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Abstract

We refine a previously proposed semi-analytical method, and use it to study the ef-

fects of pre-stretch, compressibility and material constitution on the period-doubling

secondary bifurcation of a uni-axially compressed film/substrate bilayer structure.

It is found that compared with the case of incompressible neo-Hookean materials for

which the critical strain is approximately 0.17 when the thin layer is much stiffer than

the substrate, the critical strain when the Gent materials are used is a monotonically

increasing function of the constant Jm that characterizes material extensibility, be-

coming as small as 0.12 when Jm is equal to 1, whereas for compressible neo-Hookean

materials the critical strain is a monotonically decreasing function of Poisson’s ratio;

the period-doubling secondary bifurcation seems to become impossible when Pois-

son’s ratio is approximately equal to 0.307. The latter result may indicate that when

Poisson’s ratio is small enough there are other preferred secondary bifurcations – an

example is given where a secondary bifurcation mode with 7/4 times the original

period occurs at a lower strain value. The effect of a pre-stretch (compression or ex-

tension) in the substrate is not monotonic, giving rise to a critical strain that varies

between 0.15 and 0.22.

Keywords: thin-film/substrate bilayer, wrinkling, period-doubling, bifurcation,

nonlinear elasticity.

1. Introduction

Stress-induced pattern formation in soft materials at the micrometer and sub-

micrometer scales is now well recognized to have a wide range of applications ranging

from cell patterning [1], optical gratings [2–4], and creation of surfaces with desired

wetting and adhesion properties [5–7], to the deduction of material properties of

ultrathin films [8, 9]. We refer to Bowden et al. [10, 11], Li et al. [12], the book by

Goriely [13], and the more recent papers by Wang and Zhao [14] and Holland et al.
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[15] for a comprehensive review of the literature and applications. As a prototypical

structure, the buckling and post-buckling of a thin-film/substrate bilayer structure

has probably received the most attention, partly because of the variety of behaviors

that it exhibited and their obvious relevance to more complicated structures [16–

34]. If both the layer and substrate are composed of neo-Hookean materials with

shear moduli µf and µs, respectively, then there exists a critical moduli ratio which is

approximately equal to 1.74 such that the initial wrinkling bifurcation is supercritical

when µf/µs > 1.74 and subcritical otherwise [35, 36]. It can then be expected, and

indeed confirmed by many recent numerical and experimental studies, that in the

subcritical regime localization is the norm [37, 38] whereas in the supercritical regime

period-doubling secondary bifurcation is the norm [39, 40].

This paper is a sequel to our earlier paper Fu and Cai [41] where attention is

focused on the supercritical regime and the exact nonlinear elasticity theory com-

bined with an asymptotic perturbation procedure is employed to derive the critical

stretch value at which period-doubling secondary bifurcation takes place. The de-

rived results agreed well with the numerical simulation and experimental results of

Cao and Hutchinson [42] and Brau et al. [43], and the proposed approach comple-

ments earlier analytical studies by Brau et al. [43], Zhao et al. [44], and Zhuo and

Zhang [45, 46] that are more approximate in nature. It was pointed out towards

the end of Fu and Cai [41] that the proposed methodology could deal with any ma-

terial constitution (compressible or incompressible, neo-Hookean or otherwise) and

arbitrary pres-stretch in the substrate. This is now verified in the present paper.

When the materials are incompressible, the formulation is different from the case

when the materials are compressible because of the introduction of a Lagrange multi-

plier and consideration of the incompressibility condition. To make our presentation

as concise as possible, we shall not deal with the incompressible case separately, but

rather view it as the limit of the compressible case when Poisson’s ratio tends to 1/2.

Thus, using a single formulation we shall consider a strain-energy function given by

W = −
µ

2
JmLog(1−

I1 − 3

Jm
)− µLogJ +

µ∗

2
(J − 1)2, (1.1)

where J = detF , F being the deformation gradient, I1 is the first principal invariant

of F TF , µ is the ground-state shear modulus, Jm is a material constant characterizing

material extensibility, and µ∗ is a constant that is related to Poisson’s ratio ν through

µ∗ = 2µν/(1 − 2ν). The above strain energy function may be referred to as a

compressible Gent material model. Under the double limit µ∗ → ∞, J → 1 such that

µ∗(J−1) remains finite, it reduces to the incompressible Gent material model, which,

under the further limit Jm → ∞, recovers the classical neo-Hookean material model.

On the other hand, by taking the limit Jm → ∞, it reduces to the compressible

neo-Hookean material model that has been used in many studies to assess the effects

of compressibility.

The rest of this paper is divided into five sections as follows. The next two sections

are devoted to the first bifurcation and are concerned with the linear analysis and
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post-buckling solutions, respectively. The (weakly nonlinear) post-buckling solutions

can be obtained to any order in terms of a small parameter that characterizes the

departure of the compressive strain from its critical value. This asymptotic solution is

expected to provide a good approximation to the exact bifurcation solution for values

of this parameter up to around 0.6. As this parameter is increased, a period-doubling

secondary bifurcation will take place when the parameter reaches a critical value.

The latter critical value is determined by a linearized bifurcation problem containing

coefficients that are periodic functions because the post-buckling solution mentioned

above is periodic. Thus, it has a similar structure to the classical Mathiew equation

with the spatial variable along the interface here playing the role of time, and the

secondary bifurcation is simply a subharmonic resonance phenomenon. The analysis

is conducted in Section 4. Some numerical results are presented and compared with

those available in the existing literature. The paper is concluded with a summary

and some additional comments.

2. First bifurcation – linear analysis

We first summarize the incremental governing equations that are valid for both

the first and secondary bifurcations. To this end, we consider a general hyperelastic

body B that possesses an initial unstressed configuration B0. A static deformation

(homogeneous or inhomogeneous) is applied to B0 to produce a finitely stressed

equilibrium configuration denoted by Be. In order to determine whether Be may

suffer a bifurcation or not, we superimpose on Be a small amplitude displacement,

and the resulting configuration, termed the current configuration, is denoted by Bt.

The position vectors of a representative particle relative to a common rectangular

coordinate system are denoted by X,x and x̃, with associated coordinates XA, xi

and x̃i in B0, Be and Bt, respectively. We write

x̃ = x+ u(x), (2.1)

where u(x) is a small-amplitude displacement associated with the incremental de-

formation Be → Bt. Throughout this paper we employ the summation convention,

and use e.g. ui,A and ui,j to denote ∂ui/∂XA and ∂ui/dxj , respectively.

We define the incremental stress tensor χij through

χij = J̄−1(SAi − S̄Ai)F̄jA, (2.2)

where F̄ is the deformation gradient corresponding to the deformation B0 → Be,

J̄ = det F̄ , and S̄Ai and SAi (= ∂W/∂FiA) are the nominal stress associated with

the deformations B0 → Be and B0 → Bt, respectively. It follows from the identity

(J̄−1F̄jA),j = 0 that the equilibrium equation SAi,A = 0 can be reduced to

χij,j = 0, (2.3)

whereas a series expansion of the right hand side of (2.2) yields

χij = A1
jilkuk,l, A1

jilk = J̄−1F̄jAF̄lB
∂2W

∂FiA∂FkB

∣

∣

∣

∣

F=F̄

, (2.4)
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where A1
jilk are the components of the first-order tensor of instantaneous elastic

moduli in Be [47] and the expression for χij has been linearized (the nonlinear terms

will be restored in the next section).

We now specialize to the case when the finitely deformed configuration Be con-

sists of a coated half-space (or a film/substrate bilayer) that is subjected to a uniaxial

compression, with the half-space and coating corresponding to −∞ ≤ x2 ≤ 0 and

0 ≤ x2 ≤ h, and having material constants (µ, ν, µ∗, Jm) and (µ̂, ν̂, µ̂∗, Ĵm), respec-

tively. Correspondingly, all the field variables associated with the coating will be

distinguished by a superimposed hat as well. Thus, the governing equations (2.3)

and (2.4) apply to the region −∞ ≤ x2 ≤ 0, but for the coating we have instead

χ̂ij = Â1
jilkûk,l, χ̂ij,j = 0,

which from now on will be referred to as (2.3∗) and (2.4∗) with the stars signifying

the fact that they are the counterparts of (2.3) and (2.4) appropriate to the thin

layer. This convention concerning the star will be followed throughout this paper

but the starred equations will not always be written out for the sake of brevity.

The governing equations (2.3) and (2.3∗) are solved subject to the auxiliary con-

ditions

χ̂i2 = 0, on x2 = h, (2.5)

ûi = ui, χ̂i2 = χi2, on x2 = 0, (2.6)

ui → 0, as x2 → −∞. (2.7)

Following Cai and Fu [35], we may write the solution for the half-space in the form

u1 = (A1e
ks1x2 + A2e

ks2x2)eikx1, u2 = (B1e
ks1x2 +B2e

ks2x2)eikx1, (2.8)

where k is the wave number,

Bj =
iAj(γ21s

2
j − α11)

δ12sj
, j = 1, 2, (2.9)

A1, A2 are disposable constants, and s1 and s2 are the two roots of

α22γ21s
4 − (α11α22 + γ12γ21 − δ212)s

2 + α11γ12 = 0 (2.10)

that have positive real parts (so that ui → 0 as x2 → −∞). The constants α11, α22,

γ12,γ21, δ12 are defined by

α11 = A1
1111, α22 = A1

2222, γ12 = A1
1212, γ21 = A1

2121, δ12 = A1
1122 +A1

1221. (2.11)

For the coating the solution is not required to decay and so we have

û1 =
4

∑

j=1

Âje
kŝjx2eikx1, û2 =

4
∑

j=1

B̂je
kŝjx2eikx1, (2.12)
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Figure 1: Bifurcation curves showing dependence of λ on kh for different Jm in the case that both

film and substrate are composed of Gent material. (b) is a blow-up of (a) for small values of kh.

where

B̂j =
iÂj(γ̂21ŝ

2
j − α̂11)

δ̂12ŝj
, j = 1, 2, 3, 4, (2.13)

Â1, Â2, Â3, Â4 are disposable constants, ŝ1 and ŝ2 are the two roots of (2.10∗) that

have positive real parts, ŝ3 = −ŝ1, ŝ4 = −ŝ2, and the constants α̂11, α̂22, γ̂12,γ̂21, δ̂12
are defined by (2.11∗).

On substituting the above general solutions (2.8) and (2.12) into the auxiliary

conditions (2.5) and (2.6), we obtain six linear homogeneous equations for the six

constants A1, A2, Â1, Â2, Â3 and Â4. The six equations have a non-trivial solution if

and only if the determinant of the coefficient matrix is zero, yielding a bifurcation

condition in the form

Ω(λ, kh) = 0, (2.14)

where λ is the principal stretch in the x1-direction. Note that the principal stretch in

the x2-direction is determined by solving the equation σ̄2 = 0 where σ̄2 is the Cauchy

stress in the x2-direction associated with the deformation B0 → Be. Equation (2.14)

is easily solved with the aid of the symbolic manipulation package Mathematica [48]

To analyze the effect of material constitution, we shall focus on the case when

the thin layer and half-space are both described by the incompressible Gent material

model with the same values of Jm but different shear moduli. This is achieved by

taking the limits ν → 1/2, ν̂ → 1/2 in our numerical calculations. The relative

stiffness of the film and half-space is characterized by the ratio r = µ̂/µ. It is found

sufficient to approximate the incompressible limit by taking ν̂ = ν = 0.4999. For

instance, in the case of Jm = 1000 (so that the materials are almost neo-Hookean)

and r = 10, the critical principal stretch given by our nearly-incompressible approx-

imation is 0.97635667, whereas the exact bifurcation condition given by [35], which

is valid for neo-Hookean materials, would give a critical principal stretch equal to

0.97635785.
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In Fig.1 we have shown the bifurcation curves for r = 100 and Jm = 10, 100,

1000, respectively. It can be seen that, for most values of kh, the variation in the

critical stretch with respect to Jm is very small (see Fig. 1(a)). But in the region

where kh is small, the critical stretch decreases rapidly as Jm decreases (see the

blow-up in Fig. 1(b)).

It is seen in Fig.1 that for the given values of r and Jm, each bifurcation curve has

a maximum for λ which is denoted by λ0. The corresponding value of kh is denoted

by k0h which gives the mode number k0 of the bifurcation mode. As in Cai and Fu

[35], when r is much larger than 1, we may again derive the asymptotic expansions

λ0 = 1−
1

4
(3/r)2/3 + · · · , k0h = (3/r)1/3 + · · · . (2.15)

Thus, the leading order terms of λ0 and k0h for Gent materials are independent of

the material constant Jm and are the same as for neo-Hookean materials [35]. It is

found, however, that the second-order terms are dependent on Jm, but they are not

written out here for the sake of brevity.

We also observe that on each bifurcation curve, there exists a point (k0h/2, λ
∗

cr)

which corresponds to a bifurcation mode that has twice the period of the primary

buckling mode. This bifurcation mode will not be observable since the associated

stretch value λ∗

cr is smaller than λ0, but it will feature in our analysis of secondary

bifurcations.

To analyze the effect of compressibility, we assume that the thin-layer and half-

space are both composed of compressible neo-Hookean materials. This case is achieved

by taking the limit Jm → ∞, and is selected so as to compare with the case of an

incompressible neo-Hookean material that has been much studied in the literature.

The relative stiffness of the layer and half-space is still characterized by the magni-

tude of r = µ̂/µ, but Poisson’s ratio is assumed to be the same in both the film and

substrate. In Fig.2 we have shown the bifurcation curves for r = 100 and ν = 0.4,

0.45, 0.4999, respectively. It can be seen that, as ν is varied, the changes in the

critical stretch are also quite small.

When r is much larger than 1, we find that λ0 and k0h have the asymptotic

expansions

λ0 = 1−
1

4
(
12(1− ν)2

(3− 4ν)r
)2/3 + · · · , k0h = (

12(1− ν)2

(3− 4ν)r
)1/3 + · · · . (2.16)

The leading order terms of λ0 − 1 and k0h are now dependent on Poisson’s ratio.

As expected, in the limit ν → 1/2, the leading-order terms in the above expansions

reduce to those in (2.15).

To analyze the effect of a pre-stretch on the critical stretch, we consider the case

when both the layer and half-space are composed of different incompressible neo-

Hookean materials (which is again approached by taking the appropriate limit as

discussed earlier), but the substrate is subject to a pre-stretch. In this case, we can

solve the bifurcation condition by simply letting the film and substrate have different

final stretches, λf and λs say.
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Figure 2: Bifurcation curves showing dependence of λ on kh for different Poisson’s ratio in the case

both film and substrate are composed of compressible neo-Hookean material. (b) is a blow-up of

(a) for small values of kh.
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In Fig.3 we have shown the bifurcation curves for r = 100 and ∆ ≡ λs − λf =

−0.2, 0, 0.2, respectively. It can be seen that allowing for a pre-stretch in the

substrate has a much more pronounced effect on the critical stretch than varying the

Poisson’s ratio or the constant Jm.

When r is much larger than 1 and the substrate is pre-stretched, the following

asymptotic expressions may be derived:

λ0 = 1−
1

4
(
6 + 6∆ + 3∆2

2r
)2/3 + · · · , k0h = (

6 + 6∆ + 3∆2

2r
)1/3 + · · · .

It is seen that the leading-order terms are now dependent on the pre-stretch. As

expected, in the limit ∆ → 0, these leading-order terms reduce to their counterparts

in (2.16).
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3. Post-buckling solutions associated with the first bifurcation

Solving the matrix equation that led to the bifurcation condition (2.14) will de-

termine five of the six constants A1, A2, Â1, ..., Â4. As a result, the linear solution is

determined to within a single multiplicative constant. This undetermined constant

is determined in this section as part of the post-buckling solution using a weakly

nonlinear perturbation procedure.

Anticipating that the bifurcation is super-critical, we write

λ = λ0 − ǫ2, (3.1)

where λ0 is the critical stretch as defined in the previous section and ǫ is a positive

small parameter.

For the analysis in the rest of this paper, it is convenient to view all dependent

variables as functions of the coordinates in the critical configuration. To avoid intro-

ducing extra notations, these coordinates are still denoted by xi and the associated

deformation gradient is still denoted by F̄ . Thus, we now have

F̄ = diag {λ0, λ20}, (3.2)

where λ20 is the value of λ2, the principal stretch in the x2-direction, when λ1 takes

its critical value λ0. The definition (2.2) is still valid but the F̄ is now understood

to be given by (3.2). To obtain the revised expression for χij , we first note that the

expression (2.1) can now be rewritten as

x̃1 = λX1 + u1(x) = λλ−1
0 x1 + u1(x) = x1 + w1(x),

x̃2 = λ2X2 + u2(x) = λ2λ
−1
20 x2 + u2(x) = x2 + w2(x), (3.3)

where

w1 = (λλ−1
0 − 1)x1 + u1(x), w2 = (λ2λ

−1
20 − 1)x2 + u2(x).

The nonlinear equilibrium equations again take the simple form (2.3)2, but now the

constitutive equation (2.4) is replaced by

χij = A1
jilkwk,l +

1

2
A2

jilknmwm,nwk,l +
1

6
A3

jilknmqpwm,nwp,qwk,l + · · · , (3.4)

where A
2 and A

3 are the second- and third-order tensors of instantaneous elastic

moduli defined by

A2
jilknm = J̄−1F̄jAF̄lBF̄nC

∂3W

∂FiA∂FkB∂FmC

∣

∣

∣

∣

F=F̄

,

A3
jilknmqp = J̄−1F̄jAF̄lBF̄nCF̄qE

∂4W

∂FiA∂FkB∂FmC∂FpE

∣

∣

∣

∣

F=F̄

.

Higher-order elastic moduli are defined in a similar manner.
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We look for an asymptotic solution of the form

wj = ǫw
(1)
j (x1, x2) + ǫ2w

(2)
j (x1, x2) + ǫ3w

(3)
j (x1, x2) + · · · ,

ŵj = ǫŵ
(1)
j (x1, x2) + ǫ2ŵ

(2)
j (x1, x2) + ǫ3ŵ

(3)
j (x1, x2) + · · · , (3.5)

where the leading order solution is written in the form

{

w
(1)
j , ŵ

(1)
j

}

= A
{

W
(1)
j1 (x2), Ŵ

(1)
j1 (x2)

}

E + c.c., E = eix1 . (3.6)

In the last expression A is the undetermined constant mentioned earlier, the shape

functions W
(1)
j1 (x2) and Ŵ

(1)
j1 (x2) are given by the linear analysis presented in the

previous section, and the ‘c.c.’ denotes the complex conjugate of the preceding term.

The expression for E indicates that we have chosen the mode number of the critical

mode to be unity. This means that we have used the inverse of the actual critical

mode number k0 as the length unit. Thus, for instance, the h in the subsequent

analysis is the actual layer thickness (in the critical configuration) multiplied by k0.

The boundary-value problems satisfied by the higher order terms in the pertur-

bation solution (3.5) can be derived by equating the coefficients of like powers of ǫ

in the equilibrium equations and the auxiliary conditions (2.5)−(2.7). It can be de-

duced that the second- and third-order solutions for the half-space must necessarily

take the form

w
(2)
j = AĀW

(2)
j0 (x2) + A2W

(2)
j2 (x2)E

2 + c.c., (3.7)

w
(3)
j = BW

(1)
j1 (x2)E + A3W

(3)
j3 (x2)E

3 + c.c., (3.8)

where the constant B and all the functions of x2 appearing on the right hand sides

are to be determined. Similar expressions can be written down for the thin layer.

It is observed that the expression for w
(2)
i only contains even powers of E and Ē

whereas w
(3)
i only contains odd powers of E and Ē. This pattern can be generalized

to higher-order solutions. Thus, for instance, w
(n)
i with n odd only contains terms

proportional to En, En−2, En−4, ..., E, and their complex conjugates.

On substituting (3.7) and (3.7∗) into the appropriate equilibrium equations and

auxiliary conditions, and then equating the coefficients of E0 and E2, we obtain two

sets of boundary value problems for the mean field and second harmonic at order

O(ǫ2). The mean field can be determined easily, but for the second harmonic it is

found by elimination that W
(2)
22 (x2) and Ŵ

(2)
22 (x2) each satisfies an inhomogeneous

fourth-order differential equation of the form

a4W
′′′′(x2) + a2W

′′(x2) + a0W (x2) = f(x2), (3.9)

where a0, a2, a4 are constants, and f(x2) is a known function. Although with the

coefficients and f(x2) known this equation can be solved using the command DSolve

in Mathematica [48] directly, underflow occurs when both exponentially growing and

decaying terms are present in a single solution (as is the case for the layer). This diffi-

culty is overcome by solving (3.9) with unknown coefficients first, and then replacing
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them afterwards with their numerical values. For the substrate, this underflow prob-

lem does not arise, but to avoid having to distinguish the decaying terms from the

growing terms, the solution of (3.9) is obtained using the procedure outlined in [41].

This same procedure is also applied to find the third-order solution (3.8) and all

the other higher-order solutions. In solving the problem for W
(3)
21 (x2), obtained by

equating the coefficients of E at order ǫ3, a solvability condition needs to be imposed,

and it is from this solvability condition that we obtain an amplitude equation for A

in the form

A+ c1A
2Ā = 0, (3.10)

where c1 is a real constant that depends on the material properties of the bilayer

structure. The non-trivial solution of (3.10) is given by

|A| =
√

−1/c1. (3.11)

However, at this stage the B appearing in the third-order solution (3.8) is still un-

determined; it can only be determined from a solvability condition at order ǫ5.

As explained in [41], the amplitude B can be determined using the virtual work

method [49] without having to actually solve the problem at order ǫ5. The same

method can also be applied to derive the amplitude equation (3.10) as a useful check

although the problem at order ǫ3 has to be solved anyway because its solution is

needed at orders ǫ4 and ǫ5. Suppose that substituting (3.5) into (3.4) yields an

expression of the form

χij = ǫA1
jilkw

(1)
k,l +

∞
∑

α=2

ǫα
[

A1
jilkw

(α)
k,l +R

(α)
ij

]

, (3.12)

where the term R
(α)
ij only involves solutions up to and including w(α−1). Then the

virtual work method would yield the identity

∫ k

0

∫ 2π

0

ŵ
(0)
i R̂

(α)
ij,jdx1x2 +

∫ 0

−∞

∫ 2π

0

w
(0)
i R

(α)
ij,jdx1x2

=

∫ 2π

0

ŵ
(0)
i R̂

(α)
i2

∣

∣

∣

x2=h
dx1 −

∫ 2π

0

w
(0)
i (R̂

(α)
i2 −R

(α)
i2 )

∣

∣

∣

x2=0
dx1, (3.13)

where
{

w
(0)
j , ŵ

(0)
j

}

=
{

Ŵ
(1)
j1 (x2),

¯̂
W

(1)
j1 (x2)

}

Ē, (3.14)

and an overbar in (3.14) signifies complex conjugation. In view of the presence

of Ē in (3.14), only those terms in R
(α)
ij that are proportional to E will survive

the integrations in (3.13). Equation (3.13) is effectively the solvability condition

satisfied by the amplitude of the terms in û(α) and u(α) that are proportional to

E. We emphasize, however, that the use of the above virtual work method is not

essential; the more elementary way of imposing the solvability condition will serve

the same purpose although it will take longer time on Mathematica, especially at

higher orders.
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The non-trivial solution (3.11) can only exist if the nonlinear coefficient c1 is

negative. Based on what is known for neo-Hookean material models, we expect that

this is the case when r is sufficiently large, and as r is gradually reduced there exists

a critical value of r at which c1 vanishes. Below this critical value, the bifurcation

become subcritical and sensitive to imperfections. For Gent materials, the critical

modulus ratio depends on the value of the stretchability parameter Jm. For Jm = 10,

100 and 1000, the critical value of r is equal to 1.89, 1.77 and 1.75, respectively.

For compressible neo-Hookean materials, the critical value of r depends on Pois-

son’s ratio ν. For ν = 0.4, 0.45 and 0.4999, the critical value of r is found to be 2.11,

1.92 and 1.75, respectively.

To conclude this section, we remark that in view of the fact that the origin in

the x1-direction can be arbitrarily chosen and the W
(1)
11 (x2) and W

(1)
21 (x2) in (3.6) are

real and pure imaginary, respectively (see (2.8) and (2.9)), we may, without loss of

generality, take A to be real. Equation (3.6) can then be replaced by

w
(1)
1 = AW

(1)
11 (x2)

(

E + Ē
)

, w
(1)
2 = AW

(1)
21 (x2)

(

E − Ē
)

, (3.15)

and (3.15∗). These expressions will be adopted in the following section.

4. Period-doubling secondary bifurcation

To determine the critical value of λ at which a period-doubling secondary bifur-

cation can occur, we superimpose on Bt a further infinitesimal incremental displace-

ment v(x). If W and V are used to denote the tensors with components wi,j and

vi,j , respectively, with wi defined by (3.3), then the deformation gradient from B0 to

the final perturbed configuration is given by

(I +W + V )F̄ .

The appropriate incremental stress tensor is now defined by

χij = J̄−1(SAi − S̃Ai)F̄jA, (4.1)

where F̄ is again given by (3.2) and S̃Ai is the nominal stress associated with the

deformation B0 → Bt with deformation gradient F̃ ≡ (I + W )F̄ . To avoid intro-

ducing extra notation we have used the same notation χij to mean the right hand

side of (4.1) since the χij in the previous section will never appear in the subsequent

analysis again. In our previous paper [41], the incremental stress tensor was defined

by χij = J̃−1(SAi − S̃Ai)F̃jA. This was appropriate when v was viewed as a vec-

tor function of x̃, but in the subsequent analysis the variable substitution x̃ → x

had to be employed to simplify analysis. We now realize that (4.1) is a much more

convenient choice.

On expanding (4.1) around F = F̃ , we obtain, to leading order,

χij = Ajilkvk,l, where Ajilk = J̄−1F̄jAF̄lB
∂2W

∂FiA∂FkB

∣

∣

∣

∣

F=
˜F
. (4.2)

11



The incremental equilibrium equation is obviously χij,j = 0, which is to be solved

subject to the auxiliary conditions

χ̂i2 = 0, on x2 = h, (4.3)

v̂i = vi, χ̂i2 = χi2, on x2 = 0, (4.4)

vi → 0, as x2 → −∞, (4.5)

where χ̂ij is given by (4.2∗). Suppose the solution for the incremental problem have

twice the period of the primary mode. We can then expand the critical stretch in

the form

λ0 = λ∗

cr + ǫλ(1) + ǫ2λ(2) + ǫ3λ(3) + · · · , (4.6)

where λ∗

cr is the critical stretch at which a mode with mode number 1/2 may bifurcate

from the uniformly deformed state Be (see Fig. 1), λ(1), λ(2), λ(3), ... are constants

to be determined. As a result, the F̄ given by (3.2) must also be expanded. This

expansion is crucial since it ensures that the leading-order problem has the solution

with mode number 1/2 and the incremental solution can be obtained by successive

approximations.

Correspondingly, Ajilk can be expanded in terms of ǫ as

Ajilk = A0jilk + ǫA1jilk + ǫ2A2jilk + ǫ3A3jilk + · · · , (4.7)

where A0jilk are constants, A1jilk are functions of coordinates xi and parameter λ(1),

A2jilk are functions of coordinates xi and parameters λ(1) and λ(2), and so on. We

note that in obtaining (4.7) only F̄ is re-expanded; the tensor U was obtained from

the previous section numerically and does not contain F̄ explicitly.

The incremental displacement can be expanded in the form

vi = v
(0)
i + ǫv

(1)
i + ǫ2v

(2)
i + ǫ3v

(2)
i + · · · , (4.8)

where v
(m)
i (m = 0, 1, ...) are all functions of x1 and x2 and are to be determined at

successive orders of approximations. By substituting this expansion into χij,j = 0

and equating likes powers of ǫ, we obtain the following sets of equations:

O(ǫ0):

A0jilkv
(0)
k,l = 0, (4.9)

O(ǫα), α ≥ 1:

A0jilkv
(α)
k,l = H

(α)
i (x1, x2 : λ

(α)), (4.10)

where the right hand side of (4.10) depends on the post buckling solution and incre-

mental solutions up to and including order ǫα−1. By expanding the traction vector

in the form

χi2 = T
(0)
i + ǫT

(1)
i + ǫ2T

(2)
i + ǫ3T

(3)
i + · · · , (4.11)

we obtain the auxiliary conditions

12



O(ǫα), α = 0, 1, 2, 3, ... :

T
(α)
i = 0, on x2 = k0, (4.12)

v̂
(α)
i = v

(α)
i , T̂

(α)
i = T

(α)
i , on x2 = 0, (4.13)

v
(α)
i → 0, as x2 → −∞. (4.14)

The solution for (4.9) subjected to (4.12)−(4.14) with α = 0 is given by

v
(0)
i = eiφ V

(0)
i (x2)E

1/2 + c.c., (4.15)

where φ is a constant satisfying 0 ≤ φ ≤ π/2, V
(0)
i can be obtained from the linear

analysis of Section 2 by using the fact that v
(0)
i is the bifurcation solution with mode

number 1/2 (when the scaled plate thickness is k0h). In particular, V
(0)
1 (x2) is real,

whereas V
(0)
2 (x2) is pure imaginary (see (see (2.8) and (2.9))). We also note that

the above solution can be multiplied by an arbitrary real constant, but this is not

necessary since we are solving a linearized eigenvalue problem.

Our numerical experimentation shows that a non-trivial solution can be found

only if the φ in (4.15) is equal to 0 or π/2. Furthermore, it can be shown that the

solution with φ = π/2 can be obtained from the solution associated with φ = 0 by

changing the signs of ǫ, λ(1), λ(3), . . . . Since the latter sign-changing does not alter

the value of the right hand side of (4.6), the two bifurcation modes correspond to

the same critical stretch. Thus, without loss of generality, we shall take φ = 0, and

(4.15) then reduces to

v
(0)
1 = V

(0)
1 (x2)(E

1/2 + Ē1/2), v
(0)
2 = V

(0)
2 (x2)(E

1/2 − Ē1/2). (4.16)

On substituting (4.15) into (4.10) for α = 1, the term on the right hand side becomes

H
(0)
i (x1, x2) = R

(0)
1 (x2;λ

(1))E1/2 +R
(0)
3 (x2)E

3/2 + c.c., (4.17)

where R
(0)
1 and R

(0)
3 are known functions. Thus the solution of (4.10) for α = 1 can

be written in the form

v
(1)
i = V

(1)
i1 (x2)E

1/2 + V
(1)
i3 (x2)E

3/2 + c.c.. (4.18)

By substituting (4.18) into (4.10) and equating the coefficient of E1/2, we obtain

two ordinary differential equations for V
(1)
11 (x2) and V

(1)
21 (x2). A similar operation

applied to the thin layer yields two parallel equations for V̂
(1)
11 (x2) and V̂

(1)
21 (x2).

These equations can be solved in the same manner as how the functions in (3.7) and

(3.8) are found. The solution will contain a total of six disposable constants. On

substituting this solution into the auxiliary conditions (4.12) and (4.13) we obtain

a matrix equation of the form Md = f where d is a 6-vector formed from the six

disposable constants, f is a known vector that contains λ(1), and M is a 6×6 matrix

whose determinant is zero. Imposition of an appropriate solvability condition then

yields a linear equation for λ(1). In this way λ(1) is found and the V
(1)
i1 (x2) and

V̂
(1)
i1 (x2) are determined up to a multiplicative constant.
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J
m

λsec ǫsec

1 0.87581020 0.31698314

2 0.85864093 0.34304869

5 0.84474980 0.36275930

10 0.83922600 0.37030394

20 0.83625162 0.37430315

100 0.83375778 0.37762340

1000 0.83318177 0.37838613

10000 0.83312386 0.37846274
0.2

0.4

0.6

0.8

1

J

λ sec

ε sec

10 100 1000 10000

m

Figure 4: Period doubling secondary bifurcation critical stretch λsec and ǫsec for Gent material.

In a similar manner, by substituting (4.18) into (4.10) and (4.18∗) into (4.10∗),

and equating the coefficient of E3/2, we obtain two ordinary differential equations

for V
(1)
13 (x2) and V

(1)
23 (x2), and another two for V̂

(1)
13 (x2) and V̂

(1)
23 (x2). Solving these

equations subject to the associated auxiliary conditions, we again obtain a matrix

equation similar to the one discussed above, but now the coefficient matrix is not

singular and a unique solution can be obtained. This completes the solution at order

ǫ.

By using the same procedure at higher orders we can obtain λ(2), λ(3) etc. When

period-doubling secondary bifurcation can occur, equations (3.1) and (4.6) should

be satisfied simultaneously. Truncating at ǫ3 and equating the right hand sides of

these two equations, we obtain

λ∗

cr − λ0 + ǫλ(1) + ǫ2(1 + λ(2)) + ǫ3λ(3) = 0. (4.19)

This cubic equation for ǫ has at least one real root. It turns out that for all the

cases that we have considered, it is the only real root which we denote by ǫsec.

We note, however, that ǫsec is allowed to be negative. As discussed in the two

paragraphs below (4.15), when a solution with negative ǫsec is found, another solution

can be constructed by changing the signs of ǫsec, λ
(1), λ(3) etc, and the two solutions

correspond to the same critical stretch. The critical stretch for period-doubling

secondary bifurcation is computed from

λsec = λ0 − ǫ2sec, (4.20)

which is independent of the sign of ǫsec as expected.

When the layer and substrate are both modelled as Gent materials with µ̂/µ =

100, λsec and ǫsec are dependent on Jm. This dependence is shown in Figure 4. It can

be seen that λsec is a monotonically decreasing function of Jm, but is not too sensitive

to changes in Jm except when Jm becomes smaller than 10. Numerical values of λsec

and ǫsec for some selected values of Jm are listed in a table in the same figure. As

Jm → ∞, λsec tends to the value for neo-Hookean materials.
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Figure 5: Period doubling secondary bifurcation critical stretch λsec and ǫsec for compressible neo-

Hookean material.

 ! " !"# # !"#

$%&'(#  !"#$%&&$$#  !#&"%"#' 

$%&'%#  !("&)*('%+  !)" &)$)%

$%&%)#  !(&($#" "+  !)"(##&'(

%&%%#  !())$$*&)+  !)*(&*$%"

%&'%#  !(   ''* +  !&$("&( $

%&*+#  !*(%) ") +  !&)*% ')%

%&+%#  !*' '"(&$+  !&%&)&()#

%&(%#  !($# %  )+  !)(&")")$

-0.2 0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

1

∆

λ sec

ε sec

Figure 6: Period doubling secondary bifurcation critical stretch λsec and ǫsec for incompressible

neo-Hookean material with pre-strain in substrate.

When the layer and substrate are both modelled as compressible neo-Hookean

materials with µ̂/µ = 100, λsec and ǫsec are dependent on ν, and their variations are

shown in Figure 5. It can be seen that λsec is a monotonically increasing function of

ν. As ν → 1/2 , λsec tends to the value for neo-Hookean materials. As ν approaches

a threshold value approximately equal to 0.31, the parameter ǫsec, which is meant

to be sufficiently small, increases rapidly. Our asymptotic expansions, and hence

our result for λsec, become invalid. We may then tentatively conclude that period-

doubling secondary bifurcation may become impossible or is not the preferred mode

of bifurcation in this limit. This is discussed further in the concluding section.

Finally, we consider the case when the layer and substrate are both modelled as

incompressible neo-Hookean materials with µ̂/µ = 100, but a pre-stretch is allowed

in the substrate before the bilayer structure is compressed. The pre-stretch is char-

acterized by ∆, the mismatch of the stretch experienced by the substrate and the

layer. The dependence of λsec and ǫsec on ∆ is shown in Figure 6. It can be seen that

15



 ! " !"# # !"#

$%&''# $%()*+*,))# $%)+('+*'&

$%&-# $%())-.)-(# $%)++.$'*$

$%&$# $%()**(.(,# $%)+++&()-

$%)-# $%(*+$,)**# $%)()-*&.$

$%)$# $%(.+.*$+.# $%)'-.++-&

$%*$# $%++((&),*# $%&)(('&+$

$%.$# $%,'&,-*+'# $%-*&),-.'

$%$$# $%&-(.,',,# $%+.)(&)-+

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

ν

λ sec

ε sec

Figure 7: Period doubling secondary bifurcation critical stretch λsec and ǫsec for compressible

material (5.1).

the effects of pre-strain on λsec is not monotonic. When the pre-strain is negative, as

its amplitude increases the critical compression decreases firstly and then increases

after the pre-strain has reached a value approximately equal to ∆ = −0.1. When

the pre-strain is positive, the critical compression increases first and then decreas-

es after the pre-strain has reached a value approximately equal to ∆ = 0.24. The

monotonic behavior in a sufficiently small neighborhood of ∆ = 0 is consistent with

the experimental results given by Auguste et al. [50] and the numerical results given

by Zhuo and Zhang [46], but the non-monotonic behavior outside this neighborhood

was not considered by the latter authors.

5. Discussion

In this paper we have refined the methodology proposed in Fu and Cai [41] and

used it to assess the effects of compressibility, a pre-stretch in the substrate, and ma-

terial models on the critical stretch at which period-doubling secondary bifurcation

occurs in a uniaxially compressed film-substrate bilayer structure. Our numerical re-

sults show that for a bilayer composed of incompressible materials, the constitutive

model significantly affects the magnitude of the critical compression at which period-

doubling secondary bifurcation occurs. Comparing with the neo-Hookean model, the

extensibility parameter Jm in the Gent model plays an important role in the period-

doubling secondary bifurcation. It is found that the critical strain is a monotonically

increasing function of Jm, achieving its maximum in the limit Jm → ∞, that is when

the layer and substrate are both modelled as neo-Hookean materials. The critical

strain becomes as small as 0.12 when Jm is equal to 1.

A pre-strain in the substrate is another important factor affecting the critical

compression at which period-doubling secondary bifurcation occurs. Numerical re-

sults show that when µ̂/µ = 100 this critical value attains a local maximum when

the substrate is given a pre-strain of about 10%, and a local minimum when the

substrate is subject to a pre-strain of about 24%.
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For compressible materials, Poisson’s ratio plays a crucial role in period-doubling

secondary bifurcations. When the layer and substrate are both composed of com-

pressible neo-Hookean materials with the same Poisson’s ratio, numerical results

corresponding to the particular choice µ̂/µ = 100 show that the critical compression

is an increasing function of Poisson’s ratio ν with the incompressible limit recovered

correctly when ν tends to 0.5. Our calculations seem to indicate that there exists a

critical value of Poisson’s ratio, approximately equal to 0.307, below which period-

doubling secondary bifurcation becomes impossible or gives way to other modes of

bifurcations. To understand how this result depends on the constitutive model used,

we have also considered the strain-energy function given by

W =
µ

2
(Ī1 − 3) +

µ∗

2
(J − 1)2, (5.1)

where Ī1 = I1J
−2/3, µ∗ = 2µ(1+ν)/[3(1−2ν)]. This is the compressible neo-Hookean

material model built into the Abaqus software. In the case µ̂/µ = 100, the variations

of λsec and ǫsec on ν are shown in Figure 7. It can be seen that now λsec is not a

monotonically increasing function of ν. As ν increases, λsec increases first and then

decreases after a maximum arrived (the data in the accompanying table show this

behaviour more clearly). As ν → 1/2 , λsec tends to the value for neo-Hookean

materials. In this case the asymptotic results are feasible for all values of ν although

the critical strains are quite large for small values of ν.

We have carried out some preliminary numerical simulations on Abaqus using

both material models (1.1) and (5.1). As ν is decreased from its incompressible

limit 1/2, our asymptotic results for λsec are initially very close to their numerical

counterparts (with a relative error less than 5%), but the two sets of results gradually

diverge from each other. We believe that this might be due to the fact that for values

of ν small enough, other secondary bifurcations may also be possible and may be

preferred. To provide some evidence to this claim, we have also considered secondary

bifurcations into a mode with a mode number 1/N , where N is a rational number

greater than unity but not equal to 2. The leading-order solution (4.15) is replaced

by

v
(0)
i = V

(0)
i (x2)E

1/N + c.c.. (5.2)

From the interaction of this mode with the primary bifurcation mode (3.5), we deduce

that solutions at the next two orders must necessarily take the form

v
(1)
i = V

(1)
i1 (x2)E

1−1/N + V
(1)
i3 (x2)E

1+1/N + c.c., (5.3)

v
(2)
i = V

(2)
i1 (x2)E

1/N + V
(2)
i2 (x2)E

2−1/N + V
(2)
i3 (x2)E

2+1/N + c.c., (5.4)

respectively. Thus, no solvability condition is necessary for v
(1)
i , but is needed for v

(2)
i .

From such considerations, we deduce that the principal stretch may be expanded as

λ0 = λ∗

cr + ǫ2λ(2) + ǫ4λ(4) + ..., (5.5)

where λ∗

cr is the critical stretch at which a mode with mode number 1/N may bi-

furcate from the uniformly deformed state Be , and λ(2), λ(4), ... are constants to be
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Figure 8: Asymptotic results for secondary bifurcations with N = 7/4 (dashed lines). The solid

lines are the same results as in Figure 5 and are included for comparison.

determined. Truncating at ǫ4 and equating the right hand side of (5.5) to λ0 − ǫ2,

we obtain

λ∗

cr − λ0 + ǫ2(1 + λ(2)) + ǫ4λ(4) = 0. (5.6)

From (5.6), we may find real roots of ǫ. Denote the smallest positive root by ǫsec,

then the critical stretch for the secondary bifurcation is computed with the use of

λsec = λ0 − ǫ2sec. By using the above procedure, we have tried various rational

values of N close to 2 and have indeed found solutions when N = 7/4 when the

strain-energy function (1.1) is used. The solutions are plotted together with the

solutions for N = 2 in Figure 8. It is seen that for ν less than 0.4 approximately, the

mode with N = 7/4 corresponds to lower values of the compression strain. Without

theoretical guidance, such a secondary bifurcation mode might be difficult to detect

in purely numerical simulations. From a dynamical system’s point of view, secondary

bifurcations with larger periods are always possible. This has indeed previously been

demonstrated numerically by Budday et al [40] who showed that period-tripling,

period-quadrupling, and period-quintupling secondary bifurcations are also possible

although they occur at higher values of compressive strain in the specific context

considered.

Since the solution behaviour as ν approaches 0.31 in Fig.5 is similar to the solution

behaviour as µ̂/µ approaches 5.8 found in [41] for the incompressible case, the above

solutions found for N = 7/4 prompted us to look for similar solutions when µ̂/µ

satisfies 1.74 < µ̂/µ < 5.8 and when both the layer and substrate are incompressible.

We confirm that secondary bifurcation solutions with N = 7/4 do indeed exist in

this parameter regime as well.

Finally, we observe that in our previous paper [41], the post-buckling solution

18



is also assumed to be proportional to eix1 but the x1 there is given by x1 = λX1

where λ = λ0 − ǫ2. Thus, measurement of period-doubling is with respect to the

uniformly compressed configuration with λ = λ0− ǫ2, whereas here it is with respect

to the configuration with λ = λ0. Equally, we could have assumed that all depen-

dent variables are functions of XA and the post-buckling solution is proportional to

eiX1 . In this case measurement of period-doubling is then with respect to the initial

uncompressed configuration. In the current paper, λ0 and λ∗

cr are determined from

Ω(λ0, kh) = 0, and Ω(λ∗

cr,
1

2
kh) = 0, (5.7)

respectively; see (2.14). Denote the associated principal stretches in the x2-direction

by g(λ0) and g(λ∗

cr), respectively. If, for instance, period-doubling were measured in

terms of XA, then λ0 and λ∗

cr would be determined by

Ω̂(λ0, KH) = 0, and Ω̂(λ∗

cr,
1

2
KH) = 0, (5.8)

where K is the mode number such that the solution is proportional to eiKX1. Con-

sistency of (5.7)1 and (5.8)1 requires

Ω̂(λ0, KH) = Ω(λ0,
K

λ0
g(λ0)H).

However, if Ω̂ were defined this way, (5.7)2 and (5.8)2 would in general be inconsis-

tent. Thus, the three ways of measuring period-doubling give different results, but

the differences are found to be insignificant. The Mathematica programme used to

produce the results in this paper is freely available to any interested reader upon

request.
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