Gareth McCray g.mccray@keele.ac.uk
Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response.
McCray
Authors
Abstract
BACKGROUND: The sample size required to power a study to a nominal level in a paired comparative diagnostic accuracy study, i.e. studies in which the diagnostic accuracy of two testing procedures is compared relative to a gold standard, depends on the conditional dependence between the two tests - the lower the dependence the greater the sample size required. A priori, we usually do not know the dependence between the two tests and thus cannot determine the exact sample size required. One option is to use the implied sample size for the maximal negative dependence, giving the largest possible sample size. However, this is potentially wasteful of resources and unnecessarily burdensome on study participants as the study is likely to be overpowered. A more accurate estimate of the sample size can be determined at a planned interim analysis point where the sample size is re-estimated. METHODS: This paper discusses a sample size estimation and re-estimation method based on the maximum likelihood estimates, under an implied multinomial model, of the observed values of conditional dependence between the two tests and, if required, prevalence, at a planned interim. The method is illustrated by comparing the accuracy of two procedures for the detection of pancreatic cancer, one procedure using the standard battery of tests, and the other using the standard battery with the addition of a PET/CT scan all relative to the gold standard of a cell biopsy. Simulation of the proposed method illustrates its robustness under various conditions. RESULTS: The results show that the type I error rate of the overall experiment is stable using our suggested method and that the type II error rate is close to or above nominal. Furthermore, the instances in which the type II error rate is above nominal are in the situations where the lowest sample size is required, meaning a lower impact on the actual number of participants recruited. CONCLUSION: We recommend multinomial model maximum likelihood estimation of the conditional dependence between paired diagnostic accuracy tests at an interim to reduce the number of participants required to power the study to at least the nominal level. TRIAL REGISTRATION: ISRCTN ISRCTN73852054 . Registered 9th of January 2015. Retrospectively registered.
Citation
McCray. (2017). Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response. BMC medical research methodology, 102 -. https://doi.org/10.1186/s12874-017-0386-5
Acceptance Date | Jun 30, 2017 |
---|---|
Publication Date | Jul 14, 2017 |
Journal | BMC Medical Research Methodology |
Print ISSN | 1471-2288 |
Publisher | Springer Verlag |
Pages | 102 - |
DOI | https://doi.org/10.1186/s12874-017-0386-5 |
Keywords | interim analysis; sample-size re-estimation; study design; diagnostic accuracy; sensitivity; specificity |
Publisher URL | https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-017-0386-5 |
Files
Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response.pdf
(547 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Investigating the construct measured by banked gap-fill items: Evidence from eye-tracking
(2016)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search