the width of the localised perturbation. The superposition of perturbations

allows the modes to interact and investigate the existence of any dominant mode(s).
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We discretise the PDE (Eq. (3.14)) by the finite difference discretisation scheme used

in the 1-D simulations. We first define a forward difference and a backward difference

in the x direction by,

hx,i,j =
hi+1,j − hi,j

∆x
, hx̃,i,j =

hi,j − hi−1,j

∆x
. (3.12)

We also define a forward difference and a backward difference in the y direction by

hy,i,j =
hi,j+1 − hi,j

∆y
, hỹ,i,j =

hi,j − hi,j−1

∆y
, (3.13)

where i is the index in the x direction and j is the index in the y direction, where hi,j =

h(xi, yj, t), i = 0, 1, ...,M , j = 0, 1, ...N . M and N are the number of discretisation

points in the x and y directions respectively. ∆x and ∆y are the grid size in the x and

y directions, respectively. Using Eqs. (3.12,3.13) we can discretise Eq. (3.14) as,

ht,i,j +
[
Ca a(hi+1,j, hi,j)(hx̃xx̃i,j + hỹyx̃i,j)− D̂(θ)a(hi+1,j, hi,j)hx̃i,j

]
x

+
[
Ca a(hi,j+1, hi,j)(hỹyỹi,j + hx̃xỹi,j)− D̂(θ)a(hi,j+1, hi,j)h ˜yi,j

]
y
+

[
h3
i,j

3

]
x̃

= 0,

(3.14)

where,

a(hi+1,j, hi,j) =
h3
i+1,j + h3

i,j

6
, a(hi,j+1, hi,j) =

h3
i,j+1 + h3

i,j

6
(3.15)

This allows us to reduce the bandwidth to a 13 point stencil in comparison to a 21 point
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which would be obtained when using a standard centred difference scheme. Leaving

the time derivative continuous we obtain a system of ODE’s which are solved using

the stiff ODE solver DDASPK [10]. The grid size in the x direction was taken to be

∆x = 0.01 and the number of discretisation points in the y direction Q = 100 which

sufficently resolved the solution structure.

We will begin by exploring the stability to transverse perturbations from an initial

parabolic droplet shape.

hb(x) = (1 + b− x2)[H(1− x)−H(−1− x)] + b[H(x− 1) +H(−1− x)], (3.16)

where H(x) is the Heaviside function. The majority of the following simulations un-

dertaken in this section fix b = 0.01, Ca = 10−3, θ = 90o and x0l = 0.

Figure 3.5 shows evolution of h for a single transverse perturbation of amplitude A =

0.1 wavenumber q = 4 and localisation number K = 100. At early time (t = 0.1) it

can be clearly observed that the initial perturbation in the droplet height still exists.

At later time (t = 5, 10) the perturbations die out and the evolution is similar to the

one dimensional flow. This can be more clearly observed in Fig. 3.6 which shows

the contour plots of h for the same parameters and times as used in Fig. 3.5. It

can be seen here that at t = 5 and t = 10 the leading edge of the drop is uniform

in the transverse direction. Figure 3.7 shows the surface plots for a single transverse

perturbation of amplitude A = 0.1 and wavenumber q = 1. At early time (t = 5)

it can be clearly observed that there is a significant in the perturbation of the drop
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height in comparison to the initial perturbation. As time progresses, the fluid in that

region flows at a quicker speed than where the fluid height is lower thus forming a

finger. The finger initially has width similar to the wavelength of the perturbation

that was initially prescribed. As time progresses, the finger appears to develop with a

preferred width. This can be seen more clearly in the contour plots shown in Fig. 3.8,

which shows the early development of a finger at t = 100 of width ≈ 0.5 (quarter the

wavelength of the initial perturbation). For longer times (not shown here), this finger

propagates down the plane with the same width.

We now apply a superposition of perturbations to this base state of amplitude Ak =

0.1 and wavenumbers qk = 0.5, 1, 5, 10, 15, 25, 30. We chose these wavenumbers to

simulate a real case scenario which may include a wide range of perturbations of varying

wavelength. Figure 3.9 shows the 2-D evolution of the fluid interface from this initial

perturbation. The surface plots are shown at t = 0, 10, 100, 1000. It can be seen

that as the flow develops the smaller wavelength perturbations decay and the larger

wavelengths begin to grow. However, at later times (t = 100, 1000) two fingers develop

that are symmetrical about y = 0. Figure 3.10 shows the contour plots of the above

evolution. The development of the two fingers can be observed more clearly at t =

100, 1000. The finger are of the same width and match the width of the fingers shown

in Figs. 3.7,3.8 (approximatly 0.5). Based on the results shown here, it appears to

indicate that there is a preferred finger width which for this initial flow and parameters

chosen is ≈ 0.5.
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We will now explore the stability using hb to be the base state obtained numerically

for b = 0.01, Ca = 10−3 and θ = 90o at time t = 100 for b = 0.01, θ = 90o and

Ca = 10−3. The base state at this time has evolved to a self-similar structure. We now

apply a perturbation in the y-direction near the leading edge (x01 = 6.65) and near

the training edge (x02 = −1) with amplitude Ak = 0.01 and qk = 0.5, 1, 5, 10, 15, 25, 30.

Figure 3.11 shows the evolution of the droplet from this initial perturbation. Initially

some perturbations decay and some grow as seen at t = 100 in Fig. 3.11(a). At a much

later time (t = 1100) shown in Fig. 3.11(b) it can be seen clearly that a perturbation

of wavelength ≈ 2/3 starts dominating at the capillary ridge. For still larger times (not

shown here), three fingers of width ≈ 1/3 develop from this perturbation propagating

down the inclined plane with the same width. However, Fig. 3.11(c) show that the

perturbations at the trailing edge have not decayed nor grown. This suggests that the

trailing edge is linearly stable for all wavenumbers. The corresponding contour plots

in Fig. 3.10 clearly shows the above behaviour.

We now investigate the influence of varying the precursor thickness and inclination

angle on the stability. Figure 3.14 shows the surface and contour plot for the drop

height at t = 100 when the precursor thickness b = 0.1 corresponding to the initial

perturbation used in plotting Figs. 3.7,3.8. We observe that the bulk flow is quicker

for a larger precursor film thickness (compare Figs. 3.8(c) and 3.14). Moreover the

thinner the precursor film the more unstable the flow is as can be seen by the larger

finger length in Fig. 3.8 compared to Fig. 3.14(b). Figure 3.13 shows the influence
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of carying the inclination angle θ using an initial perturbation similar to that in Figs.

3.7,3.8. Decreasing the angle of inclination the fingers take longer to develop and are

much smaller in length (compare Figs. 3.8 and 3.13). This is again consistent with the

linear stability analysis.
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Figure 3.5: Surface plots showing the 2-D evolution of the fluid interface from the
initial conditions (Eq. (3.11,3.16)) with a single transverse perturbation of amplitude
Ai = 0.1 and wavenumber qi = 4. The surface plots are shown at (a)t = 0.1, (b) 5, (c)
10.
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Figure 3.6: Contour plots showing the 2-D evolution of the fluid interface from the
initial conditions (Eq. (3.11,3.16)) with a single transverse perturbation of amplitude
Ai = 0.1 and wavenumber qi = 4. The surface plots are shown at (a)t = 0.1, (b) 5, (c)
10.
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Figure 3.7: Surface plots showing the 2-D evolution of the fluid interface from the
initial conditions (Eq. (3.11,3.16)) with a single transverse perturbation of amplitude
Ai = 0.1 and wavenumber qi = 1. The surface plots are shown at (a)t = 5, (b) 10, (c)
100.
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Figure 3.8: Contour plots showing the 2-D evolution of the fluid interface from the
initial conditions (Eq. (3.11,3.16)) with a single transverse perturbation of amplitude
Ai = 0.1 and wavenumber qi = 1. The surface plots are shown at (a)t = 5, (b) 10, (c)
100.
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Figure 3.9: Surface plots showing the 2-D evolution of the fluid interface from the
initial conditions (Eq. (3.11,3.16)) with multi-mode transverse cosine perturbations of
amplitude Ai = 0.1 and wavenumber qi = 0.5, 1, 5, 10, 15, 25, 30. The surface plots are
shown at (a)t = 0, (b) 10, (c) 100, (d) 1000.
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Figure 3.10: Contour plots showing the 2-D evolution of the fluid interface from the
initial conditions (Eq. (3.11,3.16)) with multi-mode transverse cosine perturbations of
amplitude Ai = 0.1 and wavenumber qi = 0.5, 1, 5, 10, 15, 25, 30. The surface plots are
shown at (a)t = 0, (b) 10, (c) 100, (d) 1000.
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Figure 3.11: Surface plots showing the 2-D evolution of the fluid interface from the
base state initial condition at t = 100 for b = 0.01, θ = 90o and Ca = 10−3

with a multi-cosine perturbation with Ai = 0.01 at x0 = 6.65 with wavenumber
qi = 0.5, 1, 5, 10, 15, 25, 30 at time (a) t = 0, (b) 200, (c) 1200. (d) shows the trailing
edge of the droplet at t = 1200.
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Figure 3.12: Contour plots showing the 2-D evolution of the fluid interface from the
base state initial condition shown at t = 100 for b = 0.01, θ = 90o and Ca = 10−3

with a multi-cosine perturbation with Ai = 0.01 at x0 = 6.65 with wavenumber qi =
0.5, 1, 5, 10, 15, 25, 30 at time (a) t = 0, (b) 200, (c) 1200. (d) shows the trailing edge
of the droplet at t = 1200.
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Figure 3.13: (a)Surface plot and (b)contour plot of the fluid interface from the initial
conditions (Eq. (3.11,3.16)) with a single transverse perturbation of amplitude Ai = 0.1
and wavenumber qi = 1 at t = 100
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Figure 3.14: Surface and contour plots showing the 2-D evolution of the fluid interface
from the initial conditions (Eq. (3.11,3.16)) with a single trasverse cosine perturbation
of amplitude Ai = 0.1 and wavenumber qi = 1 with a precursor thickness b = 0.1. The
plots show the surface and contour at time t = 100.

3.3 Concluding remarks

This chapter analyses the stability of spreading of a constant volume thin viscous

fluid droplet down a pre-wetted inclined plane using linear stability analysis and 2-D

numerical simulations. We undertook a linear stability analysis of the effective contact

line region which it is speculated that the instabilities originate from. The stability
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analysis of the ‘effective’ contact line region shows this region to be linearly unstable

to long-wavelength transverse perturbations. This is consistent with the findings of

Troian et al. [63] and Bertozzi and Brenner [8]. Surface tension (or capillary effects)

which is comparable to gravity here stabilises the shorter wavelengths. The most

unstable wavelength is comparable to the length scale of this region, which confirms

the speculation that the onset of fingering is initiated here.

We were able to obtain a stability criterion which shows the bulge or capillary ridge

at the leading edge to be a necessary condition for the onset of instability. The o(q2)

destabilising term in Eq. (3.8) is H3
s

3
Hsξξξ which is largest where changes in curvature

of the base state Hs are large. As can be observed in Fig. 2.10, the largest change

in curvature is in the region immediatly behind the contact line and ahead of the

capillary ridge. It is this region that is targeted by the instability resulting in growth

of perturbations to the base state here (see Fig. 3.1). As the angle of inclination θ

decreases, the change in curvature becomes less severe and the growth of perturbations

is considerably reduced. The above destabilising term originates fro the term q2H
3
s

3
H1ξξ

in Eq. (3.4) which is related to surface-tension-driven flows in the transverse direction

due to changes in the base state curvature (commonly referred to as the Rayleigh term).

Such forces are generally destabilising resulting in a so-called Rayleigh instability which

has been postulated as a possible destabilising mechanism for initiating the fingering

instability observed here [59]. We have therefore successfully reproduced the results

obtained by Troian et al. [63] and Bertozzi and Brenner [8].
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The 2-D simulations assuming periodicity of 2 in the transverse y direction confirm

the linear stability results. We saw that by increasing the precursor film or decreasing

the angle of inclination stabilises the flow. This is consistent with the linear stability

analysis done in §3.1, as increasing the precursor film decreases the size of the capillary

ridge(the necessary condition for the flow to be linearly unstable). Thinning the pre-

cursor film is similar to varying time. The LSA performed showed that by decreasing

the precursor film destabilises the flow. The 2-D simulations also indicate a preferred

wavelength of perturbation. In the LSA the wavenumber correlating to maximum

growth rate appears to be fixed (qmax ≈ 0.5 = q∗max(CahL)
1/3). We can calculate the

wavelength of fingers correlating to qmax ≈ 0.5, taking hL = 1 and Ca = 10−3 hence,

we obtain q∗max = 5/π ≈ 1.6. This indicates from the initial parabolic drop shape we

should see a maximum of two fingers in a period of 2. This is consistent with the

two-dimensional simulations. However, with a perturbation of a single wavenumber

only a single finger will form as the interaction between modes gives the mechanism

for multiple finger to form. In both the superposition and discrete perturbations we

observe that from the parabolic droplet shape that fingers of width ≈ 0.5 and hence

wavelength of 1 are observed. Fingers become thinner, less unstable and more in

number for perturbations to the quasi-steady base state obtained over increasing times.

As qmax ≈ 0.5 and is approximatly fixed with time we calculate that for a quasi-steady

1D solution calculated in Chapter 2 that q∗max ≈ 2.4 for the y domain of length 2.

This indicates that we should observe between 2 and 3 fingers. This is consistant with

the 2-D simulations. Hence, we speculate that we can predict the width and number
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of fingers that develop depending on the initial conditions which is perturbed. It is

worth mentioning that for an initial condition from a constant flux source (studdied by

Schwartz [54], Eres et al. [18] and Kondic [35, 36]) to obtain similar results adjustment

to the fluid height at the constant flux source would have to be made. Decreasing

the fluid height at the constant flux source would increase the number of fingers and

decrease the width and length of the fingers. To the best of our knowledge no work has

been undertaken into the effect that varying the initial condition has on the non-linear

stability of the flow.



Chapter 4

Spreading of a surfactant-laden

viscous droplet down an inclined

pre-wetted plane: base state.

In this chapter we will consider the spreading of a thin viscous droplet laden with

insoluble surfactant. We will derive the evolution equations for the droplet height

and surfactant concentration using lubrication approximation. We use high-resolution

numerics to provide an insight into the important physical mechanisms. Asymptotic

analysis is used to obtain approximate solutions based on the important mechanisms

in each region. The spreading and thinning rates are naturally obtained from our

asymptotic analysis and are not assumed to be known a priori.

86
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4.1 Mathematical formulation

g

Air

Fluid

Solid

z*,w*

y*,v*

x*,u*

z*=h*(x*,y*,t*)

θ*

b* (precursor flm thickness)

Surfactant

g*

Figure 4.1: Schematic of a surfactant laden spreading droplet on an inclined plane.

Consider the spreading of a thin viscous fluid droplet, of constant volume, loaded with

insoluble surfactant down an inclined plane. The surfactant has an initial concentration

Γ∗
m. The fluid has viscosity µ∗, density ρ∗ and surface tension σ∗. The fluid’s surface

tension at the initial surfactant concentration is denoted by σ∗
m and the surface tension

of a clean, uncontaminated interface is σ∗
0. The plane is pre-wetted with a thin precursor

film of thickness b∗. We choose a Cartesian co-ordinate system (x∗, y∗, z∗) with x∗ and

y∗ along the plane, and z∗ along the thickness of the drop. θ∗ is the angle of inclination.

The velocities in the x∗, y∗, z∗ directions are given by u∗, v∗, w∗, respectively. The

free surface is given by z∗ = h∗(x∗, y∗, t∗) and the fluid-solid interface is at z∗ = 0. All

starred variables are dimensional.
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4.1.1 Governing equations

The equations of motion of the fluid are given by the Stokes equations

0 = −∇∗P ∗ + ρ∗g∗ + µ∗∇∗2u∗, (4.1)

0 = ∇∗ · u∗. (4.2)

Equations (4.1,4.2) represent conservation of fluid momentum and mass, respectively.

∂Γ∗

∂t
+∇∗

s · (Γ∗u∗
s) + Γ∗(∇∗

s · n∗)(u∗ · n∗) = D∗
s∇∗

s
2Γ∗ (4.3)

Equation (4.3) represents the convective-diffusion equation for surfactant transport.

D∗
s is the surfactant diffusion coefficient. ∇∗ is the gradient operator and ∇∗

s denotes

the surface gradient operator [16].

∇∗
s = (I − n∗n∗) · ∇∗, (4.4)

with I representing the identity tensor and n∗ is the unit outward normal. The fluid

in the bulk is assumed to be slow viscous flow, so inertial effects have been neglected in

Eq. (4.1). In the analysis which follows surfactant dilation is neglected. In Eq. (4.1),

u∗ = (u∗, v∗, w∗) is the fluid velocity and P ∗ is the fluid pressure relative to atmospheric

pressure. Without loss of generality, we take the pressure in the air to be zero. The

gravitational acceleration, g∗ = (g∗ sin(θ), 0,−g∗ cos(θ)), where g∗ is the magnitude of
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gravitational acceleration. We assume that both the fluid viscosity µ∗ and its density

ρ∗ are constant, however surface tension σ∗ is not.

4.1.2 Boundary conditions

As before we apply a no slip boundary condition at the fluid-solid interface,

u∗ = v∗ = w∗ = 0, at z∗ = 0. (4.5)

At the air-liquid interface, z∗ = h∗(x∗, y∗, t∗), we apply [55],

−(T ∗
1 − T ∗) · n∗ = 2R∗σ∗n∗ −∇sσ

∗, (4.6)

where T ∗
1 = −P ∗

1 , is the stress tensor in the air phase, which is assumed to be inviscid.

P ∗
1 is the air pressure. Since pressure is measured relative to atmospheric pressure,

without loss of generality, P ∗
1 = 0. T ∗ = −P ∗I + τ ∗ is the stress tensor in the fluid

phase, where P ∗ is the liquid pressure, τ ∗ = µ∗(∇u∗+∇u∗T ) is the viscous component

of the stress tensor. σ∗ is the surface tension at the air liquid interface. 2R∗ is the mean

curvature of the surface and n∗ is the unit outward normal to the surface (pointing

out of the liquid). Equation (4.6) is the same as Eq. (2.4) in the gravity derivation

except as surfactant alters the surface tension the second term on the RHS has been



90

included. We assume a linear equation of state which can be written as,

σ∗ = σ∗
0 − |dσ

∗

dΓ∗ |(σ∗=σ∗
0 ,Γ

∗=0)Γ
∗. (4.7)

This equation relates surface tension to surfactant concentration is valid for low con-

centrations of surfactant. The unit outward normal to the surface z∗ = h∗(x∗, y∗, t∗)

is

n∗ = ∇∗(z∗ − h∗(x∗, y∗, t∗)) =
1√

h∗2
x∗ + h∗2

y∗ + 1

(
−h∗

x∗ ,−h∗
y∗ , 1

)
. (4.8)

The two unit tangents to the free surface, z∗ = h∗(x∗, y∗, z∗) are

t∗1 =
1√

h∗2
x∗ + 1

(1, 0, h∗
x∗) , (4.9)

t∗2 =
1√

h∗2
x∗ + h∗2

y∗ + 1
√
h∗2
x∗ + 1

(
−h∗

x∗h∗
y∗ , h

∗2
x∗ + 1, h∗

y∗

)
. (4.10)

The normal component of the stress balance at the free surface (Eq. (4.6)) is

h∗2
x∗(P ∗ − 2µ∗u∗

x∗)− 2µ∗h∗
x∗h∗

y∗(v
∗
x∗ + u∗

y∗) + 2h∗
x∗µ∗(w∗

x∗ + u∗
z∗) + 2µ∗h∗2

y∗(w
∗
y∗ + v∗z∗) +

h∗2
y∗(P

∗ − 2µ∗v∗y∗) + P ∗ − 2µ∗w∗
z∗ = −

h∗
x∗x∗(h

∗2
y∗ + 1) + h∗

y∗y∗(h
∗2
x∗ + 1)− 2h∗

x∗h∗
y∗h

∗
x∗y∗

(h∗2
x∗ + h∗2

y∗ + 1)
1
2

σ∗.

(4.11)
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The two tangential components of Eq. (4.6) are

1√
h∗2
x∗ + h∗2

y∗ + 1

[
2µ∗h∗

x∗(−u∗
x∗ + w∗

z∗) + µ∗(1− h∗2
x∗)(w∗

x∗ + u∗
z∗)− µ∗h∗

y∗(v
∗
x∗ + u∗

y∗)
]

+
1√

h∗2
x∗ + h∗2

y∗ + 1

[
−µ∗h∗

x∗h∗
y∗(v

∗
z∗ + w∗

y∗)
]
= σ∗

x∗(1−
h∗2
x∗

h∗2
x∗ + h∗2

y∗ + 1
), (4.12)

1√
h∗2
x∗ + h∗2

y∗ + 1

[
2µ∗h∗

y∗(h
∗2
x∗(v∗y∗ − u∗

x∗)− w∗
z∗ + v∗y∗) + µ∗h∗

x∗(h∗2
x∗ + 1− h∗2

y∗)(v
∗
x∗ + u∗

y∗)
]

+
1√

h∗2
x∗ + h∗2

y∗ + 1

[
+2µ∗h∗

y∗h
∗
x∗(w∗

x∗ + u∗
z∗) + µ∗(h∗2

y∗ − h∗2
x∗ − 1)(w∗

y∗ + v∗z∗)
]

= h∗
x∗h∗

y∗σ
∗
x∗(1−

h∗2
x∗

h∗2
x∗ + h∗2

y∗ + 1
)− (h∗2

x∗ + 1)σ∗
y∗

(
1−

h∗2
y∗

h∗2
x∗ + h∗2

y∗ + 1

)
. (4.13)

The final boundary condition used is the kinematic boundary condition,

h∗
t∗ = −u∗

sh
∗
x∗ − v∗sh

∗
y∗ + w∗

s . (4.14)

4.1.3 Nondimensionalisation

We nondimensionalise the equations based on length scales H∗ and L∗ , a charac-

teristic drop thickness (e.g. the initial drop height) and length (e.g. the initial

drop length), respectively, a characteristic speed U∗ = (ρ∗g∗ sin(θ)H∗2)/µ∗ (balanc-

ing viscous forces with the horizontal component of gravity), a characteristic pressure

P ∗ = (µ∗U∗L∗)/H∗2 (balancing the pressure gradient with viscous forces)and a char-

acteristic time T ∗ = L∗/U∗. We nondimensionalise the surface tension σ∗ with σ∗
0

and the surfactant concentration with Γ∗
m. Table 4.1 shows the typical values of the
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dimensional quantities. Hence we nondimensionalise the variables as

(x, y) =
(x∗, y∗)

L∗ , (z, h) =
(z∗, h∗)

H∗ , (u, v) =
(u∗, v∗)

U∗ ,

w =
w∗

ϵU∗ , P =
ϵH∗P ∗

µU∗ , t =
t∗U∗

L∗ , ϵ =
H∗

L∗ ,Γ =
Γ∗

Γ∗
m

, σ =
σ∗

σ∗
0

. (4.15)

Here, ϵ is the aspect ratio, which is typically much less than one for these problems. It

Physical quantities Typical value
Viscosity, µ∗ (for silicon oil) 0.051 kg/ms[68]

Surface tension, σ∗ (for silicon oil DM5-10) 0.021 N/m
Density, ρ∗ (for silicon oil DM5-10) 950 kg/m3

Characteristic Height, H∗ 0.001m
Characteristic Length, L∗ 0.01m

Characteristic speed, U∗ = ρ∗g∗ sin(θ)H∗2

µ∗ 0.0186 m/s

Characteristic pressure, P ∗ = µ∗U∗L∗

H∗2 9.6 kg/(m s2)
Characteristic time, T ∗ = L∗

U∗ 0.5376 s

Table 4.1: Typical values of the dimensional quantities Characteristic speed, pressure
and time are calculated using viscosity, surface tension and density displayed here.

is worth mentioning that a scalings based on balancing viscous and Marangoni forces

is also commonly used (see [15, 12, 13, 46]). We prefer to use the scalings above as we

are interested in understanding how surfactant effects can influence the gravity-driven

spreading process.

Substituting the above dimensionless variables into the fluid bulk equations and bound-

ary conditions produces a set of dimensionless equations. In the fluid bulk we obtain

ux + vy + wz = 0, (4.16)

−Px + ϵ2uxx + ϵ2uyy + uzz + 1 = 0, (4.17)
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−Py + ϵ2vxx + ϵ2vyy + vzz = 0, (4.18)

−Pz + ϵ4wxx + ϵ4wyy + ϵ2wzz − ϵ cot(θ) = 0. (4.19)

On the free surface, z = h(x, y, t), the nondimensionalised normal stress balance is

1

ϵ2h2
x + ϵ2h2

y + 1
[P (ϵ2h2

x + ϵ2h2
y + 1)− ϵ4h2

xux − 2ϵ4hxhy(vx − uy) + 2ϵ2hx(ϵ
2wx + uz)

+2ϵ3(ϵ2wy + vz)− 2ϵ3h2
yvy + 2ϵ2wx] = −Ca

hxx(1 + ϵ2h2
y) + hyy(1 + ϵ2h2

x)− 2ϵ2hyhxhxy

(ϵ2h2
x + ϵ2h2

y + 1)
3
2

. (4.20)

Where Ca= (ϵ3σ)/(µU), is the capillary number and is assumed O(1). The nondimen-

sional tangential interfacial stress boundary conditions are

2ϵ2hx(−ux + wz) + (1− ϵ2h2
x)(ϵ

2wx + uz)− ϵ2hy(vx + uy)− ϵ2hxhy(vz + ϵ2wy)

=
√
ϵ2h2

x + ϵ2h2
y + 1

(
1− ϵ2h2

x

ϵ2h2
x + ϵ2h2

y + 1

)
σ∗
0

µ∗U∗σx, (4.21)

2ϵ2hy(ϵ
2h2

x(−vy + ux) + wz − vy)− ϵ2hx(ϵ
2h2

x − ϵ2h2
y − 1)(vx + uy)− 2ϵ2hyhx(ϵ

2wx + uz)

+(−ϵ2h2
y + ϵ2h2

x + 1)(ϵ2wy + vz) =√
ϵ2h2

x + ϵ2h2
y + 1

[
ϵ2hxhy

(
1− ϵ2h2

x

ϵ2h2
x + ϵ2h2

y + 1

)
σ∗
0

µ∗U∗σx

]
−
√
ϵ2h2

x + ϵ2h2
y + 1

[
(ϵ2h2

x + 1)

(
1− ϵ2h2

x

ϵ2h2
x + ϵ2h2

y + 1

)
σ∗
0

µ∗U∗σy

]
. (4.22)

The nondimensional kinematic condition is,

ht + hxu|z=h(x,y,t) + hyv|z=h(x,y,t) − w|z=h(x,y,t) = 0. (4.23)
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The no slip boundary condition on z = 0 in dimensionless form is

u = v = w = 0. (4.24)

We finally nondimensionalise the equation of state to obtain,

σ = 1− M̂Γ (4.25)

where M̂ =
dσ∗
dΓ∗ |(σ∗=σ∗

0 ,Γ∗=0)

σ∗
0

Γ∗
M = (σ∗

0 − σ∗
m)/σ

∗
0 is the Marangoni number describing the

strength of the surfactant in comparison to surface tension gradients.

4.1.4 Lubrication theory

The nondimensional equations obtained can be simplified using the fact that the aspect

ratio ϵ ≪ 1. We seek solutions of the form

(u, v, w, P, h,Γ) = (u0, v0, w0, P0, h0,Γ0) + ϵ2(u1, v1, w1, P1, h1,Γ1) + ....

Substituting this into Eqs. (4.16-4.25) at leading order in ϵ, the mass and momentum

conservation equations,

u0x + v0y + w0z = 0, (4.26)

−P0x + u0zz + 1 = 0, (4.27)
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−P0y + v0zz = 0, (4.28)

−P0z −D(θ) = 0, (4.29)

where, D(θ) = ϵ cot(θ) and is assumed O(1). We include this effect at leading order

to allow us to investigate a range of angles 0 ≤ θ ≤ π/2. At leading order in ϵ, the

surfactant transport equation becomes

Γt +∇ · (usΓ) =
∇2Γ

Pe
, (4.30)

where Pe = U∗L∗

D∗
s

is a Pećlet number. We assume that surface dilation can be neglected.

At z = h0(x, y, t), using Eq. (4.25), we have at leading order in ϵ,

h0t + h0xu0 + h0yv0 − w0 = 0, (4.31)

−Ca(h0xx + h0yy) = P0, (4.32)

u0z = MΓ0x, (4.33)

v0z = MΓ0y, (4.34)

where M = (σ∗
0M̂)/(µ∗U∗) is the Marangoni number and Ca = (ϵ3σ∗)/(µ∗U∗), is the

Capillary number and is assumed O(1). We have also used Eq. (4.25) to obtain Eqs.

(4.33,4.34) At z = 0, we have at leading order in ϵ,

u = v = w = 0 (4.35)
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Integrating Eq. (4.29) with respect to z and applying Eq. (4.32) we obtain,

P0 = D(θ)(h0 − z)− Ca(h0xx + h0yy). (4.36)

Differentiating the above equation with respect to x and substituting it into Eq. (4.27)

u0zz = −1 +D(θ)h0x − Ca(h0xxx + h0yyx). (4.37)

Integrating with respect to z twice and applying the two boundary conditions for u0

in Eqs. (4.33, 4.35) gives

u0 = [Ca(h0xxx + h0yyx)−D(θ)h0x + 1]

[
h0z −

z2

2

]
−MzΓ0x. (4.38)

To obtain the equation for v0, we differentiate Eq. (4.36) with respect to y then

substitute it into Eq. (4.28). Integrating the resulting equation with respect to z twice

and applying the boundary conditions for v0 in Eqs. (4.34, 4.35) gives,

v0 = [Ca(h0xxy + h0yyy)−D(θ)h0y]

[
h0z −

z2

2

]
−MzΓ0y. (4.39)

Differentiating Eqs. (4.38, 4.39) with respect to x and y, respectively, and substituting

it into Eq. (4.26) gives on integration with respect to z, gives an equation for w0.

Finally substituting the expressions for the velocities into the kinematic condition pro-

duces an equation for the evolution of the free surface. This can be written in compact
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form as,

h0t +∇ ·
(
Ca

h3
0

3
∇∇2h0 −D(θ)

h3
0

3
∇h0 −M

h2
0

2
∇Γ0

)
+

(
h3
0

3

)
x

= 0 (4.40)

Evaluating velocities at the surface we obtain,

us =
h2
0

2

(
Ca∇∇2h+ 1−D(θ)∇h

)
−Mh∇Γ. (4.41)

Substituting this into the surfactant transport equation (Eq. (4.30)) we obtain,

Γ0t +∇ ·
(
Ca

h2
0

2
Γ0∇∇2h0 −D(θ)

h2
0

2
Γ0∇h0 −Mh0Γ0∇Γ0

)
+

(
h2
0

2
Γ0

)
x

− ∇2Γ0

Pe
= 0.

(4.42)

The terms in brackets in Eqs. (4.40,4.42) represent the fluid and surfactant flux driven

by surface tension or capillary forces (second term), vertical gravity (third term),

Marangoni forces (fourth term) and horizontal gravity (fifth term). For a given surfac-

Parameter Definition Range/Typical value

Aspect ratio ϵ = H∗

L∗ 0− 0.1
Precursor film thickness b 0− 1

Capillary number Ca = ϵ3σ∗

µ∗U∗ 0.0221

Gravity balance D(θ) = ϵ cot(θ) 0−∞
Marangoni number M = (σ∗

0 − σ∗
m)/(µ

∗U) 0− 10
Pećlet number Pe = U∗L∗

D∗
s

100− 105

Table 4.2: Typical values of the nondimensional quantities calculated using values in
Table 4.1.

tant system M can be scaled out by rescaling Γ to Γ/M including the initial surfactant

concentration Γ∗
M . Varying M enables us to compare relative strengths of different sur-
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factant systems in generating surface tension gradients starting from the same initial

surfactant concentration Γ∗
M . Hence we keep the Marangoni number in the governing

equations. In what follows, we drop the subscript ‘0’ in Eqs. (4.40, 4.42) for ease.

Table 4.2 shows the nondimensional parameters and the typical range of values using

values in Table 4.1. In the next section we seek 1D solutions of Eqs. (4.40,4.42) by

assuming that h and Γ only vary in the x-direction with no dependence in y.

4.2 1D drop spreading : numerical results

We first consider the spreading of the droplet assuming no variation in the y-direction.

The 1D version of Eqs. (4.40,4.42) are then given by

ht +Qx = 0; Q =

[
Ca

h3

3
hxxx −D(θ)

h3

3
hx −M

h2

2
Γx +

h3

3

]
, (4.43)

Γt + qx = 0; q =

[
Ca

h2

2
Γhxxx −D(θ)

h2

2
Γhx −MhΓΓx +

h2

2
Γ

]
− Γx

Pe
. (4.44)

These coupled pair of partial differential equations are supplemented by six boundary

conditions, which are,

h = b, Γ = 0, hx = 0, at x = ±L, (4.45)

where b is the precursor thickness, and L is an arbitrary length. This characterises

a flat precursor film and zero surfactant concentration far upstream and downstream
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from the spreading droplet. The initial conditions are chosen as: (shown in Fig. 4.2)

h(x, 0) = (1 + b− x2)[H(1− x)−H(−1− x)] + b[H(x− 1)]

+b[H(−1− x)], (4.46)

Γ(x, 0) = H(1− x)−H(−1− x). (4.47)

where H(x) is the Heaviside function. The initial condition for the fluid droplet as-

sumes a parabolic shape connecting to a precursor film ahead and behind it. The initial

condition for the surfactant concentration is such that there is a uniform surfactant

concentration over the initial droplet and zero surfactant concentration outside of the

droplet. This leads to large surfactant concentration gradients to be present initially

at the two ‘effective’ contact lines of the droplet. We seek the time evolution of the

Figure 4.2: The initial drop shape and distribution of surfactant.

free surface of the drop and concentration of surfactant for various inclination angles θ
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keeping the precursor thickness, capillary number, Pećlet number and Marangoni num-

ber fixed. However, we will compute numerical simulations varying these parameters

to understand the influence they have on the spreading of the droplet. Our focus is

on the late-time evolution once the initial transient behaviour has died out allowing

theoretical investigation of self similar spreading dynamics. We first discretise the spa-

tial derivatives in Eqs. (4.43 , 4.44) using finite differences keeping the time derivative

continuous. We define a forward difference and backward difference by,

hx,i =
hi+1 − hi

∆x
, hx̃,i =

hi − hi−1

∆x
, (4.48)

respectively, where hi = h(xi, t), i = 0, 1, ..., N . N is the number of discretisation

points and ∆x is the grid size. Using these forward and backward differences we can

discretise Eqs. (4.43,4.44) such that,

ht,i + [Ca a(hi+1, hi)hx̃xx̃,i −D(θ)a(hi+1, hi)hx̃,i −Mc(hi+1, hi)Γx̃,i]x +

[
h3
i

3

]
x̃

= 0, (4.49)

Γt,i + [Ca d(hi+1Γi+1, hiΓi)hx̃xx̃,i −D(θ)d(hi+1Γi+1, hiΓi,j)hx̃,i −Me(hi+1Γi+1, hiΓi)Γx̃,i]x

+

[
h2
iΓi

2

]
x̃

+
Γx̃xi

Pe
= 0, (4.50)

where,

a(hi+1, hi) =
h3
i+1 + h3

i

6
, c(hi+1, hi) =

h2
i+1 + h2

i

4
,

d(hi+1Γi+1, hiΓi) =
h2
i+1Γi+1 + h2

iΓi

4
,
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e(hi+1Γi+1, hiΓi) =
hi+1Γi+1 + hiΓi

2
, (4.51)

so that these are second order approximations hence Eqs. (4.49,4.50) are second order

accurate. The finite difference scheme used in the above discretisation uses a 5-point

stencil. This has the advantage of a smaller bandwidth (in comparison a 7-point sten-

cil using the standard centred-difference scheme) while still maintaining second order

accuracy. This scheme is commonly used in thin film problems (see [34, 38]). Our

numerical scheme employed a fixed but spatially non-uniform grid, with grid points

clustered in regions where we anticipated a rapid spatial variation. We used implicit

time-stepping and validated convergence using grid refinement. For the simulations

shown, the grid spacing varied from 10−4 where the film was extremely thin (particu-

larly at the trailing edge of the droplet) to 10−3 elsewhere. The resulting differential

equations are solved using the ODE solver DASSL [9]. The overall features of the flow

are as reported by Edmonstone et al. [15, 12, 13], our finer computational grid allowed

us to resolve some important features not described previously. Moreover, we compute

solutions to much longer times than reported previously which allows us to describe

theoretically their asymptotic structure.

Figures 4.3(a,b) shows the late time evolution (t = 103− 106) of the drop height h and

surfactant concentration Γ, respectively, for θ = 90o, M = 1, Ca = 10−3, Pe = 105

and b = 10−3. Inspection of these figures reveals there are several main features of

the evolution of the droplet. The first is the main bulk droplet spreading under the
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influence of horizontal gravity with surfactant concentration almost constant. Region

I flows in the same manner as the main bulk droplet in the gravity-driven problem (see

§2.4.1). Figure 4.4 compares the fluid profile spreading under gravity (dashed line) to

the fluid profile spreading under gravity and surfactant related effects (solid line) the

surfactant profile is shown be the dotted line. It clearly shows that the flow under

gravity and surfactant related effects matches the flow under gravity only where the

surfactant concentration is approximately uniform. As the surfactant concentration

increases rapidly it can be seen that the surfactant and gravity-driven fluid profile

deviates from the gravity-driven profile into a fluid ‘hump’. Towards the leading edge

of region I there is an abrupt jump in surfactant concentration gradient and fluid height

due to competition between horizontal gravity and Marangoni forces. This dramatic

increase in surfactant concentration gradient slows down the spreading rate of the

droplet resulting in a jump in the fluid height. Towards the leading edge of the so-called

fluid ‘hump’ there is a short region in which gravity balances Marangoni and capillary

forces. This region contains a so-called capillary ridge where there is an abrupt jump in

fluid height as the main bulk droplet connects onto the precursor film ahead. Between

the capillary ridge and the precursor film is a fluid front driven by Marangoni forces.

The surfactant concentration is linear across this fluid front. Ahead of the fluid front

the precursor film remains undisturbed. At the trailing edge of the spreading droplet is

an ultra thin film which matches onto a similar fluid front at its trailing edge. The fluid

fronts form almost instantly due to the large surfactant concentration gradients present

in the initial condition (see Fig. 4.2). The large surfactant concentration gradients
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‘suck’ fluid from the precursor film creating these fluid fronts. The fluid front at the

leading edge of the droplet remains self similar during the times investigated. Initially

the fluid front region at the trailing edge of the drop flows in a similar manner to the

other fluid front region. It is solely Marangoni driven flow as gravity has little effect.

But as time progresses the strength of the Marangoni forces decreases and become of

similar size and then become dominated by the horizontal component of gravity. This

is similar to what was discussed by Grotberg and Jensen [30]. It can be seen from Fig.

4.5 that at t = 5000 the fluid front is well defined and is approximately 2b in height

however as time progresses it can be seen that the front breaks down and become

smoothened. Due to this fact it would be impossible to obtain a similarity solution for

this region that holds for several orders of time. Mavromoustaki et al. have discussed

the dynamics of this region and explored its stability using linear stability analysis [47]

[48]. They were able to obtain a power law behaviour for the spreading of this region

however as my results show as the strength of the Marangoni forces start to become

dominated by the horizontal component of gravity the power law behaviour of this

region should break down. As the fluid begins to flow back down the inclined plane we

speculate that it will eventually result in a structure resembling the capillary ridge at

the leading edge of the droplet. Figure 4.5 shows the trailing edge fluid front and ultra

thin films for M = 1, Ca = 10−3, Pe = 105 and θ = 90o for t = (1, 5)×103, (4, 5)×106.

We mentioned previously that at early times the front was well defined. As time

progresses the height of the fluid front decreases and begins to change the direction of

the flow. We clearly observe that at late-late time (t = 4, 5× 106) a satellite capillary
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ridge has formed (see Fig. 4.5 inset).

Figure 4.6 compares the (a) droplet height h (b) surfactant concentration Γ for t =

5 × 105. The parameter values are: Ca = 10−3, M = 1, b = 10−3, Pe = 105, θ = 90◦

(dashed line), θ = 60◦ (dotted line) and θ = 3◦ (solid line). We can see that the

overall droplet height and surfactant concentration remains unchanged, except for the

amplitude of the capillary ridge which decreases as the angle of inclination θ (see inset

Fig. 4.6 (a)).

Figure 4.7 compares the (a) droplet height h and (b) surfactant concentration Γ for

M = 1 and 0.1 at t = 104. The parameter values are: Ca = 10−3, b = 10−3, θ = 90◦,

Pe = 105. The solid lines depict M = 1 and the dashed lines M = 0.1. We therefore

see that by lowering the Marangoni number slows the speed of the spreading droplet.

Moreover the fluid ‘hump’ develops at an earlier time with lower Marangoni number.

The surfactant is swept to the leading edge of the spreading droplet more readily

causing large surfactant concentration gradients at earlier time which slows the fluid

there. We also note that the satellite capillary ridge at the trailing edge forms at earlier

times with a smaller Marangoni number.

Figure 4.8 the (a)droplet height h (b) surfactant concentration Γ at t = 5× 105, with

M = 1, θ = 90o and Pe = 105. The solid line shows the fluid where Ca = 10−3

and dashed line Ca = 0. We can see that the overall droplet height and surfactant

concentration remains unchanged, except within short regions such as the capillary

ridge, leading edge of the fluid fronts and the ultra thin film (all shown in insets in Fig.
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4.8(a)). We also note that there is a shift in the maximum surfactant concentration

(see inset Fig. 4.8(b)). We see that the maximum surfactant concentration, for Ca =

0, is not aligned with the minimum just ahead of the capillary ridge and is shifted

to the left slightly. We also note for future reference the steep drop in surfactant

concentration observed immediately after the maximum surfactant concentration (see

inset Fig. 4.8(b)). Therefore the solutions obtained, downstream of the trailing edge of

the droplet are robust for a variety of parameters and persist at late-late times. Taking

Ca = 0 is valid here due to the diffusive effects of the Marangoni and surfactant

diffusion terms.

As might be anticipated from Figs 4.3(a,b), much of the late time spreading is lo-

cally self similar. The upstream structures resemble closely to those observed when a

surfactant-laden droplet spreads on a horizontal plane whose self-similar structure is

discussed in detail in Jensen and Naire [32], hence we do not include their description

here. Moreover, numerical simulations show almost negligible fluid or surfactant flux

across the trailing edge of the droplet, which enables us to de-couple the spreading

dynamics of the bulk droplet and the downstream structures from the upstream ones.

Our main focus here is in describing the spreading dynamics of the bulk droplet and

the downstream structures whose self-similar structure we examine in more detail next.
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Figure 4.3: Late time evolution of (a) droplet height h and (b) surfactant concentration
Γ for t = (0.001, 0.01, 0.1, 0.2, 0.5, 1) × 106. The parameter values are: Ca = 10−3,
M = 1, b = 10−3, θ = 90◦, Pe = 105.
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Figure 4.4: Comparing the fluid profile at t = 1000 for flow with and without surfactant
The parameter values are: Ca = 10−3, M = 1, b = 10−3, θ = 90◦, Pe = 105. The
solid line depicts flow with surfactant and the dashed line depicts the flow without
surfactant.

Figure 4.5: The evolution of the trailing edge of the droplet for M = 1, Ca = 10−3,
Pe = 105 and θ = 90o for t = (1, 5)× 103, (4, 5)× 106.
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Figure 4.6: Comparing the (a) droplet height h and (b) surfactant concentration Γ for
t = 5 × 105. The parameter values are: Ca = 10−3, M = 1, b = 10−3, Pe = 105,
θ = 90◦ (dashed line), θ = 60◦ (dotted line) and θ = 3◦ (solid line).
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Figure 4.7: Comparing the (a) droplet height h and (b) surfactant concentration Γ for
M = 1 and 0.1 at t = 104. The parameter values are: Ca = 10−3, b = 10−3, θ = 90◦,
Pe = 105. The solid lines depict M = 1 and the dashed lines M = 0.1.
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Figure 4.8: Comparing the (a)droplet height h (b) surfactant concentration Γ at t =
5 × 105, with M = 1, θ = 90o, b = 10−3 and Pe = 105. The solid line shows the fluid
where Ca = 10−3 and dashed line Ca = 0. The insets show the comparison of the
fluid fronts at the leading and trailing edge with and without capillary effects and the
maximum surfactant concentration.
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4.3 Description of the late-time self-similar struc-

ture

Figure 4.9: Schematic of the self-similar structure of the spreading drop and surfactant
concentration.

We postulate that the numerical solution described in the previous section shows a

multi-region self-similar structure for both the surfactant concentration and the droplet

height, particularly, at late time. As mentioned previously the self-similar structure
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observed is robust to variation in the parameters which characterise the droplet shape.

We describe each region in turn below along with their relevant physics, scalings and

approximate solutions. The spreading of the droplet is controlled by the delicate inter-

play between Marangoni forces and the horizontal component of gravity. Capillary or

surface tension effects become important in short transition regions especially in the

formation of the capillary ridge at the leading edge of the spreading droplet (see Fig

4.8 comparing spreading with and without capillary effects). The flow domain of the

drop is divided into the following regions (see Fig. 4.9):

• Region I: The main bulk droplet region. This long region contains the bulk

of the spreading droplet. The surfactant concentration in this region remains

relatively constant, Γ = ΓM(t). The dominant fluid flow and surfactant transport

mechanism in this region is due to the horizontal component of gravity. The

leading edge of this region is at x = xM(t) while the trailing edge is at x = xT (t).

The height of the drop is characterised by h(xM) = hM−(t).

• Region II: The fluid ‘hump’ region. This region within the main bulk droplet con-

tains a ‘hump’ in the droplet height. The dominant flow and surfactant transport

mechanism in this region is due to the horizontal component of gravity competing

with Marangoni forces. This region has its trailing edge at x = xM(t) and the

leading edge is at x = xL(t). The height of fluid in this region is characterised

by h(xM) = hM+(t) at its trailing edge and h(xL) = hL−(t) at its leading edge.

The surfactant concentration increases monotonically from Γ = ΓM(t) to the
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maximum surfactant concentration Γ = ΓL(t).

• Region III: The fluid front region. The dominant flow and surfactant trans-

port mechanism is due to Marangoni forces. The leading edge of the front is at

x = xSL(t) and it’s trailing edge at x = xL(t). The height of this region is char-

acterised by the height of the front just after the capillary ridge h(xL) = hL+(t).

The surfactant trailng edge concentration decreases monotonically in this region

from Γ = ΓL(t) at the to Γ = 0 at the leading edge.

• Region IV: The precursor film region. This region is a passive region containing

the precursor film ahead of the spreading droplet. The film remains undisturbed.

• Region A: The ‘effective’ contact line region. Here, the surface tension forces

are of similar magnitude to that due to the horizontal component of gravity and

Marangoni forces. This region is characterised by the position of the ‘effective’

contact line xL(t), the drop height upstream of the capillary ridge hL−(t) and the

film thickness at it’s downstream end h = hL+(t). The surfactant concentration

in this region is characterised by the maximum surfactant concentration ΓL(t) as

well as the surfactant concentration gradients Γx(xL−) = kL− and Γx(xL+) = kL+ ,

respectively.

• Region B: The leading edge of the fluid front, region III. The structure of this

region has been described in detail previously (see Jensen and Grotberg [30],

Jensen and Halpern [31], Jensen [29]).
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• Region C: The region near x = xM joining the main bulk of the droplet (region I)

to the fluid hump region (region II). There is an abrupt jump in the fluid height

from hM− to hM+ . The surfactant concentration is continuous but there is a jump

in surfactant concentration gradient from Γx(xM−) = kM− to Γx(xM+) = kM+ .

Figure 4.10: Time evolution of hL− , hM+ and hM− from t = 103 − 106.

The flow is of the droplet is charecterised by 15 variables, hL− , hL+ , hM− , hM+ , hT , ΓL,

ΓM , ΓT , kM+ , kM− , kL+ , kL− , xSL, xL and xM . These variables will be used to describe

the solutions of the regions described previously. We will also use these variables to

determine the spreading and thinning rates not known a priori. We obtain xM by

locating where the fluid height first changes curvature from concave down to concave

up for x < 0 and the fluid height at this position is denoted by hM− . The minimum

surfactant concentration in region I is used to determine ΓM . hM+ is calculated by

determining the drop height where the drop changes curvature from concave up to

concave down immediately after xM and the surfactant concentration gradient at this
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Figure 4.11: Time evolution of xL, xM and xSL from t = 103 − 106.

position is kM+ . The position of the ‘effective’ contact line is determined at the position

of the global maximum surfactant concentration ΓL and is denoted by xL. The droplet

height at the leading edge, hL− , is determined by the maximum droplet height in the

absence of capillary effects. kL− is obtained by calculating the surfactant concentration

gradient where h = hL− . The surfactant concentration gradient ahead of ΓL is calcu-

lated by finding where the surfactant concentration gradient remains constant ahead

of ΓL and is denoted by kL+ . The location of the leading edge of the downstream fluid

front is obtained by satisfying Γ(xSL) = 10−5. Hence xSL is calculated by finding where

Γ < 10−5 ahead of Γ = ΓL. xT is the location of the global minimum of fluid height.

The fluid height at this position is denoted by hT . The local maximum surfactant

concentration at x = xT is denoted by ΓT . Figures 4.10-4.15 show the evolution of all

the variables obtained from t = 103 − 106. All variables, except xL and ΓL, obtained

have been done so using numerical simulations without capillary effects this allows for
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Figure 4.12: Time evolution of ΓM from t = 103 − 106.

easier calculation of these variables. Figures 4.10-4.15 show the time evolution of the

charecteristic variables.

We will now discuss each region in turn, neglecting hereafter the effects of surfactant

diffusion. The vertical component of gravity is also neglected everywhere except in the

capillary ridge region where it appears as a second-order diffusion term smoothing the

capillary ridge. Surface tension effects are negligible everywhere except regions A and

B. Where possible we obtain the scalings for each region based upon the competing

physical mechanisms. We use the numerical solution of the PDE’s shown in Fig 4.3

to illustrate the locally self-similar structure by showing that the data collapses when

rescaled using scalings appropriate to each region. We also use this data to validate any

assumptions made in the analysis. From these solutions we will derive an approximate

DAE (Differential-Algerbraic Equation) model describing the evolution of the system.
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Figure 4.13: Time evolution of ΓL from t = 103 − 106.

Figure 4.14: Time evolution of kL− and kM+ from t = 103 − 106.
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Figure 4.15: Time evolution of kL+ from t = 103 − 106.
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4.3.1 Region I: The main bulk fluid droplet

This long region between xT (t) ≤ x ≤ xM(t) contains the majority of the spreading

droplet. The surfactant concentration is relatively constant. The dominant spreading

mechanism is due to the horizontal component of gravity. There is little contribution

from the Marangoni terms except near the near x = xT (t) and x = xM(t). We neglect

capillary and the vertical component of gravity to approximate the PDE’s as,

ht +
1

3
(h3)x −M

1

2
(h2Γx)x = 0, (4.52)

Γt +
1

2
(Γh2)x −M(hΓΓx)x = 0. (4.53)

Writing Γ(x, t) = ΓM(t) + Γ̂(x, t), |Γ̂| ≪ ΓM ; gives at leading order in Γ̂/ΓM ,

ht +

[
h3

3
− 1

2
Mh2Γ̂x

]
x

= 0 (4.54)

Γ̇M

ΓM

+

[
1

2
h2 −MhΓ̂x

]
x

= 0. (4.55)

Integrating Eq. (4.55) and applying the boundary conditions h = hT , Γ̂x = 0 at x = xT ,

gives the surfactant flux,

1

2
h2ΓM −MhΓM Γ̂x = −Γ̇M(x− xT ) +

1

2
h2
TΓM . (4.56)
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Re-arranging Eq. (4.56) and substitute into Eq. (4.54) gives the evolution equation of

the drop height,

ht +
1

12
(h3)x +

[
−1

2

Γ̇M

ΓM

(x− xT )h+
1

4
h2
Th

]
x

= 0. (4.57)

Equation (4.57) has a solution,

h(x, t) =
hM−
√
xM

√
x− xT +

xMh2
T

h2
M−

, (4.58)

if the following compatibility conditions are satisfied (as well as assuming ẋT ≈ 0 i.e.,

pinning the droplet’s trailing edge which is confirmed by numerical results):

V1 =
ẋM

h2
M−

=
1

3
, (4.59)

V2 = − Γ̇MxM

ΓMh2
M−

=
1

2
(4.60)

V3 = − ḣT

hT

xM

ẋM

=
3

2
(4.61)

Figure 4.16 shows that the above conditions are approximately satisfied at late times.

The solution obtained (assuming xT , hT ≈ 0) is the same as that derived by Huppert

[27]; Troian et al. [63] for gravity-driven spreading of a droplet. Substituting Eq. (4.58)

into Eq. (4.56) and then applying Eqs. (4.59-4.61), we obtain Γ̂x = 0, implying that

Γ(x, t) = ΓM(t) in this region. Figure 4.17(a,b) show the numerical solutions shown

in Fig. 4.3 to collapse in this region when rescaling h by hM− , Γ by ΓM and x by
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Figure 4.16: V1 = ẋM/h2
M− , V2 = −(Γ̇MxM)/(ΓMh2

M−), V3 = − ḣT

hT

xM

ẋM
versus time.

xM . The similarity solution for h (dashed line) given by Eq. (4.58) and Γ = ΓM have

good agreement with the rescaled numerical solutions. Figure 4.17(b) shows that the

rescaled numerical solutions lie close to ΓM except that Γ is non-uniform especially

at x = xT (where Γ decreases as x increases) and at x = xM (where Γ increases as

x decreases). We will now describe the behaviour of the solution near the trailing

edge of the bulk droplet (x = xT ). The above linearised analysis is not valid here

since the change in Γ from ΓM are appreciable (see Fig. 4.17(b)) and does not allow

any meaningful approximation to be made. However, a qualitative understanding can

be obtained as follows. Integrating Eq. (4.53) and applying the boundary conditions

h = hT , Γ = ΓT > ΓM , Γx = 0 at x = xT gives the Marangoni surfactant flux

−MhΓΓx = −
∫ x

xT

Γtdx+
1

2
(h2

TΓT − h2Γ). (4.62)
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The contribution from the unsteady term is positive since Γt < 0 for all x and this dom-

inates the horizontal component of gravity near x = xT resulting in positive Marangoni

surfactant flux. For this to occur Γx < 0 of Γ decreases. As x gets larger, the negative

contribution from the horizontal gravity increases (due to h increasing) offsetting the

positive contribution from the unsteady term resulting in the Marangoni surfactant flux

to become zero there and Γ = ΓM , as described by the linearised analysis above. We

also note that the derivatives of h become large as x → xT , therefore capillary terms

need to be included to regularise the solution. This suggests the existence of an inner

region where capillary and Marangoni forces compete. This region is not discussed in

this thesis. Next, we analyse region C to describe the evolution h and Γ near x = xM .

4.3.2 Region C

This is a short region near x = xM that connects the main bulk drop to the fluid ‘hump’

region. There is an abrupt jump in drop height, from hM− to hM+ , and surfactant

concentration gradient, from kM− to kM+ (see Fig. 4.3(a,b)). This is due the Marangoni

forces opposing the horizontal component of gravity, impeding the flow downward but

not reversing it resulting in an accumulation of fluid and the formation of a shock like

structure. We will now derive the conditions ensuring continuity of fluid and surfactant

flux in this region assuming Γ is continuous across this region and kM− ≈ 0. We consider

a moving frame of reference about x = xM travelling with speed ẋM . We denote

h|x=xM− = hM− , h|x=xM+ = hM+ , Γx|x=xM− = kM− ≈ 0 and Γx|x=xM+ = kM+ > 0.
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Figure 4.17: The evolution of (a) h and (b) Γ in region I using the data shown in
Fig. 4.3. The dashed lines show the similarity solutions for h given by Eq. (4.58) and
Γ(x, t) = ΓM(t).
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We neglect the horizontal component of gravity and capillary terms in the following

analysis as the lengthscale of this region is long enough for these effects to be negligible

at leading order. Equations (4.43,4.44) can be written as,

ht − ẋMhx +

[
h3

3
−M

h2

2
Γx

]
x

= 0, (4.63)

Γt − ẋMΓx +

[
Γh2

2
−MhΓΓx

]
x

= 0. (4.64)

Integrating Eq. (4.63) with respect to x across x = xM gives,

−ẋM [h]+− +

[
h3

3
−M

h2

2
Γx

]+
−
= 0, which implies,

ẋM =
1

3
(h2

M+ + hM+hM− + h2
M−)−M

h2
M+kM+

2(hM+ − hM−)
, (4.65)

which ensures continuity of fluid flux across x = xM . Similarly integrating Eq. (4.64)

across x = xM gives,

[
Γh2

2
−MhΓΓx

]+
−
= 0, which implies,

kM+ =
h2
M+ − h2

M−

2MhM+

, (4.66)

which ensures continuity of surfactant flux across x = xM . We have assumed kM− ≈ 0

above. Figures (4.18,4.19) test the validity of Eqs. (4.65,4.66) using numerical values;

the agreement is good at late times.

To describe the approximate solution in this region, we assume Γt ≈ Γ̇M . Substituting
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this into Eq. (4.44) and integrating (neglecting capillary and vertical gravity) using

h = hM− , Γ = ΓM and Γx = kM− ≈ 0 at x = xM gives

1

2
h2Γ−MhΓΓx = −Γ̇M(x− xM) +

1

2
h2
M−ΓM . (4.67)

Rearranging and substituting this into Eq. (4.43) (neglecting capillary and vertical

gravity) gives

ht +
1

12
(h3)x +

[
−1

2

Γ̇M

Γ
(x− xM)h+

1

4

h2
M−ΓM

Γ
h

]
x

= 0. (4.68)

In Fig. 4.20 we test the assumption Γt ≈ Γ̇M the surfactant flux 1
2
h2Γ − MhΓΓx,

obtained using numerical solutions (solid lines) to that from Eq. (4.67) (dashed lines)

at times (a) t = 105, (b) t = 5×105 and (c) t = 106. We observe that the approximation

is reasonably accurate around x = xM (considering xM is defined numerically quite

arbitrarily) but breaks down further away from x = xM . We were unable to obtain an

analytical solution for Eqs. (4.67,4.68). However Eq. (4.67) can be considered as a

quadratic equation for h in terms of Γ and can be solved to obtain,

h(x, t) = MΓx +

√√√√(MΓx)2 −

[
2
Γ̇M

Γ
(x− xM)−

ΓMh2
M−

Γ

]
. (4.69)
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Upstream of this region where Γx ≈ 0 (or Γ ≈ ΓM) we obtain (using Eq. (4.60))

h(x, t) =

√
− Γ̇M

ΓM

(x− xM) + h2
M− =

hM−
√
xM

√
x, (4.70)

which matches the solution in Region I.

Figure 4.21 shows a comparison between the numerical results for h (solid lines) and Eq.

(4.70) (dashed lines) in this region for times (a) t = 105, (b) t = 5×105 and (c) t = 106.

We use the numerical solutions for Γ,Γx while computing the approximation for h in

Eq. (4.69). We observe that Eq. (4.70) is a very good approximation for h around

x = xM . Further away from x = xM the approximation although over estimating

h, captures the gross behaviour, particularly the jump in h, even though Eq. (4.67)

breaks down here. This suggests that although the flow and surfactant transport in

this region are unsteady, it is the positive jump in Γx that causes the positive jump

in h. Since Γt can no longer be approximated by Γ̇M further away from x = xM this

necessitates the introduction of another region (region II) even though the essential

physics in both regions are the same. We will consider this region next.
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Figure 4.18: Testing the validity of (ẋM) obtained numerically (solid line) with that
obtained from Eq. (4.65) (dashed line).

Figure 4.19: Testing the validity of kM+ obtained numerically (solid line) with that
obtained from Eq. (4.66) (dashed line).
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Figure 4.20: Testing the validity of the assumption that Γt ≈ Γ̇M in region C by
comparing the surfactant flux obtained numerically (solid lines) to that obtained from
Eq. (4.67) (dashed line) at times (a) t = 105, (b) t = 5× 105 and (c) t = 106.
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Figure 4.21: Comparing the numerical solution for h in region C (solid lines) with the
approximation in Eq. (4.70) (dashed lines) at times (a) t = 105, (b) t = 5 × 105 and
(c) t = 106.
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4.3.3 Region II: The fluid ‘hump’ region.

This region is part of the bulk droplet in xM+(t) ≤ x ≤ xL(t) where the fluid upwells

due to competeing reverse Marangoni and horizontal gravity fluxes resulting in fluid

accumulation and hump-like region is formed. There is a rapid increase in the surfactant

concentration (from ΓM to ΓL), h varies between hM+ to hL− and Γx varies between

kM+ and kL− . Taking Eq. (4.53) and integrating (neglecting capillary and vertical

gravity) applying the conditions that h = hM+ , Γ = ΓM and Γx = kM+ at x = xM+ we

obtain,

h2

2
Γ−MhΓΓx = −

∫ x

xM+

Γtdx+
ΓMh2

M−

2
−MhM−ΓMkM+ . (4.71)

Rearranging and substituting into Eq. (4.52) gives,

ht +
1

12
(h3)x +

[
h

2Γ

(
−
∫ x

xM+

Γtdx+
ΓMh2

M−

2
−MhM−ΓMkM+

)]
x

= 0 (4.72)

Equations (4.71,4.72) prove difficult to solve analytically. However Eq. (4.71) is a

quadratic equation for h, solving which we obtain,

h = MΓx +

√
(MΓx)2 +

2

Γ

(∫ x

xM

Γtdx+
ΓMh2

M−

2
−MhM−ΓMkM+

)
. (4.73)

Equation (4.71) is the surfactant flux over this region. As we saw previously the surfac-

tant flux to the left of this region was derived in Eq. (4.67), which had good agreement

up to a point then the numerical solution deviates from the analytical solution obtained.
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We therefore have to modify this equation. The integral in Eq. (4.73) is evaluated us-

ing a linear approximations of Γt by taking Γt|x=xM+ = Γ̇M and Γt|x=xL
= Γ̇L. We

take

Γt ≈

[
Γ̇L − Γ̇M

xL − xM

]
(x− xM) + Γ̇M . (4.74)

Substituting Eq. (4.74) into Eqs. (4.71,4.73) gives

h2

2
Γ−MhΓΓx = −1

2

[
Γ̇L − Γ̇M

xL − xM

]
(x− xM)2 − Γ̇M(x− xM)

+
1

2
h2
M−ΓM , (4.75)

which we can solve as a quadratic equation for h to obtain

h(x, t) =

√√√√(MΓx)2 −
1

Γ

[(
Γ̇L − Γ̇M

xL − xM

)
(x− xM)2 − h2

M−

(
x− xM

xM

+ 1

)
ΓM

]
+MΓx. (4.76)

Figures 4.22(a,b,c) show the numerically obtained surfactant flux in this region with the

approximate surfactant flux obtained from Eq. 4.75) at (a) t = 1× 105, (b) t = 5× 105

and (c) t = 1× 106. We can see that there is deviation from the numerically obtained

surfactant flux. This indicates that there is a need for a better approximation to the

integral in Eq. (4.72). We cannot obtain a better approximation currently as to obtain

a quadratic approximation, for Γt, we would have to have the evolution of another
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characteristic variable of Γ in this region. However we use the linear approximation for

the time derivative and the numerical solution for Γ and Γx in Eq. (4.73) to determine

the approximate drop height h in this region. Figure 4.23 shows that, despite the

weak approximation of Γt, Eq.(4.73) has good agreement with the numerical solution

at late time. The solution becomes a better match as time increases. We believe that a

more refined approximation of the integral involving Γt in Eq. (4.76) would make the

agreement much better. Region C and II indicate that the approximation to Γt has

only a corrective effect on the shape of the fluid profile. The Γx terms are the major

contributors to the fluid profile.

Evaluating Eq. (4.76) at x = xL we obtain,

hL− = MkL− +

√
(MkL−)2 − 1

ΓL

(
(Γ̇L − Γ̇M)(xL − xM)−

h2
M−xLΓM

xM

)
. (4.77)

Figure 4.24 shows the numerically obtained hL− to that obtained from Eq. (4.77). It

can be seen that there is reasonable agreement between the two especially at late time.

We will now explore the ‘effective’ contact line region at the leading edge of the droplet

which contains the capillary ridge.
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Figure 4.22: Comparing the numerically obtained surfactant flux in this region to Eq.
(4.72) and approximating Γ̇ with a linear approximation with Γt|x=xM+ = Γ̇M and

Γt|x=xL
= Γ̇L at (a) t = 1× 105, (b) t = 5× 105 and (c) t = 1× 106.



134

Figure 4.23: Comparing the numerically obtained fluid profile in this region to Eq.
(4.73) using numerically obtained Γ and Γx andΓt|x=xM+ = Γ̇M and Γt|x=xL

= Γ̇L at
(a) t = 1× 105, (b) t = 5× 105 and (c) t = 1× 106.
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Figure 4.24: Comparing the numerically obtained hL− (solid line) to that obtained in
Eq. (4.77) (dashed line).
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4.3.4 Region A: The ‘effective” contact line region ahead of

the main droplet

This region includes the capillary ridge and connects to the fluid front (region III) ahead

of it and connects to the fluid ‘hump’ region (region II). The length scale of this region,

X (say), is obtained by balancing capillary effects with the horizontal component of

gravity. Hence,

X = (CahL−)1/3. (4.78)

Balancing the horizontal component of gravity with the Marangoni term we obtain

Γx:hL−/M , so Γ:Ca1/3hL−
4/3/M ≪ ΓL. We then set

h(x, t) = hL−H(ξ), x = xL + (CahL−)1/3ξ, Γ = ΓL +
Ca1/3hL−

4/3

M
G(ξ). (4.79)

Figures 4.25(a,b) show a family of quasi-steady solution when the numerical solution in

Figs. 4.3(a,b) is scaled using these variables. We now derive an approximate solution

for this region. Substituting the above scalings into Eqs. (4.43,4.44) and assuming the

solution to be quasi-steady (i.e. assuming ˙hL− ≈ 0), we obtain,

−V̂ Hξ =

[
−H3

3
Hξξξ +

H2

2
Gξ −

H3

3
+ D̂(θ)

H3

3
Hξ

]
ξ

, (4.80)

0 =

[
−H2

2
Hξξξ +HGξ −

H2

2
+ D̂(θ)

H2

2
Hξ

]
ξ

, (4.81)
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subject to the boundary (or matching) conditions that,

H → 1, Hξ, Hξξξ → 0, Gξ → k− as ξ → −∞, (4.82)

H → hL+

hL−
= s(t), Hξ, Hξξξ → 0, Gξ → k+as ξ → ∞ (4.83)

where V̂ =
ẋL

h2
L−

is a dimensionless contact line speed, D̂(θ) = (ϵ cot(θ)h
2/3

L− )/(Ca1/3),

k− = MkL−/hL− and k+ = MkL+/hL− . Equations (4.82,4.83) assumes that h is

constant far upstream and downstream where it matches onto regions II and III, re-

spectively. This is reasonable considering that h in both these regions is only very

weakly linear (see Figs 4.23(a,b,c), 4.27(a)). Γ is linear matching onto regions II and

III with slope kL−(> 0) and kL+(< 0), respectively. While this matching condition is

approximate for the fluid ‘hump’ region, it is exact when matching onto the fluid front

since Γ is linear there (see region III description). After integrating Eq. (4.81) and

applying the boundary conditions in Eq. (4.82) one obtains,

HGξ =

(
k− − 1

2

)
+

H2

2
Hξξξ +

H2

2
− D̂(θ)

H2

2
Hξ. (4.84)

After integrating Eq. (4.80) and applying both Eq. (4.84) and the boundary conditions

in Eq. (4.83) one obtains,

H3

12

[
Hξξξ + 1− D̂(θ)Hξ

]
=

1

2

(
k− − 1

2

)
[H − s(t)] + V̂ [H − s(t)] +

s(t)3

12
. (4.85)
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Applying the boundary conditions in Eq. (4.82) to Eq. (4.85), we obtain

V̂ =
1

12
(1 + s+ s2)− 1

2
(k− − 1

2
). (4.86)

This ensures continuity of fluid flux across this region. Substitution of the above

equation into Eq. (4.85) and rearranging for Hξξξ one obtains,

Hξξξ = −
[
s2 + s

H3

]
+

[
1 + s+ s2

H2

]
+ D̂(θ)Hξ − 1. (4.87)

Substitution of Eq. (4.87) into Eq. (4.84) gives,

Gξ =
1

H

(
k− − 1

2

)
− 1

2H2
(s2 + s) +

1

2H
(s2 + s+ 1). (4.88)

Applying the boundary conditions in Eq. (4.83) to Eq. (4.88), we obtain a relationship

between k+ and k−,

k− − sk+ =
1

2
(1− s2). (4.89)

This ensures continuity of surfactant flux across this region. Hence, we have simplified

in this region the complex set of PDE’s to a single third order ODE for H (Eq. (4.87))

and a first order ODE for G (Eq. (4.88)). Equation (4.87) is the same as the equation

for the leading edge region for the gravity-driven problem (Eq. (2.75)) and can be

solved numerically in the same way. Equation (4.88) can be numerically integrated after

substituting the numerical solution for H. The constant arising from this integration is
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chosen such that G(0) = 0 (since by definition ξ = 0 is where G has a maximum). The

dashed lines in Fig. 4.25(a,b) show the numerical Eqs. (4.87,4.88), for s = 0.1, k− =

0.3153, k+ = −1.797 and V̂ = 0.18485. The choice of the value of these parameters

equates to ‘fixing’ time, so to obtain the full family of solutions we can vary these

parameters accordingly. It can be seen that they have good agreement with the family

of quasi-steady solutions shown. We note that the location where Γ is maximum (i.e.

Γ = ΓL) is slightly offset to the right of the capillary ridge (see Figs. 4.25(a,b)).

Equation (4.86) can be rewritten using Eq. (4.89) as,

V̂ =
1

3
(1 + s+ s2)− 1

1− s

(
1

2
k− − 1

2
s2k+

)
. (4.90)

We can write Eq. (4.90) in original variables as,

ẋL =
h2
L−

3

(
1 +

hL+

hL−
+

h2
L+

h2
L−

)
+

M

hL− − hL+

(
−1

2
h2
L−kL− +

1

2
h2
L+kL+

)
. (4.91)

We can also write Eq. (4.89) in its original variables as,

M [hL−kL− − hL+kL+ ] =
1

2
(h2

L− − h2
L+) (4.92)

Equation (4.91) shows how competing effects of the horizontal component of gravity

(first bracket) and Marangoni fluxes ahead and behind the contact line (second bracket)

alter the speed of the contact line. The forward Marangoni flux term is trying to

increase the speed of the contact line where as the reverse Marangoni flux is trying to
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Figure 4.25: Evolution of (a) h and (b) Γ in region A using data from Fig. 4.3 rescaled
using Eq. (4.79). The dashed lines show the solution to Eqs. (4.87,4.88) for or s = 0.1,
k− = 0.3153, k+ = −1.797 and V̂ = 0.18485.

slow the flow by drawing fluid out of the ‘effective’ contact line. The reverse Marangoni

is the dominant term and hence the speed of the ‘effective’ contact line is impeded with

the inclusion of surfactant when compared to gravity-driven flow alone. Figure 4.26

shows the comparison between the numerically computed ẋL and that obtained from

Eq. (4.91) which are indistinguishable.
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Figure 4.26: Testing the validity of ẋL obtained numerically (solid line) with that
obtained from Eq. (4.91)(dashed line). The two curves are indistinguishable.

4.3.5 Region III: Fluid front region.

This region includes the spreading fluid front in xL(t) ≤ x ≤ xSL(t). The lengthscale

of this region is xSL − xL. The flow in this region is predominantly controlled by

Marangoni forces. The height of the fluid front is o(b), hence forces due to gravity are of

magnitude o(b3) and are small in comparison to Marangoni forces. Balancing convective

and Marangoni forces ẋSLhx:M(h2Γx)x implies Γx: ẋSL

Mb
. Hence, Γ: ẋSL(xSL−xL)

Mb
across

this region. Note xSL > xL for all t. We then set,

x = xSL + (xSL − xL)ξ, h(x, t) = bH(ξ), Γ =
ẋSL(xSL − xL)

Mb
G(ξ). (4.93)

Figure 4.27(a,b) show the numerical solution for thes region to collapse under these
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scalings. Substitution into Eqs. (4.43,4.44), we obtain at leading order

Hξ [−ξ(1− γ)− γ] +

[
−1

2
H2Gξ

]
ξ

= 0, (4.94)

G [αα1 + 1− γ] +Gξ [−ξ(1− γ)− γ] + [−HGGξ]ξ = 0, (4.95)

where γ = ẋL

ẋSL
, α = xSLẍSL

ẋ2
SL

, α1 = 1− xL

xSL
. Assuming,

γ =
αα1

2
+ 1, (4.96)

reduces Eq. (4.95) to,

αα1

2
G+Gξ

[αα1

2
ξ − (

αα1

2
+ 1)

]
− [HGGξ]ξ = 0. (4.97)

Figure 4.28 compares γ obtained numerically to that in Eq. (4.96). There is good

agreement with the noise in data attributed to approximations to the derivatives in-

volved in the relevant variables. Integrating Eq. (4.97) then applying the boundary

conditions G = 0, H = 2 at ξ = 1 we obtain

αα1ξG− (αα1 + 2)G− 2HGGξ = 0. (4.98)

We then rearrange Eq. (4.98) for HGξ to obtain,

HGξ =
αα1

2
ξ − αα1 + 2

2
(4.99)
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Substituting the above into Eq. (4.94) to obtain,

αα1

4
(ξHξ)−

[
αα1 + 2

4

]
Hξ −

αα1

4
H = 0. ⇒ (4.100)

αα1(ξHξ)− (αα1 + 2)Hξ − αα1H = 0. (4.101)

Integrating Eq. (4.101) and using the boundary condition H = 2 at ξ = 1 we obtain

H(ξ) = 2

[
ξ − A

1− A

]
, (4.102)

where A = 1 + 2/(αα1). Numerical results (in Fig. 4.29) shows that A is large and

negative with A ≈ −50(the noise in the data is attributed to the numerical approxi-

mation in computing the derivatives involved). We then substitute Eq. (4.102) into

Eq. (4.99) to obtain

Gξ = −1

2
. (4.103)

Integrating and applying the boundary condition G = 0 at ξ = 1 we obtain,

G(ξ) = −1

2
(ξ − 1). (4.104)

Figure 4.27(a,b) show the above similarity solutions for H and G, depicted by dashed

lines, overlaid on the numerical solutions rescaled using the scalings in Eq. (4.93). It

can be seen that there is good agreement with the rescaled numerical simulations. We

note that since A is large and negative so the slope of h is small and positive, hence
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h ≈ 2b in this region which makes it appear to look like a ‘step’.

Then, to leading order, as x → x+
L we obtain

ΓL =
ẋSL(xSL − xL)

2Mb
, (4.105)

kL+ = − ẋSL

2Mb
. (4.106)

hL+ = 2b (4.107)
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Figure 4.27: Evolution of (a)h and (b)Γ region III using data from Fig. 4.3 and scalings
from Eq. (4.93). The dashed line is the similarity solution for H using Eq. (4.102) and
G using Eq. (4.104).



146

Figure 4.28: Comparison between γ obtained from the numerical solution to that
assumed in Eq. 4.96.

Figure 4.29: Evolution of A = 1 + 2/(αα1) with time.
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4.3.6 Region B: Kinematic shock region

A kinematic shock-like structure at the leading edge of region III which is ‘smoothened’

in comparison to the analytical solution (see Fig. (4.27)). The structure of this kine-

matic shock near x = xSL has been described in detail by (Jensen and Grotberg [30];

Jensen and Halpern [31]; Jensen [29]) and is not discussed here. In the parameter

regime relevant here, the discontinuity in the film thickness is smoothed by capillary

effects and the jump in the surfactant gradient is smoothed by surface diffusion, but

the region remains dynamically passive.

4.3.7 Region IV: Precursor film region

This is the precursor film region. This region remains undisturbed far upstream of the

spreading droplet and is dynamically passive.

We will now derrive a differential-algebraic equation (DAE) model to obtain the time

dependence of the characteristic variables.
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4.4 Differential-Algebraic equation (DAE) model of

the evolution of the characteristic variables: spread-

ing and thinning rates

We now derive an approximate DAE model to determine the time evolution of the

characteristic variables. Using which we dervive the spreading and thinning rates which

are not known a priori. Each of the previously described regions are characterised by

13 quantities: hL− , hL+ , hM− , hM+ , ΓL, ΓM , kM+ , kM− , kL+ , kL− , xSL, xL and xM . We

have derived previously equations for ten variables ΓM , kM− , xM , kM+ , hL− , kL− , xL,

ΓL, kL+ and hL+ which are:

Γ̇M =
ΓMh2

M−

2xM

, (4.108)

kM− = 0, (4.109)

ẋM =
1

3
(h2

M+ + hM+hM− + h2
M−)−M

h2
M+kM+

2(hM+ − hM−)
, (4.110)

kM+ =
h2
M+ − h2

M−

2MhM+

, (4.111)

hL− = MkL− +

√
(MkL−)2 − 1

ΓL

(
(Γ̇L − Γ̇M)(xL − xM)−

h2
M−xLΓM

xM

)
,

(4.112)

kL− =
hL+kL+

hL−
+

1

2MhL−
(h2

L− − h2
L+), (4.113)

ẋL =
h2
L−

3

(
1 +

hL+

hL−
+

h2
L+

h2
L−

)
+

M(−1
2
h2
L−kL− + 1

2
h2
L+kL+)

hL− − hL+

, (4.114)

ΓL =
ẋSL(xSL − xL)

2Mb
, (4.115)
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kL+ = − ẋSL

2Mb
, (4.116)

hL+ = 2b. (4.117)

Equations for two of the three remaining variables are derived using the conservation

of fluid volume and surfactant mass in the region xT ≤ x < ∞:

A =

∫ ∞

xT

(h− b)dx =

∫ xM

xT

(h− b)dx+

∫ xL

xM

(h− b)dx

+

∫ xSL

xL

(h− b)dx, (4.118)

B =

∫ ∞

xT

Γdx =

∫ xM

xT

Γdx+

∫ xL

xM

Γdx+

∫ xSL

xL

Γdx, (4.119)

where A and B are the total fluid volume and surfactant mass, respectively. Since

we do not analytical solutions for h and Γ in region II we approximate this region

as a trapezium with height hM+ and surfactant concentration ΓM at x = xM and

height hL− and surfactant concentration ΓL at x = xL. Using this, Eq. (4.118)can be

approximated as

A ≈
∫ xM

xT

(
hM−√
x− xT

√
xM − b

)
dx+

(
hM+ + hM−

2
− b

)
(xL − xM)

+

∫ xSL

xL

(2b− b)dx. (4.120)

We assume that here that hT ≪ hM− is negligible. Upon integration we obtain,

A ≈ 2

3

(xM − xT )
3/2hM−

√
xM

+
1

2
(hL− + hM+)(xL − xM) + b(xSL − 2xL + xT ). (4.121)
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Upon rearrangement for hM+ we obtain

hM+ ≈
2A− 4

3
xMhM− − 2b(xSL − 2xL)

xL − xM

− hL− (4.122)

We have neglected xT here since xT ≪ xM at late times. Equation (4.119) can be

approximated as

B ≈
∫ xM

xT

ΓMdx+
(ΓM + ΓL)

2
(xL − xM) +

ΓL

2
(xSL − xL) (4.123)

Upon integration we obtain,

B ≈ ΓMxM +
(ΓM + ΓL)

2
(xL − xM) +

ΓL

2
(xSL − xL). (4.124)

Upon substitution of Eq. (4.115) and rearrangement for ẋSL we obtain,

ẋSL ≈
4Mb

[
B − ΓM

2
(xM + xL)

]
(xSL − xL)(xSL − xM)

(4.125)

The equation for the remaining variable hM− is derived as follows. As discussed in

Section 4.3.1 region I behaves similarly to region I in the gravity-driven problem. Hence,

using similarity, we can write

hM−

ĥL,
=

√
xM

x̂L

(4.126)

where x̂L and ĥL denote the position and height, respectively, of the leading edge of

the droplet flowing under the influence of gravity only. Using Eqs. (2.89,2.90) for x̂L
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and ĥL, we obtain,

hM− =
3A

2

√
xM[

9
4
A2(t− t0)x̂3

L0

]1/2 , (4.127)

where x̂L0 = x̂L(t = t0). We now have a closed system of thirteen differential-algebraic

equations (DAE) parametrised by A, B,M and b. We solve these equations numerically

and compare with the corresponding numerical data. The numerical simulations used

A = 4/3, B = 2, M = 1 and b = 10−3. Initial values for the differential equations are

fitted from the numerical solution at t0 = 105. These are used to determnine consistent

initial conditions for the algebraic equations. The DAEs are solved numerically and

their solution provides good approximation for the behaviour in t > 105 (solid line in

Figs. 4.30-4.33) when compared to the those obtained from the numerical simulations

of the PDE. We note from Fig. (4.32)(a) that the evolution of kM+ and kL− is not that

accurate compared to numerical data owing to the arbitrariness of which both these

variables are computed numerically.

Figures 4.30-4.33 suggest a power-law behaviour at late times for the spreading and

thinning rates. We extract this behaviour by plotting the evolution of the characteristic

variables on a log-log plot. Figures 4.34-4.37 show that (xM , xL, xSL) ∝ t1/3 and

(hL− , hM−) ∝ t−1/3. We now attempt to derive analytically the spreading and thinning

rates shown. From Eq. (4.125) that ẋSL ∝ 1
x2
SL

which implies that xSL ∝ t1/3. hM− and

xM are similar to the gravity-driven spreading hence are proportional to t−1/3 and t1/3

respectively. Equation (4.124) indicates that ΓL(xSL − xM) ∝ B, as ΓM is relatively

small and constant, which implies that ΓL ∝ t−1/3. Equation (4.116) indicates that
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kL+ ∝ ẋSL ∝ t−2/3. By balancing the second and third terms in Eq. (4.113) we

obtain hL− ∝ k
1/2

L+ = t−1/3 then by balancing the first and third terms we obtain

kL− ∝ hL− = t−1/3. Taking Eq. (4.114) and using kL+ , kL− and assuming b ≪ 1 we

obtain

ẋL =
h2
L−

12
+

ẋSL

2
. (4.128)

Therefore ẋL ∝ t−2/3 which implies xL ∝ t1/3. Equation (4.111) indicates, by balancing

terms, that hM+ ∝ hM− ∝ t−1/3 and also kM+ ∝ h+
M ∝ t−1/3. We cannot analytically

obtain a power law behaviour for Γm by solving Eq. (4.108). These time dependence’s

match the numerically extrapolated spreading and thinning rates (see Figs. 4.34-4.37).

Hence we have successfully derived the thinning and spreading rates of the spreading

droplet based on volume conservation arguments for fluid and surfactant.
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Figure 4.30: Comparing the numerically obtained fluid profile to that obtained by
solving the system of DAE’s for (a) hM− , (b) hM+ and (c) hL− from time t = 1× 105.
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Figure 4.31: Comparing the numerically obtained fluid profile to that obtained by
solving the system of DAE’s for (a) xM , (b) xL and (c) xSL from time t = 1× 105.
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Figure 4.32: Comparing the numerically obtained fluid profile to that obtained by
solving the system of DAE’s for (a) kM+ (b) kL− and (c) kL+ from time t = 1× 105.



156

Figure 4.33: Comparing the numerically obtained fluid profile to that obtained by
solving the system of DAE’s for (a) ΓL and (b) ΓM from time t = 1× 105.
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Figure 4.34: Comparing (a) hM− , (b) hM+ and (c) hL− obtained from the numerical
solution of the PDE’s (dashed lines) with the DAE model (solid lines) for t > 105.
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Figure 4.35: Comparing (a) xM , (b) xL and (c) xSL obtained from the numerical
solution of the PDE’s (dashed lines) with the DAE model (solid lines) for t > 105.
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Figure 4.36: Comparing the numerically obtained fluid profile to that obtained by
solving the system of DAE’s for (a) kM+ and kL− , (b) kL+ and (c) ΓL from time
t = 1× 105 plotted log-log plot with the power law behaviour displayed.
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Figure 4.37: Comparing the numerically obtained fluid profile to that obtained by
solving the system of DAE’s for (a) ΓL and (b) ΓM from time t = 1 × 105 plotted
log-log plot with the power law behaviour displayed.
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4.5 Concluding remarks

This chapter analyses the late-time spreading of a thin liquid droplet laden with in-

soluble surfactant down a pre-wetted inclined plane using simulations and asymptotic

analysis. Our results provide insights into some important physical mechanisms that

were not accessible from previous computational studies [15, 12, 13]. Our analysis

shows the existence of a multi-region locally self-similar structure that is robust for

a range of parameters and initial conditions. We have focused on the spreading of

the spreading of the bulk droplet and the fluid front ahead of it and elucidated the

important physical mechanisms relevant in these regions. The horizontal component of

gravity dominates the bulk spreading of the drop where the surfactant concentration

equilibrates rapidly and is constant (region I). As we move towards the front of this

region Marangoni forces become important as the surfactant is swept downstream by

gravity. They now compete with gravity and impede the flow resulting in the fluid to

accumulate here in the form of a hump (region II). At leading edge of the droplet there

is a short transition region were Marangoni, gravity and surface tension forces compete

(region A). Marangoni forces compete with the horizontal gravity to slow down the ‘ef-

fective’ contact line speed compared to gravity-driven spreading alone. Surface tension

is responsible for the formation of a so-called capillary ridge similar to gravity-driven

spreading. Ahead of the spreading droplet a fluid front is formed due to dominant

Marangoni forces.

A similarity solution describing the spreading of the main bulk droplet (region I) is
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obtained. This solution shows that h(x, t):√
x and Γ(x, t) = ΓM(t). This solution

for the droplet height is the same as that obtained by Huppert [27] and Troian et al.

[63] for gravity-driven spreading. We have derived a novel differential equation for ΓM

which shows how the almost uniform concentration in this region decreases with time.

In the fluid hump region (regions C and II), the unsteady nature of the problem and

the large change in surfactant concentration here proved difficult to obtain analytical

solutions. However, we have obtained a new semi-analytical approximate solution

which captures the gross evolution of this region, particularly the jump in droplet

height. A similar region has also been observed for the flow down an inclined plane

from a constant flux source [15]. A travelling wave solution is used to derive a semi-

analytic solution which is more straight forward that the one here [38, 39].

We were able to show that by balancing Marangoni forces the horizontal component

of gravity and capillary effects that region A (containing the capillary ridge) rescales

to give a family of quasi-steady solutions. To leading order, the evolution of the drop

height is shown to be independent of the surfactant concentration and is the same as

that of the gravity driven flow. The effects of surfactant are shown to influence the

Contact line speed. Equation (4.91) shows that the slowing down of the contact line

speed is due to the Marangoni effect competing against gravity.

We have derived a similarity solution for the fluid front at the leading edge of the

spreading droplet which matches well with the rescaled numerical results. This region

is similar to that discussed by Jensen and Grotberg [30], Jensen and Halpern [31] and
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Jensen [29] except that is appears to be like a ‘step’ over the relatively short region

between the leading edge and that of the spreading droplet. A proper step with height

equal to twice the precursor thickness is observed for flow down an inclined plane from

a constant-flux source [15] and analysed using a travelling wave solution [38, 39].

We observed that the structures upstream of the trailing edge of the droplet showed

a a variety of behaviours over the time scales considered. At early times, a fluid

front (similar to that at the droplets leading edge) travelling up the incline is observed

conecting to the trailing edge of the droplet via an ultra thin film. This is similar to

a surfactant-laden droplet spreading on a horizontal plane studdied by Warner et al.

[65] and Jensen and Naire [32]. At late times, the Marangoni forces driving this front

upstream decrease causing it to slow down and thin. Eventually, gravity changes the

course of the flow to go down the incline and we observe the formation of a satellite

droplet. The spreading flow is reminiscent of that from a constant-flux source (in this

case coming from the precursor film behind) and includes a satellite capillary ridge.

Such structures have not been observed previously. Such late-time spreading structures

have not been reported in previous works.

The spreading and thinning rates are naturally obtained from our asymptotic analysis

and are not assumed to be known a priori. Our analysis shows that the drop spreads at

a rate t1/3 and thins at a rate t−1/3 which are obtained both numerically and analytically

via a reduced DAE model. Notwithstanding the approximations made in deriving the

DAE mode, it is a very good fit to the numerical solution at late times. Although the
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spreading and thinning rates are the same in the gravity driven spreading, this is the

first time they have been obtained for surfactant and gravity-driven spreading.

Having described the one-dimensional flow and corresponding structures to a reason-

able accuracy, we will consider their stability particularly the stability of region A, to

transverse perturbations. This is done in Chapter 5.



Chapter 5

Spreading of a surfactant-laden

viscous droplet down an inclined

pre-wetted plane: stability.

In this chapter, we will explore the stability to transverse perturbations of a viscous

droplet of constant volume laden with insoluble surfactant spreading down an inclined

pre-wetted plane due to gravity and surfactant-related effects. In §5.1, we will under-

take a linear stability analysis of the ‘effective’ contact line at the leading edge of the

spreading droplet, region A (see Fig. 4.9), where it is speculated that the instabilities

originate from. We obtain a dispersion relation curves (relationship between growth

rate and wavenumber of transverse perturbations) and compare the results to a small

wavenumber analysis. To validate these results further we will run 2-D simulations,

165
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§5.2. Finally, we will discuss the effect of selected parameters on the fingering behavior.

5.1 Linear Stability analysis of Region A

Having captured, to a reasonable level of accuracy, the structure and dynamics of the

spatially one dimensional flow, we now investigate it’s stability to small amplitude

disturbances with wavenumber q∗. In the same way as the gravity-driven case, we

believe that the instability originates from the ‘effective’ contact line region. This is

validated by Edmonstone et al. [15, 12],

[13] and Mavromoustaki et al [48, 46], who use transient growth analysis and linear

stability analysis respectively, to show that the growth of perturbations localised in

this region. We will therefore perform, as we did previously, a linear stability analysis

using the solutions for H and G in Eqs. (4.87,4.88) as the base state. We first take the

two dimensional versions of Eqs. (4.43) and (4.44) and applying the following scalings,

y = (Ca/h−
L)

1/3η and t =
(
Cah−

L
5
)1/3

τ along with the scalings in Eq. (4.79), reduces

the problem in this region to,

Hτ − V̂ Hξ = ∇̂ ·
(
−H3

3
∇̂∇̂2H +

H2

2
∇̂G+ D̂(θ)

H3

3
∇̂H

)
−
(
H3

3

)
ξ

(5.1)

0 = ∇̂ ·
(
−H2

2
∇̂∇̂2H +H∇̂G+ D̂(θ)

H2

2
∇̂H

)
−
(
H2

2

)
ξ

, (5.2)

where ∇̂ = (∂/∂ξ, ∂/∂η). We perform a normal mode analysis by setting

(H(ξ, η, τ), G(ξ, η, τ)) = (Hs(ξ), Gs(ξ)) + ϵ(Ĥ(ξ), Ĝ(ξ))eiqη+βτ , where (Hs(ξ), Gs(ξ))
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denote the quasi-steady base state for H and G respectively which are obtained by

solving Eqs. (4.87,4.88), q = (CahL−)1/3q∗ is the scaled wavenumber and β is the

growth rate, and ϵ ≪ 1. At leading order in ϵ, we recover the the quasi-steady equations

(4.80,4.81). At O(ϵ) the linearised unsteady disturbance satisfies,

βĤ − V̂ Ĥξ =

[
H2

s

2
Ĝξ +HsĤGsξ −

H3
s

3

(
∂2

∂ξ2
− q2

)
Ĥξ −H2

s ĤHsξξξ + D̂(θ)
H3

s

3
Ĥξ

]
ξ

+[
D̂(θ)H2

s Ĥ1Hsξ

]
ξ
− q2

H2
s

2
Ĝ+ q2

H3
s

3

(
∂2

∂ξ2
− q2

)
Ĥ

−(H2
s Ĥ)ξ − q2D̂(θ)

H3
s

3
Ĥ (5.3)

0 =

[
HsĜξ + ĤGsξ −

H2
s

2

(
∂2

∂ξ2
− q2

)
Ĥξ −HsĤHsξξξ + D̂(θ)

H2
s

2
Ĥξ

]
ξ

+[
D̂(θ)HsĤHsξ

]
ξ
− q2HsĜ+ q2

H2
s

2

(
∂2

∂ξ2
− q2

)
Ĥ − (HsĤ)ξ

−q2D̂(θ)
Hs

2
Ĥ (5.4)

The above two equations are the eigenvalue problem for this region. One can solve

the eigenvalue problem numerically to find the dispersion relation, i.e., relationship be-

tween β and q. This is a non trivial task to undertake: we can however replace βĤ by

Ĥτ and solve it numerically as an initial value problem (IVP). An alternative approach

may also be used [7]. We use finite difference on a uniform grid to discretise the spatial

derivatives, as we did in §4.2 keeping the time derivative continuous. The resulting

PDE’s are solved using a stiff ODE solver in Matlab[56]. We track the evolution of

localised disturbances from a prescribed initial disturbance (normal distribution per-

turbation centred about 0 on the base state). We look for perturbations that decay to
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zero at the boundaries. Substituting the base state into the discretised equations then

solving the IVP until a steady growth rate β is obtained without the perturbations

growing to the boundary. The evolution depends on the wavenumber q, the contact

line speed V̂ , s, k− and k+. Using the relations in Eqs. (4.86, 4.89), we need only to

prescribe values for two parameters which we chose to be s and k+. Varying the base

state equates to varying time as s, k+ and V̂ all vary with time. For small q, growing

disturbances in G ultimately reach the boundaries of the domain, which prevented us

from computing reliable results for q < 0.1. Figure 5.1(a),(b) show the evolution of Ĥ

and Ĝ (solid lines), respectively for q = 0.3 at an inclination angle θ = 90o emanating

from a base state evaluated at t = 2× 105 (dashed line) (corresponding to s = 0.0884

and k+ = −2). It is observed that under suitable conditions disturbances can grow

rapidly: perturbations to Ĥ are larger immediately ahead of the capillary ridge and

behind the fluid front, while perturbations to Ĝ are larger where the base state surfac-

tant concentration has a maximum, features identified previously by Edmonstone et

al. [13]. It is also noted that Ĝ is minimum where Ĥ is maximum and vice versa. At

late times (τ > 50) the growth of the disturbances is approximately exponential. Com-

paring Figs 3.1,5.1 we see that the disturbances grow much quicker with the inclusion

of surfactant. At late times the growth of the disturbances is exponential. Figure 5.2

shows β against q for an inclination angle of 90o at times t = 104, 105, 2× 105, 5× 105

and 106. The shape of the dispersion relation resembles that obtained by [13] using

transient growth analysis. The dispersion relation demonstrates convincingly that the

most unstable mode has a wavenumber comparable to the width of region A. This
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indicates that this region is linearly unstable to perturbations of these wavelengths. At

higher wavenumbers, the growth rate is negative implying that the region is linearly

stable to perturbations at these wavenumbers. It is also observed that the maximum

growth rate and bandwidth of unstable wavenumbers decrease as time increases. Fig-

ure 5.3 shows the dispersion relation for s = 0.0884 and k+ = −2 for inclination angles

θ = 3o, 60o and 90o. It can be seen that decreasing the inclination angle decreases

the maximum growth rate and the bandwidth of unstable wavenumbers. This result

is in agreement with the transient growth analysis conducted by Edmonstone et al.

[13]. Finally, in Fig. 5.4 we compare the dispersion relation between surfactant and

gravity-driven spreading (solid line) and gravity-driven spreading alone(dashed line)

using a base state, Hs, corresponding to s = 0.0884 and k+ = −2. We observe that

the growth rate and band of unstable wavenumbers are significantly smaller for the

gravity-driven case indicating the additional destabilising contribution due to surfac-

tant. Moreover, at small wavenumbers the dispersion relation behaves differently with

quadratic behaviour for gravity-driven spreading and linear for surfactant and gravity-

driven spreading. Furthermore, for gravity-driven spreading alone there is a critical

inclination angle θ below which the base state is linearly stable for all wavenumbers

(see Fig. 3.3). In contrast, it is speculated that the surfactant and gravity-driven

spreading is linearly unstable for all angles of inclination [13]. These are analysed in

more detail in the next section by performing a small-wavenumber analysis about the

base state, which forms part of the discrete spectrum of the linear operator in Eqs.

(5.3,5.4).
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5.1.1 Small-wavenumber analysis

In this section we examine the wavelengths intermediate between the width of region A,

II and III. Since the numerical results suggest that at leading order the growth rate is

linear in wavenumber, we write [Ĥ, Ĝ, β] = [Ĥ, Ĝ, β]0+q[Ĥ, Ĝ, β]1+q2[Ĥ, Ĝ, β]2+O(q3).

Then substituting this into Eqs. (5.3,5.4), we obtain at leading order in q (Ĥ0, Ĝ0) =

(−Hsξ,−Gsξ) and β0 = 0. This represents a simple translation of the base state. At

O(q) we get

−β1Hsξ − V̂ Ĥ1ξ =

[
H2

s

2
Ĝ1ξ +HsGsξĤ1 −

H3
s

3
Ĥ1ξξξ −H2

sHsξξξĤ1 + D̂(θ)
H3

s

3
Ĥ1ξ

]
ξ

+
[
D̂(θ)H2

sHsξĤ1 −H2
s Ĥ1

]
ξ
, (5.5)

0 =

[
HsĜ1ξ + Ĥ1Gsξ −

H2
s

2
Ĥ1ξξξĤ1 + D̂(θ)

H2
s

2
Ĥ1ξ + D̂(θ)HsHsξĤ1

]
ξ

+
[
−HsĤ1

]
ξ
. (5.6)

Integrating the Eqs. (5.5,5.6) from ξ = −∞ to ξ = ∞ and applying the boundary

conditions,

Hs → s, Gsξ → k+, (Hsξ, Hsξξξ, Ĥ1, Ĥ1ξ, Ĥ1ξξξ) → 0, Ĝ1ξ → A(constant)

as ξ → +∞, (5.7)

Hs → 1, Gsξ → k−, (Hsξ, Hsξξξ, Ĥ1, Ĥ1ξ, Ĥ1ξξξ) → 0, G1ξ → B

as ξ → −∞. (5.8)
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The conditions for G1ξ are required to balance the unsteady and Marangoni terms

(first and third terms) in Eq. (5.5) and are also motivated, in part, by the fact the

leading order solution G0 tends to constant values −k− and −k+ as ξ → −∞, ∞,

respectively. We therefore obtain,

β1 =

[
1
2
As2 − B

2

1− s

]
, (5.9)

B = As (5.10)

which implies,

β1 = −B/2 = −As/2 (5.11)

To determine the growth rate β1, we need to determine either A or B. We assume

that for q ≪ 1, the eigenfunctions have a 3 region structure: an inner region where

ξ = O(1) and Ĥ = −Hsξ, Ĝ = −Gsξ, and two outer regions of O(1/q). We now show

how perturbations to G affect the surfactant gradient ahead and behind the effective

contact line. To describe the outer region we rescale ξ = z/q, Ĝ = G̃/q, β = qβ̃,

Ĥ = H̃. Substituting the rescalings into Eqs. (5.3) and (5.4) and after dividing by q

we obtain,

β̃H̃ − V̂ H̃z =

[
H2

s

2
G̃z +HsGsξH̃ − q3

H3
s

3

(
∂2

∂z2
− 1

)
H̃z

]
z

+

[
−H2

sHsξξξH̃ + qD̂(θ)
H3

s

3
H̃z + D̂(θ)H2

sHsξH̃

]
z

−H2
s

2
G̃+ q3

H3
s

3

(
∂2

∂z2
− 1

)
H̃ − (H2

s H̃)z − qD̂(θ)
H3

s

3
H̃, (5.12)
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0 =

[
HsG̃z + H̃Gsξ − q3

H2
s

2

(
∂2

∂z2
− 1

)]
z

−HsHsξξξH̃ + qD̂(θ)
H2

s

2
H̃z

+
[
D̂(θ)HsHsξH̃

]
z
−HsG̃+ q3

H2
s

2

(
∂2

∂z2
− 1

)
H̃ − (HsH̃)z

−qD̂(θ)
H2

s

2
H̃. (5.13)

At leading order in q, using the fact that Hs → s, Gsξ → k+, Hsξ, Hsξξξ → 0 as ξ → ∞,

we obtain,

β̃H̃ − V̂ H̃z =

[
s2

2
G̃z + sk+H̃

]
z

− s2

2
G̃− s2H̃z, (5.14)

0 =
[
sG̃z + k+H̃

]
z
− sG̃− sH̃z. (5.15)

Rearranging Eq. (5.15) we obtain,

G̃zz − G̃ =

(
1− k+

s

)
H̃z. (5.16)

Substituting the above equation into the Eq. (5.14) we obtain,

H̃z −
β̃

α
H̃ = 0, (5.17)

where α =
[
s2

2
+ sk+

2
− s2 + V̂

]
. The solution to the above equation is H̃ = H̃0e

β̃z/α.

For H̃ to be bounded and β̃ > 0, H̃0 = 0, as α > 0 for some values of s. Hence Eq.

(5.16) becomes

G̃zz − G̃ = 0. (5.18)
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The solution of Eq. (5.18) is G̃ = C1e
z + C2e

−z as z → ∞. As we require a decaying

solution, implies C1 = 0. Hence, the solution in the outer region ahead of the contact

line is,

Ĝ =
C2

q
e−qξ =

C2

q
(1− qξ + q2ξ+o(ξ3)). (5.19)

Expanding e−qξ in a power series in ξ and matching to the inner region, we obtain

C2 = −qk+. Hence,

Ĝ = −k+ + qk+ξ − q2

2
k+ξ2 + o(ξ3), as ξ → 0+. (5.20)

By taking the limit as ξ → ∞ we obtain A = k+ and hence,

β1 = −k+s

2
. (5.21)

Equations (5.12) and (5.13) at leading order in q and now applying Hs → 1, Gsξ →

k−, Hsξ, Hsξξξ → 0, as ξ → −∞, we obtain,

β̃H̃ − V̂ H̃z =

[
1

2
G̃z + k−H̃

]
z

− 1

2
G̃− sH̃z (5.22)

0 =
[
G̃z + k−H̃

]
z
− G̃− H̃z. (5.23)

Rearranging Eq. (5.23) we obtain,

G̃zz − G̃ =
(
1− k−) H̃z. (5.24)
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Substituting the above equation into Eq. (5.22) we obtain,

H̃z −
β̃

α
H̃ = 0, (5.25)

where α =
[
1
2
+ k−

2
− 1 + V̂

]
. The solution to the above equation is H̃ = H̃0e

β̃z/α. For

H̃ to be bounded and β̃ > 0, then H̃0 = 0. Hence Eq. (5.24) becomes,

G̃zz − G̃ = 0. (5.26)

The solution of which is G̃ = C1e
z + C2e

−z as z → −∞. As we want a decaying

solution as z → −∞, implies C2 = 0. Hence, the solution in the outer region behind

the contact line is,

G =
C1

q
eqξ. (5.27)

Expanding eqξ in a power series in ξ then matching to the inner region we obtain

C1 = −qk−. Hence,

Ĝ = −k− − qk−ξ − q2

2
k−2 − ξ + o(ξ2) (5.28)

So, B = −k−. Using Eq. (5.31) we obtain the O(q) growthrate,

β1 =

[ 1
2
k+s2 + 1

2
k−

1− s

]
. (5.29)

Noting that k− > 0, k+ < 0 and s < 1, the growthrate β1 > 0 if k−/2 > −k+s2/2,

i.e. the O(q) Marangoni flux behind the contact line dominates that ahead of the
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contact line. If this condition is satisfied, a mechanism for the flow to become linearly

unstable at O(q) is due to the forward Marangoni flux behind the contact line drawing

more fluid into the contact line region than the forward Marangoni flux ahead of the

contact line region dragging fluid out. This results in growth of the perturbations in

h consequently destabilising the flow and the constant line (consistent with Fig. 5.1

where Ĥ is positive and growing immediately behind the contact line (and ahead of the

capillary ridge) coinciding with Ĝξ which is negative there). We now verify whether

the above condition is satisfied. Using A = sk+, B = −k− in Eq. (5.10) gives,

−k− = sk+. (5.30)

Figure 5.5(a) shows that Eq. (5.30) is approximately satisfied. Using which the above

condition can be re-written as k−(1 − s2) > 0 which is always satisfied. Rearranging

Eq. (4.89) then the above relationship gives k− = (1− s2)/4 and k+ = −(1− s2)/(4s)

(Fig. 5.5(b,c) shows that these relationships are approximately satisfied). Equation

(5.29) can now be re-written as,

β1 =
1− s2

8
≈ 1

8
(since s ≪ 1). (5.31)

Equation (5.31) shows that the O(q) growthrate is always positive and independent of

the angle of inclination. Hence the flow is linearly unstable for all angles of inclination

confirming the speculation by Edmonstone et al. [13]. We also note from numerics
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that s increases gradually with time so β1 decreases confirming the observation in Fig.

5.2 that as time increases the base state becomes less linearly unstable. The analysis

also shows the Marangoni effect to be dominant at this order with gravity having no

influence. Figures 5.6 (a,b) show the O(q) approximation, β ≈ q/8 (dashed lines)

along with numerical dispersion curves (solid lines) for inclination angles θ = 90o, 3o

respectively. We see that at higher inclination angles the O(q) approximation slightly

underestimates the numerical dispersion relation and at small inclination angles it over-

estimates. Hence an O(q2) correction is needed to better approximate the dispersion

curve. We now determine the O(q2) growth rate. At O(q2) we obtain,

β1H1 − β2Hsξ − V̂ H2ξ =

[
H2

s

2
G2ξ +HsGsξH2 −

H3
s

3
H2ξξξ −

H3
s

3
Hsξξ −H2

sHsξξξH2

]
ξ

+

[
D̂(θ)

H3
s

3
H2ξ + D̂(θ)H2

sHsξH2

]
ξ

+
H2

s

2
Gsξ −

H3
s

3
Hsξξξ

−(H2
sH2)ξ + D̂(θ)

H3

3
Hsξ (5.32)

0 =

[
HsGsξ +GsξH2 −

H2
s

2
H2ξξξ −

H2
s

2
Hsξξ −HsHsξξξH2

]
ξ

+

[
D̂(θ)

H2
s

2
H2ξ + D̂(θ)HsHsξH2

]
ξ

+HsGsξ −
H2

S

2
Hsξξξ

−(HsH2)ξ + D̂(θ)
H2

s

2
Hsξ (5.33)

Integrating the above equations from ξ = −∞ to ξ = +∞, using the boundary condi-

tions,

(H1, H2, H2ξ, H2ξξξ) → 0, as ξ → ±∞. (5.34)

Also, G2ξ → −k−ξ (using Eq. (5.20)) as ξ → −∞ and G2ξ → −k+ξ as ξ → +∞ (using
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Eq. (5.28)). Also using the boundary conditions for the base state (Eqs. (5.7,5.8)) we

obtain,

(1− s)β2 =
−s2

2
k+ξ

∣∣∣∣
ξ→∞

+
k−

2
ξ

∣∣∣∣
ξ→−∞

+

∫ ∞

−∞

H2
s

2
Gsξdξ −

∫ ∞

−∞

H3
s

3
Hsξξξdξ

+

∫ ∞

−∞
D̂(θ)

H3
s

3
Hsξdξ (5.35)

Equation (5.35) shows that theO(q2) growthrate β2 is controlled by competing Marangoni,

capillary and vertical gravity fluxes. The first two terms on the right hand side of Eq.

(5.35) cancel the divergent contribution of the Marangoni flux (the third term on the

RHS) far ahead and behind the contact line, respectively. For spreading without sur-

factant this reduces to the stability criterion Eq. (3.8) derived by Bertozzi and Brenner

[8]. Using Eqs. (4.86-4.89) and rearranging determines O(q2) growth rate β2:

β2 =
1

1− s

[
1

2

∫ ∞

−∞

1

2
H2

sGsξdξ −
1

2
s2k+ξ

∣∣∣∣
ξ→∞

+
1

s
k−ξ

∣∣∣∣
ξ→∞

]

+
1

1− s

[
1

3

∫ ∞

−∞
(Hs − 1)(Hs − s)(Hs + s+ 1)dξ

]
. (5.36)

The first set of square brackets are the contribution from the Marangoni flux and

the second from the capillary flux. The contribution from the capillary flux remains

a positive contribution if Hs > 1 for a considerable part of the domain. Hence a

large capillary ridge is necessary for this to happen. We numerically approximate

the integrals involved to compute the growth rate β2. For large inclination angles, the

second integral in Eq. (5.36) is positive and dominates the first which is negative due to
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the steep drop in surfactant concentration observed immediately ahead of the maximum

surfactant concentration (see Fig. 4.7). This results in a net downward flow out of the

contact line region which has a stabilising influence on the growth of the perturbations

at this order. As the inclination angle decreases, the positive contribution from the

second integral gradually decreases becoming negative below some threshold angle θ

and the contribution from the second integral decreases in magnitude while still being

negative. Hence below this threshold angle β2 is always negative. Figures 5.6(a,b)

show that the O(q2) approximation, β ≈ β1q+ β2q
2, (dot-dashed lines) along with the

numerical dispersion relation (solid lines) for inclination angles θ = 90o, 3o, respectively,

with β2 = 0.0207 for θ = 90o and β2 = −0.0847 for θ = 3o. We observe that the O(q2)

correction provides a much better approximation of the dispersion relation at small

wavenumbers.

In the next section we undertake 2D simulations by which we can validate the LSA

undertaken here.
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Figure 5.1: Solid lines show solutions of Eqs. (5.3,5.4) for q = 0.3, θ = 90o using a
base state (dashed lines) evaluated at t = 2× 105 (s = 0.0884 and k+ = −2). Arrows
show increasing time between 10− 100.
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Figure 5.2: Large-time growthrate β versus wavenumber q for t = 104, 105, 2x105,
5x105 and 106 for inclination angle of 90o for surfactant and gravity driven instability.

Figure 5.3: Large-time growthrate β versus wavenumber q for s = 0.0884 and k+ = −2
for inclination angles of 90o, 60o and 3o.
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Figure 5.4: Large-time growthrate β versus wavenumber q for the base-state with
s = 0.0884 for inclination angle of 90o for gravity-driven flow and k+ = −2 for the
surfactant and gravity-driven flow.
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Figure 5.5: Testing the validity of (a) Eq.(5.30), (b) k− = (1 − s2)/4 and (c) k+ =
−(1− s2)/(4s).
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Figure 5.6: Comparing large-time numerical dispersion relation (solid lines) to the
small wavenumber approximation, β ≈ β1q (dashed lines) and β ≈ β1q + β2q

2 (dot-
dashed lines) for s = 0.0844, k− = −2 for an inclination angle of (a)θ = 90o and (b)
θ = 3o.
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5.2 Two-dimensional numerical simulations and non-

linear stability.

In this section, we examine the nonlinear stability to transverse perturbations of the

base state flow discussed in detail in Chapter 4. The two-dimensional problem is given

by Eqs. (4.40,4.42) and can be written as,

ht +

[
Ca

h3

3
(hxxx + hyyx)− D̂(θ)

h3

3
hx −M

h2

2
Γx

]
x

+

[
Ca

h3

3
(hyyy + hxxy)− D̂(θ)

h3

3
hy −M

h2

2
Γy

]
y

+

[
h3

3

]
x

= 0, (5.37)

Γt +

[
Ca

h2Γ

2
(hxxx + hyyx)− D̂(θ)

h2Γ

2
hx −MhΓΓx

]
x

+

[
Ca

h2Γ

2
(hyyy + hxxy)− D̂(θ)

h2Γ

2
hy −MhΓΓy

]
y

+

[
h2Γ

2

]
x

− Γxx

Pe
= 0.

(5.38)

for −L1 ≤ x ≤ L2 and −1/q ≤ y ≤ 1/q, where q is the wavenumber of a perturba-

tion in the y direction and L1, L2 are arbitrarily chosen lengths. These equations are

supplemented by six boundary conditions in the x direction which are,

h = b, hx = 0, Γ = 0, at x = −L1, L2, (5.39)

and periodic boundary conditions in the transverse y direction. These boundary con-

ditions characterise a flat precursor film and zero surfactant concentration far ahead

and behind of the spreading droplet. We also define periodic boundary conditions in
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the transverse direction. We follow the same procedure as in §3.2 to introduce localised

periodic transverse perturbations of varying amplitude and wavenumber of the form in

Eq. (3.11). These perturbations are only superimposed on the base state for droplet

height, h, and not in surfactant concentration Γ. The base state is taken to be ei-

ther the initial parabolic droplet shape and surfactant concentration (Eqs. (4.46,4.47))

used for the 1D simulations or quasi-steady 1D solutions for h and Γ at specific times

obtained numerically in Chapter 4.

We first define a forward difference and a backward difference in the x direction by,

(h,Γ)x,i,j =
(h,Γ)i+1,j − (h,Γ)i,j

∆x
, (h,Γ)x̃,i,j =

(h,Γ)i,j − (h,Γ)i−1,j

∆x
. (5.40)

We also define a forward difference and a backward difference in the y direction by

(h,Γ)y,i,j =
(h,Γ)i,j+1 − (h,Γ)i,j

∆y
, (h,Γ)ỹ,i,j =

(h,Γ)i,j − (h,Γ)i,j−1

∆y
, (5.41)

where i is the index in the x direction and j is the index in the y direction. Where

(h,Γ)i,j = (h,Γ)(xi, yj, t), i = 0, 1, ..., N , j = 0, 1, ...M . N and M are the number

of discretisation points and ∆x and ∆y are the grid sizes in the x and y directions

respectively. Using Eqs. (5.40,5.41) we can discretise Eqs. (5.37,5.38) such that,

ht,i,j +
[
Ca a(hi+1,j, hi,j)(hx̃xx̃i,j + hỹyx̃i,j)− D̂(θ)a(hi+1,j, hi,j)hx̃i,j

]
x

+ [−Mc(hi+1,j, hi,j)Γx̃i,j]x + [Ca a(hi,j+1, hi,j)(hỹyỹi,j + hx̃xỹi,j)]y
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+
[
−D̂(θ)a(hi,j+1, hi,j)hỹi,j −Mc(hi+1,jΓi+1,j, hi,jΓi,j)Γỹi,j

]
y
+

(
h3
i,j

3

)
x̃

= 0,(5.42)

Γt,i,j +
[
Ca d(hi+1,jΓi+1,j, hi,jΓi,j)(hx̃xx̃i,j + hỹyx̃i,j)− D̂(θ)d(hi+1,jΓi+1,j, hi,jΓi,j)hx̃i,j

]
x

+ [−Me(hi+1,jΓi+1,j, hi,jΓi,j)Γx̃i,j]x + [Ca d(hi,j+1Γi,j+1, hi,jΓi,j)(hỹyỹi,j + hx̃xỹi,j)]y

+
[
−D̂(θ)d(hi,j+1Γi,j+1, hi,jΓi,j)hỹi,j −Me(hi,j+1Γi,j+1, hi,jΓi,j)Γỹi,j

]
y

+

(
h2
i,jΓi,j

2

)
x̃

= 0 (5.43)

where,

a(hi+1,j, hi,j) =
h3
i+1,j + h3

i,j

6
, a(hi,j+1, hi,j) =

h3
i,j+1 + h3

i,j

6
,

c(hi+1,j, hi,j) =
h2
i+1,j + h2

i,j

4
, c(hi,j+1, hi,j) =

h2
i,j+1 + h2

i,j

4
,

d(hi+1,jΓi+1,j, hi,jΓi,j) =
h2
i+1,jΓi+1,j + h2

i,jΓi,j

4
,

d(hi,j+1Γi,j+1, hi,jΓi,j) =
h2
i,j+1Γi,j+1 + h2

i,jΓi,j+1

4
,

e(hi+1,jΓi+1,j, hi,jΓi,j) =
hi+1,jΓi+1,j + hi,jΓi,j

2
,

e(hi,j+1Γi,j+1, hi,jΓi,j) =
hi,j+1Γi,j+1 + hi,jΓi,j+1

2
.

Leaving the time derivative continuous we obtain a system of ODE’s which is solved

using the Fortran ODE solver DDASPK [10]. The grid size in the x direction was

taken to be ∆x = 0.01 and the number of discretisation points in the y direction Q =

100 which sufficiently resolved the solution structure. We will begin by exploring the

stability a superposition of transverse perturbations on initial conditions prescribed for

the 1D solution in Section 4.2, Eqs. (4.46,4.47). The localised perturbation is imposed
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at the origin, so x0l = 0. The base parameter values for the numerical simulations are:

b = 0.1, Ca = 10−3, M = 0.1, Pe = 105 and θ = 90o. Figure 5.7 shows the evolution of

the fluid surface and surfactant concentration, for a perturbation of wavelength qk = 1

and amplitude Ak = 0.1 at time t = 20. As time progresses, the fluid in the perturbed

region flows at a quicker speed than where the fluid height is lower thus forming a

finger. The surfactant gets ‘swept’ to the outside of the finger causing surfactant

contrition gradient to form which draw more fluid into the finger promoting growth.

The finger initially has width similar to the wavelength of the perturbation that was

initially prescribed. The finger also flows over the fluid front ahead of the leading edge

as the surfactant concentration gradients die out this is consistent with Edmonstone

et al. and Mavromoustaki. Figure 5.9 shows the two dimensional evolution of the

fluid surface and surfactant concentration, for a perturbation of wavelength qk = 2

and amplitude Ak = 0.1 at time t = 20. We can see that by varying the wavelength

of the perturbations we can vary the wavelength and growth rate of the protrusions.

We observe that initially the perturbations grow with the same wavenumber that was

initially prescribed. As the flow develops the fingers go to a preferred wavelength

(measured as finger width). This wavelength is width is smaller than that observed of

the gravity-driven flow (see Fig. 3.14). By comparing the dispersion curves for gravity

and gravity and surfactant-driven flow, we see that the wavenumber corresponding

to the maximum growth rate is larger for the gravity and surfactant-driven flow thus

the wavelength of the observed finger should be smaller. It can be seen that from

these figures at early time the fluid advects the surfactant along so that the maximum
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surfactant concentration is at the same location as the maximum droplet height. The

contour plots (Figs. 5.8,5.10) show that at early time behind the maximum surfactant

concentration is a ‘well’ in the surfactant concentration behind it. As time progresses,

the surfactant gets swept to either side of the domain (see Fig. 5.10(b)). Thus resulting

transverse surfactant concentration gradients generate surface tension gradient-driven

flows pulling fluid into the finger. This further destabilises the flow and promotes finger

development. This is consistent with the results of Mavromoustaki et al. [48, 46].

We now examine the stability for h and Γ of the flow using a base state (hb) obtained

numerically at for b = 0.01, Ca = 10−3, θ = 90o and M = 0.1 at t = 100. We

introduce transverse perturbations to the base state at the capillary ridge. We add

the perturbations with qk = 0.5, 1, 5, 10, 15, 25, 30, amplitude Ak = 0.1, at the capillary

ridge K = 100. Figure 5.11 shows the leading edge of the droplet is linearly unstable

initially some perturbations decay and others grow. At late times (t = 100) four fingers

form of the same wavelength (measured as finger width). This can be seen more clearly

in Fig. 5.12 that the fingers have width≈ 0.2. For larger times (not shown here) four

fingers of width ≈ 0.2 develop and propogate down the inclined plane. The surfactant

concentration is greater outside of the fingers this promotes finger growth as discussed

earlier.

Figures 5.13(a,b), 5.14(a,b) shows the fluid interface and contour plots, respectively,

for the flow from the initial condition with M = 1, qk = 1, b = 0.1 and x0l = 0. It

can be seen from Fig. 5.14(a,b) that the length of the finger is longer with smaller
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Marangoni number. This is because the surface tension gradients which promote the

development of the fingering behaviour form at an earlier time. We also not the the

surfactant is not swept to either side of the domain. Hence this is in agreement with

Mavroumoustaki et al. who stated that it was the surfactant concentration gradient

being larger outside the base of the finger which aids the growth of the finger.

Figure 5.15 show the comparison between the length of the fingers when the precursor

film is thinned for M = 0.1, qk = 1 x0l = 0 for the precursor films b = 0.1, and 0.001.

The length of the finger vary from 1.5-1.8.
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Figure 5.7: Surface plots for (a) the fluid interface h (b) the surfactant concentration
Γ at time t = 20, M = 0.1, b = 0.1, θ = 90o and Pe = 105. From the initial conditions
in with perturbations in the transverse direction of amplitude Ai = 0.1, wavenumber
qi = 1.
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Figure 5.8: Contour plots for (a) the fluid interface h (b) the surfactant concentration
Γ at time t = 20, M = 0.1, b = 0.1, θ = 90o and Pe = 105. From the initial conditions
in with perturbations in the transverse direction of amplitude Ai = 0.1, wavenumber
qi = 1.
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Figure 5.9: Surface plots for (a) the fluid interface h (b) the surfactant concentration
Γ at time t = 20, M = 0.1, b = 0.1, θ = 90o and Pe = 105. From the initial conditions
in with perturbations in the transverse direction of amplitude Ai = 0.1, wavenumber
qi = 2.
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Figure 5.10: Contour plots for (a) the fluid interface h (b) the surfactant concentration
Γ at time t = 20, M = 0.1, b = 0.1, θ = 90o and Pe = 105. From the initial conditions
with perturbations in the transverse direction of amplitude Ai = 0.1, wavenumber
qi = 2.
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Figure 5.11: Surface plots showing the 2-D evolution of the (a) fluid interface h (b)
surfactant concentration Γ at time t = 100, M = 0.1, b = 0.01, θ = 90o and Pe = 105.
From the initial conditions with perturbations in the transverse direction of amplitude
Ai = 0.1, wavenumber qi = 0.5, 1, 5, 10, 15, 25, 30.
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Figure 5.12: Contour plots showing the 2-D evolution of the (a) fluid interface h (b)
surfactant concentration Γ at time t = 100, M = 0.1, b = 0.01, θ = 90o and Pe = 105.
From the initial conditions with perturbations in the transverse direction of amplitude
Ai = 0.1, wavenumber qi = 0.5, 1, 5, 10, 15, 25, 30.
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Figure 5.13: Surface plot for the (a)droplet height (b) surfactant concentration for
Ai = 0.1, qi = 1 and M = 1 at time t = 10.
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Figure 5.14: Contour for the (a)droplet height (b) surfactant concentration forAi = 0.1,
qi = 1 and M = 1 at time t = 10.
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Figure 5.15: Contour plot of the finger formed for Ai = 0.1, qi = 1 and M = 0.1 at
time t = 100 for precursor film thickness b =(a)0.1, (b)0.001.
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5.3 Concluding remarks

This chapter analyses the stability of a thin viscous surfactant laden fluid droplet,

of constant volume, flowing down an inclined pre-wetted plane using linear stability

analysis and 2-D simulations. We undertook a linear stability analysis of the ‘effec-

tive’ contact line region which we believe that the onset of the fingering instability

originate from. We undertook a linear stability analysis of the ‘effective’ contact line

region at the leading edge of the droplet (region A). We showed that this region to be

linearly unstable to long-wavelength transverse perturbations by solving Eqs. (5.3,5.4)

numerically as an IVP. The wavelength of the most unstable wavenumber are compa-

rable to the length scale of this region, which confirms the speculation that the onset

of fingering is initiated here. This is in agreement with the transient growth analysis

performed by of Edmonstone et al [15, 12, 13], as well as the LSA undertook by Mavro-

moustaki et al. [46, 48] furter more we showing that the addition of surfactant had a

destabilising effect is in agreement with the TGA undertaken by other researchers. We

demonstrated that this region become less linearly unstable as time progressed and as

the angle of inclination was decreased. Comparing the linear stability of this region to

the leading edge region of the gravity-driven flow we see that the addition of insoluble

surfactant has an additional destabilising effect. Furthermore we demonstrated that

the leading order behaviour for the surfactant and gravity-driven case was markedly

different than the solely gravity-driven case. This motivated us to undertake a small

wavenumber analysis expanding in powers of wavenumber and were able to obtain a



200

stability criterion. This stability criterion supports the results that as time increases

this region becomes less linearly unstable, as s = 2b/hL− increases with time. Equation

(5.31) also indicates that the thinner the precursor film the more linearly unstable the

flow is. Moreover it concludes that this region is linearly unstable for all inclination

angles θ. This is due to the fact for all angles of inclination the stability criterion is

met. The Marangoni effect is shown to be the dominant driving mechanism behind

this instability at small inclination angles. This stability criterion shows that even at

small inclination angles, where a solely gravity-driven flow is linearly stable, surfactant

related effects destabilise the front. Equation (5.29) compares the relative surfactant

flux ahead and behind the ‘effective’ contact line. A mechanism for the flow to become

linearly unstable at O(q) is due to the forward Marangoni flux behind the contact line

drawing more fluid into the contact line region than the forward Marangoni flux ahead

of the contact line region dragging fluid out. This results in growth of the perturbations

in h consequently destabilising the flow and the constant line (consistent with Fig. 5.1

where Ĥ is positive and growing immediately behind the contact line (and ahead of the

capillary ridge) coinciding with Ĝξ which is negative there). If we consider the speed

of the front, ẋL = V̂ h2
L− , where V̂ = (1 + s + s2)/12 − (k− − 1/2)/2, now consider

transverse perturbations in H and G noting that where there is a positive perturbation

in H there is a negative one in G. The negative perturbation in G means that where

there is the positive perturbation in H there is high surface tension and where there is

a negative perturbation in H there is low surface tension. Therefore fluid is drawn into

the region increasing the magnitude of the positive perturbation and therefore hL− and
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therefore it will flow quicker than the one with the negative perturbation.

We also obtained the o(q2) growth rate and showed that out small wavenumber ap-

proximation is a very good match for the numerical dispersion relation. At o(q2) the

capillary term, which is the same as that derived by Troian et al [63], competes with

the Marangoni term. We observe from the calculation of Eq. (5.36) that the capillary

is of a similar magnitude to the Marangoni term, however the capillary term is slightly

more than the Marangoni term for 90o hence the o(q2) is a small positive correction to

the o(q) small wavenumber approximation. This is due to the large contribution from

the capillary ridge. The large negative contribution to the Marangoni term is due to

the large surfactant concentration gradient just upstream of the maximum surfactant

concentration, ΓL. As the inclination angle decreases so does the contribution capillary

ridge and therefore the capillary term. The effects of the Marangoni term becomes less

negative however at a lesser rate than the capillary term. Hence at small inclination

angles the o(q2) correction is negative. The small wavenumber approximations matched

well with the numerically obtained dispersion curves giving weight to our claim that

the leading order behaviour is linear with wavenumber.

The two-dimensional simulations supports the claim from the linear stability analysis

that the surfactant concentration gradient is important for the flow to become linearly

unstable. We were also able to show that, as in the 2-D simulations for the gravity-

driven flow, there is a preferred wavenumber which is the most unstable wavelength and

is consistent with the LSA undertaken. Also note that the LSA undertaken show that
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the surfactant concentration gradients behind the effective contact line are important

for the instability to grow. Finally we observe that wherever a positive perturbation to

h occurs a negative perturbation to Γ develops. We also see that the fingers are more

developed here in comparison to the gravity-driven spreading (see Fig. 3.14). There-

fore we clearly see that the addition of the surfactant destabilises the flow supporting

the claims made by the LSA. In the LSA the wavenumber correlating to maximum

growth rate appears to be fixed (qmax ≈ 0.8 = q∗max(CahL)
1/3). We can calculate the

wavelength of fingers correlating to qmax ≈ 0.8, taking hL = 1 and Ca = 10−3 hence,

we obtain q∗max = 8/π ≈ 2.5. This indicates from the initial parabolic drop shape

we should observe that fingers of width ≈ 0.4. Fingers become thinner, less unstable

and more in number for perturbations to the quasi-steady base state obtained over

increasing times. As qmax ≈ 0.8 and is approximately fixed with time we calculate

that for a quasi-steady 1D solution calculated in Chapter 4. Hence, we speculate that

we can predict the width and number of fingers that develop depending on the initial

conditions which is perturbed. However for multiple fingers to be observed we need

interaction between wavenumbers where some are decaying and others growing. Also

note that the LSA undertaken show that the surfactant concentration gradients be-

hind the effective contact line are important for the instability to grow. Finally we

observe that wherever a positive perturbation to h occurs a negative perturbation to

Γ develops. We also see that the fingers are more developed here in comparison to the

gravity-driven spreading (see Fig. 3.14). Therefore we clearly see that the addition of

the surfactant destabilises the flow supporting the claims made by the LSA. The flow
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becomes more unstable by thinning the precursor film.

As with the gravity-driven stability by varying the initial condition we can vary the

preferred wavelength of fingers. In the LSA the wavenumber correlating to maximum

growth rate appears to be fixed (qmax ≈ 0.8 = q∗max(CahL)
1/3). We can calculate the

wavelength of fingers correlating to qmax ≈ 0.8, taking hL = 0.3 and Ca = 10−3 hence,

we obtain q∗max = 5/π ≈ 4.3. This means we should observe a maximum of 4 fingers of

equal width.

We also showed that by increasing the Marangoni number stabilised the flow as the

fluid was not swept to the outside of the domain as readily the transverse Marangoni

fluxes are not drawing fluid into the finger and therefore do not promote destabilise

the flow as much as smaller marangoni number. By thinning the precursor film the

flow destabilised. Although the length of the fingers were of a similar magnitude we

can explain this as follows. At this prescribed wavenumber there may not by a large

difference between the growth rates (see approximately small wavenumber Fig. 5.2)

and therefore the length of the finger, although slightly different in length, are similar

in magnitude. This is in agreement with the LSA and similar to that discussed in

Section 5.1.

This concludes our stability analysis of the spreading of a viscous fluid droplet, with

and without insoluble surfactant, down an inclined pre-wetted plane.



Chapter 6

Conclusions and future work

In this thesis we have theoretically modelled a viscous droplet spreading down an in-

clined pre-wetted plane due to gravity alone as well including surfactant-related effects

using high-resolution numerics and asymptotic analysis. The evolution of a droplet,

of constant volume spreading due to gravity alone has been well studied. However,

our results for the spreading of a surfactant laden droplet of constant volume pro-

vide insights into some important physical mechanisms that were not accessible from

previous computational studies. Particularly, the existence of the fluid ‘hump’ region

and the late-time structures observed upstream of the trailing edge of the spreading

droplet. We obtained novel approximate solutions for the regions downstream of the

trailing edge based on the competing physical mechanisms. A key finding of this study

was found when investigating the stability of the ‘effective’ contact line region (region

A). We showed convincingly that the fingering instabilities originate from this region.

204
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Moreover, the flow is shown to be linearly unstable for all angles of inclination. A

small wavenumber analysis demonstrated that at long wavelength the growth rate is a

linear function of wavenumber. A stability criterion in this limit was derived and the

Marangoni effect was shown to be responsible for the instability in the small wavenum-

ber limit. Jensen and Naire [32], while investigating the spreading of a viscous fluid

droplet laden with surfactant on a horizontal plane. have also shown the growth rate

to vary linearly with wavenumber in the small wavenumber limit. This suggests that

maybe there is a smooth transition in the stability behaviour between the spreading

on an inclined plane with that on a horizontal plane as the angle of inclination is

decreased. This requires further investigation and is planned for future work.

This study, shows that the addition of surfactant has an added destabilising effect.

Our results show that the fingers observed when surfactant is present are smaller in

width when compared to the fingers observed when spreading occurs due to gravity

alone. We therefore predict that more fingers should be observed when surfactant is

present. In light of this we note that the addition of surfactant results in a larger

number of undesirable dry spots when compared to gravity-driven spreading alone.

We recommend that the addition of surfactant would not be beneficial to applications

that require a uniform coating of a substrate. Where the addition of surfactant is

necessary to the application, such as in surfactant replacement therapy, it would be

preferable to choose a surfactant with a large Marangoni number. We observe that

for larger Marangoni numbers the surfactant is not swept from the base of the finger
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as readily and therefore does not promote growth of the instability in comparison to

smaller Marangoni numbers.

There are limitations to this study. Our scalings are based on the horizontal component

of gravity and as the angle of inclination is reduced towards the horizontal the scalings

break down. If we wished to study the small inclination angle limit we would have to

use the scalings based on the Marangoni number. This would allow comparisons to be

with surfactant-laden drop spreading on a horizontal plane. Lubrication approximation

is not valid where there are steep changes in fluid height. We see that at the leading

edge of the spreading droplet there are large gradients. Therefore, to test the validity

of our results full numerical simulations of the Navier-Stokes equations and boundary

conditions would need to be undertaken using, for example, boundary element methods.

With respect to the 2-D results obtained for the nonlinear stability of the flow, we have

only examined periodic perturbations to the base state. The perturbations may not

be periodic in a real case scenario, hence the fingers observed experimentally may not

match precisely to those predicted from this study.

The two-dimensional simulations for the gravity-driven flow indicated that the trailing

edge of the bulk droplet appearred marginally stable. As part of future work we will

analyse the linear stability of this region using the as a base state the solution of the

boundary value problem for the trailing edge of the droplet derived in §2.4.3. Another

extension to this work is to explore the effect of soluble surfactants. We do not believe

that the overall flow would be dramatically affected with the inclusion of a soluble
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surfactant and therefore the structure obtained here should still be observed. Another

future direction is to consider the stability of the spreading of a fluid film down a

prewetted inclined plane from a constant flux source. The ‘effective’ contact line region

for thus problem can be described by the same boundary value problem given by Eqs.

(4.87, 4.88) in Chapter 4. The linear stability of this base state should then follow along

similar lines as done here. Finally, we wish to obtain some experimental results to verify

what has been obtained theoretically in this work. To the best of our knowledge there

has been no experimental results published for a surfactant laden drop spreading down

an inclined plane. We hope that our results, once published would provide motivation

for doing this.
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