Skip to main content

Research Repository

Advanced Search

All Outputs (21)

Investigating Internalization of Reporter-Protein-Functionalized Polyhedrin Particles by Brain Immune Cells (2024)
Journal Article
Parwana, K. A. K., Kaur Gill, P., Njanike, R., Yiu, H. H. P., Adams, C. F., Chari, D. M., & Jenkins, S. I. (in press). Investigating Internalization of Reporter-Protein-Functionalized Polyhedrin Particles by Brain Immune Cells. Materials, 17(10), Article 2330. https://doi.org/10.3390/ma17102330

Achieving sustained drug delivery to the central nervous system (CNS) is a major challenge for neurological injury and disease, and various delivery vehicles are being developed to achieve this. Self-assembling polyhedrin crystals (POlyhedrin Deliver... Read More about Investigating Internalization of Reporter-Protein-Functionalized Polyhedrin Particles by Brain Immune Cells.

A requirement for astrocyte IP3R2 signaling for whisker experience-dependent depression and homeostatic upregulation in the mouse barrel cortex. (2022)
Journal Article
Butcher, J., Sims, R., Ngum, N., Bazzari, A. H., Jenkins, S. I., King, M., …Glazewski. (2022). A requirement for astrocyte IP3R2 signaling for whisker experience-dependent depression and homeostatic upregulation in the mouse barrel cortex. Frontiers in Cellular Neuroscience, 16, Article 905285. https://doi.org/10.3389/fncel.2022.905285

Changes to sensory experience result in plasticity of synapses in the cortex. This experience-dependent plasticity (EDP) is a fundamental property of the brain. Yet, while much is known about neuronal roles in EDP, very little is known about the role... Read More about A requirement for astrocyte IP3R2 signaling for whisker experience-dependent depression and homeostatic upregulation in the mouse barrel cortex..

In vitro model of traumatic brain injury to screen neuro-regenerative biomaterials (2021)
Journal Article
Basit, R., Tzerakis, N., Jenkins, S., & Chari, D. M. (2021). In vitro model of traumatic brain injury to screen neuro-regenerative biomaterials. Materials Science and Engineering: C, 112253 - 112253. https://doi.org/10.1016/j.msec.2021.112253

Penetrating traumatic brain injury (pTBI) causes serious neurological deficits with no clinical regenerative therapies currently available. Tissue engineering strategies using biomaterial-based ‘structural bridges’ offer high potential to promote neu... Read More about In vitro model of traumatic brain injury to screen neuro-regenerative biomaterials.

Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke (2021)
Journal Article
Patabendige, A., Singh, A., Jenkins, S., Sen, J., & Chen, R. (2021). Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. International Journal of Molecular Sciences, 22(8), https://doi.org/10.3390/ijms22084280

Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically appr... Read More about Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke.

characterizing ischaemic tolerance in rat pheochromocytoma (PC12) cells and primary rat neurons (2020)
Journal Article
Singh, A., Chow, O., Jenkins, S., Zhu, L., Rose, E., Astbury, K., & Chen, R. (2021). characterizing ischaemic tolerance in rat pheochromocytoma (PC12) cells and primary rat neurons. Neuroscience, 453, Article 17-31. https://doi.org/10.1016/j.neuroscience.2020.11.008

Preconditioning tissue with sublethal ischaemia or hypoxia can confer tolerance (protection) against subsequent ischaemic challenge. In vitro ischaemic preconditioning (IPC) is typically achieved through oxygen glucose deprivation (OGD), whereas hypo... Read More about characterizing ischaemic tolerance in rat pheochromocytoma (PC12) cells and primary rat neurons.

Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. (2020)
Journal Article
Rawlinson, C., Jenkins, S., Thei, L., Dallas, M., & Chen, R. (2020). Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. Brain Sciences, 10(3), https://doi.org/10.3390/brainsci10030159

Microglia, the major endogenous immune cells of the central nervous system, mediate critical degenerative and regenerative responses in ischaemic stroke. Microglia become "activated", proliferating, and undergoing changes in morphology, gene and prot... Read More about Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy..

Physico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibiotics. (2020)
Journal Article
Mira, A., Codina, H., Jenkins, S., Rodriguez-Diaz, J., Mallavia, R., Falco, A., & Sainz-Urruela, C. (2020). Physico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibiotics. Nanomaterials, https://doi.org/10.3390/nano10030486

Recent advances in the field of nanotechnology such as nanoencapsulation offer new biomedical applications, potentially increasing the scope and efficacy of therapeutic drug delivery. In addition, the discovery and development of novel biocompatible... Read More about Physico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibiotics..

Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death (2019)
Journal Article
Lim, J., Dobson, J., Subramanian, M., Miaskowski, A., & Jenkins, S. (2019). Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death. Applied Physics A, https://doi.org/10.1007/s00339-019-2510-3

The manipulation of magnetic nanoparticles (MNPs) using an external magnetic field, has been successfully demonstrated in various biomedical applications. Some have utilised this non-invasive external stimulus and there is an potential to build on th... Read More about Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death.

The Influence of Nicotinamide on Health and Disease in the Central Nervous System (2018)
Journal Article
Fricker, R., Green, E., Jenkins, S., & Griffin, S. (2018). The Influence of Nicotinamide on Health and Disease in the Central Nervous System. International Journal of Tryptophan Research, https://doi.org/10.1177/1178646918776658

Nicotinamide, the amide form of vitamin B3 (niacin), has long been associated with neuronal development, survival, and function in the central nervous system (CNS), being implicated in both neuronal death and neuroprotection. Here, we summarise a bod... Read More about The Influence of Nicotinamide on Health and Disease in the Central Nervous System.

Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles (2017)
Journal Article
Evans, M., Shakli, A., Jenkins, S., & Chari, D. (2017). Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles. Nano Research, 2881-2890. https://doi.org/10.1007/s12274-017-1496-4

The development of safe technologies to genetically modify neurons is of great interest in regenerative neurology, for both translational and basic science applications. Such approaches have conventionally been heavily reliant on viral transduction m... Read More about Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles.

Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake (2016)
Journal Article
Weightman, A. P., Jenkins, S. I., & Chari, D. M. (2016). Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake. Nano Research, 9(8), 2384-2397. https://doi.org/10.1007/s12274-016-1125-7

Development of nanoparticle (NP) based therapies to promote regeneration in sites of central nervous system (CNS; i.e. brain and spinal cord) pathology relies critically on the availability of experimental models that offer biologically valid predict... Read More about Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake.

Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance. (2016)
Journal Article
Tickle, J., Jenkins, S., Polyak, B., Pickard, M., & Chari, D. (2016). Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance. Nanomedicine, 345 - 358. https://doi.org/10.2217/nnm.15.202

AIM: To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MATERIALS & METHODS: MPs of var... Read More about Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance..

'Stealth' nanoparticles evade neural immune cells but also evade all major brain cell populations: Implications for PEG-based neurotherapeutics (2016)
Journal Article
Jenkins, S., Weinberg, D., Al-Shakli, A., Fernandes, A., Yiu, H., Telling, N., …Chari, D. (2016). 'Stealth' nanoparticles evade neural immune cells but also evade all major brain cell populations: Implications for PEG-based neurotherapeutics. Journal of Controlled Release, 224, 136-145. https://doi.org/10.1016/j.jconrel.2016.01.013

Surface engineering to control cell behavior is of high interest across the chemical engineering, drug delivery and biomaterial communities. Defined chemical strategies are necessary to tailor nanoscale protein interactions/adsorption, enabling contr... Read More about 'Stealth' nanoparticles evade neural immune cells but also evade all major brain cell populations: Implications for PEG-based neurotherapeutics.

The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products (2015)
Journal Article
Rafiq, Q. A., Ortega, I., Jenkins, S. I., Wilson, S. L., Patel, A. K., Barnes, A. L., …Smith, D. (2015). The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products. Regenerative Medicine, 989 -1003. https://doi.org/10.2217/rme.15.56

Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early... Read More about The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products.

Development of a nanomaterial bio-screening platform for neurological applications (2015)
Journal Article
Jenkins, S., Roach, P., & Chari, D. (2015). Development of a nanomaterial bio-screening platform for neurological applications. Nanomedicine: Nanotechnology, Biology and Medicine, 77 - 87. https://doi.org/10.1016/j.nano.2014.07.010

Nanoparticle platforms are being intensively investigated for neurological applications. Current biological models used to identify clinically relevant materials have major limitations, e.g. technical/ethical issues with live animal experimentation,... Read More about Development of a nanomaterial bio-screening platform for neurological applications.

Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges (2014)
Journal Article
Jenkins, S., Yiu, H., Rosseinsky, M., & Chari, D. (2014). Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. Molecular and Cellular Therapies, https://doi.org/10.1186/2052-8426-2-23

Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical tr... Read More about Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges.

Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy (2014)
Journal Article
Jenkins, S., Pickard, M., Khong, M., Smith, H., Mann, C., Emes, R., & Chari, D. (2014). Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy. ACS chemical neuroscience, 51 -63. https://doi.org/10.1021/cn400167n

Corticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, t... Read More about Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy.

Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury (2013)
Journal Article
Weightman, A., Jenkins, S., Pickard, M., Chari, D., & Yang, Y. (2014). Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury. Nanomedicine: Nanotechnology, Biology and Medicine, 10(2), 291-295. https://doi.org/10.1016/j.nano.2013.09.001

Non-neuronal cells of the central nervous system (CNS), termed “neuroglia,” play critical roles in neural regeneration; therefore, replacement of glial populations via implantable nanofabricated devices (providing a growth-permissive niche) is a prom... Read More about Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury.