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The dynamic response of a homogeneous half-
space, with a traction-free surface, is considered
within the framework of nonlocal elasticity. The
focus is on the dominant effect of the boundary
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internal lengthscale. The leading order long-wave
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nonlocal elastic phenomena on the Rayleigh wave
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1. Introduction
Analysis of nonlocal elastic phenomena is of major interest for various advanced applications
including micro- and nanomechanics, see for example Drugan and Willis (1996), Arash and
Wang (2012), Dal Corso and Deseri (2013). Nonlocal elasticity is a particularly powerful
and appropriate theory for investigating properties of solids with impurities, dislocations,
and granular microstructure. The fundamental concepts underpinning contemporary nonlocal
continuum models were developed in a series of well known papers by Kroner (1967), Eringen
(1972), Eringen and Edelen (1972); see also Eringen (2002) and references therein. The state of
art has been presented by a number of authors throughout the area’s scientific development, see
Krumhansl (1968), Kunin (1984), Polizzotto (2001), Peddieson et al. (2003), Di Paola et al. (2013),
and Dell’Isola et al. (2014). The latter paper addresses important Piola’s contribution, not widely
known for a long time to a broad international audience, see also references to original Piola’s
papers in Dell’Isola et al. (2014).

Among other recent publications on the subject, we mention papers by Di Paola and Zingales
(2008), Di Paola et al. (2009), Zingales (2011), Schwartz et al. (2012), Benvenuti and Simone (2013),
Abdollahi and Boroomand (2013), and Abdollahi and Boroomand (2014), dealing with various
analytical and numerical aspects of nonlocal elasticity. Here we also cite publications developing
novel micromechanical approaches known as ’structured deformations’, e.g., see Owen and
Paroni (2000), Del Piero and Owen (2004), and Owen and Paroni (2015).

Nonlocal models, e.g., see Eringen (1966), Eringen (1983), and Eringen (1987), are oriented to
the investigation of the distant interaction between small material particles, assuming that the
stress at a reference point is dependent upon the entire strain field in the body. The associated
constitutive relations are usually expressed through integral operators involving internal sizes
which characterise microstructure. As a rule, e.g., see Rogula (1982), the long-wave limit of the
nonlocal elasticity relations is identical to its classical counterpart. We also remark that a number
of nonlocal elasticity predictions are in good agreement with lattice dynamics, including the
regions near the boundaries of the body (Eringen and Kim, 1977).

In spite of the numerous publications, the fundamental effect of boundaries on the
implementation of nonlocal elasticity concepts has not yet been properly addressed. The key
point is that the intervals of integration corresponding to the above mentioned operators,
expressing nonlocal constitutive relations, are dependent of the distance from a reference point
to the boundary (Eringen, 1983). This results in boundary layers corresponding to localised
nonhomogeneous stress and strain fields. In the present paper, we fill the gap in tackling
the influence of boundary layers on overall dynamic behaviour. Although several authors
emphasised the crucial role of boundary layers, e.g., see Bazant et al. (2010) and Abdollahi and
Boroomand (2014), we are not aware of any related asymptotic developments.

As an example, we consider an elastic half-space governed by the nonlocal equations given in
Eringen (1983), see Section 2. For the sake of definiteness, we assume that the nonlocal behaviour
is modelled by an exponential kernel involving a small internal lengthscale. In Section 3, we
proceed with a long-wave asymptotic scheme, originating from Goldenveizer et al. (1993) and
later developed by, for example, Dai et al. (2010) and Aghalovyan (2014). Within the framework
of these studies, the characteristic wavelength is assumed to be much greater than a typical
microscale parameter. We begin by reducing the original nonlocal problem to a formulation
which is identical to the classical problem for an elastic half-space with a vertical inhomogeneity
localised near the surface. The effect of the inhomogeneity can be reduced to effective boundary
conditions imposed at a near-surface interface. In this case, we can only asymptotically evaluate
the interval, yielding the location of the interface. A better option seems to be a transformation
of the effective conditions to refined boundary conditions along the surface of a homogeneous
half-space. This approach is exploited in Section 4, enabling us to evaluate the interior stress
and strain outside the narrow boundary layer. In Section 5, the refined boundary conditions
are applied to calculate the nonlocal correction to the Rayleigh surface wave. The order of this
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correction exceeds that of the correction established in Eringen (1983) associated with the nonlocal
differential equations of motion.

2. Equations of nonlocal linear elasticity
In this section, we use as our starting point the equations of nonlocal elasticity, e.g., see Eringen
(1983). For a homogeneous isotropic elastic solid, we therefore have (2.1)-(2.5) below:

sαβ,α = ρ
∂2uβ
∂t2

, (2.1)

with uβ , β = 1, 2, 3, the components of the displacement vector, ρ volume density, t time and

sαβ(x) =
∫
V

K
(
|x′ − x|, a

)
σαβ(x

′) dv(x′) , (2.2)

where sαβ and σαβ are the nonlocal and classical stress tensors, respectively, considered at time
t, x = (x1, x2, x3) is a reference point, V the domain occupied by the body, K(x, a) the so-called
nonlocal modulus, and a is an internal characteristic length, e.g. lattice parameter or granular
distance. Throughout the paper we assume that the internal size a is asymptotically small in
comparison with a typical wavelength. This long-wave assumption provides the validity of the
adapted nonlocal model for bounded domains as it follows on, in particular, from lattice dynamics
(Eringen and Kim, 1977); for further details, see concluding remarks.

The function K in (2.2) is normalised over 3D space, so that∫
V∞

K
(
|x′|, a

)
dv(x′) = 1 . (2.3)

The two equations (2.1) and (2.2) are accompanied by

σαβ = λeγγδαβ + 2µeαβ (2.4)

and

eαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
, (2.5)

where eαβ is the linear elastic strain tensor, δαβ the Kronecker’s delta, and λ and µ are the Lamé
constants.

For the sake of definiteness, we specify the 3D exponential nonlocal modulus in the same way
as Eringen (1983), thus

K(|x|, a) = 1

π3/2a3
exp

[
−x · x
a2

]
, (2.6)

where in the case of a half-space −∞<x1 <∞, −∞<x2 <∞, and 0≤ x3 <∞, (2.2) becomes

sαβ(x) =
1

π3/2a3

∞∫
0

dx′3

∞∫
−∞

dx′1

∞∫
−∞

dx′2 exp

[
− (x′ − x)2

a2

]
σαβ(x

′) . (2.7)

Let us now expand the stresses σαβ in Taylor series about the reference point x′ = x, assuming as
before that the typical wavelength characterising the classical stress field is much greater than the
internal size a. Thus, we establish from (2.7) that

sαβ(x) =
1

a
√
π

σαβ(x)
∞∫
0

exp

[
− (x′3 − x3)2

a2

]
dx′3

+
∂σαβ(x)
∂x3

∞∫
0

(x′3 − x3) exp
[
− (x′3 − x3)2

a2

]
dx′3


+ . . . ,

(2.8)
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which on integration yields

sαβ(x) =
σαβ(x)

2
erfc

(
−x3
a

)
+

a

2
√
π

∂σαβ(x)
∂x3

exp

[
−x

2
3

a2

]
+ . . . , (2.9)

where erfc(x) = 2√
π

∞∫
x
e−t

2

dt. Here we keep only a linear term in a which is specific for a half-

space. Such term does not appear in the case of 3D space.
The formulae (2.2), taking into account (2.4) and keeping the leading order term in (2.9), may

be presented as
sαβ = λ′eγγδαβ + 2µ′eαβ , (2.10)

where
λ′ =

1

2
erfc

(
−x3
a

)
λ ,

µ′ =
1

2
erfc

(
−x3
a

)
µ .

(2.11)

We remark that the nonlocal problem (2.1),(2.10)-(2.11) is thus formally equivalent to the
classical (‘local’) problem for a vertically inhomogeneous elastic half-space. This problem may
in fact be reduced to that of analysis of a homogeneous elastic substrate coated by a vertically
inhomogeneous layer of a certain thickness h, see Figure 1, where h� a. This strong inequality
justifies the validity of nonlocal theory on the scale of layer thickness. As a rule, the asymptotic
error of the one-term expansion in (2.9) is O( ah ). It is less than O( ah ) only provided that the
associated local field is uniform in x3.

Along the interface x3 = h, to within an exponentially small error, erfc
(
−ha
)
= 2 and,

consequently,
λ′(h) = λ and µ′(h) = µ (2.12)

and the nonlocal stresses sαβ tend to their local analogues σαβ in (2.9).

x1

x3

O

h

inhomogeneous layer

substrate

x2

a

l

λ        µ'(x ),3 '(x )3

λ, µ

Figure 1. A homogeneous substrate coated by a vertically inhomogeneous layer of thickness h; a� h� `.

In the case of a thin layer of thickness much smaller than a macroscale wavelength, its effect on
the substrate may be incorporated by deriving effective boundary conditions using well known
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asymptotic methodology, see for example Dai et al. (2010) and Aghalovyan (2014), and references
therein.

3. Asymptotic analysis of a vertically inhomogeneous thin layer
Let us consider a thin, vertically inhomogeneous layer of thickness h� `, where ` is a typical
wavelength with ε= h

` assumed to be a small geometric parameter. Equations (2.1) and (2.10) in
the previous section are formally identical to the classical ’local’ equations. They can be rewritten
as

∂sii
∂xi

+
∂sij
∂xj

+
∂s3i
∂x3

= ρ
∂2ui
∂t2

,

∂s3i
∂xi

+
∂s3j
∂xj

+
∂s33
∂x3

= ρ
∂2u3
∂t2

,

(3.1)

and

sij = ρc
′2
2 (x3)

(
∂ui
∂xj

+
∂uj
∂xi

)
,

sii = ρc
′2
1 (x3)

∂ui
∂xi

+ ρ(c
′2
1 (x3)− 2c

′2
2 (x3))

(
∂uj
∂xj

+
∂u3
∂x3

)
,

s3i = σi3 = ρc
′2
2 (x3)

(
∂ui
∂x3

+
∂u3
∂xi

)
,

s33 = ρc
′2
1 (x3)

∂u3
∂x3

+ ρ(c
′2
1 (x3)− 2c

′2
2 (x3))

(
∂ui
∂xi

+
∂uj
∂xj

)
,

(3.2)

where i 6= j = 1, 2 and Einstein’s summation convention is not employed. The variable wave
speeds in (3.2), inspired by (2.11), are given by

c′1(x3) =

√
λ′(x3) + 2µ′(x3)

ρ
and c′2(x3) =

√
µ′(x3)
ρ

. (3.3)

The traction-free boundary conditions at the surface of the layer x3 = 0 are given by

s3n = 0 at x3 = 0 , (3.4)

with continuity of displacement along the interface x3 = h requiring that

un = vn at x3 = h , (3.5)

where vn = vn(x1, x2, t) denotes the prescribed displacements in the substrate, n= 1, 2, 3.
We now adapt the asymptotic approach developed in Goldenveizer et al. (1993), Dai et al.

(2010), and Aghalovyan (2014) in order to express the stresses s3n along the interface x3 = h in
terms of the prescribed substrate displacements vn. To begin, we scale the original variables as
follows

ξi =
xi
`
, η=

x3
h
, and τ =

tc2
`
, (3.6)

where c2 = c′2(h), and also define the dimensionless quantities

u∗n =
1

V
un , v

∗
n =

1

V
vn

and

s∗ij =
`

µV
sij , s

∗
ii =

`

µV
sii , s

∗
3n =

`2

µhV
s3n , (3.7)

where V is the maximum displacement amplitude and all quantities with an asterisk are assumed
to be of the same asymptotic order.
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The equations of motion (3.1) and constitutive relations (3.2) can now be rewritten as

∂s∗ii
∂ξi

+
∂s∗ij
∂ξj

+
∂s∗3i
∂η

=
∂2u∗i
∂τ2

,

∂s∗33
∂η

+ ε

(
∂s∗3i
∂ξi

+
∂s∗3j
∂ξj

)
=
∂2u∗3
∂τ2

,

(3.8)

and

s∗ij = κ
′2
2

(
∂u∗i
∂ξj

+
∂u∗j
∂ξi

)
,

εs∗ii = (κ
′2
1 − 2κ

′2
2 )
∂u∗3
∂η

+ ε

(
κ
′2
1
∂u∗i
∂ξi

+ (κ
′2
1 − 2κ

′2
2 )
∂u∗j
∂ξj

)
,

ε2s∗3i = κ
′2
2

(
∂u∗i
∂η

+ ε
∂u∗3
∂ξi

)
,

ε2s∗33 = κ
′2
1
∂u∗3
∂η

+ ε(κ
′2
1 − 2κ

′2
2 )

(
∂u∗i
∂ξi

+
∂u∗j
∂ξj

)
,

(3.9)

with κ′m =
c′m(x3)
c2

, m= 1, 2.

It is convenient to express ∂u∗3
∂η in (3.9)2 from (3.9)4, having

s∗ii = 4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
∂u∗i
∂ξi

+ 2κ
′2
2

(
1− 2κ

′2
2

κ
′2
1

)
∂u∗j
∂ξj

+ ε

(
1− 2κ

′2
2

κ
′2
1

)
s∗33 . (3.10)

The boundary conditions (3.4) and (3.5) become

s∗3n = 0 at η= 0 ,

u∗n = v∗n at η= 1 .
(3.11)

Next, we expand the displacements and stresses in asymptotic series in terms of the previously
specified small parameter ε, and thus introduce

u∗n
s∗ii
s∗ij
s∗3i
s∗33

=


u
(0)
n

s
(0)
ii

s
(0)
ij

s
(0)
3i

s
(0)
33

+ ε


u
(1)
n

s
(1)
ii

s
(1)
ij

s
(1)
3i

s
(1)
33

+ . . . (3.12)

Substitution of these expressions into equations (3.8) - (3.10), and boundary conditions (3.11)
results, at leading order, in the following equations

∂s
(0)
ii

∂ξi
+
∂s

(0)
ij

∂ξj
+
∂s

(0)
3i

∂η
=
∂2u

(0)
i

∂τ2
,

∂s
(0)
33

∂η
=
∂2u

(0)
3

∂τ2
,

(3.13)

and

s
(0)
ij = κ

′2
2

∂u(0)i
∂ξj

+
∂u

(0)
j

∂ξi

 ,

s
(0)
ii = 4κ

′2
2

(
1− κ

′2
2

κ
′2
1

)
∂u

(0)
i

∂ξi
+ 2κ

′2
2

(
1− 2κ

′2
2

κ
′2
1

)
∂u

(0)
j

∂ξj
,

∂u
(0)
n

∂η
= 0 ,

(3.14)

together with
u
(0)
n = v∗n at η= 1 ,

s
(0)
3n = 0 at η= 0 .

(3.15)
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On integrating (3.13)2 and (3.14)3 with respect to η, and taking into account the appropriate
boundary conditions (3.15), we may establish that

u
(0)
n = v∗n (3.16)

and

s
(0)
33 = η

∂2v∗3
∂τ2

. (3.17)

Now we obtain from (3.14)2

s
(0)
ii = 4κ

′2
2

(
1− κ

′2
2

κ
′2
1

)
∂v∗i
∂ξi

+ 2κ
′2
2

(
1− 2κ

′2
2

κ
′2
1

)
∂v∗j
∂ξj

. (3.18)

We finally integrate (3.13)1, using (3.14)2 and (3.16), and then satisfy (3.15)2, to establish that

s
(0)
3i = η

∂2v∗i
∂τ2

− ∂2v∗i
∂ξ2j

η∫
0

κ
′2
2 dη′ − 4

∂2v∗i
∂ξ2i

η∫
0

κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dη′

−
∂2v∗j
∂ξi∂ξj

η∫
0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dη′ .

(3.19)

In terms of the original variables, the expressions for the stresses s3i and s33 may be obtained
from (3.19) and (3.17) in the form

s3i = ρ

x3 ∂2ui
∂t2

− c22
∂2ui
∂x2j

x3∫
0

κ
′2
2 dx′3 − ρc22

∂2ui
∂x2i

x3∫
0

4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dx′3

−c22
∂2uj
∂xi∂xj

x3∫
0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dx′3

 ,

s33 = ρx3
∂2u3
∂t2

,

(3.20)

where now un = V u
(0)
n .

In what follows we also use the formula for other components of the nonlocal stress tensor,
which are given by

sii = 2ρc
′2
2

[
2

(
1− c

′2
2

c
′2
1

)
∂ui
∂xi

+

(
1− 2c

′2
2

c
′2
1

)
∂uj
∂xj

]
,

sij = ρc
′2
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

(3.21)

The stresses at the interface, x3 = h, may be expressed through the substrate displacements,
yielding

s3i = ρ

h∂2vi
∂t2

− c22
∂2vi
∂x2j

h∫
0

κ
′2
2 dx′3 − ρc22

∂2vi
∂x2i

h∫
0

4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dx′3

−c22
∂2vj
∂xi∂xj

h∫
0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dx′3

 ,

s33 = ρh
∂2v3
∂t2

,

(3.22)

where κ′m =
c′m
c2
, m= 1, 2 as above.
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4. Refined boundary conditions
For a vertically inhomogeneous layer with the elastic moduli given by (2.11), we obtain

c
′2
m(x3) =

1

2
c2m erfc

(
−x3
a

)
,m= 1, 2 , (4.1)

where, see (2.12),

c1 =

√
λ+ 2µ

ρ
and c2 =

√
µ

ρ
.

Consequently, the integrals in (3.22), under the assumption a� h, to within an exponentially
small error may be presented in the forms

h∫
0

κ
′2
2 dx′3 = h

(
1− 1

2
√
π

a

h

)
,

h∫
0

4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dx′3 = 4h(1− κ2)

(
1− 1

2
√
π

a

h

)
,

and
h∫
0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dx′3 = h(3− 4κ2)

(
1− 1

2
√
π

a

h

)
,

where κ= c2
c1

. Thus, the stresses along the interface x3 = h may be presented as

s3i = ρh

[
∂2vi
∂t2

− c22

{
∂2vi
∂x2j

+ 4(1− κ2)∂
2vi
∂x2i

+ (3− 4κ2)
∂2vj
∂xi∂xj

}

+c22
a

2h
√
π

{
∂2vi
∂x2j

+ 4(1− κ2)∂
2vi
∂x2i

+ (3− 4κ2)
∂2vj
∂xi∂xj

}]
,

s33 = ρh
∂2v3
∂t2

.

(4.2)

Inspection of (4.2)1 shows that taking nonlocal elastic properties into account results in an
asymptotic correction of the relative asymptotic order O( ah ). On the other hand, this correction
must be greater than the truncation error O(ε) related to the asymptotic derivation of formulae
(3.22) in Section 3. Thus, we arrive at the double strong inequality

a� h�
√
a` , (4.3)

underlying equations (4.2). We also need to show that the accuracy of the leading order
approximation (2.10) is consistent with the O( ah ) correction associated with (4.2). To this end, we
recall that at leading order the stresses s3i and s33 are expressed in terms of the stresses sii and the
displacements un in Section 3, see (3.13). In this case, the local stresses σii and σij corresponding
to their nonlocal counterparts sii and sij in formula (3.21), following from the dimensionless
formula (3.13)1, are given by

σii = 2ρc22

[
2(1− κ2)∂ui

∂xi
+ (1− 2κ2)

∂uj
∂xj

]
.

σij = ρc22

(
∂ui
∂xj

+
∂uj
∂xi

)
.

(4.4)

These stresses are uniform across the thickness. As a result, the expectedO( ah ) contribution of the
second term in the expansion (2.9) vanishes after differentiation with respect to x3. For the same
reason, the inertial terms in (3.13) will also not make a O( ah ) contribution to nonlocal stresses.

It is clear that outside a narrow near-surface layer all nonlocal stresses, to within the asymptotic
error less than O( ah ), coincide with their local analogues, see (2.9) - (2.12). Therefore, over the
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interior domain x3 ≥ h, we may proceed with a classical problem with constant coefficients,
subject to the boundary conditions

σ3n = s3n at x3 = h , (4.5)

where s3n are given by (4.2).
We are now in a position to formulate an inverse problem for a thin homogeneous elastic

layer within the classical framework. A crucial aspect that now needs addressing concerns the
boundary conditions to be imposed on the surface x3 = 0 so that the stresses σ3i and σ33, at the
interface x3 = h, satisfy the conditions (4.5). Let the boundary conditions at the surface of the layer
x3 = 0 be given by

σ3n = pn , (4.6)

where pn are the sought for surface stresses.
The asymptotic solution of the classical elastodynamic equations for a thin homogeneous layer,

subject to the boundary conditions (4.5) and (4.6) along the faces x3 = 0 and x3 = h, is presented
in Dai et al. (2010). The formulae for the stresses of interest at x3 = h may be written as

σ3i = ρh

[
∂2vi
∂t2

− c22

{
∂2vi
∂x2j

+ 4(1− κ2)∂
2vi
∂x2i

+ (3− 4κ2)
∂2vj
∂xi∂xj

}]
+ pi ,

σ33 = ρh
∂2v3
∂t2

+ p3 .

(4.7)

Next, on equating the stresses σ3n in (4.5) and (4.7), we have

pi = ρc22
a

2
√
π

{
∂2vi
∂x2j

+ 4(1− κ2)∂
2vi
∂x2i

+ (3− 4κ2)
∂2vj
∂xi∂xj

}
,

p3 = 0 .

(4.8)

Thus, the refined boundary conditions, at x3 = 0, become

σ3i = ρc22
a

2
√
π

{
∂2vi
∂x2j

+ 4(1− κ2)∂
2vi
∂x2i

+ (3− 4κ2)
∂2vj
∂xi∂xj

}
,

σ33 = 0 .

(4.9)

Outside a narrow boundary layer (x3� a), the half-space motion is governed by the
elastodynamic equations with constant moduli λ and µ, subject to the boundary conditions (4.9).
The last formulae involveO(a` ) correction, where ` is a typical macroscale size as described above.

This is greater than the O(a
2

`2
) correction in the differential equations of nonlocal elasticity, see

Eringen (1983).

5. Rayleigh surface wave
As an illustration, we consider the effect of nonlocal elastic behaviour on surface wave
propagation in the case of plane strain, in which ∂

∂x2
≡ 0, um = um(x1, x3), m= 1, 3, and u2 = 0.

Accordingly, the two boundary conditions, following directly from (4.9), become

σ31 =
2a√
π
ρc22(1− κ2)

∂2u1
∂x21

,

σ33 = 0 ,

(5.1)

and the equations of motion, in terms of wave potentials ϕ and ψ, are given by

∆ϕ− 1

c2
∂2ϕ

∂t2
= 0 , (5.2)

∆ψ − 1

c2
∂2ψ

∂t2
= 0 , (5.3)

where ∆ is the 2D Laplacian.
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We first look for travelling wave solutions of the form

ϕ=Ae−rx3+ik(x1−ct) ,

ψ=Be−qx3+ik(x1−ct) ,
(5.4)

where c is the phase speed and in which the attenuation coefficients are given by

r= k

√
1− c2

c21
and q= k

√
1− c2

c22
.

The displacements may now be expressed in terms of potentials, thus yielding

u1 =ϕ,1 + ψ,3 =
(
ikAe−rx3 − qBe−qx3

)
eik(x1−ct) ,

u3 =ϕ,3 − ψ,1 =
(
−rAe−rx3 − ikBe−qx3

)
eik(x1−ct) .

(5.5)

Next, on substituting (5.5) into the boundary conditions (5.1), we obtain, after taking into account
the plane strain forms of (2.4) and (2.5), that[

2− c2

c22

]
A+

[
2i

√
1− c2

c22

]
B = 0 ,[

−i

(
2ak√
π
(κ2 − 1) + 2

√
1− c2

c21

)]
A+

+

[(
2− c2

c22

)
+

2ak√
π
(κ2 − 1)

√
1− c2

c22

]
B = 0 .

(5.6)

The condition for existence of a non-trivial solution of (5.6) yields

R(γ)− 4
√
πθ(κ2 − 1)γ2

√
1− γ2 = 0 , (5.7)

where θ= a
` =

ak
2π � 1 is a small parameter, γ = c

c2
and R(γ) is the Rayleigh denominator, i.e.

R(γ) = (2− γ2)2 − 4
√

(1− γ2)(1− κ2γ2) .

We may now expand γ as an asymptotic series in the small parameter θ, with

γ = γ0 + θγ1 + . . . . (5.8)

In this case, the Taylor series expansion of R(γ), about γ = γ0, is given by

R(γ) =R(γ0) +R′(γ0)(γ − γ0) + . . . , (5.9)

where γ0 is the normalised classical Rayleigh wave speed, i.e. R(γ0) = 0. Then, on substituting
(5.8) and (5.9) into (5.7), we readily obtain

γ1 =
4
√
π(κ2 − 1)γ20

√
1− γ20

R′(γ0)
(5.10)

and, consequently,

γ = γ0 + θ
4
√
π(κ2 − 1)γ20

√
1− γ20

R′(γ0)
+ . . . , (5.11)

where θ= ak
2π , as before.

We remark that the constructed correction, originating from the refined boundary conditions
(5.1), exceeds the correction in Eringen (1983), associated with the ‘nonlocal terms’ within the
differential equations of motion.

Numerical results are presented in Figure 2. The classical Rayleigh root γ0 and the ’nonlocal’
root γ in (5.11) are plotted as function of the small parameter a for the value of Poisson ratio ν =
0.25. For this scenario, the coefficient (5.10) takes the value γ1 =−0.37, while its ’local’ counterpart
is γ0 = 0.92. The effect of nonlocal phenomena decreases the Rayleigh wave speed due to low
values of the Lamé parameters, denoting the stiffness of the system, near the surface, see (2.11).
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Figure 2. Effect of nonlocal phenomena on Rayleigh wave speed.

6. Concluding remarks
An asymptotic treatment of the nonlocal boundary value problem under consideration
demonstrates the primary importance of analysing the peculiarities of near-surface behaviour. It
has been established that the effect of the associated boundary layer may be incorporated just
by refining the boundary conditions in classical elasticity. In particular, the refined boundary
conditions (4.9) involve an explicit correction to their classical counterparts; this arises by taking
into account nonlocal phenomena.

The linear elastodynamic equations, subject to the derived boundary conditions on the free
surface of a homogeneous half-space, enable us to determine the interior stress and strain fields
outside a narrow near-surface layer, with thickness satisfying the asymptotic inequality (4.3). As
an illustration, O(a` ) nonlocal correction to the Rayleigh surface wave speed was calculated. This

correction is greater than O(a
2

`2
) correction associated with the nonlocal equations of motion in

Eringen (1983).
We recall that approximate nature of nonlocal models originates from truncation of

homogenisation procedures, including asymptotic homogenisation for periodic structures, e.g.
see Sanchez-Palencia (1980), Panasenko and Bakhvalov (1989), underlying the associated
macroscale relations. In this case, the truncation error for the classical boundary conditions should
be of the same order as the deviation from the uniform microscale variation of the sought for
solution. The latter might be expected to be negligible in comparison with O(a` ) correction

suggested in the paper. In particular, it is O(a
2

`2
) for a range of periodic lattices (Craster et al.,

2010). This issue certainly merits a thorough consideration.
We remark that the proposed approach is not merely restricted to the exponential kernel (2.6)

studied in this paper. We envisage similar nonlocal effects for a range of kernels having the
same asymptotic behaviour at small internal scales. The results obtained may also readily be
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extended to nonlocally elastic solids with a boundary of arbitrary shape. Investigation of elastic
waveguides, including beams, plates, and shells, with the boundary conditions of the form (4.9)
imposed on the free faces would be also of obvious interest. This would in fact seem to be a natural
generalisation of the above mentioned example for the Rayleigh surface wave.

The general asymptotic scheme presented in Section 3 may also seemingly have potential
applications outside the area of nonlocal elasticity. Firstly, we note applications for solids with
localised near-surface inhomogeneities, such as functionally graded structures, see for example
the review by Birman and Byrd (2007). There is also the possibility of adapting this scheme for
long-wave dynamic analysis of vertically inhomogeneous foundations, see Muravskii (2001) and
references therein.
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Prikazchikov.
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