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Abstract 

Bees provide important and economically valuable pollination services to agriculture and other 

ecosystems. Recent global honeybee declines have been attributed to pesticides, which can 

ultimately affect the overall functioning and survival of a colony. Various routes of exposure 

include contaminated beeswax, pollen and nectar. This thesis presents work which examines the 

presence, accumulation and levels of pesticides found within a number of honeybee related 

matrices and bumblebee bodies, with four main aims to this study. Firstly, determine which 

pesticides are contained within beeswax from around the UK. Secondly, monitor which pesticides 

accumulate in beeswax over a two year period. Thirdly, measure residual neonicotinoid levels in 

oilseed rape (OSR) nectar and pollen samples. Finally, quantify the levels of thiamethoxam and 

metabolite clothianidin in bumblebees, following feeding trial exposure, as part of a collaborative 

study. Analysis was conducted using gas chromatography–mass spectrometry (GC-MS) and 

quadrupole time-of-flight liquid chromatography-mass spectrometry (Q-TOF LC/MS), utilising the 

Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction method. Bumblebee 

samples were extracted using a refined in-house procedure. Results evidenced apiculturally 

applied chemical treatments to be most likely found in beeswax samples whilst tau-Fluvalinate 

was most persistent and likely to accumulate in the hive, including foundation wax not exposed to 

such treatment. Varied levels of neonicotinoids were identified in hand-collected OSR nectar 

samples; and there require a greater level of analysis, to further understand the implications of 

these results on UK bees. No quantifiable levels were detected in pollen. Bumblebee analysis 

determined possible levels of exposure to thiamethoxam during feeding. This thesis provides the 

first known attempt of identifying pesticide presence and accumulation within UK beeswax, in 

addition to the levels within UK OSR nectar and pollen. The findings may have wider implications 

on the beekeeping community. Also presented are various methodologies suitable for future 

research. 
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Introduction 

 

 

 

 

1.1 Overview 

In its role as a pollinator the honeybee (Apis mellifera) plays a fundamental role in the 

functioning of nearly all existing terrestrial ecosystems, including those that are 

agriculturally dominated (Thompson, 2003). In 2007 the value of the honeybee to the UK 

agricultural sector, through increased output, was estimated to be worth between £165 

million (Aston, Carreck, Ivor, Lovett, & Metcalf, 2009) and £200 million (Cuthbertson & 

Brown, 2009) per annum, whilst a total pollinator loss could cost around ~£400 million a 

year (Ross & Wentworth, 2010). The overall annual monetary value of bees globally is an 

estimated $212 billion (USD) (vanEngelsdorp & Meixner, 2010). Huge bee losses could 

threaten the supply of around 100 pollinated crop types (Dötterl & Vereecken, 2010), 

equating to 35 % of the global food production (Genersch, 2010). Natural biodiversity 
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could also be threatened, should the rate of pollination in wild flowers decline (Dötterl & 

Vereecken, 2010; Genersch, 2010). 

Extensive honeybee declines, particularly during the past few decades, have been 

recorded across much of the world (Neumann & Carreck, 2010). The United Kingdom (UK) 

is also no exception to this and has seen a reduction in the number of honeybee hives by 

around 54 %, which is threatening the UK’s ability to cope with changes in the demand for 

pollination services (Breeze, Bailey, Balcombe, & Potts, 2011). The current world decline 

of honeybees and other bee species has initiated significant research efforts in order to 

ascertain suitable explanations behind its occurrence (Genersch, 2010; Neumann & 

Carreck, 2010) as well as calls for action from Governments, land managers and 

conservationists (Ghazoul, 2005). 

The honeybee can be considered a well-studied species. As of 2006 the honeybee became 

the first hymenopteran and only the fifth insect to have its genome fully mapped 

(Robinson et al., 2006), whilst exploration into the understanding of honeybee 

communication was conducted by von Frisch in 1953 (von Frisch, 1954). Study of the 

honeybee need not be considered a recent thing, as previous work dates back to as early 

as 1609 (Butler, 1609). Yet despite our understandings into the honeybee, the reasons 

behind their decline are still not fully understood (Aston et al., 2009); as no single factor 

has been identified as being responsible for all the simultaneous declines witnessed all 

over the world. Pesticides are believed to be one of the key drivers behind pollinator 

declines. Using sensitive analytical equipment, i.e. liquid chromatography – mass 

spectroscopy (Chapter 2), the presence of pesticides in honeybee hives (Chapters 3 and 4) 

and the environment (Chapter 5) can be determined.  
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The continued decline in bumblebee numbers has seen a surge in bumblebee related 

research. This includes studies into their susceptibility to pesticides as well as other 

efforts to re-establish various extinct UK species. Although this body of work will 

predominantly focus on the honeybee, Chapter 6 investigates the amount of two 

pesticides (thiamethoxam and clothianidin) found within individual buff-tailed bumblebee 

(Bombus terrestris) worker bees following feeding trials. 

In order to understand how honeybees are affected by pesticides, it is important to 

consider their individual biology and hierarchy within a colony, their domestication, as 

well as the individual components of a hive. 

 

1.2 Social bees 

Within the UK there is a total of 276 bee species found in the Apidae Family, including 

many bumblebee species and the hugely recognised honeybee (all of which demonstrate 

varying levels of sociality), as well as over 220 species of solitary bee (Breeze et al., 2011). 

Globally there are over 16,000 different species of bee (Michener, 2007), of which only a 

few thousand are considered to be ‘social’, whilst the remaining numbers are of a solitary 

nature. Social insects are thought to have evolved to adapt their morphology, physiology 

and behaviour in order to carry out such tasks which contribute to the overall success of a 

colony and not necessarily benefit the individual (Seeley, 1985). A colony is defined by 

two or more females, irrespective of their social relationship, cohabiting within a single 

nest (Michener, 2007). These females are distinctly identified as (1) a single queen, who is 

sexually reproductive and performs most or all of the egg laying within the colony; and (2) 

one or more workers, who are unmated and carry out duties such as brood care and 
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foraging for food supplies (Michener, 2007) amongst other duties. A characteristic found 

in social bees is that workers are able to produce enzymes which enable them to create a 

storable food reserve in the form of honey (Crane, 1990).  

Those classified within Apidae are characterised by the presence of a pollen basket 

(corbicula) on their hind legs; this includes bumblebees (Bombini), stingless bees 

(Meliponinae) and of course the honeybee (Apini). However, the queen of both honeybee 

and stingless bee species no longer retains her corbicula (Butler, 1954). Figure 1.1 shows 

the taxonomic relationship between the honeybee (Genus: Apis) and the bumblebee 

(Genus: Bombus) both of the family Apidae, within the order of Hymenoptera. As 

stingless bees are predominately found in tropical and sub-tropical regions of the world 

(Bradbear, 2009) they shall not be covered any further in this thesis.  

  

Figure 1.1: Diagram showing Taxonomy of insects found in Order Hymenoptera. An unnamed branch 

indicates one or more members which are not discussed in this thesis. Am - Apis mellifera (honeybee), 

spp – indicates multiple bumble bee species, including Bombus terrestris. Information redrawn and 

adapted from Crane (1990). 
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Nowadays there are five recognised species of honeybee, all classified within the genus 

Apis (Winston, 1991); yet of these, it is the western honeybee (Apis mellifera) that the 

laymen reader is probably more familiar with (Seeley, 1985). Several different races of the 

Apis species exist in Europe, Africa and the Orient (Alaux, Ducloz, Crauser, & Le Conte, 

2010; Winston, 1991). Beekeepers will choose to keep a certain race of honeybee 

according to their respective differences in honey production, temperament, longevity 

and so on. For example, Italian bees (Apis mellifera ligustica) are often selected by 

amateur apiarists, due to their gentle and unaggressive nature (Head, 2010). In contrast, 

the Africanised honeybees (Apis mellifera scutellata) are particularly famed for their 

aggression (Crane, 1990) and are often referred to as ‘killer bees’ (Kevan, Clark, & 

Thomas, 1990). 

 

1.3 Introduction to the honeybee  

1.3.1 Development and colony hierarchy 

Honeybees live in colonies of up to 80,000 bees with a single queen (Grunewald, 2010) 

making then highly eusocial (Michener, 2007). Having lost the predatory instinct of its 

sphecoid wasp ancestor, over 100 million years ago, the honeybee now chooses to collect 

provisions for its colony through the collection of pollen and nectar (Crane, 1990; 

Grunewald, 2010; Michener, 2007).  

Morphologically, the queen and worker bees are different to one another (Michener 

2000); despite being larger in size, some of the features of the queen are inferior or 

absent to those found in the worker bee. As the queen is not required to forage she lacks 

a corbicula and has a shorter proboscis (tube used to feed on nectar), meaning that the 
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queen is effectively unable to feed herself (Crane, 1990). The absence of wax glands also 

restricts a queen from building cells in which to deposit an egg (Crane, 1990). The queen 

however possesses a retractable sting, unlike the workers, meaning that she will generally 

not die after stinging (Crane, 1990). As a result of the colony’s social evolution and 

structure, neither the queen nor a worker, away from a viable colony, are able to survive 

alone (Michener, 2007). 

The queen controls the quantity of workers and drones within a colony, as her primary 

duty within the hive is to keep the colony populated through egg production. A virgin 

queen can make between one to five mating flights, where she can mate several times in 

mid-air by male bees called drones in regions known as congregation areas (Winston, 

1991). The sole function of a drone is to mate (Dines, 1968) and following intercourse 

they die immediately (Seeley, 1985). The queen then returns to her hive where she is 

cared for by worker bees, who feed her mouth-to-mouth, till her death or supercedure 

(Winston, 1991). As shown in Figure 1.2, an unfertilised (haploid) egg will produce a 

drone, whilst a fertilised (diploid) egg will be female and will therefore be a worker or 

queen, depending on her upbringing (Winston, 1991). Approximately 90 % of a queen’s 

offspring are female (Seeley, 1985).  
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Figure 1.2: Determining factors for the variation between queen-laid eggs into workers, drones or 

queens. Redrawn and adapted from Winston (1991). 

 

As presented in Figure 1.3, each caste (worker, drone and queen) goes through four 

major stages of development: egg, larva, pupa and adult. The time it takes to go from an 

egg to a fully emerged adult can take ~16 days for queen, ~21 days for workers and ~24 

days for drones, although these times can vary depending on environmental conditions 

and nutrition (Winston, 1991). 

 

Figure 1.3: The major stages of honeybee development: egg, larva, pupa and adult. Adapted from 

Winston (1991). 
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Let us consider the development of a worker bee: once the egg has developed into a 

larva, at around 4 days, it is then tended for by young (nurse) bees. During the larval stage 

(days 4 – 8) the bee is fed a large amount food and grows rapidly in size and weight. Once 

at full size, the larvae are then capped within their cell (day 9), where they then spin a 

cocoon and pupate. The pupa will now begin to metamorphose into an adult (days 11 - 

21). At day 21 the adult will then remove the wax cap from their cell and continue to 

develop for the next few days (Winston, 1991).  

If a new queen is needed, a diploid egg would be set within or relocated from a worker 

cell to a larger queen cell. The need for a new queen can be due to a number of reasons, 

including injury, poor health or a reduction in the amount of pheromones she produces 

(Hepburn, 1986). During the larval stage, a specially administered worker secretion called 

royal jelly is given at a much higher rate to this designated queen larva than that of 

worker bee larvae; a low level of royal jelly results in the failed development of sex organs 

and thus creating normal workers (Dines, 1968). Ovarian development in adult workers is 

further supressed by the presence of a queen, who releases a pheromone known as 

queen substance to control worker behaviour, growth and reproduction (Hepburn, 1986).  

A honeybee colony displays an impressive hierarchy of age related tasks amongst the 

worker bees; which, as the name suggests, conduct virtually all of the tasks within the 

nest (Winston, 1991). Upon emergence from their cell, worker bees immediately begin to 

perform in-nest tasks which are divided between workers based on individual age 

(polyethism) and associated muscular (Crane, 1990) and glandular development 

(Winston, 1991); which is presented in Figure 1.4.  
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Figure 1.4: The relationship between age-related tasks and glandular development in honeybees. 

Redrawn and adapted from Winston (1991). 

 

Variance in juvenile hormone levels at each developmental stage is shown to have a 

bearing on the growth and degradation of certain glands which in turn bears influence on 

worker responsibilities within the hive (Winston, 1991). ‘Immature bees’, therefore, 

would be involved in the cleaning of cells and then progress [with age] to tending the 

brood and queen before finally foraging until the end of their lives at around 30 to 50 

days (Seeley, 1985; Winston, 1991). Collectively workers are involved in a number of tasks 

within the hive (Winston, 1991). Workers gather nutrition by foraging on flowers, in order 

to obtain quantities of nectar and pollen, which can then be stored within the hive. 

Foraging is regarded as a ‘complex phenomenon’ as it involves numerous ‘coordinated 
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individual performances’ (Colin et al., 2004); including olfactory perception, memory, 

navigation and communication (Thompson, 2003). Whilst foraging, bees also participate 

in the sexual reproduction cycle of angiosperm plants via the transfer of pollen between 

flowers whilst collecting floral rewards (pollen, nectar, oils and resins) (Dötterl & 

Vereecken, 2010). At present it is believed that foragers can cover around several tens of 

kilometres in order to gather nectar and pollen for the hive (Rortais, Arnold, Halm, & 

Touffet-Briens, 2005). The location of these pollen sources are conveyed by returning 

foragers by using a form of communication referred to as dancing (Section 1.3.4.3, p25). 

 

1.3.2 Beeswax 

A key constituent of a highly eusocial honeybee colony is the wax that they produce 

(Winston, 1991), as it plays a crucial role in their survival (Michener, 2007). Wax is 

produced by other social bees such as bumblebees (Tribe: Bombini) and stingless bees 

(Tribe: Meliponini) (Michener, 2007); although the quantity of wax produced by these bee 

species is much smaller than that of the honeybee. Although other social bees produce 

wax, beeswax often refers to that produced by A. mellifera (Crane, 1990) and unless 

otherwise stated and it is in this sense that the term will be used throughout the rest of 

this thesis. A nesting site can be established in naturally occurring cavities (e.g. trees) or 

artificial hives, of which both offer a shelter for honeybees. Beeswax forms the internal 

structure of the nest (Berry & Delaplane, 2001), providing an area to house developing 

brood and to store pollen and nectar/honey (Michener, 2007). Domestication of 

honeybees has led to the development of artificial hives (Section 1.3.5, p29) that 

incorporate many of the features of a feral honeybee nest (Winston, 1991). Beekeepers 
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regard beeswax as an important commodity and are able to reuse or recycle old comb 

wax in order to help increase honey yields as well as providing a source of income. 

 

1.3.2.1 The role of wax in the hive 

Through its domestication, the honeybee is most likely to establish its nest in an artificial 

hive, which is designed to include many of the features of a feral honeybee nest 

(Winston, 1991). Beeswax is constructed into comb wax, which provides the internal 

structure of the nest (Berry & Delaplane, 2001). Comb is constructed vertically within the 

hive, with a specific spacing between each comb which allows bees to move freely 

throughout the hive (Crane, 1990). Each cell is also constructed at a particular angle, 

ensuring that food stores will not pour out of the cells (Winston, 1991). Comb wax also 

provides an arena on which honeybees are able to communicate (von Frisch, 1954); 

whilst its chemical composition plays a role in social recognition (Breed et al., 1995). 

 

1.3.2.2 Wax synthesis 

Honeybees synthesise wax within wax glands which are modified epithelial cells. These 

glands are most developed around 5 – 15 days old (Figure 1.4) (Winston, 1991), before 

reducing in size when wax is no longer being synthesised (Bogdanov, 2009). The glands 

are located on the underside of the abdomen (Crane, 1990) and are covered by 

overlapping abdominal plates called wax mirrors. Liquid wax is secreted onto these wax 

mirrors where it then solidifies to form wax scales/flakes (Winston, 1991). Each wax scale 

weighs around 1 mg (Bogdanov, 2004). Around one million wax scales are needed to 

produce one kilogram of wax, with a worker being able to produce eight wax scales every 
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twelve hours (Bradbear, 2009). Upon the introduction to a hive, honeybees will 

immediately begin to produce beeswax in order to construct comb (Seeley, 1985; 

Winston, 1991). 

 

1.3.2.3 The energetic cost and influences of wax production 

The sugars obtained from honey i.e. sucrose, fructose and glucose are the main raw 

materials needed for wax synthesis. The ratio of sugar consumption to wax production 

can vary dramatically. Historical research (1788 - 1940) presented in Hepburn (1986) 

states experimentally determined ratios to be 1.8:1 to 104:1. The varied range seen in 

calculated ratios may be explained by poor experimental procedure, while others lack 

explanation (Hepburn, 1986). In the case of the former, some experimental colonies had a 

surplus of sugar solution, meaning that the calculated ratio would have perhaps been 

over estimated (Hepburn, 1986). Wax is known to be produced in abundance during 

colony establishment (Seeley, 1985). This is consistent with findings from (Whitcomb 

1946, as cited by Hepburn 1986) who observed a high initial sugar to wax ratio of 104:1, 

before falling to an accumulative running ratio of 8.4:1 after around two months. This 

would again be consistent with the gradual development of the colony. A later set of 

experiments by (Weiss 1965, as cited by Hepburn 1986) appears to offer the most 

accurate experimentally determined ratios of between 3.3:1 and 16.2:1. His experiments 

also acknowledged a lower consumption of honey (g/per bee) in larger colonies than 

smaller colonies (Hepburn, 1986). The high energy cost involved in wax production means 

that it is only synthesised when it is deemed necessary by the colony (Butler, 1954).  
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There are multiple factors which stimulate the production of wax, including: 

1) Temperature 

2) Nectar flow 

3) Pollen availability 

4) Queen presence 

5) Brood rearing  

Other influential factors on wax production are reviewed elsewhere (Hepburn, 1986, 

1997). 

 

1) Temperature 

The rise in ambient temperature, to around 10 °C, outside of the hive was deemed 

sufficient enough to stimulate comb construction; while a higher temperature of 15 °C 

favoured sustained comb-building (Koch 1961, as cited in Hepburn 1986). The secretion of 

wax and production of comb will decline towards autumn and terminate in winter 

months; this indirect correlation suggests that bees either choose not or will not sustain 

thermo-regulation of the hive and comb construction. It is difficult to place emphasis on 

the role that temperature plays alone as it does coincide with other factors such as nectar 

flow; however, the availability nectar is also closely linked to temperature (Hepburn, 

1986).  

 

2) Nectar flow  

Wax production and nectar flow are directly linked (Huber, 1814). During a nectar flow 

there is a need for additional comb space in order to store incoming nectar, providing 
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that there is enough space to expand existing comb or to build new comb within the hive 

(Butler, 1954). Wax production is reduced when no nectar is available. Likewise, if bees 

are denied from foraging then comb-building is reduced. If pollen is available, yet nectar 

is not, then comb production stops (Hepburn, 1986).  

 

3) Pollen availability 

Not only is pollen important in the growth and development of the brood, it also plays an 

essential role in the production of wax (Bogdanov, 2009; Hepburn, 1986). Historical 

research discussed by Hepburn (1986) reveals that colonies deprived of pollen fail to 

produce wax, correlating with the degradation of the wax glands. Equally, an early 

exposure to pollen ensured rapid development of the wax gland and thus a greater 

potential for the production of wax.  

 

4) Queen presence  

The queen substance released by a healthy laying queen will influence the behaviour and 

physiology of workers (Maisonnasse et al., 2010). The strong release of pheromones by 

the queen will suppress the construction of queen cups (Hepburn, 1986; Maisonnasse et 

al., 2010). As a queen ages the levels of pheromones she produces will decline, which will 

lead to her eventual replacement and therefore the need for the construction of queen 

cells (Winston, 1991). However, in the absence of a queen, wax will not be produced 

unless brood is available from which to rear a new queen. This would result in the 

construction of emergency queen cells (Hepburn, 1986). It has been found that the 

presence of a queen can significantly increase the number of cells and thus the size of a 
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comb. It was also discovered that the queen controlled the size of the cells constructed; 

these were mainly found to be worker cells (Maisonnasse et al., 2010).  

 

5) Brood rearing 

The amount of brood produced is enhanced during a nectar flow (Hepburn, 1986). As a 

consequent of more eggs being deposited into cells more comb space is required to 

house the developing brood (Bogdanov, 2009). The need to cap brood during their 

development is also a stimulus for wax production (Hepburn, 1997).  

 

1.3.2.4 Comb construction 

Using their mandibles (Winston, 1991), legs and antennae (Bauer & Bienefeld, 2013) 

worker bees manipulate secreted wax scales to produce comb wax. This occurs at a well 

thermo-regulated temperature of 35 °C (normal hive temperature) (Winston, 1991), 

although some bees will increase their body temperature in order to assist in shaping of 

the wax (Bauer & Bienefeld, 2013). The resulting comb is a collection of back-to-back 

hexagonal cells (Figure 1.5) made with exact precision. Worker cells generally have a 

diameter of 5.2 - 5.4 mm (Winston, 1991) and a cell depth of 15 mm; equating to a total 

volume of 360 mm3 (Tremolada, Bernardinelli, Rossaro, Colombo, & Vighi, 2011). The 

thickness of cell walls and bases are 0.073 mm ± 0.008 mm and 0.176 mm ± 0.028 mm 

(Tremolada et al., 2011). The angle of adjacent cells is exactly 120°, whilst the elevated 

angle from the base of each cell is 13° in order to avoid stores from pouring out (Winston, 

1991). Drone cells are slightly larger than worker cells and are therefore mostly found 

clustered on comb edges, this allows for a more uniform comb construction thus 
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providing strength (Winston 1990). Despite their size differences, both drone and worker 

cells are used in the storage of food stuffs.  

 

Figure 1.5: (Left) A schematic display of the back-to-back and hexagonal construction of comb 
wax and the elevated angle of each cell. Dimensions are meant as a guide – not to scale. 
Adapted from Winston (1991). (Right) A demonstration of the repeating hexagonal shape of 
comb cells, cells also contain newly laid eggs. Photograph by K. D. Wisniewski (2011).  

 

Pirk et al., (2004) argue that the hexagonal shape of these cells in the comb arises as a 

result of the wax heating up and flowing around a closed packed arrangement of 

cylindrical cells and thus creating the ‘illusion’ of hexagonal cells. This was later disproved, 

as it was confirmed that the base of cells were hexagonal (Hepburn, Muerrie, & Radloff, 

2007) as a result of mechanical shaping (Bauer & Bienefeld, 2013). Cells which do not 

possess the traditional hexagonal shape are queen cups. These are normally found 

hanging vertically on comb edges. Once they have had an egg deposited in them, workers 

will begin to extend these cups into tapered cells (queen cells), elongating them to a final 

length of 25 – 29 mm. These structures are especially constructed for the development of 

a new queen and are only found during the supercedure of a failing queen or during 

swarm preparation. Queen cells are deconstructed once the queen has emerged and the 

wax reused elsewhere in the hive (Winston, 1991). 
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1.3.2.5 Physical properties and chemical composition of beeswax 

Newly produced comb wax shows great strength, as 1 kg of constructed comb can hold 20 

– 22 kg of honey (Bradbear, 2009; Winston, 1991) and this strength is known to increase 

as the comb becomes adulterated/takes on other compounds over time (Hepburn & 

Kurstjens, 1988). The success of the comb’s strength comes from the right combination of 

materials and geometry (Buchwald & Greenberg, 2004) as well as the temperature to 

which it is exposed (Buchwald, Breed, & Greenberg, 2008; Hepburn & Kurstjens, 1988). 

Beeswax possesses a crystalline structure at lower temperatures and becomes 

progressively amorphous as temperatures increase. During the construction from wax 

scales to comb there is also a witnessed change both mechanically and chemically. Newly 

formed wax also possesses a highly crystalline structure which is altered during mandible 

manipulation (chewing), thus making the wax easier to handle (Hepburn, 1986).  

Compared to other insect waxes, beeswax has a relatively low melting point, with a range 

of 61 °C to 66 °C (Crane, 1990; Tulloch, 1980), while the onset melting occurs at around 

37 °C (Buchwald et al., 2008); therefore, beeswax is stronger at lower temperatures. At 35 

°C beeswax is supple and demonstrates a level of plasticity which allows for construction 

of large combs - a property that is also observed at temperatures as low as 32 °C (Crane, 

1990). At 40 °C wax is described as a viscous plastic, which offers reduced support to the 

overall comb and thus potentially leading to structural failure (Hepburn & Kurstjens, 

1988). However, at 40 °C honeybees are known to die at a rapid rate compared to those 

living at 35 °C (Free & Spencer-Booth, 1958). Even though wax demonstrates a greater 

strength at lower temperatures, the energy expenditure used to construct comb at 25 °C 

would be at least double the amount used during construction at 35 °C (Hepburn & 
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Kurstjens, 1988). In addition to this, bees that are reared at colder temperatures 

demonstrate shorter lifespans and an increased susceptibility to pesticides (Medrzycki et 

al., 2010). This suggests a finely tuned and balanced relationship between building 

material and bee, which ultimately hinges on thermoregulation (Hepburn & Kurstjens, 

1988; Hepburn, 1986). 

Beeswax contains over 300 substances. As given in Table 1.1, the principal components in 

beeswaxes are fatty acids, long-chain esters as well as hydrocarbons, in addition to other 

constituents at low concentrations (Tulloch, 1980). There are also a further 48 volatile 

components which are not presented below (Ferber & Nursten, 1977). 

 

Table 1.1: Major non-volatile components are considered those which form more than 1 % of the 

fraction. For minor components (forming less than 1 %) only estimated numbers are given. Data taken 

from Tulloch (1980). 

 

 

 

 

 

 

 

 

The composition of beeswax shows little variation across the world (Crane, 1990; Tulloch, 

1980). Changes in the relative amounts of the component fractions, given in Table 1.1, 

will result in the adjustment of strength, rigidity (Kotsiomiti & McCabe, 1997) and 

  
Number of components in fractions 

Constituent fractions percentage major minor 

Hydrocarbons 14 10 66 

Monoesters 35 10 10 

Diesters 14 6 24 

Triesters 3 5 20 

Hydroxy monoesters 4 6 20 

Hydroxy polyesters 8 5 20 

Acid esters 1 7 20 

Acid polyesters 2 5 20 

Free acids 12 8 10 

Free alcohols 1 5 ? 

Unidentified 6 7 ? 

Total 
 

74 210 
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plasticity (Gibbs, 2002) of a comb. Protein is also found within comb wax and this is 

thought to be incorporated during manipulation (Buchwald et al., 2008; Kurstjens, 

Hepburn, Schoening, & Davidson, 1985) in order to achieve the correct level of ‘plasticity’ 

suitable for comb construction (Winston, 1991). The onset of melting in beeswax can be 

suppressed through the incorporation of contaminants (Buchwald et al., 2008).  

 

Propolis 

Collected resins, from various plant sources such as leaf buds, are often combined with 

beeswax to produce a substance known as propolis or bee glue (Hogendoorn, Sommeijer, 

& Vredenbregt, 2013). Propolis can have many roles within the hive, including: 

strengthening, cementing and waterproofing. It is also used to disinfect the hive and is 

said to play a role in the honeybees’ social immunity (Bradbear, 2009). Propolis contains 

over 300 compounds (Bradbear, 2009) and it has been shown to be the source of 

flavonoids (pigments) in beeswax (Tomas-Barberan, Ferreres, & Tomas-Lorente, 1993), 

which can be linked to the odour of beeswax (Bogdanov, 2009).  

 

1.3.2.6 Comb age 

The age of constructed comb wax tends to loosely correlate to its use within the hive; this 

also has a bearing on the observed colour of the comb (Hepburn & Kurstjens, 1988). 

Newly constructed comb wax is described as ‘white’ and over time it will become 

discoloured through the storage of food reserves or during brood development. The 

discolouring of the comb can be due to an accumulation of pigments from propolis 

(Bogdanov, 2009) and various pollens (Owayss, Rady, & Gadallah, 2004; Varassin, 2001) 
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and will subsequently become ‘yellow’ (Free & Williams, 1974) ‘orange’ (Hepburn, 1986) 

or ‘brown’ (Bradbear, 2009) in colour. However, if the comb is only ever used for honey 

storage it will remain yellow in colour (Bradbear, 2009). Over successive generations of 

brood development, the comb goes through various shades of brown before becoming a 

final ‘brownish-black’ or ‘black’ colour (Bogdanov, 2009). The darker colours come from 

the inclusion of propolis, as well as increasing amounts of larval excrement and exuviae 

(discarded larval cocoon) (Hepburn, 1986), in addition to other contaminants which 

accumulate over time (Berry & Delaplane, 2001). Figure 1.6 provides a visual summary of 

the associated functions of comb wax and the colours witnessed with progressing age.  

 

Figure 1.6: The colour of comb wax tends to correlate with the function it plays within the hive. These 

functions roughly correspond to comb age. The colour of the comb also becomes darker with increasing 

colony generations. The colours given are meant as a guide and are not accurate. Image produced from 

personal experience and from the description given in Bogdanov (2009).   

 

Age is also associated with a change in the properties of the comb, such as smaller cell 

diameters and cell volumes; this is due to the accumulation of exuviae after each brood 

generation (Hepburn, 1986) as well as the recycling of wax by house bees (Winston, 

1991). Smaller cells will result in a reduction in the size and weight of worker bees 
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(McMullan & Brown, 2006), which is also associated with a shorter life-span (Scofield & 

Mattila, 2015). Wild colonies would choose to shift brood rearing to newer combs during 

colony expansion (Free & Williams, 1974), although beekeeping practices often prevent 

this from happening and therefore queens are forced to lay eggs in older comb (Berry & 

Delaplane, 2001).  

 

1.3.2.7 The brood nest 

Not only does comb wax enable the storage of food stuffs it also provides a safe area for 

the developing brood (Crane, 1990; Michener, 2007; Seeley, 1985). The queen will 

deposit her eggs in cells which are held at a constant temperature of around 35 °C. This is 

normally towards the middle of each comb/frame (Winston, 1991). Food is then placed 

by worker bees around the resulting ‘brood nest’, with pollen immediately next to the 

brood, followed by honey in the outermost cells (von Frisch, 1954; Winston, 1991). This 

arrangement, as shown in Figure 1.7, allows the brood temperature to be easily 

maintained, while pollen reserves are made locally accessible to nurse bees (Hepburn, 

1997; Winston, 1991). Cells reserved for drones are often found clustered on the outer 

edges of the brood nest, as this allows for the queen to lay batches of unfertilised and 

fertilised eggs (Seeley and Morse 1976 cited in Winston 1991). Likewise, queen cups and 

queen cells are located on the periphery of the comb (Winston, 1991).    
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Figure 1.7: A schematic drawing of a typical brood pattern. Here the brood are deposited centrally on the 

frame and immediately surrounded by pollen stores while nectar/honey is found on the periphery. 

Adapted from Camazine (1990).  

 

The overall shape of a brood nest (across the hive) in hotter climates is comparable to 

that of a rugby ball, as this allows for a greater surface area and thus a better dispersion 

of heat; whilst in lower temperatures the brood nest is often spherical.  

 

1.3.4 Foraging 

As we will learn in Section 1.3.4.3, p25, communication mechanisms are able to inform 

other foraging bees about the location of a food source; yet they fail to explain how 

workers are able to navigate between resources or how they recognise them (Winston, 

1991). As already mentioned, foraging is a complex phenomenon and to help understand 

this, this section will briefly introduce some of the individual processes which will help 

bees to identify and locate flowers, transmit this information to other bees as well as 

introducing the floral rewards that are collected by foraging bees.  
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1.3.4.1 Bee’s eye 

Bees possess tri-chromatic vision which is similar to that of a human, although some key 

differences exist. Figure 1.8 demonstrates that bees show an increased sensitivity 

towards shorter wavelength light, which includes ultra-violet (UV) light (Winston, 1991). 

In contrast bees are unable to see red light, but they are able to see a colour referred to 

as ‘bee-violet’, which is a combination of colours found at either end of their visible 

spectrum. Bees are also good at spotting patterns and movement, which is a useful tool 

during foraging (Winston, 1991).   

 
Figure 1.8: The colour spectrum as seen by the bee's eye in relation to the human eye. Redrawn and 

adapted from Winston (1991). 

 

It is thought that the colours displayed by flowers are the result of an evolution process 

which encourages the visitation of insects (von Frisch, 1954), particularly bees (Winston, 

1991). True-red flowers are thought to be more adapted to butterflies, as these are able 

to see at the red-end of the spectrum. Most ‘red’ flowers actually display a mauve or 

purple colour which is believed to be perceived as a blue colour to bees; yet the poppy, 

which is of a true-red colour, reflects UV-light and as such is regularly visited by bees (von 

Frisch, 1954). Flowers also produce ultra-violet patterns which include ‘nectar-guides’ – 
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these are non-reflective regions which sign-post the location of nectaries as well as other 

flower features i.e. stamens (Goodale, Kim, Nabors, Henrichon, & Nieh, 2014; Leonard & 

Papaj, 2011). Figure 1.9 shows an example of how a nectar guide would appear when a 

flower is viewed in UV light.  

 

Figure 1.9: Brassica nigra (black mustard) as seen in visible (left) and UV light (right). The darker, central 

‘nectar guide’ which leads bees to nectar can be clearly seen in the right image. Images taken without 

permission from Rørslett (2005). 

 

A bee’s ultra-violet vision allows it to locate the sun, even on overcast days, as the UV 

rays are able to penetrate cloud cover; this is referred to as the sun’s compass (Winston, 

1991). Bees will also use landmarks, such as hive location, to help with orientating 

themselves and in turn form a ‘locale map’ of an area (Crane, 1990). 

 

1.3.4.2 A sense of smell  

Bees are unable to visually distinguish between shapes, including the shapes of petals, 

meaning colour is only partially responsible for a bee being able to discriminate between 

various flower types (von Frisch, 1954). Floral odours, as well as other food resource 

odours, play an important role in the orientation of the honeybee (Crane, 1990; Winston, 

1991). Odours are detected by a bee’s antennae found at the front of the head and 
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odours can be remembered for up to five days (Crane, 1990); once an odour has been 

learnt by an individual bee they will continue to visit flowers of the same scent, as they 

have now become accustomed to the foraging conditions of that particular flower type 

(von Frisch, 1954) i.e. knowing which nectary will give the most nectar. Odours are also 

used during a return flight to the hive as the bee can easily discriminate between a 

foreign colony and their own (Winston, 1991).   

 

1.3.4.3 Communication 

The sum of a colony’s total workload and efficiency is greater than that which can be 

achieved by the same number of bees working independently. Therefore in order for a 

colony to successfully function as a unit it is important that individual bees are able to 

communicate to other nest mates; this then ensures, for example, that essential levels of 

pollen, nectar, water and resins are collected for the benefit of the whole colony. 

Following a foraging trip for pollen or nectar and in some cases water, a bee returning to 

the hive will/can perform a dance, which is aimed to recruit or inform workers of a food 

source’s locality to the hive. Two forms of dance exist: the waggle dance and the round 

dance.  

The waggle dance is carried out by the honeybee in the form of abdominal shakes and a 

figure-of-eight movement (Figure 1.10); it is used to inform nest mates of the precise 

location (based on the amount of energy expelled to get to location) and the quality of a 

food source which can be found within a radius greater than a hundred metres from the 

hive.  
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Figure 1.10: A forager conducting the ‘waggle dance’ in order to recruit other foragers. Redrawn and 

adapted from Winston (1991).  

 

The dance also specifies the direction of the food source in relation of the sun (Figure 

1.11), which can be compensated for and accurately navigated to within one degree by 

other foragers (Winston 1991). 

 

 

Figure 1.11: The angle of the waggle dance from the vertical (dashed line) informs foragers of the location 

of a floral source in relation to the sun position. Redrawn and adapted from Winston (1991). 

 

In comparison, the round dance (Figure 1.12) is rather more simplistic in both its process 

and the message it delivers. The dance does not transmit any precise information on the 

distance or direction of forage but merely notifies that a floral reward is within a 

proximity of 15 metres to the hive (Winston, 1991). 
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Figure 1.12: The round dance informs recruits that a food source is close to the hive. Redrawn and 

adapted from Crane (1990). 

 

The dance is performed by the ‘dancer’, who continually walks in small circles and then 

reverses direction on every first or second revolution; up to twenty reversals can be 

performed in a dance that can last from a few seconds to no longer than a few minutes.  

Nectar or pollen samples are distributed to surrounding bees prior to or during the dance. 

Once the dance is completed the recruited bees then circle the hive, gradually increasing 

their radius until the food source is found. It is believed that the food source is identified 

using the odours exchanged during the round dance. An amalgamation of both the 

waggle and round dances is used for floral sources that exist between 15 and 100 metres 

(Winston, 1991). 

During both the waggle and round dance, other recruits will read the vibrations of the 

dancer using their antennae; as well as taking note of any odours which may help to 

identify the food source (Winston 1991). 
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1.3.4.4 Pollen and nectar 

Pollen and nectar are floral rewards that are produced by flowers and collected by bees 

as a food source. The main composition of nectar is between 5 - 80 % sugars and this high 

composition of carbohydrates acts as a bee’s main source of energy; other compounds 

such as minerals, vitamins and organic acids are also found (Rortais et al., 2005). The rate 

of nectar and/or honey consumption can vary according to the stage within the life cycle 

that the bee is at i.e. larvae or adult bee, plus the tasks undertaken within the hive; for 

example, it was shown that wax-producing bees, foragers and “winter” bees would use 

larger amounts of nectar to cover the high amounts of energy required for their 

respective duties (Rortais et al., 2005).  

Pollen can contain between 6 – 28 % protein, 1 – 20 % lipids (mainly polar and neutral), 

carbohydrates, vitamins, minerals and ~0.5 % sterols. The latter is required for bee 

metabolism, as without this bees are not able to synthesise cholesterol (Campos et al., 

2008; Winston, 1991). The collected pollen grains are packed with a combination of 

nectar and/or honey in addition to salivary enzymatic secretions such as amylase and 

catalyse, which helps aid pollen transportation to the hive for storage. This is often 

referred to as bee bread (Campos et al., 2008; Isidorov, Isidorova, Sczczepaniak, & 

Czyżewska, 2009). As with nectar, pollen consumption varies according to the stage 

within a bee’s life cycle. Nurse bees (8 - 10 days old) will consume high levels of pollen in 

order to develop the hypopharyngeal and mandibular glands needed for larval feeding 

(Rortais et al., 2005).  
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1.3.4.5 Honey production  

Bees will forage and collect nectar so that honey can then be later produced and stored. 

The nectar collected by foragers is stored within the ‘honey stomach’ where it undergoes 

enzymatic manipulation. The enzyme (invertase) breaks down sucrose into two simpler 

sugars: glucose and fructose (Butler, 1954). Once at the hive, workers then accept 

regurgitated nectar from a returning forager’s tongue and mouth parts, before retiring to 

a quieter region of the hive where she will then reduce the water content of the nectar; 

this is achieved by exposing the nectar to air by folding her mouth parts repeatedly, 

before it is then stored in a wax cell (Crane, 1990). Water evaporation is further achieved 

by bees fanning their wings near the cell in order for air to circulate over the nectar. The 

average water content of nectar from the UK is 60 – 65 %, whilst the water content of 

honey is around 18 – 20 % (Butler, 1954; Winston, 1991). The cell containing the mature 

nectar, which has a sugar content of around 80 % (Rortais et al., 2005), is then capped 

with wax until it is needed (Crane, 1990).  

 

1.3.5 Beekeeping (honeybee) 

Beekeeping refers to the management of bees in artificial hives by a beekeeper (apiarist) 

(Crane, 1990). Owing to the large colony numbers and proving to be the easiest bee 

species to manage, honeybees are typically the choice species when it comes to 

beekeeping (McGregor, 1976). It is thought that honeybees have been kept within hives 

of various forms for over 4,500 years (Crane, 1990). Early primitive examples of hives 

include mud or clay cylinders; these, along with the much later wicker skep, had fixed 

combs and had to be destroyed to remove honey stores. It is only since 1851 when the 
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first ‘removable frame’ hive (Langstroth hive) was created and that modern beekeeping 

was born (Crane, 1990; Winston, 1991). The introduction of the removable frame hive 

also became important for modern agriculture, as this allowed for hives to be transported 

to blooming crops (Winston, 1991). A typical removable frame hive used in England is the 

British National hive, seen in Figure 1.13, whilst the ‘Smith’ hive is often used in Scotland; 

although very little differences exist between these two hives.  

 

 

 

 

 

 

 

Figure 1.13: A schematic diagram of a typical British National hive. The exploded view provides details of 

individual components. Redrawn and adapted from Crane (1990). 

 

A hive is traditionally wood in construction and consists of a brood chamber and super, 

the latter is normally exclusively for honey storage. In order to ensure that only honey is 

collected by the beekeeper, he or she will use a queen excluder between the brood 

chamber and honey supers. The queen excluder is typically a mesh with spacing too small 

for the queen to pass through, and hence she will not be able to deposit eggs in the 

super.  
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A beekeeper is able to manipulate a colony to produce more honey than is actually 

required so that he/she is able to harvest the surplus (Crane, 1990); a higher yield can be 

achieved through the use of removable frames, as the beekeeper is able to extract honey 

from a frame centrifugally, thus being able to reuse the frame over several years (Crane, 

1990; Winston, 1991). Additional brood boxes as well as supers can be added allowing for 

colony growth and increased honey stores (Winston, 1991). The surplus honey collected 

by the beekeeper can be used as a source of income. 

 

1.3.5.1 Migratory beekeeping 

Migratory beekeeping allows for bigger honey yields by taking advantage of different 

flowering times of each plant species around a particular region (Crane, 1990). This occurs 

on a small scale within the UK as bee keepers move a few hives to a later flowering plant 

species, such as heather, in order to increase their honey yields. In contrast, American 

beekeepers may collectively relocate up to a million colonies in order to meet the 

pollination demands of the Californian almond trade; an industry valued at $2 billion 

alone (Ratnieks & Carreck, 2010). Figure 1.14 shows an example of how honeybee 

colonies may be relocated to major crop producing states across the USA throughout a 

single season. In order for a crop to be pollinated to a satisfactory level, colonies may 

remain at the crop for 3 – 5 weeks before being relocated (Bond, Plattner, & Hunt, 2014). 
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Figure 1.14: The various potential movements of honeybee colonies and the crops that they may visit 

within the USA. Taken without permission from (Bond et al., 2014). 

 

There are two subfamilies of the order Apidae which produce honey in high enough 

quantities for its harvest to be worthwhile: Apinae (honeybees) and Meliponinae 

(stingless bees). However it is the former whose only species Apis carries more economic 

importance than any other (Crane, 1990). The European honeybee, Apis mellifera, is a 

highly adaptable species of bee and through deliberate human transport it now 

encompasses a vast native range that has expanded to nearly all habitable corners of the 

world (vanEngelsdorp & Meixner, 2010). There are thought to be no or very little feral 

(wild) honeybee colonies found within Great Britain, leaving only those managed by 

beekeepers (Potts, Roberts, et al., 2010).  

 



Chapter 1: Introduction  

33 

1.3.5.2 The recycling of beeswax 

As previously discussed in Section 1.3.2.3, the overall energy required to produce 

beeswax is high and as such the production of wax only occurs when necessary (Hepburn, 

1986). Honeybees will also recycle old wax in order to save energy; this includes wax 

cappings (Seeley, 1985), as well as queen cups and queen cells (Winston, 1991). Any 

unused wax tends to be placed at a cell’s edge by nurse bees until required (Seeley, 

1985). A common beekeeping practice is to also save the energy needed for wax 

production and to revert it to other duties i.e. colony growth and nectar collection; this 

helps to maximise honey production (Bradbear, 2009). Such a result can be achieved 

through the use of removable frame hives and readymade wax foundation sheets. 

Foundation wax sheets are produced by running a sheet of wax through embossed rollers 

– resulting in a hexagonal cell pattern on which bees will draw out the rest of the comb. 

The reuse of drawn comb can ensure a larger honey crop, as the amount of honey needed 

for further wax production (i.e. cappings) will reduce to around 1.5 – 2 % (Crane, 1990). 

It is suggested that comb wax should be replaced every two to three years, with the old 

wax undergoing a recycling process (Bogdanov, 2004). Beekeepers can trade in their old 

comb wax for new foundation sheets as a way of offsetting costs and, once processed, 

any old wax will most likely be used to form new foundation sheets (Bradbear, 2009).  

The recycling of beeswax can vary in both price and sophistication: a few common 

examples, which are also adopted by beekeepers and involved with this study, are: 

1) Solar wax extraction  

2) Steam wax extraction 
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Both solar and steam extraction will return wax of suitable quality for exchange with 

manufacturers for new foundation; however, if the wax was to be formed into candles 

and sold to the general public then further refinement will be necessary – these 

techniques are outside the scope of this thesis and shall therefore not be considered. The 

return yield from either extraction can vary, depending on the quality of comb that is 

being recycled; older, darker combs will usually yield between 30 – 50 %, however newly 

drawn comb can see returns of up to 100 % (Bogdanov, 2004). Some beekeepers may 

choose to recycle their own wax; this may be done as a cost saving activity, but in 

addition, some beekeepers prefer to have a history of the wax they use for fear of 

bringing in contaminants or low grade wax into their colonies (personal communication 

with beekeepers). 

 

1) Solar wax extraction  

Solar wax extraction is a simple and effective process which uses the heat of the sun to 

melt and purify beeswax. A solar wax extractor can either be shop-bought or can easily be 

made at home at little cost to the beekeeper. A schematic diagram of a solar extractor is 

given in Figure 1.15; it consists of a box with a transparent lid; inside is a metal sheet on 

to which old beeswax is placed that slopes towards a container. In order for the wax to 

melt the internal temperature of the extractor needs to be around 68 °C; thermal 

insulation as well as two sheets of glass or Perspex help to retain heat within the 

extractor. During extraction a mesh screen catches any debris contained within the old 

comb wax, whilst clean wax is free to run into the container. A single extraction is often 

adequate enough to produce a high quality wax block; however, this may vary according 

to the initial cleanliness and age of the comb wax used (Bradbear, 2009). 
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Figure 1.15: A schematic drawing of a solar extractor.  

 

In order for the extractor to work at maximum efficiency it must be continuously 

positioned in direct sunlight and so is perhaps best suited for summer months, during 

which the smell of hot wax and honey can attract bees and may prove to be an 

inconvenience to the beekeeper (Bradbear, 2009). 

 

2) Steam wax extraction   

Steam wax extractors involve placing beeswax in a sealed cylinder, which houses a basket 

to hold the old wax, and then introducing hot steam to melt the wax. The steam melts 

and cleans the wax, where by the melted wax then drains through an opening at the 

bottom of the container, where it is then collected in a suitable receptacle (Bradbear, 

2009). Steam extractors, although perhaps not as cheap as solar extractors, can again be 

made at a relatively small cost. This method of extraction offers a benefit over solar 

extraction as it can be conducted anytime of the year.     
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1.4 Honeybee decline 

Throughout their lifetime, honeybees are at risk of being attacked by parasitic mites 

(Varroa destructor) (Genersch, Evans, & Fries, 2010), bacteria (e.g. European and 

American foulbrood: Melissococcus pluton and Paenibacillus larvae, respectively) 

(Hornitzky & Anderson, 2003), viruses (sacbrood: Morator aetotulas) (FAO 2006) and 

fungi (e.g. Nosema apis) (Genersch et al., 2010) to name but a few. The aforementioned 

factors can all have a negative effect on the health of the honeybee (Genersch et al., 

2010), in addition to other factors such as climate change, loss of habitat and the use of 

pesticides in agriculture (Potts, Biesmeijer, et al., 2010). 

Honeybee numbers are currently in decline and this has sparked massive media interest 

and research operations investigating reasons as to why these losses are occurring 

(Neumann & Carreck, 2010). A huge loss of honeybees could massively threaten the 

supply of around one hundred pollinated crop types, in addition to habitat diversity 

within the wild (Dötterl and Vereecken 2010). Nevertheless, threats to honeybee 

numbers are not a new phenomenon and incidents have been noted throughout the last 

150 years or so (Underwood & vanEngelsdorp, 2007). The first occurrence of major 

honeybee loss was recorded in Kentucky 1868, where it was said that bee numbers had 

declined whilst still leaving plenty of honey within the hive. Since then, no less than 

eighteen major losses have been recorded up to 2009 (Underwood & vanEngelsdorp, 

2007; vanEngelsdorp et al., 2009). For example, in 1905 and 1919 the Isle of Wight was 

struck by 90 % colony losses. Honeybees suffering from the ‘Isle of Wight’ disease were 

unable to fly and were often seen crawling out of their hives (Neumann & Carreck, 2010; 

Underwood & vanEngelsdorp, 2007). The cause of these losses was thought to be down 
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to the tracheal mite Acarapis woodi (Wilson-Rich, Allin, Carreck, & Quigley, 2014), but it 

was later found to be a combination of chronic bee paralysis virus, poor weather 

conditions and excessive colony numbers in a limited available foraging space (Neumann 

& Carreck, 2010; Wilson-Rich et al., 2014).  

France also played victim to heavy honeybee losses in the winters of 1998 - 1999 and 

1999 - 2000; research showed one or multiple diseases e.g. tracheal mites being present 

in 76 % of the affected colonies. Yet, despite this, the cause still remains unknown 

(Underwood & vanEngelsdorp, 2007). During the same time (late 1990s/early 2000s) both 

French and Italian beekeepers reported honeybee losses in hives placed near fields of 

sunflowers (France) and maize (Italy). Both of these crops were treated with imidacloprid 

(insecticide), which was introduced around this time (Bortolotti et al., 2003), thus 

suggesting that pesticides are a possible driver behind bee decline (Potts, Biesmeijer, et 

al., 2010). 

American honeybee losses are well documented; however, the evidence for honeybee 

decline in Europe has been described as patchy and poorly documented (Potts, Roberts, 

et al., 2010). The most recent and current incident of large scale bee losses was first 

reported along the East Coast of the USA in the latter months of 2006 (Underwood & 

vanEngelsdorp, 2007); yet beekeepers had noticed dwindling numbers with consistent 

symptoms two years earlier (Cox-Foster et al., 2007). Since 2006 this condition has taken 

on many aliases, for example: ‘honeybee vanishing’ (vanEngelsdorp & Meixner, 2010), 

‘fall dwindle disease’ (Underwood & vanEngelsdorp, 2007; vanEngelsdorp & Meixner, 

2010) and the finally adopted name of ‘colony collapse disorder’ (CCD) (Cox-Foster et al., 

2007). The characteristic symptoms of CCD are defined as the nonexistence or absence of 
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the extreme majority of adult honeybees within a colony without signs of mortality within 

or near the hive (Cox-Foster et al., 2007; Kamel, 2010). The condition only appears to 

effect worker bees, as both the queen and brood remain present in the hive (Kamel, 

2010). In addition to this, a good amount of food stores remain untouched by robbing 

bees, wax moths and hive beetles, which remains true weeks after the collapse 

(Underwood & vanEngelsdorp, 2007). For deaths to qualify as CCD, the previously 

described symptoms must be met, as bees can die in many particular ways (Neumann & 

Carreck, 2010). However, within the literature there are currently seventeen definitions 

used to describe CCD, therefore making it difficult to determine whether the same 

phenomena is always being referred to (Garwood, 2010). Many theories and speculations 

exist to date that look to identify and point out the current cause of honeybee decline, 

with the more unlikely suggestions holding mobile telephones, genetically modified crops 

and even nanotechnology responsible (Neumann & Carreck, 2010). A combination of 

diseases, mite stresses and pesticides, amongst other stressors contribute to the 

hypothesis that no one factor is solely responsible for honeybee decline or CCD (Mullin et 

al., 2010).  

It must be noted that the phenomena of CCD does not occur in the UK and Europe. It is 

suggested that UK losses are perhaps down to the occurrence of Varroa mites, habitat 

loss and shifts in weather patterns (Wilson-Rich et al., 2014), while pesticide applications 

are still regarded as an important driver behind the declines (Potts, Biesmeijer, et al., 

2010). In any case, the UK has lost over 75 % of its colonies over the last century. Britain 

has also seen a 78 % reduction in the number of beekeepers since 1953, leaving the 

country with only around 25 % of its total honeybee requirement (Potts,  Biesmeijer, et 
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al., 2010). Other UK bee species have also been in decline during the last 50 years. 

However, as these are often wild bees their disappearance is not immediately as obvious 

as domesticated honeybees (Wilson-Rich et al., 2014). Solitary bee species were also 

found to have reduced by 52 % across surveyed areas (Biesmeijer et al., 2006). Three 

species of bumblebee have also become nationally extinct, whilst a further eight species 

have experienced major declines (Goulson, 2010); and despite a lack of monitoring 

schemes (Breeze et al., 2011) there are still concerns into how various stressors affect 

bumblebees (see Chapter 6). 

 

Weather and climate  

Climate change has been identified as a potential contributor behind bee losses, including 

CCD. Winter weather has increasingly become more variable and this can be linked to bee 

losses, not only in the UK, but also across Europe and the USA (Wilson-Rich et al., 2014). 

Although honeybees are capable of tolerating a varied range of climates, they remain 

sensitive to prolonged cold and wet spells which prevent them from foraging (Grunewald, 

2010). The flowering times of many temperate plant species appear to have been 

affected by climate change, resulting in a potential mismatch between pollinator 

visitation and the onset of flowering (Rafferty & Ives, 2012); prompting concerns as this 

may lead to starvation of early emerging bees or that flowers may not fully receive the 

pollination they require (Wilson-Rich et al., 2014). There is a possibility that bees and 

flowers may adjust to such a mismatch over time (Wilson-Rich et al., 2014); however, this 

is not confirmed and the mismatch may become further exacerbated (Rafferty & Ives, 

2012). Once the queen starts to lay eggs, a constant supply of pollen is needed for the 
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colony and disruption to the supply of this important resource may affect brood 

development (Grunewald, 2010) and consequently colony growth.  

Recent official ‘overwintering statistics’ (Figure 1.16), produced by the British Beekeepers 

Association (BBKA), show a promising improvement in the overwintering success of UK 

honeybees, with the exception of the winter 2012/13 which was considered a severe 

winter following a poor summer (BBKA, 2014).  

 
Figure 1.16: Percentage honeybee losses in the UK over the winter periods 2007/08 to 2013/14.  Redrawn 

from data presented in BBKA, (2014). 

 

Despite improvements, the BBKA considers the current losses (9.6 %) to be too high and 

hope to see an improvement in the long term, during which time beekeepers are 

encouraged to keep a high-standard of husbandry in order to minimise the levels of 

Varroa (BBKA, 2014).    
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Habitat loss   

Agricultural intensification, as a result in the reclamation of land in order to supply the 

growing human demand for various produce (Wilson-Rich et al., 2014), has resulted in a 

loss of nesting and forage sites for a number of bee species. Habitat loss is still considered 

the primary driver behind declines in the UK and across Europe (Brown & Paxton, 2009; 

Kuldna, Peterson, Poltimäe, & Luig, 2009). Species-rich hay meadows were commonly 

used as livestock feed; however, since the 1930s silage production has become more 

preferred, resulting in a 97 % reduction in hay meadows (Breeze et al., 2011). Despite 

their negative effects on available nesting sites, crop monocultures i.e. oilseed rape, can 

provide a rich source of pollen and nectar, albeit for a short period of time (Grunewald, 

2010).  Hedgerows provide safe corridors for bees to move between nest sites and food 

sources; yet a continued reduction of hedgerows threatens to isolate certain bee species, 

promoting inbreeding and suppressing gene diversity (Williams et al., 2010). A similar 

effect is witnessed through urbanisation. However, it should be noted that honeybees are 

able to forage over a much larger range than most bees and so are able to thrive in a 

urban environment (Wilson-Rich et al., 2014). 

 

1.5 Pesticides 

Since the middle of the 20th century pesticides have been used worldwide as a result of 

agricultural intensification (Wilson-Rich et al., 2014). The term pesticide is used as a title 

that incorporates a wide range of chemicals (natural, semi-synthetic or synthetic) that 

aim to manage/eradicate insects (insecticides), rodents (rodenticides), fungi (fungicides) 

and weeds/plants (herbicides) as well as other pests (Johnson, Pollock, & Berenbaum, 



Chapter 1: Introduction  

42 

2009). Pesticide formulations consist of an active ingredient(s) and ‘inert’ chemicals, 

although the latter can be misleading. These can often assist in the successful delivery of 

the active ingredient to a specific target, in addition to possibly increasing product 

stability (Curtis, 2006). Both the chemical and physical properties of pesticides can vary 

substantially (Alder, Greulich, Kempe, & Vieth, 2006) and this of course has an effect on 

the intended target species and target area as well as method of application (Curtis, 

2006). As of 2009 the British Crop Protection Council identified 908 active substances 

from over 100 different classes i.e. neonicotinoids and organochlorides (Tomlin, 2009). 

 

1.5.1 The need for pesticides 

The world’s population has been forecast to increase by 50 % over the next 50 years, 

approaching around 9 billion people - which is expected to double food demands by 2050 

(Sexton, Lei, & Zilberman, 2007). In order to meet these demands chemical treatments 

are used to reduce or prevent damage to the crops or fruit, which would otherwise be 

rendered unmarketable or sold at a lower quality grade for a reduced price (Sexton et al., 

2007). As a consequence of being able to maintain high crop yields, farmers are also able 

to produce more food on less land (Fishel, 2015). Modern farming techniques often see 

crops grown as part of a large monoculture, which are particularly threatened from pest 

destruction (Oerke & Dehne, 2004). This therefore gives incentive for growers to adopt 

the use of pesticides (Sexton et al., 2007). A farmer will show a tolerance towards pests 

within the field; with pesticide applications only been made once it is deemed 

economically viable to do so. This takes into account whether the cost of application is 

equal to the amount of reducing the damage to the crop (Sexton et al., 2007). 
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Pesticides are not exclusive to agriculture, as their use also contributes to the control of 

various human pests which, if left uncontrolled, can have serious health consequences i.e. 

mosquito vector diseases. Other uses can include the control of non-native plant species 

which would otherwise threaten native environments. From a recreational standpoint 

herbicides are used to control weeds found in gardens or parks. Damage to wooden 

structures can also be reduced through the use of appropriate chemical applications 

(Fishel, 2015). As will be covered in Section 1.5.3.1.2, p54, chemical treatments can also 

be used for veterinary practices including the control of Varroa destructor. 

 

1.5.2 A brief history of pesticides 

The use of chemicals to control pests is not a new phenomenon. During pre-Roman 

civilisations sulphur (brimstone) was used in as a bleaching agent and fumigant (Fishel, 

2013). Similarly, the Romans also used sulphur fumes as an insecticide as well as salts to 

control weeds (Delaplane, 1996) and by 800 AD arsenic was used as an insecticide in 

China. It is thought that the development of pesticides was hindered during a time of 

superstition and ignorance towards pests; it was not until pests were viewed as part of 

the natural world, rather than a punishment from God, could they then be controlled 

(Taylor, Holley, & Kirk, 2007). Plant-based insecticides consequently emerged throughout 

the years, which included nicotine; originally extracted from tobacco (1690) (Fishel, 

2013). From about 1750 – 1880 an ‘agricultural revolution’ occurred in Europe, which saw 

an increase in the use and availability of crop protectants. By the nineteenth century 

chemicals including copper acetoarsenite (Paris green - 1867) (Taylor et al., 2007), 

hydrogen cyanide (1886) and lead arsenate (1892) were being applied as insecticides 
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(Fishel, 2013). Organic mercury compounds were later introduced in 1913 in order to 

protect seeds from various diseases (Taylor et al., 2007). Basic chemistry and crude 

application methods of early chemicals often meant that treatments proved ineffective 

(Delaplane, 1996). The development of sprayers in 1880 allowed chemicals to be applied 

as sprays (Figure 1.17a), whilst the first aerial application of lean-arsenate was made in 

1921 (Figure 1.17b). 

  

Figure 1.17: a) An example of a late 19
th

 Century horse-drawn spraying application of Paris green on a 

potato crop; b) The first aircraft altered to make aerial applications of lead-arsenate. Adapted from 

(Taylor, Holley and Kirk, 2007).  

 

Interest in chlorinated insecticides, between 1920 and 1940, was quite considerable. The 

insecticidal properties of DDT (4,4’-dichlorodiphenyl trichloroethane) were tested in the 

1930s, before being officially sold as an insecticide in 1942 (Jarman & Ballschmiter, 2012). 

The role played by DDT in agricultural practices during World War II lead to an eventual 

reliance on chemical treatments (Fishel, 2013). In the years to follow a large number of 

these effective and inexpensive chlorinated compounds began to emerge. The 1950s and 

1960s saw the introduction of many organophosphate compounds (Taylor et al., 2007). 

However, the liberal applications of pesticides eventually lead to pest developing a 

resistance to chemicals, as well as harm to non-target organisms (Delaplane, 1996). Since 



Chapter 1: Introduction  

45 

the 1940s resistance towards chemical treatments has increased at an exponential rate. 

Consequently, it is thought that there are over 500 pest species which exhibit some 

degree of resistance to insecticides (Taylor et al., 2007).  

Awareness into the environmental risks of pesticides came to light during the early 1960s, 

most famously following the publication of “Silent Spring” by Carson (1962). This 

highlighted poisonings and bioaccumulation of pesticides in the environment. The 

preceding years saw the development of more pest-specific pesticides (Delaplane, 1996) 

as well as ‘integrated pest management’ (IPM). The concept of IPM aims to manage pests 

using crop production techniques as oppose attempting eradicating them. This saw the 

development of pesticides which were more effective at lower doses and less harmful to 

both the environment and beneficial insects (Taylor et al., 2007). This included 

pyrethroids, which were developed from 1975 to 1983 and included fluvalinate. However, 

their continuous use led to widespread resistance (Davies, Field, Usherwood, & 

Williamson, 2007). Interestingly, the UK ban of DDT was not until 1984, whilst other 

organochlorines agrochemicals such as aldrin (insecticide) and dieldrin (insecticide) were 

restricted in 1986 (Thompson, 2003). A strong market demand for new broad-spectrum 

insecticides was met following the introduction of neonicotinoids at the beginning of the 

1990s (Wollweber & Tieyen, 1999). Neonicotinoids are covered in more detail in Section 

1.5.4, pp 60 - 65. 

 

1.5.2.1 The use of halogens in pesticides  

Over the last thirty years there has been a large increase in the number of halogens being 

incorporated into agrochemicals. A statistical pattern relating to the number of fluorine 
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(F) atoms incorporated into each type of agrochemical has been observed for fungicides 

(2+ F atoms), herbicides (3+ F atoms), insecticides and acaricides (4+ F atoms). Mixed 

halogens tend to be preferred in both insecticide and acaricide compositions; i.e. both 

chlorine (Cl) and fluorine; whilst only chlorine or fluorine atoms are used in fungicides. 

Halogens are often incorporated to modify the physiochemical and pharmacokinetic 

properties of a compound; such as metabolic stability, increased insecticidal activity and 

increased lipophilicity - the latter can determine a chemical’s ability to cross membranes 

(Jeschke, 2010). Other influences concerning halogen effects have been considered and 

discussed elsewhere (Jeschke, 2010). 

 

Lipophilic properties of pesticides 

The lipophilicity of a pesticide can be determined by its distribution (at equilibrium) 

between two immiscible phases, this is known as a partition coefficient (K). The organic 

solvent n-octanol has traditionally been used to represent biological systems (Sangster, 

1988). The octanol-water partition coefficient (Kow) is defined in Equation 1.1: 

𝐾𝑂𝑊 =  
[Concentration in octanol phase]

[Concentration in water phase]
 

Equation 1.1: Octanol-water partition coefficient (Kow). 

Kow is a unitless parameter which can be used to predict the physical properties of most 

pesticides (mw <500 Da). The resulting Kow values tend to be quite large (10-2 to 106) 

(Sangster, 1988); consequently, these are often expressed as Log (Kow), with the resulting 

values ranging from -3 to 7 (Zacharia, 2011). Polar pesticides (Log Kow <1) (Nicholls, 1988) 

tend to demonstrate greater solubility in water and so will therefore have a low Log Kow 
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value (Zacharia, 2011). The lipophilic properties of pesticides can vary: polar pesticides 

(Log Kow <1), herbicides (Log Kow 0.5 - 3), fungicides (Log Kow 2 – 5), and lipophilic 

insecticides (Log Kow >4). Those which demonstrate a high Log Kow value will show little 

absorption into water-based matrices (Sangster, 1988). 

 

1.5.3 History of bees and pesticides 

As discussed previously, the agricultural revolution (mentioned in Section 1.5.2) brought 

about the use of many chemical treatments to control pests. It is at this point that the 

story of bees and agricultural pesticides became entwined. Reports of accidental 

honeybee poisoning first appeared during the early 1870s, these were attributed to the 

use of Paris green on flowers during bloom (Todd & Mcgregor, 1952). In an historical 

review paper by (Shaw, 1941) it was evidenced that researchers found many copper-, 

sulphur- and arsenic-based compounds to have lethal effects on bees. However, modern 

pesticides and application procedures have been developed to be safer for beneficial 

pollinators. Despite this there are still instances of poisoning, including from 

neonicotinoids. The remainder of this section will consider the routes of pesticide 

exposure, toxicity and the chemistry of neonicotinoids - which have become of particular 

interest in recent years. 

 

1.5.3.1 Typical methods of exposure and accumulation of pesticides 

The two main methods of pesticide exposure to which honeybees are subject to are 

contact (dermal) and oral exposures. Dermal exposure to pesticides can result from an 

insect receiving a direct application of pesticide or they might fly through any resulting 
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dust particles which can occur from spray application (Jeschke, 2010). Oral exposure is 

the result of direct consumption of contaminated foodstuffs. 

Honeybee exposure to pesticides can arise from environmental sources (i.e. agriculture) 

or apicultural practices (Rortais et al., 2005), although little work has been conducted in 

to the contamination of beeswax from agricultural treatments (Bogdanov, 2006; Chauzat 

& Faucon, 2007). A search of the published literature reveals that there are no current 

studies within UK that have investigated pesticide residue levels in beeswax. However, an 

investigation into the levels of miticides and agrochemicals contained within North 

American apiaries discovered that of the 259 wax samples analysed, 87 pesticides and 

metabolites were found (with an average of 6 pesticides per sample); in one instance 39 

different pesticides were found in a single hive (Mullin et al., 2010). 

 

1.5.3.1.1 Agricultural exposure 

In agriculture, the main aim of pesticide application is to control moulds, weeds and to 

act as an insect deterrent from crops (Mullin et al., 2010); an implication of this is that 

multiple categories of pesticide may be present/in contact with fruit and vegetables 

throughout their entire period of growth (Selim, EL-Saeid, & Al-Dossari, 2011) and in 

some cases post-harvest (Shuling, Xiaodong, & Chongjiu, 2007). It is worthwhile noting 

that a combination of various pesticides can have toxic implications through synergistic 

interactions (Selim et al., 2011). 

Agricultural pesticides are applied in many ways, typically in one of the following: (1) 

spraying a pesticide mixed with a dilutant (such as water), (2) spreading a pesticide that 

has been impregnated into an inert solid i.e. granules, (3) burning the compound to 
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create pesticidal smoke (often reserved for confined spaces) and (4) coating a seed with 

an active ingredient before sowing (Johnson et al., 2009). The poor application of 

pesticides during the treatment of crops can cause the potential contamination of 

surrounding media i.e. water and soil (van Emden, 1989) and this can lead to the 

unintentional exposure of pesticides to non-target organisms (García-Chao et al., 2010). A 

major downfall with most pesticides is that they are often nonspecific and so may exhibit 

toxic effects to these non-target organisms such as bees for example (Desneux, 

Decourtye, & Delpuech, 2007). 

Honeybees that fly through dust clouds during spraying treatments can be exposed to 

toxic levels of pesticides (Daintith, 2004), although the short-residual life of sprayed-on 

pesticides on a plant surface means that they usually have a short lasting action from a 

few hours to a few days (Rortais et al., 2005). Systematic pesticides, such as imidacloprid 

(Figure 1.18), can penetrate plants at the point of their original application and 

subsequently travel throughout the plant; leading to the unintended contamination of 

both pollen and nectar (van Emden, 1989). Pollen has also been found to contain 

pesticide residues (Mullin et al., 2010), not only from agricultural sources but also from 

garden-use pesticides (Smodis Skerl, Velikonja Bolta, Basa Cesnik, & Gregorc, 2009; Yang, 

Chuang, Chen, & Chang, 2008). Returning contaminated pollen to the hive therefore has 

the potential to intoxicate the whole of the colony. 

 
Figure 1.18: Imidacloprid - a neonicotinoid insecticide. 
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As the majority of pesticides fail to degrade naturally or degrade slowly over time (Rortais 

et al., 2005) it can often witness a bioaccumulation of pesticides within animals and plant 

materials (Chu, Hu, & Yao, 2005). Fat-soluble/lipophilic compounds, typically pyrethroids 

and organophosphates (Halm, Rortais, Arnold, Taséi, & Rault, 2006) often have good 

stability in wax/fatty mediums and are capable of accumulating within the hive (Johnson, 

Ellis, Mullin, & Frazier, 2010). 

According to an online pesticide usage survey, the total amount of agricultural pesticides 

used in the UK for 2013 stands at 17,025,465 kg; which were applied over 77,980,580 

hectares (ha) in the UK (Figure 1.19) equating to an average of 0.218 kg/ha; this is a 

decrease on the previous year and a continuing trend since 1990 (Figure 1.20) (Food and 

Environmental Research Agency (FERA), n.d.).  

 

Figure 1.19: Total area treated (ha) of all crops types in Great Britain. Taken from Food and 

Environmental Research Agency (FERA), (n.d.) 
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Figure 1.20: Amount of active applied (kg/ha) for all pesticides applied to all crops types in Great Britain; 

figures represent total amount of active ingredient per hectare including any repeat applications. Taken 

from Food and Environmental Research Agency (FERA), (n.d). 

 

The continued falling trend in the weight of pesticide applied per hectare is a 

consequence of a greater efficiency of newer chemical treatments (Garthwaite et al., 

2008). For example, neonicotinoid seed treatments can be applied directly to the site of 

action, less active ingredient (a.i.) applied per hectare than sprays or granular applications 

(Jeschke, Nauen, Schindler, & Elbert, 2011), as shown in Figure 1.21. 
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Figure 1.21: The development of pesticide application methods in maize; applied grams of active 

ingredient (a.i.) per hectare. Information edited from Jeschke, Nauen, Schindler, & Elbert, (2011). 

 

Entombed pollen 

The phenomenon of ‘entombed pollen’ was first identified by vanEngelsdorp et al., 

(2008); here they describe bee bread that is brick red in colour and sealed under a sunken 

wax capping (Figure 1.22). It was noted that colonies containing entombed pollen had a 

higher mortality rate than those that only contained normal pollen. The increase in 

honeybee mortality was directly linked to entombed pollen, as there was no significant 

reduction in the longevity of larvae or adult bees; however, an accumulation of pesticides 

was thought to be a factor. Tests on the entombed pollen revealed thirty pesticides, with 

the most occurring pesticides being fluvalinate in 96 % of samples in addition to 

coumaphos and chlorothalonil both being found in 100 % of samples. In comparison, 

chlorothalonil only occurred within 45.5 % of ‘normal’ hives. 
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Figure 1.22: The arrows indicate ‘Entombed‘ pollen which is identified by its sunken, wax-covered cells. 

Other Surrounding cells (mostly yellow in colour) are ‘normal’, uncapped cells containing bee bread. 

Adapted from vanEngelsdorp et al., (2008). 

 

As discussed previously, various numbers of bees within a colony perform different age 

related tasks. Therefore exposure to pesticides would vary throughout the colony. Nectar 

foragers are found to have the greatest need for sugar (224 - 898.8 mg/week) and thus 

the highest exposure to pesticides. In the example of the imidacloprid, this would equate 

to 1.1 - 4.3 ng [assuming 4.75 pg of imidacloprid in 1 g of sugar] (Rortais et al., 2005). 

Table 1.2 provides further estimations of the amount of imidacloprid contaminated 

nectar/pollen consumed by the various categories of honeybee within the hive. 
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Table 1.2: Estimated amounts of sugar (contained in nectar or honey), pollen and imidacloprid consumed 

by larvae during their development over N days (N = 5 days for workers and N = 6.5 days for drones) and 

by adults over a period of N days of activity (N = 10 days for nurses, N = 6 days for wax producing bees, N 

= 8 days for brood attending bees, N = 90 days for winter bees and N = 7 for foraging bees). The amount 

of imidacloprid consumed by honeybees is determined by the following equivalence: 1 mg of sugar 

contained in nectar or honey = 4.75 pg of imidacloprid and 1 mg of pollen = 3.4 pg of imidacloprid in 

nectar and pollen coming from Gaucho seed-dressed plants. N/A = no data available. Redrawn and 

adapted from Rortais et al., (2005).  

Category of bee Caste 
Estimated amounts of food (sugar and pollen) 

and imidacloprid consumed per bee over N days 

    Sugar (mg) Pollen (mg) Imidacloprid (ng) 

Larvae 

Workers 59.4 5.4 0.3 

Drones 98.2 N/A 0.5 

Nurses  - 65 0.2 

Hive bees 

Wax-producing bees 108  - 0.5 

Brood-attending bees 272-400  - 1.3-1.9 

Winter bees 792  - 3.8 

Foraging bees 
Nectar foragers 224-898.8  - 1.1-4.3 

Pollen foragers 72.0-109.2  - 0.3-0.5 

 

Interestingly, a honeybee will increase its food intake when exposed to a pesticide, in 

order to reduce the pesticide’s overall concentration within the honey sac and thus 

reducing the poisonous effect. However, the eventual regurgitation of a proportion of the 

contaminated foodstuff into a cell exposes the immediate area to the pesticide (Wallner, 

1999). 

 

1.5.3.1.2 Apicultural exposure  

Apicultural exposure refers to any contamination which results from chemical 

applications made by a beekeeper; this shall be considered in regards to the control of 

Varroa destructor.  A colony of A. mellifera is likely that will succumb within a few years if 

an infestation of V. destructor is not controlled. Since A. mellifera lacks any natural 

defences against the parasite chemical treatments are often used to control mite 
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populations (Rademacher & Harz, 2006). However, before chemical intervention the 

severity of mite infestation must first be determined. Mites regularly fall from their host 

and consequently beekeepers will commonly monitor the amount of varroa found at the 

base of the hive (Ellis & Nalen, 2013). Such monitoring procedure has been found to have 

a linear relationship with the population size of V. destructor within the colony (Delaplane 

& Hood, 1997). Such concepts are employed to ensure that treatment is justifiable and 

effective (Boecking & Genersch, 2008). Many varroa treatments are available to 

beekeepers. The most commonly-used treatments are organic acids, thymol, synthetic 

pyrethroids and organophospates; depending on each country’s own approval. Different 

treatments are required throughout the year due to the biology of both the honeybee 

and the mite (Rademacher & Harz, 2006). A comprehensive list of in-hive treatments and 

their respective UK approval status can be found in Section 3.3, p125. Synthetic 

treatments include tau-fluvalinate, which acts sodium channels of the central nervous 

system, causing paralysis (Davies et al., 2007). 

Natural products have now become more widespread since the effectiveness of synthetic 

chemicals has declined, due to mite resistance (Johnson et al., 2010). Organic acid 

treatments include formic, oxalic and lactic acids and can be naturally found within 

honey. During the summer months, formic acid is applied to the hive as a solution and is 

allowed to evaporate throughout the hive for a number of weeks. Varroa contained 

within the cells of emerging brood will be killed, along with those mites found on bees 

walking around the hive (Ritter & Akratanakul, 2006). The use of formic acid eventually 

interferes with both the metabolic and respiratory processes of the mite (Rosenkranz, 

Aumeier, & Ziegelmann, 2010). Oxalic acid can be applied in a number of ways and works 
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by direct contact. Lactic acid is also by direct contact, but is disadvantaged by a slow 

application process, as it must be sprayed to individual frames (Ritter & Akratanakul, 

2006). Both acids are required to be applied to broodless colonies (Rosenkranz et al., 

2010) and since they do not rely on evaporation, these chemicals can be applied in colder 

months (Rademacher & Harz, 2006). Thymol is a volatile compound which can be applied 

to the hive in the form of a gel or as part of a formulation containing essential oils 

impregnated into a strip. It is believed that thymol inhibits the mite’s growth, feeding and 

reproduction (Rosenkranz et al., 2010). 

 

1.5.3.2 Toxic effects of pesticides 

The toxicity of a pesticide, following oral or dermal applications, is determined by the 

acute LD50 value of a substance (Curtis, 2006). The subscripted number 50 of LD (lethal 

dose) indicates that at a said dosage the administered chemical is toxic to 50 % of the 

sampled population (Nesheim, Fishel, & Mossler, 2008). Therefore an LD50 value of 50 

µg/kg would be less toxic than a LD50 value of 5 µg/kg. Expression of the LD50 value can 

also be represented by µg/bee (Desneux et al., 2007). The Washington State Department 

of Agriculture considers four levels of pesticide toxicity to bees: highly toxic (acute LD50 <2 

µg/bee), moderately toxic (acute LD50 2 µg/bee – 10.99 µg/bee), slightly toxic (acute LD50 

11 µg/bee – 100 µg/bee) or practically non-toxic (acute LD50 >100 µg/bee) (WSDA, 2010).  

In order to understand the potential exposure dose, the LD50 must be converted to an 

equivalent food concentration (LC50). The units of LC50 are in parts per billion by volume 

(ppbv), thus allowing for a direct comparison with experimentally measured doses. 

Equation 1.2 shows this conversion (Fischer & Chalmers, 2007).  
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𝐿𝐶50(𝑝𝑝𝑏𝑣) =
𝐿𝐷50 (µ𝑔 / 𝑏𝑒𝑒)

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑐𝑟𝑜𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑔𝑒𝑠𝑡𝑒𝑑 (𝑚𝑔)
 . 106 

Equation 1.2: Conversion from LD50 (ug/bee) to LC50 (ppbv). The LC50 value can then be used to make 

direct comparisons with environmental values in pollen or nectar, for example (Fischer & Chalmers, 

2007). 

 

Most pesticides are often nonspecific and therefore may have toxic effects on non-target 

organisms such as bees (Nesheim et al., 2008). Different levels of intoxication can be 

witnessed in honey bees and other insects according to the quantity of pesticides to 

which they have been exposed as well as the age and condition of an individual amongst 

other factors (Curtis, 2006). A dose is said to be sub-lethal if no evident mortality is 

witnessed in the experimental population (Desneux et al., 2007). Desneux et al., (2007) 

define sub-lethal effects as either a physiological or behavioural effect(s) on an individual 

that survives exposure to a pesticide at a concentration deemed to be either sub-lethal or 

lethal.  

The genome of A. mellifera has been shown to contain fewer genes (≈11,000 genes) than, 

for example, that of the fruit fly Drosophilia melanogaster (≈13,500 genes). It is thought 

that a lack of detoxifying genes, which are involved in pesticide metabolism, may explain 

the honeybees’ increased sensitivity to pesticides (Johnson et al., 2010). It is even 

suggested that synergistic effects of pesticides may result from the competition between 

multiple pesticides trying to access the limited numbers of P450 enzymes (Claudianos et 

al., 2006) – resulting in a greater level of toxicity. A reduced level of body fat can cause a 

greater susceptibility to pesticides; this reduction in body fat may be an effect of parasitic 

mites (Ritter & Akratanakul, 2006) or from poor nutrition caused, for example, by 

agricultural monocultures (Johnson et al., 2009). 
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Royal jelly is an important foodstuff for development and is fed to both worker larvae and 

queen; although the queen will receive greater amounts of this substance. A reduction in 

the hypopharyngeal gland in nurse bees, through pesticide exposure (Hatjina et al., 2013), 

can result in malnutrition of the developing larvae, thus reducing the number of emerging 

adults and threaten queen renewal (Daintith, 2004). Investigations into the effect of 

contaminated wax on colony health found that exposure to sub-lethal levels of pesticides 

in the brood comb led to an increased level of brood mortality, as well as reduced adult 

bee longevity (Desneux et al., 2007). Larval exposure to pesticides can come from the 

consumption of contaminated food, fed to them by nurse bees, or from direct contact 

with comb wax whilst in the cell (Wu, Anelli, & Sheppard, 2011). Although the quantity of 

pesticides found within pollen and nectar are considered to be low, the high toxicities 

that these residues exhibit may induce sub-lethal effects within honeybees at low doses 

(Rortais et al., 2005).  

Studies into the effects on a honeybee’s behaviour are typically performed under a 

watchful eye in the laboratory and therefore some of the more subtle symptoms of 

pesticide poisoning e.g. a reduction in foraging by an individual worker, may perhaps be 

overlooked by most beekeepers. The more obvious indications to the layman are an 

increase in ‘aggression’, paralysis, erratic body and/or spinning movements (Johansen, 

1979). An accumulation of dying or dead worker bees at the hive entrance is also a 

probable sign that an exposure to pesticides has occurred – most likely during foraging 

(agricultural exposure) (Tremolada, Bernardinelli, Colombo, Spreafico, & Vighi, 2004). 

Poisonings from a lethal dose can often go unnoticed, as most honeybees will die in the 

field and therefore fail to return to the hive (Johansen, 1979). The effects of sublethal 
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doses can also have a dramatic effect on colony numbers; for example, deltamethrin 

(insecticide) was found to alter the homing-flight ability of bees (Vandame, Meled, Colin, 

& Belzunces, 1995); it was suggested that bees failed to acknowledge the visual pattern of 

landmarks in relation to the sun and so were unable to return to the hive. Eventually the 

inability for foragers to return to the hive can threaten colony survival, as nurse bees will 

often be recruited for foraging duty (precocious foraging) and this can lower brood 

production (Thompson, 2003); since nurse bees are needed to feed the brood. A 

reduction in brood surface area/numbers ultimately poses the biggest threat to colony 

survival, as mature bees will not be replaced at a sufficient rate (Desneux et al., 2007). In 

either instance the beekeeper is unlikely to realise the magnitude of the situation until 

the colony has succumbed (Thompson, 2003; Wu et al., 2011; Yang et al., 2008).  

However, efforts are made by the farmer to minimise pesticide exposure to bees and 

other beneficial insects. This can be achieved by making applications during the early 

morning or late in the evening. However, early morning applications were found to result 

in a greater mortality by as much as two to four times that of late night applications. This 

may be as a result of a rising temperature during the morning; meaning that bees will 

begin to forage, as this is when a flower will begin to shed pollen and release nectar 

(Johansen, 1979). 

A honeybee’s ability to communicate via the waggle dance has also been found to be 

adversely affected by exposure to organophosphorus, carbamate (Johansen, 1979) and 

neonicotinoid insecticides (Thompson, 2003). During the dance honeybees were found to 

underestimate the appropriate angle of the food source in relation to the sun; this would 

have a greater affect in misguiding novice foragers (Maini, Medrzycki, & Porrini, 2010). 
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Sub-lethal levels of imidacloprid are also known to affect the ability to communicate the 

distance to a food source (Thompson, 2003). Exposure to pyrethroids, whilst foraging, 

was found to affect the ability of a bee to return to its hive, while permethrin was shown 

to induce severe disorientation in foragers in addition to a large disturbance in behaviour 

i.e. less foraging and more self-cleaning (Thompson, 2003).  

 

1.5.4 An introduction to neonicotinoids 

Originally developed in the 1980s and first available on the commercial market in the 

early 1990s, neonicotinoids offered an attractive solution and have quickly become the 

most popular insecticide class in the world (Goulson, 2013); as such neonicotinoids are 

currently registered for use in more than 120 countries (Jeschke et al., 2011).  

Owing to their systemic properties, neonicotinoids can be used as: seed treatments, soil 

applications and as foliar sprays (Jeschke et al., 2011; Jeschke & Nauen, 2008; Wollweber 

& Tieyen, 1999). In developed countries the single and most popular use of 

neonicotinoids compounds is for seed treatments (Dively & Kamel, 2012; Goulson, 2013). 

During 2011, 91 % of neonicotinoids used in the UK were applied as seed dressings 

(Goulson, 2013), whilst the global value was around 60 % (Jeschke et al., 2011). Prior to 

1st December 2013, five neonicotinoids were registered for use within the UK: 

acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam. The seed 

treatments used on UK oilseed rape are: Cruiser® OSR (thiamethoxam) by Syngenta; 

Modesto® (clothianidin), Chinook® and Chinook Blue® (imidacloprid) by Bayer 

CropScience. 
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1.5.4.1 Chemistry of neonicotinoids  

Neonicotinoids are a group of nicotine-related insecticides which selectively bind to insect 

nicotinic acetylcholine receptors (nAChRs). These receptors are increasingly becoming an 

important biochemical target site for insecticides (Jeschke et al., 2011). In total, there are 

seven market-registered compounds belonging to the neonicotinoid class. These can be 

classified according to their pharmacophore moieties (Figure 1.23); for example: N-nitro-

guanidine (imidacloprid, thiamethoxam, clothianidin and dinotefuran), nitromethylene 

(nitenpyram) and N-cyano-amidines (acetamiprid and thiacloprid) (Elbert, Haas, Springer, 

Thielert, & Nauen, 2008; Jeschke et al., 2011).  

 

Figure 1.23: Neonicotinoid structures. Each pharmacophore has been circled: N-cyano-amidine (green), N-

nitro-guanidine (orange) and nitromethylene (blue). 
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Neonicotinoids may also be regarded as cyclic (imidacloprid, thiacloprid and 

thiamethoxam) and non-cyclic (nitenpyram, acetamiprid, clothianidin and dinotefuran) 

(Jeschke & Nauen, 2008). The polar, non-volatile nature of neonicotinoids means that 

they demonstrate relatively poor lipophilicity compared to other non-polar pesticide 

classes. Non-cyclic compounds are generally less lipophilic than the cyclic ring systems 

(Jeschke & Nauen, 2008); this is reflected by their octanol-water partition coefficient (log 

Kow) values (Table 1.3).  

Table 1.3: Log Kow and solubility values for the seven commercially available neonicotinoids. Adapted 

from Jeschke & Nauen (2008). 

 
Neonicotinoid 

Log Kow 
(at 25 °C) 

Solubility in 
water 

(g L-1 at 20 °C) 

Cyclic  
compounds 

Imidacloprid  0.57a 0.61 

Thiacloprid 1.26b 0.185 

Thiamethoxam -0.13 4.1c 

Non-cyclic 
compounds 

Nitenpyram 0.64 840 

Acetamiprid 0.8 4.2c 

Clothianidin 0.7 0.327 

Dinotefuran 0.644 54.3 

a
 At 22 °C; 

b
 At 20 °C; 

c
 At 25 °C. 

 

The uptake of an agrochemical by the roots of a plant is dependent on the lipophilicity of 

the compound (Briggs, Bromilow, & Evans, 1982). Neonicotinoids with a comparatively 

higher log Kow are slightly more lipophilic than those with a lower value, therefore making 

the latter more effective as a seed treatment. Neonicotinoids with lower log Kow will, 

however, show a better mobility in the xylem of the plant (Jeschke & Nauen, 2008). Once 

within the xylem, all neonicotinoids will be transported via the vascular system 

throughout all parts of the plant. Figure 1.24 shows how a neonicotinoid would be 

distributed throughout the plant when applied as a seed treatment.  
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Figure 1.24: The distribution of a systemic pesticide, originally applied as a seed treatment, throughout a 

plant. The red ‘disinfectant halo’ offers protection from soil-borne pests and disease. Adapted from Bayer 

CropScience, (2012). 

 

Neonicotinoids with an N-cyano-amidine moiety (acetamiprid and thiacloprid) are almost 

non-toxic to bees (Jeschke & Nauen, 2008). However, N-nitroguanidine containing 

neonicotinoids (thiamethoxam, Imidacloprid and clothianidin) are the most prominent 

neonicotinoid subclass (Jeschke et al., 2011), that show high selectivity for binding to 

insect nAChRs (Kanne, Dick, Tomizawa, & Casida, 2005) and are therefore considered 

toxic to bees (Jeschke & Nauen, 2008). Based on LD50 values, thiamethoxam (29.9 ng/bee) 

and clothianidin (21.8 ng/bee) are found to be less toxic than imidacloprid (17.9 ng/bee) 

(Iwasa, Motoyama, Ambrose, & Roe, 2004); this had resulted in a shift from the use of 

imidacloprid to thiamethoxam (García-Chao et al., 2010).  
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Due to their use as an oilseed rape seed treatment (Chapter 5), imidacloprid, 

thiamethoxam and clothianidin will be the main focus of this thesis and so, henceforth, 

only these are discussed. 

 

1.5.4.3 The effects of neonicotinoids on honeybee health 

A vast array of studies has investigated the effects of neonicotinoids on honeybee 

behaviour and immunity; although not an exhaustive list, a few examples of this shall be 

given here. Reported doses of thiamethoxam, at concentrations of 1.34 ng/20 µl (67 

ppbv), were found to impair the homing ability of honeybees (Henry et al., 2012). 

Clothianidin was shown to reduce immunity, thus making honeybees more susceptible to 

pathogens (Di Prisco et al., 2013). Imidacloprid was found to affect cognitive behaviours 

(Decourtye et al., 2005). Other behavioural abnormalities have also been observed, such 

as arching of the abdomen and uncoordinated movements along with food regurgitation 

(Girolami et al., 2009). The ability to communicate can also be affected, which is 

suggested to impair social behaviour (Medrzycki et al., 2003), whilst the success of 

foragers returning to the hive can be severely reduced (Bortolotti et al., 2003). A greater 

in-depth review on the side-effects of neonicotinoids to honeybees is presented 

elsewhere (Blacquière, Smagghe, van Gestel, & Mommaerts, 2012). 

Interestingly, other studies report that imidacloprid-treated sunflowers pose “no risk to 

honeybees” (Schmuck, Schöning, Stork, & Schramel, 2001). A study into the exposure of 

seed-treated canola on honeybees found clothianidin to have no adverse long-term effect 

on longevity or brood production in honeybees (Cutler & Scott-Dupree, 2007). This was 

found to be true for other bee species, including: the common eastern bumblebee 
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(Bombus impatiens) (Franklin, Winston, & Morandin, 2004) and the buff-tailed 

bumblebee (Bombus terrestris) (Thompson et al., 2013). The effect of neonicotinoids on 

bumblebees is discussed further in Chapter 6.  

Nevertheless, in light of a report from the European Food Safety Authority (EFSA) (EFSA, 

2013), in addition to scientific information into the sublethal effects of neonicotinoids 

(Henry et al., 2012; Whitehorn et al., 2012), the European Commission imposed a two-

year restriction on the use of imidacloprid, thiamethoxam and clothianidin for seed-

treatments, soil applications and foliar treatment on cereals and plants deemed attractive 

to bees (European Commission, 2013). The restrictions were opposed by many, including 

the UK government (Gross, 2013) who were said to be unaware of any issues regarding 

the use of neonicotinoid seed treatment (PAN UK, 2012).  

The EFSA identified “high acute risks for bees from exposure via dust…consumption of 

residues in contaminated pollen and nectar…and guttation fluid [in maize]”. The 

regulation specifies that a “sufficient period of transition” is to be placed on the sale of 

treated seeds; subsequently, as of the 1st December 2013, crops including soft fruit and 

cereals can no longer be treated with any of the three neonicotinoids1 (European 

Commission, 2013). 

 

1.6 Laboratory verse field studies 

It can be argued that a debate which divides the scientific community evolves around the 

validity/conclusions of laboratory verse field studies. Laboratory studies are conducted 

                                                           
1 * Treated seeds sown before 1st December 2013 are therefore still legally allowed to flower in 
2014. 
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under controlled conditions, thus allowing for replications to be achieved by other 

researchers. Independent variables are manipulated and the measured outcome is known 

as the dependant variable. Therefore, laboratory studies are able to show a cause and 

effect. Policy makers are able to use important information gained from laboratory 

studies, but they need to use doses which represent those found in the field (Carreck & 

Ratnieks, 2014). In contrast, field experiments are conducted away from the laboratory 

under a natural setting i.e. outdoors. Studies are able to establish the true impact of 

pesticide on bee behaviour and colony performance, or to observe the true levels of 

pesticide exposure under normal use (Godfray et al., 2014). Field studies can easily be 

criticised if poorly designed or executed. However, the costs to carry out an ideal study 

would be too expensive, whilst an idyllic experimental plot would be hard to come by 

(Carreck & Ratnieks, 2014). The lack of replication in field studies also makes it difficult to 

extrapolate cause and effect (Godfray et al., 2014).  

A review paper by Carreck and Ratnieks (2014) investigates the origins of a “field-

realistic” dose, which is often used and quoted within the literature. They highlight that 

laboratory studies have somewhat overestimated three key factors which affect field 

exposures: concentration, duration and choice. Henry et al., (2012) offered 20 µl of sugar 

solution, containing 67 ppbv of thiamethoxam, to individual honeybees. When tracing 

this concentration back to its origin, it was found that the data was based on a cited 

Rortais et al., (2005) which contained estimates of exposure to imidacloprid during 

foraging. It was actually estimated that the dose received would be the result of 7 days 

foraging. This demonstrates that the concentration and duration of pesticide exposure 

conducted in the laboratory is not always representable of long field exposures (Carreck 
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& Ratnieks, 2014). Laboratory feeding trials often make the assumption that a colony will 

feed on a single crop and so exclusively expose bees to a single pesticide; thus 

representing the treatment of a single crop. However, this is found not to be the case as 

bees have a choice of forage in the field (Carreck & Ratnieks, 2014; Osborne, Carreck, & 

Williams, 2001).  

Field studies have evidenced lower levels of neonicotinoids in the field (Cutler, Scott-

Dupree, Sultan, Mcfarlane, & Brewer, 2014; Cutler & Scott-Dupree, 2007; Pilling, 

Campbell, Coulson, Ruddle, & Tornier, 2013) than those was used within laboratory 

studies (Bryden, Gill, Mitton, Raine, & Jansen, 2013; Gill, Ramos-Rodriguez, & Raine, 

2012). Therefore, proposing that laboratory studies are more representative of “worse-

case” scenarios (Carreck & Ratnieks, 2014). However, field studies have demonstrated 

neonicotinoids to have little or no adverse effects on the overwintering of honeybees 

(Cutler et al., 2014; Cutler & Scott-Dupree, 2007, 2014; Pilling et al., 2013).  

 

1.7 Rationale of research 

Pesticides have been identified as one of the key drivers behind pollinator declines. The 

routes of pesticide exposure can originate from the treated crops on which bees forage, 

as well as from the beekeeper during the treatment of various honeybee pests. This can 

ultimately lead to the contamination of comb wax, food sources and developing larvae. 

The pesticides found within wax are often stable and persistent for many years, resulting 

in chronic exposure to sublethal levels of a number of pesticides. Consequently, this can 

have negative effects on the growth and survival of a honeybee colony.  A vast majority of 

the data on residual pesticide levels in beeswax comes from the US or from across 
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Europe; this excludes the UK, where no information has been published within this area. 

It is generally accepted that levels found in the US are applicable to the UK. However, 

differences in beekeeping and agricultural practices as well as climate, habitat and the 

frequency of honeybee diseases, mean that each country should be considered 

individually; as each of the aforementioned stressors may play a more or less significant 

role across the world. For example, CCD has been described within the USA; however, it is 

not recognised within Europe.   

The purpose of this study is to establish an understanding of the presence of residual 

pesticides contained within UK honeybees comb wax samples; as well as aiming to 

understand their accumulation in comb wax over time. Oilseed rape is one of the top 

economically important crops grown in the UK and so samples of nectar and pollen from 

this crop will also be analysed in order to appreciate what levels of pesticides honeybees 

are exposed to during foraging. Such knowledge may help to structure efforts to help 

mitigate further honeybee losses.  
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CHAPTER 2 
Methodology - sample preparation and analysis 

 

 

 

 

2.1 Overview  

This chapter will cover the theory and principles of sample preparation and the analytical 

instruments used in this study. Before discussing the various aspects of analytical 

instrumentation, it is important to consider the preparative steps which must be taken to 

ensure that samples are ready for analysis. This includes ‘QuEChERS’; the primary sample 

preparation technique used within this study. The analytical techniques used within this 

study include both gas chromatography – mass spectrometry (GC-MS) and liquid 

chromatography – mass spectrometry (LC-MS). These systems shall be primarily 

considered as isolated techniques (GC, LC and MS) and the principle component which 

make up the instruments.  
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2.2 Introduction 

Determining the levels of pesticides to which honeybees are exposed to can be achieved 

using various sensitive analytical techniques. Traditionally this analysis was carried out 

using gas chromatography (GC) coupled to a suitable detector i.e. electron capture 

detector; however further analysis was needed to obtain a conformational result (Alder, 

Greulich, Kempe, & Vieth, 2006). Although liquid chromatography (LC) based methods in 

combination with UV and diode array detectors do exist, these were often less sensitive 

than GC instruments and therefore rarely adopted (Alder et al., 2006). However, the 

sensitivity of analytical equipment used in modern analytical laboratories is ever 

improving, most notably GC and LC instrumentation coupled to a mass spectrometer (MS) 

and is now enabling researchers to detect residual pesticide levels typically around one 

part per billion (ppbv). The amount of pesticides used in today’s agricultural practices has 

led to the development of multi-residue extraction techniques i.e. “QuEChERS” 

(Anastassiades, Lehotay, Stajnbaher, & Schenck, 2003) as well as suitable (multi-residue) 

analytical methods (Wiest et al., 2011). These will all be covered in more detail below. 

 

2.3 Sample preparation: Extraction and clean-up techniques 

It is often necessary to prepare a sample before it can undergo instrumental analysis; this 

may involve the exchange of solvent, concentrating the sample or applying an extraction 

technique to remove analytes from a dirty or complex matrix. Unwanted compounds may 

cause background ions or ion suppression, which result in a loss of sensitivity during mass 

spectral analysis. The samples analysed within this thesis: wax, nectar, pollen and bees 



Chapter 2: Methodology – sample preparation and analysis  

85 

are considered complicated and ‘dirty’ matrices, containing many different compounds; 

thus a suitable extraction and clean up procedure is required. 

 

2.3.1 Solid phase extraction 

A technique used by most chromatographers in sample preparation is solid phase 

extraction (SPE). SPE is often used to separate and increase the sensitivity of detection of 

target analytes from interfering matrix components, which would otherwise interfere in 

sample analysis.  A hydrophobic organic material, that can be polar, moderately polar or 

nonpolar in nature is adhered to powdered silica in order to form the solid phase 

(adsorbent), often contained within a disposable cartridge. 

In the case of removing interfering components from a solution the adsorbent will have a 

selected polarity similar to that of the unwanted compounds. The adsorbent will then 

retain these within the cartridge whilst the analyte of interest, e.g. pesticides, are free to 

elute ready for analysis (Figure 2.1). 

 

Figure 2.1: A schematic diagram of a typical SPE procedure whereby the analyte is eluted whilst the 

interfering component is retained by the adsorbent. Redrawn and adapted from Macherey-Nagel (n.d.). 
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Another variation of SPE is whereby the adsorbent will retain the compounds of interest, 

leaving the interfering components to elute to waste. The target analytes can then be 

eluted with an appropriate solvent and readied for analysis.    

 

2.3.2 QuEChERS 

The extraction and partitioning method, most commonly referred to by its acronym 

“QuEChERS” (Quick, Easy, Cheap, Effective, Rugged and Safe) was first described by 

Anastassiades et al., (2003). This relatively new technique aimed to solve the problem of 

long and labour-intensive analysis with high solvent wastage (Anastassiades et al., 2003). 

It now appears to have become very popular ever since its introduction in 2003. The 

QuEChERS technique has demonstrated a good recovery of 150 pesticides and 

metabolites with good repeatability from within fruit and vegetable matrices. It has also 

been validated in accordance with the European Union Quality Control Procedures for 

Pesticide Residue Analysis (Anastassiades et al., 2003). Although originally created for 

food analysis, many adaptations of QuEChERS have been developed as researchers aim to 

refine and apply the method to other matrices. Mullin et al., (2010) adapted the 

technique for the analysis of beebread, comb wax and bees. The technique is able to 

produce a sample that is compatible to both LC and GC, although the latter requires a 

more extensive clean-up stage, in the form of SPE, to remove any co-extracted compound 

which may cause harm to the analytical equipment.  

The following description of the QuEChERS technique is taken from Mullin et al., (2010) 

and is represented as a schematic diagram in Figure 2.2. 
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Figure 2.2: A schematic diagram presenting an outline of the QuEChERS procedure as described by Mullin 

et al., (2010).  

 

A sample is added to a centrifuge tube containing an extraction solution (44 % deionised 

water, 55 % acetonitrile (ACN) and 1 % glacial acetic acid). Magnesium sulphate and 

sodium acetate are then added to the solution and shaken vigorously for one minute 

before being centrifuged. Depending on the nature of the sample it may need to undergo 

homogenisation (heating or placed in an ultrasonic bath) before centrifuging. Once 

centrifuged two layers are formed; the organic layer is then removed from the aqueous 

layer following a clean-up stage using primary-secondary amine (PSA), C18 and MgSO4 

within a centrifuge tube, ready for LC analysis. A different clean-up procedure is adopted 

for GC analysis; here the supernatant is filtered using a dual layer SPE cartridge which 

contains PSA and CUCARB and eluted using acetone/toluene (7:3 v/v) – this also acts as a 

solvent exchange step as ACN has a large solvent expansion during vaporisation. The 

filtered solution is then dried down and is then ready for GC analysis.  

QuEChERS favours the use of acetonitrile (ACN) as an extraction solvent, as it does not 

extract as much fats, wax or lipophilic pigments following SPE clean-up with PSA (Mullin 

et al., 2010); these co-extractives would negatively affect GC analysis (Anastassiades et 

al., 2003). ACN is partially immiscible in water, yet it is more easily separated from water 
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upon the addition of salts than other solvents i.e. acetone. The use of salts i.e. the 

addition of MgSO4 prior to centrifuging, also helps to induce liquid-liquid phase 

separation and through varying the amount of salts used it is possible to alter phase 

polarity. This is important because normally non-polar pesticides would congregate in the 

organic phase and polar in the aqueous phase. The immiscibility of ACN with water means 

that polar pesticides would be present in the organic layer where water is present. 

However, by adding MgSO4 the technique reduces the water phase volume and can 

precipitate polar pesticides into the organic layer. The heat generated by the hydration of 

MgSO4 is also believed to aid the extraction process.  

Broadly speaking, pesticides are more stable at a lower pH and the addition of glacial 

acetic acid ensures that basic-sensitive pesticides (i.e. captan) do not break down during 

extraction. Basic pesticides, however, show poor recovery at low pH and remain within 

the aqueous layer. This is addressed by the partial immiscibility of ACN with water. 

Regardless of pH, basic pesticides were found to partition into the semi-polar upper 

phase (ACN-water mix). A downside is that a higher amount of fatty extracts (i.e. fatty 

acids) are recovered with a decrease in pH (Anastassiades et al., 2003). 

PSA is included to remove any co-extracted acids and sugars (Anastassiades et al., 2003). 

However, it must be noted that both CUCARB and PSA can retain both planar and acidic 

group containing pesticides respectively. An internal standard (ISTD) can be added during 

the extraction process, in order to determine whether the retention of pesticides is 

unacceptable. Recoveries of a suitable ISTD, as low as 70 % can be deemed sufficient 

(Kamel, 2010). It must be further noted that PSA is known to over saturate when exposed 

to high amounts of polar compounds, such as sugars (Anastassiades et al., 2003). 
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Therefore, not all of these may be removed and consequently seen during analytical 

analysis. To avoid this loss of planar molecules and acidic metabolites Kamel (2010) also 

developed a similar technique to that of Mullin et al., (2010) but included the use of a C18 

SPE cartridge instead of a PSA, CUCARB cartridge. However, Kamel (2010) only looked at 

the pesticide imidacloprid and this was not intended as a multi-residue extraction 

method, while the procedure used by Mullin et al., (2010) was. 

 

2.4 Analytical methods 

2.4.1 Chromatography  

Chromatography is the process of physically separating the analytes of a mixture between 

two immiscible phases – a stationary phase (gas or liquid) and a mobile phase (liquid or 

gas) (Niessen 2006). There are five fundamental mechanisms of this chromatographic 

separation:  

1) Adsorption chromatography 

2) Partition chromatography 

3) Ion-exchange chromatography  

4) Molecular exclusion chromatography  

5) Affinity chromatography  
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Figure 2.3: A schematic showing the five mechanisms of chromatography: A) Adsorption 

chromatography, B) Partition chromatography, C) Ion-exchange chromatography, D) Molecular exclusion 

chromatography, E) Affinity chromatography. Images taken without permission from Harris (2002). 
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1) Adsorption chromatography 

In adsorption chromatography (Figure 2.3 A) analytes are separated according to their 

polarity, which determines their interaction with the surface of a porous solid stationary 

phase. A polar stationary phase, such as alumina gel, will have a greater attraction with 

polar analytes, meaning they are retained for longer on the column; while non-polar 

analytes will remain in the mobile phase, which can be either a gas or liquid. In this 

instance non-polar analytes will travel quicker through the column, resulting in the 

separation of a mixture (McNair & Miller, 2009). The two most commonly used 

adsorbents are silica gel and alumina. The two most common stationary phases are silica 

or alumina gel; both of which contain hydroxyl (OH) groups, which can give rise to specific 

[van der Waals’] interactions (i.e. London forces. hydrogen bonding and/or dipole-dipole 

interactions) between the stationary phase and analytes (Langford et al., 2005). Polar 

analytes do not always display a good level of separation, meaning that adsorption 

chromatography is often used to separate relatively non-polar analytes.   

 

2) Partition chromatography 

Partition chromatography (Figure 2.3 B) can separate a mixture of analytes according to 

their respective solubility within both the mobile and stationary phase (Langford et al., 

2005). A liquid stationary phase, such as silica gel, is chemically bonded to a solid support 

which has a large surface area. Those analytes which favour the stationary phase will 

travel at a slower rate than those favouring the mobile phase. By altering the 

composition/polarity of the mobile phase the retention times of the analytes can also be 

changed. In liquid chromatography there are two types of partition chromatography, 

which are based on the relative polarities of the mobile and stationary phases. A non-



Chapter 2: Methodology – sample preparation and analysis  

92 

polar mobile phase and polar stationary phase is referred to as ‘normal-phase’ whilst a 

non-polar stationary phase with a polar solvent system is classed as ‘reverse-phase’ 

chromatography (Skoog, West, Holler, & Crouch, 2004). 

 

3) Ion-exchange chromatography 

Separation by ion-exchange chromatography (Figure 2.3 C) is achieved according to 

interaction between the ionic functional groups of the stationary phase and the ionic 

charge of an analyte. Those analytes with an opposite charge to those of the functional 

groups will therefore exhibit a greater attraction to the stationary phase, thus travelling 

slower through the column than those of the same charge (Langford et al., 2005).  

 

4) Molecular exclusion chromatography 

The basis of molecular exclusion chromatography (Figure 2.3 D) relies on the physical 

properties of analytes i.e. size. This form of chromatography is useful for separating large 

molecules from smaller ones, with the latter being retained within the pores of the 

stationary phase and therefore eluting after the larger molecules. Unlike other 

chromatographic procedures, there is no physical or chemical interaction between the 

analyte and stationary phase (Skoog et al., 2004).  

 

5) Affinity chromatography 

Often used in biological systems, affinity chromatography (Figure 2.3 E) is a liquid 

purification technique. The technique separates proteins based on a reversible 

interaction between the protein (or group of proteins) and a specific ligand which is 
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attached to the stationary phase (e.g. agrose gel). As a specific ligand is used, this 

technique offers high-selectivity and high resolution (GE Healthcare, 2007). 

 

2.4.2 Instrumental analysis 

As noted previously 908 active ingredients exist across the pesticide spectrum, the 

inclusion of various heteroatoms, i.e. halogens, can help facilitate the analytical detection 

of various pesticides residues (Mullin et al., 2010). Following a successful extraction of 

pesticide residues, researchers often turn to a chromatographic technique for their 

analysis. The nature of the mobile phase is often used to describe the chromatographic 

process in which it is involved; for example, a liquid mobile phase would be liquid 

chromatography (LC) and a gas - gas chromatography (GC) (Alder et al., 2006). Figure 2.4 

shows a schematic representation of the chromatographic process; this is also applicable 

for LC based chromatography.   
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Figure 2.4: Schematic representation of two analytes (A and B) undergoing chromatographic separation. 

Separation is achieved according to each analytes respective attractions to the mobile phase (above each 

horizontal line) and stationary phase (below each horizontal line). Redrawn from McNair and Miller 

(2009). 

 

2.4.2.1 Gas Chromatography  

Gas chromatography has the ability to analyse over a hundred compounds within a single 

run (Rouessac & Rouessac, 2007) which makes it an ideal method for pesticide analysis in 

which multi-residue samples are now appearing to be common place. A sample is 

introduced at the injector port of the GC, which is often heated between 250 - 300 °C in 

order to ‘flash vaporise’ the liquid sample-solvent mix before it is transferred onto the 

column using an inert carrier gas (Millar & Haynes, 2000). There are two main methods of 
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injection onto the column, often referred to as split and splitless modes. In the former a 

‘split’ vent prevents overloading of the column by only permitting a fraction of the 

originally injected amount onto the column. Splitless mode, however, allows the whole 

amount of the injected sample to pass onto the column, which is preferred for low 

concentration amounts of analyte (Millar & Haynes, 2000).  

As the sample moves through the column, individual components/analytes interact with 

the stationary phase and the amount of interaction determines the overall retention time 

of each analyte (Drijfhout, 2010). The retention time of an analyte refers to how long it 

takes for the analyte to travel along the length of the column; this is influenced by many 

factors such as an analyte’s volatility and polarity. A highly volatile analyte would elute 

the soonest since it would have very little interaction with the stationary phase.  The 

polarity of the column will also influence the retention time of the analytes. A general 

rule of thumb when choosing a column stationary type is that ‘like dissolves like’; 

therefore, polar pesticides are better separated using a polar stationary phase and non-

polar pesticides are best separated with a non-polar column (McNair & Miller, 2009).  

The column is situated within the oven of the GC, which usually operates between 40 – 

325 °C, although temperatures of around 450 °C can be reached (McNair & Miller, 2009); 

providing the stationary phase of the column is able to withstand higher temperatures 

(Drijfhout, 2010). Oven temperatures may be left to operate isothermally whilst running a 

sample. However analysis times are often long and separation of analytes are sometimes 

incomplete if the temperature fails to reach the boiling point of each component (Baugh, 

1993). Alternatively, oven temperatures are programmed to adjust over a set period of 

time, by a set amount of degrees until a final temperature is met providing an easy and 
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effective way to induce separation of analytes (McNair & Miller, 2009). Once the 

vaporised analyte has eluted from the GC column it enters a detector which produces a 

chromatogram. 

Gas chromatography is unfortunately limited by sample volatility and possible thermal 

degradation of many thermal liable compounds (McNair & Miller, 2009). The issue of 

volatility, thermal sensitivity or polarity can be addressed via derivatisation, which 

chemically modifies a compound to produce a compound that has properties suitable for 

analysis; however, this extra step may introduce handling errors (Matovska, 2004). In this 

case liquid chromatography can be used as a complimentary technique to GC.  

 

2.4.2.2 Liquid Chromatography  

In modern analysis, liquid chromatography refers to the use of a high performance liquid 

chromatography (HPLC) system; this high performance system uses at least one pump to 

continuously force the liquid mobile phase through a well packed column (McMaster, 

2005). Due to the high pressure needed to propel the mobile phase, the column is much 

shorter with a wider internal diameter and reinforced outer casing compared to those 

used in GC (Rouessac & Rouessac, 2007). In order for a sample to be analysed it must be 

soluble within the mobile phase or similar solvent, the former being pumped from a 

reservoir into an injector and then onto the column (Rouessac & Rouessac, 2007). 

Partition chromatography is the most widely used form of chromatography in HPLC 

systems, which includes both normal-phase chromatography and reversed-phase 

chromatography. The choice of either normal-phase or reversed phase depends on the 

nature of the target analytes; however, the latter is believed to be the most popular 
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(Skoog et al., 2004). The polarity of the mobile phase can be altered by changing its 

composition during analysis. A polar mobile phase (often water) is selected along with a 

modifying solvent i.e. methanol or acetonitrile – often referred to as the organic modifier. 

In changing the mixture ratio it is then possible to alter the retention times of analytes 

(Rouessac & Rouessac, 2007). Increasing improvements in column technologies are 

allowing for a higher resolution/better separation of analytes through the use of narrow 

diameter columns and small particle sizes (Skoog et al., 2004).  

 

2.4.2.4 Chromatogram 

The column of either an LC or GC terminates at a detector. Here eluting analytes are 

detected, generating an electrical signal which is displayed in the form of a chromatogram 

(Figure 2.5), which is a plot of the retention time (X-axis) verse the amount of a substance 

given by its peak area/height (Y-axis). The area under the green peak (32256.53) has been 

given in Figure 2.5, along with the RT of the peak (3.182 mins).  

 

Figure 2.5: An example LC (EIC) chromatogram of three neonicotinoid pesticides: (left to right) 

thiamethoxam (green) RT = 3.182 mins; clothianidin (blue) RT = 3.554 mins; and imidacloprid (red) RT = 

3.759 mins. Thiamethoxam has also been integrated to show the area under the peak.  
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As already mentioned, the time which it takes for an analyte to elute from the column is 

known as the retention time, which produces qualitative information. Assuming the same 

sample parameters are used when comparing runs it is possible to determine the peak’s 

identity by its respective retention time. The area under the peak equates to the total 

amount of analyte present in a sample (quantitative information). This information can be 

plotted on to a calibration curve (Section 2.5.5, p114) to determine the concentration of 

an analyte.  

 

2.5 Detection Methods 

A limitation of using any instrumental chromatographic technique is the need for a 

detector to be coupled in sequence, in order to detect anything from the separated 

sample. Various detector types exist, for example: nitrogen-phosphorous, flame 

photometry, mass spectrometry, electron capture detector or flame ionisation (McNair & 

Miller, 2009).  

 

2.5.1 Mass Spectrometry  

Mass spectrometry (MS) can be used as a stand alone analytical technique but it may also 

be employed as a detector for either GC or LC apparatus. When coupled to a 

chromatography-based instrument the MS uses the chromatographic effluent as an 

analyte source (Rouessac & Rouessac, 2007). When analysing natural products, MS has 

two applications: (1) When the identity of studied samples are known, it is possible to 

confirm their identity using spectral data, (2) When the sample’s structure is unknown, it 

is possible to reveal important structural information from either MS alone or in 
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conjunction with Nuclear Magnetic Resonance (NMR) (Millar & Haynes, 2000). The 

schematic in Figure 2.6 shows the key components of a mass spectrometer. 

 

Figure 2.6 Schematic of a mass spectrometer in sequence with a GC (sample inlet). Redrawn and adapted 

from McNair & Miller (2009).  

 

MS relies on the production and subsequent separation of ions based on the respective 

mass-to-charge ratio (m/z). The relative abundance of detected ions are plotted as a 

function of m/z to produce a mass spectrum (Millar & Haynes, 2000). Ionisation of a 

molecule is achieved through the use of an ion source. There are many ion sources 

available such as Electrospray Ionisation (ESI), Matrix Assisted Laser Desorption Ionisation 

(MALDI), Atmospheric Pressure Chemical Ionisation (APCI), Chemical Ionisation (CI) and 

Electron Ionisation (EI). Both EI and CI are the two most widely used ionisation techniques 

in GC-MS (Millar & Haynes, 2000; Niessen, 2006); however, these ionisation techniques 

are not available for LC systems. Since MS requires samples to be in the gas phase, direct 

injection of the eluent solvent from the LC column will cause the MS to foul and cause a 

loss of signal (Baugh, 1993). There are many LC-MS interfaces available to address this 



Chapter 2: Methodology – sample preparation and analysis  

100 

issue; the most common interface is electrospray ionisation (ESI) (de Hoffmann & 

Stroobant, 2007). 

 

2.5.2 Ionisation 

Electron ionisation - (gas chromatography- mass spectrometry) 

Electron ionisation (EI) is often referred to as a ‘hard’ ionisation technique which consists 

of a heated filament which emits electrons that are then accelerated towards an anode; 

these electrons collide with the gaseous effluent from the GC. A consequence of this is 

the loss of an electron (ionisation) from the introduced molecule (McMaster, 2005). If this 

positively charged species is stable then it will appear on the mass spectrum as the 

highest mass ion, known as the parent molecular ion [M]+ (de Hoffmann & Stroobant, 

2007). A beneficial feature of EI mass spectra is its extensive fragmentation pattern, 

witnessed because the electron beam of 70 eV has enough excess energy to dissipate into 

the molecule and induce characteristic fragmentation patterns (Baugh, 1993). However, 

the downside is that in most cases [M]+ is often absent or detected in a low abundance 

due to an excessive amount of fragmentation (de Hoffmann & Stroobant, 1994).  

 

Chemical ionisation - (gas chromatography- mass spectrometry) 

Chemical ionisation (CI) is a ‘soft’ ionisation technique and unlike EI there is very little 

fragmentation since CI is a lower energy process; as a result [M+H]+ is observed (de 

Hoffmann & Stroobant, 2007) and this makes CI complementary to EI (Baugh, 1993). CI is 

not a universal ionisation technique and so is rarely employed for multi-residue pesticide 

analysis (de Hoffmann & Stroobant, 2007). CI-MS can often be used during analysis of 
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specific pesticide classes i.e. organo-halogens as CI-MS can give better selectivity over EI-

MS; however, the signal intensity of pesticides can vary much more than when analysed 

using EI-MS (Alder et al., 2006).    

 

Electrospray ionisation – (liquid chromatography- mass spectrometry) 

Electrospray ionisation (ESI) provides an interface to allow LC systems to be directly 

coupled to an MS, resulting in an alytical tool with a greater sensitivity than older LC 

based dection methods i.e. LC-UV (Alder et al., 2006). Figure 2.7 shows an ESI setup, 

whereby the elution product from the LC column undergoes transformation to a charged 

aerosol (Alder et al., 2006). This aerosol subsequently goes through a ‘heated curtain’ of 

inert gas which reduces the solvent volume and increases the charge per unit volume of 

the droplet (Watson, 2005). This results in the eventual formation of single ions with a 

variable number of charges, before being transferred to the MS (de Hoffmann & 

Stroobant, 2007).  

 

Figure 2.7: Electrospray ionisation – an analyte solution passes through a highly charged tip, producing a 

charged aerosol which later results in the formation of single ions with variable charges. Redrawn and 

adapted from Rouessac & Rouessac (2007). 
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Soft ionisation techniques, such as ESI, primarily generate: molecular ions [M]+, 

protonated molecules [M+H]+, simple adduct ions [M+Na]+, [M+K]+, or ions with simple 

mass losses i.e. the loss of water [M+H - H2O]+. Although the information produced is 

valuable, it is unable to offer structural information (Agilent Technologies, 2001); which is 

gained through the fragmentation patterns of an analyte. Having undergone ESI the 

fragmentation of an analyte can be obtained through the use of collision-induced 

dissociation (CID).  

 

2.5.3 Mass analysers 

Mass analysers are responsible for the separation of ion fragments (formed in the ion 

source) into individual m/z in order to produce a mass spectrum. Several analysers exist 

to date i.e. time-of-flight (TOF), Ion-tap and quadrupole analyser; each analyser has its 

own characteristics with the main three being (1) the upper mass limit which the analyser 

is able to measure, (2) transmission - ratio between the number of ions reaching the 

detector compared to the number produced at the source, and (3) resolution – ability to 

distinguish between two masses (Rouessac & Rouessac, 2007).  

 

Quadrupole mass analyser 

A quadrupole is made of four perfectly parallel rods through which fixed DC (direct 

current) and alternating radio frequencies (RF) are applied to each pair of rods (de 

Hoffmann & Stroobant, 1994); with the paired rods set directly opposite to each other 

(Figure 2.8). The oscillating electric fields are used to separate ions based on their m/z 

ratio; according to the stability of an ion’s trajectory when passing between the rods. As 
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an ion travels between the rods it is attracted and repelled from each rod according to 

their respective charges (de Hoffmann & Stroobant, 2007).  

 
Figure 2.8: A schematic diagram of a quadrupole mass filter system. The rod pairings are denoted by +/- 

symbols. Ions with a stable trajectory (dark line) traveling between the rods reach the detector, while 

unstable trajectories (white line) are removed. Adapted from Hart-smith and Blanksby (2012). 

 

Depending on the combination of DC and RF only one m/z is able to travel through to the 

detector (de Hoffmann & Stroobant, 1994); unstable trajectories will cause the ions to 

collide with the poles and therefore leave the device undetected (McNair & Miller, 2009). 

Some instruments use six rods (hexapole) for improved mass separation; however, the 

theory remains similar.   

Multiple quadrupoles can be joined in sequence and Figure 2.9 shows a schematic 

diagram of a triple quadrupole (MS/MS) instrument. Quadrupoles Q1 and Q3 are mass 

spectrometer quadrupoles, whilst the central quadrupole q2 is an RF-only quadrupole -

often referred to as a collision cell (de Hoffmann & Stroobant, 2007).  
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Figure 2.9: A schematic diagram of a triple quadrupole instrument. Quradrupole mass spectrometers are 

marked by Q (Q1 and Q3) whist an RF-only quadrupole is marked q (q2). Redrawn and adapted from de 

Hoffmann & Stroobant (2007). 

 

Q1 operates as a mass filtering quadrupole, which separates the selected parent ions 

before entering q2; where these parent ions are fragmented via collision-induced 

dissociation (CID), before being further filtered in Q3. This configuration allows for 

multiple reaction monitoring (MRM) (de Hoffmann & Stroobant, 2007). MS/MS can carry 

out a number of different scan modes according to what information is required; these 

are shown in Figure 2.10.  

 

Figure 2.10: A schematic diagram showing the different scan modes of a tandem mass spectrometer.  

Redrawn and adapted from de Hoffmann and Stroobant (2007). 
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Fragment ion (product ion) scan mode consists of selecting a single ion (Q1), of a specified 

m/z, which is then fragmented in the collision cell (q2) and fragments detected in Q3. 

Parent ion scan mode focuses on a particular ion in Q3 whilst scanning a range of masses 

in Q1. All of those ions which fragment in q2 and produce the target ion (selected in Q3) 

are detected. During a neutral loss scan, both Q1 and Q3 scan the same mass range, but 

with a constant mass offset. Therefore, when singly charged ion of mass m travels 

through Q1 detection only occurs if the fragment ion is of a mass equalling to m – Δm; 

where Δm corresponds to the specified mass offset (de Hoffmann & Stroobant, 2007).  

CID induces fragmentation of the gaseous ions that originate during ESI. The resulting 

fragmentation patterns are able to provide structural information of an analyte. CID 

involves the collision of an ion beam, entering the collision cell (q2), with a neutral 

collision gas (He, N2, Ar) which is kept at a higher pressure than the surrounding high-

vacuum (Gross, 2004). The kinetic energy of an ion is converted to internal energy, during 

a collision between analyte and a gas molecule, which results in bond breakage and 

therefore fragmentation of the ion. CID can be conducted on both MS/MS and 

quadrupole-time-of-flight instruments (Gross, 2004). 

 

Time-of-flight mass analyser  

Time-of-flight (TOF) mass analysis achieves the separation of ions according to an 

individual ion’s velocity during their acceleration through a field-free flight-tube. Smaller/ 

lighter ions will travel faster down the flight tube than the larger ions and so reaching the 

detector first. The velocity at which the ions travel can be correlated to their mass and 

thus making it possible to determine the m/z ratio for each ion. Early TOF instruments 
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often had linear flight-tubes with poor mass resolution; however by lengthening the 

length of the flight-tube a greater resolution can be achieved (de Hoffmann & Stroobant, 

2007). Reflection-TOF uses an electrostatic reflector at one end of the flight-tube to 

deflect on-coming ions back down the flight-tube to the detector (de Hoffmann & 

Stroobant, 2007). 

A characteristic of a TOF is its easy mass calibration (de Hoffmann & Stroobant, 2007), 

which can be conducted externally or internally. External calibration uses calibration 

masses to separate unknown molecules (de Hoffmann & Stroobant, 2007). Internal 

calibration or internal reference mass (IRM) correction involves the constant infusion of 

known reference ions during the acquisition of spectral data. The m/z of at least two ions, 

either side of the target m/z of interest, is used. By having masses either side of the target 

mass the instrument software is able to make adjustments to correct the measured 

masses of unknown samples, should there be any deviation the reference masses. IRM 

achieves the best degree of accuracy (de Hoffmann & Stroobant, 2007).  

 

Quadrupole – time-of-flight mass analyser 

The development of quadrupole – time-of-flight (Q-TOF) mass spectrometer has helped 

to improve the detection of analytes, as it benefits from the sensitively and selectively 

capabilities of the TOF MS and quadrupole MS, respectively. Figure 2.11 shows that the 

third quadrupole has instead been replaced with a TOF mass analyser. Such a 

combination allows for numerous possible modes of data acquisition: quadrupole, TOF 

and Q-TOF depending upon the user’s preference. By using the quadrupoles to select a 
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parent ion (Q1) before further fragmenting in q2, the ions are then analysed by the 

(reflection) TOF; thus providing a high resolution and selectivity of ions.   

 

Figure 2.11: Schematic of Q-TOF mass analyser. Redrawn and adapted from (Agilent Technologies, 2011). 

 

The coupling of TOF to a continuous ion source, such as ESI, has been difficult since ESI 

offers a constant ion beam compared to the pulsed process used by TOF. This coupling 

has been made possible thanks to the development of orthogonal-acceleration. The first 

stage of the process involves the continuous ion beam filling the space between the 

accelerator plate (shown in Figure 2.11) and grid 1 (G1) of the ion pulser. Both the plate 

and G1 are at a ground state of 0 V. A pulse voltage is then applied to the plate, 

accelerating the ions up towards grid 2 (G2). The acceleration plate and G1 return to 0 V 

and the ions begin to collect again. At G2 the ions are further accelerated before entering 

the flight tube. The flight cycle ends once the highest mass reaches the detector; at this 
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point the pulse voltage is reapplied to the accelerator plate and the cycle is then repeated 

(de Hoffmann & Stroobant, 2007). 

As already seen in Figure 2.10, an MS/MS requires a precursor ion(s) to be specified prior 

to analysis. Subsequently ions that are not specified will not be detected. In the case of 

unknown samples this can be considered a possible disadvantage, unless the aim of 

analysis was target selected compounds. A Q-TOF detects and records all the ions in a 

sample as a function of time, producing a total ion chromatogram (TIC) - also known as a 

total ion current. A TIC allows for the analysts to revisit data and identify other analytes of 

interest which may not have been necessarily considered prior to analysis. In order to 

identify target analytes (of a known m/z) from the TIC this data must be extracted using 

the appropriate software. The resulting extracted-ion chromatogram (EIC) is a 

chromatogram which displays a selected m/z vs retention time. This is useful when 

retrieving retention time information of a target analyte from a complex data set. 

Multiple EICs can be generated from one TIC.  

 

Full scan MS Vs SIM Vs MRM 

In order to detect rapidly eluting peaks from a GC or LC instrument the rate at which the 

DC/RF frequencies of the quadrupole(s) are ramped is rapid. During ‘full scan mode’ a full 

range of masses (say m/z 40-400) is scanned multiple times a second and with only ions 

of a stable trajectory being detected (Figure 2.12) (McNair & Miller, 2009). Full scan is 

able to detect all analytes over a large mass range; this can include a number of co-eluted 

and perhaps unwanted matrix components.  
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Figure 2.12: During full scan mode the quadrupole mass analyser can be set to scan over a range of m/z 

ratios, resulting in a number of detected ions. 

 

As already discussed, a Q-TOF instrument produces a TIC, which represents the sum of 

ionic abundances vs retention time. Individual ions of interest as well as other ions can be 

extracted from a TIC. To produce an EIC, this displays a selected m/z vs retention time. 

However it is possible to scan specific ‘fixed’ masses of interest, either for the whole 

duration of a run or at specified time intervals during analysis. For single quadrupole GC-

MS instruments this is called ‘selective ion monitoring’ (SIM). SIM uses a much slower 

DC/RF ramp, allowing the dwell time for each mass to be kept for longer and thus 

collecting more ions of a particular m/z (McNair & Miller, 2009). Only selected masses 

that are detected are then plotted (Figure 2.13). 
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Figure 2.13: During SIM mode the quadrupole mass analyser can be set to alternate between a few m/z 

ratios, resulting in the detection of targeted ions (if present). 

 

Triple quadrupole LC-MS instruments are able to perform a ‘multi reaction monitoring’ 

mode (MRM), also referred to as ‘selected reaction monitoring’ (SRM). Here the mass of a 

parent compound is specified for MS/MS fragmentation and then defined specifically for 

a specific fragmentation ion. In the case of the neonicotinoid pesticide imidacloprid, this 

‘transition’ reaction would be represented as (parent mass → transition mass) m/z 256.1 

→ 175.1 (see Figure 2.10: parent ion scan mode). MRM can reduce the chemical 

background noise of a sample matrix, meaning that even co-extracted compounds can be 

separated according to their fragmentation ions (Alder et al., 2006). MRM is a very useful 

technique when specific quantification of samples is needed. The focus on a particular 

precursor and fragmentation ions over longer time periods allows for an increased in 

detection rate of these ions. However, a disadvantage of this greater selectivity (de 

Hoffmann & Stroobant, 2007) is that there is the potential for overlooking unknown 

compounds, which may be of interest. In this instance, a sample would have to be 

reanalysed and new target ions selected within the MRM method.  
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High-resolution mass-spectrometry vs low-resolution mass spectrometry 

There are a number of ways in which the mass of an atom, molecule or ion can be 

derived. For example, the mass of carbon atom can be expressed as the average atomic 

mass (molecular mass), which is an average of all the isotopes of each element; therefore, 

the average atomic mass is 12.011 Da. In mass spectrometry, both the nominal mass and, 

monoisotopic mass are used. The former is equal to the mass of the most abundant 

isotope rounded to the nearest whole number (C = 12 Da). The monoisotopic mass is 

derived from the ‘exact mass’ of the most abundant isotope of each element (C = 12.0000 

Da). If the instrument is of a low mass resolution then it may be unable to discriminate 

between two masses within the mass spectrum; resulting in a single peak with a 

corresponding ‘average mass’. If the resolution of a machine is high enough to resolve 

between two masses, then the resulting mass is equal to the calculated monoisotopic 

mass. A greater mass resolution (R) also helps to ensure a greater mass accuracy; which 

refers to the accuracy of the m/z as determined by the mass analyser. Mass resolution is 

defined in Equation 2.1. A narrower peak will result in a large R value and therefore a 

higher resolution. A single quadrupole instrument, for example, has a resolution of 

around 2000 (de Hoffmann & Stroobant, 2007); whilst an accurate mass Q-TOF can have a 

resolution >20,000, although this is by no means the highest possible resolution available.  

𝑅 =  
(𝑚/𝑧)

(𝑊1/2)
 

Equation 2.1: Mass resolution (R) is determined by m/z divided by the peak width at half height W1/2. 

Mass measurement error (accuracy) is usually expressed in parts per million (ppm) and if 

defined in Equation 2.2  
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Mass accuracy (ppm)  =  
(𝑚𝑖 − 𝑚𝑎)

𝑚𝑎
𝑥106 

Equation 2.2: Mass measurement error (accuracy) in ppm, where mi is the measured mass and ma is the 

calculated mass. 

 

As the molecular mass of compound can be achieved using various elemental 

compositions and an accuracy of within 5 ppm is deemed sufficient enough to support a 

proposed formula. High background-noises, which can occur with samples in a complex 

matrix, can alter the accuracy of the peak centroid (‘centre of mass’ of the peak) as well 

as limiting the level of detection thus making the determination of isotopic peaks almost 

impossible. This can be compensated for by increasing the injection volume of the sample 

and therefore increasing the number of ions available for detection (de Hoffmann & 

Stroobant, 2007). The theoretical isotopic pattern, which is calculating according to the 

natural abundances of each elemental isotope, can be overlaid with the detected mass 

spectrum to confirm the identity of a compound. This will be conducted later in this 

thesis.  

 

2.5.4 Electron Capture Detector  

An electron capture detector (ECD) is a selective detector and is very sensitive to highly 

electronegative molecules or those compounds that ‘capture electrons’; this includes 

halogenated compounds, nitro moieties, anhydrides and to a lesser extent ketones (de 

Hoffmann & Stroobant, 2007). As such, it has become a popular detector for pesticide 

trace analysis (Baugh, 1993). ECD is classed as an ionisation-type detector and is often 

coupled with a GC instrument. It differs from other detectors within its class as samples 

are detected by causing a decrease in the level of ionisation as oppose to an increase in 
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ionisation (Baugh, 1993; McNair & Miller, 2009). A schematic of an ECD is shown in Figure 

2.14. 

 

Figure 2.14: Schematic diagram of ECD. Analytes are ionised as they pass through an ionisation chamber 

containing a radioactive nickel source, before going on to the detector. Redrawn and adapted from Baugh 

(1993). 

 

A radioactive nickel source (63Ni) is contained within an ionisation chamber with a 

constant stream of carrier gas i.e. nitrogen (N2) flowing through the chamber, as shown in 

Figure 2.14. The carrier gas is ionised by negatively charged beta particles (β-) released by 

the 63N source (Equation 2.3). This reaction causes the release of thermal electrons (e-) 

which are used for the eventual ionisation of the eluted compounds from the GC column. 

A positive electrode collects the electrons and this gives a standing electrical current 

(McNair & Miller, 2009).  Any alteration to the standing current is amplified and inverted 

to give an output signal (Baugh, 1993; McNair & Miller, 2009). Such alterations occur 

when an electrophilic analyte (X) elutes from the GC column and enters the chamber, it 

reacts and captures those free electrons used in the standing current (Equation 2.4). 

𝛽− +  𝑁2  →  2𝑒− +  𝑁2
+ 

Equation 2.3: Beta particle ionisation of nitrogen carrier gas creating free electrons used in ECD. 

 

𝑋 +  𝑒−  →  𝑋− 

Equation 2.4: Electrons produced (above) are then used in the ionisation of eluted electrophilic 

compound (X) from the GC column.  
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In order to increase sensitivity, most modern detectors now use a pulsed voltage system 

which delivers a -50 V pulse at a specific frequency; this helps to preserve the standing 

current if an analyte is not present. When an analyte is present the frequency increases 

and this increase is measured as an output signal (Baugh, 1993). ECD is a concentration 

sensitive detector and therefore a proportional relationship between the amount of 

electrons captured and the concentration of analyte/peak area is observed (McNair & 

Miller, 2009). 

Other β- particle sources are available, such as tritium (3H or T), but 63Ni is a safer source 

that is able to operate at temperatures up to 400 °C with a lower activity level (McNair & 

Miller, 2009). The carrier gas must be dry and ultrapure without any leaks within the 

system; as water and oxygen can harm the ECD system. A downside to ECD is that it is 

often prone to problems and is the most easily contaminated detector available. 

Therefore samples may be subjected to vigorous clean-up procedures before analysis 

(McNair & Miller, 2009). The popularity of ECD has declined in recent times due to the 

ever increasing sensitivity of GC-MS and LC-MS instrumentation (McNair & Miller, 2009). 

 

2.5.5 Limits of detection & quantification and calibrations 

An instrument’s limit of detection (LOD) is defined as the concentration at which an 

analyte gives a signal that is significantly different from the ‘blank’ or ‘background/ 

baseline’ signal. As represented in Equation 2.5, the current trend is to define the LOD as 

“an analyte concentration giving a signal equal to the blank (yB) plus three standard 

deviations of the blank (sB)” (Alder et al., 2006).  
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LOD = 𝑦𝐵 +  3𝑠𝐵 

Equation 2.5: A popular definition of defining the limit of detection (LOD). Where the LOD of an analyte is 

equal to the signal of the blank (yB) and three standard deviations (sB) of the blank.  

 

Through use of this definition, analysts can distinguish a genuine signal from the baseline, 

thus avoiding the misidentification of an analyte when it maybe in fact absent and vice 

versa (Miller & Miller, 2005). The LOD is used to distinguish a signal from the 

baseline/background. A less qualitative limit is the limit of quantification (LOQ), which is 

typically defined as ten standard deviations of a signal significantly different from the 

baseline (Equation 2.6) and represents the lowest amount of analyte that can be 

quantifiably determined with suitable precision and accuracy (Miller & Miller, 2005). 

LOQ = 𝑦𝐵 +  10𝑠𝐵 

Equation 2.6: A popular definition of defining the limit of quantification (LOQ). Where the LOQ of an 

analyte is equal to the signal of the blank (yB) and ten standard deviations (sB) of the blank. 

 

As concentration is directly related to the peak area of an analyte, a calibration graph can 

be constructed using the peak areas of an analyte over a known concentration range. 

Known as external standard analysis (ESTD), both the calibration standard and unknown 

sample are analysed separately under the same conditions (Kupiec, 2004). These values 

are then plotted and a line of best fit is produced. This produces a ‘regression coefficient’ 

value (r2) which provides a statistical measurement of how well the calibration points fit 

to a straight line (r2 = 1). The line of best fit can also be described by Equation 2.7 and 

when satisfied for x can be used to determine concentration of an analyte.   
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𝑦 = 𝑚𝑥 + 𝑐 

Equation 2.7: An equation which describes the line of best fit (straight line); where: y = peak area, x = 

concentration, m = gradient, and c = the intercept of the line at the Y-axis.  

 

Figure 2.15 shows a schematic calibration graph constructed over seven different 

concentration points. The dashed line displays the relationship between signal response 

and peak area of a sample with an unknown concentration. Once a calibration plot has 

been produced, most analytical software automatically will calculate the concentration of 

each target analyte. 

 

Figure 2.15: A schematic calibration graph being used to determine the concentration of a test sample.  

 

Internal standard analysis (ISTD) 

The accuracy of ESTD is influenced by the reproducibility of the injection volume; ISTD 

eliminates this as it involves the addition of a known amount of a standard to both the 

calibration and unknown samples. Acting as a standardising factor, this is able to 

compensate for any losses experienced during sample preparation or instrumental 

variability. However, for this to work the concentration of the ISTD compound must be 
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kept the same across the calibration concentration range and within the unknown 

sample. The compound used must also be chromatographically distinguishable from the 

calibrated analyte, but similar in its retention time and chemical composition. Should the 

ISTD compound be isotopically labelled it can then distinguished spectrally, rather than 

chromatographically (Kupiec, 2004). Isotopically labelled compounds possess the same 

chemical structure and elemental composition as a target compound; however, one or 

more atoms have been substituted with an heavy isotope (SANCO/12571/2013). The 

most commonly substituted isotopes used for radiolabelling are: hydrogen (2H or D), 

carbon (13C), Nitrogen (15N) and Oxygen (18O) (Gevaert, Impens, Damme, & Lambrechts, 

2008). A deuterated standard used within this thesis is imidacloprid-d4, as shown in Figure 

2.16.  

 

 

 

 

 

Figure 2.16: the structures or two compounds used as internal standards in this thesis (left) imidacloprid-

d4 and (right) tris(1,3-dichloroisopropyl)phosphate (TDCPP).  

 

The resulting calibration curve, when employing an ISTD, will still appear the same as the 

one given in Figure 2.15; however, the values on the Y-axis represent a ratio between the 

responses of the target analyte over the response of the ISTD.  
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CHAPTER 3 
Determining pesticide content within honeybee wax 
samples from across the United Kingdom 

 

 

 

 

3.1 Overview 

As introduced in Chapter 1, pesticides have been suggested to play a role in the decline of 

many bee species and other important pollinators. There are multiple routes to which 

these beneficial insects can be exposed to such chemicals, they include: apicultural 

and/or agricultural practices; the latter is also linked to the contamination of pollen and 

nectar (see Chapter 5). Beeswax consists mostly of hydrocarbons, free acids and various 

esters (Tulloch, 1980), which are capable of absorbing various materials; as a result it can 

play host to a number of toxins or pathogens (Berry & Delaplane, 2001). For this reason 

beeswax has been described as a biological (Berry & Delaplane, 2001) and chemical 

(Mullin et al., 2010) sink. Consequently, beeswax, honeybees and other associated 
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matrices, for example pollen and nectar, can be considered as good bio-indicators for 

monitoring environmental contamination (Celli & Maccagnani, 2003; Porrini et al., 2003). 

To date no data has been published on the levels of pesticides contained within the comb 

wax of the UK honeybee, although data does exist across the USA (Mullin et al., 2010; Wu 

et al., 2011) and Europe (Bonmatin, Giorio, Girolami, Goulson, & Kreutzweiser, 2015; 

Ravoet, Reybroeck, & de Graaf, 2015; Serra-Bonvehí & Orantes-Bermejo, 2010; Wallner, 

1999). 

 

3.2 Introduction 

3.2.1 The adulteration of beeswax  

Beeswax is often recycled and reprocessed for the beekeeping market. In order to make 

the amount of beeswax go further, it has been known for the wax to be adulterated with 

cheaper waxes (Reynolds 1998; Tulloch 1980). Traditionally, the waxes used appear to be 

sourced from plant or vegetables; but as the price of these waxes increased there has 

been a greater shift towards microcrystalline and petroleum-based waxes (Reynolds 

1998). The quality control of wax is set out within European and American Pharmacopeia; 

these can be used as a guide to determine if beeswax has been adulterated (Bogdanov, 

2009). Two European Pharmacopeia definitions exist for white wax and yellow wax; the 

former is a bleached wax, whilst the latter is considered a natural product without 

additives (Council of Europe.; European Pharmacopoeia Commission, 2004). These 

pharmacopeia define the physico-chemical criteria for each type of beeswax, which 

include: maximum permitted level (%) of hydrocarbons, melting point and acidic number. 

Without the aid of chromatographic analysis, the latter two properties are considered to 
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be two of the best parameters to determine adulteration, (Bernal, Jimenez, Toribio, & 

Martin, 2005). The acidic number of beeswax should be between 17 - 24, while paraffin 

has no acidic number (Council of Europe.; European Pharmacopoeia Commission, 2004). 

Therefore, in instances where paraffin has been added to beeswax, there is risk of diluting 

the amount of naturally occurring compounds (Jimenez, Bernal, Aumente, Toribio, & 

Bernal Jr., 2003) and so stearic acid is often added in order to keep acidic values within 

the suggested range (Reynolds 1998). Beeswax used within commercial operations, 

across the USA and Europe, would typically specify that the wax be sourced from A. 

mellifera (Crane, 1990).  From a beekeeping perspective, the higher quality beeswaxes 

are also said to come from Australia, New Zealand, Europe and the USA, while poor grade 

waxes are of Chinese or African origin (Reynolds 1998).  

A study by Bernal et al., (2005) into the quality of Spanish beeswax revealed that of the 52 

different sheets of foundation wax analysed, 27 were rejected by bees. Of these 25 sheets 

93 % were found to be adulterated. Adulterated beeswax is said to have negative effects 

on the structural properties of comb (Bradbear, 2009), as well as possible negative 

impacts on brood development and increased mortalities (Wallner 2005, as cited in 

Semkiw & Skubida 2013). However, Semkiw & Skubida (2013) report that wax adulterated 

with paraffin, by as much as 50 %, had no effect on the construction of comb nor did it 

have any negative influences on brood mortality. These results are also supported by 

Medici et al., (2012) who suggest that the inclusion of paraffin may actually dilute the 

amount of harmful chemicals (i.e. pesticides) found within the wax.  
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3.3 Routes of pesticide exposure 

There are two main ways in which beeswax can become contaminated with pesticides:  

1) Apicultural contamination 

2) Agricultural contamination  

As considered in Chapter 1, the incorporation of halogens within a pesticide can 

determine various pharmokinetic parameters, including enhanced lipophilicity. Chlorine 

(Cl) and fluorine (F), in particular, are important for the delivery of substances between 

aqueous-based and lipid-based environments (Jeschke, 2010). The lipophilicity of a 

compound is determined its octanol-water partition coefficient (Kow). This describes that 

compounds with a higher log Kow will be more soluble within a lipid-based matrix.  

 

1) Apicultural contamination 

Apicultural contamination can occur from the direct application of pesticides to a colony 

by a beekeeper. Table 3.1 shows a list of apicultural hive treatments used within the UK, 

of which most tend to revolve around the treatment of Varroa.  
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Table 3.1: Hive treatments which were previously and are currently used within the UK.  

Product Active Ingredient Target Pest 
Method 

of Spread 
Application Method 

Current UK 
Status 

- p-Dichlorobenzene Wax moth E Crystals 

- Naphthalene Wax moth E Moth ball 

Apiguard® Thymol Varroa E/C/I Gel 

Apilife-VAR® Thymol (+ ess oils) Varroa E Carrier matrix 

Apistan® tau-fluvalinate Varroa C Impregnated strips 

Apivar® Amitraz Varroa C/S Impregnated strips Cascade SIC 

Bayverol® Flumethrin Varroa C Impregnated strips 

Fumidil B® (Antibiotic) Nosema spp - Soluble powder Expired 

(Generic) Formic acid Varroa E Solution Note 1 

(Generic) Lactic acid Varroa E Solution Note 2 

(Generic) Oxalic acid Varroa C Solution Note 2 

MAQS Formic acid Varroa E Impregnated bags 

Perizin® Coumaphos Varroa C/S Solution Cascade SIC 

Thymovar Thymol Varroa E Impregnated strip 

-Not UK authorised; - UK authorised; Cascade SIC – Not UK authorised, but is registered in another 

EU member state, meaning it can be prescribed by a veterinarian (beekeepers must apply for a  Special 

Import Certificate); Note 1 – Not authorised in EU, except for Germany; Note 2 – Not authorised in EU, 

but tolerated in many countries. Method of spread: C – contact; E – Evaporate; I –Ingestion.  

MAQS – Mite Away Quick Strips. ess oils – essential oils. Information adapted from The Food and 

Environment Research Agency (2013). 

 

Acaricides are often applied directly to the hive in the form of pesticide impregnated 

strips or through drip applications. The amount of active ingredient present within each 

treatment will determine the length of time that the application strip, for example, will 

remain within the hive (Wallner, 1999). Most apicultural treatments, such as coumaphos 

and tau-fluvalinate, are found to be stable and with a half-life of five years they remain 

present in the wax long after treatment (Bogdanov, 2006) with the exception of amitraz, 

which is unstable in beeswax and rapidly degrades (Korta et al., 2001). The active 

ingredient of the hive treatment Apistan is tau-fluvalinate, which is a half-resolved 

mixture of four original stereoisomers found in fluvalinate. Figure 3.1 shows the 

predominant structure of tau-fluvalinate, where (R) and (S) denote the configuration of 
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each chiral centre; the other stereoisomer is the (R, R)-configuration. The two other 

stereoisomers of fluvalinate are in the (S, R) and (S, S)-configurations; however, these 

demonstrate less insecticidal activity than the (R) forms (Jia et al., 2015). Given its use 

within the beekeeping industry, only tau-fluvainate shall be considered throughout the 

rest of this thesis.  

 

Figure 3.1: The predominant (R, S) stereoisomer of tau-fluvalinate. The other stereoisomer present in tau-

fluvalinate is found in the (R, R)-configuration. 

 

It was found that treatments applied at higher concentrations will have a greater 

distribution throughout the hive than those applied at a lower concentration. Volatile 

treatments, such as thymol and PDCB, will evaporate from the hive and so their 

persistence within the comb is limited (Bogdanov et al., 2004; Wallner, 1999), although 

their residues may still be detected (Bogdanov, 2006). It was reported that foundation 

sheets spiked with thymol and stored closely packed in a sealed cardboard box retained 

up to 70 % of the initial concentration after one year, whilst those foundation sheets 

exposed to a good airflow reduced to almost zero (Bogdanov, Imdorf, & Kilchenmann, 

1998). The volatility of PDCB is similar to that of thymol and so the reduction of this 

chemical from the wax is anticipated to be the same (Bogdanov et al., 2004). 

All inner surfaces of a hive are coated in a fine layer of wax, which facilitates the 

migration of pesticides throughout the hive (Wallner, 1999). The thickness of the comb is 
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also thought to aid in the rapid diffusion of pesticides throughout the comb (Tremolada, 

Bernardinelli, Rossaro, Colombo, & Vighi, 2011). Honeybees are capable of distributing 

fat-soluble pesticides with their legs and bodies whilst walking around the hive (Wallner, 

1999); for example nurse bees are considered primarily responsible for transferring 

pesticides to queen cups and developing queens (Haarmann, Spivak, Weaver, Weaver, & 

Glenn, 2002).  

Newly produced comb has been shown to be quickly contaminated through the migration 

of pesticides from old existing comb (Wu et al., 2011). Continuous pesticide migration has 

also been confirmed from contaminated comb wax into honey stores via a partition 

process (Kochansky, Wilzer, & Feldlaufer, 2001; Tremolada, Bernardinelli, Colombo, 

Spreafico, & Vighi, 2004; Wallner, 1999). Honey is described as a hydrophilic matrix, 

however, it is the presence of minor lipophilic components such as pollen and wax that 

are responsible for honey’s increased affinity to fat-soluble residues (Tremolada et al., 

2004).  

 

2) Agricultural contamination 

There are multiple ways in which agrochemicals can enter the hive. Honeybees foraging 

directly on, or near to, agricultural fields are at risk of exposure to agrochemicals. 

Multiple mechanisms were identified, including contaminated pollen and nectar from 

both treated crops and from the flowers surrounding the crop, such as dandelions. During 

sowing talc is often applied to seeds in order to stop them from adhering to each other, 

thus allowing for a more equal spacing in the ground; this talc is often exhausted from the 

planter, creating a dust which can drift outside the field boundary. Contaminated soil also 



Chapter 3: Determining pesticide content within honeybee wax samples from across the United Kingdom  

128 

posed a threat (Bonmatin et al., 2015; Krupke, Hunt, Eitzer, Andino, & Given, 2012), as 

surface water can transport chemicals to the roots of non-target plants (Bonmatin et al., 

2015). The number of agricultural pesticides that can be returned to the hive can be 

considered alarming (Mullin et al., 2010), making beeswax and other matrices 

bioindicators to environmental pollution (Celli & Maccagnani, 2003; Niell, Hepperle, 

Doerk, Kirsch, & Kolberg, 2014). Using a national statistics survey on pesticide applications 

made to arable crops in Great Britain, a number of key agricultural pesticides were 

identified; based on their frequency of use on honeybee-pollinated crops (Garthwaite, 

Thomas, Parrish, Smith, & Barker, 2008). These, in addition to a few other pesticides, are 

listed in Table 3.2. 
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Table 3.2: A list of some of the key pesticides focused on within this chapter. These were selected 

according to their frequency of use on honeybee pollinated crops (Garthwaite et al., 2008). Log Kow and 

LD50 values taken from Tomlin (2009).  

Compound Class Log Kow 
LD50 (ug/bee) 

(contact) 
LD50 (ug/bee) 

(oral) 

Aldicarb Ins/Acar/Nem 1.15 0.285 - 

Amitraz Ins/Acar 5.5 50 - 

Azoxystrobin Fung 2.5 > 200 > 25 

Boscalid Fung 2.96 200 166 

Captan Fung 2.8 788 91 

Carbaryl Ins/PGR 1.85 1 0.18 

Carbendazim Fung 1.38 >50 - 

Chlormequat-chloride PGR -1.59 Non-toxic Non-toxic 

Chlorothalonil Fung 2.92 > 101 > 63 

Clothianidin Ins 0.7 0.0439 0.00379 

Coumaphos Ins 4.13 - - 

lambda-Cyhalothrin Ins 7a 38 ng/bee 909 ng/bee 

Cypermethrin Ins 6.6 0.02 0.035 

DDT Ins -  - 5 

Deltamethrin Ins 4.6 12 ng/bee 23 ng/bee 

Fipronil Ins 4 - - 

Flusilazole  Fung 3.74 - - 

tau-Fluvalinate Acar/Ins 4.26 6.7 163 

Glyphosate Herb < -3.2b >100 100 

Imazalil Fung 3.82 - 40 

Imidacloprid Ins 0.57 - 3.7 ng/bee* 

Paraquat-dichloride Herb -4.5a 70 15 (120 h) 

Pendimethalin Herb 5.2 101.2 - 

Permethrin Ins 6.1a 0.029 0.098 

Pirimicarb Ins 1.7 53 4 (24 h) 

Thiamethoxam Ins -0.13 0.024 0.005 
Triadiamenol Fung 3.08 Non-toxic Non-toxic 

a
 20 °C; 

b
 20 °C, pH 2-5.  

Acar – acaricide; Fung – fungicide; Herb – herbicide; Ins – insecticide; Nem – nemocide; PGR – plant 

growth regulator. * Data taken from Schmuck et al., (2001). 

 

 As seen with apicultural applications, agricultural pesticides can be distributed 

throughout the hive by bees walking around combs (Pettis, Collins, Wilbanks, & 

Feldlaufer, 2004; Wallner, 1999). Likewise, this can be achieved by placing contaminated 

pollen and nectar within a cell, thus exposing the immediate area to a particular pesticide 
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(Wallner, 1999). Pollen and nectar are known to be deposited randomly within a comb 

before being relocated outside of the brood nest (Johnson, 2009), thus giving the typical 

brood pattern seen in Figure 1.7. This relocation of food stores could therefore offer 

multiple sites of contamination.  

 

3.4 Health effects of pesticide-contaminated comb wax 

Exposure to contaminated comb wax during the early stages of honeybee development 

can be detrimental, as the developing brood may demonstrate a greater sensitivity to 

certain contaminants than during adulthood (Zhu, Schmehl, Mullin, & Frazier, 2014). 

Honeybees exposed to highly contaminated combs have been shown to have a reduced 

level of survival, compared to those exposed to relatively uncontaminated combs. 

Workers raised in lower contaminated combs were found to live four days longer than 

those reared in a comb of high contamination (Wu et al., 2011). A large reduction in the 

number of foragers can have major repercussions on the size and sustainability of a 

colony. ‘Precocious foraging’ is a response to replace the loss of foragers with 

progressively younger and ineffective hive bees (Perry, Søvik, Myerscough, & Barron, 

2015). This will eventually reduce the number of nurse bees to brood ratio and thus the 

amount of replacement adults over time (Desneux, Decourtye, & Delpuech, 2007). The 

inability to sustain food levels within the colony can result in colony failure (Perry et al., 

2015). Contaminants within the comb may also conceal nestmate recognition cues found 

within the comb; this can be problematic for returning foragers as they may fail to 

recognise their own colony (Berry & Delaplane, 2001). 
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During the study by Wu et al., (2011) there was found to be delays in adult emergence 

from highly contaminated brood comb. The delay in adult emergence is thought to be 

advantageous in the reproductive cycle of the Varroa mite (Fraizer 2007, as cited in Wu et 

al., 2011). 

Wu et al., (2011) also found that 23 % of the honeybee eggs laid in contaminated combs 

failed to hatch into larvae (day 4 of development cycle). At day 8 the failure rate of larvae 

increased to 46 %. This can have a number of negative effects on the colony, including 

energetic stress on nurse bees, who must eject failed eggs and larvae from the hive (Wu 

et al., 2011). Those reared in contaminated combs were found to have a greater 

susceptibility to Nosema ceranae (Wu, Smart, Anelli, & Sheppard, 2012). High levels of 

acaricides within comb wax were also found to negatively affect developing queens. This 

included reduced body weight as well as an increased rejection by nurse bees during their 

development (Pettis et al., 2004). In addition to the topical exposure from contaminated 

comb wax, there is a possibility of pesticide migration into other matrices, such as honey 

stores (Kochansky et al., 2001; Tremolada et al., 2004). Contaminated food stuffs also 

pose a risk of oral exposure to pesticides (Rortais, Arnold, Halm, & Touffet-Briens, 2005). 

Synergistic interactions between multiple pesticides within the comb can also have a 

greater overall toxic effect on developing larvae than would be seen for a single pesticide 

(Johnson, Pollock, & Berenbaum, 2009; Zhu et al., 2014).  

 

3.5 Aim of investigation 

The aim of this chapter is to describe which pesticides are present in comb wax samples 

obtained from around the UK. 
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3.6 Materials and Methods 

3.6.1 Reagents and standards  

All solvents and chemicals used in the study were of HPLC grade or analytical grade, with 

the exception of para-dichlorobenzene (acquired from J. Routh, FERA). Alidicarb 

PESTANAL®, Amitraz PESTANAL®, Azoxystrobin PESTANAL ®, Boscalid PESTANAL®, Captan 

PESTANAL®, Carbaryl PESTANAL®, Carbendazim PESTANAL®, Chlormequat-chloride 

PESTANAL®, Chlorothalonil PESTANAL®, Clothianidin PESTANAL®, Coumaphos PESTANAL®, 

λ-cyhalothrin PESTANAL®, Cypermethrin PESTANAL®, Deltamethrin PESTANAL®, tau-

Fluvalinate PESTANAL®, Glyphosphate PESTANAL®, Imidacloprid PESTANAL®, 

Pendamethlin, PESTANAL®, Pirimicarb PESTANAL®, Thiamethoxam PESTANAL®, purchased 

from Fluka Analytical (Germany); DDT, Thymol (Aldrich, Gillingham, UK). Ammonium 

formate (NH4HCO2) ≥99 %, (Fluka Analytical, Germany). Magnesium sulphate (Sigma-

Aldrich, Germany). Acetone, Acetonitrile, Glacial acetic acid (Fisher Scientific, 

Loughborough, England). Toluene and dichloromethane CHROMASOLV® (Sigma-Aldrich, 

Germany). The deionised water was purified at 18.2 MΩ with a Purelab Option-Q DV25 

purification system. QuEChERS kits 60105-205 and 60105-210 were bought from Thermo 

Scientific (Hemel Hempstead, England) and the dual layer ENVITM – Carb II/PSA 300/600 

mg solid phase extraction (SPE) cartridges were supplied by Supelco Analytical (USA). 

 

3.6.2 Sample collection  

In order to obtain comb wax samples from around the UK, an advert was placed within 

the British Beekeepers Association (BBKA) monthly newsletter (Appendix A); this 

informed readers about the aim of the project, general background and the need for 
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volunteers to donate comb wax. A stand/collection point was also arranged at the 34th 

Spring Convention (16th April 2011), Stoneleigh (Warwickshire), which acted as a 

distribution point for the specially created sample collection packs. Each collection pack 

contained a self-addressed envelope, a cut comb container, disposable gloves, alcohol 

wipes, blank label, a set of instructions (Appendix B) and a questionnaire (Appendix C). In 

order to reach out to a greater demographic, contact was made with northern (England) 

beekeeping associations, in addition to Dr Christopher Connolly (University of Dundee). 

This allowed for approximately 120 collection packs to be distributed between Northern 

England and throughout Scotland. In total, 500 sample packs were distributed; of which 

152 of these were returned (30.4 %): England n = 98 (including Isle of Man, n = 3), 

Scotland n = 46 and Wales n = 8. The approximate location of these returned samples is 

shown in Figure 3.2.  
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Figure 3.2: A schematic diagram showing the approximate locations of 152 comb wax samples 

obtain in 2011 from England (n = 98), Scotland (n = 46) and Wales (n = 8) in relation to Keele 

University (logo).  
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3.6.3 Sample extraction  

A modified QuEChERS was used (Mullin et al., 2010). Here, 3 g of comb wax was added to 

a 50 ml centrifuge tube containing 27 ml of extraction solution (55 % acetonitrile, 44 % 

deionised water, 1 % glacial acetic acid) and heated at 80 °C for 20 min. Once at room 

temperature, 6 g anhydrous magnesium sulphate (MgSO4) and 1.5 g anhydrous sodium 

acetate (QuEChERS kit 60105-210, Thermo Scientific, Hemel Hempstead, England) were 

then added to the centrifuge tube and shaken vigorously for 2 min. Finally, the mixture 

was centrifuged (5 min @ 4000 rpm) and the organic layer (A) removed and placed in a 15 

ml centrifuge tube. 

Clean-up for GC-MS analysis. A dual layered SPE cartridge containing 350 mg graphitized 

carbon black (CUCARB) and 600 mg primary secondary amine (PSA) was prepared by 

adding 160 mg MgSO4 to the cartridge and conditioning with 4 mL acetone/toluene (7:3 

v/v) under positive pressure and eluted to waste. 2 mL of A was then added to the 

cartridge and eluted with 4 mL acetone/toluene (7:3 v/v) into a glass sample tube. The 

elutant was evaporated to dryness under a stream of nitrogen gas, before being dissolved 

in 350 µl dichloromethane and transferred into a 2 ml autosampler vial ready for analysis. 

Clean-up for Q-TOF LC/MS analysis. 10 ml A was transferred to a centrifuge tube 

containing 900 mg MgSO4, 300 mg PSA and 150 mg graphitised carbon black (CUCARB) 

(QuEChERS kit 60105-205, Thermo Scientific, Hemel Hempstead, England). After vortexing 

(1 min) and centrifuging (4 min @ 4000 rpm), 10 ml supernatant was removed and dried 

down under a stream of nitrogen gas, then dissolved in 500 µl water/acetonitrile (95:5 

v/v) and added to a 2 ml autosampler vial ready for analysis. 
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3.6.4 Instrumentation  

GC-MS analysis: samples were analysed on an Agilent 7890A GC equipped with a Zebron 

Inferno ZB-5HT column (30 m x 0.32 mm, 0.25 µm) connected to an Agilent 5975C MSD 

(quadrupole) mass spectrometer (70 eV electron impact ionisation); mass range 40 - 800 

m/z. Samples were injected in splitless mode (injection volume: 2 µl) and the oven was 

programmed from 25 °C to 110 °C at 40 °C/min and then 110 °C to 320 °C at 20 °C/min. 

The injection port was held at 250 °C. Helium was used as a carrier gas at a constant flow 

of 1 ml/min.  

Q-TOF LC/MS analysis: samples were injected into an Agilent 1260 Infinity LC system 

(injection volume: 15 µl) equipped with autosampler, thermostatted column 

compartment (set to 35 °C) and 1290 Infinity in-line filter (0.3 µm) Agilent ZORBAX 

Extended-C18 Rapid Resolution HD (2.1 x 50 mm, 1.8 µm) column was used with a 

ZORBAX Eclipse Plus C18 (2.1 x 5 mm, 1.8 µm) guard column connected to an Agilent 

6530 Accurate-Mass-Q-TOF LC/MS. The LC mobile phases were (A) water with 5 mmol 

ammonium formate and (B) acetonitrile. The elution gradient, at a flow rate of 0.6 

ml/min, was as follows: 0 – 0.5 min (95 % A/ 5 % B), 0.5 – 9 min (0 % A/ 100 % B), 9 – 9.5 

min (0 % A/ 100 % B), 9.5 – 10 min (95 % A/ 5 % B). The Q-TOF settings were as follows: 

acquisition mode MS with MS range 100 – 1000 m/z; MS scan rate 1 spectrum/s; 

electrospray ionization (ESI) source – gas temperature: 300 °C; gas flow: 11 L/min; 

nebulizer: 50 psig, positive ion polarity; scan source parameters: Vcap 4000 V; 

fragmentor, 125 V; skimmer, 65 V; octapole RF (OCT RF Vpp), 750 V. 
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Compound identification 

Q-TOF LC/MS: Using the Agilent MassHunter Qualitative Analysis Workstation Software 

(version B.06.00), compounds were identified using the ‘find by molecular feature’, 

locating any distinguishable peaks which correspond to a distinct [M+H]+ ion. The 

obtained accurate mass of the [M+H]+ was then used to identify possible molecular 

formulae for these peaks. The ‘mass filter’ tab was selected to use these proposed 

molecular formulae to search a ‘pesticide database’ which was created in-house. In short, 

this feature scans each selected TIC in order to extract and identify any [M+H]+ and 

related isotopic information and compare the findings to the database. Mass deviations 

(mass accuracy) of less than 5 ppm were investigated further. Based on the natural 

isotope abundance of each element, a theoretical isotopic pattern was overlaid with each 

match and the differences compared. The RT of each peak was also compared to 

previously analysed standards. 

GC-MS: Compounds were detected by extracting the parent molecular ion, where 

available, or the base peak of the compounds of interest. The resulting mass spectrum 

was then compared to the NIST08 mass spectral library.  

 

3.7 Results 

3.7.1 Questionnaire results 

A summary of the questions answered is given in Appendix D; however, some of the 

questions have not been tabulated due to their qualitative nature. 
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Of the 152 samples received, 53.29 % were from a rural environment, 29.61 % semi-rural 

and 15.13 % from an urban environment (1.97 % not specified). The top three apicultural 

treatments used within England (according to those surveyed) were thymol (37.11 %), 

oxalic acid (20.13 %) and Fumidil B (10.06 %). The most popular treatments in Scotland (n 

= 46) were oxalic (26.19 %), Apistan/tau-fluvalinate (22.62 %) and thymol (17.86 %). The 

number of samples received from Wales was small (n = 8), with no reports of synthetic 

chemicals used. Thymol and oxalic acid (both 46.15 %) were the only treatments used. 

22.62 % of Scottish beekeepers were found to use Apistan/tau-fluvalinate, compared to 

only 7.55 % of English beekeepers. The samples received from England were of varied 

ages, whilst the samples received from Scotland tended to be older in comparison (Figure 

3.3). 

 
 

Figure 3.3: The percentage distribution of comb age from across England (n= 98) and Scotland (n = 46).  
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3.7.2 GC-MS analysis 

In total 152 comb wax samples were analysed using GC-MS. Thymol was detected in 50% 

of English, 62.5 % Welsh and 36.96 % of Scottish samples analysed, respectively. No other 

pesticides were detected. Butylated hydroxytoluene (BHT), a synthetic stabiliser, was also 

identified within 32.65 % of English, 50% Welsh and 78.26 % of Scottish samples analysed, 

respectively. See Appendix E for raw data.  

 

 

Figure 3.4: An example of a GC-MS chromatogram of an analysed wax sample (ERY_2_15/07/11). Both 

thymol and butylated hydroxytoluene (BHT) have been annotated. All other detected compounds are not 

the focus of this thesis.  

 

Figure 3.4 shows the detection of a (undetermined) number of compounds found within a 

single wax sample, analysed by GC-MS. Only thymol and BHT have been annotated, as 

they are considered to be of interest. This particular comb wax sample was reported not 

to have been treated with thymol, although clearly detected and supported by the mass 

spectrum presented in Figure 3.5. Other compound classes detected include 

hydrocarbons, fatty acids and alcohols. 
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Figure 3.5: An example of a mass spectrum for thymol detected in an analysed wax sample 

(ERY_2_15/07/11). The structure of thymol is also provided.    

 

3.7.3 Q-TOF LC/MS analysis 

Q-TOF LC/MS analysis of 15 comb wax samples revealed that 11 of the 15 samples were 

found to be contaminated with tau-fluvalinate; regardless of comb age. As tau-fluvalinate 

exists as a mixture of two stereoisomers, two peaks can often be detected at 8.4 minutes 

and 8.7 minutes; the latter is the more predominant and therefore is the only 

stereoisomer quoted in Table 3.3. Only one of the three samples from the Isle of Man 

contained tau-fluvalinate. No other chemicals were detected across all samples. 
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Table 3.3: The results of Q-TOF LC/MS analysis of comb wax samples (n = 15).  

Sample I.D. Location Compound RT Score 
Difference 

(ppm) 
Age 

(months) 

CAM_1_06/07/11 Cambridge tau-Fluvalinate 8.769 98.02 -0.79 12 

DEV_6_06/07/11 Devon tau-Fluvalinate 8.784 99.19 -1.17 24 

DOR_3_12/07/11 Dorset - - - - 12 

HAM_4_07/07/11 Hampshire tau-Fluvalinate 8.777 94.63 0.06 14 

IOM_1_05/07/11 Isle of Man - - - - 42 

IOM_2_05/07/11 Isle of Man - - - - 30 

IOM_3_05/07/11 Isle of Man tau-Fluvalinate 8.738 98.82 0.29 12 

KEN_2_05/07/11 Kent tau-Fluvalinate 8.760 95.24 0.65 - 

KEN_5_08/07/11 Kent - - - - 36 

KEN_6_08/07/11 Kent tau-Fluvalinate 8.754 85.96 0.50 2 

LON_1_06/07/11 London tau-Fluvalinate 8.795 95.29 0.04 12 

NFK_3_06/07/11 Norfolk tau-Fluvalinate 8.760 98.17 0.31 14 

SOM_4_06/07/11 Somerset tau-Fluvalinate 8.726 89.81 0.63 3 

SRY_1_08/07/11 Surry tau-Fluvalinate 8.776 96.04 0.05 5 

WYK_4_06/07/11 W. Yorkshire tau-Fluvalinate 8.782 81.76 0.52 15 

 

 

 

Figure 3.6: An overlay comparison between tau-fluvalinate, detected in a comb wax sample, to its 

theoretical isotopic pattern (red boxes).   

 

Using the theoretical isotopic pattern of tau-fluvalinate (Figure 3.6), its presence was 

confirmed in addition to comparing RT values with a previously analysed tau-fluvalinate 

standard.  
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3.8 Discussion 

3.8.1 Sample collection 

A great amount of effort was put into finding beekeepers to participate and although a 

100 % response was not expected the return of 152 samples (30.4 %) was very 

satisfactory. The majority of English samples came from the South West, South East and 

Eastern regions of the country; which correlates to the majority of registered BBKA 

members being within these areas (David Aston, personal communication, 2011). Returns 

from Northern beekeepers were more limited.   

 

3.8.2 Comb wax analysis 

The aim of this study was to analyse samples with a ‘broad-brush’ approach and to 

qualitatively identify any pesticides contained within the comb wax, as the age and 

histories of the wax samples could not be accurately determined - although beekeepers 

were asked to provide an approximate age of returned samples. This chapter therefore 

asks the question ‘to what pesticides are UK honeybees potentially exposed?’. The 

answer to this question would then guide future investigations, conducted in Chapter 4.  

The analysis of comb wax, as conducted by Mullin et al., (2010), was quoted to cost in the 

region of $175,000; however, the work presented here was limited to a much smaller and 

modest budget. Consequently, it was not possible to obtain a standard for all pesticides 

used within the UK. Therefore, in order to increase the likelihood of detecting agricultural 

pesticides within each sample, it was decided that only the top 20 agricultural pesticides 

would be focused on, taking into account their use on insect pollinated crops i.e. oilseed 

rape, as well as the total weight of active ingredient applied in addition to their use on 
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multiple crop types. This information was obtained using a pesticide usage survey 

(Garthwaite et al., 2008). Those pesticides listed in Table 3.2 are the result of this search. 

This table does include some relatively hydrophilic compounds; however, chemicals of 

this nature have been previously detected in comb wax (Mullin et al., 2010). Despite their 

low log Kow values, there is still expected to be a relative migration of these chemicals 

between comb wax and honey plus any other matrices contained within wax cells. Table 

3.1 lists a number of in-hive treatments which were also of interest during analysis. The 

use of some of these compounds, within a particular hive (prior to sample collection) can 

be traced through the use of the returned questionnaires.  

The questionnaire results (Appendix D) found that thymol was used by 37.11 % of English 

beekeepers (n = 98), Welsh beekeepers (n = 8) 46.15 % and Scottish (n = 46) only 17.86 %. 

Analysis of the comb wax (Appendix E) revealed a positive match of 63.33 % (English), 

66.67 % (Welsh) and 80 % (Scottish) with those beekeepers who reported using thymol. 

However, thymol was also detected in a number of instances whereby thymol usage was 

not declared (England: 11 detections; Wales: 0; Scotland: 2 detections). Figure 3.4 shows 

an example of where thymol was stated not to be used on a particular hive, yet its 

presence can clearly be seen and confirmed with the corresponding mass spectra (Figure 

3.5) ([M]+ 150.20 m/z) and comparison to the NIST08 mass spectral database. The 

detection of thymol may come from natural sources, as it is a naturally occurring aromatic 

compound that is present in a number of plant and tree species, including: thyme 

(Thymus vulgaris) (Kosalec, Mastelic, Pieckova, & Pepeljnak, 2007) lime (Tilia spp.) and 

chestnut (Castanea sativa) (Guyot, Bouseta, Scheirman, & Collin, 1998). Consequently, 

thymol has been detected in lime tree honeys at concentrations between 18 – 161 ppbv 
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(Guyot et al., 1998). Given the lipophilic nature of thymol there may be a possibility that 

its inclusion in wax is the result of a preferable migration from honey, although this 

cannot be confirmed by this study. Interestingly, thymol was found not to be removed 

during thermal treatment and so it may already be present in foundation wax (Bogdanov 

et al., 1998). 

In those instances whereby thymol was not detected, despite being used, it may mean 

that the levels within the wax may be below the LOD (~ 1 ppmv) of GC-MS, as a result of 

natural evaporation. However, its popularity as a Varroa treatment within the UK means 

that depending on the application method, the exposure of this compound to honeybee 

colonies can be continuous (Wallner & Fries, 2003). Thymol levels within honey comb, 

typically located within the supers, was found to be lower (average 21.6 ppmv) than 

brood comb (average 516.8 ppmv) (Bogdanov et al., 1998). Therefore, depending on the 

location of the submitted sample, the chances of detecting this compound will be more 

favourable in brood comb. This information was not considered in the questionnaire.  

It is possible that beeswax can be adulterated during the recycling process (Semkiw & 

Skubida, 2013) and although not the focus of this chapter, the compound butylated 

hydroxytoluene (BHT) was detected in 46 % of the samples analysed. Scotland was found 

to have the highest incidence of BHT as it was found in 76 % of the 46 samples; Wales 50 

% and England 33 %. BHT is a synthetic antioxidant, often added to food as a preservative 

(E 321) (Race, 2009). Originally developed for use in petroleum and rubber based 

products (Race, 2009), BHT can be found in food grade paraffin wax (CDS Analytical Inc, 

n.d), which is known to be used in the adulteration of beeswax (Semkiw & Skubida, 2013). 

BHT is also used as a stabiliser within various plastics (Race, 2009) and in order to 
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eliminate the possibility of cross-contamination from plastic equipment used during the 

extraction process, a small investigation was conducted. Here five centrifuge tubes were 

exposed to the QuEChERS extraction procedure and the solvent then analysed. No BHT 

was detected following this experiment; thus it is suspected that some of the foundation 

wax used by beekeepers may have been adulterated - this claim, however, cannot be 

proven. It is more plausible that its detection may result from its addition to pesticide 

formulations as a chemical stabiliser.  

Samples KEN_6_08/07/11, SOM_4_06/07/11 and SRY_1_07/07/11 are considered newly 

drawn comb at around 2, 3 and 5 months, respectively; however, the detection of tau-

fluvalinate within these samples, using Q-TOF LC/MS, suggests that the foundation used 

already contained this chemical prior to being used within the hive. Alternatively, the 

drawn-out comb may have been quickly contaminated. Apicultural treatments were 

found to be the most persistent compounds found within comb wax, unlike 

agrochemicals (Bogdanov et al., 2003; Bogdanov 2006; Serra-Bonvehí & Orantes-Bermejo 

2010; Ravoet et al. 2015), which echoes the findings seen in Table 3.3. Interestingly, 

IOM_3_05/07/11 also contained tau-fluvalinate, which is significant as the Isle of Man is 

not affected by Varroa infestations; therefore, there is no reason why the chemical 

should be detected other than from its use as an agricultural treatment. However, several 

studies suggest that the occurrence of tau-fluvalinate is most likely due to apicultural 

treatments (Bogdanov et al., 2003; Bogdanov et al., 1999; Wallner 1999; Wu et al., 2011). 

Determining the actual source, however, remains difficult (Serra-Bonvehí & Orantes-

Bermejo, 2010).  
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IOM_1_05/07/11, KEN_5_08/07/11 and IOM_2_05/07/11 are the three oldest samples 

analysed by Q-TOF LC/MS at 42, 36 and 30 months, respectively; despite this no 

chemicals were detected. This suggests that older combs do not necessarily demonstrate 

greater levels of contamination, although it is known that residues will gradually fall over 

time (Bogdanov, 2004). In Switzerland, residues of tau-fluvalinate found in comb wax 

dropped following a decline its use due to Varroa resistance in the 1990s. It is thought 

that another 20 years are needed before the levels finally vanish from beeswax 

(Bogdanov 2006). A longer study would need to be conducted in order to make a definite 

conclusion.    

The results presented in this chapter offer an insight into the contamination of comb wax 

from the UK. The wax recycling processes often adopted by beekeepers only physically 

removes debris, meaning certain chemicals will remain persistent in wax (Bogdanov, 

2006). However, success in attempting to remove compounds via chemical means has 

been limited (James, Ellis, & Duehl, 2013). Of those surveyed, 33.55 % (21.05 % not 

specified) stated that they trade in old comb wax for recycled foundation sheets, which 

could have implications on the health of future colony generations, if found to be 

contaminated (Wu et al., 2012; Wu et al., 2011). The levels of tau-fluvalinate found within 

comb wax were determined to have a greater correlation to the levels of this chemical 

detected in bee bodies, as oppose to its content in pollen. This was also true for 

coumaphos; however, amitraz showed no significance between the levels in bee bodies 

to either comb wax or pollen samples (Mullin et al., 2010). These three chemicals were 

found to account for the majority of detected residues in comb wax (Mullin et al., 2010; 
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Wu et al., 2011; Simon-Delso et al., 2014), thus leading researchers to regard comb wax 

as the primary source for bee contamination (Mullin et al., 2010).  

A significant finding is the lack of detected agrochemicals, which distances the findings of 

this study away from the severely contaminated combs of North America (Mullin et al., 

2010). A study from France, investigating the long-term effects of colony exposure to 

thiamethoxam treated crops, reports that in tested wax samples both thiamethoxam and 

clothianidin fell below their LOQ (1 ppbv). It was concluded that these chemicals were not 

persistent in comb wax (Pilling, Campbell, Coulson, Ruddle, & Tornier, 2013). These 

findings agree with the results of this study, as neither thiamethoxam nor clothianidin 

were found in UK comb wax. The small sample size use within this chapter is not very 

representative of the whole UK population. Rural locations increase the likelihood of 

exposure to agrochemicals and thus the detection of these compounds (Simon-Delso et 

al., 2014); however, to focus solely on a cropped area is again not truly representative of 

a whole country.  

It is perhaps no surprise that the application of a chemical treatment, directly to a hive, 

should result in the contamination of the immediate surroundings (comb wax). However, 

the method in which agrochemicals reach the hive is a little more complex as it relies on 

multiple factors. For example: the successful return of a forager to the hive; whether the 

chemical may have undergone some sort of metabolism during transit or storage in the 

honey stomach; the lipophilicity of the compound and its initial concentration within 

pollen or nectar. The application of agrochemicals to a crop is conducted in a way to 

minimise the exposure of honeybees and other beneficial pollinators to harmful 

chemicals. Such measures can include evening applications, as well as prior warnings to 
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beekeepers and thus giving them plenty of time to relocate their colonies, if necessary; 

this is also confirmed through questionnaire responses.  

 

3.9 Conclusion 

The aim of this chapter was to determine which pesticides are present in comb wax 

samples obtained from around the UK, of which no data currently exists. Using GC-MS 

analysis, only thymol was detected. Thymol was detected in samples which were reported 

not to be treated with this compound, suggesting persistence in comb wax over an 

undetermined amount of time. Given the detection limit of the GC-MS instrumentation 

(LOD ≥ ppmv levels), it can be assumed that if any pesticides are present within comb wax 

then their levels will be in sub-ppmv range. Later analysis using Q-TOF LC/MS (LOD ≤ ppbv 

levels) revealed the presence of tau-fluvalinate in 12 out of the 15 samples analysed; 

which is one of the most commonly detected Varroa treatments. The possibility of other 

chemicals being present within comb wax cannot be excluded. GC-MS analysis also 

revealed the presence of butylated hydroxytoluene (BHT), a synthetic anti-oxidant which 

may originate from pesticide formulations or it may suggest the adulteration of comb 

foundation wax during the recycling process, although this cannot be confirmed.  
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CHAPTER 4  
The accumulation of pesticides within comb wax 
over a two year time period 

 

 

 

 

4.1 Overview 

The lipophilic nature of some agrochemicals and apicultural treatments, along with their 

respective stabilities in comb wax, means that these pesticides can potentially 

accumulate over time. This chapter looks to investigate what pesticides accumulate in 

comb wax over a two year period.  

 

4.2 Introduction 

As indicated in the literature mentioned in Chapter 3, it is already known that the 

detection of lipophilic pesticides in beeswax is possible through the use of sensitive 

analytical equipment (Lambert et al., 2013; Mullin et al., 2010; Ravoet, Reybroeck, & de 

Graaf, 2015), thus revealing the alarming amounts of pesticides that honeybees are 
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chronically exposed to (Mullin et al., 2010). The levels and chemical nature of the 

pesticides found in beeswax appear to vary, according to both apicultural and [local] 

agricultural practices (Mullin et al., 2010; Wu, Anelli, & Sheppard, 2011) associated with a 

particular hive. A good example which includes both of these practices is migratory 

beekeeping. America is renowned for its migratory beekeeping due to its large industrial 

scale. As already mentioned in Chapter 1, the US almond industry alone sees as many as a 

million colonies being relocated to aid in pollination. Throughout the course of a growing 

season, colonies may be relocated between two and five times a year (Johnson, 2010) or 

more (Bond, Plattner, & Hunt, 2014). Each move increases the likelihood of exposure to a 

number of biological and environmental stressors, including pesticides (Cox-Foster 2007 

as cited in Johnson 2010).  

A survey into the levels of pesticides within American apiaries revealed high levels of 

agrochemical and acaricides contained within comb wax. The survey analysed both 

migratory and non-migratory comb wax; however, it did not make a distinction between 

either of these wax types within the results. Of the 259 wax samples analysed, 60 % 

contained at least one systemic pesticide. Amazingly, 98 % of the foundation and comb 

wax analysed contained beekeeper applied tau-fluvalinate and coumaphos with a 

concentration range of 2 - 204 ppmv and 1 - 94 ppmv, respectively. Over 47 % of these 

samples also contained chlorothalonil (fungicide) (Mullin et al., 2010); this combination 

was linked to a phenomena described as ‘entombed pollen’ (vanEngelsdorp et al., 2009). 

Amitraz is known to degrade rapidly within wax (Korta et al., 2001); though, its major 

metabolite DMPF (2,4-dimethylphenylformamide) was detected within 60 % of the 

samples at a range of 9.2 - 43 ppmv. In total 87 different pesticides were detected overall 
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with an average of 6 pesticides per comb and a high of 39 within a single comb (Mullin et 

al., 2010). Similarly, Wu et al., (2011) also studied comb wax used with migratory 

beekeeping practices. The findings of this study revealed that tau-fluvalinate and 

coumaphos were again the most detected pesticides residues, ranging from 0.164 – 24.34 

ppmv and 0.281 – 22.1 ppmv, respectively. A total of 39 different pesticides were 

detected; averaging 10 pesticides per comb, with a high of 17 pesticides contained in a 

single comb.  

As considered in Chapter 3, there are a number of ways in which agrochemicals can enter 

the hive (Krupke, Hunt, Eitzer, Andino, & Given, 2012). Due to their (stored) abundance 

within the comb, the biggest contributors are contaminated pollen and nectar (Chauzat et 

al., 2006); consequently, different chemicals can be brought back to the hive, depending 

on the source of forage. A single crop has been shown to be treated with a number of 

agrochemicals (see Chapter 5, p195); this is reflected in the findings of both Mullin et al., 

(2010) and Wu et al., (2011). The scale of American migratory beekeeping is perhaps an 

extreme exaggeration of those practices seen across the UK and indeed Europe, where 

beekeeping is mainly reserved for the hobbyist, who does not normally transport their 

hives (Grunewald, 2010). Despite this, the methods of exposure and principles of 

accumulation still remain the same.  

A French study, which included samples from commercial beekeepers (> 150 colonies) 

also revealed that both coumaphos and tau-fluvalinate to be the most detected 

pesticides found in French comb wax; with mean detections of 647.5 ppbv and 220 ppbv, 

respectively (Chauzat et al., 2009). Although looking at a narrower range of pesticides, 

this agrees with the findings those studies previously considered (Mullin et al., 2010; Wu 



Chapter 4: The accumulation of pesticides within comb wax over a two year time period 

157 

et al., 2011). Tau-fluavlinate was also found at a range of 0.27 – 88.66 ppmv in 93.6 % of 

wax samples, taken from commercial Spanish colonies (n = 147). Interestingly, 

coumaphos was only detected within 3.7 % of the wax samples analysed (n = 134) at a 

range of 13.6 – 22.7 ppbv. The most detected acaricide was chlorfenvinphos (95.9 %, n = 

197) at a range of 0.196 – 10.64 ppmv (Serra-Bonvehí & Orantes-Bermejo, 2010). In 

Belgium, tau-fluvalinate was detected within all wax samples analysed (n = 10), with a 

range of 11 - 83 ppbv, whilst coumaphos was detected (90 % of samples, n = 10) with a 

range of 6 – 66 ppbv (Ravoet et al., 2015). Within these European studies, the rate of 

detection and the levels of agrochemicals were found to be relatively low, compared to 

the discussed apicultural treatments.  

Agricultural pesticides tend to be unstable and degrade quickly after application 

(Bogdanov, Imdorf, Charrière, Fluri, & Kilchenmann, 2003), although their persistence can 

be prolonged; for example, UV-sensitive neonicotinoids can have half-lives of over 1000 

days in certain soil conditions and their levels can accumulate through repeated 

applications (Bonmatin, Giorio, Girolami, Goulson, & Kreutzweiser, 2015). Despite this, 

apicultural applications are still considered to pose a greater threat to the colony 

(Bogdanov, Imdorf, et al., 2003).  

 

4.3 Accumulation of pesticides in wax 

In this thesis, accumulation refers to the progressive increase in the amount of an active 

ingredient in a material i.e. comb wax. The composition of comb wax has been covered in 

Chapter 1, Section 1.3.2.5; its lipid nature means that it is capable of housing many 

lipophilic substances, particularly acaricides - these tend to be the most prevalent 
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chemical in comb wax (Wallner, 1999; Wu et al., 2011). The distribution and accumulation 

of an acaricide throughout a hive depends on its lipophilicity (log Kow), frequency of use 

and the amount of applied active ingredient (Bogdanov, Imdorf, & Kilchenmann, 1998b; 

Wallner, 1999). The activity of the bees during applications should also be considered, as 

their movement can distribute pesticides throughout the hive (Wallner, 1999).  

The accumulation of agrochemicals in beeswax receives less attention than those used in 

apiculture (Chauzat & Faucon, 2007). Interestingly, in-hive applications were found to 

result in a higher level of these pesticides in comb wax than found in pollen, while pollen 

was found to contain a greater or equal amount or agrochemicals compared to comb wax 

(Johnson, Ellis, Mullin, & Frazier, 2010).  

The application of acaricides can vary (Table 3.1); nevertheless, a long contact exposure 

and a high initial concentration of an active ingredient will result in a greater uptake and 

distribution of the compound. However, low levels of an active ingredient, even with a 

long exposure, can fail to produce unmeasurable levels (Wallner, 1999). Once applications 

stop the levels of acaricide within comb wax will begin to fall (Bogdanov, 2004a). The high 

levels tau-fluvalinate and coumaphos and the persistence of these chemicals in comb 

wax, as reported by multiple studies (Bonmatin et al., 2015; Mullin et al., 2010; Serra-

Bonvehí & Orantes-Bermejo, 2010; Wu et al., 2011) is perhaps no surprise; as it is already 

known that these chemicals are particularly stable within comb wax (Bogdanov, 2006), 

with an approximate half-life of five years (Bogdanov, 2004a). This can be as a result of 

the migration of pesticides from one comb to another, as it was found that the active 

ingredient from the initial comb fell and built up within newly produced comb (Wu et al., 

2011); consequently, comb wax is considered “uniformly contaminated” (Mullin et al., 
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2010). The migration of pesticides can also occur between comb wax and the contents 

within each cell (Stuart et al., 2008; Tremolada, Bernardinelli, Colombo, Spreafico, & 

Vighi, 2004); this can result in similar concentrations of pesticides in both comb wax and 

honey stores (Stuart et al., 2008). The partition between honey and comb wax will 

decrease during the honey maturation process, as the water content begins to drop 

(Chauzat & Faucon, 2007). Not all fat-soluble pesticides are stable as wax was found to 

accelerate the degradation of amitraz; which is also known to have poor stability in 

honey. Volatile and semi-volatile fat-soluble compounds, such as essential oils, are also 

known to decrease in concentration through evaporation, which occurs as a result of the 

temperature within the hive. Hydrophilic chemicals, such as oxalic acid and formic acid, 

do no accumulate in wax, although they can be detected in honey giving rise to an 

unpleasant taste (Wallner, 1999).  

The removal of acaricides can be difficult, as there are limited options available to achieve 

this (Chauzat & Faucon, 2007), although an attempt to reduce pesticide residues using 

Ozone was found to be partially successful (James, Ellis, & Duehl, 2013). Acaricides were 

found to be persistent in wax even after heating at 140 °C for 2 hours (Bogdanov 1998) 

resulting in the contaminated foundation wax. Exposing wax to such high temperatures 

can have a negative effect on its condition (Bogdanov, 2009). Interestingly, thymol, 

although volatile, was found not to evaporate during comb wax recycling (Bogdanov, 

Imdorf, & Kilchenmann, 1998a). Contaminated foundation wax, therefore, presents 

another mechanism by which pesticides are introduced in to the hive (Adamczyk, Lázaro, 

Pérez-Arquillué, Bayarri, & Herrera, 2010; Bogdanov, 2004a; Wallner, 1999).  
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4.4 Contaminants of foundation wax 

Wallner (1999) considers comb wax, in countries where (stable-synthetic) substances are 

used, to be “permanently damaged”. Only the complete destruction (for example, 

burning) of the comb wax can destroy the active ingredient (Wallner, 1999). This is based 

on the fact that certain chemicals, for example, tau-fluvalinate, coumaphos and DMPF, 

are not removed after thermal treatment (Bogdanov, 2004a; Korta et al., 2001; 

Tremolada et al., 2004). As a result, internationally traded wax can contain substances not 

used or approved in the country to which it was imported (Wallner, 1999). 62.5 % of the 

foundation sheets analysed in Germany and 20 % of imported foundation were found to 

contain coumaphos (Wallner, 1999). Interestingly, although high levels of coumaphos was 

detected in Italian foundation wax, it was found to show a decreasing trend in colonies 

which were kept organically (no synthetic chemical used) (Lodesani, Bigliardi, & Colombo, 

2003), supporting the notion that concentrations will fall once applications have ceased 

(Bogdanov, 2004a).  

 

4.5 Aim of investigation 

The aim of this chapter is to analyse distributed sheets of organic foundation wax to 

determine which pesticides, if any, accumulate in the resulting comb over a two year time 

frame in five selected regions of the UK. 
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4.6 Experimental design (accumulation over time) 

In order to monitor an accumulation of pesticides over a two year period, a frame of 

(certified) organic foundation wax (EH Thorne (Beehives) Ltd) was distributed to 

participating beekeepers, along with a set of instructions which set out the requirements 

of this study (Appendix F). The instructions stated that the foundation wax was to be left 

in the hive (if possible) for two complete seasons (2012 – 2014). After one year, a section 

of this comb is then to be returned to Keele University, whilst the remainder of the frame 

is to be left within the hive. A final sample will then be collected again in 2014 (July-

August) and returned along with a second questionnaire (Appendix G). During instances 

whereby beekeepers may chose not to use the supplied foundation wax, or where the 

foundation was inadequate for their hive (due to incorrect sizing), a sample of their own 

wax was requested prior to installation. This was to provide a baseline on which the 

accumulation of residues can be monitored, as in some cases their wax had been recycled 

continuously for decades, so any initial contaminants were accounted for. Sheets of blank 

organic foundation were also analysed.  

 

4.7 Materials and Methods 

4.7.1 Sample collection  

Beekeepers from Chapter 3 who originally registered interest in continuing with further 

studies, were contacted along with beekeeping associations in areas of interest. Sheets of 

blank organic foundation were distributed to those beekeepers who responded. The 

foundation used was deemed to be "beeswax obtained from hives which were operated 

organically" in accordance with Article 29(1) of Regulation (EC) No 834/2007 (EH Thorne 
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(Beehives) Ltd, Personal communication), although no paperwork was ever provided on 

request.  

Sample locations were initially targeted based on the results of Chapter 3, whereby the 

regions of the UK with highest levels of comb wax contamination would be the main focus 

of the study. However, as the GC-MS analysis failed to reveal pesticides at levels greater 

than 1 ppmv, the approach to determining these locations was therefore altered. Figure 

4.1 shows a comparison of the percentage distribution of pesticides (Garthwaite, Barker, 

Smith, Chippindale, & Pietravalle, 2010) and the locations of beekeepers (from Chapter 3) 

who agreed to participate in future studies.  

 

Figure 4.1: A comparison of the pesticide usage (Garthwaite et al., 2010) and percentage location of 

participating beekeepers (from Chapter 3) based on each region across England.  
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Using the information from Figure 4.1, five key regions were selected: 

1) Eastern 

2) South West (SW) 

3) South East (SE) & London  

4) Yorkshire and the Humber  

5) North Staffordshire/ South Cheshire 

In total 43 sheets of foundation were distributed (Figure 4.2). Most foundation sheets 

were placed within the hives between July/August 2012. First season samples were 

returned between July and August 2013, whilst second seasons samples were received 

August/September 2014. All returned samples were stored at -40 °C.  
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Figure 4.2: The (approximate) locations of distributed sheets of organic foundation. No distinction is 

shown between the locations where multiple sheets have been sent to the same beekeeper.   

SW – South West; SE – South East; NW – North West. 

 

 

4.7.2 Sample extraction 

The QuEChERS extraction and Q-TOF LC/MS clean-up methodology were conducted in the 

same manner as described in Chapter 3.6.3, p135.  
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4.7.3 Instrumental analysis  

Q-TOF LC/MS analysis was conducted in the same manner as described in Chapter 3.6.4, 

p136. 

 

 

4.8 Results 

4.8.1 Questionnaire results 

A summary of the questionnaire results given by beekeepers during each season of 

collection is given in Appendix H; however, some of the questions have not been 

tabulated due to their qualitative nature. Only one questionnaire was completed for the 

second season and has therefore not been summarised below. 

 

First season questionnaires results 

Of the 16 samples received, 56.25 % were from a rural environment and 43.75 % were 

from a semi-rural environment. No samples were received from areas considered to be 

urban. The top three (specified) apicultural treatments used were thymol (75 %), oxalic 

acid (50 %) and Apistan (tau-fluvalinate) (12.50 %). 18.75 % of the samples received were 

specified as not being treated. Of the samples received, 81.25 % used the organic 

foundation wax provided by Keele University; the remaining 12.5 % used foundation 

obtained from other distributors. 

 

4.8.2 Analysis of foundation wax 

As shown in Table 4.1, none of the four organic foundation sheets analysed were found to 

contain any hive treatments or agrochemicals; thus establishing a blank starting point, 
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within the limits of detection. The three foundation sheets provided by beekeepers for 

analysis, two were found to contain tau-fluvalinate. 

 

Table 4.1: Results of organic foundation wax analysis (n = 4), plus beekeeper supplied foundation sheets 

(n = 3). 

Sample I.D. Compound 
RT 

(min) 
Score 

Difference 
(ppm) 

Organic foundation (1) - - - - 

Organic foundation (2) - - - - 

Organic foundation (3) - - - - 

Organic foundation (4) - - - - 

CAM_12/07/13  (F) tau-fluvalinate 8.807 99.07 0.43 

KEN_22/07/13 (F) - - - - 

KEN_02/09/13 (F) tau-fluvalinate 8.825 98.93 0.86 

(F) = foundation 

 

 

4.8.3 Analysis of first season comb wax samples 

As seen in Table 4.2, tau-fluvalinate was detected in 8 out of the initial 16 comb wax 

samples analysed (50 %). Only a single sample (KEN_17/07/13) was identified to contain 

more than one detectable pesticide; both of the compounds detected in this sample 

(boscalid and pyraclostrobin) were also the only chemicals which were believed to have 

originated from outside the hive. Seven of the samples analysed were found to contain no 

detectable pesticides. 
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Table 4.2: First season Q-TOF LC/MS results for analysed comb wax samples (n = 16). 

Sample I.D. Compound 
RT 

(min) 
Score 

Difference 
(ppm) 

Acc. age 
(months) 

CAM_12/07/13 tau-fluvalinate 8.809 94.57 0.001 14 

CHS_29/07/13 tau-fluvalinate 8.813 91.39 1.400 12 

DEV_02/07/13a tau-fluvalinate 8.875 99.51 0.570 11.5 

DOR_12/07/13c tau-fluvalinate 8.760 88.47 3.110 13 

DOR_30/07/13 tau-fluvalinate 8.823 76.70 1.970 10 

HRT_09/07/13a - - - - 13 

KEN_17/07/13 Boscalid 5.773 96.50 1.870 12 

 
Pryaclostrobin 6.625 99.56 0.050 

 KEN_22/07/13 tau-fluvalinate 8.785 98.24 0.640 15 

KEN_02/08/13 - - - - 12 

KEN_02/09/13b tau-fluvalinate 8.821 79.17 2.690 12 

SOM_09/07/13a - - - - 11 

STS_02/09/13 - - - - 10 

STS_11/09/13b,c - - - - 10 

SXE_02/07/13 - - - - 11 

SXW_12/07/13 - - - - 11.5 

WYK_10/7/13 tau-fluvalinate 8.818 81.71 0.610 11.5 

 
a
 tau-fluvalinate used; 

b
 no hive treatments used; 

c
 colony reported to have failed to over winter. 

 

 

Figure 4.3: An overlay comparison between boscalid, detected in KEN_17/07/13, to its theoretical 

isotopic pattern (red boxes).The structure of boscalid has also been provided.  
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Figure 4.4: An overlay comparison between pryaclostrobin, detected in KEN_17/07/13, to its theoretical 

isotopic pattern (red boxes). The structure of pryaclostrobin has also been provided.  

 

Using the theoretical isotopic pattern both boscalid (Figure 4.3) and pryaclostrobin 

(Figure 4.4) were identified in KEN_17/07/13 with 96.50 % and 99.56 % matches, 

respectively. 

 

4.8.4 Analysis of second season comb wax samples 

No pesticides were detected in either of the two samples received during the second 

season of this study (Table 4.3), despite previously detecting tau-fluvalinate in 

CAM_12/07/13 and both boscalid and pryaclostrobin in KEN_17/07/13.  

 

Table 4.3: Second season Q-TOF LC/MS results for analysed comb wax samples (n = 2). 

Sample I.D. 
Previous 
sample 

Compound RT Score 
Difference 

(ppm) 
Acc. age 
(months) 

CAM_05/09/14 CAM_12/07/13 - - - - 26 

KEN_22/08/14 KEN_17/07/13 - - - - 24 
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4.9 Discussion 

4.9.1 Sample collection 

The significant drop in beekeeper participation is partially due to limiting the sampled 

areas to five regions of England as opposed to monitoring potential accumulations from 

across the country and indeed the rest of the UK. However, this does not explain the 

return of only 16 samples from the originally distributed 43 sheets of foundation wax. 

Some beekeepers had been in touch to explain that their colony had been destroyed in 

order to control the spread of American foulbrood. Comb wax was also reported to have 

been discarded in instances where colonies had failed to survive over the winter period. 

The GC-MS results of Chapter 3 may have also dissuaded further interest in the study, as a 

failure to detect any ‘harmful’ chemicals may have left beekeepers feeling that their 

colony(s) were not at risk of any detrimental chemical exposure. Another explanation is 

perhaps the slow return of results from Chapter 3 back to the beekeepers, due to 

unforeseen complications. 

 

4.9.2 Pesticide residues within foundation wax 

No pesticides, including those applied by beekeepers, were found following the analysis 

of four blank organic foundation sheets. Sampled foundation sheets were taken from the 

middle of every newly opened packet (10 pieces); this was conducted in order to 

maximise the chance of detecting any pesticides should there be any migration between 

the sheets. The initial negative results were satisfactory enough to assume that all 

foundation sheets were of the same purity and that any pesticides detected within the 

returned combs can be assumed to be a result of external contamination.  
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4.9.3 Season one: returned comb wax samples 

GC-MS analysis was not conducted within this chapter, due to its limited success in the 

detection of pesticides in Chapter 3. However, it is expected that thymol would again be 

detected in the samples of this chapter as this is a popular Varroa treatment used within 

the UK and depending on the application method, its exposure to honeybee colonies can 

be continuous (Wallner & Fries, 2003). However, HRT_09/07/13, KEN_02/09/13 and 

STS_11/09/13 all reported that no treatments were used on their hives. As these samples 

were constructed on the initially supplied organic foundation, it therefore limits the 

introduction of chemicals into the comb by external sources, or from pre-contaminated 

foundation wax which may also be contained within the hive. Of these samples, only 

KEN_02/09/13 was found to contain tau-fluvalinate.  

According to the questionnaire results, two participating beekeepers in this chapter used 

tau-fluvalinate as a hive treatment: DEV_02/02/13 and SOM_09/07/13; this chemical was 

positively identified in the former whilst it was not detected in the latter. It is known that 

the accumulation of chemicals in the hive can result from their frequency of use and the 

amount of active ingredient applied (Wallner, 1999); unfortunately neither of this 

information was requested from or supplied by beekeepers. Interestingly, SOM_09/07/13 

(11 months old on organic frame) arrived as a dark comb, suggestive of multiple brood 

generations. The same beekeeper supplied a comb in Chapter 3 (SOM_4_06/07/11), 

which was only three months old and recorded as pale in colour; this was later found to 

contain tau-fluvalinate. It was regularly observed that pale wax (including foundation) 

completely melted during QuEChERS, whereas the darker combs only partially melted, 

thus leaving behind exuviae or ‘cell ghosts’ (Hepburn, 1986). It is known that the 
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percentage ratio of wax within the comb will decrease with age (Hepburn & Kurstjens, 

1988), which raises the question how much wax is there in a 3 g sample of old comb?  

Interestingly, although the foundation wax from KEN_02/09/13 (F) was found to contain 

tau-fluvalinate, the detection of the compound in drawn-out comb (KEN_02/09/13) was 

of a poorer percentage match (79.71 %) than compared to the initially detected chemical 

in the foundation (99.07 %). A possibility for this reduction is as the amount of wax 

increases through comb-building, or the migration of the chemical into other 

combs/matrices. It will then have a lower concentration per unit area, meaning it 

becomes closer to the LOD, resulting in low-quality mass spectral data.  

Although a foundation sheet was distributed to CAM_12/07/13, it appears that an 

alternative foundation sheet was preferred and this was returned for analysis. It was 

stated that tau-fluvalinate was not used and relating back to the sample questionnaire 

provided by the same beekeeper in Chapter 3 (CAM_3_06/07/11), only thymol was 

reported to have been used. Therefore, it is likely that the source of tau-fluvalinate is 

from the foundation wax used by the beekeeper, as two of the three foundation sheets 

analysed were found to contain this chemical. Unless approached quantitatively, it is 

difficult to monitor the accumulation, or indeed the reduction of a pesticide within a 

comb wax sample, if the foundation used already contains a compound of interest. 

Although valuable information can still be derived from qualitative observations, this 

highlights a weakness of this study.  

STS_11/09/13 was described as a very small and weak colony, which had unfortunately 

died very early on in the season and although the comb was partially drawn, no pesticides 

were found to have accumulated. As pesticides are said to distribute about the hive 
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during honeybee movement around the colony (Wallner, 1999), perhaps the small 

amount of hive activity was not substantial enough to result in a significant transfer 

between combs. This, of course, is based on the assumption that other combs in the hive 

contained pesticides. However, DOR_12/07/13 also failed to over winter, yet tau-

fluvalinate was detected in the sampled comb. The comparative strength of both colonies 

is not known, so it is not possible to draw conclusions of the role of hive activity, although 

it is suggested to be a major contributor to the spread of pesticides around the hive 

(Wallner, 1999). 

Even though originally not targeted as a pesticide of interest, the fungicide pryaclostrobin 

(log Kow 3.99 (Tomlin, 2009)) was detected in KEN_17/07/13; boscalid was also identified 

as being present in the same sample. The questionnaire relating to KEN_17/07/13 

acknowledged that the local flora included fruit trees and field beans, amongst others. 

Pyraclostrobin and boscalid are found together in two UK approved pesticide 

applications: 1) Bellis® (BASF) – for use on fruit trees; and 2) Signum® (BASF) which is used 

on many crops including field beans (BCPC, 2014). Consequently, it is not unreasonable to 

assume that these sources of forage could be the origin of the agrochemicals detected. 

The low levels of agricultural pesticides detected in the hive may be attributed to the 

‘filtering’ effect of bees (Bogdanov, 2006), as well as the relatively short period of time for 

these chemicals to sufficiently accumulate. Thiamethoxam treatments were not found to 

be persistent in wax (Pilling, Campbell, Coulson, Ruddle, & Tornier, 2013). 
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4.9.4 Season two: returned comb wax samples 

In season one, CAM_12/07/13 was found to contain tau-fluvalinate, which was 

considered to be a consequence of an already contaminated foundation wax; however, 

the second collected sample (CAM_05/09/14) contained no detected pesticides. With 

such a limited sample size (n = 2) it is not possible to determine any trends or to make any 

definite conclusions regarding accumulation. What is seen here is a potential reduction in 

a pesticide, within the space of around 12 months; which contradicts suggestions of long 

term persistence (Bogdanov, 2006). Yet, given that this comb wax was not actively 

treated with the previously detected substance, this does support the gradual reduction 

of a compound over time (Bogdanov, 2004b). The fact that tau-fluvalinate is not detected 

after a relatively short amount of time, compared to its five year half-life (Bogdanov, 

2004a), may suggest that it has been ‘diluted’ as more wax is added or lost to other 

matrices and may have, as a result, fallen below the limit of instrumental detection.  

It is expected that, for a comb demonstrating a typical brood pattern, the majority of hive 

activity would be concentrated at the centre of the comb with the peripheral areas being 

reserved for honey stores. This ‘hot-spot’ of hive activity would surely mean there is a 

potential for a greater concentration of chemicals in this area. Indeed, this was found true 

for tau-fluvalinate, as residual levels were higher in brood combs than honey combs 

(Tsigouri, Menkissoglu-Spiroudi, Thrasyvoulou, & Diamantidis, 2003).  

There are also a number of other possibilities for not detecting a previously found 

chemical, which lies with the instructions provided to beekeepers. The instructions 

(Appendix F) state that the supplied comb should be used to fit in line with their existing 

apicultural practices. The initial idea of this was to not to inconvenience beekeepers, 
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whilst also ensuring that the comb was not paid any special attention, which may result in 

biased results; for example increasing its likelihood of coming into contact with any 

chemical treatment. As a result, it is not known how the comb was used within the hive, 

including its location.  

The failure to detect boscalid and pryaclostrobin within KEN_22/08/14 suggests that the 

previously analysed sample may have contained pollen which was contaminated with 

these chemicals. It is not known whether this hive was relocated during each season nor if 

the crops which are the source of contaminated pollen were on a rotation system, 

meaning that there would be no need for this chemical to have been used.  

Although very speculative, it is a possibility that the sampled comb may have been taken 

from the same position in the frame as the previous year, as this section of wax would not 

contain any reinforcing wire from the initial foundation sheet. Consequently, the sampled 

comb would only be 12 months old. Unfortunately the inclusion of wire within comb wax 

samples was not recorded.     

 

4.10 Conclusion  

This chapter presents the first known attempt to monitor the accumulation of pesticides 

in UK comb wax samples. Unfortunately, the aims of this study have not been met; as 

with such a limited response in the second season of this study (n = 2) it was not possible 

to fully appreciate the accumulation of pesticides over a two year period. Although the 

results presented here were not quantified, the detection of tau-fluvalinate in beekeeper 

supplied foundation wax and in combs drawn-out from blank organic foundation wax was 

confirmed. This suggests that contaminated foundation wax may be the probable source 
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of this chemical. As only two agricultural pesticides were detected, albeit in a very small 

sample set, it is perhaps possible to distance the UK from the severe levels of 

agrochemical contamination found in American migratory honeybee hives (Mullin et al., 

2010). The findings of this study are therefore more inline with European findings 

(Bogdanov et al., 2003). In order to improve it would be best to monitor accumulation 

over a greater number of years than used here, whilst also securing a greater number of 

samples for analysis.    

  



Chapter 4: The accumulation of pesticides within comb wax over a two year time period 

176 

References 

Adamczyk, S., Lázaro, R., Pérez-Arquillué, C., Bayarri, S., & Herrera, A. (2010). Impact of 
the use of fluvalinate on different types of beeswax from Spanish hives. Archives of 
Environmental Contamination and Toxicology, 58(3), 733–739. doi:10.1007/s00244-
009-9387-7 

BCPC. (2014). The UK Pesticide Guide 2014. (M. A. Lainsbury, Ed.). Hampshire: British Crop 
Protection Council (BCPC). 

Bogdanov, S. (2004a). Beeswax: Quality issues today. Bee World, 85(3), 46–50. 
doi:10.1080/0005772X.11099623 

Bogdanov, S. (2004b). Quality and Standards of Pollen and Beeswax. Apiacta, 38, 334–
341. 

Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37, 1–18. 
doi:10.1051/apido.2005043 

Bogdanov, S. (2009). Beeswax: Production, properties, composition and control. 
Retrieved October 01, 2010, from http://www.bee-
hexagon.net/files/file/fileE/Wax/WaxBook2.pdf 

Bogdanov, S., Imdorf, A., Charrière, J., Fluri, P., & Kilchenmann, V. (2003). The 
contaminants of the bee colony. Liebefeld: Swiss Bee Research Centre. 

Bogdanov, S., Imdorf, A., & Kilchenmann, V. (1998a). Residues in wax and honey after 
Apilife VAR® treatment. Apidologie, 29, 513–524. doi:10.1051/apido:19980604 

Bogdanov, S., Imdorf, A., & Kilchenmann, V. (1998b). Thymol residues in wax and honey 
after Apilife VAR treatment. Apidologie, 29, 513–524. doi:10.1051/apido:19980604 

Bogdanov, S., Ryll, G., & Roth, H. (2003). Pesticide residues in honey and beeswax 
produced in Switzerland. Apidologie, 34, 484–485. 

Bond, J., Plattner, K., & Hunt, K. (2014). Fruit and Tree Nuts Outlook: Economic Insight. 

Bonmatin, J., Giorio, C., Girolami, V., Goulson, D., & Kreutzweiser, D. P. (2015). 
Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science 
and Pollution Research, 22, 35–67. doi:10.1007/s11356-014-3332-7 

Chauzat, M-P., Carpentier, P., Martel, A-C., Bougeard, S., Cougoule, N., Porta, P., Lachaize, 
J., Madec, F., Aubert, M., Faucon, J-P. (2009). Influence of pesticide residues on 
honey bee (Hymenoptera: Apidae) colony health in France. Environmental 
Entomology, 38(3), 514–23. doi:10.1603/022.38.0302 



Chapter 4: The accumulation of pesticides within comb wax over a two year time period 

177 

Chauzat, M-P., & Faucon, J-P. (2007). Pesticide residues in beeswax samples collected 
from honey bee colonies (Apis mellifera L.) in France. Pest Management Science, 63, 
1100–1106. doi:10.1002/ps.1451 

Chauzat, M-P., Faucon, J-P., Martel, A., Lachaize, J., Cougoule, N., & Aubert, M. (2006). A 
survey of pesticide residues in pollen loads collected by honey bees in France. 
Journal of Economic Entomology, 99(2), 253–262. doi:10.1603/0022-0493-99.2.253 

Garthwaite, D. G., Barker, I., Smith, L., Chippindale, C., & Pietravalle, S. (2010). Pesticide 
usage survey report 235. Arable crops in the United Kingdom. York. 

Grunewald, B. (2010). Is pollination at risk? Current threats to and conservation of bees. 
Gaia Ecological Perspectives For Science And Society, 19(1), 61– 67. 

Hepburn, H. R. (1986). Honeybees and Wax: An Experimental Natural History. Berlin: 
Springer-Verlag. 

Hepburn, H. R., & Kurstjens, S. P. (1988). The combs of honeybees as composite materials. 
Apidologie, 19(1), 25–36. doi:10.1051/apido:19880102 

James, R. R., Ellis, J. D., & Duehl, A. (2013). The potential for using ozone to decrease 
pesticide residues in honey bee comb. Agricultural Science, 1(1), 1–16. 
doi:10.12735/as.v1i1p01 

Johnson, R. (2010). Honey Bee Colony Collapse Disorder. CRS Report for Congress, 
(January 7, 2010). 

Johnson, R. M., Ellis, M. D., Mullin, C. A., & Frazier, M. (2010). Pesticides and honey bee 
toxicity – USA. Apidologie, 41(3), 312–331. doi:10.1051/apido/2010018 

Korta, E., Bakkali, A., Berrueta, L. a, Gallo, B., Vicente, F., Kilchenmann, V., & Bogdanov, S. 
(2001). Study of acaricide stability in honey. Characterization of amitraz degradation 
products in honey and beeswax. Journal of Agricultural Food Chemistry, 49, 5835–
5842. doi:10.1021/jf010787s 

Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G., & Given, K. (2012). Multiple routes of 
pesticide exposure for honey bees living near agricultural fields. PLoS ONE, 7(1), 
e29268. doi:10.1371/journal.pone.0029268 

Lambert, O., Piroux, M., Puyo, S., Thorin, C., Hostis, M. L., Wiest, L., Bulete, A., Delbec, F., 
Pouliquen, H. (2013). Widespread occurrence of chemical residues in beehive 
matrices from apiaries located in different landscapes of Western France. PLoS ONE, 
8(6), e67007. doi:10.1371/journal.pone.0067007 

Lodesani, M., Bigliardi, M., & Colombo, R. (2003). Acaricide residues in bee wax and 
organic beekeeping. Apiacta, 38, 31–33. 



Chapter 4: The accumulation of pesticides within comb wax over a two year time period 

178 

Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S., Simonds, R., vanEngelsdorp, D., & 
Pettis, J. S. (2010). High levels of miticides and agrochemicals in North American 
apiaries: Implications for honey bee health. PLoS ONE, 5(3), e9754. 
doi:10.1371/journal.pone.0009754 

Pilling, E., Campbell, P., Coulson, M., Ruddle, N., & Tornier, I. (2013). A four-year field 
program investigating long-term effects of repeated exposure of honey bee colonies 
to flowering crops treated with thiamethoxam. PLoS ONE, 8(10), e77193. 
doi:10.1371/journal.pone.0077193 

Ravoet, J., Reybroeck, W., & de Graaf, D. C. (2015). Pesticides for apicultural and /or 
agricultural application found in Belgian honey bee wax combs. Bulletin of 
Environmental Contamination and Toxicology, 94, 543–548. doi:10.1007/s00128-
015-1511-y 

Serra-Bonvehí, J., & Orantes-Bermejo, J. (2010). Acaricides and their residues in Spanish 
commercial beeswax. Pest Management Science, 66, 1230–1235. 
doi:10.1002/ps.1999 

Stuart, J. A., Katharina, H., Richard, J. F., Selwyn, W., Helen, M. T., Helen, M. A., & 
Matthew, S. (2008). Study of the distribution and depletion of chloramphenicol 
residues in bee products extracted from treated honeybee (Apis mellifera L.) 
colonies. Apidologie, 39, 537–546. doi:10.1051/apido:2008035 

Tomlin, C. D. S. (2009). The Pesticide Manual: A world compendium (15th edn.). 
Hampshire: British Crop Protection Council (BCPC). 

Tremolada, P., Bernardinelli, I., Colombo, M., Spreafico, M., & Vighi, M. (2004). 
Coumaphos distribution in the hive ecosystem: case study for modeling applications. 
Ecotoxicology, 13(6), 589–601. doi:10.1023/B.ECTX.000037193.28684.05 

Tsigouri, A., Menkissoglu-Spiroudi, U., Thrasyvoulou, A., & Diamantidis, G. (2003). 
Fluvalinate residues in Greek honey and beeswax. Apiacta, 38, 50–53. 

vanEngelsdorp, D., Evans, J. D., Donovall, L., Mullin, C., Frazier, M., Frazier, J., Tarpy, D. R., 
Hayes Jr, J., Pettis, J. S. (2009). “Entombed Pollen”: A new condition in honey bee 
colonies associated with increased risk of colony mortality. Journal of Invertebrate 
Pathology, 101(2), 147–9. doi:10.1016/j.jip.2009.03.008 

Wallner, K. (1999). Varroacides and their residues in bee products. Apidologie, 30(2-3), 
235–248. doi:10.1051/apido:19990212 

Wallner, K., & Fries, I. (2003). Control of the mite Varroa destrutor in honey bee colonies. 
The Royal Society of Chemistry, (April), 80–84. doi:10.1039/b301510f 

Wu, J. Y., Anelli, C. M., & Sheppard, W. S. (2011). Sub-lethal effects of pesticide residues in 
brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS 
ONE, 6(2), e14720. doi:10.1371/journal.pone.0014720



 
 

179 

 
 
 
 
CHAPTER 5  

Determining the levels of three seed-applied 
neonicotinoids in oilseed rape nectar and pollen  

 

 

 

 

5.1 Overview  

The demand for oilseed rape oil for use in biodiesels has seen a rise in the popularity of 

this crop grown in the UK. As such, the UK was considered to be a leading figure in the 

export of this product (Berry, Cook, Ellis, Gladders, & Roques, 2014). Being described as 

having a medium honey flow, oilseed rape offers a valuable source of forage for many 

pollinators (Farkas & Zajácz, 2007). However, scientific research published in the spring of 

2012 (Henry et al., 2012; Whitehorn et al., 2012), in addition to a report from the 

European Food Safety Authority (EFSA, 2013), saw an imposed two year restriction on the 

use of neonicotinoid seed-treatments typically applied to oilseed rape. This was due to 

concerns of these chemicals having negative impact on pollinator health. This restriction 

is up for review before December 2015, with calls for more information regarding the 
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impact of neonicotinoids on pollinators. This study presents the amount of these 

neonicotinoids found within the nectar and pollen of oilseed rape.  

 

5.2 Introduction to oilseed rape 

The Brassica genus (Brassicas) includes many crop species such as: cabbage, sprout, kale, 

cauliflower, turnip, mustard and oilseed rape. This assortment of crops derives from 

much interbreeding, in order to amplify and exaggerate the size of roots, buds and seed 

pods; these are then exploited, often for human consumption (Kirk, 1992). Oilseed rape is 

a general term used for several species of oil-seed crops within the Brassica genus, most 

commonly Brassica napus L. (swede rape), Brassica rapa L. (turnip rape) and Brassica 

juncea (mustard). Within the United Kingdom, B. napus is the predominantly grown 

oilseed crop and therefore most commonly referred to as oilseed rape (Bunting, 1986; 

Kirk, 1992). It is in this sense in which the name will be referred to throughout this 

chapter – unless otherwise stated. There are spring-sown and autumn-sown varieties of 

oilseed rape, often referred to as spring and winter rape, respectively. With a typical yield 

of 20 % more than the spring-sown variety, winter rape (autumn-sown) is the 

predominate variety within the UK (Bunting, 1986) and will also be the focus of this 

chapter.  

 

5.2.1 A brief history of oilseed rape  

A parliamentary Bill introduced in 1572 entitled ‘making oil out of seeds grown in 

England, equal to Spanish or foreign oils’ was the first documented reference of oilseed 

being used in England. Oilseed had important economic value and production expanded 
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rapidly until the end of the seventeenth century; so much so that oil production became 

protected by tariff barriers. Around this time the residual oil meal, a by-product of oil 

production, had started to be used for cattle feed. By the mid-eighteenth century mineral 

oils had started to replace rapeseed oil and through free trade policies oilseed had all but 

disappeared from British farming and similar trends were observed across Europe 

(Bunting, 1986). Rapeseed oil has been used as an edible oil in Eastern cultures for 

thousands of years (Thompson & Hughes, 1986). With the exception of 1940s wartime 

Germany, western countries considered rapeseed oil to be unsuitable for human 

consumption (Thompson & Hughes, 1986). This is perhaps due to its unpleasant bitter 

taste and odour, brought about by the natural occurrence of glucosinolates and acidic 

compounds found within the seed (Kirk, 1992; Thompson & Hughes, 1986). 

The commercial reintroduction of oilseed into Britain began in 1950, on a moderate scale. 

It was not until the 1970s that the amount of oilseed grown in the UK increased 

dramatically, owing to the use of oilseed as a break crop for cereals in addition to the new 

demand for poly-unsaturated vegetable fats. Consequently, this saw a rise in value of 

oilseed on the world market (Kirk, 1992).  

However, the natural occurrence of some chemicals in rapeseed oil and meal have been 

found to have adverse effects on the health of humans and livestock (Kirk, 1992). For 

example, erucic acid has been found to cause cardiac abnormalities in laboratory studies 

(Beare-Rogers & Nera, 1972; de Wildt & Speijerst, 1984; Renner, Innis, & Clandinin, 1979). 

A high content of glucosinolates in the meal used for livestock can also produce 

undesirable effects (Kirk, 1992; Mithen, 1992), although, glucosinolates also have been 

associated with anti-carcinogenic properties (Hillman, Ratcliffe, Lynn, & Collins, 2006). 
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During the 1970s intensive breeding programs led to the production of various varieties 

of oilseed rape, which were considerably lower in glucosinolates and erucic acid. Low–

erucic varieties of spring-sown rape were first registered in Canada in the 1974. It was not 

until 1977 that winter varieties were later registered (Bunting, 1986). Oilseed containing 

low levels of erucic acid and high levels of glucosinolates are referred to as “single-low” 

varieties (Kirk, 1992); nevertheless, high erucic acid varieties are used within industrial 

processes, such as inks and lubrication (Berry et al., 2014; Bhardwaj & Hamama, 2000; 

Bunting, 1986). Oilseed with low levels of both erucic acid and glucosinolate are known as 

“double-low” varieties; these became extensively grown towards the end of the 1980s 

(Kirk, 1992). Those varieties of  B. napus, with an acidic content lower than 5 % 

(Thompson & Hughes, 1986), came to be known as ‘Canola’ – ‘Canadian oil, low acid’ 

(Office of the Gene Technology Regulator, 2008). Both of the terms oilseed rape and 

canola appear to be used interchangeably in the literature. The former is predominately 

used within the UK, whilst the latter tends be more commonly adopted across North 

America and Australia.  

 

5.2.2 The role of oilseed rape in modern agriculture 

During fallow periods, which occur between cropping systems, the land is often left bare 

and exposed. Consequently, the soil is at risk of erosion as well as losing various nutrients 

and organic matter, which may not be replaced; this can ultimately reduce the 

productivity of the soil (Kaspar & Singer, 2011). Cover crops, as the name suggests, are 

crops which cover the soil, aiding in the reduction of soil erosion. There are various types 

of cover crop available and their use depends on the duty they are required to perform. 

For example, ‘green manures’ are nitrogen (N) fixing crops (such as legumes), which 
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ensure that nitrogen is available for the succeeding cash crop. ‘Catch crops’, however, 

take up the nutrients which would otherwise be lost if the land was left fallow. ‘Living 

mulch’ cover crops tend to occupy the spaces between cash crops and this helps to 

provide weed suppression as well as regulating soil temperatures. However, the growth 

of living mulches is controlled so not to compete with the more valuable crop (Kaspar & 

Singer, 2011). Cover crops are also important in the control of pests and disease (Baldwin, 

2006; Kirk, 1992). Oilseed rape is often used as a cover crop and is frequently included in 

a rotation cycle with wheat, potatoes and sugar beet, for example (Berry et al., 2014). 

Crops of the same family should not immediately follow each other on the same land 

during rotation cycles, as this can result in a build-up of soil-borne pathogens (Baldwin, 

2006). Oilseed was originally grown in one in every five rotations, although this has since 

reduced to one in every two or one in every three; this is a result of economic pressures, 

as the demand for biodiesels remains strong. A reduction in the time between rotations 

has seen a smaller yield for each subsequent oilseed crop, as a result of accumulating 

diseases or through soil compaction – which can affect the growth of the plant. The 

chemical treatments of oilseed also provide protection for future crop generations (Berry 

et al., 2014), as they will remain persistent within the soil (Goulson, 2013).   

 

5.2.3 Plant structure and physiology 

The flower of the oilseed has six stamen and four nectaries in total. The stamen can be 

separated into two distinct types; a group of four inner stamen and two outer stamen. 

The inner stamen extend beyond the petals and release their pollen outwards; whilst the 

outer stamen, which are shorter, are found below the level of the petals and release their 

pollen inwards (Kirk, 1992). This morphological arrangement would suggest that the 
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shorter, inner stamen are not involved in self-pollination, as pollen grains are released 

below the level of the stigma throughout the whole anthesis process (Rosa, Blotchtein, 

Ferreira, & Witter, 2010).  

There are a total of four different nectary arrangements within the Brassicaceae family 

(Bender et al., 2012). Brassica napus has a ‘four-nectary’ type morphology consisting of 

two pairs of nectaries, which are commonly bilobed in shape and are located at the base 

of the flower behind the sepals (Bender et al., 2012; Kirk, 1992). The nectary arrangement 

is shown in Figure 5.1.  

The nectaries, like the stamen, can also be separated into two groups: the inner and outer 

nectaries. The outer nectaries are exposed, whilst the inner nectaries are situated 

between the stigma and short stamen. Nectaries appear as small green ‘bumps’ which 

can be found between the gaps of the inner stamen and are often found surrounded by 

clear drops of freshly secreted nectar (Kirk, 1992), a complex mixture of compounds 

which includes sugars and amino acids dissolved in water (Calder, 1986). 

 

Figure 5.1: Schematic drawing (view from above) showing the locations of the reproductive features of 

the B. napus flower. Adapted from Rosa et al., (2010).  
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In regards to sugar content, the inner nectaries secrete less concentrated nectar but in 

greater volumes than that of the outer nectaries (Eisikowitch, 1981; Kirk, 1992). The inner 

nectaries receive a much greater vascular supply of phloem compared to the outer 

nectaries. This results in an unbalanced secretion of nectar, with 96 - 100 % of nectar 

being secreted at the inner nectaries (Davis, Pylatuik, Paradis, & Low, 1998). 

Examples of the simplest sugars found in nectar are the monosaccharides: glucose and 

fructose; these and their combination product, sucrose, are the principal components of 

nectar (Calder, 1986). The ratio of these three sugars varies between species. Glucose and 

fructose are predominately found within oilseed rape nectar (Calder, 1986; Davis et al., 

1994; Kołtowski, 2007), although small quantities of sucrose can be found in some 

varieties (Pierre, Mesquida, Marilleau, Pham-Delègue, & Renard, 1999). A characteristic 

of honey made from oilseed rape nectar is its rapid setting (crystallisation) within the 

hive, owed to its high glucose content (Calder, 1986) and it must therefore be extracted 

from the hive within weeks of it being collected (Kirk, 1992).  

Oilseed rape is sown as a large monoculture, which provides a medium honey flow during 

a valuable developmental stage of the honeybee (Farkas & Zajácz, 2007). Beekeepers 

value the honey yields produced from oilseed nectar, a single hive may collect up to 27 kg 

of honey whilst foraging on oilseed rape (Kołtowski, 2007). Therefore, honeybees are 

encouraged to forage on the crop, which is achieved by relocating hives to as close to the 

crop as possible (Kirk, 1992).  
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5.2.4 Growth and development 

The reproductive process of oilseed rape is out of the scope of this thesis and shall not be 

described; however it is useful to be aware of the various growth stages of a developing 

oilseed crop. That been said, there have been difficulties producing a growth stage key 

that is universally accepted (Almond, Dawkins, & Askew, 1986). For the purpose of this 

thesis, seven growth stages of the oilseed rape plant are considered (Almond et al., 1986; 

Eisikowitch, 1981); these can be separated under two headings: 1) vegetative and 2) 

reproductive stages (Figure 5.2).  

 

Figure 5.2: Seven stages of oilseed rape growth and development. Information taken from Sylvester-

Bradley and Makepeace, (1984) as cited in Almond et al., (1986). 

 

The vegetative stages concern the growth and development of an oilseed plant from seed 

to the point prior to flowering; this is of no interest to pollinators as there is no floral 

rewards available i.e. nectar, and as such these stages will not be covered further.   

The reproductive stages of the oilseed plant start at the point of flowering (anthesis) until 

the development of seeds. Anthesis consists of six stages (Table 5.1): from the time the 

bud opens (stage A) through to a continued flowering period (Stage F) (Eisikowitch, 1981). 

The bloom time of an individual flower is said to last for approximately five days, or 
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around 50 day-light hours (Cresswell, 1999), while the crop can remain in bloom for over 

a number of weeks (Cresswell, 2011). 

Table 5.1: The relationship between the features of an oilseed flower during the various stages of 

anthesis. Data taken and adapted from Eisikowitch (1981). 

Stage Flower stage 
Stigma 

reception 
Pollen 
shed 

Chance of 
spontaneous  

self-pollination 

Inner 
nectaries 

Outer 
nectaries 

A Bud opening -    - 

B 
All petals (corolla) 
and anthers continue 
to open 

- + +  + - 

C 
Anthers continue to 
open until the end of 
flower opening 

+ ++ - + - 

D 
Anthers directed 
towards stigma 

+ +++ + ++ ++ 

E 
Anthers almost 
touching stigma 

+ +++ ++ +++ +++ 

F 
Continued flowering 
until pod formation 

+ +++ +++ ++ +++ 

 

Oilseed rape is described as partially (70 %) self-fertile (autogamous) (Kirk, 1992; 

Mesquida, Marilleau, Pham-Delegue, & Renard, 1988). However, the abundant 

production of nectar and pollen, in addition to bright yellow petals, suggests that oilseed 

is also developed for insect pollination, as these features encourage insects to visit the 

flowers (Kirk, 1992; Mesquida et al., 1988).  

Nectar secretion is first observed at the inner nectaries (stage B) before the outer 

nectaries begin to secrete at stage D. The amount of nectar secreted by the oilseed flower 

varies according to a number of variables which are considered later on. Pollen is 

available for forage at stage B, until the end of stage F. Observation show that pollen is 

often collected by a greater number of the bees in the morning, possibly due to its 
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greater abundance at the beginning of the day (Free & Nuttall, 1968). The stigma is 

partially-receptive to pollen almost as soon as the flower opens, before becoming fully 

receptive at stage C (Eisikowitch, 1981). Self-pollination occurs when pollen from the 

outer stamen falls on to the stigma of the oilseed flower (Kirk, 1992) or direct contact is 

made between the anther and stigma (Eisikowitch, 1981). It is not likely that the flower 

will be self-pollinated until the anthers begin to direct themselves towards the fully-

receptive stigma (Stages D – F). Self-pollination is unpredictable and only likely to happen 

during blustery conditions (Eisikowitch, 1981). A high amount of pollen is also carried 

within the air by the wind and can result in (wind) pollination (Williams, 1984). However, 

during greenhouse trials, wind alone was not able to dislodge pollen grains from anthers 

of any flower and it was only until the anther was brushed with a needle that clouds of 

pollen were released. A similar pollen-cloud phenomenon was observed to be created by 

foraging bumblebees, suggesting that pollen dislodged by insects is only truly able to be 

dispersed by wind (Eisikowitch, 1981). 

At temperatures above 15 °C (Eisikowitch, 1981), honeybees are commonly found 

foraging on oilseed rape (Kirk, 1992) and are considered to be the main insect pollinator 

of the crop (Mesquida et al., 1988). Bumblebees are also key pollinators as they are more 

tolerant of poorer weather conditions than honeybees. Both honeybees and bumblebees 

will visit flowers throughout anthesis (stages B – F), where each visit leads to pollination 

(Eisikowitch, 1981). This can increase a farmer’s profits through accelerated pollination, 

resulting in a uniform pod-ripening and thus a more efficient harvest (Kirk, 1992; 

Williams, Martin, & White, 1986). A shortened flowering period can also allow for the 

post-flowering chemical treatments to be conducted sooner (Williams et al., 1986). The 
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seed yields obtained through self-pollination are equal to and as high as wind-pollinated 

yields (Williams et al., 1986), although it is thought that insect-pollination is unlikely to 

increase these yields significantly (Free & Nuttall, 1968; Pierre et al., 1999). 

 

5.2.4.1 External influences on nectar secretion 

It has been discussed that the amount of nectar produced is influenced by the age of the 

flower (Table 5.1); however, the quality and quantity of nectar can be influenced by a 

number of factors (Alekseyeva & Bureyko, 2000; Kenoyer, 1916; Shuel, 1952). Those 

factors that are most applicable to this chapter are: 

1) Time of day 

2) Weather conditions 

3) Soil type 

1) Time of day 

Time of day is an important factor in nectar secretion that closely relates to temperature. 

There is an accumulation of sugar in a plants tissues during cool periods (e.g. night time), 

followed by the secretion of nectar during warmer spells (e.g. day time). There is, 

however, a minimum temperature at which individual species of plant excrete nectar and 

this varies according to the individual species. It is thought the optimum temperature for 

most UK species is around 26.6 – 29.4 °C, although this value is lower for spring-flowering 

species (Butler, 1954). It was found that nectar secretion varied on a day to day, or even 

hour to hour basis (Butler, 1954; Shuel, 1952). Nectar production was at its highest during 

the morning, lowest at midday, before returning to a high level around mid-afternoon 
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(Meyerhoff, 1958). Generally, nectar production at the inner nectaries begins to decline 

with flower age (Eisikowitch, 1981).  

2) Weather conditions 

Nectar is described as being hygroscopic meaning that, depending on the atmospheric 

humidity, it can absorb moisture from the air and thus dilute the nectar (Butler, 1954; 

Edge et al., 2011; Farkas, Molnar, Morschhauser, & Hahn, 2012). Rainfall can also dilute 

the nectar of unprotected nectaries in an open flower. In both instances the 

attractiveness of nectar is reduced (Butler, 1954). Equally, rainfall can wash away nectar 

from the flower, reducing the amount of nectar available (Kenoyer, 1916). In drier and 

warmer conditions nectar can lose moisture to the atmosphere and become more 

concentrated (Butler, 1954; Jaric, Durdevic, Macukanovic-Jocic, & Gajic, 2010), 

particularly at the outer nectaries (Eisikowitch, 1981), even to the point of forming sugar 

crystals (Butler, 1954). Extended periods without water were shown to have a negative 

(decreasing) effect on nectar volume and concentration over time (Edge et al., 2012). 

Despite this, some plant species will continue to excrete nectar even when wilting (Butler, 

1954). Importantly, the water content of nectar determines its overall viscosity and hence 

presents an upper limit at which bees can efficiently uptake the nectar (Nicolson 2011); 

the maximum limit was found to be around 60 % sugar (Roubik & Buchmann, 1984). 

Should there be a suitable level of rainfall before the flowing period, carbohydrate levels 

can often be exhausted during instances of vigorous plant growth; this can actually 

reduce the amount of sugars available for nectar secretion (McLachlan as cited in Butler 

(1954). However, during observations made over a 30 year period, it was concluded that 

the best seasons for honey production were wetter than average, proceeded by higher 
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than average levels of precipitation in the following months. These conditions were 

thought to stimulate plant growth, as well as providing enough surplus water needed for 

good nectar production (Kenoyer, 1917). The concentration of sugar secreted in nectar 

was found to be related to the quality illumination (i.e. direct sunlight), which influences 

plant metabolism (photosynthesis). Thus the amount of sugar available for secretion and 

the volume of nectar secreted influence the final concentration of nectar (Shuel, 1952). 

3) Soil type  

Nutrient-rich soil can result in greater plant growth, which correlates to an increase in 

secreted nectar volumes (Kenoyer, 1916). High levels of phosphorus were responsible for 

good flower production, whilst high potassium levels benefited the vegetative stages of 

plant development (Shuel, 1952). For very dry and water logged soils the sugar 

concentration of nectar in snapdragons (Antirrhinum majus L.) were high, although the 

volume of nectar reduced (Shuel & Shivas, 1953). Similarly, oilseed rape growth is known 

to be restricted by poor drainage (Berry et al., 2014). The same is true for compacted 

soils, as these can limit rooting capabilities of the crop, thus impacting nutrient and water 

uptake (Berry et al., 2014).  

 

5.3 Bee visitations  

From the prospective of a honeybee forager, the profitability of a nectar reward is 

assessed based on a number of factors including the rate of food retrieval, weather 

conditions, the return distance to and from the hive (Seeley, 1985), as well as sugar 

concentration and nectar volume (Butler, 1954; Shuel, 1952). A more dilute sample of 

nectar will require a greater expansion of energy to concentrate it down to produce 
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honey (Butler, 1954). It is thought that the sugar concentration of nectar needs to be 

above 20 % for there to be a net gain in energy (Butler, 1954). For this reason, honeybees 

will rarely collect nectar with a sugar content below 20 %, even if their colony is starving 

(Butler, 1954). Therefore, higher quality nectar will increase the number of visits by 

pollinators to a flower, which will in turn increase crop yield (Alekseyeva & Bureyko, 

2000). Based on a number of environmental factors, the concentration and volume of 

nectar produced by a flower can vary; for example, the sugar content of raspberry nectar 

was found to be between 5.5 – 72 % (Butler, 1954), whilst sugar levels in oilseed rape is 

commonly between 30 – 40 %, but levels can be found as high as 60 % (Eisikowitch, 

1981).  

Nectar is considered to be the preferred floral reward collected from oilseed rape (Rosa 

et al., 2010), while only a small minority of foragers exclusively focus on pollen collection 

(Calder, 1986). Observations have recorded that nectar is preferably taken from the inner 

nectaries (Free & Nuttall, 1968; Kołtowski, 2007; Rosa et al., 2010), whereas the outer 

nectaries were infrequently visited (Eisikowitch, 1981). Observations made by Free and 

Nuttall (1968), during what is considered to be stages D to F, revealed that honeybee 

foragers spent an average of 4.1 seconds per flower visit. Those foragers collecting nectar 

would inadvertently become dusted with pollen; in most cases this pollen was also 

collected. Pollen collection was found to be most frequent during the morning and 

decreased as the day progressed. In contrast, this trend was reversed for nectar foragers, 

whose frequency increased as the day advanced. Towards the end of the flowering period 

nectar collection declined as pollen collection increase suggesting a limited availability of 

nectar as the flowering period draws to an end (Free & Nuttall, 1968). It is worth noting 
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that unfavourable weather conditions can also deter honeybees from foraging (Winter et 

al., 2006). 

 

5.4 Pest and disease control 

The threats to oilseed rape include weeds, various diseases, including: phoma leaf spot 

(Leptosphaeria maculans), clubroot (Plasmodiophora brassicae) and Sclerotinia stem rot 

(Sclerotinia sclerotiorum), as well as numerous pests, including: slugs (Cylindrobulla spp.), 

cabbage stem flea beetle (Psylliodes chrysocephala), seed weevil (Ceutorhynchus spp.), 

brassica pod midge (Dasineura brassicae) and pollen beetle (Meligethes spp.) (Berry et al., 

2014; Kirk, 1992). The details of these are briefly discussed elsewhere (Berry et al., 2014; 

HGCA, 2003; Kirk, 1992), although some the treatments of these pests and diseases will 

be covered below. 

 

5.4.1 Natural pest control 

Glucosinolates provide a natural defence against non-brassica insects (insects that have 

not become specialised to cope with chemical defences of brassica plants) (Kirk, 1992). 

Glucosinolates are sulphur-containing compounds that are characteristic of the cruciferae 

family (Kirk, 1992) and were first observed at the beginning of the seventeenth century, 

during an effort to understand the origin of the sharp taste associated with mustard 

seeds (Fahey, Zalcmann, & Talalay, 2001). There are over 120 different glucosinolate (S-β-

thioglucoside N-hydroxysulfate) compounds that have been described; the majority of 

which have been isolated from cruciferous plants (Dinkova-Kostova & Kostov, 2012). 

Glucosinolates are stored within tissues of the plant along with enzymes known as 
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myrosinases (β-thioglucosidase). These enzymes are kept physically separated and only 

come into contact if the tissue of the plant is damaged typically through chewing or 

cutting (Dinkova-Kostova & Kostov, 2012; Kirk, 1992). Should the enzyme and 

glucosinolate substrate come into contact, unstable intermediates (aglucones) and 

glucose are formed through rapid hydrolysis. The aglucone intermediates, depending on 

the original glucosinolate structure, rearrange to create a variety of biologically reactive 

compounds (Figure 5.3) - predominantly isothiocyanates (Dinkova-Kostova & Kostov, 

2012). These toxic products are used in the defence against insects and slugs, whilst also 

preventing the growth of bacterial and fungal diseases (Kirk, 1992).  

 

Figure 5.3: The possible reaction products of glucosinolate hydrolysis, via an unstable intermediate 

(aglucone). Hydrolysis occurs following cellular disruption, whereby glucosinolate is catalysed by the 

enzyme myrosinase. A number of products can be formed, depending on original glucosinolate side chain 

(R). Adapted from Dinkova-Kostova & Kostov, (2012). 

 

There was concern that the introduction of single- and double-low varieties would leave 

them more vulnerable to attack from pests and disease. However, there were no clear 

differences of pest infestation level on either variety (Mithen, 1992; Williams, Doughty, 

Bock, & Rawlinson, 1991), although the seedlings of double-low varieties were found to 

be more susceptible to attack (Glen, Jones, & Fieldsend, 1990). 
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5.4.2 Synthetic pest control 

Glucosinolates alone cannot fully control pests and disease, since resistance to 

glucosinolates is known (Hopkins, Dam, & Loon, 2009). Oilseed rape has been shown to 

withstand and compensate for damage (Pinet, Mathieu, & Jullien, 2015). However, the 

use of synthetic agrochemicals is adopted in order to maximise crop yields. Table 5.2 

shows the number of treatments used on an oilseed rape crop in the UK (August 2012 – 

June 2013). Thirteen separate pesticide applications were made, in addition to five non-

pesticide applications.   

Table 5.2: An example of the agrochemical treatments used on oilseed rape during a flowering season 

(2012 - 2013). A total of 13 agrochemical applications were made, these include: 1 molluscicide, 3 

herbicide, 4 insecticide and 5 fungicide treatments. The seed treatment, thiamethoxam, is highlighted in 

bold. Other application made to the crop is done so in order to avoid nutrient deficiencies. Table supplied 

from a farmer involved with this project. 

Date Treatment Active Ingredient(s) Class 

Aug-12 Cruiser® Thiamethoxam + Fludioxonil + Metataxyl Ins 

“ Matrix® Phosphite + Natural bioactive complex Nut 

Sep-12 Novall® Metazachlor + Quinmerac Herb 

“ Tempt Metaldehyde Mollus 

Oct-12 Falcon® Propaquizafop Herb 

“ Mac Cypermethrin Cypermethrin Ins 

“ Harvesan Carbendazim + Flusilazole Fung 

“ Boron Boron TE 

Dec- 12 Pizza 400 Propyzamide Herb 

Apr-13 Harvesan Carbendazim + Flusilazole Fung 

“ Boron Boron TE 

Jun-13 Proline® Prothioconazole Fung 

“ Euro Lambda 100CS® Lambda-cyhalothrin Ins 

“ Bittersalz Magnesium TE 

“ Proline® Prothioconazole Fung 

“ Euro Lambda 100CS® Lambda-cyhalothrin Ins 

“ Bittersalz Magnesium TE 
“ Delsene® Carbendazim Fung 

Ins – insecticide; Herb – herbicide; Fung – fungicide; Mollus – molluscicide; TE – trace element; Nut – 

nutrient. 
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5.5 The suggested routes of neonicotinoid exposure  

It must not be forgotten that neonicotinoids are, of course, insecticides, which are 

designed to eradicate unwanted pests from various crop species. The improper use of any 

agrochemical can result in the death of beneficial pollinators (Everts, 2008). Indeed, 

pollinator deaths can occur even when farmers carefully time their pesticide applications 

in order to minimise the chance of pesticide exposure. Seed treatments are said to offer a 

relatively safe alternative compared to other methods of application (Jeschke & Nauen, 

2008; Wollweber & Tieyen, 1999); despite this, bees are still being exposed to 

neonicotinoids during foraging. The systemic nature of neonicotinoids means that the 

active ingredient is transported to all parts of the plant, which includes nectar and pollen 

(Cutler & Scott-Dupree, 2007). As previously shown in Figure 1.24, p63), seed-treatment 

forms a ‘disinfectant halo’, as the active ingredient begins to leach into the surrounding 

soil; this is later absorbed by the roots. Some of the active ingredient can remain behind 

in the soil (Ainsley, Harrington, Turnbull, & Jones, 2014), for in excess of 1,000 days 

(Goulson, 2013); this can provide protection to future crops (Berry et al., 2014), in a 

practice known as no-till (HGCA, 2012). The progressive accumulation of neonicotinoids in 

soil can lead to wash towards field edges, contaminating various plant species, thus 

providing an addition route of exposure, all year round (Goulson, 2013). 

Oilseed has a good flow of nectar and it is calculated to produce around 100 kg of sugar 

per hectare (Kołtowski, 2007). Consequently, beekeepers often ‘take bees to the rape’ in 

order to boost honey supplies (personal communication with beekeepers). It has also 

been explained that honeybees can travel, on average, up to 4.5 km during foraging 

(Seeley, 1985), which may also include oilseed rape should it be within this radius. The 



Chapter 5: Determining the levels of three seed applied neonicotinoids in oilseed rape nectar and pollen 

197 

return of contaminated pollen and nectar to the hive means that not only are foraging 

bees directly exposed during collection, but so are the rest of the colony via the migration 

of pesticides to various hive products, resulting in the increased mortality of honeybee 

brood (Wu, Anelli, & Sheppard, 2011). 

 

 

5.6  Aim of investigation 

The aim of this chapter is to determine the level of neonicotinoid pesticides in the nectar 

and pollen of oilseed rape flowers. 

 

 

5.7 Materials and Methods 

5.7.1 Sample collection 

Between May and July 2013 and April and May 2014, nectar and pollen samples were 

collected from oilseed rape fields across various locations in England (Lincolnshire, 

Oxfordshire, Staffordshire and Worcestershire (2013 only) and sites in Denbighshire 

(North Wales). The location of these counties are presented in Figure 5.4.  
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Figure 5.4: The counties from which oilseed nectar and pollen were sampled during 2013 and 2014. 

Worcester was only sampled during 2013. Field locations have been omitted in order to maintain farmer 

anonymity.  

 

Nectar was extracted, by hand, using 10, 25, 50 or 100 µl glass micro-capillaries 

(Blaubrand® intraMARK, Germnay) (Figure 5.5) - depending on the viscosity of the nectar. 

Each nectar sample had a corresponding collection sheet (Appendix I), which included 

data such as flower height and the percentage level of sugar within nectar; the latter was 

determined using a sugar refractometer (0 - 50 % & 40 – 85 %) (Bellingham & Stanley Ltd, 

Tunbridge Wells, England). Nectar was then stored in inserts contained within GC vials at 

4 ᵒC until analysis. Pollen traps (E.H. Thorne (Beehives) Ltd, Market Rasen, England) were 

also fitted to hives (Figure 5.6) at locations corresponding to where nectar was collected. 

In most cases, hives were located on the oilseed rape fields being sampled or within very 
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close proximity. Confirmation of pollen species was confirmed using a pollen load colour 

chart (Kirk, 2006). Pollen was stored at -40 °C until analysis. 

 

 

 

Figure 5.5: (left) A schematic diagram of nectar being collected from the nectary of an oilseed rape flower 

using a micro-capillary tube. Image adapted from (Clipart Pal, 2014). (right) A photograph demonstrating 

the nectar collecting procedure; the image shows the angle at which the micro capillary was held in order 

to help the nectar to be drawn up the tube via capillary action. Photograph by K.D. Wisniewski (2014).  

(Clipart Pal, 2014) 
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Figure 5.6: (left) A pollen trap fitted to a hive located opposite an oilseed rape field in North 

Staffordshire. (right) A typical example of oilseed rape pollen loads (yellow), along with other 

(unidentified) pollen loads, collected using a pollen trap. Photographs by K.D. Wisniewski (2013).  

 

In total, 50 nectar and 9 pollen samples (including one mixed pollen sample) were 

collected in the first season (2013); while 48 nectar and 6 pollen samples were collected 

during the second season (2014). 

Reagents and standards 

All solvents and chemicals used in the study were of HPLC and analytical grade. 

Clothianidin PESTANAL®, Imidacloprid PESTANAL®, Imidacloprid-d4 PESTANAL®, 

Thiamethoxam PESTANAL®, Tri(2,3-dichloropropyl)phosphate OEKANAL® (TDCPP) and 

Ammonium formate (NH4HCO2) ≥99 % were purchased from Fluka Analytical (Germany). 

Both acetonitrile and glacial acetic acid were from Fisher Scientific (Loughborough, 

England). Deionised water was purified at 18.2 MΩ with a Purelab Option-Q DV25 

purification system. QuEChERS kits 60105-205 and 60105-210 were obtained from 

Thermo Scientific (Hemel Hempstead, England).  
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5.7.2 Preparation of standard stock solutions  

Standards of thiamethoxam, clothianidin, imidacloprid, imidacloprid-d4 and TDCPP were 

prepared at 1000 ppmv in water. Standards were stored in amber volumetric flasks at 4 

°C. Working pesticide standard solutions were made at 1000 ppbv in water, with the 

exception of TDCPP which was at 300 ppbv in water.  

 

5.7.3 Calibration and recoveries of standards  

Working solutions of clothianidin, thiamethoxam and imidacloprid (each at 1000 ppbv) 

were appropriately diluted in water/acetonitrile mix (95:5) to create a series dilution from 

40, 20, 10, 5, 2.5, 0.125 and 0.625 ppbv. Each dilution was fortified with TDCPP and 

imidacloprid-d4, both to a final concentration of 30 ppbv; this concentration was kept 

constant throughout the analysis of both pollen and nectar samples. The calibration 

graphs were found to be linear with correlation coefficients (R2) greater than 0.99 for 

each compound (Appendix J). Both the LOD and LOQ values were estimated from 

calibration levels, corresponding to a signal-to-noise ratio of about 3 and 10, respectively; 

in addition to the presence of the [M+H]+ ion (within a mass accuracy of 5 ppmv) for each 

compound. The LOD/LOQ of each neonicotinoid are as follows: clothianidin, 1/3 ppbv; 

thiamethoxam, 0.625/1.25 ppbv and imidacloprid, 0.625/2.5 ppbv. Honey was diluted to 

give a sugar content of around 50 %; this was then spiked with a neonicotinoid. Five 

replicates were then extracted and the percentage recovery determined, along with the 

percentage relative standard deviation (% RSD). The mean recoveries are as follows: 

thiamethoxam, 78.02 % ± 14.03 %; clothianidin, 88.07 % ± 2.05 % and imidacloprid, 

102.36 % ± 10.70 % (see Appendix K for raw data).  
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5.7.4 Sample extraction  

5.7.4.1 Nectar 

A modified QuEChERS method was used (Anastassiades, Lehotay, Stajnbaher, & Schenck, 

2003) that was adapted in order to accommodate smaller quantities. 100 µl of nectar was 

measured into 2 ml Eppendorf Safe-Lock® tube (Eppendorf AG, Hamburg, Germany), after 

adding 900 µl extraction solution (44 % distilled water, 55 % acetonitrile and 1 % glacial 

acetic acid) each sample was fortified with 3 µl of the internal standard (imidacloprid-d4 

@ 1000 ppbv). To each sample is then added 150 mg of anhydrous magnesium sulphate 

(MgSO4) and anhydrous sodium acetate (NaOAc) 4:1 (w/w) which had been weighed from 

QuEChERS kit 60105-210 (Thermo Scientific, Hemel Hempstead, England). Eppendorf 

tubes were shaken for 1 minute, centrifuged (2.5 minute @ 4000 rpm) and supernatant A 

transferred to a 2 mL Eppendorf tube containing 25 mg of primary secondary amine 

(PSA), graphitised carbon black (CUCARB) and MgSO4, 6:2:1 (w/w/w), which had been 

weighed from QuEChERS kit 60105-205 (Thermo Scientific, Hemel Hempstead, England). 

After centrifuging (2.5 minute @ 4000 rpm), the resulting supernatant is dried under a 

stream of nitrogen gas and then reconstituted to a final volume of 100 µl, fortified with 

TDCPP at a final concentration of 300 ppbv. This is then ready for Q-TOF LC/MS analysis. 

 

5.7.4.2 Pollen  

Pollen (3 g) was added to a 50 ml centrifuge tube and homogenised in an ultra-sonic bath 

for 2 minutes. The same QuEChERS extraction procedure used in Chapters 3 and 4 (Q-TOF 

LC/MS clean-up procedure) was then applied to the pollen samples.  
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5.7.5 Instrumentation 

Samples were injected into an Agilent 1260 Infinity LC system (injection volume: 15 µl) 

equipped with an autosampler, thermostatted column compartment (set to 35 °C) and 

1290 Infinity in-line filter (0.3 µm); with an Agilent ZORBAX Extended-C18 Rapid 

Resolution HD (2.1 x 50 mm, 1.8 µm) column, with ZORBAX Eclipse Plus C18 (2.1 x 5 mm, 

1.8 µm) guard column connected to an Agilent 6530 Accurate-Mass-Q-TOF LC/MS. The LC 

mobile phases were (A) water with 5 mmol ammonium formate and (B) acetonitrile. The 

elution gradient, at a flow rate of 0.6 ml/min2, was as follows: 0 – 0.5 min (95 % A/ 5 % B), 

0.5 – 9 min (0 % A/ 100 % B), 9 – 9.5 min (0 % A/ 100 % B), 9.5 – 10 min (95 % A/ 5 % B). 

The Q-TOF settings were as follows: acquisition mode MS; with MS range 100 – 1000 m/z; 

MS scan rate 1 spectrum/s; electrospray ionization (ESI) source – gas temperature: 300 

°C; gas flow: 11 L/min; nebulizer: 50 psig, positive ion polarity; scan source parameters: 

Vcap 4000 V; fragmentor, 125 V; skimmer, 65 V; OCT RF Vpp, 750 V. 

 

5.7.6 Meteorological data 

Temperature and humidity information was collected using iButton temperature and 

iButton humidity data loggers (Maxim Integrated, USA). The loggers were placed on each 

of the sampled oilseed rape fields away from direct sunlight and set to take readings at 30 

min intervals. The weather conditions at the time of collection were also noted. 

Alternative weather data were obtained from the University of Oxford and Keele 

University.  

   

                                                           
2
 Nectar samples 78 – 98 were analysed at a column temperature of 60 °C and a flow rate of 0.535 ml/min 

in order to reduce column back-pressure. 
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5.8 Results 

5.8.1 Season 1 

The raw data for collected nectar samples, which shows the breakdown of results for 

individual locations, are provided in Table 5.3 and are summarised in Table 5.4. Of the 50 

samples analysed, thiamethoxam was detected the least, both quantifiably and less than 

the LOQ, whilst clothianidin was detected the most. The highest concentration detected 

was for imidacloprid at 474.15 ppbv, whilst the lowest quantifiable was thiamethoxam at 

4 ppbv. An attempt to calculate the standard deviation and mean from quantifiable 

results has been conducted and is shown in the table.  
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Table 5.4: A summary of the neonicotinoid residues detected in nectar samples (n = 50) from various 

locations around the UK in 2013, as presented in Table 5.3. Mean value calculated assuming LOD values 

for each respective neonicotinoid where <LOD and 0 ppbv where ND. 

 

 Number of samples (n = 50) Residue concentration (ppbv) 

Neonicotinoid ND  < LOD 
Detections 

(< LOQ) 
Quantified Low High  Mean S.D 

Imidacloprid 22 - 17 11 4.93 474.15 35.38 92.10 

Clothianidin 13 3 20 14 3.095 40.021 7.77 11.68 

Thiamethoxam 35 4 2 9 4.03 87.06 6.27 21.30 

 

The EIC of the sample found to contain the highest concentration of imidacloprid (474.15 

ppbv) has been provided in Figure 5.7 and is represented as the green trace. This has 

been overlaid with the EIC of imidacloprid-d4, shown by the black trace, which was added 

at 30 ppbv as an internal standard for imidacloprid.  

 

 

Figure 5.7: Overlaid EICs of imidacloprid detected at 474.15 ppbv in nectar sample N56 (green trace), 

compared to the 30 ppbv ISTD, imidacloprid-d4 (black trace). 

 

Table 5.5 shows the raw data for 9 pollen samples collected during the 2013 season. This 

information is summarised in Table 5.6, where it can be seen that no quantifiable 

amounts of neonicotinoids were detected in the nine pollen samples analysed. However, 

thiamethoxam was found to be below the limit of detection on two occasions.  
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Table 5.5: Raw data for 9 pollen samples obtained during the first season of collection (2013). Samples 

were extracted using QuEChERS and analysed using Q-TOF LC/MS. Sample P9 was regarded as a mixture 

of a number of pollens. 

 

   Clothianidin Thiamethoxam Imidacloprid 

County 
Collection 

date 
Sample 

I.D. 
RT 

Cal conc 
(ppbv) 

RT 
Cal conc 
(ppbv) 

RT 
Cal conc 
(ppbv) 

Staffordshire 2 03/06/2013 P1 ND - ND - ND - 

Staffordshire 3 07/06/2013 P2 ND - ND - ND - 

 17/06/2013 P3 ND - ND - ND - 

Lincolnshire 2 25/05/2013 P4 ND - 3.235 < LOD ND - 

 13/06/2013 P5 ND - ND - ND - 

Oxfordshire 3 26/06/2013 P6 ND - 3.26 < LOD ND - 

Denbinghshire 1 13/06/2013 P7 ND - ND - ND - 

Denbinghshire 2 10/06/2013 P8 ND - ND - ND - 

 10/06/2013 P9 (MIX) ND - ND - ND - 

 

Table 5.6: A summary of the neonicotinoid residues detected in pollen samples (n = 9) from various 

locations around the UK in 2013. Mean value calculated assuming LOD values for each respective 

neonicotinoid, where <LOD and 0 ppbv where ND. 

 

 

         Number of samples (n = 9) Residue concentration (ppbv) 

Neonicotinoid ND  < LOD 
Detections 

(< LOQ) 
Quantified Low High  Mean S.D 

Imidacloprid 9 - - - - - - - 

Clothianidin 9 - - - - - - - 

Thiamethoxam 9 2 - - 0.625 0.625 0.139 0.276 

 

 

5.8.2 Season 2 

Table 5.7 shows the raw data for the 48 nectar samples collected during the 2014 season. 

A total of six quantifiable detections were made for all neonicotinoids, as summarised in 

Table 5.8.  
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Table 5.8: A summary of the neonicotinoid residues detected in nectar samples (n = 48) from various 

locations around the UK in 2014 as presented in Table 5.7. Mean value calculated assuming LOD values 

for each respective neonicotinoid where <LOD and 0 ppbv where ND.  

 

 Number of samples (n = 48) Residue concentration (ppbv) 

Neonicotinoid ND  < LOD 
Detections 

(< LOQ) 
Quantified Low High  Mean S.D 

Imidacloprid 43 1 2 2 7.14 215.41 4.75 31.07 

Clothianidin 40 3 2 3 6.89 9.673 0.35 1.18 

Thiamethoxam 47 - - 1 4.17 4.17 0.09 0.60 

 

No neonicotinoids were found below the above or below the LOD in the six collected 

pollen samples from 2014; consequently, this information has not been tabulated.  

 

5.9 Discussion 

Blacquière et al., (2012) consider there to be a “…lack of reliable data as analyses are 

performed near to the detection limit”. Indeed, this is true for the results presented here, 

as although a neonicotinoid may not have been detected, it is not possible to truly say 

that it is not present below the LOD.   

 

5.9.1 Evaluation of sample collection  

Nectar 

The collection of nectar can be conducted in various ways, ranging from: the direct 

collection from the flower (Dively & Kamel, 2012; Pohorecka et al., 2012), from the honey 

stomach of a foraging honeybee (Pilling, Campbell, Coulson, Ruddle, & Tornier, 2013; 

Wallner, 2009) or from the hive (stored in comb) (Cutler & Scott-Dupree, 2007; Pilling et 

al., 2013). Direct collection from the flower offers an advantage over other methods, in 

that it represents what is available to foraging bees without enzymatic manipulation (in 

                                                           
3
 Peak was unusually broad and so the detected concentration may not be reliable.  
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honey stomach), dilution (mixture of non-contaminated nectar with contaminated 

nectar), water reduction (nectar maturation into honey) or contamination during storage 

(migration of chemicals from wax). However, hand-collection was found to be both time 

consuming and very labour intensive. In some instances it could take a number of hours 

to collect 100 µl of nectar. The nectar taken from each flower was typically between 0.1 – 

2 µl, although some flowers were recorded to secrete as much as 10 µl. The low volumes 

collected meant it was necessary to pool the nectar in order to reach the 100 µl needed 

for sample analysis. Consequently, it is not possible to determine the actual concentration 

of neonicotinoid, if any, secreted by each flower, per se. The sampling procedure used in 

this study was aimed at collecting nectar from a diverse range of flowers, which included 

plants of various ages and height. However, it is not possible to eliminate unconscious 

sample bias in instances where more than one person was collecting nectar samples.  

 

Analysis of collection sheet data and meteorological data  

The small number of people collecting nectar from the flowers meant that the recording 

of various information, such as flower height and sugar concentration (see Appendix I), 

was sometimes neglected, as the main objective was to collect nectar for analysis. The 

data that has been recorded does not appear to offer any correlations between flower 

height or the levels sugars within the nectar and the levels of detected neonicotinoids. 

Nectar was collected both in the morning and afternoon on the same day, where 

possible. It was generally observed that nectar was more readily available in the morning 

than later in the day. The sugar content found within early and late collections differed in 

that a higher level of sugar was found in the latter instance; this finding appears 

consistent with those reasons considered in Section 5.2.4.1 (pp 189 - 191).  
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The collection of meteorological data using the iButton loggers was found to be 

unsuccessful, as some loggers were not recovered from a number of sites. Of those that 

were recovered it was found that the recording of data was continuous and, as a 

consequence, previous data was overwritten. The weather data provided from Keele 

University and the University of Oxford also fail to draw any correlations with the levels of 

neonicotinoids detected in nectar. However, this could be due to the relatively small 

amount of data collected.  

 

Evaluation of micro-scale QuEChERS 

QuEChERS is a multi-residue extraction technique which is applied to a number of 

matrices, including beeswax (Chapters 3 and 4). The volumes of solvents and amounts of 

extraction salts described in Chapter 3 (Section 3.6.3) were scaled down in to create a 

micro-scale version suitable for the extraction of 100 µl of nectar. An issue that was 

encountered came during the removal of the organic layer in the clean-up stage, as it was 

found that CUCARB could sometimes be transferred into the sample vial inserts. This was 

thought to be responsible for a number of blockages in the LC system. Unfortunately, the 

small volumes used during extraction, meant that this was often unavoidable as the 

organic layer was sometimes in direct contact with the clean-up powders. To filter out the 

CUCARB would mean the inclusion of an additional step which could result in a possible 

loss of extracted compounds. The later addition of an inline filter, before the LC column, 

helped to minimise system blockages. The mean percentage recoveries of the studied 

neonicotinoids are between 78 % and 102 %, which is comparable to recoveries seen in 
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the standard, larger scale QuEChERS technique (Tanner & Czerwenka, 2011). Based on 

this the overall performance of the micro-scale QuEChERS can be considered acceptable.   

 

Sample collection - pollen 

The original method of pollen collection considered was to capture foraging honeybees 

and to remove the pollen loads from their hind legs, as this would then ensure that the 

pollen removed from the bee had come from oilseed rape. However, as a minimum of 3 g 

of pollen is required for extraction using QuEChERS (Mullin, Frazier, Frazier, Ashcraft, & 

Simonds, 2010), a total of approximately 250 honeybees would therefore need to be 

captured4. This proved to be an extremely time consuming task with little reward. The 

collection of pollen was therefore later achieved by using pollen traps fixed to the front of 

a single hive, as this method is considered to be much easier than hand collection 

(Nicolson 2011). The use of a pollen trap, however, meant that the amount of food 

returning into the hive was reduced and, as previously mentioned, this can have an effect 

on the growth of a colony (Roman, 2006). This was a concern with participating 

beekeepers and although pollen traps were only fitted for 12 – 24 hours, their use was 

ultimately left to the discretion of each beekeeper. This meant that the number of pollen 

samples (n = 15) collected over the two seasons was significantly lower than for the 

nectar samples (n = 98). It also proved difficult to find beekeepers that were willing to 

transport their hives on or near to oilseed rape fields, as a lot of beekeepers deemed their 

colonies to be too weak to relocate (personal communication with beekeepers).  

                                                           
4
 Figure based on average weight of a pollen load (5.97 mg) collected during spring (Roman, 2006). 
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Given the immediate location of the pollen traps to the oilseed rape fields, it was felt that 

the identification of collected pollen by colour was sufficient enough for the scope of this 

thesis, although this practice may be considered somewhat subjective.  

  

The levels of neonicotinoids in nectar 

The results presented in this chapter are very much a single ‘snapshot’ in time. The 

sampling procedure used in this study was to ensure that flowers of varied height, age 

and location were sampled; the collected nectar would then be pooled. Each pooled 

sample would ultimately consist of a unique combination of these features, in addition to 

other factors which included temperature, soil water content and humidity. As previously 

mentioned, honeybees will rarely collect nectar with a sugar content lower than 20 % 

(Butler 1954). However, it was not possible to determine the levels of sugar from each 

flower without testing it during sampling; the small volumes collected meant that this 

would not be a viable option in the long-term. As such, it was assumed that the 

composition of nectar was similar across the whole of the sampled area. This assumption 

was also loosely based on the presence of various bee species seen on the flowers during 

collection, which was noted during each visit to an oilseed rape field. In all recorded 

instances, bees were seen foraging on the oilseed flowers; however, it was not 

determined whether these were pollen or nectar foraging bees.  

Comparisons between samples collected from the same sites and on the same day 

revealed that detected concentrations were not always in agreement with the other 

sample; for example, the level of imidacloprid detected in N18 and N19 was 0 pbbv and 

215 ppbv, respectively. This makes the comparison between other sites, and indeed the 
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same field, difficult or indeed impossible. Therefore each sample must be considered 

individually. Interestingly, very little was detected within those samples collected during 

the 2014 season, compared to 2013. The reasons for this have yet to be determined. 

Comparisons made between morning and afternoon collections were made; however, 

with the current sample size, no correlations could be established.  

The recovery of a compound from a matrix can be low and in some cases was not 

corrected for in the published literature and therefore under estimated the true levels of 

contamination (Bonmatin, Giorio, Girolami, Goulson, & Kreutzweiser, 2015). The results 

presented here have been corrected according to their average recovery from a spiked 

matrix.  

Thiamethoxam was recorded as having the smallest number of total detections, 

compared to clothianidin and imidacloprid (summarised in Tables 5.4 and 5.8). However, 

given that clothianidin is a metabolite of thiamethoxam, it is expected that thiamethoxam 

is metabolised and not detected. In a Polish study (Pohorecka et al., 2012), hand collected 

nectar showed no residual levels of thiamethoxam; however, comb collected nectar and 

honey revealed levels between 3.2 ppbv and 12.9 ppbv, whilst clothianidin was only 

detected in 17 % of combined honey and nectar samples. This does not agree with the 

findings made within this Chapter. The maximum level of clothianidin found in a Canadian 

study was 2.2 ppbv, which was lower than the levels detected in honey (0.9 ppbv) (Cutler 

& Scott-Dupree, 2007). 
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The detection of imidacloprid  

The detection of imidacloprid has been highlighted due to the significantly high levels of 

this chemical found within nectar samples; as summarised in Table 5.4 and Table 5.8. The 

possible reasons for the detected levels will be explored; this includes the use of 

imidacloprid-d4, the order of analysis as well as the presence of imidacloprid within soil. 

 

The use of a deuterated internal standard  

Isotopically labelled internal standards can determine the effectiveness of the extraction 

procedure (Lehotay, 2006), in addition to assisting in the identification of target analytes, 

as the retention times for both the labelled and non-labelled analytes should be similar 

(SANCO/12571/2013), but still distinguishable from each other (Gross, 2004). Given that 

imidacloprid was a target molecule, deuterated imidacloprid (imidacloprid-d4) was 

selected as an internal standard; this would help indicate any possible losses of 

imidacloprid during extraction. However, the high levels imidacloprid (>13 ppbv), 

detected within 71 % of quantifiable samples over both seasons, in addition to positive 

matches for either or both thiamethoxam and clothianidin, would suggest that 

imidacloprid was somehow contaminating the analysed samples. However, it is unlikely 

that contamination played a role, but it cannot be excluded, as the high levels are too 

high to result from contamination.   

 The exchange between deuterium and hydrogen is used to study reaction mechanisms 

(Clayden, Greeves, Warren, & Wothers, 2005). The exchange between hydrogen and 

deuterium can occur gradually overtime and the reaction catalysed in the presence of an 

acid or base (Leis, Fauler, & Windschhofer, 1998). Consequently, it is recommended that 
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deuterated compounds should not be used, if the unlabelled compound is of analytical 

interest; as this can “lead to false positives and/or adversely influence quantitative 

results” (SANCO/12571/2013, 2013). Unfortunately, this was unknown at the time of 

analysis, as the use of deuterated compounds for ISTDs is recommended for use with the 

QuEChERS method (Lehotay, 2006). However, there is no mention of deuterium being lost 

from the ISTD during the extraction process - an extraction process which uses acetic acid 

to control the stability of basic-sensitive pesticides (Anastassiades et al., 2003).  

In a closed system, it would be expected that the concentration of imidacloprid would be 

less than or equal to the initially added 30 ppbv of imidacloprid-d4. This assumes 

complete deuterium-hydrogen exchange and 100 % recovery of the compound, which has 

been proven using the micro-scale QuEChERS technique. However, what is unclear is why 

concentrations as high as 474 ppbv have been detected. Compared to the concentrations 

of imidacloprid found in pollen and nectar, within the literature, it is expected to find 

detected levels between <1 ppbv and 10 ppbv (EFSA, 2012).  

Nectar samples were assigned an identification (I.D.) number at random, in order to keep 

the analysis of the samples ‘blind’ and free of bias. These were then analysed on the Q-

TOF LC/MS in order of N1 – N98. Looking at the data in this order it is observed that, out 

of the total 14 quantifiable imidacloprid detections (>LOQ), 9 out of 12 of the detections 

were found between samples N55 and N66, whilst only two quantifiable detections were 

made within the first 29 samples. N67 to N98 show no quantifiable results, although 

there is an increase in the number of detections <LOQ, compared to N1 – N29. This would 

disprove any significant deuterium-hydrogen exchange over time, as it would be expected 

that the later samples would demonstrate higher levels of imidacloprid. When arranged 
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into their respective locations (Table 5.3 and Table 5.7), the samples reveal the majority 

of quantifiable detections being located in samples from Lincolnshire and Wales for the 

2013 season. No detections of imidacloprid were made in Wales in 2014, whilst only one 

sample contained a detectable level in Lincolnshire 2014, although it is difficult to 

compare between seasons, due to crop rotation cycles. The use of imidacloprid-d4 has 

also been used to monitor the movement of soil-applied imidacloprid throughout squash 

plants (Cucurbita pepo); the use of the deuterated standard was not mentioned to have 

any effect on results of analysed nectar and pollen (Stoner & Eitzer, 2012). 

Another possible reason for the high levels of imidacloprid may be a consequence of 

delays in the extraction and analysis of nectar samples, due to persistent instrument 

failures. Therefore, there may be some reduction in the levels of water from the nectar 

samples. This would be more dramatic in the 2013 samples compared to those from 

2014. This cannot be fully determined as the volume of nectar collection was only 

estimated, which was based on filling half of a sample vial insert (total volume 300 µl), 

thus, collecting more nectar than was set by the 100 µl limit. Water evaporation was not 

anticipated from the nectar as the sample vials had not shown evaporation from 

previously made solutions, which were also kept refrigerated. However, this would only 

account for a slight increase in the detected concentrations.  

The practice of no-til farming relies on chemicals remaining within uncultivated soils from 

previous crop applications (HGCA, 2012), which would support the hypothesis that the 

source of detected imidacloprid is from the soil. Similarly, it is proposed that 

neonicotinoids are persistent in soil and are capable of accumulating over time (Goulson, 

2013). It is not known at what scale imidacloprid was previously applied to crops within 
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the same field in preceding years, if at all. However, imidacloprid was not found to be 

contained in the pollen or nectar of (untreated) sunflowers which were grown in soil 

containing imidacloprid from previous years (Schmuck, Schöning, Stork, & Schramel, 

2001). Similar findings were also reported for thiamethoxam in oilseed rape (Pilling et al., 

2013), although conflicting data are available, showing that neonicotinoids can be 

detected in crops following on from previous treatments (EFSA, 2012) as well as flowers 

found on the edges of treated fields (Krupke, Hunt, Eitzer, Andino, & Given, 2012). 

Although the weather data available failed to draw any correlations to the levels of 

neonicotinoids, it would be interesting to see how much of an influence rainfall had on 

the levels detected. Collections made in Lincolnshire during the 2013 season were often 

made during or following heavy rainfall and this is where the majority of imidacloprid 

detections are found. Collections from other locations tended to be made in warm, sunny 

conditions.  

The results of this chapter are based on the analysis of 100 µl of nectar, which reveal 

relatively varied levels of detected neonicotinoids, whilst other researchers often focus 

on the levels within honey collected from the comb, whereby 5 g is often analysed (Cutler 

& Scott-Dupree, 2007; Dively & Kamel, 2012; Pohorecka et al., 2012). However, some 

studies fail to report the volumes used for analysis (Pilling et al., 2013), making it difficult 

to assess the accuracy of their work. If the volumes of nectar have been pooled together, 

then the reported concentrations are representative of an average value.  

The results presented here show that there is not a distinct concentration representative 

of neonicotinoids found within a single plant, which may be a consequence of a number 

of variables including, plant age, time of day, environmental conditions as well as the 
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amount of nectar collected. Studies appear to assume that nectar is contaminated with a 

single concentration. If the nectar was pooled for the four samples collected from 

Denbinghshire 1 (2013), before analysis, then the ‘average’ concentration for 

thiamethoxam would have been reported to be around 3.56 ppbv as oppose to 14.27 

ppbv. A lower value would therefore be a result of dilution with samples containing levels 

below the LOD or absent from the sample. As it cannot be determined if there are any 

residue levels below the LOD then this figure would represent an average minimum 

concentration.    

 

The levels of neonicotinoids in pollen 

No quantifiable levels of clothianidin, thiamethoxam or imidacloprid were detected 

within any of the 15 pollen samples analysed; nor were any found within the single mixed 

pollen sample. However, thiamethoxam was determined to be below the limit of 

detection on two occasions from two separate locations (Table 5.5). With respect to the 

limit of detection, these results are similar to the maximum levels reported elsewhere 

(EFSA, 2012). Although the number of samples analysed over the two seasons is relatively 

small, it is not greatly dissimilar to the number of samples analysed by Bonmatin et al., 

(2003) whose findings have been used to represent ‘field-realistic’ doses in feeding trials  

(Whitehorn et al., 2012). Interestingly, a number of studies use concentrations deemed to 

be “worst-case scenarios” which are acknowledged to be rarely encountered by bees 

(Elston, Thompson, & Walters, 2013). This is thought to be due to a lack of sufficient or 

accurate data within the literature (Bonmatin et al., 2015). As no quantifiable levels were 

detected in this study, it does indicate that other studies are using values representative 

of worse-case scenarios.  
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Implications on honeybee health 

It is known that honeybees from a single colony will not all visit the same floral source 

(von Frisch, 1954), meaning any trace levels of neonicotinoid could become diluted with 

uncontaminated nectar once stored in the hive (Cresswell, 2011). Consequently, the 

levels of neonicotinoids determined in sorted honey (and pollen) could underestimate the 

levels of a chemical from an individual source, but offer a more realistic average exposure 

range. However, should there be an exposure to a high level of neonicotinoid, it may 

result in a bee dying in the field (Marzaro et al., 2011), meaning that contaminated nectar 

would never return to the hive.  

Rortais et al., (2005) discusses the different levels of sugar consumption required by 

honeybees, depending on their current role in the hive. Taking nectar sample N56 as an 

example (Table 5.3), which has an average sugar content of 36 %, a honeybee would need 

to ingest 2.78 mg of nectar in order to consume 1 mg of sugar. Using the density of a 50 % 

sugar solution (1.23 kg/l) (EFSA, 2012) this equates approximately to 2.18 µl of nectar. As 

the concentration of clothianidin was measured to be 40.02 ppbv (40.02 pg/µl) this would 

result in an intake of approximately 90.05 pg of active ingredient, which is below the LD50 

oral dose for clothianidin of 0.0037 ug/bee (3700 pg/bee) (Tomlin, 2009).  

As bees are thought to act like filters (Bogdanov, 2006), the amount of returned nectar 

will have a reduced level of neonicotinoid than was originally collected. This, in 

combination with the previously mentioned dilution of nectar with other none 

contaminated nectars, therefore resulting in lower concentrations in honey, as seen in 

the findings of Pohorecka et al., (2012). 
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There appears to be a relationship between the levels of neonicotinoids and the decline 

of insect pollinators; neonicotinoids affect the ability to forage for food, brain function 

and bee learning, thus adversely affecting colony expansion (Moffat et al., 2015). 

However, the loss of foraging honeybees can be compensated for by the large numbers 

within a colony; although other bee species may be more susceptible to the effects of 

losing foragers (Bryden, Gill, Mitton, Raine, & Jansen, 2013). In feeding trials, it is 

suggested that bees cannot taste neonicotinoids and were found to actually prefer 

solutions laced with these chemicals; although their consumption did reduce the overall 

amount of food consumed (Kessler et al., 2015). 

The levels of nectar consumed by honeybees vary according to their role in the hive; it 

was found that the volumes of nectar ingested by bees is greater than the amounts pollen 

consumed, meaning exposure to pesticides is likely to result from the former. The ratio 

between the amount of contaminated and uncontaminated nectar ingested by bees 

cannot be precisely determined, meaning it is not possible to calculate the amount of 

pesticide consumed by a single bee (Rortais et al., 2005). LD50 values are considered to be 

unrealistic as they represent a single dose, which is unlikely to be encountered during 

foraging (Cresswell, 2011). Linking this to the nutritional values provided by a food 

source, it was found that honeybees shifted towards a high carbohydrate-filled diet with 

age (Paoli, Donley, Stabler, Simpson, & Wright, 2014); a similar finding was also shown for 

bumblebees (Stabler, Paoli, Nicolson, & Wright, 2015). So, depending on the levels of 

sugar available (carbohydrates), the amount of pesticide possibly ingested from a 

contaminated food source can vary (Rortais et al., 2005).  
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There are two main disputes that surround the neonicotinoid debate, which are: field vs 

laboratory studies and dose vs concentration/exposure. The imposed sanction on the use 

of neonicotinoids is to be reviewed in December (2015), but during the time since the 

imposed ‘ban’ no real monitoring schemes have been conducted, which means it will not 

be able to determine the benefits of not using neonicotinoids (Goulson, 2015). This 

chapter has not addressed either issue; however, it does give a perspective on the levels 

of neonicotinoids in UK fields – rather than extrapolating American or German findings to 

a UK situation. Cresswell (2011) suggests that although neonicotinoids are regarded as a 

stressor, they are not the sole cause of honeybee losses; it is felt that UK losses are more 

likely due to habitat loss (Wilson-Rich, Allin, Carreck, & Quigley, 2014). However, some 

alarmingly high imidacloprid values are presented in this chapter cannot be ignored and 

possibly require further study. Although a concentration for 474 ppbv was quoted for 

imidacloprid within a nectar sample, it does not necessarily mean that a bee will be 

exposed to the full amount.  

As this was a field based study, there were a number of variables which could not be 

controlled. As there are no fixed concentrations, it would be useful to have a field realistic 

experiment in the laboratory which gives bees a choice of sugar solutions at various 

concentrations and volumes. It would be ideal to repeat this present study again, with a 

more refined protocol and access to an experimental plot. There would also need the 

correct infrastructure and man power, as the limited number of people helping within 

this project (often only a single person) may suggest that the study was perhaps over 

optimistic. The only realistic experimental plot which may be available is located near to 
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Keele University; however, this is not particularly large and any findings could be deemed 

site-specific. 

What has not been considered by this study are the metabolites of the parent 

compounds, with the exception of clothianidin (primary metabolite of thiamethoxam), 

although this is recognised as a compound in its own right (Tomlin, 2009).  The 

metabolism of thiamethoxam can occur in various ways, promoted by exposure to 

alkaline conditions (Tomlin, 2009). As 90 % of a seed coating enters the soils (Goulson, 

2013) the pH of this media can determine the speed at which it is converted to 

clothianidin. Photodegradation (photolysis) is also another route of metabolism, which 

occurs following sunlight exposure. When exposed to light under laboratory conditions, 

imidacloprid was found to undergo photolysis and lose as much as 84 % of its original 

concentration after 6 hours (Soliman, 2012). As such, photodegradation is regarded as an 

important factor in the metabolism of agrochemicals (Martínez Vidal, Plaza-Bolaños, 

Romero-González, & Garrido Frenich, 2009). This means that neonicotinoids contained in 

nectar and exposed to sunlight will begin to metabolise. This may explain the small 

number of thiamethoxam detections, compared to clothianidin, although, as previously 

mentioned, clothianidin is also used as a seed treatment. Only farmers from Lincolnshire 

1 and Oxfordshire 4 have confirmed the seed treatment used on their crops to be 

thiamethoxam based. No other replies were received.  

Although not the main part of this thesis, the type of soil in each oilseed rape field may be 

a factor in the levels of neonicotinoids detected. The next paragraph will briefly consider 

this. 
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No soil type was determined at specific site during collection, as this was not considered 

to be of great influence throughout the planning of the investigation. However, through 

the use of NATMAP Soilscapes map (Appendix L) or online database, constructed by the 

Cranfield Soil and Agrofood Institute (www.landis.org.uk), it is possible, to some degree, 

to determine the soil type found at each site. A general trend for the soil variability across 

the UK, from West to East, is Loam to silty loam (Wales); clayey loam to sandy loam 

(Staffordshire); peat and sand to sandy loam (Lincolnshire). Unfortunately time restraints 

have not allowed for the comparison of the neonicotinoid results to the soil types found 

from around the UK. Although it is believed it would make for an interesting investigation, 

given the discussion of the half-lives of neonicotinoids in soil (Goulson, 2013). Appendix L 

does show part of Lincolnshire to contain soil of naturally high ground water, which may 

correlate to the high levels of detections within this region in 2013. Without further 

investigation this remains very speculative.  

 

5.10 Conclusion 

Presented within this chapter is a novel method of extraction, which has successfully 

applied to determine the levels of neonicotinoids within a small volume of nectar. The 

findings of this study suggest that bees are exposed to variable concentrations of 

neonicotinoids, originally applied as a seed treatment, during foraging.  

Due to the large number of values that fall below the LOD and LOQ it was not possible to 

determine any meaningful data, such as the mean and standard deviation. Where these 

have been given it has only been calculated for those values which are above the LOQ. 

Therefore, the concentrations presented are to be considered on an individual basis due 
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to the reasons previously considered. Due to the large variability in the concentrations, it 

would be difficult to draw conclusions from these or to apply them to across the wider 

population.   

Without good quality weather data it is difficult to precisely draw comparisons to the 

influence of weather on the levels of secreted nectar and the residues contained within 

nectar. Looking back objectively, it would have been better to focus on a smaller number 

of (local) fields, meaning more time could be spent collecting information as set out by 

the collection sheets. However, this would have its own limitations as it could be argued 

that any findings could be site specific and may not be applicable to the rest of the UK, as 

there is a large variation between sites suggested by the different soil types across the 

UK, for example.  
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CHAPTER 6 
The analysis of bumblebees exposed to 
thiamethoxam during feeding trials 

 

 

 

 

6.1 Introduction 

There are currently 25 native species of bumblebee (Bombini) in the UK (Free & Butler, 

1959; Ollerton, 2012). Bumblebees are considered primitively-eusocial since all colonial 

duties are performed by a single queen until labour can be divided, following the 

emergence of daughter workers (Michener 2000, Free and Butler 1959), which are also 

sexually undeveloped. New queens, which are able to start new colonies, and males are 

not found within the nest until after several generations of workers have been reared 

(Free & Butler, 1959). Compared to the honeybee, bumblebees have much smaller 

colonies, containing around a few hundred workers. All bumble species will normally 

establish colonies in the disused nests of field-mice, shrews and voles; these tend to 
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contain old nesting materials, such as grass and moss, which can be used to line the floor 

of the new nest. Some species of bumblebee will also build nests above ground. The focus 

of this chapter is the buff-tailed bumbles (Bombus terrestris), which is considered to be 

fairly versatile during the selection of a nesting site. The schematic diagram, shown in 

Figure 6.1, displays the colour patterns of B. terrestris and size compassion of each caste; 

in addition to its distribution across the UK. 

 

Figure 6.1: An image demonstrating the size and colour of Bombus terrestris for each caste (male, worker 

and queen). The distribution of this species thought the UK is also provided. Taken without permission 

from Bumblebee Conservation Trust (2015). 

 

A nest will expand irregularly (upwards and outwards) as the colony grows. The structure 

of a typical bumblebee nest is a collection of old pupal cocoons and wax cells, the former 

often used to store honey (honey pots). Throughout the development of the colony, the 

queen will engage in a number of in-hive activities whilst foraging is left to the workers. 

Unlike a honeybee colony, a bumblebee colony does not overwinter; instead, the queen 

will hibernate. This means that extensive stores of pollen and honey are not required 

(Free & Butler, 1959).  
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6.2 The importance of bumblebee foraging 

Bumblebees, such as B. terrestris, play an important role in the pollination of agricultural 

crops and wildflowers (Mommaerts et al., 2010). Both bumblebees and the honeybee are 

generalist pollinators (Goulson, Lye, & Darvill, 2008; Winter et al., 2006); however, the 

large variation in morphology, exhibited within the Bombus genus, means that 

bumblebees offer a greater efficiency during pollination than the honeybee (Winter et al., 

2006). Despite this, the honeybee still provides effective pollination for a majority of 

crops (Breeze, Bailey, Balcombe, & Potts, 2011; Winter et al., 2006). Bumblebees are 

considered a hardy species, having gained a reputation for continuing to forage in 

conditions where the honeybee would remain in the hive (Free & Butler, 1959). The large 

body size of bumblebees enables them to forage over a temperature range of 10 – 32 ᵒC, 

allowing for flower visits during most of the year; whilst honeybees are only found to be 

active at temperatures above 16 ᵒC (Winter et al., 2006). Bumblebees are also found to 

forage over longer periods of time, including up to an hour after sunset. This activity will 

reduce to an hour before sunset around mid-August (Free & Butler, 1959). Although the 

work rate of each bumblebee species varies, it is nearly always found that bumblebees 

are two to three times quicker than honeybees when visiting the same flower type (Free 

& Butler, 1959), allowing bumblebees to visit more flowers over the course of a day.  

Bumblebees are capable of sonication, also known as ‘buzz pollination’, which involves 

rapid contractions of their indirect flight muscles; when curled around a flowers 

androecium (group of stamen), this induces an ejection of pollen from the flower’s 

anthers (Winter et al., 2006). For example, buzz pollination of the tomato plant enables 

bumblebees to harvest ‘buzzed’ pollen 400 times faster than honeybees (Winter et al., 
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2006), thus rendering the honeybee “ineffective” in tomato pollination (Breeze et al., 

2011). The majority of bumblebees possess a longer proboscis than honeybees, which is 

essential for accessing deeper nectaries of certain flowers, for example, field beans 

(Breeze et al., 2011; Winter et al., 2006). The hardy nature of B. terrestris means it is 

often favoured for commercial pollination and as a result it has been extensively utilised 

since the late 1980s due to its adaptability to artificial conditions, well established and 

proven breading technologies and large colony production in comparison to other 

bumblebee species (Winter et al., 2006). Originally native to Europe, the species now 

exists in non-native terrains such as America, Japan and Australia (Winter et al., 2006). 

 

6.3 Bumblebee decline 

The decline of honeybees is regularly documented and often the main focus of 

researchers, whilst bumblebee decline has received limited attention (Elston, Thompson, 

& Walters, 2013; Mommaerts et al., 2010). As previously mentioned, eight native UK 

species of bumblebee have declined dramatically, while three species have become 

extinct (Goulson, 2010). Like the honeybee, there are multiple drivers behind bumblebee 

declines; they include: loss of habitat, parasites, disease (Potts et al., 2010) as well as 

competition with honeybees (Thompson, 2004). Pesticides are also one of the drivers 

which have received recent attention, particularly neonicotinoids (Blacquière, Smagghe, 

van Gestel, & Mommaerts, 2012). The implications of bumblebee losses are considered in 

further detail elsewhere (Goulson et al., 2008; Goulson, 2010). 

 

 



Chapter 6: The analysis of bumblebees exposed to thiamethoxam during feeding trials 

240 

6.3.1 The role of neonicotinoids 

Those neonicotinoids, which are a concern to pollinator health, are: imidacloprid, 

thiamethoxam and clothianidin; as they were routinely applied as seed dressing to a 

number of crops (Tomlin, 2009), prior to December 2013. The effects of these chemicals 

on honeybees have been covered in Chapter 1 while the effect of imidacloprid on 

bumblebees is more extensive than for thiamethoxam and clothianidin. It is known that 

these chemicals can contaminate various floral resources (see Chapter 5). Bumblebees 

consume large volumes of nectar, so it has been suggested that this may be the main 

route of pesticide exposure (Goulson, 2010).  

Using radio frequency identification (RFID) technology, Feltham et al., (2014) monitored 

bumblebee colonies following a 14 day exposure to imidacloprid spiked pollen (6 ppbv) 

and nectar (0.7 pbbv). Although there was no difference in lifespan between control and 

treated colonies, it was found that exposed colonies expressed a 31 % decrease in the 

amount of forage per hour (compared to control colonies). Pollen foraging trips were also 

reduced by 23 % (Feltham, Park, & Goulson, 2014). A reduction in the amount of pollen 

returning to the hive can limit colony success, as pollen is needed for brood development 

(Free & Butler, 1959; Rortais, Arnold, Halm, & Touffet-Briens, 2005). This can also be 

contributed to by workers being unable to navigate back to the colony; imidacloprid 

exposure of 10 ppbv was found (on average) to reduce worker return to the hive by 50 %, 

compared to controls (Gill, Ramos-Rodriguez, & Raine, 2012). Using the same spiking 

concentrations as Feltham et al., (2014), an earlier study by Whitehorn et al., (2012) 

demonstrated that imidacloprid reduced queen production in exposed colonies by 85 % 

as a result of reduced provisions of pollen (Whitehorn et al., 2012). The effect of 
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imidacloprid on worker performance (foraging) was found to continue up to four weeks 

after exposure (Feltham et al., 2014). As previously mentioned, the toxicity of 

imidacloprid is higher than that of thiamethoxam and clothianidin (Iwasa, Motoyama, 

Ambrose, & Roe, 2004), resulting in a shift towards the use of the latter neonicotinoids in 

crop protection (García-Chao et al., 2010). 

There are little data available on the effects of thiamethoxam on bumblebee colonies 

(Elston et al., 2013). Exposure to thiamethoxam at high concentrations was found to 

result in a number of lethal and sublethal effects, including an increase in mortality; 

unsurprisingly, mortality levels dropped with decreasing concentrations (Mommaerts et 

al., 2010). Exposure to thiamethoxam at field-realistic levels in both pollen and nectar (1 – 

10 pbbv) did not have an effect on the longevity of exposed colonies (Elston et al., 2013) 

in line with findings of Thompson et al (2013). It was shown, however, that a 10 ppbv 

exposure resulted in a significant delay in nest building with only 20 % of the 

experimental colonies starting to build a nest. Fewer eggs were laid and of those that 

were, all failed to develop into larvae (Elston et al., 2013). There were no major effects of 

thiamethoxam or its metabolite, clothianidin, on queen production (Thompson et al., 

2013).  

Exposure to clothianidin at concentrations of 6 and 36 ppbv were found to have no 

adverse effects on colony health; as such, it is considered a safer alternative to 

imidacloprid (Franklin, Winston, & Morandin, 2004). No brood mortalities were witnessed 

by Scholer & Krischik (2014); however, queen mortalities were significantly higher at non-

field realistic doses (50 – 100 ppbv) over an 11 week exposure. The speed at which 

workers moved at was 32 % slower at a 20 ppbv exposure compared to 0 ppbv. As with 



Chapter 6: The analysis of bumblebees exposed to thiamethoxam during feeding trials 

242 

thiamethoxam, it was also shown that the amount of constructed wax pots progressively 

decreased at higher concentrations of clothianidin (Scholer & Krischik, 2014). 

 

6.4 Study by Elston, C., Thompson, H. M., & Walters, K. F. (2013)  

The remainder of this chapter will focus on the analysis of bumblebee samples, which 

were kindly donated as part of a research project initiated by Professor Keith Walters 

during his time at Imperial College London. The bumblebees originate from feeding trials 

described in the published work of Elston et al., (2013). The initial study aimed to 

contribute findings of the effect of thiamethoxam and a fungicide on nest building and 

brood production in B. terrestris colonies, as there is very little information available 

concerning this in the literature.  

 

6.5 Aims and objectives 

The aim of this chapter is to quantify, if possible, the levels of thiamethoxam and its 

metabolite clothianidin in bumblebee specimens following exposure to thiamethoxam at 

‘field-realistic’ doses in a laboratory setting.  

 

 

6.6 Materials and Methods 

6.6.1 Feeding trials 

Feeding trials were conducted at Imperial College London, the experimental design used 

by Elston et al., (2013) focused on two treatments, thiamethoxam and propiconazole 

(fungicide). This chapter will solely focus on the former, which is briefly described below.  
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Queenless micro-colonies, consisting of three workers, were kept within the laboratory at 

27 °C and 70 % relative humidity, with an 8:16 hour light/dark photoperiod. At 2-day 

intervals (mixed) pollen (1-2 g) was made accessible to each colony, in addition to sugar 

solution (ad libitum). In order to monitor the weight of each bee they were anaesthetised 

using CO2 carbon dioxide (1 minute exposure). Those which failed to recover were 

replaced (before the experiment); however, those which did die, once the experiment 

had begun, were not replaced. An artificial nectar solution was prepared (pure honey and 

water at 60% w/v) and offered ad libitum. A pollen paste (dried pollen soaked in sugar 

solution) was also placed within the colonies on a weekly basis. During the feeding trials, 

two different doses of thiamethoxam (contained within artificial nectar and pollen) were 

made available: a “high-dose” and “low-dose”. Each dose was replicated ten times. The 

high-dose (HD) is considered a field-realistic maximum (10 ug/kg = 10 ppbv), while the 

low-dose (MD) (mean dose) is considered a field-realistic mean dose (1 ug/kg = 1 ppbv). 

Solvent control micro-colonies were also offered both artificial nectar and pollen, both 

containing 2,000 ug/kg (=2 ppmv) of acetone; whilst untreated colonies were given 

untreated artificial nectar and pollen. The experiment was started once signs of nest 

building (wax production) were observed. After 28 days the workers were weighed and 

frozen.  

 

6.6.2 Sample collection 

A total of 168 bumblebees (Bombus terrestris) were transported, packed in dry-ice, to 

Keele University. The bumblebees arrived as 91 pre-divided samples, each containing a 

single bee, two bees or three bees. These 91 samples were further sub-divided into four 
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boxes, as determined by Professor Keith Walters. All samples remained stored at -43 °C 

until analysis. The information regarding the feeding trials was agreed not to be released 

until the samples had been analysed.  

 

6.6.3 Reagents and standards 

All solvents and chemicals used in the study were of HPLC grade. Pesticide standards 

Thiamethoxam PESTANAL® and Clothianidin PESTANAL® (Fluka Analytical, Germany). Tri 

(2,3-dichloropropyl) phosphate OEKANAL® (TDCPP), (Fluka Analytical, Germany). 

Ammonium formate (NH4HCO2) ≥99 %, (Fluka Analytical, Germany). Acetonitrile (Fisher 

Scientific, Loughborough, England). Dichloromethane CHROMASOLV® (DCM) (Sigma-

Aldrich, Germany). Distilled water was purified at 18.2 MΩ with a Purelab Option-Q DV25 

purification system.  

 

6.6.4 Calibration using standards 

A ‘semi-matrix-matched’ calibration was conducted. This was achieved by diluting a stock 

solution to various concentrations (40, 20, 10, 5, 2.5, 1.25, 0.625) of thiamethoxam or 

clothianidin in water along with TDCPP at a constant concentration of 30 ppbv (20 µl at 

300 ppbv) in a final volume of 200 µl. Dichloromethane (800 µl) was then added to the 

water and the two solvents then shaken (1 minute). The aqueous (top) layer was removed 

and discarded, whilst the remaining organic layer was then dried under a stream of 

nitrogen, which was then dissolved in 200 µl water/acetonitrile (95:5 v/v) and transferred 

into a glass insert ready for analysis. Each concentration was injected onto the LC column 

five times (injection volume: 15 µl). The correlation coefficient (R2) values of both 
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thiamethoxam and clothianidin were 0.9963 and 0.9933, respectively (see Appendix M). 

Both the LOD and LOQ values were estimated from calibration levels, corresponding to a 

signal-to-noise ratio of about 3 and 10, respectively; in addition to the presence of the 

[M+H]+ ion (within a mass accuracy of 5 ppm) for each compound. The LOD and LOQ of 

clothianidin were determined to be 1.25 ppbv and 2.5 ppbv. The LOD and LOQ were both 

found to be below 0.625 ppbv for thiamethoxam and therefore any value below this will 

be referred to as < LOQ. 

 

6.6.5 Sample preparation  

Each bumblebee sample (containing one, two or three bees) was placed within a 5 ml 

Eppendorf tube® (Eppendorf AG, Hamburg, Germany) and homogenised using Castroviejo 

spring scissors (Electron Microscopy Sciences, Pennsylvania, USA) and 2 ml extraction 

solution (dichloromethane/water, 4:1 v/v) was then added along with 6 to 10, 1.0 mm 

zirconia/silica beads (Thistle Scientific, Glasgow, Scotland) and vortexed (2 min). The 

extraction was then carried out within an ultrasonic bath at room temperature (23 °C). 

Each sample was then centrifuged (1 min/ 10,000 rpm) and stored at -40 °C until the 

aqueous layer had frozen. The organic layer was then removed and filtered through a 

Acrodisc® CR PTFE (0.45 µm, 13 mm) syringe filter (PALL Life Sciences, USA), before being 

dried under a stream of nitrogen. Each sample was then dissolved in 50 µl of 

water/acetonitrile (95:5 v/v) and was ready for Q-TOF LC/MS analysis.     

 

6.6.6 Instrumentation  

Samples were injected into an Agilent 1260 Infinity LC system (injection volume: 20 µl) 

equipped with an autosampler, thermostatted column compartment (set to 35 °C) with 
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an Agilent Poroshell 120 EC-C18 (3 x 50 mm, 2.7 µm) column connected to an Agilent 

6530 Accurate-Mass-Q-TOF LC/MS. The LC mobile phase was water (5 mmol ammonium 

formate) (A), acetonitrile (B). The elution gradient, at a flow rate of 1 ml/min, was as 

follows: 0 – 0.5 min (95 % A/ 5 % B), 0.5 – 9 min (0 % A/ 100 % B), 9 – 9.5 min (0 % A/ 100 

% B), 9.5 – 10 min (95 % A/ 5 % B). The Q-TOF settings were as follows: acquisition mode 

MS; with MS range 100 – 1000 m/z; MS scan rate 1 spectrum/s; electrospray ionization 

(ESI) source – gas temperature: 300 °C; gas flow: 11 L/min; nebulizer: 50 psig, positive ion 

polarity; scan source parameters: Vcap 4000 V; fragmentor, 125 V; skimmer, 65 V; OCT RF 

Vpp, 750 V. 

 

6.7 Results 

The data for the bumblebee analysis can be found Tables 6.1 to 6.4. This data shows three 

concentration thresholds that could suggest to which concentration group (10 ppbv or 1 

ppbv) each bumblebee sample was potentially exposed. Each threshold is based on the 

detected levels of the thiamethoxam metabolite clothianidin and are as follows: (1) no 

clothianidin detected (control group); (2) detections made <LOD – 30 ppbv (low-dose, 

MD); and (3) detections made >30 ppbv (high-dose, HD). There may, however, be some 

overlap at each threshold boundary, but this cannot be determined without first 

acquiring the feeding data. A summary for each box is given in Table 6.5.  
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Table 6.1: Analysis results for 28 bumblebees contained in BOX 1. Results were obtained using the 

extraction procedure as described in Section 6.6.5 and analysed using Q-TOF LC/MS. Concentration values 

were calculated using semi-matrix matched calibration curves, as given in Appendix M. 

BOX 1 Thiamethoxam Clothianidin 

Sample ID 

Frozen 

weight 

(g) 

Number 

of bees 

RT 

(min) 

Conc 

(ppbv) 

Conc 

per bee 

(ppbv) 

ng/g 
RT 

(min) 

Conc 

(ppbv) 

Conc 

per bee 

(ppbv) 

ng/g 

BOX1_35 0.7731 3 ND ND - - 3.124 < LOD        - - 

BOX1_34 0.3335 2 ND ND - - 3.09 < LOD        - - 

BOX1_34(1) 0.1841 1 ND ND - - ND ND        - - 

BOX1_33 0.6204 3 ND ND - - 3.128 < LOD        - - 

BOX1_32 0.1815 1 2.77 1.582
6 

1.582
6 

0.158
26 

3.102 < LOQ        - - 

BOX1_32(2) 0.3489 2 ND ND - - ND ND        - - 

BOX1_31(3) 0.433 3 ND ND - - ND ND        - - 

BOX1_30 0.2962 2 ND ND - - 3.003 < LOD        - - 

BOX1_30(1) 0.1973 1 2.707 < LOQ - - 3.039 2.5535  2.5535   0.25535 

BOX1_29(2) 0.4672 2 ND ND - - 3.136 < LOD         - - 

BOX1_29 0.1537 1 2.706 < LOQ - - 3.038 < LOD         - - 

BOX1_28 0.5019 3 2.711 6.612
9 

2.204
3 

0.661
29 

3.043 3.1606  1.0535    0.3161 

BOX1_27 0.6074 3 ND ND - - 3.111 < LOD         - - 

BOX1_26 0.4661 3 ND ND - - 3.054 < LOQ         - - 

BOX1_24 0.4016 3 ND ND - - ND ND         - - 

BOX1_22 0.4819 2 ND ND - - 3.056 < LOD         - - 

BOX1_20 0.7184 3 ND ND - - ND ND         - - 

BOX1_19 0.5857 3 2.706 < LOQ - - 3.154 < LOD         - - 

BOX1_18 0.6021 3 2.725 < LOQ - - 3.04 < LOD         - - 

BOX1_17 0.1552 1 ND ND - - ND ND         - - 

BOX1_15 0.6165 3 2.709 < LOD - - ND ND         - - 

BOX1_14 0.5508 3 2.715 < LOD - - 3.047 < LOD         - - 

BOX1_13 0.6544 3 ND ND - - 3.028 < LOD         - - 

BOX1_12 0.3569 2 ND ND - - 3.032 < LOQ         - - 

BOX1_4 0.4409 3 ND ND - - ND ND         - - 

BOX1_3 0.3595 2 ND ND - - ND ND         - - 

BOX1_2 0.4571 3 ND ND - - 3.048 2.8544 0.9515   0.2854 

BOX1_1 0.6362 3 ND ND - - 3.032 < LOD         - - 
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Table 6.2: Analysis results for 13 bumblebees contained in BOX 2. Results were obtained using the 

extraction procedure as described in Section 6.6.5 and analysed using Q-TOF LC/MS. Concentration values 

were calculated using semi-matrix matched calibration curves, as given in Appendix M. 

BOX 2 Thiamethoxam Clothianidin 

Sample ID 

Frozen 

weight 

(g) 

Number 

of bees 

RT 

(min) 

Conc 
(ppbv) 

Conc 
per bee 
(ppbv) 

ng/g 
RT 

(min) 

Conc 
(ppbv) 

Conc per 
bee 

(ppbv) 
ng/g 

BOX2_11 0.6093 3 ND - - - 3.032 < LOD - - 

BOX2_23 0.667 3 ND - - - 3.029 < LOD - - 

BOX2_25 0.5567 3 ND - - - 3.019 < LOD - - 

BOX2_50(1) 0.1896 1 2.7
17 

< 
LOQ 

- - 3.032 < LOQ - - 

BOX2_52(1) 0.1013 1 ND - - - 3.032 < LOQ - - 

BOX2_54(1) 0.1223 1 ND - - - 3.145 < LOD - - 

BOX2_57(1) 0.272 1 ND - - - 3.134 < LOQ - - 

BOX2_21 0.615 3 ND - - - 3.163 < LOD - - 

BOX2_16 0.5918 3 ND - - - 3.133 < LOD - - 

BOX2_5 0.7889 3 ND - - - ND - - - 

BOX2_56(2) 0.6539 2 ND - - - 3.104 13.7273 6.8637 1.3727
3 BOX2_37(2) 0.5837 2 ND - - - 3.058 38.9716 19.4858 3.8971
6 BOX2_44(1) 0.1273 1 ND - - - 3.105 17.4925 17.4921 1.7492
5  

 

Table 6.3: Analysis results for 22 bumblebees contained in BOX 3. Results were obtained using the 

extraction procedure as described in section 6.6.5 and analysed using Q-TOF LC/MS. Concentration values 

were calculated using semi-matrix matched calibration curves, as given in Appendix M. 

BOX 3 Thiamethoxam Clothianidin 

Sample ID 

Frozen 

weight 

(g) 

Number 

of bees 

RT 

(min) 

Conc 
(ppbv) 

Conc 
per bee 
(ppbv) 

ng/g 
RT 

(min) 

Conc 
(ppbv) 

Conc per 
bee 

(ppbv) 
ng/g 

8(1)_23_11_12 0.0978 1 ND - - - 3.055 3.4722  3.4722    0.3472 
37(1)_23_11_12 0.2756 1 ND - - - 3.056 4.354     4.3540          0.4354 

49(1) 0.1363 1 ND - - - 3.056 < LOQ -   - 

60(1) 0.1136 1 ND - - - 3.054 < LOQ -   - 

59(2) 0.2601 2 2.717 < LOQ - - ND - -   - 

58(2) 0.4616 2 2.718 3.0569 1.52845 0.3056
9 

3.05 43.0618 21.5309    2.1531 

57(2) 0.5463 2 2.722 1.6342 0.8171 0.1634
2 

3.054 126.6617 63.3309        6.3309 

55(3) N/A 3 2.717 < LOQ - - 3.065 69.3247 23.1082        2.3108 

54(2) 0.3411 2 ND - - - 3.068 3.5874 1.7937          0.1794 

51(2) 0.3239 2 ND - - - 3.062 19.8346 9.9173          0.9917 

48(2) 0.424 2 ND - - - - - -   - 

45(1) 0.2534 1 ND - - - 3.063 < LOQ -   - 

43(1) 0.1852 1 ND - - - 3.054 45.8952 45.8952   4.5895 

41(1) 0.263 1 ND - - - 3.044 15.7568 15.7568   1.5757 

39(2) 0.494 2 ND - - - 3.056 2.7975 1.3988         0.1399 

38(1) 0.2146 1 ND - - - ND - -    - 

36(1) 0.1661 1 ND - - - ND - -    - 

10(1) 0.173 1 ND - - - ND - -    - 

9(2) 0.2928 2 ND - - - 3.048 19.2167 9.60835        
0.960835 8(1) 0.2256 1 ND - - - ND - -   - 

52(1) 0.1244 1 ND - - - 3.045 16.727 16.727          1.6727 

50(1) 0.1913 1 2.704 14.9915 - 1.4991
5 

3.052 5.6738 5.6738    0.5674 
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Table 6.4: Analysis results for 28 bumblebees contained in BOX 4. Results were obtained using the 

extraction procedure as described in section 6.6.5 and analysed using Q-TOF LC/MS. Concentration values 

were calculated using semi-matrix matched calibration curves, as given in Appendix M. 

BOX 4 Thiamethoxam Clothianidin 

Sample I.D 

Frozen 

weight 

(g) 

Number 

of bees 

RT 

(min) 

Conc 
(ppbv) 

Conc 
per bee 
(ppbv) 

ng/g 
RT 

(min) 

Conc 
(ppbv) 

Conc per 
bee 

(ppbv) 
ng/g 

56 0.227 1 2.713 1.9837 1.9837 0.87387
6652 

3.045 26.825 26.8250 11.8172 

53(1) 0.3075 1 - - - - 3.038 23.9443 23.9443 7.7868 

8(1) 0.1273 1 - - - - 3.048 109.7592 109.7592 86.2209 

53 0.5074 2 2.707 2.6067 1.30335 0.51373
6697 

3.056 52.2179 26.1090 10.2913 

45(2) 0.3375 2 - - - - 3.048 80.6061 40.3031 23.8833 

40 0.5643 3 - - - - 3.046 21.6881 7.2294 3.8433 

48 0.164 1 2.71 0.8875 0.8875 0.54115
8537 

3.042 101.0749 101.0749 61.6310 

41 0.3876 2 - - - - 3.05 76.8703 38.4352 19.8324 

60 0.4964 2 2.72 7.4422 3.7211 1.49923
4488 

3.052 75.556 37.778 15.2208 

36 0.348 2 2.708 < LOQ - - 3.04 60.9338 30.4669 17.5097 

49 0.2742 1 2.711 < LOQ - - 3.043 41.8517 41.8517 15.2632 

58 0.2502 1 2.714 7.8016 7.8016 3.11814
5484 

3.046 29.8983 29.8983 11.9498 

59 0.1528 1 2.711 5.6604 5.6604 3.70445
0262 

3.043 43.8076 43.8076 28.6699 

46 0.432 2 2.716 2.6038 1.3019 0.60273
1481 

3.048 99.0673 49.5337 22.93225 

47 0.2672 2 2.692 < LOQ - - 3.04 437.6601 218.8301 163.7949 

43 0.0862 1 - - - - 3.044 5.8549 5.8549 6.7922 

44 0.1472 1 - - - - 3.04 23.3357 23.3357 15.8531 

52(1) 0.0124 1 2.702 0.8335 0.8335 6.72177
4194 

3.034 91.0197 91.0197 734.0298 

51(1) 0.0913 1 - - - - 3.033 11.6249 11.6249 12.7326 

46(1) 0.1421 1 - - - - 3.04 13.7914 13.7914 9.7054 

47(1) 0.1965 1 2.715 < LOQ - - 3.047 178.6127 178.6127 90.897 

9 0.1537 1 - - - - 3.038 28.7531 28.7531 18.7073 

10 0.2867 2 - - - - 3.032 86.8934 43.4467 30.30813 

7 0.646 3 - - - - 3.035 44.1483 14.7161 6.8341 

6 0.4113 3 - - - - 3.037 4.7494 1.5831 1.1547 

44(1) 0.2244 1 - - - - 3.043 66.5917 66.5917 29.6755 

43(1) 0.1327 1 - - - - 3.031 8.1008 8.1008 6.1046 

39(1) 0.1919 1 - - - - 3.037 2.9082 2.9082 1.5155 

 

 

Table 6.5: A summary of raw data contained in Table 6.1 to 6.4 for boxes 1 – 4. Each individual bee was 

considered to be part of a control (no clothianidin detected); low-dose (<LOD – 30 ppbv); or high dose 

(>30 ppbv) feeding trial. The limit of detection for clothianidin was 1.25 ppbv.  

Box 
Number of 

samples 
Control 

Low dose 

(1 ppbv) 

High dose 

(10 ppbv) 

1 28 9 19 0 

2 13 1 11 1 

3 22 6 12 4 

4 28 0 12 16 
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Figure 6.2: An overlay comparison between clothianidin, detected in sample 37(2) from Box 2, to its 

theoretical isotopic pattern (red boxes). 

 

The presence of clothianidin (Figure 6.2) and thiamethoxam were confirmed using their 

respective theoretical isotopic pattern, in addition to comparing RT values with previously 

analysed standards. 

 

6.8 Discussion 

6.8.1 Extraction technique 

The extraction technique used for the experiments described in this chapter was 

developed as an amalgamation of two studies which extracted various pesticides from 

honeybees. The first was a relatively simple ultrasonic extraction method, which was used 

to isolate three chlorinated pesticides. Here three honeybees were homogenised in 

dichloromethane and then placed in an ultrasonic bath for 30 minutes. This showed good 

recoveries for DDT (79 %) and methoxychlor (DMDT) (86 %), although a lower recovery 

was found for lindane (γ-HCH) (55 %) (Bańka, Buszewicz, Listos, & Madro, 2010). The 

principle of using immiscible solvents (water and dichloromethane) was adopted from a 

second study, which used a modified QuEChERS method, with the addition of hexane (13 

% v/v) to the standard extraction solution (water and acetonitrile) - with the aim of 
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eliminating any co-extracted beeswax. The inclusion of hexane was also found to improve 

the recovery of some pesticides, such as thiamethoxam, while recoveries of other 

pesticides decreased. However, the overall trend appeared to be an increase in recovery, 

with a range for all pesticides tested to be between 70.1 % to 110.6 % (Bargańska, 

Ślebioda, & Namieśnik, 2014). However, due to the miscibility of dichloromethane and 

hexane it would mean that fatty deposits within the hexane would also be contained 

within the dichloromethane fraction. Consequently, hexane was not used in the 

extraction solution. Instead, the extractions were stored at -40 °C, leaving the 

dichloromethane to be decanted away from the frozen water and lipid layer. 

Homogenisation of the bumblebee sample was achieved using Castroviejo spring scissors 

to cut the bee into smaller fragments, allowing for the solvent to access the internal of 

the bee. Zicronia/silicon beads were then added to the Eppendorf tube to further 

homogenise the sample whilst being vortexed. The use of beads is normally applied to 

genomic studies in order to extract DNA from cells (Roberts, 2007).  

 

6.8.2 The levels of thiamethoxam and clothianidin 

Clothianidin is a known metabolite of thiamethoxam and therefore was expected to be 

detected within the bumblebee samples. The data given in Tables 6.1 to 6.4 show a 

concentration of each neonicotinoid at the time of analysis; however, in order to 

determine an understanding of the true exposure to thiamethoxam, the detected levels 

of clothianidin and thiamethoxam must be pooled together. It must be noted that some 

information (quantity) is lost where values fall below the LOD and thus the true limit of 

exposure cannot be determined. 
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Although it is known that there were two possible concentrations on which the bees 

could have been feeding, in addition to a blank control group, it has not been possible to 

find any data which enable the comparison between the levels of thiamethoxam fed to 

bees and the amounts recovered, therefore, making it difficult to set a threshold to 

determine which sampled bees belong to which group. From the observed concentrations 

presented in Tables 6.1 to 6.4 all that can be assumed is whether the bees may have been 

part of the high-dose, low-dose or control group. It was assumed that bees containing 

clothianidin below the LOQ were part of the MD group; an upper limit for this group was 

set at 30 ppbv based on visual observations from the data. There were found to be strong 

visual correlations between detectable levels of thiamethoxam and high levels of 

clothianidin, suggesting that the bee had died, or was frozen - as defined by the 

experimental procedure of Elston et al., (2013), before thiamethoxam was able to 

completely metabolise. However, high levels of clothianidin did not necessarily mean that 

thiamethoxam would be detected, as information on the actual rate of metabolism, 

energy expenditure or size of the each bee is either unknown or was not recorded prior to 

analysis. In the study by Elston et al., (2013) it was not possible to determine the 

consumption of pollen within each micro-colony due to the storage of pollen in the nest 

by the bees. Consequently, even if the feeding data were present, it would be difficult to 

determine the exact contribution that each of the food sources would have on the overall 

detected concentration.  

Honeybees are thought to act as ‘filters’, resulting in low levels of environmental 

contaminants in honey (Bogdanov, 2006); this presumably arises from the metabolism 

and extraction of ingested chemicals from the body. If so, then the same principle can 
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surely be applied to bumblebees. Although it was not possible to find any data on the 

metabolism of thiamethoxam in bees, concentrations of 20 and 50 ppbv of imidacloprid 

were reported to be completely eliminated from the honeybee after six and twenty four 

hours exposure, respectively (Suchail et al., 2004, as cited in FERA (2013).  

The dietary requirements of the bumblebee were found to alter depending on age as well 

as the amount of amino acids present in their food source (Stabler, Paoli, Nicolson, & 

Wright, 2015). It is not clear if this is acknowledged by feeding trials investigating 

pesticide exposure, as this may have some influence on the levels of sugar solution 

consumed, thus increasing/ decreasing the ingested amount of pesticide contained within 

their feed. Indeed, it is acknowledged that artificial feeds may affect bees differently to 

natural foods (Godfray et al., 2014). It was reported that bees demonstrated a preference 

to sugar solutions containing neonicotinoids, although consumption of these 

agrochemicals reduced food intake (Kessler et al., 2015). This is consistent with findings of 

Elston et al., (2013) who reported that the amount of sugar solution consumed was 

lowest for the High dose treatment than for those from the Low dose group, compared to 

the control. The presence of neonicotinoids at low concentrations (0.7 ppbv nectar and 6 

ppbv) in food sources was found to reduce the efficiency of pollen foraging (Feltham et 

al., 2014) as well as a reducing in queen production by 85 % (Whitehorn et al., 2012). 

However, the findings of Whitehorn et al., (2012) have been questioned, as exposure was 

conducted over a two week period, meaning bumblebees would have to solely feed on 

treated crops (EFSA, 2012). Further to this, it was found that bumblebees do not feed 

exclusively on one particular crop, despite being located next to an oilseed rape field 

(treated with thiamethoxam); only 35 % of the pollen analysed was from this crop 
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(Thompson et al., 2013). As previously considered in Chapter 5, field and semi-field 

studies have found that there are unfavourable effects to both honeybee and 

bumblebees feeding on crops treated with neonicotinoid-based seed treatments (Cutler, 

Scott-Dupree, Sultan, Mcfarlane, & Brewer, 2014; Cutler & Scott-Dupree, 2007, 2014; 

Pilling, Campbell, Coulson, Ruddle, & Tornier, 2013; Schmuck, Schöning, Stork, & 

Schramel, 2001; Thompson et al., 2013). It remains difficult to control or standardise 

procedures within studies of this nature (Goulson, 2015). However, laboratory studies are 

perhaps guilty of using doses higher than those found within the field or use of unrealistic 

time frames (EFSA, 2012), while the well-defined protocols of laboratory studies are able 

to allow for better observations that are not influenced by other stressors found within 

the field (Godfray et al., 2014). 

 

6.9 Conclusion 

Without the related feeding data for all of the samples analysed, it is not possible to make 

any direct comparisons between the amounts of neonicotinoids consumed and the levels 

detected within the bee bodies. The unavailability of this material is due to the 

agreement of it only becoming accessible after the samples had been analysed.  This was 

delayed due to setbacks relating to machine errors and a lack of confidence in the 

analytical equipment available at the time, which has since been replaced.  

If the feeding information was available prior to analysis, then it would be preferable to 

have analysed the bees found in Box 4 individually, as oppose to samples of two or three; 

as this box contained the highest quantifiable levels of neonicotinoids. This would provide 

a better indication of the levels consumed per bee. However, as this information was not 
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known, the bees were analysed according to the pre-determined groups, as the analysis 

of greater number of bees would increase the likelihood of detection, a strategy that is 

also applied elsewhere (Bańka et al., 2010; Bargańska et al., 2014). This was also matched 

with an injection volume of 20 µl, which allows for more ions to be introduced into the Q-

TOF LC/MS. 
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Discussion 

 

 

 

 

The aims of this thesis were to determine the presence of pesticides within UK honeybee 

comb wax and to monitor the accumulation of such chemicals over a two-year time 

frame, as well as determining the levels of neonicotinoids, which may be contained with 

pollen and nectar samples of oilseed rape, resulting from their application as a seed-

treatment. The aims of a later, additional study, was to quantify the levels of 

thiamethoxam and its metabolite in bumblebee bodies, following exposure to the parent 

compound in a feeding trial conducted by researchers at Imperial College London.  

The aim of Chapter 3 was met through the analysis of 152 comb wax samples, obtained 

through various advertising campaigns and appeals to beekeeping associations. Analysis 

of all the samples was conducted using GC-MS; however, due to the detection limit of the 
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instrument, it was not possible to detect any chemical present within the wax unless 

found above 1 ppmv. Later analysis of 15 samples, using a much more sensitive Q-TOF 

LC/MS, revealed that tau-fluvalinate was present within 11 of these. This was not 

considered surprising as this chemical was once a popular anti-Varroa treatment. 

Questionnaires received from beekeepers reported that this chemical was more popular 

in Scotland than the rest of the UK. Although no Scottish samples were analysed using Q-

TOF LC/MS, it is assumed that it would represent a large number of detections within that 

country. Butylated hydroxtoluene (BHT) was also detected by GC-MS and this was 

originally thought to be due to possible wax adulteration during recycling; however, it is 

also used in chemical treatments as a stabiliser, which may be the probably source of its 

detection, although this cannot be confirmed. 

It was not possible to find information on a study in the literature that had attempted to 

monitor the accumulation of pesticides within comb wax using new ‘clear’ or ‘pesticide 

free’ foundation as a starting point. So here is presented a procedure which could be 

further utilised for observing potential chemical accumulations in this medium. However, 

it was concluded that the aim of Chapter 4 was not met, due to the small number of 

samples used, thus making it difficult to draw any definite conclusions on accumulation. 

From the analysis of foundation wax submitted by beekeepers, it has been possible to 

learn that tau-fluvalinate was found to be persistent in wax, which could lead to 

continuous exposure to the developing brood. If this study was to be conducted again, it 

is suggested that a bigger sample set should be used. It would also be useful to be able to 

quantify the levels of pesticides. 



Chapter 7: Discussion 

262 

Through surveying the levels of neonicotinoids found in oilseed rape nectar, it has also 

been possible to identify varied concentrations of these chemicals. No quantifiable levels 

were identified in pollen. The use of 100 µl of nectar within Chapter 5 is considered to be 

novel, as the small volumes used have not been quoted elsewhere described in the 

literature. Although the process can be time consuming, collection directly from the 

flower avoids possible metabolisation of the target chemical though prior collection by a 

pollinator. However, other sources of compound break-down cannot be avoided i.e. 

exposure to sunlight. In order to match the sample volumes, a micro-scale QuEChERS 

technique was also developed, which showed good recovery rates (78 – 102 %). It is felt 

that the extraction methodology and small sample volumes used in this study can be 

applied successfully to future research. However, due to the variability of results, further 

information including: soil type, ground moisture and metrological data may be required 

in order to aide interpretation.  

The aim of Chapter 6, which was to determine the levels of thiamethoxam in bumblebee 

bodies, was successful. However, it is felt that further interpretation of the results is 

needed. This would be in the form of comparing the values obtained to the feeding trial 

information in order to confirm the results were obtained successfully. Yet, despite this, 

an extraction technique has been developed and found to give three sets of results - 

which could relate to the three feeding groups.  

 

Recommendations for future work 

The introduction of ‘random comb wax screening’, as part of the already existing colony 

inspections, performed by the National Bee Unit (NBU) would help to generate a clearer 
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picture of the contamination of UK comb wax. Relaying the resulting information back to 

beekeepers may help to reduce contamination over the long-term, as it might make 

beekeepers more concious of what may be present in their hives. Likewise, a smaller 

project analysing the various sheets of foundation wax available to UK beekeepers in the 

market may highlight the issue of contaminated foundation. It would alo be interesting to 

try and monitor the accumulation of other environmental contaminants within the hive. 
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Instructions 
 

Thank you for agreeing to take part in this study. 
This study requires wax, capped brood and pollen samples. A suggested way of obtaining such samples is to 
remove a section of comb wax from the hive. Ideally this comb should contain both capped brood and 
pollen samples (figure 1). If this is not possible then wax and capped brood samples are preferred. 

 

 

 Please collect the sample between 27 June 2011 and 6 July 2011 and state the exact day on both 
the provided questionnaire and label within the pack. 

 

 Please clean any hive or cutting equipment used to cut the comb wax with soapy water and then 
the provided alcohol wipes prior to collection; this is to avoid/limit contamination from other hives 
on which you use the same tools. 

 

 Likewise a pair of disposable gloves has been provided. These are to place over the top of your 
existing gloves and are again to avoid any secondary contamination. 

 

 Once the wax has been cut, please place the comb within the provided container and seal 
securely. 

 

 In order to eliminate the brood from further developing...we ask that you put the cut comb 
container in the freezer for around and hour or so. This is will kill the brood without causing any 
pain. 

 

 Please write your name and address plus the date of collection on the provided label and stick it 
to the cut comb container. 

 

 Once collected please return the sample as soon as possible within the provided self- addressed 
envelope along with the completed questionnaire (see other side). Any additional information you 
wish to include is also welcome. 

 
k.d.wisniewski@epsam.keele.ac.uk 

 

Questionnaire  

http://farm4.static.flickr.com/3295/4567110893_220657cb61.jpg 

Appendix B: Instruction sheet provided to beekeepers detailing a protocol on how to collect 

beeswax samples needed for the study described in chapter 3. 

mailto:k.d.wisniewski@epsam.keele.ac.uk
http://farm4.static.flickr.com/3295/4567110893_220657cb61.jpg
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Questionnaire 

When completing this questionnaire please answer the questions honestly and provide as much detail 

as possible (where applicable) in order to assist with sample processing in the laboratory. 

 
Please state the city/town and the county in which your hive is based: 

City/town...........................................

 County.............................

........ 

 
Please tick what best describes your local environment: 

[  ] Rural [  ] Semi-rural [ ] Urban 

 
Please estimate the age of the comb from which you will provide a sample: (YEARS/MONTHS)             

Do you currently use any kind in or around your hive? (Tick all that are applicable) 

[  ] Apistan [  ] Bayverol  [  ] Fumidil B [ ] 

Thymol [ ] Paradichlorobenzene (PDB)    [ ] Other 

If other, please specify............................................................................................................ 

................................................................................................................................................. 

 
Are you aware of any recent pesticide applications at the time of sample collection? 

 
 
 

If possible, please give details on the local flora including agricultural crops that currently 

surround your hive. 

 
 

Please briefly describe the condition of your colony: 
 
 
 

If used, please state the origin of the foundation wax used for the collected sample? 
 
 
 

Do you recycle comb wax? If so, how? 
 

 
Please give the exact date of the sample collection:  (DD/MM/YYYY) 

 

Would you be willing to participate in later studies? I.e. provide further samples if needed? 

[  ] Yes [ ] No 
 

Thank you for your time. You will receive your results as soon 

as all of the samples have been processed. 

Appendix C: Questionnaire provided during 2011 – 2012 beekeeping season. Questionnaire was 

to be completed and returned with every beeswax sample, as instructed in Appendix B. 
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Appendix D: Quantitative questionnaire results from relating to the questionnaires (Appendix C) 
returned with each beeswax sample. Results have been separated into each respective country: 
England, Scotland and Wales. 

 

(Quantitative) Questionnaire results  

England (n = 98) 

Please tick what best describes your local 

environment:  

Environment Response % 

Rural 50 51.02 

Semi-rural 28 28.57 

Urban 17 17.35 

Not specified 3 3.06 

 

Do you currently use any kind of treatment in or 

around your hive? 

Treatment Response % 

Apistan (tau-fluvalinate) 12 7.55 

Apivar (amitraz) 1 0.63 

Bayverol 3 1.89 

Flumidil B 16 10.06 

Thymol 59 37.11 

Oxalic acid 32 20.13 

Formic acid 5 3.14 

Not Specified 6 3.77 

PDB 2 1.26 

Other 12 7.55 

No 11 6.92 

 

Are you aware of any recent pesticide 

applications at the time of sample collection? 

Aware Response % 

Yes 5 5.10 

No 80 81.63 

Not Specified 13 13.27 

 

 

 

 

 

 

(a) Do you recycle comb wax?5 (b) If so, how? 

Recycling Response % 

Solar 27 26.21 

Steam 13 12.62 

Other 12 11.65 

No 23 22.33 

Not Specified 28 27.18 

 

Trade Response % 

Trade In 38 38.78 

Not Traded 32 32.65 

Own Foundation 7 7.14 

Not Specified  21 21.43 

 

Estimate the age of the comb from which you 

provide a sample. 

Comb age 
(months) 

Response % 

0-6 13 13.27 

7-12 20 20.41 

13-18 15 15.31 

19-24 11 11.22 

25-30 7 7.14 

31-36 8 8.16 

37-42 4 4.08 

43-54 1 1.02 

54+ 1 1.02 

N/S 19 19.39 

 

 

Scotland (n = 46) 

Please tick what best describes your local 

environment: 

Location Response % 

Rural 28 60.87 

Semi-rural 13 28.26 

Urban 5 10.87 

Not specified 0 0.00 

 

 

 

                                                           
5
 Multiple methods of recycling have been recorded 

(e.g. candle making, wax trading), where applicable.  
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Appendix D: Quantitative questionnaire results from relating to the questionnaires (Appendix C) 
returned with each beeswax sample. Results have been separated into each respective country: 
England, Scotland and Wales. 

Do you currently use any kind of treatment in or 

around your hive? 

Treatment Response % 

Apistan (tau-fluvalinate) 19 22.62 

Apivar (amitraz) 2 2.38 

Bayverol 2 2.38 

Flumidil B 3 3.57 

Thymol 15 17.86 

Oxalic acid 22 26.19 

Formic acid 5 5.95 

para-dichlorobenzene 1 1.19 

Other 7 8.33 

No 4 4.76 

Not Specified 4 4.76 

 

Are you aware of any recent pesticide 

applications at the time of sample collection? 

Aware Response % 

Yes 3 6.52 

No 43 93.48 

Not Specified 0 0 

 

(a) Do you recycle comb wax? (b) If so, how? 

Recycling Response % 

Solar 5 10.87 

Steam 2 4.35 

Other 3 6.52 

No 24 52.17 

Not Specified 12 26.09 

 

Trade Response % 

Trade In 11 23.91 

Not Traded 28 60.87 

Own Foundation 2 4.35 

Not Specified  5 10.87 

   

 
 
 
 
 
 
 
 

Estimate the age of the comb from 
which you provide a sample. 

Comb age 
(months) 

Response % 

0-6 10 21.74 

7-12 5 10.87 

13-18 2 4.35 

19-24 7 15.22 

25-30 6 13.04 

31-36 6 13.04 

37-42 2 4.35 

43-54 2 4.35 

54+ 2 4.35 

N/S 4 8.70 

 

 

Wales (n = 8) 

Please tick what best describes your local 

environment: 

Location Response % 

Rural 3 37.50 

Semi-rural 4 50.00 

Urban 1 12.50 

Not specified 0 0 

 

Do you currently use any kind of treatment in or 

around your hive? 

Treatment Response % 

Apistan (tau-fluvalinate) 0 0 

Apivar (amitraz) 0 0 

Bayverol 0 0 

Flumidil B 0 0 

Thymol 6 46.15 

Oxalic acid 6 46.15 

Formic acid 0 0 

para-dichlorobenzene 0 0 

Other 0 0 

No 0 0 

Not Specified 1 7.69 
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Appendix D: Quantitative questionnaire results from relating to the questionnaires (Appendix C) 
returned with each beeswax sample. Results have been separated into each respective country: 
England, Scotland and Wales. 

Are you aware of any recent pesticide 

applications at the time of sample collection? 

Aware Number % 

Yes 0 0 

No 6 75.00 

Not Specified 2 25.00 

 

(a) Do you recycle comb wax? (b) If so, how? 

Recycling Number % 

Solar 2 25.00 

Steam 0 0 

Other 0 0 

No 4 50.00 

Not Specified 2 25.00 

 
 
Trade Number % 

Trade In 2 25.00 

Not Traded 0 0 
Own Foundation 
Not specified 

0 
6 

0 
75.00 

   

   

   

 

Estimate the age of the comb from which you 

provide a sample. 

Comb age 
(months) 

Response % 

0-6 1 12.50 

7-12 3 37.50 

13-18 0 0.00 

19-24 1 12.50 

25-30 1 12.50 

31-36 1 12.50 

37-42 0 0.00 

43-54 0 0.00 

54+ 0 0.00 

N/S 1 12.50 
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Only thymol reported here, as no other pesticide was 
detected. BHT also reported. 

Scotland 
 

Sample ID 
 

Thymol 
Thymol 

  used?  

 

BHT 

ARL_1_5/7/11    

ARL_2_5/7/11    

ARL_3_5/7/11   

ARL_4_8/7/11   

ARL_5_8/7/11    

ARL_6_18/7/11   

AYR_1_4/7/11   

AYR_2_5/7/11    

AYR_3_8/7/11   

AYR_4_18/7/11    

BEW_1_5/7/11   

BEW_2_6/7/11   

BOR_1_4/7/11   

BOR_2_6/7/11    

BOR_3_8/7/11   

DGY_1_6/7/11   

DNB_1_5/7/11   

DNB_2_15/7/11   

FIF_1_1/7/11   

FIF_2_4/7/11   

FIF_3_5/7/11   

FIF_4_6/7/11    

FIF_5_8/7/11   

FIF_6_12/7/11   

FIF_7_12/7/11   

HLD_1_5/7/11   

MLN_1_30/6/11   

MLN_2_11/8/11   

PEE_1_5/7/11   

PER_1_5/7/11    

PER_2_5/7/11   

PER_3_9/8/11   

RFW_1_4/7/11   

RFW_2_5/7/11   

RFW_3_5/7/11   

RFW_4_31/8/11    

ROC_1_4/7/11    

ROX_1_30/6/11    

 

Sample ID Thymol 
Thymol 
used? 

BHT 

SEL_1_8/7/11    

STI_1_5/7/11   

STI_2_6/7/11   

STI_3_8/7/11   

STI_4_16/8/11   

STI_5_16/8/11   

TAY_1_9/8/11   

  WIS_1_14/7/11      

 

Wales 
  

 
Sample ID 

 
Thymol 

Thymol 
  used?  

 
BHT 

CMN_1_8/7/11   

GNT_1_1/7/11   

MON_1_5/7/11   

WGM_1_5/7/11    

WGM_2_6/7/11    

WGM_3_1/7/11    

WGM_4_11/7/11    

  WGM_5_12/7/11       

England 
 

Sample ID 
 

Thymol 
Thymol 

  used?  

 

BHT 

CAM_1_6/7/11    

CAM_2_6/7/11    

CAM_3_6/7/11   

CAM_4_8/7/11    

DBY_1_12/7/11    

DEV_1_30/6/11    

DEV_2_6/7/11   

DEV_3_6/7/11    

DEV_4_6/7/11   

DEV_5_6/7/11   

DEV_6_6/7/11    

DEV_7_8/7/11    

DEV_8_12/7/11    

DEV_9_18/7/11    

DEV_10_18/7/11    

DOR_1_30/6/11    

 

Appendix E: GC-MS raw data for beeswax samples analysed in Chapter 3. Only thymol and 

butylated hydroxytoluene (BHT) are reported, in addition to whether thymol was reportedly 

used by the beekeeper. 
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Sample ID Thymol 
Thymol 

  used?  
BHT 

DOR_2_5/7/11   

DOR_3_12/7/11    

DUR_1_8/7/11    

ERY_1_15/7/11    

ERY_2_15/7/11    

ESS_1_4/7/11   

ESS_2_6/7/11    

GLS_1_6/7/11    

GLS_2_15/7/11    

HAM_1_3/6/11    

HAM_2_1/7/11    

HAM_3_6/7/11   

HAM_4_7/7/11    

HAM_5_8/7/11    

HAM_6_8/7/11    

HAM_7_8/7/11    

HAM_8_8/7/11    

HAM_9_8/7/11   

HRT_1_30/7/11   

HRT_2_5/7/11    

HRT_3_12/7/11   

HRT_4_12/7/11    

KEN_1_4/7/11    

KEN_2_5/7/11    

KEN_3_5/7/11   

KEN_4_5/7/11   

KEN_5_8/7/11    

KEN_6_8/7/11    

KEN_7_12/7/11    

LAN_1_30/6/11   

LAN_2_8/7/11    

LIN_1_1/8/11   

LON_1_6/7/11    

MSX_1_7/7/11   

NBL_1_6/7/11    

NBL_2_6/7/11   

NFK_1_4/7/11   

NFK_2_5/7/11    

NFK_3_6/7/11    

NFK_4_6/7/11   

NFK_5_7/7/11    

NFK_6_8/7/11    

 

Sample ID Thymol 
Thymol 

  used?  
BHT 

NFK_7_25/7/11   

NFK_8_25/7/11   

NFK_9_25/7/11   

NFK_10_25/7/11   

NFK_11_27/7/11    

SAL_1_5/7/11    

SFK_1_12/7/11    

SOM_1_30/6/11    

SOM_2_5/7/11    

SOM_3_5/7/11    

SOM_4_6/7/11    

SOM_5_8/7/11    

SOM_6_8/7/11    

SOM_7_12/7/11    

SSX_1_12/1/12    

STS_1_18/8/11   

STS_2_18/8/11    

SXE_1_1/7/11    

SXE_2_1/7/11    

SXE_3_1/7/11   

SXE_4_6/7/11   

SXW_1_1/7/11    

SXW_2_6/7/11    

SYR_1_8/7/11    

WAR_1_6/7/11   

WIL_1_1/7/11   

WIL_2_8/8/11   

WIL_3_8/7/11    

WIL_4_8/7/11    

WIL_5_12/7/11   

WOR_1_12/7/11    

WYK_1_30/6/11    

WYK_2_4/7/11    

WYK_3_6/7/11    

WYK_4_6/7/11    

WYK_5_6/7/11    

YKS_1_5/7/11   

YKS_2_8/7/11    

YKS_3_8/7/11    

IOM_1_30/4/11    

IOM_2_5/7/11   

  IOM_3_5/7/11      

 

Appendix E: GC-MS raw data for beeswax samples analysed in chapter 3. Only thymol and 

butylated hydroxytoluene (BHT) are reported, in addition to whether thymol was reportedly 

used by the beekeeper. 



Appendix F 

 

 

Surveying the possible accumulation of pesticides in wax samples 
over time 

Dear beekeeper, thank you for agreeing to take part in this study. 
 

The aim of this study is to be able to monitor the possible accumulation of pesticides in wax samples 
over time. Last year ‘organic’ foundation was distributed to a number of beekeepers in one of five key 
regions (North Staffordshire & South Cheshire, South West, Eastern, South East and Yorkshire and the 
Humber). We hope to use the distributed foundation wax as a background reading from which any 
possible accumulation of pesticides in the wax can be determined. There is also interest in monitoring 
any levels of pesticides in larvae contained within the wax as well as collected pollen. 

 
For those who have not participated in any previous studies a suggested way of obtaining samples 
which would be useful to this study is to remove a section of comb wax from the hive; ideally 
containing both capped brood and pollen samples. If this is not possible then wax and capped brood 
samples are preferred. 

 

Please avoid including nectar/honey within the section of cut comb, as this is difficult to extract 

prior to analysis. 
 

 Please collect the sample between the remainder of June and July and state the exact day on 
both the returned questionnaire and wax sample(s). 

 

 Once the wax has been cut, please place the comb within the provided container and seal 
securely. 

 

 In order to eliminate the brood from further developing we ask that you put the cut comb 
container in the freezer for around and hour or so. This is will kill the brood without causing 
any pain. 

 

 Please write your name and address plus the date of collection on the provided label and 
stick it to the cut comb container. 

 

 Once collected please return the sample as soon as possible within the provided self- 
addressed envelope along with the completed questionnaire (see other side). Any 
additional information you wish to include is also welcome. 

 
It is understood that not all of those participating in the study use National bee hives, however it was 

only possible to obtain organic foundation for National hives only. If you do not use a national and 

have perhaps used the foundation in your hive as a starter strip or some other way please mention this 

when returning the questionnaire. Alternatively, if you have used your own foundation wax we ask you 

to please kindly provide a sample of this (3 g minimum) so that a background reading may be 

established. 

When completing this questionnaire provide as much detail as possible (where applicable) in order to 

assist with sample processing in the laboratory. Please feel free to include any additional information 

that you may feel is relevant to this study. 

 

Appendix F: Instruction sheet provided to beekeepers detailing a protocol on how to 

collect beeswax samples needed for the study described in Chapter 4.   



Appendix G 

 

Questionnaire 

Please state the city/town and the county in which your hive is based: 

City/town........................................... County..................................... 

 
Please tick what best describes your local environment: 

[  ] Rural [  ] Semi-rural [ ] Urban 
 

Type of hive used: 

[  ] National [  ] Smith [  ]  Langstroth [ ] WBC  

[  ]  Dadant [  ]  Commercial [  ]  Top-bar [ ] Other 

 
What is the source of you foundation wax used in this study? 

[  ] Provided by Keele [  ] Naturally drawn (No foundation) [ ] *Home recycled 

[  ] *Bought from distributer [ ] *Other (please specify)………………………………………………………. 

*(Please provide approximately a separate 3 g sample of blank foundation also when returning this 

questionnaire) 

 
Approximately when did you place the provided foundation wax into the hive? : (YEARS/MONTHS)        

If using own foundation or newly drawn comb what is the approximate   age? ( ) 

Do you currently use any of the following in or around your hive? (Tick all that are applicable) 

 
[  ]  Apistan [  ]  Bayverol [  ] Fumidil B [  ]  Thymol [ ] Paradichlorobenzene (PDB)  

[ ] Other (Please specify)…………………………………………………………………........................................... 

Are you aware of any recent pesticide applications at the time of sample collection? 
 
 

If possible, please give details on the local flora including agricultural crops that currently 

surround your hive. 
 

 
Please briefly describe the condition of your colony: 

 
 

How many colony mortalities have you experienced since last winter (2012)? 
 
 

Please give the date of the   sample collection: (DD/MM/YYYY) 

 
Thank you for your time. You will receive your results as soon as all of the samples have 

been processed. 

 
 

 

 

 

 

 

 

 

Appendix G: Questionnaire provided during 2012 – 2013 and 2013 - 2014 beekeeping 

seasons. Questionnaire was to be completed and returned with every beeswax sample, as 

instructed in Appendix F. 



Appendix H 

 

(Quantitative) Questionnaire results 

1st year (n = 16) 

Please tick what best describes your local 

environment: 

 
Environment  Response  %  

Rural 9 56.25 

Semi-rural 7 43.75 

Urban 0 0 

  Not specified  0  0  
 

Type of hive used: 
 

Hive type  Response  %  

National 13 81.25 

Smith 0 0 

Langstroth 0 0 

WBC 0 0 

Dadant 1 6.25 

Commercial 0 0 

Top-bar 0 0 

  Other  2  12.5  
 

What is the source of you foundation wax 

used in this study? 
 

Foundation Source  Response  %  

Keele 13 81.25 

Natural 0 0 

Home made 0 0 

Distributer 3 18.75 

  Other  0  0  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Do you currently use any of the following in 
or around your hive? 
 
Treatment  Response  %  

Apistan (tau-fluvalinate) 2 12.5 

Apivar (amitraz) 0 0 

Bayverol 0 0 

Flumidil B 0 0 

Thymol 12 75 

Oxalic acid 8 50 

Formic acid 0 0 

para-dichlorobenzene 0 0 

Other 2 12.5 

No 3 18.75 

  Not Specified  0  0  
 

 

Are you aware of any recent pesticide 

applications at the time of sample collection? 

 

Aware Response % 

Yes 3 18.75 
No 13 81.25 
N/S 0 0 

 

How many colony mortalities have you 

experienced since last winter (2012)? 

 
  Colonies lost  Response  %  

0 6 37.5 

1 - 2 5 31.25 

3 - 4 2 12.5 

5 - 10 1 6.25 

11 - 20 0 0 

  25 - 50  2  12.5  

 

 

 

 

 

 

 

 

 

 

Appendix H: First year questionnaire (Appendix G) results, returned with the second collected 

beeswax sample. Only quantitative results have been tabulated. 



Appendix H 

 

(Quantitative) Questionnaire results 

2
nd year (n = 2) 

Please tick what best describes your local 

environment: 

 
Environment  Response  %  

Rural 9 56.25 

Semi-rural 7 43.75 

Urban 0 0 

  Not specified  0  0  

 

 

Type of hive used: 

 

Hive type  Response  %  

National 13 81.25 

Smith 0 0 

Langstroth 0 0 

WBC 0 0 

Dadant 1 6.25 

Commercial 0 0 

Top-bar 0 0 

  Other  2  12.5  

 

 

What is the source of you foundation wax 

used in this study? 

 
Foundation Source  Response  %  

Keele 13 81.25 

Natural 0 0 

Home made 0 0 

Distributer 3 18.75 

  Other  0  0  

 

 

 

 

 

 

 

 

 

Do you currently use any of the following in 

or around your hive? 

 
Treatment  Response  %  

Apistan (tau-fluvalinate) 2 12.5 

Apivar (amitraz) 0 0 

Bayverol 0 0 

Flumidil B 0 0 

Thymol 12 75 

Oxalic acid 8 50 

Formic acid 0 0 

para-dichlorobenzene 0 0 

Other 2 12.5 

No 3 18.75 

  Not Specified  0  0  

 

 
Are you aware of any recent pesticide 

applications at the time of sample collection? 

 

Aware Response % 

Yes 0 0 
No 1 50 
N/S 1 50 

 

 

How many colony losses have you 

experienced since last year (2012)? 

 

Colonies lost Response % 

0 1 50 
1 – 2 0 0 
3 – 4 0 0 
5 -10 0 0 
11 – 20 0 0 
25 – 50 0 0 
Not specified 1 50 

 

 

 

 

 

 

 

 

 

Appendix H: Second year questionnaire (Appendix G) results, returned with the second 

collected beeswax sample. Only quantitative results have been tabulated. 



Appendix I 

 

OSR Study - Collection Sheet 

Name:    Date: DD / MM / YY Time (on):  Time (off): 

Location:    Field: Bee coverage:  

Weather:    Temp:      °C Bloom quality:  

Nectar        

                                                                                          Av. Vol of nectar from each flower (µl) 

% Sugar     1 5 9 
1 2 3   2 6 10 
4 5    3 7 Average: 

     4 8 Error: 
        

Total volume collected (µl):   Height of rape (cm) 
     1 5 9 
     2 6 10 
     3 7 Average: 

Vial Label:     4 8 Error: 
        

Pollen Trapped                            Pollen from Bees 

Hive:  

 

 

       
 

Amount collected (g)  

     

 

Amount collected:  (g) 

Predominant colour: 
                                          

        
 

Vial Label: 

     

Vial label: 

  

 

Bees 

       

 

Pollen foragers caught on rape: 

  Nectar foragers caught on rape: 

Vial label:     Vial label:  

 

 

 

 

Pollen foragers caught at hive: 

   

Nectar foragers caught at hive: 

Vial label:     Vial label:   

 

 

 

Number of bees: 

Amount collected (g): 

 

Predominant colour: 

Appendix I: A blank collection sheet typically completed during every oilseed rape sample 

collection date. The information gathered is then to be used during sample analysis. 



Appendix J 

 

Above: Clothianidin calibration curve (R2: 0.9965) 

Above: Imidacloprid calibration curve (R2: 0.9913) 

Above: Thiamethoxam calibration curve (R2: 0.9951)

Appendix J: Q-TOF-LC/MS matrix matched calibration curves for three neonicotinoids, from top to 

bottom: clothianidin, imidacloprid and thiamethoxam. Calibrations were matrix matched, using 

diluted honey to give an overall sugar content of 50%. 

 



Appendix K 

 

Thiamethoxam recoveries using micro-QuEChERS extraction method. 
 

Name 
Expected 

concentration 
Detected 

concentration 
 

Thia 1 25 23.17  

Thia 2 25 17.47  

Thia 3 25 17.52  

Thia 4 25 21.73  

Thia 5 25 17.63  

 
Mean 

 
Standard Dev 

 
% Recovery 

 
% RSD 

19.50498 2.73713 78.02 14.03298 
 

Clothianidin recoveries using micro-QuEChERS extraction method. 
 

Name 
Expected 

concentration 
Detected 

concentration 
 

Imi 1 25 23.17  

Imi 2 25 17.47  

Imi 3 25 17.52  

Imi 4 25 21.73  

Imi 5 25 17.63  

 
Mean 

 
Standard Dev 

 
% Recovery 

 
% RSD 

25.59058 2.73713 102.36 10.6958 

 

Imidacloprid recoveries using micro-QuEChERS extraction method. 
 

Name 
Expected 

concentration 
Detected 

concentration 
 

Cloth1 25 21.449  

Cloth2 25 22.4988  

Cloth3 25 22.0082  

Cloth4 25 21.7445  

Cloth5 25 22.3818  

 
Mean 

 
Standard Dev 

 
% Recovery 

 
% RSD 

22.01646 0.45064 88.07 2.0468 

 

Appendix K: Raw data for the recovery of three neonicotinoids using a novel micro-
QuEChERS extraction technique. Recovery values generated using 5 extraction 
replications.  



Appendix M 

 

 

 

 

 

 

 

Appendix L: NATMAP Soilscape © map, constructed by the Cranfield Soil and Agrofood 

Institute, showing various soil types from around England and Wales. Taken without 

permission from http://www.landis.org.uk [Accessed 11/06/2015]. 

http://www.landis.org.uk/


Appendix M 

 

 

 

Above: Clothianidin calibration graph (R2: 0.9943). 
 

 

 

Above: Thiamethoxam calibration graph (R2: 0.9937). 

 

 

Appendix M: Q-TOF-LC/MS semi-matrix matched calibration curves for two 

neonicotinoids, from top to bottom: clothianidin and thiamethoxam. Calibrations were 

semi-matrix matched, by adding each neonicotinoid to water, representing the aqueous 

phase of each bumblebee, before extracting with dichloromethane.  
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