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Abstract

The thesis is concerned with asymptotic analysis of static as well as dynamic problems

for a solid coated by a thin isotropic elastic layer with a high contrast in their mate-

rial parameters. First, the static anti-plane shear deformation problem is considered

with the layer being relatively soft or stiff in order to investigate the behaviour of

the coating. The two-parametric asymptotic procedure is introduced motivated by the

scaling obtained from the exact solution of a model problem. As a result, Winkler-type

behaviour appears for a relatively soft coating, whereas for a relatively stiff one, the

equations of plate shear are valid. Further, the formulation is extended to a 3D case

with vertical force applied at the surface aiming at asymptotic investigation of the

area of validity of the Winkler-Fuss hypothesis and the Kirchhoff plate theory. It is

established that the aforementioned theories are valid only at a rather high contrast

in stiffness of the layer and the half-space. However, a uniformly valid formula is de-

duced in case of a layer being soft, and for low contrast with the coating being stiff,

several approximate formulations are suggested based on the reduced problems for the

half-space. Then, the problem is considered in dynamic formulation yielding the higher

order effective boundary conditions modelling the presence of the coating layer. The

obtained results indicate again the inconsistency of the conditions earlier presented

in [22]. The validity of the asymptotic results is demonstrated by comparison with
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Abstract

the long-wave expansion of the exact solutions of plane and anti-plane time-harmonic

problems for the coating. Finally, the dynamic problem for a coated half-space with

clamped surface is considered. The exact solutions are obtained in an anti-plane and

plane strain formulations resulting in the range of material parameters for which the

sought for localised wave exists. The effective boundary conditions are obtained and

the model for Rayleigh wave field is applied for the layer being thin and soft, leading

to an explicit correction to the classical Rayleigh wave speed.
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Introduction

Coated structures find numerous applications in modern engineering and technology,

including, in particular, biomedical sciences and structural mechanics, see e.g. [20, 29,

67, 110, 134, 138, 163].

The presence of a coating layer usually motivates an asymptotic approach relying on

a geometric parameter namely the ratio between thickness of the coating and a typical

length. If this parameter is considered to be of order one, the coating is referred to a

“thick layer”, while a small parameter is a characteristic of a “thin” one. In case of a

dynamic problem, the typical length is in fact the wave length and the limits, therefore,

correspond to the short- and long-wave approximations, respectively.

Originally, asymptotic methods started developing in the field of statics and low-

frequency dynamics for plates and shells, see e.g. [4, 11, 12, 49, 57, 58, 59, 60,

65, 104, 148, 149]. Low-frequency approximations are characterised by polynomial

variation across the thickness of the plate. Asymptotic methods, including, in par-

ticular, the method of direct asymptotic integration of the equations in elasticity

[57, 58, 60], were also applied in more general dynamic problems with high-frequency

approximations considered for both long- and short-wave limits. In contrast to low-

frequency approximations, high-frequency ones involve sinusoidal thickness variation.

High-frequency long-wave approximations of modes arising in the neighbourhood of the
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Introduction

cut-off frequencies or the so-called thickness resonance frequencies [14, 89, 109] were

later found for various problem formulations, including pre-stressed and anisotropic

structures, see e.g. [88, 92, 108, 131, 139, 140, 150, 151], high-frequency trapped

modes [66, 94, 116, 143, 161], layers interacting with media [90], bodies with clamped

faces [87, 91], and layered structures [35, 113, 153]. A high-frequency approximation

for short-wave motion was studied in [89, 93]. A similar asymptotic approach has been

recently implemented in [30, 31] for non-local elasticity, highlighting the importance of

incorporation of near-surface boundary layers.

Approximate 2D models of thin structures have found a great variety of fresh appli-

cations in recent years, inspired by exciting modern developments in high-tech domains,

for example, in the context of cloaking of waves, see e.g. [34] addressing an issue of

cloaking transformations for flexural waves in thin plates, [23, 132, 133] dealing with

cloaking of finite rigid inclusions in a thin elastic plate in the presence of incident flex-

ural waves. Studies on propagation of bending waves in a perforated thin plate are

presented in [125, 144]. We also mention considerations in [154, 155], aiming at inves-

tigation of the temperature distribution in a system of thin channels connected by thin

conducting walls. In addition, we note [52] focusing on the buckling of a uni-axially

compressed neo-Hookean thin film bonded to a neo-Hookean substrate.

The effect of a thin coating can be modelled by imposing the so-called effective

boundary conditions along the surface of a substrate. These conditions first were de-

rived in [160] using adhoc assumptions originating from the classical theory of plate

extensions. Later on, it was suggested in [22] that the results of [160] are not con-

sistent, and refined boundary conditions were proposed starting from rather heuristic

arguments. The asymptotic procedure exposed in [36] justifies at leading order the
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consistency of the effective boundary conditions in [160] and also reveals that the extra

terms found in [22] are in fact of a higher order. Moreover, as it was briefly mentioned

in [36], the treatement in [22] is not asymptotically consistent at the next order as well.

It is remarkable that the boundary conditions in [22] were exploited not only before but

also after the publication of the critical comments in [36], e.g. see [114, 127, 170] along

with [56, 165, 168]. This is partly an inspiration for revisiting the original problem

for a coated elastic half-space aiming at establishing higher order effective conditions.

The idea of establishing effective boundary conditions representing the effect of a layer

was also implemented in [166] for an isotropic elastic layer and in [164, 167] for an

orthotropic one.

The effective boundary conditions can be then used to take into consideration the

effect of the coating. Indeed, in [36], for a coated half-space subject to surface loading,

the presence of a coating layer expressed through the effective boundary conditions is

incorporated, leading to an explicit model for the surface wave.

This model was originally derived in [95] using the symbolic Lourier approach, see

e.g. [89] and references therein, and then, was further developed in [86] using a multi-

scale procedure utilizing a slow time perturbation scheme applied to the eigensolution

for a homogeneous surface wave of arbitrary profile, see [26] and also earlier publications

[48, 157], as well as more recent papers, including [2, 99, 100, 101, 135, 136, 145, 152].

In a general setup, the aforementioned multiscale procedure is presented in [81, 82]

dealing with Rayleigh and Rayleigh-type waves induced by surface stresses. The fact

that the eigensolution in [26] can be expressed in terms of a single harmonic func-

tion results in a hyperbolic-elliptic theory for Rayleigh waves induced by prescribed

surface stresses, which involves a wave equation for one of the Lamé potentials that
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governs propagation of surface disturbances along with pseudo-static elliptic equations

for calculating the Lamé potentials over the interior. The 2D formulation in [86] is

then extended to the 3D case, see [81, 82] employing the integral Radon transform.

A similar theory is also established for surface Rayleigh-type waves for a coated half-

space, for which a hyperbolic equation along the surface is regularly perturbed by a

pseudo-differential operator. The formulation has been applied to various moving load

problems, see [43, 76, 83]. The effects of anisotropy, pre-stress and mixed boundary

conditions have also been addressed in [42, 97, 130]. Recently, composite wave models

for elastic plates have been constructed, see [41], combining both equations of plate

bending over the long wave low-frequency region and surface waves over the short-wave

one.

It has been known though that the Rayleigh wave on a homogeneous elastic half-

space does not exist if the surface is clamped. Recent rigorous analysis of a layered

half-space with clamped surface in [33] demonstrates a possibility of a Rayleigh-type

wave for certain setups. Therefore, a part of the thesis is dedicated to the consideration

of a particular problem of a coated elastic half-space with clamped surface, in order

to produce a qualitative physical analysis of its behaviour using a multiparametric

treatment and investigate the existence of surface waves.

Often, in addition, there is a contrast in stiffness of the coating and the half-space,

which implies a material parameter, leading to two types of asymptotic behaviour

corresponding to a relatively soft and a relatively stiff coating.

Usually, if a layer is considered to be relatively soft compared to a substrate, the

model of elastic foundation is implemented, for example, that based on the Winkler-

Fuss assumption treating a continuum as a system of vertical springs. For further
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historical remarks on the Winkler-Fuss model the reader is reffered to [50]. A detailed

critical review of the Winkler-Fuss, as well as other elastic foundation models, can be

found in [69]. Another useful review of foundation models is presented also in [96],

taking into account viscoelastic behaviour. One of the focuses of the recent monograph

[3] is on the asymptotic analysis of layered and inhomogeneous foundations. In addi-

tion, we mention [124] as an example of modelling thin interlayers using Winkler-Fuss

assumption. The Winkler-Fuss approximation is widely used in civil engineering, e.g.

see [39, 54, 111, 128, 171, 173] and also in contact mechanics, including, in particular,

analysis and interpretation of the experimental results for a depth-sensing indentation,

see [19] and references therein.

Depth-sensing indentation means that the relation between the load applied to

an indenter and the displacement in a material sample is continuously monitored. We

specially mention nanoindentation technique, see e.g. [47], which is currently of interest

for estimation of mechanical properties of small specimens or very thin films for which

conventional testing is not feasible. For the latter, there is a great potential for using

asymptotic methods. Dynamic indentation tests have been also shown to be useful in

application to biological tissues, such as articular cartilage. The study of the dynamic

indentation stiffness of an articular cartilage tissue modelled as a viscoelastic material

is reported in [8] aiming at formulation of a criteria for evaluation of its quality. We also

mention a recently published book [10] that presents a unifying approach to analytical

evaluation of properties of biological materials.

For a relatively stiff layer lying on a half-space, a variety of problems in structural

mechanics are modelled by a thin Kirchhoff plate resting on an elastic substrate, e.g. see

[61, 62, 63, 69, 70, 106]. In addition, we cite an influential paper [18] and also a useful
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survey of mathematical techniques for treating plates on a linear elastic foundation in

[142]. Among modern considerations on the subject, we also mention [16] inspired by

modelling of advanced resonant devices, and [17, 24, 37, 51, 55, 158] tackling a variety

of vibration and stability phenomena.

As a rule, the Winkler-Fuss model and the Kirchhoff plate theory may be imple-

mented provided that there is a high contrast in the stiffness of a substrate and a

coating, i.e. when the substrate is much stiffer or softer than the coating, respectively.

At the same time, for a thin coating supported by an infinite substrate, a limited

amount of effort has been made to provide a mathematical justification of both mod-

els, see e.g. [102, 115]. The effect of high contrast in stiffness was briefly addressed

in [5], studying a contact problem for a coated half-space, without linking it to the

relative thickness of the coating. In addition, we refer to [6], also accounting for the

importance of high contrast limit. These contributions appreciate the general chal-

lenge, however, they do not take into consideration a two-parametric nature of the

problem, involving geometric and material parameters expressing relative thickness

and stiffness, respectively. For a stiff coating, only very few papers, e.g. [25], explicitly

take into account the limitation associated with a specific asymptotic ratio of plate and

substrate stiffness. The Winkler-Fuss assumption, in turn, was only fully validated for

a layered foundation clamped at the bottom, although without a special emphasis on

the contrast properties of the layers, see [3]. Thus, in order to investigate the area of

validity of the Winkler-Fuss model and the Kirchhoff plate theory in application to

coated solids, a multiparametric asymptotic treatment is required, and one of the aims

of the thesis is to develop it, allowing a variety of scenarios depending on the relation

between the dimensionless thickness and stiffness.
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Similar multiparametric approach in plate dynamics has been recently reported

in [84, 146], analysing elastic wave propagation in a three-layered plate with high-

contrast mechanical and geometric properties of the layers for four specific types of

contrast. In addition, we note [141] studying scattering of plane elastic waves by

arrays of circular cylindrical inclusions connected to the surrounding medium via a

thin soft elastic layer, and [53] considering propagation of non-linear travelling waves

in a coated elastic half-space with both the coating and half-space composed of neo-

Hookean materials of the same density but of different shear moduli. We also mention

considerations focusing on strongly inhomogeneous multi-layered and multi-component

structures, see, for instant, asymptotic developments on the subject in [15, 21, 77, 85,

105, 162, 169], along with [7, 126] using adhoc layerwise theories, and [28] developing

finite-product approximations to the exact Rayleigh-Lamb dispersion relation for a

three-layered plate. Related problems for homogenization of high-contrast periodic

structures are reported in [32, 45, 75, 156]. Similarity of the asymptotic procedures

underlying multi-layered plate theories and homogenization for periodic media has been

recently addressed in [35].

The thesis consists of five chapters, concluding remarks and bibliography.

Chapter 1 contains basic equations and key problem parameters used throughout

the thesis, formulations of the Winkler-Fuss hypothesis and the Kirchhoff plate theory,

as well as description of main types of guided waves.

In Chapter 2, an anti-plane shear deformation of an elastic half-space coated by a

soft or a stiff elastic layer is considered. Analysis of an anti-plane shear is of interest

within linear and nonlinear solid mechanics, since it allows establishing a simpler math-

ematical setup without loss of essential physical features, see e.g. [72]. First, we derive
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the exact expressions for anti-plane deformations caused by a sinusoidal shear load.

Then, a multiparametric asymptotic scheme for an arbitrary shear load is adapted for

a coated elastic half-space, considering two problem parameters. The first of them is a

geometrical parameter ε, characteristic of thin plates and coatings [3, 36, 44, 60]. The

second parameter, µ, stands for the contrast in stiffness of the layer and the half-space.

The static behaviour of the coated structure is studied depending on the value of pa-

rameter α relating the quantities above by the formula µ = εα. The original scaling of

displacements and stresses within the adapted asymptotic technique is motivated by

the exact solution, see [3, 9, 60] for more detail. An asymptotic classification following

from the relation between the two analysed parameters is established. The results for

anti-plane displacement and stress components are obtained. In particular, we focus

on the relation between the shear load and the displacement, which results in Winkler-

type behaviour for a rather soft coating and involves the equations of plate shear in

case of a soft layer. The derived asymptotic formulae are compared numerically with

the exact solution for a shear sinusoidal load.

In Chapter 3, we extend the methodology presented in Chapter 2 to a 3D problem.

Again, we operate with two small parameters, corresponding to the relative stiffness

and thickness of the layer, adapting an asymptotic procedure. The limiting forms of the

original equations for various ratios between these two parameters are derived. First,

we establish the asymptotic behaviour of displacement and stress components for a

model plane strain problem in case of a vertical sinusoidal load. Next, we adapt the

initial settings coming from the model problem to the general 3D setup. As a result, a

3D problem in linear elasticity for a soft or stiff layer attached to a substrate is treated

for a broad range of ratios between relative stiffness and wavelengths, resulting, in
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particular, in the justification and refinement of the Winkler-Fuss hypothesis and the

Kirchhoff plate theory for a soft and a stiff layer, respectively.

It is shown that the Winkler-Fuss model is justified only for a rather high contrast,

when α > 1, while for lower contrast (0 ≤ α ≤ 1) it fails already at leading order.

A robust alternative approach valid at 0 ≤ α ≤ 1 is proposed starting from the

transmission of the prescribed load to the interface between the layer and the half-

space. Asymptotic corrections to the Winkler-Fuss hypothesis are also presented over

various intervals of parameter α, including that corresponding to the refined Pasternak

model, see [74, 129, 137].

For a stiff layer, initially, the procedure was developed for Neumann boundary value

problems for plates and shells assuming prescribed stresses along the faces. Later on, it

was extended to Dirichlet and various mixed boundary value problems, characteristic

of thin coatings and interlayers, see e.g. [3] and references therein. For both setups, the

displacements and stresses are expanded into series in the thickness variable, resulting

in the 3D to 2D dimension reduction. The peculiarity of the studied configuration

is that the contact with the substrate results in asymptotic consideration of a rather

sophisticated boundary value problem for the thin layer. In particular, we confirm the

scaling in [25] corresponding to a coupled problem for a Kirchhoff plate resting on an

elastic half-space, and for a softer substrate we arrive at leading order at an uncoupled

problem for plate bending. At the same time, for a stiffer substrate, which is still

much softer than the layer, any plate bending theory fails. In the latter case, however,

we formulate a set of boundary value problems for a homogeneous half-space. Among

them, in particular, there are effective boundary conditions originally derived in [160]

and later justified in [36]. The validity of all the shortened approximate formulations
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is justified by comparison with the exact solution of the aforementioned plane strain

problem.

In Chapter 4, as in [36], using asymptotic methodology, we validate again the

results in [160] at leading order. At next order, we arrive at refined effective conditions.

They are tested by comparison with the exact solution of a plane strain time-harmonic

problem. As it might be expected, the comparison demonstrates that the boundary

conditions in [22] are not consistent at higher order.

Chapter 5 is concerned with dynamics of a coated elastic half-space with clamped

surface. First, an anti-plane and plane strain problems are considered leading to the

exact dispersion relations. Analysis of the obtained dispersion relations makes it pos-

sible to evaluate the range of parameters, for which the sought for surface wave exists.

Then, for a relatively small thickness of the coating, similarly to [36], we perform an

asymptotic analysis resulting in effective boundary conditions on the surface of a ho-

mogeneous half-space. Then, assuming the layer to be much softer than the substrate,

the problem is reduced to a regularly perturbed hyperbolic equation for Rayleigh-

type waves using earlier established asymptotic technique, e.g. see [36, 82]. Finally,

an explicit correction to the classical Rayleigh wave speed is derived. The produced

asymptotic results are compared numerically with the exact solution.

10



Chapter 1

Preliminaries

Basic equations of elasticity theory are summarized in this chapter, along with param-

eters used throughout the thesis. Brief descriptions of Winkler-Fuss hypothesis and

Kirchhoff plate theory are also given together with derivations of Rayleigh, Rayleigh-

Lamb and Love waves.

1.1 Equations of elasticity theory and main param-

eters

In the present study, we consider a composite solid consisting of a layer of thickness h

and a substrate, see Figure 1.1. Both media are considered to be linearly elastic and

isotropic. In what follows, the parameters of the coating are denoted with superscript

“−”, and that of the half-space with “+”.

We contemplate the absence of body forces, therefore the conventional stress equa-

tions of motion can be taken as, see e.g. [1],

σ±i1,1 + σ±i2,2 + σ±i3,3 = ρ±u±i,tt, (1.1)

where σ±ij are Cauchy stresses, u±i are displacements and ρ± denote volume mass densi-

11
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h0

x3

x2

x1

−
+

Figure 1.1: Layer on a substrate

ties of the layer and the half-space. Here and below, i, j = 1, 2, 3 and comma indicates

differentiation along the associated spatial coordinate or time.

If the motion is considered to be time-harmonic, i.e. u±i ∼ eik(x1−ct), then equations

(1.1) become

σ±i1,1 + σ±i2,2 + σ±i3,3 = −ρ±ω2u±i , (1.2)

where

ω = kc (1.3)

is a radian frequency, k and c represent a wave number and a phase velocity, respec-

tively.

The Hook’s law for an isotropic material is given by

σ±ij = λ±δij(ε
±
11 + ε±22 + ε±33) + 2µ±ε±ij, (1.4)

where ε±ij are strain tensors, δij is the Kronecker delta defined as

δij =


0, i 6= j,

1, i = j,

(1.5)

λ± and µ± are the Lamé elastic constants, which can be represented as

λ± =
E±ν±

(1 + ν±)(1− 2ν±)
, µ± =

E±

2(1 + ν±)
, (1.6)

12



1.1. Equations of elasticity theory and main parameters

with E± and ν± denoting the Young’s modulus and the Poisson’s ratios, respectively,

of the layer and the substrate.

Strain tensors are expressed as

ε±ij =
1

2
(u±i,j + u±j,i), (1.7)

therefore, the Hook’s law (1.4) together with the strain-displacement relations (1.7)

lead to the constitutive relations adopted in the form

σ±ij = λ±δij(u
±
1,1 + u±2,2 + u±3,3) + µ±(u±i,j + u±j,i). (1.8)

Substituting the latter into (1.1), we obtain equations of motion in terms of dis-

placements

(λ± + µ±) grad (div u±) + µ±∆u± = ρ±u±,tt, (1.9)

where ∆ is the 3D Laplace operator in x1, x2 and x3 and u± = (u±i ). The latter can

be also rewritten as

(c±1 )2grad (div u±)− (c±2 )2curl (curl u±) = u±,tt. (1.10)

where

c±1 =

√
λ± + 2µ±

ρ±
, c±2 =

√
µ±

ρ±
(1.11)

are longitudinal and transverse wave speeds, respectively. We also introduce

γ± = (κ±)2, (1.12)

with κ± being a ratio of aforementioned speeds, i.e.

κ± =
c±1
c±2

=

√
2− 2ν±

1− 2ν±
. (1.13)

13
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The displacement field can be decomposed according to the Helmholtz theorem as

u± = gradϕ± + curlψ±, (1.14)

where ϕ± and ψ± = (ψ±i ) are scalar longitudinal and vector transverse elastic poten-

tials, respectively. Substituting the latter into equations of motion (1.9) and taking

into account that div grad ≡ ∆ and div curl ≡ 0, we have

grad
[
(λ± + 2µ±)∆ϕ± − ρ±ϕ±,tt

]
+ curl

[
µ±∆ψ± − ρ±ψ±,tt

]
= 0. (1.15)

If we apply the divergence operator to (1.15), we derive the wave equation

(c±1 )2∆ϕ± − ϕ±,tt = 0, (1.16)

whereas utilization of the curl leads to

(c±2 )2∆ψ± −ψ±,tt = 0. (1.17)

The dimensionless coordinates can be written as

ξm =
xm
l
, ξ−3 =

x3
h
, ξ+3 =

x3 − h
l

, (1.18)

where ξ−3 is applicable for the layer and ξ+3 for the half-space. In the above, l is a typical

length (e.g. wave length in case of a dynamic problem or a length scale related to the

load variation along the coordinates x1, x2 in case of a static problem) and m = 1, 2.

In view of (1.18), constitutive relations (1.8) can be rearranged as

σ−mm =
λ− + 2µ−

l
u−m,m +

λ−

l
u−n,n +

λ−

h
u−3,3,

σ−33 =
λ−

l
u−1,1 +

λ−

l
u−2,2 +

λ− + 2µ−

h
u−3,3,

σ−12 =
µ−

l
(u−1,2 + u−2,1),

σ−m3 =
µ−

h
(u−m,3 +

h

l
u−3,m),

(1.19)
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for the layer, and

σ+
mm =

1

l
((λ+ + 2µ+)u+m,m + λ+u+n,n + λ+u+3,3),

σ+
33 =

1

l
(λ+u+1,1 + λ+u+2,2 + (λ+ + 2µ+)u+3,3),

σ+
12 =

µ+

l
(u+1,2 + u+2,1),

σ+
m3 =

µ+

l
(u+m,3 + u+3,m),

(1.20)

for the half-space, with n = 1, 2; n 6= m.

Introducing the dimensionless time as

τl =
tc−2
l
, (1.21)

basic relations (1.1), then, can be written in dimensionless form as

σ−i1,1 + σ−i2,2 +
l

h
σ−i3,3 =

µ−

l
u−i,τlτl , σ+

i1,1 + σ+
i2,2 + σ+

i3,3 =
µ−

lρ
u+i,τlτl , (1.22)

where

ρ =
ρ−

ρ+
. (1.23)

In case of a static problem, equations (1.22) yield

σ−i1,1 + σ−i2,2 +
l

h
σ−i3,3 = 0, σ+

i1,1 + σ+
i2,2 + σ+

i3,3 = 0. (1.24)

For time-harmonic type of motion, the dimensionless variables can be expressed as

Ω± =
ωh

c±2
, K = kh, ζ± =

c

c±2
. (1.25)

In this case, accounting for (1.18), equations of motion (1.2) become

σ−i1,1 + σ−i2,2 +
l

h
σ−i3,3 = −µ

−l

h2
(Ω−)2u−i , σ+

i1,1 + σ+
i2,2 + σ+

i3,3 = −µ
+l

h2
(Ω+)2u−i . (1.26)

Note, that taking the dimensionless variables as (1.25) results in having the dimension-

less time in the following form

τh =
tc−2
h

(1.27)
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instead of (1.21) introduced earlier.

Let us also specify here that if the problem is considered in an anti-plane formulation

then u±1 = u±3 = 0 and u±2 = u±2 (x1, x3, t), where u±2 are known as anti-plane shear

deformations. In case of a a plane strain assumption, u±2 = 0 and u±s = u±s (x1, x3, t),

s = 1, 3.

If the thickness of the layer is assumed to be small compared to a typical length l,

a small geometrical parameter can be introduced

ε =
h

l
� 1. (1.28)

The presence of a contrast in stiffness of the coating and the half-space, in turn, implies

a material parameter µ, which can be expressed as

µ =


µ−

µ+
, µ− ≤ µ+,

µ+

µ−
, µ+ ≤ µ−,

. 1, (1.29)

where the first line corresponds to the case of the layer being softer than the half-space,

and the second line is for a relatively stiff coating.

These geometrical and material parameters above can be related to each other as

µ = εα, α ≥ 0, (1.30)

where for a fixed ε, α represents the level of the contrast, i.e. with an increase of

α, the contrast in stiffness of the layer and the half-space becomes more pronounced.

Note, that the limiting case α = 0, associated with a non-contrast setup µ = 1, is also

included.
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1.2. Models of elastic foundation

1.2 Models of elastic foundation

If a high contrast in stiffness of the layer and the half-space is assumed with the

substrate being much stiffer, the model of elastic foundation is often implemented.

The simplest and apparently the most popular structural model of an elastic foun-

dation is based on the Winkler-Fuss assumption treating a continuum as a system of

vertical springs. Such a foundation is equivalent to a liquid base. In fact, as men-

tioned in [106], N. Fuss came to this hypothesis studying a beam floating along the

surface of an incompressible fluid, whereas E. Winkler [172] considered a foundation

as a mattress consisting of non-connected elastic springs, see also [40] for more detail.

According to the hypothesis, the relation between the applied load P and the deflection

of the surface w0 is governed by the equation

P = rw0, (1.31)

where r is the foundation modulus or specific weight of the liquid base, and the deflec-

tion w0 corresponds to the vertical displacement of the surface of the foundation, i.e.

w0 = u−3
∣∣
x3=0

, see Figure 1.2.

x3

x1

P

w0

Figure 1.2: Winkler-Fuss foundation

It is also crucial that, according to the Winkler-Fuss hypothesis, the resulting dis-
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placements occur only under the applied force, with the neighbouring area not affected.

Therefore, in order to find a physically closer representation, some more advanced

foundation models have been developed assuming some kind of interaction between

the spring elements for the Winkler model. For example, the Filonenko-Borodich foun-

dation [46] suggests a connection of the top ends of the independent springs with a

stretched elastic membrane subjected to a constant-tension field. The Hetenyi model

[68] is concerned with accomplishing the interaction by embedding an elastic beam or

plate, which deform in bending only. The Pasternak foundation [137] proposes the

existence of shear interactions between the spring elements, which may be achieved

by connecting the ends of the springs to a beam or plate consisting of incompressible

vertical elements deforming only by transverse shear. Thus, the relation between load

P and the deflection of the surface w0 is given by

P = rw0 − T∆12w0, (1.32)

where

∆12 =
∂2

∂x21
+

∂2

∂x22
(1.33)

is the Laplace operator in x1 and x2. The second term on the right-hand side of (1.32)

is due to the effect of shear interactions of the vertical elements.

1.3 Kirchhoff plate theory

In the opposite scenario, if the coating is considered to be much stiffer than the sub-

strate, the model of a thin elastic plate is suggested by physical intuition as a natural

approximation.
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Let the mid-plane of the plate lie along the two in-plane dimensions with the normal

extending along the vertical dimension, see Figure 1.3.

h
0

x3x2

x1
P

mid-plane

Figure 1.3: Kirchhoff plate

One of the most widely used theories for thin plates is the Kirchhoff plate theory

[98], see e.g. [13] for a detailed review. It is based on assumptions dealing with the

kinematics of a normal material line, i.e., a set of particles initially positioned in the

direction normal to the mid-plane of the plate. A fundamental assumption of Kirchhoff

plate theory is that the normal material line is infinitely rigid along its length, i.e.,

no deformations occur in the direction normal to the mid-plane. Also, during the

deformation, the normal material line is assumed to remain straight and normal to the

deformed mid-plane of the plate.

An investigation of the governing equations of Kirchhoff plate theory indicates that

the initial problem can be separated into two simpler ones: in-plane and bending. The

bending problem, in turn, can be reduced to a bi-harmonic partial differential equation

for the deflection of the plate wp as

D∆2
12wp = P, (1.34)

where

D =
E−h3

12[1− (ν−)2]
(1.35)

is the bending stiffness of the plate, P is the applied load, and the deflection is related

to the transverse displacement, i.e. wp = u−3 .
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Analysis of 3D equations of elasticity for bending of a thin layer also shows that the

Kirchhoff theory is revealed as the leading order approximation of asymptotic expansion

of the exact solution in the long-wave low-frequency limit, see [89].

1.4 Guided elastic waves

Considering dynamic problems for an elastic solid, we may distinguish three fundamen-

tal types of guided waves: Rayleigh [147], Rayleigh-Lamb [107] and Love waves. Brief

derivations of these are given in this section, for detailed reviews see e.g. [1] and [89].

Rayleigh waves of arbitrary profile and hyperbolic-elliptic model for Rayleigh waves

induced by surface stresses are also discussed in what follows.

1.4.1 Rayleigh surface waves

Let us start with a plane strain problem for an elastic isotropic half-space, see Figure

1.4.

x3

x1σ+
s3 = 0

+ 0

Figure 1.4: Plane strain problem for an elastic half-space

The surface is supposed to be traction free, therefore, the boundary conditions at

x3 = 0 are written as

σ+
s3 = 0. (1.36)

The wave potentials are sought for in the form of travelling time-harmonic wave
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solutions, namely

ϕ+ = Aeik(x1−ct)−kα
+x3 , ψ+

m = 0, m = 1, 2, ψ+
3 = Beik(x1−ct)−kβ

+x3 , (1.37)

decaying as x3 → +∞. Substituting (1.37) into wave equations (1.16) and (1.17), we

derive

α+ =

√
1− c2

(c+1 )2
, β+ =

√
1− c2

(c+2 )2
. (1.38)

Using (1.8) with (1.14) and (1.37), and substituting the result into (1.36), we have

2iα+A+ (1 + (β+)2)B = 0,

(1 + (β+)2)A− 2iβ+B = 0,

(1.39)

which possesses a non-trivial solution provided that the related determinant equals

zero, i.e.

4α+β+ − (1 + (β+)2)2 = 0. (1.40)

It is known that (1.40) has a unique solution c = cR called the Rayleigh wave speed,

see e.g. [82], hence,

α+ = αR =

√
1− c2R

(c+1 )2
, β+ = βR =

√
1− c2R

(c+2 )2
. (1.41)

Since the phase velocity is constant, the Rayleigh wave is non-dispersive.

1.4.2 Rayleigh waves of arbitrary profile

In the previous subsection the wave was considered to be time-harmonic (sinusoidal

shape). Now, let us present the generalized version for an arbitrary profile, see [82].

Let us study the elastic potentials of the form

ϕ+ = ϕ+(x1 − ct, x3), ψ+
m = 0, ψ+

3 = ψ+
3 (x1 − ct, x3), (1.42)
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corresponding to a wave of arbitrary shape propagating at a phase velocity c.

The boundary conditions (1.36) then can be rewritten as

2ϕ+
,13 + ψ+

3,11 − ψ+
3,33 = 0, (γ− − 2)ϕ+

,11 + γ−ϕ+
,33 + 2ψ+

3,13 = 0, (1.43)

where γ− is introduced in (1.12).

The wave equations (1.16) and (1.17) can be reduced to the elliptic equations

ϕ+
,33 + (α+)2ϕ+

,11 = 0, ψ+
3,33 + (β+)2ψ+

3,11 = 0. (1.44)

Thus, the eigensolutions for the elastic potentials are

ϕ+ = ϕ+(x1 − ct, α+x3), ψ+
3 = ψ+

3 (x1 − ct, β+x3), (1.45)

which are harmonic functions.

Let us now employ the Cauchy-Riemann identities

f,3 = −γH(f,1), f,1 =
1

γ
H(f,3), H(H(f)) = −f (1.46)

for a harmonic function f(x1, γx3) being a solution of the equation

f,33 + γ2f,11 = 0, (1.47)

where H(f) is a Hilbert transform of function f , which is in fact its harmonic conjugate.

Applying aforementioned identities to the boundary conditions (1.45), we get

−2α+H(ϕ+
,11) + (1 + (β+)2)ψ+

3,11 = 0,

(1 + (β+)2)ϕ+
,11 + 2β+H(ψ+

3,11) = 0.

(1.48)

Then, after taking the Hilbert transform of the first equation, the solvability of (1.48)

leads to Rayleigh equation (1.40). Hence, the sought for harmonic eigenfunctions are

ϕ+ = ϕ+(x1 − cRt, αRx3), ψ+
3 = ψ+

3 (x1 − cRt, βRx3), (1.49)
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where αR and βR are given in (1.41).

From boundary conditions (1.43) we obtain the relations between the potentials

along the surface x3 = 0

ψ+
3,1 = − 2

1 + β2
R

ϕ+
,3, ψ+

3,3 =
1 + β2

R

2
ϕ+
,1, (1.50)

which after applying Cauchy-Riemann identities become

ψ+
3 =

2αR
1 + β2

R

H(ϕ+), ϕ+ = − 2βR
1 + β2

R

H(ψ+
3 ). (1.51)

Hence, the displacements along the surface x3 = 0 can be expressed in terms of a single

plane harmonic function, for example, in terms of the potential ϕ+, as

u+1 =

(
1− 1 + β2

R

2

)
ϕ,1, u+3 =

(
1− 2

1 + β2
R

)
ϕ,3. (1.52)

1.4.3 Hyperbolic-elliptic model for the Rayleigh waves induced

by surface stresses

In this section we discuss the hyperbolic-elliptic model for Rayleigh wave field induced

by surface stresses in a plane strain formulation, for more detail see [82] and [86].

We consider a plane strain problem for a half-space with prescribed stresses at the

surface x3 = 0 given by

σ+
33 = Q1(x1, t), σ+

13 = Q2(x1, t). (1.53)

The problem is separated into vertical and horizontal considerations, i.e. with

Q2 = 0 and Q1 = 0, respectively, and a slow-time perturbation procedure is applied.

As a result, using boundary conditions (1.53) for a vertical load Q1 with Q2 = 0,

we obtain a 1D wave equation

�Rϕ
+
N = AQ1, (1.54)
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where

�R =
∂2

∂x21
− 1

c2R

∂2

∂t2
(1.55)

is d’Alembert operator, ϕ+
N is a normal component of the potential ϕ+ and

A =
1 + β2

R

2µ+B
, B =

αR
βR

(1− β2
R) +

βR
αR

(1− α2
R)− 1 + β4

R. (1.56)

The solution of the equation above provides a Dirichlet boundary condition at x3 = 0

for the elliptic equation given by (1.44)1 with α+ = αR.

Similarly, focusing on boundary conditions (1.53) for a horizontal load Q2 with

Q1 = 0, we arrive at a problem for equation (1.44)2 with β+ = βR subject to the

Dirichlet boundary condition in the form of the following wave equation

�Rψ
+
3T = −AQ2, (1.57)

where ψ+
3T is a transverse component of the potential ψ+

3 .

Taking into account relation between potentials (1.51)1, equation (1.57) for a hori-

zontal component can be rewritten as

�RH(ϕ+
T ) = −A

Θ
Q2, (1.58)

which after applying Hilbert transform becomes

�Rϕ
+
T =

A

Θ
H(Q2). (1.59)

In the above,

Θ =
2αR

1 + β2
R

. (1.60)

Combining equations (1.54) and (1.59) for vertical and horizontal components of the

potential ϕ+, respectively, and taking into account that ϕ+
T + ϕ+

N = ϕ+, we arrive at

�Rϕ
+ = A

[
Q1 +

H(Q2)

Θ

]
. (1.61)
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1.4.4 Rayleigh-Lamb waves

Now, let us consider a plane strain problem for an infinite layer of thickness 2h, see

Figure 1.5.

2h

x3

x1
σ−s3 = 0

σ−s3 = 0

− 0

Figure 1.5: Plane strain problem for an infinite layer

We suppose the faces to be traction free, therefore, the boundary conditions at

x3 = ±h become

σ−s3 = 0. (1.62)

The wave potentials can be found as

ϕ− = f(x3)e
ik(x1−ct), ψ−m = 0, ψ−3 = g(x3)e

ik(x1−ct), (1.63)

substitution of which into wave equations (1.16) and (1.17) leads to

f(x3) = A1 sin(α−kx3) + A2 cos(α−kx3),

g(x3) = B1 sin(β−kx3) +B2 cos(β−kx3),

(1.64)

where

α− =

√
c

(c−1 )2
− 1, β− =

√
c

(c−2 )2
− 1, (1.65)

and Am and Bm are arbitrary constants.

The modes of wave propagation corresponding to the above equations can be split

up into two groups: symmetric and antisymmetric with respect to the mid-plane of

the layer (x3 = 0). Therefore, the displacement components can be written in terms

25



Chapter 1. Preliminaries

of elementary functions as

f = A2 cos(α−kx3), g = B1 sin(β−kx3), (1.66)

for the symmetric modes and

f = A1 sin(α−kx3), g = B2 cos(β−kx3), (1.67)

for the antisymmetric ones. Thus, for the symmetric modes the displacement u−1 and

the stresses σ−ii are even with respect to the thickness variable x3 and the displacement

u−3 and the stress σ−13 are odd and vice versa for the antisymmetric.

Substituting functions (1.66) into (1.63), (1.14) and (1.8), the boundary conditions

(1.62) yield a system of two homogeneous equations for the constants A2 and B1 for

symmetric modes. Similarly, for the antisymmetric modes two homogeneous equations

for the constants A1 and B2 are obtained. Equating the determinants to zero we derive

the Rayleigh-Lamb dispersion equations

tan(β−kh)

tan(α−kh)
= − 4k2α−β−

[(β−)2 − 1]2
(1.68)

and

tan(β−kh)

tan(α−kh)
= − [(β−)2 − 1]2

4k2α−β−
(1.69)

for the symmetric and antisymmetric modes, respectively.

Employing the dimensionless variables Ω− and K introduced in (1.25), dispersion

relations (1.68) and (1.69) can be rewritten as

tan
√

(Ω−)2 −K2

tan
√

(Ω−/κ−)2 −K2

= −
4K2

√[
(Ω−/κ−)2 −K2

]
[(Ω−)2 −K2]

[(Ω−)2 − 2K2]2
(1.70)

and

tan
√

(Ω−)2 −K2

tan
√

(Ω−/κ−)2 −K2

= − [(Ω−)2 − 2K2]
2

4K2

√[
(Ω−/κ−)2 −K2

]
[(Ω−)2 −K2]

, (1.71)
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where κ− is defined in (1.13).

Let us now consider long-wave high-frequency approximation, i.e. K � 1,Ω ∼ 1.

For small values of K, the dispersion relation for symmetric motions (1.70) is satisfied

if

sin(Ω−) = 0 or cos

(
Ω−

κ−

)
= 0, (1.72)

and for antisymmetric motions (1.71) if

sin

(
Ω−

κ−

)
= 0 or cos(Ω−) = 0, (1.73)

resulting in

Ω− = Λsym
st = κ−

π

2
z, Ω− = Λanti

st = κ−
π

2
b,

Ω− = Λsym
sh =

π

2
b, Ω− = Λanti

sh =
π

2
z,

z = 1, 3, 5, ..., b = 2, 4, 6, ...,

(1.74)

which are the so-called symmetric and antisymmetric thickness stretch and thickness

shear resonance frequencies, respectively. They represent the natural frequencies of an

infinitely thin transverse fibre of the layer and are eigenvalues of the problems

u−1,33 + (Ω−)2u−1 = 0, u−3,33 +

(
Ω−

κ−

)2

u−3 = 0 (1.75)

with u−s,3 = 0, see Figure 1.6.

shear stretching

symmetric antisymmetric symmetric antisymmetric

2h

Figure 1.6: Infinitely thin transverse fibre of the layer
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Chapter 1. Preliminaries

Note, that the Rayleigh wave equation can be obtained from the Rayleigh-Lamb

dispersion relation in the short-wave limit.

1.4.5 Love waves

In this subsection we consider an anti-plane problem for a half-space coated by a layer

of a different material, see Figure 1.1. Hence, equations of motion (1.10) take the form

u±2,11 + u±2,33 =
1

(c±2 )2
u±2,tt. (1.76)

We assume that the surface is free, therefore, the boundary condition is given by

σ−23 = 0 (1.77)

at x3 = 0. We also impose continuity conditions at the interface x3 = h

u−2 = u+2 , σ−23 = σ+
23. (1.78)

The displacements are sought for in the form

u±2 = f±(x3)e
ik(x1−ct). (1.79)

In view of (1.79), equations of motion (1.76) become

f±
′′ ± k2(β±)2f± = 0, (1.80)

where β− and β+ are defined in (1.65) and (1.38), respectively. The solution of (1.80)

decaying at infinity can be found as

f− = A sin(β−kx3) +B cos(β−kx3), f+ = Ce−β
+kx3 , (1.81)

where A, B and C are arbitrary constants. Using constitutive relation (1.8) together

with (1.79) and (1.81) and substituting it into boundary and continuity conditions
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1.4. Guided elastic waves

(1.77) and (1.78), respectively, we obtain the dispersion relation

tan(β−kh) =
µ−β+

µ+β−
. (1.82)
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Chapter 2

Anti-plane shear deformation

The anti-plane shear deformation problem of a half-space coated by a soft or a stiff

thin layer is considered in the present chapter. The two-parametric asymptotic analysis

is developed motivated by the scaling for the displacement and stress components

obtained from the exact solution of a model problem for a shear sinusoidal load. It is

shown that for a rather high contrast in stiffness of the layer and the half-space Winkler-

type behaviour appears for a relatively soft coating, while for a relatively stiff one, the

equations of plate shear are valid. For low contrast, an alternative approximation is

suggested based on the reduced continuity conditions and the fact that the applied

load may be transmitted to the interface. In case of a stiff layer, a simpler problem

for a homogeneous half-space with effective boundary condition is also formulated,

modelling the effect of the coating, whereas for a relatively soft layer a uniformly

valid approximate formula is introduced. The results presented in this chapter were

published in [159].
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2.1. Statement of the problem

2.1 Statement of the problem

Consider an anti-plane problem of equilibrium for a homogeneous linearly elastic isotropic

half-space coated by a thin isotropic layer of thickness h, subject to action of a smooth

shear static force P = P (x1) at the surface of the coating (x3 = 0), see Figure 2.1.

h

l

0

x3

x2

x1

−
+

Figure 2.1: Anti-plane problem statement

We employ the dimensionless coordinates introduced in (1.18), and use, therefore,

governing equations (1.19), (1.20) and (1.24), which, in anti-plane formulation, take

the form

h

l
σ−12,1 + σ−23,3 = 0, σ−12 =

µ−

l
u−2,1, σ−23 =

µ−

h
u−2,3, (2.1)

for the layer, and

σ+
12,1 + σ+

23,3 = 0, σ+
12 =

µ+

l
u+2,1, σ+

m3 =
µ+

l
u+2,3, (2.2)

for the half-space.

The boundary condition, modelling shear load at the surface of the layer, and

continuity conditions at the interface take the form

σ−23 = −P, ξ−3 = 0,

u−2 = u+2 , σ−23 = σ+
23, ξ−3 = 1.

(2.3)

We also impose the decay condition for the displacement, i.e. u+2 → 0 as ξ+3 → +∞.
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Chapter 2. Anti-plane shear deformation

The layer is considered to be thin, leading to small geometrical parameter (1.28).

A contrast in stiffness of the layer and the half-space is also assumed, represented by

material parameter (1.29), see Section 1.1 for more detail. In what follows, we use

relation (1.30) connecting these two parameters.

2.2 Model problem for a sinusoidal shear load

We begin the analysis with investigation of a model problem for a shear sinusoidal force

P = Aµ− sin ξ1, (2.4)

where A is a constant amplitude, see Figure 2.2.

h

l

0

x3

x2

x1

−
+

Figure 2.2: Model problem for a sinusoidal surface load

In this case, the displacements may be sought as

u±2 = f±(ξ±3 ) sin ξ1. (2.5)

Substituting (2.5) into governing equations (2.1) and (2.2), we have

f−
′′
(ξ−3 )− ε2f−(ξ−3 ) = 0, f+′′(ξ+3 )− f+(ξ+3 ) = 0. (2.6)

Taking into account boundary and continuity conditions (2.3), the solution of (2.6)

decaying at infinity is written as

f−(ξ−3 ) = C1e
εξ−3 + C2e

−εξ−3 , f+(ξ+3 ) = C3e
−ξ+3 , (2.7)
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2.2. Model problem for a sinusoidal shear load

where

Ci =
Ni

D
, i = 1, 2, 3,

with

N1 = Ah(µ− − µ+), N3 = 2Aheεµ−,

N2 = Ahe2ε(µ− + µ+), D = ε [µ−(e2ε − 1) + µ+(e2ε + 1)] .

Substituting the latter into relations (2.1) and (2.2), the stress components are found

in the form

σ±12 =
µ±

l
f±(ξ±3 ) cos ξ1, σ+

23 = −µ
+

l
f+(ξ+3 ) sin ξ1,

σ−23 =
µ−

h
ε
(
C1e

εξ−3 − C2e
−εξ−3

)
sin ξ1.

(2.8)

Then, using (1.28) and (1.29) together with (1.30), we deduce the leading order

asymptotic behaviour of the displacements and stresses obtained above, in terms of a

small parameter ε, for a relatively soft and a stiff layer, see Table 2.1.

u−2 σ−12 σ−23 u+2 σ+
12 σ+

23

Soft layer
α ≥ 1 1 ε 1 εα−1 1 1

0 ≤ α ≤ 1 εα−1 εα 1 εα−1 1 1

Stiff layer
α ≥ 1 ε−2 ε−1 1 ε−2 εα−1 εα−1

0 ≤ α ≤ 1 ε−α−1 ε−α 1 ε−α−1 1 1

Table 2.1: Asymptotic behaviour of displacements and stresses

Now, we study in more detail the relation between displacement u−2 at the surface

of the coating (ξ−3 = 0) and prescribed load P by introducing the coefficient

r =
P

u−2
∣∣
ξ−3 =0

. (2.9)

Note, that this coefficient is constant only for the considered sinusoidal load. In general,

the relation between displacement u−2
∣∣
ξ−3 =0

and load P is a function of ξ1. In case of a
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Chapter 2. Anti-plane shear deformation

shear sinusoidal load (2.4), it is given by

r =
Aµ−D

N1 +N2

, (2.10)

following from (2.5) and (2.7)1. The leading order estimates of the coefficient r de-

pending on the parameter α are presented in Table 2.2.

α > 1 α = 1 0 ≤ α < 1

r
Soft layer

µ−

h

µ−µ+

hµ+ + lµ−
µ+

l

Stiff layer
µ−h

l2
2µ−h

l2
µ+

l

Table 2.2: Leading order of the coefficient r for a sinusoidal shear force

Therefore, at α > 1, the coefficient r does not depend on the stiffness of the half-

space µ+, meaning that the deformation of the substrate is neglected. In general, in

case of a rather soft layer, it may be described as a Winkler-type behaviour, see Section

1.2 for more detail, while for a stiff layer, taking into account the term l2, it indicates

that the plate shear equation may be expected as a relation between u−2
∣∣
ξ−3 =0

and P ,

see Section 1.3. In the range 0 ≤ α < 1, the relation is entirely affected by the presence

of the half-space, i.e. the layer may no longer be separated, and the original problem

for a coated solid should be considered. The case α = 1 seems to be a transition point,

since, for instance, for a soft layer, r depends on both µ− and µ+, but, at the same

time, according to assumptions (1.28), (1.29)1 and relation (1.30),
h

l
=
µ−

µ+
= ε, thus,

it may also be written as r =
µ−

2h
.
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2.3. Asymptotic analysis

2.3 Asymptotic analysis

In this section we proceed with a more general insight for an arbitrary load acting on

the surface of the layer, adopting asymptotic procedure widely used in mechanics of

thin elastic structures, see e.g. [3, 36, 44]. Note that the scaling is motivated by the

asymptotic orders in Table 2.1, obtained for a sinusoidal shear force.

2.3.1 Soft layer, α ≥ 1 (µ . ε)

First, we scale the displacement and stress components according to the first row of

the Table 2.1, having for a relatively soft layer

u−2 = hu−∗2 , σ−12 = µ−εσ−∗12 , σ−23 = µ−σ−∗23 , (2.11)

where the quantities with the asterisk in superscript are assumed to be of the same

asymptotic order. Hence, governing equations (2.1) become

ε2σ−∗12,1 + σ−∗23,3 = 0, σ−∗12 = u−∗2,1, σ−∗23 = u−∗2,3. (2.12)

Similarly, substituting the scaling for the half-space given by

u+2 = hεα−1u+∗2 , σ+
12 = µ−σ+∗

12 , σ+
23 = µ−σ+∗

23 , (2.13)

into equations (2.2), we get

σ+∗
12,1 + σ+∗

23,3 = 0, σ+∗
12 = u+∗2,1, σ+∗

23 = u+∗2,3. (2.14)

Here and below, the applied load is scaled as

P = µ−p∗. (2.15)
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Chapter 2. Anti-plane shear deformation

In what follows, boundary and continuity conditions (2.3), may be rewritten as

σ−∗23 = −p∗, ξ−3 = 0,

u−∗2 = εα−1u+∗2 , σ−∗23 = σ+∗
23 , ξ−3 = 1.

(2.16)

Next, we expand the displacements and stresses of the layer in asymptotic series
u−∗2

σ−∗12

σ−∗23

 =


u
−(0)
2

σ
−(0)
12

σ
−(0)
23

+ ... . (2.17)

Thus, at leading order we have from (2.12)

σ
−(0)
23,3 = 0, σ

−(0)
12 = u

−(0)
2,1 , σ

−(0)
23 = u

−(0)
2,3 , (2.18)

subject to boundary conditions at ξ−3 = 0

σ
−(0)
23 = −p∗. (2.19)

In view of (2.16), u−∗2 � u+∗2 at α > 1 while u−∗2 ∼ u+∗2 at α = 1, therefore, the leading

order continuity conditions at ξ−3 = 1 become

σ
−(0)
23 = σ

+(0)
23 , u

−(0)
2 = 0, α > 1, u

−(0)
2 = u

+(0)
2 , α = 1. (2.20)

From (2.18)1 and satisfying (2.19), we obtain

σ
−(0)
23 = −p∗, (2.21)

Then, using (2.18)3 together with (2.20), we deduce

u
−(0)
2 = p∗(1− ξ−3 ), α > 1,

u
−(0)
2 = p∗(1− ξ−3 ) + u

+(0)
2

∣∣∣
ξ−3 =1

, α = 1.

(2.22)

Therefore, as it was discussed above, at ξ−3 = 0, the relation between displacement and

applied load at α > 1 is not affected by the presence of the substrate, which may be
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2.3. Asymptotic analysis

described as Winkler-type behaviour, while for α = 1 the reaction of the half-space is

involved. The same happens for shear stress σ
−(0)
12 , for which we have from (2.18)2 and

(2.22)

σ
−(0)
12 =

∂p∗

∂ξ1
(1− ξ−3 ), α > 1,

σ
−(0)
12 =

∂p∗

∂ξ1
(1− ξ−3 ) +

∂u
+(0)
2

∂ξ1

∣∣∣∣∣
ξ−3 =1

, α = 1.
(2.23)

2.3.2 Soft layer, 0 ≤ α < 1 (ε . µ� 1)

The scaling for the layer now takes the form

u−2 = hεα−1u−∗2 , σ−12 = µ−εασ−∗12 , σ−23 = µ−σ−∗23 , (2.24)

leading to

εα+1σ−∗12,1 + σ−∗23,3 = 0, σ−∗12 = u−∗2,1, ε1−ασ−∗23 = u−∗2,3. (2.25)

The scaling and the equations for the half-space are taken as (2.13) and (2.14), respec-

tively, with boundary condition (2.16)1, whereas the continuity conditions at ξ−3 = 1

become

σ−∗23 = σ+∗
23 , u−∗2 = u+∗2 . (2.26)

At leading order, the equations for the layer are

σ
−(0)
23,3 = 0, σ

−(0)
12 = u

−(0)
2,1 , u

−(0)
2,3 = 0, (2.27)

subject to boundary condition (2.19) and the following continuity conditions at ξ−3 = 1

σ
−(0)
23 = σ

+(0)
23 , u

−(0)
2 = u

+(0)
2 . (2.28)

As above, quantity σ
−(0)
23 is expressed as (2.21). Then, (2.27)3 and (2.28)2 imply

u
−(0)
2 = u

+(0)
2

∣∣∣
ξ−3 =1

. (2.29)
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Chapter 2. Anti-plane shear deformation

Finally, (2.27)2 yields

σ
−(0)
12 =

∂u
+(0)
2

∂ξ1

∣∣∣∣∣
ξ−3 =1

. (2.30)

Hence, shear displacement and stress depend only on the deformation of the substrate.

2.3.3 Stiff layer, α ≥ 1 (µ . ε)

For a stiff layer, we scale the displacements and stresses according to the third row in

Table 2.1

u−2 = hε−2u−∗2 , σ−12 = µ−ε−1σ−∗12 , σ−23 = µ−σ−∗23 , (2.31)

which implies

σ−∗12,1 + σ−∗23,3 = 0, σ−∗12 = u−∗2,1, ε2σ−∗23 = u−∗2,3. (2.32)

The scaling for the half-space is taken as

u+2 = hε−2u+∗2 , σ+
12 = µ−εα−1σ+∗

12 , σ+
23 = µ−εα−1σ+∗

23 , (2.33)

which, substituted into (2.2), gives (2.14). Boundary condition, again, is expressed as

(2.19), while the continuity conditions at ξ−3 = 1 are

u−∗2 = u+∗2 , σ−∗23 = εα−1σ+∗
23 . (2.34)

At leading order for the layer we have

σ
−(0)
12,1 + σ

−(0)
23,3 = 0, σ

−(0)
12 = u

−(0)
2,1 , u

−(0)
2,3 = 0, (2.35)

with boundary condition (2.19). Taking into account (2.34)2, i.e. σ−∗23 � σ+∗
23 at α > 1,

and σ−∗23 ∼ σ+∗
23 at α = 1, the continuity conditions at ξ−3 = 1 are

u
−(0)
2 = u

+(0)
2 , σ

−(0)
23 = 0, α > 1, σ

−(0)
23 = σ

+(0)
23 , α = 1. (2.36)
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2.3. Asymptotic analysis

From (2.35)3 we have

u
−(0)
2 = V, (2.37)

where V = V (ξ1) which may be denoted as a dimensionless shear of the coating, thus,

displacement u
−(0)
2 is constant across the thickness of the layer. Next, we deduce from

(2.35)2

σ
−(0)
12 =

∂V

∂ξ1
. (2.38)

Using (2.35)1 and satisfying boundary condition (2.19), we obtain

σ
−(0)
23 = −∂

2V

∂ξ21
ξ−3 − p∗. (2.39)

Finally, from continuity conditions (2.36), we have

∂2V

∂ξ21
= −p∗, α > 1,

∂2V

∂ξ21
= −p∗ − σ

+(0)
23

∣∣∣
ξ−3 =1

, α = 1,

(2.40)

which are in fact the equations of plate shear, with the substrate reaction equal to 0

at α > 1.

2.3.4 Stiff layer, 0 ≤ α < 1 (ε . µ� 1)

In this case, the scaling for the layer is given by

u−2 = hε−α−1u−∗2 , σ−12 = µ−ε−ασ−∗12 , σ−23 = µ−σ−∗23 , (2.41)

with the governing equations

ε1−ασ−∗12,1 + σ−∗23,3 = 0, σ−∗12 = u−∗2,1, εα+1σ−∗23 = u−∗2,3. (2.42)

The scaling for the half-space is

u+2 = hε−α−1u+∗2 , σ+
12 = µ−σ+∗

12 , σ+
23 = µ−σ+∗

23 , (2.43)

39



Chapter 2. Anti-plane shear deformation

with equations (2.14). Boundary and continuity conditions are taken as (2.19) and

(2.28).

The leading order equations and results are the same as in Subsection 2.3.2.

2.3.5 Reduced problem formulations for a half-space

As it follows from the analysis above, for some cases the expressions for stresses and

displacements involve the interfacial displacement u
+(0)
2

∣∣∣
ξ−3 =1

and stress σ
+(0)
23

∣∣∣
ξ−3 =1

, see

(2.22)2, (2.23)2, (2.29) and (2.40)2. The asymptotic treatment allows us to formulate

reduced problems for the half-space separately from the layer, from the solutions of

which these interfacial values can be derived.

For a soft layer, shear stress σ
−(0)
23 is uniform across the thickness of the layer,

see (2.21), and may be transmitted to the interface. Therefore, taking into account

continuity conditions (2.20)1 and (2.28)1, the problem for a homogeneous half-space

may be formulated with the following boundary conditions at the interface ξ+3 = 0

σ+
23 = P. (2.44)

Hence, the value of interfacial displacement u
+(0)
2

∣∣∣
ξ−3 =1

in formulae (2.22)2, (2.23)2 and

(2.29) follow from the solution of the stated problem.

In case of a stiff layer, for α = 1, taking into account continuity conditions (2.36)1

and (2.36)3, the expression for the shear of the layer (2.37) and the equation of plate

shear (2.40)2, we arrive at the following effective boundary condition for a half-space

σ+
23 = −P − µ+

l

∂2u+2
∂ξ21

∣∣∣∣
ξ+3 =0

. (2.45)

Thus, the value of the shear V for α = 1 can be obtained by solving this reduced

problem.
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2.3. Asymptotic analysis

Let us now present solutions of the problems discussed above for sinusoidal P .

In what follows, we consider a homogeneous elastic half-space (ξ+3 ≥ 0) subject to

boundary conditions (2.44) and (2.45) for load (2.4) denoted as Case 1 and Case 2 in

Table 2.3, respectively.

The equations of the formulated problems and the solutions are given by (2.2) and

(2.5) with functions (2.7)2, where the values of the coefficient C3, corresponding to the

related case of the applied boundary conditions, are presented in Table 2.3, together

with the displacement and stress components at the surface ξ+3 = 0.

Case 1 Case 2

Boundary conditions

σ+
23 −Aµ− sin ξ1 −Aµ− sin ξ1 −

µ+

l

∂2u+2
∂ξ21

∣∣∣∣
ξ+3 =0

Coefficient in (2.7)2

C3
Aaµ−

µ+

Aaµ−

2µ+

Displacements and stresses at the surface

u+2
Aaµ− sin ξ1

µ+

Aaµ− sin ξ1
2µ+

σ+
12 Aµ− cos ξ1

Aµ− cos ξ1
2

σ+
23 −Aµ− sin ξ1 −Aµ

− sin ξ1
2

Table 2.3: Anti-plane BVPs for a homogeneous half-space
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Chapter 2. Anti-plane shear deformation

2.4 Numerical comparison of the asymptotic results

with the exact solution

In this section the derived asymptotic results are tested by comparison with the exact

solution of a problem for sinusoidal load (2.4) applied at the surface of the layer x3 = 0.

In doing so, we study the coefficient r introduced in (2.9).

For the exact solution, coefficient r follows from (2.10).

For the asymptotic results, in case of a soft layer, we use relations (2.22) for α > 1

and α = 1, and (2.29) for 0 ≤ α < 1. The value of the interfacial displacement

u
+(0)
2

∣∣∣
ξ−3 =1

, due to continuity conditions (2.20)3 and (2.28)2, may be found from a sim-

pler problem for a homogeneous half-space discussed in Subsection 2.3.5. Its solution

for sinusoidal load (2.4) is presented as Case 1 in Table 2.3.

In order to derive r for a stiff layer, we solve plate shear equations (2.40) for α > 1

and α = 1. For the latter case, taking into account continuity condition (2.36)1, the

shear of the layer, see (2.37), may be again derived from a problem for a half-space,

see Subsection 2.3.5 (Case 2 in Table 2.3 for a solution for a sinusoidal load). The case

0 ≤ α < 1 is identical to one for a soft layer.

As a result, asymptotic formulae for coefficient r coincide with leading order exact

solution presented in Table 2.2.

As an illustration, we plot the dimensionless coefficient

r∗ =
h

µ−
r, (2.46)

in Figure 2.3 for a soft and a stiff layer, with α = logε µ, Poisson’s ratios ν− = 0.25

and ν+ = 0.3, and ε = 0.1.
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2.4. Numerical comparison of the asymptotic results with the exact solution

(a) soft coating
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exact, see (2.10)

asymptotic (α > 1), see (2.22)1

asymptotic (0 ≤ α < 1), see (2.29)

asymptotic (α = 1), see (2.22)2

(b) stiff coating
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asymptotic (0 ≤ α < 1), see (2.29)
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asymptotic (α = 1), see (2.40)2

Figure 2.3: Asymptotic and exact solutions of an anti-plane problem for sinusoidal load

(ε = 0.1, ν− = 0.25, ν+ = 0.3)

Here, blue solid lines correspond to the exact solution, dashed and dot-dashed

lines display the asymptotic approximations at α > 1 (formula (2.22)1 in case of a soft

coating and (2.40)1 for a stiff one) and 0 ≤ α < 1 (formula (2.29) valid for both soft and
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Chapter 2. Anti-plane shear deformation

stiff layers), respectively, which have limited ranges of applicability. For a soft coating,

case α = 1 gives two-term approximation (2.22)2, which appears to be uniformly valid

over the whole range of parameter α, and the associated curve, denoted by red dots

in Figure 2.3(a), is very close to the exact solution. As for a stiff layer, approximation

at α = 1, represented by formula (2.40)2, is a limiting case, displayed by the blue dot

in Figure 2.3(b), being valid only for this particular value of α, therefore, there is no

uniformly valid approximation. We can, however, match the derived approximations

through

r̃∗ = r0∗e
−α
b + r∞∗

(
1− e−

α
b

)
, (2.47)

where r0∗ and r∞∗ are dimensionless coefficients for approximations at α = 0 and α > 1,

respectively, and b can be found using the value of r∗ at α = 1. For sinusoidal load

(2.4), b ≈ 0.455, and the related curve is plotted with red dots in Figure 2.3(b).
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Chapter 3

3D deformation

Here we extend the methodology presented in the previous chapter to a full 3D problem

in order to validate Winkler-Fuss hypothesis for a relatively soft layer and Kirchhoff

theory for thin plates in case of the coating being stiff. Two-parametric asymptotic

analysis of the equilibrium of an elastic half-space coated by a thin soft or stiff layer for

a 3D setup is developed. The initial scaling is motivated by the exact solution of the

plane strain problem for a vertical sinusoidal load. It is established that Winkler-Fuss

hypothesis and Kirchhoff theory for thin plates are valid only for a sufficiently high

contrast in stiffness of the layer and the half-space. As an alternative, a uniformly valid

non-local approximation is proposed in case of a soft layer. Higher order corrections

to the Winkler-Fuss formulation, such as the Pasternak model, are also studied. In

the scenario, in which the Kirchhoff theory fails, other approximate formulations are

introduced, reducing the original problem for a coated solid to problems for a homo-

geneous half-space with Neumann, mixed or effective boundary conditions along its

surface. The results of the present chapter were published in [78] and [79] considering

relatively soft and stiff layer, respectively.
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Chapter 3. 3D deformation

3.1 Statement of the problem

Consider a thin linearly isotropic elastic layer (0 ≤ x3 ≤ h) resting on an elastic half-

space (x3 ≥ h). Let a smooth vertical static force P = P (x1, x2) be applied at the

surface of the layer, see Figure 3.1.

h

l

P

x3

x2

x1

−
+

0

Figure 3.1: Problem statement for a 3D problem

As in Chapter 2, we use dimensionless coordinates (1.18) with governing equations

(1.24) and constitutive relations (1.19) and (1.20). We also employ parameters (1.28)

and (1.29), corresponding to the relative thickness and stiffness of the layer, respec-

tively, together with relation (1.30).

The boundary conditions at x3 = 0 modelling vertical loading at the upper face of

the layer are

σ−33 = −P, σ−m3 = 0, (3.1)

where m = 1, 2. We also impose the continuity conditions

u−i = u+i , σ−i3 = σ+
i3 (3.2)

at the interface x3 = h. The decay of the spacial displacements is also assumed, i.e.

u+i → 0, as x3 → +∞.

For numerous applications the most important consequence of the solution of the
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3.2. Plane strain problem for a sinusoidal load

stated problem is the relation between the applied load and the vertical displacement

of the upper face of the layer. In case of a soft layer, similarly to the anti-plane problem

presented in Chapter 2, we may expect Winkler-Fuss hypothesis to be applicable, see

Section 1.2 for more detail, while in case of a stiff thin coating resting on a soft substrate,

the model of a thin elastic plate may be used to describe the behaviour, see Section

1.3. In this chapter we develop a two-parametric asymptotic procedure, aiming at

estimating the range of the parameter α, for which the Winkler-Fuss approximation and

the theory of thin plates may be validated and mathematically justified. Refinements

to this model are also derived in what follows.

3.2 Plane strain problem for a sinusoidal load

We begin with a model plane strain problem for a vertical sinusoidal force

P = Aµ− cos ξ1, (3.3)

where A is constant amplitude, see Figure 3.2.

h

l

0

x3

x1

−
+

Figure 3.2: Plane problem for a sinusoidal surface load

The associated dimensionless equations of equilibrium may be taken in the form of

47



Chapter 3. 3D deformation

(1.19), (1.20) and (1.24), setting u±2 = 0 and u±s,2 = 0, s = 1, 3, i.e.

(λ− + 2µ−)ε2u−1,11 + (λ− + µ−)εu−3,13 + µ−u−1,33 = 0,

µ−ε2u−3,11 + (λ− + µ−)εu−1,13 + (λ− + 2µ−)u−3,33 = 0,

(λ+ + 2µ+)u+1,11 + (λ+ + µ+)u+3,13 + µ+u+1,33 = 0,

µ+u+3,11 + (λ+ + µ+)u+1,13 + (λ+ + 2µ+)u+3,33 = 0.

(3.4)

The boundary conditions (3.1) become

σ−33 = −Aµ− cos ξ1, σ−13 = 0, (3.5)

with continuity (3.2) and decay conditions.

The sought for displacement components may be presented as

u±1 = f±1 (ξ±3 ) sin ξ1, u±3 = f±3 (ξ±3 ) cos ξ1. (3.6)

Then, on substituting (3.6) into (3.4), we have

µ−f−1
′′
(ξ−3 )− (λ− + 2µ−)ε2f−1 (ξ−3 )− (λ− + µ−)εf−3

′
(ξ−3 ) = 0,

(λ− + 2µ−)f−3
′′
(ξ−3 ) + (λ− + µ−)εf−1

′
(ξ−3 )− µ−ε2f−3 (ξ−3 ) = 0,

µ+f+
1
′′
(ξ+3 )− (λ+ + 2µ+)f+

1 (ξ+3 )− (λ+ + µ+)f+
3
′
(ξ+3 ) = 0,

(λ+ + 2µ+)f+
3
′′
(ξ+3 ) + (λ+ + µ+)f+

1
′
(ξ+3 )− µ+f+

3 (ξ+3 ) = 0.

(3.7)

Equations (3.7) may also be rewritten as

a±11f
±
1
′′

+ a±12f
±
1 + a±13f

±
3
′
= 0, a±21f

±
3
′′

+ a±22f
±
1
′
+ a±23f

±
3 = 0, (3.8)

which after rearrangement become

f±1 = −a
±
11

a±12
f±1
′′ − a±13

a±12
f±3
′
, f±1

′
= −a

±
21

a±22
f±3
′′ − a±23

a±22
f±3 . (3.9)

Differentiating (3.9)2, substituting it into (3.9)1 and differentiating again, we obtain

f±1
′
=
a±11a

±
21

a±12a
±
22

f±3
(4)

+

(
a±11a

±
23

a±12a
±
22

− a±13
a±12

)
f±3
′′
, (3.10)
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3.2. Plane strain problem for a sinusoidal load

which together with (3.9)2 gives

b±1 f
±
3

(4)
+ b±2 f

±
3
′′

+ b±3 f
±
3 = 0, (3.11)

with

b±1 =
a±11a

±
21

a±12a
±
22

, b±2 =
a±11a

±
23 − a±13a±22 + a±12a

±
21

a±12a
±
22

, b±3 =
a±23
a±22

. (3.12)

Coming back to the original notations, coefficients b±i become

b−1 = − µ−

ε3(λ− + µ−)
, b−2 =

2µ−

ε(λ− + 2µ−)
, b−3 = − µ−ε

λ− + µ−
,

b+1 = − µ+

λ+ + µ+
, b+2 =

2µ+

λ+ + 2µ+
, b+3 = − µ+

λ+ + µ+
.

(3.13)

Therefore, the solutions of (3.11) decaying at +∞ take the form

f−3 (ξ−3 ) =
(
C1 + C2ξ

−
3

)
eεξ

−
3 +

(
C3 + C4ξ

−
3

)
e−εξ

−
3 ,

f+
3 (ξ+3 ) =

(
C5 + C6ξ

+
3

)
e−ξ

+
3 .

(3.14)

Substituting the latter into (3.10), we deduce

f−1 (ξ−3 ) = e−εξ
−
3

[
C3 + C4

(
ξ−3 − C−0

)]
− eεξ−3

[
C1 + C2

(
ξ−3 + C−0

)]
,

f+
1 (ξ+3 ) = e−ξ

+
3

[
C5 + C6

(
ξ+3 − εC+

0

)]
,

(3.15)

where C±0 =
1

ε

(
1 +

2µ±

λ± + µ±

)
. The values of Cq, q = 1, ..., 6, are obtained from

boundary and continuity conditions (3.5) and (3.2) and given by

Cq =
AhNq

D
, (3.16)

where

N1 = 2e2εε2B7B12 + (γ−)2[B+
2 B

−
13(µ

−)2 + 2(γ+ − 2e2εεB+
3 )µ−µ+

−B+
1 B

+
13(µ

+)2] + γ−[B+
1 B

−
14(µ

+)2 + 2(2e2εεB+
4 − 1)−B+

2 B
+
14(µ

−)2],
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Chapter 3. 3D deformation

N2 = −e2ε(2ε2B7B12 + γ−[B+
2 B

−
10(µ

−)2 − 2(e2ε + 2B−4 ε)µ
−µ+

−B+
1 B

+
10(µ

+)2]− (γ−)2[B+
2 (B−9 − 2ε2)(µ−)2

+2(e2εγ+ − 2B−3 ε)µ
−µ+ +B+

1 (B−4 + e2ε + 2ε2)(µ+)2]),

N3 = −εB−1 B7[B
−
1 B

+
2 (e2εB+

4 − 1)µ− +B+
1 (B−2 + e2εB−1 B

+
4 )µ+],

N4 = εe2εB−1 B12[B
−
1 B

−
9 µ
− + (B−1 B

−
4 + e2εB−2 )µ+],

N5 = 2eεγ−µ−[B−1 B
+
2 (e2εB+

3 −B−3 )µ− + (e2εB+
11 −B−11)µ+],

N6 = 2eεγ−B+
1 µ
−[B−1 B

−
9 µ
− + (B−1 B

−
4 + e2εB−2 )µ+],

and

D = 2ε[(B−1 )2B+
2 (B6 − 2e2εB5)(µ

−)2 + 2B−1 [B−8 + e4εB+
8

+e2ε(4B−1 ε
2 − 2)]µ−µ+ +B+

1 [B−1 B
−
2 B6

+2e2ε(B5[1 + (γ−)2]− 4γ−ε2)](µ+)2],

with

B±1 = γ± − 1, B6 = 1 + e4ε, B±11 = B±3 ∓B±15,

B±2 = γ± + 1, B7 = µ− − µ+, B12 = B+
2 µ
− +B+

1 µ
+,

B±3 = 1± ε, B±8 = 1± γ−γ+, B±13 = e2ε(B+
4 + 2ε2)± 1,

B±4 = 1± 2ε, B±9 = e2ε ±B±4 , B±14 = e2ε(4ε2 ±B±4 )− 1,

B5 = 1 + 2ε2, B±10 = B±9 − 4ε2, B±15 = γ−(ε− γ+B±3 )± γ+ε.

Stresses can be derived substituting displacements (3.6) with (3.14) into the corre-

sponding expressions in (1.19) and (1.20).

Using the results together with material parameter (1.29) and relation (1.30), the

leading order asymptotic behaviour of the displacements and stresses expressed in terms

of small parameter ε at α ≥ 0 is given in Table 3.1 for a soft coating and in Table 3.2

for a stiff one.

It is clear that, in case of a soft layer, u−3 � u+3 at α ≥ 1, i.e. the deformations

50



3.2. Plane strain problem for a sinusoidal load

u−1 u−3 σ−13 σ−33 σ−11 u+1 u+3 σ+
13 σ+

33 σ+
11

α ≥ 2 ε 1 ε 1 1 εα−1 εα−1 1 1 1

1 ≤ α ≤ 2 εα−1 1 ε 1 1 εα−1 εα−1 1 1 1

0 ≤ α ≤ 1 εα−1 εα−1 ε 1 1 εα−1 εα−1 1 1 1

Table 3.1: Asymptotic behaviour of displacements and stresses for a soft layer

u−1 u−3 σ−13 σ−33 σ−11 u+1 u+3 σ+
13 σ+

33 σ+
11

α ≥ 3 ε−3 ε−4 ε−1 1 ε−2 ε−4 ε−4 εα−3 εα−3 εα−3

2 ≤ α ≤ 3 ε−α ε−α−1 ε2−α 1 ε1−α ε−α−1 ε−α−1 1 1 1

1 ≤ α ≤ 2 ε−2 ε−α−1 1 1 ε−1 ε−α−1 ε−α−1 1 1 1

0 ≤ α ≤ 1 ε−α−1 ε−α−1 ε1−α 1 ε−α ε−α−1 ε−α−1 1 1 1

Table 3.2: Asymptotic behaviour of displacements and stresses for a stiff layer

of the half-space may be neglected at leading order. Moreover, u−3 and σ−33 are of the

same asymptotic order, which does not contradict the Winkler-Fuss hypothesis. For

0 ≤ α ≤ 1 we have u−3 ∼ u+3 and also u−3 � σ−33, corresponding to a non-negligible

effect of the substrate deformability. The value α = 1 appears to be a border line

value, since still u−3 ∼ σ−33, but at the same time u−3 ∼ u+3 .

Now, let us consider in more detail the relation between vertical displacement u−3

at the surface ξ−3 = 0 and prescribed load (3.3), by introducing the coefficient

r =
P

u−3
∣∣
ξ−3 =0

. (3.17)
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Chapter 3. 3D deformation

We have from (3.6), (3.14), (3.15) and (3.16) at leading order for a soft layer

r =



λ− + 2µ−

h
, α > 1,

2(γ+ − 1)µ−(λ− + 2µ−)

h[λ−γ+ − 2µ−(1− 2γ+)]
, α = 1,

2(γ+ − 1)µ−

hγ+
ε1−α, α < 1.

(3.18)

Hence, at α > 1 vertical displacement u−3 is proportional to prescribed load P . In

this case, according to Winkler-Fuss hypothesis (1.31), coefficient r depends only on

the thickness and elastic parameters of the layer. This result was earlier obtained in

[3] for a layer with a clamped base. At the same time, at α ≤ 1 this coefficient already

depends on both the parameters of the layer and the half-space and is independent of

ξ1 only for the considered sinusoidal load. It is also worth noting that at α < 1 factor

ε1−α indicates the violation of Winkler-Fuss type behaviour.

For a stiff coating we have

r =



µ−(γ− − 1)ε4

hγ−
, α > 3,

µ−(γ− − 1− γ+ + 7γ−γ+)ε4

3hγ−(1 + γ+)
, α = 3,

2µ−γ+εα+1

h(1 + γ+)
, 1 < α < 3,

µ−(γ−(6γ+ − 2)− 4γ+)ε2

h(γ−(2 + 3γ+)− 2(1 + γ+))
, α = 1,

2µ−(γ+ − 1)εα+1

hγ+
, α < 1.

(3.19)

As a result, the case α > 3, when the coefficient r is independent of the parameters

of substrate, is clearly observed. This points out that the equation of plate bending

may be expected at leading order as a relation involving vertical displacement u−3 and

the applied load P . Note again, that the ratio does not involve ξ1 since the considered

applied load is sinusoidal. In general, it is a function of ξ1.
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3.3. Asymptotic analysis for a soft layer

3.3 Asymptotic analysis for a soft layer

Now we are in a position to develop a more general procedure, using the data in Table

3.1 as a motivation for the scaling exploited in the asymptotic procedure for a soft layer

below, addressing all of the cases corresponding to the classification in this Table.

3.3.1 Case α ≥ 2
(
µ . ε2

)
First, we scale the displacements and stresses according to the data in the first row of

the Table. Thus, we have for the layer

u−m = hεu−∗m , σ−12 = µ−ε2σ−∗12 , σ−ii = µ−σ−∗ii ,

u−3 = hu−∗3 , σ−m3 = µ−εσ−∗m3,

(3.20)

where the quantities with the asterisk in superscript are assumed to be of the same

asymptotic order, and, as before, m = 1, 2. In the present section, similarly to Chapter

2, the applied load is scaled as in (2.15). In view of (3.20), governing equations (1.24)1

and (1.19) may be rewritten as

σ−∗mm,m + ε2σ−∗12,n + σ−∗m3,3 = 0,

ε2(σ−∗13,1 + σ−∗23,2) + σ−∗33,3 = 0,

σ−∗mm = ε2(γ−u−∗m,m + (γ− − 2)u−∗n,n) + (γ− − 2)u−∗3,3,

σ−∗33 = ε2(γ− − 2)(u−∗1,1 + u−∗2,2) + γ−u−∗3,3,

σ−∗12 = u−∗1,2 + u−∗2,1,

σ−∗m3 = u−∗m,3 + u−∗3,m,

(3.21)

with comma denoting now differentiation with respect to dimensionless variables ξi.

Here and below, the scaling for the half-space is given by

u+i = hεα−1u+∗i , σ+
ij = µ−σ+∗

ij , (3.22)
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Chapter 3. 3D deformation

which, substituting into (1.24)2 and (1.20), gives

σ+∗
i1,1 + σ+∗

i2,2 + σ+∗
i3,3 = 0,

σ+∗
mm = γ+u+∗m,m + (γ+ − 2)(u+∗n,n + u+∗3,3),

σ+∗
33 = γ+u+∗3,3 + (γ+ − 2)(u+∗1,1 + u+∗2,2),

σ+∗
12 = u+∗1,2 + u+∗2,1,

σ+∗
m3 = u+∗m,3 + u+∗3,m.

(3.23)

We also have from (3.1)

σ−∗33 = −p∗, σ−∗m3 = 0 (3.24)

at ξ−3 = 0, and from (3.2)

u−∗m = εα−2u+∗m , u−∗3 = εα−1u+∗3 , εσ−∗m3 = σ+∗
m3, σ−∗33 = σ+∗

33 (3.25)

at ξ−3 = 1.

It is clear from (3.25) that u−∗m � u+∗m at α > 2 while u−∗m ∼ u+∗m at α = 2. In what

follows we tackle each of these subcases separately.

Subcase α > 2 (µ� ε2)

Let us begin with the analysis of the layer by expanding the displacement and stress

components in asymptotic series as u−∗i

σ−∗ij

 =

 u
−(0)
i

σ
−(0)
ij

+ εβ

 u
−(1)
i

σ
−(1)
ij

+ ..., (3.26)

where

β =


2, α ≥ 3,

α− 1, 1 < α ≤ 3.

(3.27)
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3.3. Asymptotic analysis for a soft layer

At leading order, we have from (3.21)

σ
−(0)
mm,m + σ

−(0)
m3,3 = 0,

σ
−(0)
33,3 = 0,

σ
−(0)
mm = (γ− − 2)u

−(0)
3,3 ,

σ
−(0)
33 = γ−u

−(0)
3,3 ,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

σ
−(0)
m3 = u

−(0)
m,3 + u

−(0)
3,m ,

(3.28)

subject to

σ
−(0)
33 = −p∗, σ

−(0)
m3 = 0, (3.29)

and

u
−(0)
i = 0, σ

+(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 (3.30)

at ξ−3 = 0 and ξ−3 = 1, respectively.

First, from (3.28)2, satisfying boundary condition (3.29)1, we deduce

σ
−(0)
33 = −p∗. (3.31)

Then, (3.28)4 and (3.30)1 imply

u
−(0)
3 =

1

γ−
(
1− ξ−3

)
p∗, (3.32)

which at ξ−3 = 0 validates the Winkler-Fuss hypothesis, see (1.31) in Section 1.2 and

also the discussion presented in Subsection 3.3.6.

Next, we find the rest of the displacements and stresses. In particular, (3.28)3 yields

σ−(0)mm = −ϑp∗, (3.33)

where

ϑ = 1− 2

γ−
. (3.34)
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Now, substituting (3.33) into (3.28)1 and satisfying (3.29)2, we arrive at

σ
−(0)
m3 = ϑξ−3

∂p∗

∂ξm
. (3.35)

Then, using (3.35), (3.28)6, and (3.30), we infer

u−(0)m =

(
η

8
(ξ−3 )2 − ξ−3

γ−
+

3

2γ−
− 1

2

)
∂p∗

∂ξm
, (3.36)

where

η = 4

(
1− 1

γ−

)
. (3.37)

Finally, combining the latter with (3.28)5, we have

σ
−(0)
12 =

(
η

4
(ξ−3 )2 − 2ξ−3

γ−
+

3

γ−
− 1

)
∂2p∗

∂ξ1∂ξ2
. (3.38)

Subcase α = 2 (µ ∼ ε2)

Here we start from same leading order equations (3.28) and boundary conditions (3.29)

for the layer, while the continuity conditions at ξ−3 = 1 are now given by

u−(0)m = u+(0)
m , u

−(0)
3 = 0, σ

+(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 . (3.39)

As above, quantities σ
−(0)
33 , u

−(0)
3 , σ

−(0)
mm and σ

−(0)
m3 are expressed by (3.31) – (3.35),

respectively. Then, using (3.35) and (3.28)6, we deduce

u−(0)m =

(
η

8
(ξ−3 )2 − ξ−3

γ−
+

3

2γ−
− 1

2

)
∂p∗

∂ξm
+ u−(0)m

∣∣
ξ−3 =1

. (3.40)

Thus, contrary to the subcase α > 2, the effect of the substrate on horizontal displace-

ments u
−(0)
m now appears at leading order because of (3.39)1. This is also true for shear

stress σ
−(0)
12 , for which we get from (3.28)5 and (3.40)

σ
−(0)
12 =

(
η

4
(ξ−3 )2 − 2ξ−3

γ−
+

3

γ−
− 1

)
∂2p∗

∂ξ1∂ξ2
+

(
∂u
−(0)
1

∂ξ2
+
∂u
−(0)
2

∂ξ1

)∣∣∣∣∣
ξ−3 =1

. (3.41)

However, the leading order relation between u
−(0)
3 and σ

−(0)
33 is still given by Winkler-

Fuss formula (3.32).
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3.3. Asymptotic analysis for a soft layer

3.3.2 Case 1 ≤ α < 2
(
ε2 . µ� ε

)

The scaling for the layer now takes the form

u−m = hεα−1u−∗m , σ−12 = µ−εασ−∗12 , σ−ii = µ−σ−∗ii ,

u−3 = hu−∗3 , σ−m3 = µ−εσ−∗m3.

(3.42)

As a result, governing equations (1.24)1 and (1.19) can be written as

σ−∗mm,m + εασ−∗12,n + σ−∗m3,3 = 0,

ε2(σ−∗13,1 + σ−∗23,2) + σ−∗33,3 = 0,

σ−∗mm = εα(γ−u−∗m,m + (γ− − 2)u−∗n,n) + (γ− − 2)u−∗3,3,

σ−∗33 = εα(γ− − 2)(u−∗1,1 + u−∗2,2) + γ−u−∗3,3,

σ−∗12 = u−∗1,2 + u−∗2,1,

σ−∗m3 = εα−2u−∗m,3 + u−∗3,m.

(3.43)

Boundary conditions (3.24) stay the same, whereas the continuity conditions at ξ−3 = 1

become

u−∗m = u+∗m , u−∗3 = εα−1u+∗3 , εσ−∗m3 = σ+∗
m3, σ−∗33 = σ+∗

33 . (3.44)

Below we consider separately the subcases 1 < α < 2 and α = 1.
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Chapter 3. 3D deformation

Subcase 1 < α < 2 (ε2 � µ� ε)

At leading order, we have for the layer

σ
−(0)
mm,m + σ

−(0)
m3,3 = 0,

σ
−(0)
33,3 = 0,

σ
−(0)
mm = (γ− − 2)u

−(0)
3,3 ,

σ
−(0)
33 = γ−u

−(0)
3,3 ,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
m,3 = 0,

(3.45)

subject to boundary conditions (3.29) and the following continuity conditions at ξ−3 = 1

u−(0)m = u+(0)
m , u

−(0)
3 = 0, σ

+(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 . (3.46)

As in Subsection 3.3.1, quantities σ
−(0)
33 , u

−(0)
3 , σ

−(0)
mm and σ

−(0)
m3 are given by (3.31) –

(3.35), respectively. Also, formulae (3.45)6 and (3.45)5 yield

u−(0)m = u−(0)m

∣∣
ξ−3 =1

, (3.47)

and

σ
−(0)
12 =

(
∂u
−(0)
1

∂ξ2
+
∂u
−(0)
2

∂ξ1

)∣∣∣∣∣
ξ−3 =1

. (3.48)

Here, in contrast to (3.40) and (3.41), quantities u
−(0)
m and σ

−(0)
12 in (3.47) and (3.48)

depend only upon substrate deformations.

Subcase α = 1 (µ ∼ ε)

Now the leading order equations for the layer are again given by (3.45), subject to

boundary conditions (3.29), with the continuity conditions at ξ−3 = 1 taking the form

u
−(0)
i = u

+(0)
i , σ

+(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 . (3.49)
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3.3. Asymptotic analysis for a soft layer

Remarkably, even though α = 1, i.e. µ =
µ−

µ+
∼ h

l
= ε, hence µ− � µ+, the half-space

is still not stiff enough to behave as an absolutely rigid substrate; compare (3.46)2

and (3.49)1 at i = 3. Therefore, we cannot expect the validity of the Winkler-Fuss

hypothesis.

As before, the quantity of σ
−(0)
33 is given by (3.31), whereas, as it follows from (3.45)4

and (3.29)1,

u
−(0)
3 =

p∗

γ−
(1− ξ−3 ) + u

−(0)
3

∣∣∣
ξ−3 =1

. (3.50)

This relation demonstrates that vertical displacement u
−(0)
3 is no longer proportional to

prescribed load p∗ due to presence of an extra term in the right hand side, corresponding

to the substrate effect, see (3.49)1 at i = 3. Thus, the Winkler-Fuss approximation is

not valid even at leading order.

Finally, quantities σ
−(0)
mm , σ

−(0)
m3 , u

−(0)
m and σ

−(0)
12 now satisfy formulae (3.33), (3.35),

(3.47) and (3.48), respectively, given in the previous subsections.

3.3.3 Case 0 ≤ α < 1 (ε . µ� 1)

The scaling for the layer is

u−i = hεα−1u−∗i , σ−12 = µ−εασ−∗12 , σ−ii = µ−σ−∗ii , σ−m3 = µ−εσ−∗m3. (3.51)
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Chapter 3. 3D deformation

Consequently, governing equations (1.24)1 and (1.19) become

σ−∗mm,m + εασ−∗12,n + σ−∗m3,3 = 0,

ε2σ−∗13,1 + ε2σ−∗23,2 + σ−∗33,3 = 0,

ε1−ασ−∗mm = ε(γ−u−∗m,m + (γ− − 2)u−∗n,n) + (γ− − 2)u−∗3,3,

ε1−ασ−∗33 = ε(γ− − 2)(u−∗1,1 + u−∗2,2) + γ−u−∗3,3,

σ−∗12 = u−∗1,2 + u−∗2,1,

ε2−ασ−∗m3 = u−∗m,3 + εu−∗3,m,

(3.52)

subject to boundary conditions (3.24). The continuity conditions at ξ−3 = 1 can be

written as

u−∗i = u+∗i , εσ−∗m3 = σ+∗
m3, σ−∗33 = σ+∗

33 . (3.53)

At leading order, we get from (3.52) and (3.53)

σ
−(0)
mm,m + εασ

−(0)
12,n + σ

−(0)
m3,3 = 0,

σ
−(0)
33,3 = 0,

u
−(0)
i,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

(3.54)

where term σ
−(0)
12,n can be neglected at 0 < α < 1, and

u
−(0)
i = u

+(0)
i , σ

+(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 . (3.55)

Integrating (3.54)2 and satisfying (3.29)1, we arrive again at (3.31) for σ
−(0)
33 . Next,

(3.54)3 results in

u
−(0)
i = u

−(0)
i

∣∣∣
ξ−3 =1

. (3.56)

All the displacements of the layer are now strongly affected by the presence of the

half-space, according to boundary condition (3.55)1.
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3.3. Asymptotic analysis for a soft layer

3.3.4 Higher order corrections

Below, we derive higher order corrections to the relation between vertical displacement

of the upper face of the layer u−3
∣∣
ξ−3 =0

and applied load P , expressing the studied

Winkler-Fuss hypothesis. We restrict ourselves to the range α > 1, in which it is valid

at leading order. The form of asymptotic expansion (3.26) involving parameter β, see

(3.27), motivates a separate treatment of cases α > 3, α = 3 and 1 < α < 3.

Case α > 3 (µ� ε3)

Over this parameter range, the sought for correction is O(ε2), see (3.26) and (3.27).

Then, governing equations (3.21)2 and (3.21)4 become

σ
−(0)
13,1 + σ

−(0)
23,2 + σ

−(1)
33,3 = 0,

σ
−(1)
33 = (γ− − 2)

(
u
−(0)
1,1 + u

−(0)
2,2

)
+ γ−u

−(1)
3,3 ,

(3.57)

subject to the boundary condition at ξ−3 = 0

σ
−(1)
33 = 0, (3.58)

and the continuity condition at ξ−3 = 1

u
−(1)
3 = 0. (3.59)

Thus, at α > 3 the interface between the layer and the half-space may be treated as a

clamped one not only at leading order, but also at the next one.

Using (3.57)1, (3.35), and (3.58), we deduce

σ
−(1)
33 =

2− γ−

2γ−
(ξ−3 )2∆̃12p

∗, (3.60)

where

∆̃12 =
∂2

∂ξ21
+

∂2

∂ξ22
(3.61)
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is a 2D Laplace operator in ξ1 and ξ2. Then, substituting (3.36) into (3.57)2, and taking

into account (3.59), we obtain

u
−(1)
3 =

(2− γ−)(ξ−3 − 1)

6(γ−)2
[
6− 3ξ−3 + γ−(ξ−3 − 2 + (ξ−3 )2)

]
∆̃12p

∗. (3.62)

Case α = 3 (µ ∼ ε3)

Equations (3.57) and boundary condition (3.58) are now complemented by the conti-

nuity condition

u
−(1)
3 = u

+(0)
3 . (3.63)

As a result, we have same expression (3.60) for σ
−(1)
33 , whereas u

−(1)
3 becomes

u
−(1)
3 =

(2− γ−)(ξ−3 − 1)

6(γ−)2
[
6− 3ξ−3 + γ−(ξ−3 − 2 + (ξ−3 )2)

]
∆̃12p

∗ + u
−(1)
3

∣∣∣
ξ−3 =1

, (3.64)

where the last term in the right hand side is given by (3.63).

Case 1 < α < 3 (ε3 � µ� ε)

In this case the sought for correction is O(εα−1). Therefore,

σ
−(1)
33,3 = 0,

σ
−(1)
33 = γ−u

−(1)
3,3 ,

(3.65)

leading to

σ
−(1)
33 = 0, (3.66)

and

u
−(1)
3 = u

−(1)
3

∣∣∣
ξ−3 =1

. (3.67)

Hence, the next order correction is entirely affected by substrate deformation.
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3.3. Asymptotic analysis for a soft layer

3.3.5 Approximate formulation for a half-space

As it follows from the analysis above, in some cases in order to find stresses and

displacements of the layer, interfacial displacements u
−(0)
i

∣∣∣
ξ−3 =1

and u
−(1)
3

∣∣∣
ξ−3 =1

should

be derived. Similarly to Subsection 2.3.5 in the previous chapter, an approximate

formulation for a half-space may be introduced which allows to obtain these values.

Vertical displacement σ
−(0)
33 is constant across the thickness of the layer for any

value of parameter α, see (3.31), therefore, the applied load can be transmitted to the

interface. In view of continuity conditions (3.30), (3.39), (3.46), (3.49) and (3.53), a

simpler problem for a homogeneous half-space (ξ+3 > 0) can be formulated with the

following boundary conditions at ξ+3 = 0

σ+
33 = −P, σ+

m3 = 0. (3.68)

Thus, leading order interfacial displacements u
−(0)
i

∣∣∣
ξ−3 =1

, involved, for instance, in

(3.40), (3.47) and (3.50), and u
−(1)
3

∣∣∣
ξ−3 =1

in (3.64) and (3.67), can be found from the

solution of the aforementioned problem. For a sinusoidal load (3.3), it is given in Sec-

tion 3.5 as Case 1. For an arbitrary load the solution can be derived, for example,

by substituting given vertical stress in (3.31), into a convolution with the Boussinesq’s

solution, see [112].

3.3.6 Discussion

Asymptotic analysis above proves that the Winkler-Fuss hypothesis is valid at leading

order at α > 1 (µ� ε), see (3.32) at ξ−3 = 0. In dimensional form it is given by (1.31)

with coefficient r coinciding with its exact value in the first row in (3.18).

63



Chapter 3. 3D deformation

The correction to the Winkler-Fuss model depends upon the value of parameter α

over range α > 1. In particular, at α > 3 (µ� ε3), we have a two-term asymptotic

formula, see (3.32) and (3.62) at ξ−3 = 0. It is

w0 =
P

r
+
T

r2
∆12P, (3.69)

where ∆12 is introduced in (1.33), w0 = u−3
∣∣
x3=0

is the deflection of the surface of the

layer and

T =
h(5γ− − (γ−)2 − 6)µ−

3
. (3.70)

Expression (3.70) for coefficient T shows that the deformation of the half-space

does not influence the calculated correction. It is also clear that the latter is of relative

order O(ε2). The two-term formula above can also be rewritten in symbolic form as

P =
rw0

1 +
T

r
∆12

≈ rw0 − T∆12w0, (3.71)

corresponding to the Pasternak elastic foundation, see (1.32) in Section 1.2 and also

[74, 129, 137].

In case α = 3 (µ ∼ ε3), it might be seen from (3.32) and (3.64) that the associated

correction involves a term expressing the effect of the half-space, namely

w0 =
P

r
+
T

r2
∆12P + wh, (3.72)

or again

P ≈ r(w0 − wh)− T∆12w0, (3.73)

where displacement of the interface wh = u−3
∣∣
x3=h

is also of order O(ε2) according to

Table 3.1 and asymptotic relations (3.22).
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3.3. Asymptotic analysis for a soft layer

For 1 < α < 3 (ε3 � µ� ε), see (3.32) and (3.67), the last term in (3.72) is greater

than the second one, resulting in the two-term asymptotic formula

P = r(w0 − wh). (3.74)

where wh = O(εα−1). Displacement wh in (3.72) – (3.74), may be found from a simpler

problem for a homogeneous half-space x3 ≥ h formulated in Subsection 3.3.5.

As it has already been mentioned, the Winkler-Fuss hypothesis fails at leading order

at 0 ≤ α ≤ 1 (ε� µ . 1). In particular, it is violated even at µ =
µ−

µ+
∼ ε =

h

l
, which

is still a relatively large contrast, as it follows from (3.50) at α = 1, and also confirmed

by comparison with the exact solution, see the second line in (3.18).

Formula (3.74) can be also written as

P = rδw, (3.75)

where δw = w0 − wh. It is worth noting that outside the range of validity of the

Winkler-Fuss hypothesis at α = 1, the leading order solution will also take the form of

(3.75), in which w0 ∼ wh ∼
P

r
, see (3.50) at ξ−3 = 0.

Finally, we remark that at 0 ≤ α < 1 (3.75) becomes

δw = 0, (3.76)

reflecting almost uniform variation of the transverse displacement across the thickness

of the layer. This approximation is also valid at non-contrast limit α = 0. Interfacial

value wh at 0 ≤ α ≤ 1 again may be found at leading order from the problem for a

homogeneous half-space as in formulae (3.72) – (3.74) above.
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Chapter 3. 3D deformation

3.4 Asymptotic analysis for a stiff layer

In this section we develop an asymptotic scheme for a relatively stiff layer. The scaling

required for this procedure now follows from the orders of displacements and stresses

presented in Table 3.2.

3.4.1 Case α ≥ 3
(
µ . ε3

)
First, we scale the displacements and stresses for the layer using the data in the first

row of Table 3.2. Therefore, we have

u−m = hε−3u∗−m , σ−mm = µ−ε−2σ∗−mm, σ−12 = µ−ε−2σ∗−12 ,

u−3 = hε−4u∗−3 , σ−33 = µ−σ∗−33 , σ−m3 = µ−ε−1σ∗−m3.

(3.77)

Again, we assume all quantities with the asterisk in superscript to be of the same

asymptotic order. In view of (3.77), governing equations (1.24)1 and (1.19) become

σ∗−i1,1 + σ∗−i2,2 + σ∗−i3,3 = 0,

ε2σ∗−mm = ε2γ−u∗−m,m + ε2(γ− − 2)u∗−n,n + (γ− − 2)u∗−3,3,

ε4σ∗−33 = ε2(γ− − 2)u∗−1,1 + ε2(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−m3 = u∗−m,3 + u∗−3,m.

(3.78)

Eliminating the term u∗−3,3 from (3.78)2 and (3.78)3, we deduce

σ∗−mmγ
− − ε2(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−m,m + 2(γ− − 2)u∗−n,n. (3.79)

Using the scaling for the half-space given by

u+i = hε−4u∗+i , σ+
ij = µ−εα−3σ∗+ij , (3.80)
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3.4. Asymptotic analysis for a stiff layer

equations (1.24)2 and (1.20) may be rewritten as

σ∗+i1,1 + σ∗+i2,2 + σ∗+i3,3 = 0,

σ∗+mm = γ+u∗+m,m + (γ+ − 2)(u∗+n,n + u∗+3,3),

σ∗+33 = γ+u∗+3,3 + (γ+ − 2)(u∗+1,1 + u∗+2,2),

σ∗+12 = u∗+1,2 + u∗+2,1,

σ∗+m3 = u∗+m,3 + u∗+3,m.

(3.81)

Boundary and continuity conditions (3.1) and (3.2) take the form

σ∗−33 = −p∗, σ∗−m3 = 0 (3.82)

at ξ−3 = 0, and

εu∗−m = u∗+m , u∗−3 = u∗+3 , σ∗−m3 = εα−2σ∗+m3, σ∗−33 = εα−3σ∗+33 . (3.83)

at ξ− = 1.

In (3.83), σ∗−33 � σ∗+33 at α > 3 whereas σ∗−33 ∼ σ∗+33 at α = 3, hence, we consider

these subcases separately.

Subcase α > 3 (µ� ε3)

We expand the displacements and stresses of the layer in asymptotic series

 u∗−i

σ∗−ij

 =

 u
−(0)
i

σ
−(0)
ij

+ ... . (3.84)
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Hence, at leading order, we get from (3.78)

σ
−(0)
i1,1 + σ

−(0)
i2,2 + σ

−(0)
i3,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
m,3 + u

−(0)
3,m = 0,

σ
−(0)
mm = ηu

−(0)
m,m + 2ϑu

−(0)
n,n ,

(3.85)

subject to the boundary conditions at ξ−3 = 0

σ
−(0)
33 = −p∗, σ

−(0)
m3 = 0, (3.86)

and the continuity conditions at ξ−3 = 1

u+(0)
m = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
i3 = 0, (3.87)

where ϑ and η are defined in (3.34) and (3.37), respectively.

First, (3.85)2 implies

u
−(0)
3 = Wp, (3.88)

where Wp is an arbitrary function of variables ξ1 and ξ2 representing the dimensionless

deflection of the layer. Then, on integrating (3.85)4, we deduce

u
−(0)
m = −ξ−3

∂Wp

∂ξm
+ F1, (3.89)

where F1 = F1(ξ1, ξ2). Substituting the latter into (3.85)3, (3.85)5, using (3.85)1 and

satisfying conditions (3.86)2 and (3.87)3, we infer

F1 =
1

2

∂Wp

∂ξm
. (3.90)

Therefore,

u−(0)m =
∂Wp

∂ξm

(
1

2
− ξ−3

)
, (3.91)
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and

σ
−(0)
mm =

(
1

2
− ξ−3

)(
η
∂2Wp

∂ξ2m
+ 2ϑ

∂2Wp

∂ξ2n

)
,

σ
−(0)
12 = (1− 2ξ−3 )

∂2Wp

∂ξ1∂ξ2
,

σ
−(0)
m3 =

η

2
ξ−3 (ξ−3 − 1)

(
∂3Wp

∂ξ3m
+

∂3Wp

∂ξm∂ξ2n

)
.

(3.92)

Finally, from (3.92)3 and (3.85)1, and satisfying the continuity condition (3.87)3, we

obtain for the vertical stress

σ
−(0)
33 = − η

12

[
(ξ−3 )2(2ξ−3 − 3) + 1

]
∆̃2

12Wp, (3.93)

where

∆̃2
12 =

∂4

∂ξ41
+ 2

∂4

∂ξ21∂ξ
2
2

+
∂4

∂ξ42
(3.94)

Using the condition (3.86)1 at ξ−3 = 0, we have

η

12
∆̃2

12Wp = p∗, (3.95)

which in dimensional form coincides with the equation (1.34) of plate bending with

Pr = 0.

Subcase α = 3 (µ ∼ ε3)

Here, we begin with the same leading order governing equations for the layer (3.85)

and boundary conditions (3.86), while continuity conditions at ξ−3 = 1 take the form

u+(0)
m = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 . (3.96)

Following a similar procedure, the quantities u
−(0)
3 , u

−(0)
m are found as (3.88), (3.91),

respectively, and σ
−(0)
mm , σ

−(0)
12 σ

−(0)
m3 as (3.92). Then, from (3.85)1, we obtain

σ
−(0)
33 = − η

12
(ξ−3 )2(2ξ−3 − 3)∆̃2

12Wp + F2, (3.97)
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where F2 is an arbitrary function of ξ1 and ξ2. The vertical stress at the interface is

given by

σ
−(0)
33

∣∣∣
ξ−3 =1

=
η

12
∆̃2

12Wp + F2. (3.98)

Due to continuity condition (3.96)4 at ξ−3 = 1 we get

F2 = σ
+(0)
33

∣∣∣
ξ−3 =1

− η

12
∆̃2

12Wp. (3.99)

Thus,

σ
−(0)
33 = − η

12
((ξ−3 )2(2ξ−3 − 3) + 1)∆̃2

12Wp + σ
+(0)
33

∣∣∣
ξ−3 =1

, (3.100)

which, satisfying (3.86)1 at ξ−3 = 0, implies

η

12
∆̃2

12Wp = p∗ + σ
+(0)
33

∣∣∣
ξ−3 =1

. (3.101)

The equation above demonstrates that at α = 3 the plate bending theory is still valid,

but in contrast to the subcase α > 3, the half-space reaction Pr is now nonzero.

3.4.2 Case 2 ≤ α < 3
(
ε3 . µ� ε2

)
The scaling for the layer is now given by (see row 2 in Table 3.2)

u−m = hε−αu∗−m , σ−mm = µ−ε1−ασ∗−mm, σ−12 = µ−ε1−ασ∗−12 ,

u−3 = hε−α−1u∗−3 , σ−33 = µ−σ∗−33 , σ−m3 = µ−ε2−ασ∗−m3.

(3.102)

Hence, due to (3.102), equations (1.24)1 and (1.19) become

σ∗−m1,1 + σ∗−m2,2 + σ∗−m3,3 = 0,

ε3−α(σ∗−13,1 + σ∗−23,2) + σ∗−33,3 = 0,

ε2σ∗−mm = ε2γ−u∗−m,m + ε2(γ− − 2)u∗−n,n + (γ− − 2)u∗−3,3,

εα+1σ∗−33 = ε2(γ− − 2)u∗−1,1 + ε2(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−m3 = u∗−m,3 + u∗−3,m.

(3.103)
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Similarly to the previous Subsection 3.4.1, we deduce from (3.103)3 and (3.103)4

σ∗−mmγ
− − εα−1(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−m,m + 2(γ− − 2)u∗−n,n. (3.104)

The scaling for the half-space here and below takes the form

u+i = hε−α−1u∗+i , σ+
ij = µ−σ∗+ij , (3.105)

leading to equations (3.81).

Boundary conditions are once again represented as (3.82) and the continuity con-

ditions are

εu∗−m = u∗+m , u∗−3 = u∗+3 , σ∗−m3 = εα−2σ∗+m3, σ∗−33 = σ∗+33 . (3.106)

Below, we deal with the subcases 2 < α < 3 and α = 2 separately.

Subcase 2 < α < 3 (ε3 � µ� ε2)

The leading order governing equations are

σ
−(0)
m1,1 + σ

−(0)
m2,2 + σ

−(0)
m3,3 = 0,

σ
−(0)
33,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
m,3 + u

−(0)
3,m = 0,

σ
−(0)
mm = ηu

−(0)
m,m + 2ϑu

−(0)
n,n ,

(3.107)

subject to boundary conditions (3.86), and the following continuity conditions at ξ−3 = 1

u+(0)
m = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 . (3.108)
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As in Subsection 3.4.1, the quantities u
−(0)
3 , u

−(0)
m are found in the form (3.88),

(3.91), respectively, and σ
−(0)
mm , σ

−(0)
12 , σ

−(0)
m3 are obtained as (3.92). Then, integrating

(3.107)2 with respect to ξ−3 and satisfying (3.86)1, we derive

σ
−(0)
33 = −p∗. (3.109)

It is clear from (3.109) that in this case the applied load p∗ is transmitted to the interface

and is no longer connected with the layer deflection directly. Thus, the value of the

deflection and, subsequently, the rest of the stresses and displacements, strongly depend

on the value of the interfacial displacement u
+(0)
3 , due to (3.108)2, which indicates

violation of the plate bending theory.

Subcase α = 2 (µ ∼ ε2)

The leading order equations are again given by (3.107) with boundary conditions (3.86),

and the continuity conditions at ξ−3 = 1 are written as

u+(0)
m = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
i3 = σ

+(0)
i3 , (3.110)

leading to vertical displacement u
−(0)
3 and stress σ

−(0)
33 expressed as (3.88) and (3.109),

respectively. Using (3.107)5, we deduce

u
−(0)
1 = −ξ−3

∂Wp

∂ξ1
+ F3,

u
−(0)
2 = −ξ−3

∂Wp

∂ξ2
+ F4,

(3.111)

where F3 and F4 are arbitrary functions of ξ1 and ξ2. Therefore, (3.107)6 implies

σ
−(0)
11 = η

(
∂F3

∂ξ1
− ξ−3

∂2Wp

∂ξ21

)
+ 2ϑ

(
∂F4

∂ξ2
− ξ−3

∂2Wp

∂ξ22

)
,

σ
−(0)
22 = η

(
∂F4

∂ξ2
− ξ−3

∂2Wp

∂ξ22

)
+ 2ϑ

(
∂F3

∂ξ1
− ξ−3

∂2Wp

∂ξ21

)
,

(3.112)
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3.4. Asymptotic analysis for a stiff layer

and (3.107)4 yields

σ
−(0)
12 = −2ξ−3

∂2Wp

∂ξ1ξ2
+
∂F3

∂ξ2
+
∂F4

∂ξ1
. (3.113)

From (3.107)1, taking into account (3.112) and (3.113), and satisfying (3.86)2, we arrive

at

σ
−(0)
13 =

η

2
(ξ−3 )2

[
∂3Wp

∂ξ31
+

∂3Wp

∂ξ1∂ξ22

]
− ξ−3

(
η
∂2F3

∂ξ21
+ (η − 1)

∂2F4

∂ξ1∂ξ2
+
∂2F3

∂ξ22

)
,

σ
−(0)
23 =

η

2
(ξ−3 )2

[
∂3Wp

∂ξ21∂ξ2
+
∂3Wp

∂ξ32

]
− ξ−3

(
η
∂2F4

∂ξ22
+ (η − 1)

∂2F3

∂ξ1∂ξ2
+
∂2F4

∂ξ21

)
,

(3.114)

where functions F3 and F4 can be found from solving the problem for the half-space

and using continuity conditions (3.110)3.

3.4.3 Case 1 ≤ α < 2
(
ε2 . µ� ε

)
The scaling for the layer is taken as

u−m = hε−2u∗−m , σ−12 = µ−ε−1σ∗−12 , u−3 = hε−α−1u∗−3 ,

σ−i3 = µ−σ∗−m3, σ−mm = µ−ε−1σ∗−mm.

(3.115)

Substituting the latter into governing equations (1.24)1 and (1.19), we have

σ∗−m1,1 + σ∗−m2,2 + σ∗−m3,3 = 0,

ε(σ∗−13,1 + σ∗−23,2) + σ∗−33,3 = 0,

εασ∗−mm = εαγ−u∗−m,m + εα(γ− − 2)u∗−n,n + (γ− − 2)u∗−3,3,

εα+1σ∗−33 = εα(γ− − 2)u∗−1,1 + εα(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−m3 = u∗−m,3 + ε2−αu∗−3,m,

(3.116)

with the following additional equation obtained from (3.116)3 and (3.116)4

σ∗−mmγ
− − ε(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−m,m + 2(γ− − 2)u∗−n,n, (3.117)
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Chapter 3. 3D deformation

this being similar to (3.79) and (3.104).

The boundary conditions are taken as (3.82), whereas the continuity conditions at

ξ−3 = 1 are

εα−1u∗−m = u∗+m , u∗−3 = u∗+3 , σ∗−i3 = σ∗+i3 . (3.118)

We again treat subcases 1 < α < 2 and α = 1 separately.

Subcase 1 < α < 2 (ε2 � µ� ε)

Leading order equations are

σ
−(0)
m1,1 + σ

−(0)
m2,2 + σ

−(0)
m3,3 = 0,

σ
−(0)
33,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
m,3 = 0,

σ
−(0)
mm = ηu

−(0)
m,m + 2ϑu

−(0)
n,n ,

(3.119)

subject to boundary conditions (3.86) and the continuity conditions at ξ−3 = 1

u+(0)
m = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
i3 = σ

+(0)
i3 . (3.120)

As before, u
−(0)
3 and σ

−(0)
33 are expressed as (3.88) and (3.109). It follows from

(3.119)5 and (3.125)1 that

u
−(0)
1 = F5,

u
−(0)
2 = F6,

(3.121)

resulting in

σ
−(0)
11 = η

∂F5

∂ξ1
+ 2ϑ

∂F6

∂ξ2
,

σ
−(0)
22 = η

∂F6

∂ξ2
+ 2ϑ

∂F5

∂ξ1
,

(3.122)
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and

σ
−(0)
12 =

∂F5

∂ξ2
+
∂F6

∂ξ1
, (3.123)

where F5 and F6 are arbitrary functions of ξ1 and ξ2. Finally, from (3.119)1, satisfying

(3.86)2, we infer

σ
−(0)
13 = −ξ−3

(
η
∂2F5

∂ξ21
+ (η − 1)

∂2F6

∂ξ1∂ξ2
+
∂2F5

∂ξ22

)
,

σ
−(0)
23 = −ξ−3

(
η
∂2F6

∂ξ22
+ (η − 1)

∂2F5

∂ξ1∂ξ2
+
∂2F6

∂ξ21

)
.

(3.124)

Here, functions F5 and F6 can again be derived from the continuity conditions (3.120)3.

Subcase α = 1 (µ ∼ ε)

Now the leading order governing equations and the boundary conditions are taken as

(3.119) and (3.86), respectively, and the continuity conditions at ξ−3 = 1 are

u
−(0)
i = u

+(0)
i , σ

−(0)
i3 = σ

+(0)
i3 . (3.125)

As above, u
−(0)
3 and σ

−(0)
33 are given by (3.88) and (3.109), respectively, while (3.119)5

and (3.125)1 imply

u−(0)m = u+(0)
m

∣∣
ξ−3 =1

. (3.126)

Hence,

σ
−(0)
mm =

(
η
∂u

+(0)
m

∂ξm
+ 2ϑ

∂u
+(0)
n

∂ξn

)∣∣∣∣∣
ξ−3 =1

,

σ
−(0)
12 =

(
∂u

+(0)
1

∂ξ2
+
∂u

+(0)
2

∂ξ1

)∣∣∣∣∣
ξ−3 =1

.

(3.127)

Thus, from (3.119)1, and satisfying (3.86)2, we arrive at

σ
−(0)
m3 = −ξ−3

(
η
∂2u

+(0)
m

∂ξ2m
+ (η − 1)

∂2u
+(0)
n

∂ξ1∂ξ2
+
∂2u

+(0)
m

∂ξ2n

)∣∣∣∣∣
ξ−3 =1

. (3.128)
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3.4.4 Case 0 ≤ α < 1 (ε . µ� 1)

The scaling for the layer is

u−i = hε−α−1u∗−i , σ−12 = µ−ε−ασ∗−12 , σ−33 = µ−σ∗−33 ,

σ−mm = µ−ε−ασ∗−mm, σ−m3 = µ−ε1−ασ∗−m3.

(3.129)

As a result, the governing equations (1.24)1 and (1.19) become

σ∗−m1,1 + σ∗−m2,2 + σ∗−m3,3 = 0,

ε2−α(σ∗−13,1 + σ∗−23,2) + σ∗−33,3 = 0,

εσ∗−mm = εγ−u∗−m,m + ε(γ− − 2)u∗−n,n + (γ− − 2)u∗−3,3,

εα+1σ∗−33 = ε(γ− − 2)u∗−1,1 + ε(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−m3 = u∗−m,3 + εu∗−3,m,

(3.130)

together with the equation

σ∗−mmγ
− − εα(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−m,m + 2(γ− − 2)u∗−n,n, (3.131)

subject to boundary conditions (3.82) and the continuity conditions at ξ−3 = 1

u∗−i = u∗+i , σ∗−m3 = εα−1σ∗+m3, σ∗−33 = σ∗+33 . (3.132)

At leading order the governing equations are

σ
−(0)
m1,1 + σ

−(0)
m2,2 + σ

−(0)
m3,3 = 0,

σ
−(0)
33,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
m,3 = 0,

σ
−(0)
mm − εαϑσ−(0)33 = ηu

−(0)
m,m + 2ϑu

−(0)
n,n ,

(3.133)
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3.4. Asymptotic analysis for a stiff layer

where term σ
−(0)
33 can be neglected at 0 < α < 1, with boundary conditions (3.86) and

the continuity conditions at ξ−3 = 1

u
−(0)
i = u

+(0)
i , σ

+(0)
m3 = 0, σ

−(0)
33 = σ

+(0)
33 . (3.134)

The stated problem leads to the results for the displacements and vertical stress given

by (3.88), (3.126) and (3.109).

3.4.5 Approximate formulations for a half-space

The analysis of the relation between the applied force p∗ and the deflection of the layer

Wp considered above demonstrates that the classical equation of plate bending arises

only at a relatively high contrast (α ≥ 3 or µ . ε3), see (3.95) and (3.101). Moreover,

(3.95) is completely independent of the half-space presence, therefore, the value of the

deflection Wp can be easily obtained.

At the same time, at α ≤ 3, it is not possible to treat the layer and the half-space

separately, therefore, in order to find the deflection Wp, the problem for the half-space

should be also solved. We can, however, formulate boundary conditions at the surface

of the half-space instead of solving the full original problem for a layered solid.

At α = 3, using continuity conditions (3.96) along with equation (3.101), the sought

for effective boundary conditions at ξ+3 = 0 for the half-space take the form

u+(0)
m = 0, σ

+(0)
33 =

η

12
∆̃2

12u
+(0)
3 |ξ+3 =0 − p

∗. (3.135)

Thus, the normal stress is expressed through the vertical displacement at the surface;

in doing so, the operator in the right hand side of (3.135) corresponds to the Kirchhoff

plate theory.
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Chapter 3. 3D deformation

At 0 ≤ α < 3, the vertical force applied at the upper face of the layer can be

transmitted to the interface, see (3.109). Therefore, at 1 < α < 3, using continuity

conditions (3.108), (3.110) and (3.120), we arrive at the following mixed boundary

conditions along the surface of the half-space ξ+3 = 0

u+(0)
m = 0, σ

+(0)
33 = −p∗. (3.136)

At α = 1, taking into account expression (3.128) for shear stresses and continuity

conditions (3.125), the effective boundary conditions at ξ+3 = 0 become

σ
+(0)
33 = −p∗, σ

+(0)
m3 = −

(
η
∂2u

+(0)
m

∂ξ2m
+ (η − 1)

∂2u
+(0)
n

∂ξ1∂ξ2
+
∂2u

+(0)
m

∂ξ2n

)∣∣∣∣∣
ξ+3 =0

. (3.137)

Here, the shear stresses are expressed through the horisontal displacements at the

surface. These conditions were previously studied in [36] and [160] for a non-contrast

case.

Finally, at 0 ≤ α < 1, due to continuity conditions (3.134), we get boundary

conditions (3.68) formulated in Subsection 3.3.5.

Transverse displacement u
−(0)
3 is always uniform at leading order across the thick-

ness of the layer, i.e. u
−(0)
3 = Wp, see (3.88). Thus, due to continuity conditions

(3.108)2, (3.110)2, (3.120)2, (3.125)1, (3.134)1, we have

Wp = u
+(0)
3 |ξ+3 =0. (3.138)

Therefore, in case of α ≤ 3, the value of the deflection of the layer follows from

solutions of the simpler problems for the half-space with the boundary conditions for-

mulated above applied along its surface. For plane strain problem with sinusoidal load

(3.3) they are presented in Section 3.5.
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3.5. BVPs for a homogeneous half-space

3.5 BVPs for a homogeneous half-space

Consider a homogeneous elastic half-space (ξ+3 ≥ 0) subject to the boundary conditions

presented in Table 3.3, where P is a vertical sinusoidal load defined in (3.3).

The equations of the formulated plane strain problem and the solution are given by

(3.4)3, (3.4)4 and (3.6) with functions (3.14)2 and (3.15)2, where C+
0 is taken as (3.16)1,

and the values of the coefficients C5 and C6, corresponding to the appropriate boundary

conditions, are presented in Table 3.3, together with the rest of the displacement and

stress components at the surface ξ+3 = 0. In the Table, D1 = γ− − 1 − γ+ + 7γ−γ+,

D2 = γ−(2 + 3γ+)− 2(1 + γ+) and D3 = γ−(3γ+ − 1)− 2γ+.

3.6 Validation of asymptotic results

In this section we justify the derived asymptotic results by numerical comparison with

the exact solution of the plane problem for sinusoidal load (3.3) applied at the surface

x3 = 0 or ξ−3 = 0. In doing so, we study the normalized coefficient

r∗ =
h

µ−
r, (3.139)

where r is defined in (3.17).

The related exact solution takes the form

r∗ =
Ah

C1 + C2

(3.140)

with constants C1 and C2 given by (3.16), see Section 3.2.

In case of a soft layer, the asymptotic formulae are given in (3.72) – (3.76), where

interfacial displacement wh, as it was discussed above, can be obtained from a simpler
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Case 1 Case 2 Case 3 Case 4

Boundary conditions for a homogeneous half-space

σ+
33 −P ηµ+

12a

∂4u+3
∂ξ41

∣∣∣∣
ξ+3 =0

− P −P −P

u+1 – 0 0 –

σ+
13 0 – – − ηµ+

l

∂2u+1
∂ξ21

∣∣∣∣
ξ+3 =0

Coefficients in (3.14)2 and (3.15)2

c5µ
+

Aaµ−
γ+

2(γ+ − 1)

3γ−(γ+ + 1)

D1

γ+ + 1

2γ+
D2

2D3

c6µ
+

Aaµ−
1

2

3γ−(γ+ − 1)

D1

γ+ − 1

2γ+
(3γ− − 2)(γ+ − 1)

2D3

Displacement and stress components at the surface ξ+3 = 0

u+1 µ
+

Aaµ− sin ξ1
− 1

2(γ+ − 1)
– –

γ−

2(γ− + 2γ+ − 3γ−γ+)

u+3 µ
+

Aaµ− cos ξ1

γ+

2(γ+ − 1)

3γ−(γ+ + 1)

D1

γ+ + 1

2γ+
D2

2D3

σ+
13

Aµ− sin ξ1
– −6γ−

D1

− 1

γ+
−2(γ− − 1)

D3

σ+
33

Aµ− cos ξ1
– −6γ−γ+

D1

– –

Table 3.3: BVPs for a homogeneous half-space

problem for a half-space with load (3.3) applied at its surface, see Subsection 3.3.5 and

Section 3.5. Therefore, using Case 1 in Table 3.3, we get

r∗ =



γ−, formula (1.31) with r from the first line in (3.18),

3l2(γ−)2

3l2γ− − h2(5γ− − (γ−)2 − 6)
, formula (3.69),

2hµ+γ−(γ+ − 1)

lγ−γ+µ− + 2hµ+(γ+ − 1)
, formula (3.74),

2hµ+(γ+ − 1)

lγ+µ−
, formula (3.76).

(3.141)

For a stiff layer, we use asymptotic relation (3.95) for α > 3, and the solutions
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3.6. Validation of asymptotic results

of plane problems in Table 3.3 for 0 ≤ α ≤ 3, see Subsection 3.4.5 and Section 3.5

for more detail. Thus, the expression for the coefficient r coincides with leading order

exact solution (3.19).

Numerical results are presented in Figures 3.3 and 3.4 for a soft and a stiff coating,

respectively, in which α = logε µ and also ν− = 0.25, ν+ = 0.3, and ε = h/l = 0.1.

0 1 2 3 4 5
0.0

0.5

1.0

1.5

α

r
*

exact, see (3.140)

Winkler-Fuss, see (3.141)1

asymptotic (0 ≤ α < 1), see (3.141)4

asymptotic (α = 1), see (3.141)3

Figure 3.3: Approximate and exact solutions for sinusoidal load for a soft layer (ε = 0.1,

ν− = 0.25, ν+ = 0.3)

In Figure 3.3 the exact solution is plotted with solid line, while the graphs corre-

sponding to the Winkler-Fuss hypothesis (the first line in (3.141)) and the formula in

the forth line in (3.141) (which is based on the assumption of uniform variation of the

transverse displacement across the thickness of the layer) are displayed by dashed and

dot-dashed lines, respectively. The Figure shows that two aforementioned formulae

have limited ranges of applicability. At the same time, the formula in the third line of

(3.141) appears to be uniformly valid, and the associated curve denoted by red dots in
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Chapter 3. 3D deformation

the Figure coincide with that for the exact solution. We also mention that the devia-

tion of the straight line corresponding to the Pasternak model, see the second line in

(3.141), from that for the Winkler-Fuss one is only 0.07%.

(a) 0 ≤ α ≤ 1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.02

0.04

0.06

0.08

0.10

α

r
*

exact, see (3.140)

asymptotic (α < 1)

asymptotic (1 < α < 3)

asymptotic (α = 1)

(b) 2.5 ≤ α ≤ 5.5

2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

α

r
*

exact, see (3.140)

asymptotic (α > 3), see (3.95)

asymptotic (1 < α < 3)

asymptotic (α = 3)

Figure 3.4: Approximate and exact solutions for sinusoidal load for a stiff layer (ε = 0.1,

ν− = 0.25, ν+ = 0.3)
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In Figure 3.4 the exact solution is also depicted by solid line, whereas the graphs

related to the developed asymptotic approximations are represented by dashed and dot-

dashed lines. The asymptotic results for limiting cases α = 1 and α = 3 are denoted

by red dots in Figures 3.4(a) and 3.4(b), respectively. The region 1.5 < α < 2.5 is not

shown since the difference between the associated asymptotic approximation and the

exact solution is virtually indistinguishable.
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Higher order effective boundary conditions

In this chapter we consider a 3D dynamic problem for a solid covered by a thin coating

with the absence of contrast in stiffness of the layer and the substrate. Higher order

effective boundary conditions are derived for a coated half-space. Comparison with the

long wavelength expansion of the exact solutions of plane and anti-plane time-harmonic

problems for the coating demonstrates the validity of the proposed formulation. At

the same time the corrections to the simplest leading order effective conditions, earlier

obtained in the widely cited paper [22], are proven to be asymptotically inconsistent.

The results were published in [80].

4.1 Statement of the problem

We consider a dynamic problem for a linearly elastic isotropic layer of thickness h

occupying the area 0 ≤ x3 ≤ h, lying on an elastic half-space x3 ≥ h. The prescribed

vertical dynamic force P = P (x1, x2, t) is acting on the free surface of the layer, see

Figure 3.1.

As in Chapter 3, the boundary and continuity conditions may be taken as (3.1)
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4.1. Statement of the problem

and (3.2), respectively, with the decay conditions, but the dimensionless governing

equations for the dynamic problem are given by (1.22) together with the constitutive

relations (1.19) and (1.20). Note, that dimensionless coordinates and time follow from

(1.18) and (1.21), respectively.

The leading order effective boundary conditions on the surface of the substrate,

modelling the effect of the coating, can be written as, see (3.18) in [36],

σ+
33 = ρ−h

∂2u+3
∂t2

− P,

σ+
m3 = ρ−h

[
∂2u+m
∂t2

− (c−2 )2
(
∂2u+m
∂x2n

+ η
∂2u+m
∂x2m

+ (η − 1)
∂2u+n

∂xm∂xn

)]
,

(4.1)

where γ− and η are defined in (1.12) and (3.37), respectively, and m,n = 1, 2, m 6= n.

In absence of surface loading (P = 0) these conditions coincide with those in [160]

derived starting from the 2D theory of plate extension. The comparisons made in

[36] with [103] also provide an illustration of the asymptotic consistency of the leading

order effective boundary conditions obtained in [160]. The developments in [22], see

also [127] treating a similar anisotropic problem, claim that the effective conditions

(4.1) ignore several essential h-terms. The formulae (35) and (36) in [22] rewritten in

the notation specified in this section, similarly to [36], can be presented as

σ+
33 = ρ−h

∂2u+3
∂t2

− h
(
∂σ+

m3

∂xm
+
∂σ+

n3

∂xn

)
,

σ+
m3 = ρ−h

[
∂2u+m
∂t2

− (c−2 )2
(
∂2u+m
∂x2n

+ η
∂2u+m
∂x2m

+(η − 1)
∂2u+n

∂xm∂xn

)]
− hϑ∂σ

+
33

∂xm
,

(4.2)

where ϑ is introduced in (3.34). The underlined terms in formulae (4.2) do not appear
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in the effective conditions (4.1). The former may be also transformed to

σ+
33 = ρ−h

∂2u+3
∂t2

− ρ−h2
[
∂3u+m
∂t2∂xm

+
∂3u+n
∂t2∂xn

− (c−2 )2
(

∂3u+m
∂xm∂x2n

+
∂3u+n

∂x2m∂xn

+η

[
∂3u+m
∂x3m

+
∂3u+n
∂x3n

]
+ (η − 1)

[
∂3u+n

∂x2m∂xn
+

∂3u+m
∂xm∂x2n

])]
+h2ϑ

(
∂2σ+

33

∂x2m
+
∂2σ+

33

∂x2n

)
,

σ+
m3 = ρ−h

[
∂2u+m
∂t2

− (c−2 )2
(
∂2um
∂x2n

+ η
∂2u+m
∂x2m

+ (η − 1)
∂2u+n

∂xm∂xn

)]
−h2ϑ

(
ρ−

∂3u+3
∂t2∂xm

−
[
∂2σ+

m3

∂x2m
+

∂2σ+
n3

∂xm∂xn

])
.

(4.3)

It is already clear at this stage that all extra h2-terms in (4.3) can be neglected at

leading order. In what follows, this observation is asymptotically justified. We also

show below that h2-terms in (4.3) are not identical to a proper asymptotic correction

to (4.1).

4.2 Asymptotic analysis

The aim of the study is to determine an asymptotic correction to the leading order

effective boundary conditions (4.1), in order to address consistency of (4.2), or equiva-

lently, (4.3). Here we implement an asymptotic procedure similar to [36], modifying it

slightly according to a more recent treatment in [30]. As usual, we study the boundary

value problem for an elastic coating with the Dirichlet boundary conditions

u−i = vi (4.4)

at the interface x3 = h, where vi = vi(x1, x2, t) denote prescribed displacements, see

Figure 4.1.

We assume that the thickness of the coating h is small compared to typical wave

length l, therefore, we employ a small geometric parameter given by (1.28). According
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h

x3x2

x1

−
0

σ−33 = −P, σ−m3 = 0

u−i = vi

Figure 4.1: Boundary value problem for a thin coating

to the conventional asymptotic procedure, e.g. [3], [36], and references therein, we

adopt the scaling

u−i = lu−∗i , σ−mm = µ−σ−∗mm, P = µ−εp∗

vi = lv∗i , σ−i3 = µ−εσ−∗i3 , σ−12 = µ−σ−∗12 ,

(4.5)

where as before all quantities with the asterisk in superscript are assumed to be of the

same asymptotic order.

The equations (1.22)1 and the constitutive relations (1.19), become

σ−∗mm,m + σ−∗12,n + σ−∗m3,3 = u−∗m,ττ ,

σ−∗33,3 + ε
(
σ−∗13,1 + σ−∗23,2

)
= u−∗3,ττ ,

σ−∗12 = u−∗1,2 + u−∗2,1,

εσ−∗mm = (γ− − 2)u−∗3,3 + ε
(
γ−u−∗m,m + (γ− − 2)u−∗n,n

)
,

ε2σ−∗m3 = u−∗m,3 + εu−∗3,m,

ε2σ−∗33 = γ−u−∗3,3 + ε(γ− − 2)
(
u−∗1,1 + u−∗2,2

)
,

(4.6)

with the transformed boundary conditions

σ−∗33 = −p∗, σ−∗m3 = 0, ξ−3 = 0,

u−∗i = v∗i , ξ−3 = 1.

(4.7)

First, expressing u−∗3,3 from (4.6)6 and substituting the result into (4.6)4, we obtain

σ−∗mm = ηu−∗m,m + 2ϑu−∗n,n + ϑεσ−∗33 . (4.8)
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Chapter 4. Higher order effective boundary conditions

Next, we expand the displacements and stresses as

 u−∗i

σ−∗ij

 =

 u
−(0)
i

σ
−(0)
ij

+ ε

 u
−(1)
i

σ
−(1)
ij

+ ε2

 u
(2)
i

σ
(2)
ij

+ ... . (4.9)

Substituting the latter into the equations (4.6) and (4.8), we have at leading order

σ
−(0)
mm,m + σ

−(0)
12,n + σ

−(0)
m3,3 = u

−(0)
m,ττ ,

σ
−(0)
33,3 = u

−(0)
3,ττ ,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
i,3 = 0,

σ
−(0)
mm = ηu

−(0)
m,m + 2ϑu

−(0)
n,n ,

(4.10)

with the boundary conditions

σ
−(0)
33 = −p∗, σ

−(0)
m3 = 0, ξ−3 = 0,

u
−(0)
i = v∗i , ξ−3 = 1.

(4.11)

Integrating the leading order equations (4.10) and accounting for the boundary condi-

tions (4.11), we get

u
−(0)
i = v∗i ,

σ
−(0)
33 = ξ−3

∂2v∗3
∂τ 2

− p∗,

σ
−(0)
mm = η

∂v∗m
∂ξm

+ 2ϑ
∂v∗n
∂ξn

,

σ
−(0)
m3 = ξ−3

[
∂2v∗m
∂τ 2

− ∂2v∗m
∂ξ2n

− η∂
2v∗m
∂ξ2m

− (η − 1)
∂2v∗n
∂ξmξn

]
.

(4.12)

Note, that leading order equations above, as in was discussed in Subsection 3.4.5,

represent effective boundary conditions (3.137) for a static problem with contrast in

stiffness of the layer and the half-space.
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4.2. Asymptotic analysis

At next asymptotic order, the governing equations take the form

σ
−(1)
mm,m + σ

−(1)
12,n + σ

−(1)
m3,3 = u

−(1)
m,ττ ,

σ
−(1)
33,3 + σ

−(0)
13,1 + σ

−(0)
23,2 = u

−(1)
3,ττ ,

σ
−(1)
12 = u

−(1)
1,2 + u

−(1)
2,1 ,

σ
−(0)
mm = (γ− − 2)

(
u
−(1)
3,3 + u

−(0)
n,n

)
+ γ−u

−(0)
m,m,

u
−(1)
m,3 + u

−(0)
3,m = 0,

γ−u
−(1)
3,3 + (γ− − 2)

(
u
−(0)
1,1 + u

−(0)
2,2

)
= 0,

σ
−(1)
mm = ηu

−(1)
m,m + ϑ

(
2u
−(1)
n,n + σ

−(0)
33

)
,

(4.13)

with the boundary conditions

σ
−(1)
i3 = 0, ξ−3 = 0,

u
−(1)
i = 0, ξ−3 = 1.

(4.14)

First, we obtain from (4.13)5 and (4.13)6, respectively, satisfying (4.14)2

u−(1)m = (1− ξ−3 )
∂v∗3
∂ξm

, (4.15)

and

u
−(1)
3 = ϑ(1− ξ−3 )

(
∂v∗1
∂ξ1

+
∂v∗2
∂ξ2

)
. (4.16)

Then, using (4.13)3, we have

σ
−(1)
12 = 2(1− ξ−3 )

∂2v∗3
∂ξ1∂ξ2

. (4.17)

Next, we deduce from (4.13)2 and (4.14)1

σ
−(1)
33 =

ξ−3
γ−

(
(ξ−3 − 2 + γ− − ξ−3 γ−)

[
∂3v∗1
∂ξ1∂τ 2

+
∂3v∗2
∂ξ2∂τ 2

]
+2ξ−3 (γ− − 1)

[
∂3v∗1
∂ξ1∂ξ22

+
∂3v∗2
∂ξ21∂ξ2

+
∂3v∗1
∂ξ31

+
∂3v∗2
∂ξ32

])
.

(4.18)

As a result, (4.13)7 becomes

σ
−(1)
mm = 2(1− ξ−3 )

[
(ϑ+ 1)

∂2v∗3
∂ξ2m

+ ϑ
∂2v∗3
∂ξ2n

]
+ ϑ

[
ξ−3
∂2v∗3
∂τ 2

− p∗
]
. (4.19)
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Chapter 4. Higher order effective boundary conditions

Therefore, (4.13)1 implies

σ
−(1)
m3 = −ξ−3

[(
ξ−3 − 1− ξ−3

γ−

)
∂3v∗3

∂ξm∂τ 2
− (ϑ+ 1)(ξ−3 − 2)(

∂3v∗3
∂ξm∂ξ2n

+
∂3v∗3
∂ξ3m

)
− ϑ ∂p

∗

∂ξm

]
.

(4.20)

Finally, substituting the leading order formulae (4.12)2 and (4.12)4 and O(ε) corrections

(4.18) and (4.20) into the expansions (4.9), we arrive at

σ−∗33 = ξ−3
∂2v∗3
∂τ 2

− p∗ + ε
ξ−3
γ−

[
(ξ−3 − 2 + γ− − ξ−3 γ−)

(
∂3v∗1
∂ξ1∂τ 2

+
∂3v∗2
∂ξ2∂τ 2

)
+2ξ−3 (γ− − 1)

(
∂3v∗1
∂ξ1∂ξ22

+
∂3v∗2
∂ξ21∂ξ2

+
∂3v∗1
∂ξ31

+
∂3v∗2
∂ξ32

)]
+ ...,

σ−∗m3 = ξ−3

[
∂2v∗m
∂τ 2

− ∂2v∗m
∂ξ2n

− η∂
2v∗m
∂ξ2m

− (η − 1)
∂2v∗n
∂ξmξn

]
−εξ−3

[(
ξ−3 − 1− ξ−3

γ−

)
∂3v∗3

∂ξm∂τ 2
− (ϑ+ 1)(ξ−3 − 2)(

∂3v∗3
∂ξm∂ξ2n

+
∂3v∗3
∂ξ3m

)
− ϑ ∂p

∗

∂ξm

]
+ ... .

(4.21)

The continuity of the displacements and stresses at the interface x3 = h, see (3.2)

and (4.4), readily result in refined effective boundary conditions for the substrate x3 ≥

h. In the original variables they take the form

σ+
33 = ρ−h

∂2u+3
∂t2

− P +
ρ−h2

γ−

[
2(c−2 )2(γ− − 1)

(
∂3u+1
∂x1∂x22

+
∂3u+2
∂x21∂x2

+
∂3u+1
∂x31

+
∂3u+2
∂x32

)
−
(
∂3u+1
∂x1∂t2

+
∂3u+2
∂x2∂t2

)]
,

σ+
m3 = ρ−h

[
∂2u+m
∂t2

− (c−2 )2
(
∂2u+m
∂x2n

+ η
∂2u+m
∂x2m

+ (η − 1)
∂2u+n

∂xm∂xn

)]
+
ρ−h2

γ−[
∂3u+3
∂xm∂t2

+ 2(c−2 )2(1− γ−)

(
∂3u+3

∂xm∂x2n
+
∂3u+3
∂x3m

)]
+ hϑ

∂P

∂xm
.

(4.22)

Comparing these formulae at P = 0 with (4.3) we can see that higher order h2-terms

do not coincide.

4.3 Comparison with the exact solutions

In order to validate the asymptotic results obtained in the previous section, let us

compare them with the long wave length expansion of the exact solutions of plane and
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4.3. Comparison with the exact solutions

anti-plane time-harmonic problems for the coating.

4.3.1 Plane strain problem

First, let us consider a time-harmonic plane strain problem for the coating over the

plane Ox1x3. In this case the displacements u−s , s = 1, 3 can be taken as (1.14) with

the related equations of motion (1.16) and (1.17). The solutions are sought for in the

form

ϕ = f(x3)e
ik(x1−ct), ψm = 0, ψ3 = g(x3)e

ik(x1−ct). (4.23)

Substituting the latter into (1.16) and (1.17), we deduce

f(x3) = A1e
kx3α−

+ A2e
−kx3α−

, g(x3) = A3e
kx3β−

+ A4e
−kx3β−

, (4.24)

where Ad, d = 1, 2, 3, 4, are arbitrary constants, α− and β− are defined in (1.65).

We consider a traction free upper face (P = 0), i.e. at x3 = 0

σ−s3 = 0, s = 1, 3, (4.25)

imposing the boundary conditions (4.4) at the lower face x3 = h with

vs = hBse
ik(x1−ct), (4.26)

where Bs are certain prescribed values.

On satisfying the boundary conditions, we have

iα− −iα− Υ2 Υ2

Υ2 Υ2 −iβ− iβ−

ikekhα
−

ike−khα
−

β−kekhβ
− −β−ke−khβ

−

α−kekhα
− −α−ke−khα

− −ikekhβ
− −ike−khβ

−





A1

A2

A3

A4


=



0

0

hB1

hB3


(4.27)
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where Υ =

√
1− 1

2

c2

(c−2 )2
, and coefficients Ad expressed through the given constants

Bs are

A1 = h
N1

D
, A2 = ekhα

−
h
N2

D
, A3 = −hN3

D
, A4 = −ekhβ

−
h
N4

D
,

where

N1 = iB1

(
ekhα

−
(D1α

−β− +D2Υ
4)− 2ekhβ

−
α−β−Υ2

)
−B3β

−
(

ekhα
−

(D2α
−β− +D1Υ

4)− 2ekhβ
−

Υ2
)
,

N2 = iB1

(
D1α

−β− − 2ekh(α
−+β−)α−β−Υ2 −Υ4D2

)
+B3β

−
(
D1Υ

4 −D2α
−β− − 2ekh(α

−+β−)Υ2
)
,

N3 = iB3

(
ekhβ

−
(D3α

−β− +D4Υ
4)− 2ekhα

−
α−β−Υ2

)
+B1α

−
(

ekhβ
−

(D4α
−β− +D3Υ

4)− 2ekhα
−

Υ2
)
,

N4 = iB3

(
D3α

−β− − 2ekh(α
−+β−)α−β−Υ2 −Υ4D4

)
−B1α

−
(
D3Υ

4 −D4α
−β− − 2ekh(α

−+β−)Υ2
)
,

and

D = k
[
8ekh(α

−+β−)α−β−Υ2 +D2D4[(α
−)2(β−)2 + Υ4]−D1D3α

−β−(1 + Υ4)
]
,

with

D1 = 1 + e2khβ
−
, D2 = 1− e2khβ

−
, D3 = 1 + e2khα

−
, D4 = 1− e2khα

−
.

Then, substituting (4.23) and (4.24) into (1.14), we get

u−1 = k
[
β−(A3e

2kx3β− − A4)e
−kx3β−

+ i(A1e
2kx3α−

+ A2)e
−kx3α−

]
,

u−3 = k
[
α−(A1e

2kx3α− − A2)e
−kx3α− − i(A3e

2kx3β−
+ A4)e

−kx3β−
]
.

(4.28)

Here and below the factor eik(x1−ct) is omitted. Next, using the expressions above and

the constitutive relations (1.19), we have for the stresses at x3 = h

σ−33 = 2µ−k2
[
Υ2(A1e

2khα−
+ A2)e

−khα− − iβ−(A3e
2khβ− − A4)e

−khβ−
]
,

σ−13 = 2µ−k2
[
Υ2(A3e

2khβ−
+ A4)e

−khβ−
+ iα−(A1e

2khα− − A2)e
−khα−

]
.

(4.29)
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The last expressions can be expanded into asymptotic series in the small parameter

ε = kh� 1 (l = k−1 in (1.28)) to get

σ−33
ε2µ−

= −B3(ζ
−)2 − iB1

(
2− 2 + (ζ−)2

γ−

)
ε+ ...,

σ−13
ε2µ−

= B1 [η − (ζ−)2] + iB3

(
2− 2 + (ζ−)2

γ−

)
ε− B1

3(
20 + (ζ−)2 [(ζ−)2 − 8] +

6(ζ−)2 − 44

γ−
+

4 [(ζ−)2 + 6]

(γ−)2

)
ε2 + ...,

(4.30)

where the dimensionless velocity ζ− is introduced in (1.25).

The asymptotic effective conditions (4.22) for the same displacements (4.26) pre-

scribed at the lower face, become

σ−33 = k2h2ρ−
(
−B3c

2 − iB1kh

[
2(c−2 )2 − 2(c−2 )2 + c2

γ−

])
,

σ−13 = k2h2ρ−
(
B1

[
(c−2 )2η − c2

]
+ iB3kh

[
2(c−2 )2 − 2(c−2 )2 + c2

γ−

])
,

(4.31)

or, rewritten in terms of ε and ζ−,

σ−33
ε2µ−

= −B3(ζ
−)2 − iB1

[
2− 2 + (ζ−)2

γ−

]
ε,

σ−13
ε2µ−

= B1 [η − (ζ−)2] + iB3

[
2− 2 + (ζ−)2

γ−

]
ε.

(4.32)

These formulae coincide with the two-term expansion of the exact solution (4.30).

Thus, the validity of the asymptotic results in Section 4.2 is confirmed.

Let us now test the conditions in [22] in a similar manner. In case of the displace-

ments (4.26) the relation (4.2) takes the form

σ−33 = −
h2ρ−

(
iB1k

3h
[
4(c−2 )2 − c2

]
+B3c

2k2
)

1 + k2h2ϑ
,

σ−13 =
h2ρ−

(
B1k

2
[
4(c−2 )2(1− γ−)− c2

]
+ iB3khϑ

)
1 + k2h2ϑ

,

(4.33)

or, expanding the latter in ε,

σ−33
ε2µ−

= −B3(ζ
−)2 − iB1 [η − (ζ−)2] ε+B3(ζ

−)2ϑε2 + ...,

σ−13
ε2µ−

= B1 [η − (ζ−)2] + iB3(ζ
−)2ϑε+B1ϑ [(ζ−)2 − η] ε2 + ... .

(4.34)
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These conditions coincide with the asymptotic expansion of the exact solution (4.30)

only at leading order. This means that the effect of the underlined terms in (4.2)

appears only at next order; in doing so, it is different from O(ε) correction in the

asymptotic expansion (4.30). As an illustration, in Figure 4.2 for ν− = 0.3 we plot

the normalized coefficients χEs3 and χBs3, s = 1, 3, at ε-terms in (4.30) and (4.34),

respectively. They are

χEs3 = 2− 2 + (ζ−)2

γ−
, χB33 = η − (ζ−)2, χB13 = (ζ−)2ϑ. (4.35)

4.3.2 Anti-plane problem

Let us now proceed with an anti-plane problem. In this case the equation of motion is

taken as (1.76) and the boundary condition at the upper face x3 = 0 is given by

σ−23 = 0. (4.36)

Similarly to (4.26), the boundary condition at the lower face x3 = h takes the form

u−2 = hB2e
ik(x1−ct), (4.37)

where B2 is also a certain prescribed value. As in Subsection 1.4.5, the displacement u−2

can be taken as (1.79) leading to the solution (1.81)1. Satisfying boundary conditions

(4.36) and (4.37), we obtain

A = 0, B =
hB2

cos(α−kh)
, (4.38)

resulting in

u−2 =
hB2 cos(α−kx3)

cos(α−kh)
, (4.39)
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Figure 4.2: Comparison of coefficients at ε-terms (ν− = 0.3)

and

σ−23 = −hB2kα
−µ− sin(α−kx3)

cos(α−kh)
, (4.40)

with the factor eik(x1−ct) omitted here and below.

Employing small parameter ε = kh and dimensionless velocity ζ− for stress (4.40)
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at the boundary x3 = h, and expanding it in asymptotic series, we deduce

σ−23
ε2µ−

= B2

(
1− 1

3

[
1− (ζ−)2

]
ε2 +

2

15

[
1− (ζ−)2

]2
ε4 + ...

)[
1− (ζ−)2

]
. (4.41)

Taking into account that the prescribed displacement u−2 are given by (4.37) and

u−s = 0, the asymptotic results (4.22)2 become

σ−23 = B2h
2k2ρ−

[
(c−2 )2 − c2

]
, (4.42)

or, rewritten in terms of ε and ζ−,

σ−23
ε2µ−

= B2

[
1− (ζ−)2

]
. (4.43)

This expression coincide with the leading order of the exact solution (4.41), which

confirms the validity of the leading order asymptotic results. The next asymptotic

order term of the above formula is equal to 0, since it only depends on u3, which is

equal to 0 for an anti-plane problem, see (4.22)2. It is also confirmed by the exact

solution results (4.41), where the next asymptotic order term is also equal to 0. The

next order correction in (4.41) is of order ε2, therefore, in order to compare it with the

asymptotic solution, the O(ε2) correction should be obtained.
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Chapter 5

Rayleigh-type waves

In this chapter we are aiming at a multiparametric treatment of a dynamic problem for

a coated elastic half-space with a clamped surface. The focus is on the analysis of lo-

calised waves that do not exist on a clamped homogeneous half-space. Non-traditional

effective boundary conditions along the substrate surface incorporating the effect of

the coating are derived using a long-wave high-frequency procedure. The derived con-

ditions are implemented within the framework of the earlier developed specialised for-

mulation for surface waves, resulting in a perturbation of the shortened equation of

surface motion in the form of an integral or pseudo-differential operator. Non-uniform

asymptotic formula for the speeds of the sought for Rayleigh-type waves, failing near

zero frequency and the thickness resonances of a layer with both clamped faces, follow

from the aforementioned perturbed equation. Asymptotic results are compared with

the numerical solutions of the full dispersion relation for a clamped coated half-space.

A similarity with Love-type waves proves to be useful for interpreting numerical data.
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Chapter 5. Rayleigh-type waves

5.1 Statement of the problem

Consider an isotropic elastic layer of thickness h occupying the area −h 6 x3 6 0 with

clamped surface, lying on a half-space x3 > 0, see Figure 5.1.

h

x2

x3

x1−
+

0

Figure 5.1: A clamped coated half-space

The equations of motion and the constitutive relations follow from (1.1) and (1.8),

respectively. The boundary condition modelling the clamped surface of the layer

(x3 = −h) can be written as

u−i = 0. (5.1)

As before, we specify continuity conditions (3.2) at x3 = 0.

We also assume that the layer is softer than the half-space, employing, therefore,

material parameter µ introduced in the first row of (1.29).

5.2 Anti-plane problem

Let us first consider anti-plane problem associated with Love waves. In this case,

boundary conditions (5.1) take the form

u−2 = 0. (5.2)

The solution of the stated problem follows from the one presented in Subsection
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5.2. Anti-plane problem

1.4.5 for a coated half-space with a free surface. Accounting for clamped boundary

condition (5.2) the dispersion relation becomes

tan(khβ−) +
µβ−

β+
= 0. (5.3)

Employing the dimensionless variables ζ+, Ω+ and K given in (1.25), the numerical

illustrations of dispersion relation (5.3) with

ρ = 0.6, ν− = 0.3, ν+ = 0.25, (5.4)

where ρ is introduced in (1.23), are presented for different values of the relative stiffness

µ in Figure 5.2. Here, blue solid curves represent dispersion relations, yellow and green

dashed lines correspond to the shear wave speeds of the substrate ζ+ = 1 or c = c+2

and the coating ζ+ =

√
µ

ρ
or c = c−2 , respectively.

First of all, it is observed from Figure 5.2 that as the contrast decreases (µ is getting

closer to unity), the shear wave fronts of the layer and the half-space become closer to

each other. At the same time, the solution lies between the dashed lines. Thus, this

confirms that the Love wave exists if the shear wave speed of the half-space exceeds

that of the layer, i.e. c−2 < c+2 , or, in other words, if the relative stiffness is less than

the relative density, i.e. µ < ρ.

The initial points of the modes are denoted with red dots in Figure 5.2. They are

located on the line corresponding to the shear wave speed of the half-space c = c+2 ,

therefore, for these points β+ → 0 and, according to (5.3), tan(khβ−) → ∞. Hence,

their coordinates follow from

Ω+
0 = K0 =

πz

2

√
ρ

µ
− 1

, z = 1, 3, 5, ... . (5.5)
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(a) µ = 0.1 (b) µ = 0.3
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(c) µ = 0.5
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Figure 5.2: Dispersion curves for Love-type waves for several types of contrast (ρ = 0.6,

ν− = 0.3, ν+ = 0.25)

Moreover, it is worth noting that an initial point of a fundamental mode is closer to

the vicinity of zero for more pronounced contrast (smaller value of µ), compare points

1, 2 and 3, which is consistent with (5.5).

It is also possible to find approximations for K � 1. As K gets larger, the phase
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5.3. Plane strain problem

velocity tends to the shear wave speed of the coating, i.e., c→ c−2 , thus, β− → 0 and,

following from (5.3), tan(khβ−)→ 0. As a result, we have

Ω+ ∼

√
µ(π2y2 +K2)

ρ
, y = 1, 2, 3, ..., K � 1. (5.6)

5.3 Plane strain problem

Let us now proceed with the plane strain problem for which boundary conditions (5.1)

take the form

u−s = 0, (5.7)

together with continuity conditions (3.2) at the interface x3 = 0 specified as

u−s = u+s , σ−s3 = σ+
s3. (5.8)

The wave potentials may be found in the form

ϕ− = [A1 cos(α−kx3) + A2 sin(α−kx3)]e
ik(x1−ct), ϕ+ = A5e

ik(x1−ct)−α+kx3 ,

ψ− = [A3 cos(β−kx3) + A4 sin(β−kx3)]e
ik(x1−ct), ψ+ = A6e

ik(x1−ct)−β+kx3 ,

(5.9)

where Aq, q = 1, ..., 6, are arbitrary constants, α− and β− are introduced in (1.65), α+

and β+ are defined in (1.38).

Substituting (5.9) into (1.14) and (1.8) and then into boundary and continuity

conditions (5.7) and (5.8), respectively, we derive a dispersion relation in the form

detA = 0, (5.10)
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Chapter 5. Rayleigh-type waves

with the following non-zero components

a11 = −ic−α , a12 = is−α , a13 = β−s−β , a14 = β−c−β ,

a21 = α−s−α , a22 = α−c−α , a23 = ic−β , a24 = −is−β ,

a34 = −β−, a36 = −β+, a42 = α−, a45 = α+,

a51 = µη−, a54 = 2iβ−µ, a55 = −η+, a56 = 2iβ+,

a62 = 2iα−µ a63 = −µχ−β , a65 = 2iα+, a66 = χ+
β ,

(5.11)

and

a31 = −a35 = a43 = −a46 = i. (5.12)

In the above,

s−α = sin(khα−), c−α = cos(khα−), s−β = sin(khβ−),

c−β = cos(khβ−), χ±α = 1∓ (α±)2, χ±β = 1± (β±)2,

η± = 2− χ±α (κ±)2.

(5.13)

Now we are in a position to perform qualitative analysis of dispersion relation (5.10)

depending on the value of material parameter µ similarly to the previous section. In

doing so, taking into account dimensionless variables (1.25), we present numerical illus-

trations of dispersion relation (5.10) with (5.4) for different values of relative stiffness

µ, see Figure 5.3. Here, blue solid lines again depict exact dispersion curves, yellow

and green dashed lines represent the shear wave speeds of the substrate c = c+2 and the

coating c = c−2 , respectively.

First of all, we can comment on existence of surface waves. Similarly to the Love-

type waves considered in Section 5.2, the surface wave exists if the shear wave speed

of the half-space is greater than that of the layer (c−2 < c+2 ), or, again, if the relative

stiffness is less than the relative density (µ < ρ).
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5.3. Plane strain problem

(a) µ = 0.1 (b) µ = 0.3
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Figure 5.3: Dispersion curves for Rayleigh-type waves and associated functions R(Ω+)

(ρ = 0.6, ν− = 0.3, ν+ = 0.25)

The analysis of the initial points of the modes denoted by red dots in Figure 5.3 is

less straightforward compared to that for Love-type waves. Here it is more difficult to

obtain a particular expression for the coordinates of these points, since the dispersion

relation is more cumbersome. We can, however, at least reduce the determinant cur-

rently depending on Ω+ and K to a function of dimensionless frequency only. In doing

so, we substitute c = c+2 into the determinant A, obtaining, therefore, the following

function

R(Ω+) = detA|c=c+2 . (5.14)
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Chapter 5. Rayleigh-type waves

Hence, the positions of the initial points 1, 2, 3, 4 and 5 correspond to zeros of the

one-parametric function R(Ω+), see Figure 5.3.

Finally, approximations for K � 1 also follow from (5.6) obtained for the Love-

type waves, see Section 5.2. The numerical plots of these together with the dispersion

relation (5.10) for µ = 0.1 are shown in Figure 5.4, represented by blue solid and green

dashed lines, respectively.
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Figure 5.4: Short-wave behaviour of Rayleigh-type waves (µ = 0.1)

If contrast in stiffness of the layer and the half-space is rather high, we may expect

Rayleigh wave front to appear except for the thickness resonances frequencies. Indeed,

the plot for the dispersion relation (5.10) for µ = 0.001 presented in Figure 5.5 is

consistent with the above. In this Figure, blue curves correspond to the dispersion

relation (5.10), while a pink dashed line represents the Rayleigh wave speed c = cR,

see Subsection 1.4.1 for more detail. Yellow and green dashed lines depict stretch and

shear thickness resonance frequencies, respectively, which, in dimensionless form, are
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5.3. Plane strain problem

expressed as

Ω+
st =

√
µ

ρ
κ−πy, Ω+

sh =

√
µ

ρ
πy, y = 1, 2, 3, ... . (5.15)

Similarly to the thickness resonances for Rayleigh-Lamb waves, see Subsection 1.4.4,

(5.15) correspond to the eigenvalues of the problems for a layer (1.75), but with clamped

faces (u−s = 0) instead of traction free ones (u−s,3 = 0).
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Figure 5.5: Dispersion curves for Rayleigh-type waves for high-contrast setup (µ =

0.001).

The fact that the Rayleigh wave front is clearly observed inspires approximation of

the exact dispersion relation (5.10) using the hyperbolic-elliptic model for the Rayleigh

wave field, see Subsection 1.4.3. The asymptotic procedures required for the approxi-

mation are presented in the following section in plane strain formulation.
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Chapter 5. Rayleigh-type waves

5.4 Asymptotic formulation for the layer and model

for the half-space

In order to proceed with the asymptotic model, we first need to obtain the effective

boundary conditions modelling the presence of the layer, similarly to Chapter 4, and

then, use them as surface stresses for the half-space.

5.4.1 Asymptotic procedure for a layer

Let us start with considering the problem for the layer separately from the substrate.

As in Chapter 4, we impose Dirichlet boundary conditions as (4.4) at the lower face

x3 = 0.

We begin with defining the dimensionless coordinates and variables. We employ ξ1

defined in (1.18), ξ−3 taken as

ξ−3 =
x3 + h

h
, (5.16)

and Ω− introduced in (1.25). Thus, the basic relations are written as (1.26)1 and (1.19).

We assume the thickness of the layer to be small, therefore, we introduce small

parameter (1.28).

Similar to the previous chapters, we adopt the asymptotic scaling as

u−s = hu∗−s , σ−ss = µ−σ∗−ss , σ−13 = µ−σ∗−13 , vs = hv∗s , (5.17)

and we also consider the dimensionless frequency Ω− to be of order one, i.e. Ω− ∼

1. It is worth noting that usually, the dimensionless frequency is considered to be

small (Ω− � 1) which leads to the approximation for the fundamental mode only.
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5.4. Asymptotic formulation for the layer and model for the half-space

Here, we set it to be of order one to tackle higher orders as well. The low-frequency

approximation in this case can be easily obtained taking the limit of the resulting

stresses as Ω− → 0.

In view of (5.17), governing equations (1.26)1 and (1.19) are rewritten as

εσ∗−s1,1 + σ∗−s3,3 + (Ω−)2u∗−s = 0,

σ∗−11 = εγ−u∗−1,1 + (γ− − 2)u∗−3,3,

σ∗−33 = ε(γ− − 2)u∗−1,1 + γ−u∗−3,3,

σ∗−13 = u∗−1,3 + εu∗−3,1,

(5.18)

subject to boundary conditions (5.7) and (4.4) given by

u∗−s = 0, ξ−3 = 0,

u∗−s = v∗s , ξ−3 = 1.

(5.19)

We expand the scaled displacement and stress components in asymptotic series as
u∗−s

σ∗−ss

σ∗−13

 =


u
−(0)
s

σ
−(0)
ss

σ
−(0)
13

+ ... . (5.20)

Therefore, at leading order we have

σ
−(0)
i3,3 + (Ω−)2u

−(0)
i = 0,

σ
−(0)
11 = (γ− − 2)u

−(0)
3,3 ,

σ
−(0)
33 = γ−u

−(0)
3,3 ,

σ
−(0)
13 = u

−(0)
1,3 ,

(5.21)

with the following boundary conditions

u
−(0)
i = 0, ξ−3 = 0,

u
−(0)
i = v∗i , ξ−3 = 1.

(5.22)
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Chapter 5. Rayleigh-type waves

First, from (5.21)3 we obtain

σ
−(0)
33 = γ−

∂u
−(0)
3

∂ξ−3
. (5.23)

Substituting (5.23) into (5.21)1, we deduce the second order differential equation

γ−
∂2u

−(0)
3

∂(ξ−3 )2
+ u

−(0)
3 (Ω−)2 = 0, (5.24)

the solution of which is given by

u
−(0)
3 = C1 sin

(
Ω−

κ−
ξ−3

)
+ C2 cos

(
Ω−

κ−
ξ−3

)
. (5.25)

Using boundary conditions (5.22) we derive

C1 =
v∗3

sin

(
Ω−

κ−

) , C2 = 0, (5.26)

hence,

u
−(0)
3 =

v∗3

sin

(
Ω−

κ−

) sin

(
Ω−

κ−
ξ−3

)
. (5.27)

Following the same procedure for u
−(0)
1 , we get

u
−(0)
1 =

v∗1
sin(Ω−)

sin(Ω−ξ−3 ). (5.28)

Finally, we arrive at

σ
−(0)
33 =

κ−Ω−v∗3

sin

(
Ω−

κ−

) cos

(
Ω−

κ−
ξ−3

)
, (5.29)

and

σ
−(0)
13 =

Ω−v∗1
sin(Ω−)

cos(Ω−ξ−3 ). (5.30)

Note, that for obtained stresses (5.29) and (5.30) the thickness variation is not poly-

nomial, but sinusoidal, which is a characteristic of a high-frequency approximation.
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Due to continuity conditions (3.2)2, the aforementioned stresses taken at the inter-

face ξ−3 = 1 or x3 = 0 result in effective boundary conditions for the substrate x3 ≥ 0.

In the dimensional variables they are

σ+
33 = κ−ω

√
ρ−µ−v3 cot

(
ωh

c−2 κ
−

)
,

σ+
13 = ω

√
ρ−µ−v1 cot

(
ωh

c−2

)
.

(5.31)

where vs are displacements of the surface of the half-space, i.e.

vs = u+s (5.32)

at x3 = 0. These conditions appear to be non-traditional, corresponding to high-

frequency long-wave phenomena failing at

sin

(
ωh

c−2 κ
−

)
= 0 or sin

(
ωh

c−2

)
= 0, (5.33)

which represent thickness resonances (5.15).

Having effective boundary conditions (5.31) modelling the presence of the layer,

we can now proceed with applying the hyperbolic-elliptic model for the Rayleigh wave

field, using these conditions as surface stresses for the half-space.

5.4.2 Low-frequency model

Let us first find a low-frequency approximation, i.e. ω → 0, corresponding to the

fundamental mode of the dispersion relation. As it was discussed above, we take the

limit of effective boundary conditions (5.31) as ω → 0. Thus, (5.31) yields

σ+
33 =

γ−µ−

h
v3, σ+

13 =
µ−

h
v1. (5.34)

We employ the hyperbolic-elliptic model presented in Subsection 1.4.3, in partic-

ular, we concentrate on wave equation (1.61) combining both vertical and horizontal

components of elastic potential ϕ+.
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The displacements of the surface of the half-space vs in (5.34) may be taken as

(1.52), and the Cauchy-Riemann identity for wave equation (1.44)1 takes the form

ϕ+
,3 = −αRH(ϕ+

,1), (5.35)

therefore, accounting for (1.53), we have

Q1 = −αR
γ−µ−

h

(
1− 2

1 + β2
R

)
H(ϕ+

,1),

H(Q2) =
µ−

h

(
1− 1 + β2

R

2

)
H(ϕ+

,1).

(5.36)

Substituting the latter into wave equation (1.61) together with (1.56) and (1.60), we

obtain

�Rϕ
+ =

µ

h
ΓH(ϕ+

,1), (5.37)

where �R is introduced in (1.55) and

Γ = − βR(β2
R − 1) (1 + 2β2

R + β4
R + 4α2

Rγ
−)

8 [β2
R + α2

R(1− 2β2
R) + αRβR(β4

R − 1)]
. (5.38)

We consider the waves to be time-harmonic, i.e. ϕ+ ∼ eik(x1−ct), hence, the dispersion

relation follows from (5.37) as

c2

c2R
− µΓc

ωh
− 1 = 0, (5.39)

which fails at ω → 0 contrary to the dispersion relation obtained in a low-frequency

limit for a coated half-space with traction free surface, see (5.4) in [36] with P = 0.

The latter, rewritten in current notation, is given by

�Rϕ
+ = bhH(ϕ+

,111), (5.40)

which for the time-harmonic waves becomes

c2

c2R
+
bhω

c
− 1 = 0. (5.41)
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In the above,

b =
µ(1− β2

R)

2B

[(
1− (β−R )2

)
(αR + βR)− βRη

]
(5.42)

with B and η introduced in (1.56) and (3.37), respectively, and

β−R =

√
1− c2R

(c−2 )2
. (5.43)

Dispersion relation (5.39), however, is still useful, especially in case of high contrast.

Introducing dimensionless velocity ζ+ and frequency Ω+ defined in (1.25), and

dimensionless Rayleigh wave speed given by

ζR =
cR
c+2
, (5.44)

we can rewrite dispersion relation (5.39) as

(ζ+)2

ζ2R
− µΓ

ζ+

Ω+
− 1 = 0. (5.45)

We consider material parameter µ to be small, meaning that the layer is much softer

than the half-space, and expand the wave speed in asymptotic series as

ζ+ = ζ+(0) + µζ+(1) + ... . (5.46)

In view of (5.46), dispersion relation (5.45) becomes

(ζ+(0) + µζ+(1))2

ζ2R
− µΓ

ζ+(0) + µζ+(1)

Ω+
− 1 = 0. (5.47)

Therefore, at leading order, we have

ζ+(0) = ζR. (5.48)

At next order, we get

2ζ+(0)ζ+(1)

ζ2R
− Γ

ζ+(0)

Ω+
= 0, (5.49)
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resulting in

ζ+(1) =
Γ

2Ω+
ζ2R. (5.50)

Finally, substituting (5.48) and (5.50) into (5.46), we obtain an approximation for

dimensionless velocity in a low-frequency formulation

ζ+ = ζR +
µΓ

2Ω+
ζ2R + ... . (5.51)

Note, that this approximation is non-uniform, since it fails at Ω+ → 0.

5.4.3 High-frequency model

Let us now consider effective boundary conditions (5.31) corresponding to high-frequency

limit. Similarly to the previous subsection, we derive for (5.31)

Q1 = −αRκ−ω
√
ρ−µ− cot

(
ωh

c−2 κ
−

)(
1− 2

1 + β2
R

)
H(ϕ,1),

H(Q2) = ω
√
ρ−µ− cot

(
ωh

c−2

)(
1− 1 + β2

R

2

)
H(ϕ,1),

(5.52)

which after substitution into (1.61) with (1.56) and (1.60) imply

�Rϕ
+ =

ω
√
ρ−µ−

µ+
ΓH(ϕ+

,1), (5.53)

where

Γ = −
βR(β2

R − 1)

[
(1 + β2

R)
2

cot

(
ωh

c−2

)
+ 4α2

Rκ
− cot

(
ωh

κ−c−2

)]
8 [β2

R + α2
R(1− 2β2

R) + αRβR(β4
R − 1)]

. (5.54)

For time-harmonic waves, (5.53) takes the form

c2

c2R
−√µρΓc

c+2
− 1 = 0, (5.55)

which in dimensionless form is given by

(ζ+)2

ζ2R
−√µρΓζ+ − 1 = 0. (5.56)

112
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We again consider µ to be small and expand the wave speed in asymptotic series as

ζ+ = ζ+(0) +
√
µζ+(1) + ... . (5.57)

Hence, dispersion relation (5.56) becomes

(ζ+(0) +
√
µζ+(1))2

ζ2R
−√µρΓ(ζ+(0) +

√
µζ+(1))− 1 = 0, (5.58)

having leading order phase velocity given by (5.48). At next order, (5.58) yields

2ζ+(0)ζ+(1)

ζ2R
−√ρΓζ+(0) = 0, (5.59)

leading to

ζ+(1) =

√
ρΓ

2
ζ2R. (5.60)

As a result, we arrive at a non-uniform approximation for dimensionless velocity at a

high-frequency limit

ζ+ = ζR +

√
µρΓ

2
ζ2R + ..., (5.61)

where the source of non-uniformity is the coefficient Γ, since Γ → ∞ at thickness

resonances (5.15).

5.5 Numerical comparison of the asymptotic results

with the exact solution

In this section we numerically compare the derived asymptotic approximations for a

wave speed (5.51) and (5.61), corresponding to low- and high-frequency limits, re-

spectively, with exact dispersion relation (5.10), using dimensionless variables ζ+ and

Ω+ introduced in (1.25) and numerical values (5.4). The comparisons are presented
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in Figure 5.6 for a low-frequency formulation with µ = 0.001 and in Figure 5.7 for

a high-frequency case with µ = 0.001 and µ = 0.01, where red dashed lines repre-

sent asymptotic approximations, blue solid curves correspond to the exact dispersion

relation (5.10).

(5.51)

(5.10)

Figure 5.6: Rayleigh-type modes and low-frequency approximation for high contrast

(µ = 0.001)

It is observed from Figure 5.6 that, as expected, the low-frequency approximation

(5.51) is close to the exact solution in the fundamental mode region only. On the

contrary, Figure 5.7 shows that the high-frequency approximation (5.61) is valid over

the whole range of dimensionless frequency taking into account the resonances as well.
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(a) µ = 0.001

(5.61)

(5.10)

(b) µ = 0.01

(5.61)

(5.10)

Figure 5.7: Rayleigh-type modes and high-frequency approximation
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Also, for lower values of material parameter µ, i.e. for higher contrast in stiffness

of the layer and substrate with the coating being softer, the asymptotic approximation

is closer to the exact solution, see Figure 5.7.
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A full two-parametric asymptotic analysis (in ε and µ) of the anti-plane shear defor-

mation problem of a coated half-space is developed in Chapter 2 . It is demonstrated

that in case of a relatively soft layer for a rather high contrast (α > 1), the deforma-

tion of the substrate can be neglected, which leads to Winkler-type behaviour. In a

similar situation for a relatively stiff coating (α ≥ 1), we arrive at equations of plate

shear. At the same time, in the intermediate range of contrast in stiffness considered

in Sections 2.3.2 and 2.3.4, the layer deformation is strongly affected by the presence

of the substrate. In this case, shear deformation may be found from a simpler problem

for a half-space. The latter, together with a Winkler-type behaviour term, results in

two-term asymptotic formula (2.29) uniformly valid over the whole range of material

parameter for a relatively soft layer. For a stiff coating, when the geometrical and

material parameters are of the same order (α = 1), it is also possible to reduce the

original problem for a coated solid to a problem for a homogeneous half-space with

effective boundary conditions at the surface.

The obtained solution may be useful for problems of delamination between the thin

coating and the substrate, especially in tribological context, see e.g. [64, 71] and [73].

In addition, we mention related problems for the imperfect transmission conditions,

see [123, 118] and [119]. Note, that such asymptotically evaluated simplified conditions
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can be verified numerically with FEM analysis, see e.g. [121] and [120]. This is of

crucial importance as accurate mathematical proof may not always be available. On

the other hand, such conditions fail near singular points (crack tip, edges), but still

may be valuable for physical applications in fracture mechanics, see [117] and [122].

In Chapter 3 the two-parametric asymptotic approach is extended to a full 3D

problem with a vertical load applied at the surface of a covered solid.

For a relatively soft coating, it is established that only at a rather high contrast,

when µ � ε, and substrate deformations are negligible, the Winkler-Fuss hypothesis

is valid. It does, however, unexpectedly fail at µ ∼ ε, when the relative thickness and

stiffness of the coating are of the same order. It is also shown that the prescribed vertical

surface load may always be transmitted to the interface. As a result, the sought for

interfacial displacement follow from a simpler problem for a homogeneous half-space,

leading to uniform two-term asymptotic formula (3.74) valid over the whole range of

the contrast parameter. It is worth noting that along with local Winkler-Fuss term

rw0, this formula contains non-local term rwh, see also [27] and [38], addressing current

trends in modelling of nonlocal elastic foundations. In general case, the term rw0 is

given by a convolution using Boussinesq’s solution [112]. Higher order corrections to

the Winkler-Fuss approximation are also derived, including that corresponding to the

Pasternak model, see e.g. [74, 129, 137].

In case of a stiff layer, it is confirmed that the Kirchhoff plate theory is also only

valid for a sufficiently high contrast in the layer and substrate stiffness (α ≥ 3 or

µ . ε3). Nevertheless, several approximate formulations for a homogeneous half-space

are derived at α < 3, see boundary conditions (3.135) – (3.136).

The considerations are of relevance for a range of problems for coated bodies in-
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cluding modelling of contact interaction. The proposed methodology may be easily

extended to anisotropic solids, shell-like coatings, as well as to the case of more sophis-

ticated interfacial conditions. At the same time, incorporating dynamic and nonlinear

phenomena in the proposed two-parametric scheme seems to be less straightforward,

e.g. see [17, 51] and also [87, 90, 91] dealing with high-frequency thickness vibration.

Chapter 4 is concerned with obtaining an asymptotic correction to the leading order

effective boundary conditions for a coated elastic half-space. The derived conditions

are tested by comparison with the exact solutions of a plane time-harmonic and anti-

plane problems. As a result, the formulation in [160] is validated at leading order,

whereas its correction proposed in [22] appears to be asymptotically inconsistent. The

obtained conditions are of general interest for elastodynamics, e.g. for developing

refined asymptotic models for surface waves, see [81] and [82]. The latter provide a

useful framework for modelling coated solids subject to high-speed moving loads, see

[43] and [83].

A multiparametric treatment of a dynamic problem for a coated elastic half-space

with a clamped surface was produced in Chapter 5. The non-traditional effective

boundary conditions (5.31) are derived using a long-wave high-frequency asymptotic

procedure. They incorporate the effect of a soft thin coating clamped along the surface,

resulting in a regular operator perturbation of the equation governing the Rayleigh wave

(5.37) and (5.53). It is interesting that the analogous conditions for a coating with a

free surface in [36] lead to a singular perturbation.

The non-uniform asymptotic formulae for the family of Rayleigh-type waves (5.51)

and (5.61), deduced from equations (5.37) and (5.53), fail in the vicinities of the thick-

ness resonances (5.15) and zero frequency. In this case, in contrast to a coating with a
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traction-free surface, the lowest wave has a cut-off frequency, which is in line with the

non-existence of surface waves on a clamped homogeneous half-space.

Of course, the aforementioned formulae (5.51) and (5.61) could be readily obtained

from the original equations in linear elasticity (1.16) and (1.17) subject to the estab-

lished effective conditions (5.31). However, the development of the perturbed wave

equation equations (5.37) and (5.53) for the Rayleigh-type waves brings a number of

advantages. In particular, it allows various generalisations, including in particular tak-

ing into account external loading, 3D effects and transient phenomena, as it has been

done for a homogeneous half-space, see [82].

It is also worth mentioning the useful findings in Section 5.3, including evaluation

of zeros of function R, facilitating interpretation of the numerical data calculated from

full dispersion relation (5.10). In this case, the similarity with more explicit results for

Love-type waves, see Section 5.2, is intensively exploited.

Finally, we note the phenomenon of the lowest cut-off frequency tending to zero in

case of especially high contrast (µ� 1), which is in line with vibrations of high-contrast

elastic composites, see [84].
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