Skip to main content

Research Repository

Advanced Search

Mechanical and electronic properties of SiC nanowires: An ab initio study

Oliveira, J.B.; Morbec, J.M.; Miwa, R.H.

Mechanical and electronic properties of SiC nanowires: An ab initio study Thumbnail


Authors

J.B. Oliveira

R.H. Miwa



Abstract

Using first-principles calculations, based on the density functional theory, we have investigated the mechanical and electronic properties of hydrogen-passivated 3C-, 2H-, 4H-, and 6H-SiC nanowires (NWs), analyzing the effects of the diameter on these properties. Our results show that the band-gap energies of the nanowires are larger than the corresponding bulk values and decrease with the increasing diameter. All nanowires investigated exhibit direct band gaps, in contrast with the indirect band gaps observed in bulk SiC. The effect of uniaxial stress on the electronic properties of SiC nanowires has also been examined, and our results reveal that the band-gap dependence on the strain is different for each nanowire polytype. In 3C-SiC nanowires, the band gaps increase (decrease) with tensile (compressive) strain. For 4H- and 6H-SiC nanowires, the influence of strain on the band gaps is more pronounced in the thicker wires. Finally, we estimated the band offsets of hypothetical NW homostructures, composed of stacking SiCNW layers with different polytypes.

Acceptance Date Mar 14, 2017
Publication Date Mar 14, 2017
Journal Journal of Applied Physics
Print ISSN 0021-8979
Publisher AIP Publishing
Pages 104302 - 104302
DOI https://doi.org/10.1063/1.4977996
Publisher URL https://doi.org/10.1063/1.4977996

Files







You might also like



Downloadable Citations