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Localized bulging in an inflated cylindrical tube of arbitrary

thickness – the effect of bending stiffness
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aDepartment of Mechanics, Tianjin University, Tianjin 300072, China
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Abstract

We study localized bulging of a cylindrical hyperelastic tube of arbitrary thickness when it

is subjected to the combined action of inflation and axial extension. It is shown that with

the internal pressure P and resultant axial force F viewed as functions of the azimuthal

stretch on the inner surface and the axial stretch, the bifurcation condition for the initiation

of a localized bulge is that the Jacobian of the vector function (P, F ) should vanish. This is

established using the dynamical systems theory by first computing the eigenvalues of a certain

eigenvalue problem governing incremental deformations, and then deriving the bifurcation

condition explicitly. The bifurcation condition is valid for all loading conditions, and in

the special case of fixed resultant axial force it gives the expected result that the initiation

pressure for localized bulging is precisely the maximum pressure in uniform inflation. It is

shown that even if localized bulging cannot take place when the axial force is fixed, it is still

possible if the axial stretch is fixed instead. The explicit bifurcation condition also provides

a means to quantify precisely the effect of bending stiffness on the initiation pressure. It

is shown that the (approximate) membrane theory gives good predictions for the initiation

pressure, with a relative error less than 5%, for thickness/radius ratios up to 0.67. A two-term

asymptotic bifurcation condition for localized bulging that incorporates the effect of bending

stiffness is proposed, and is shown to be capable of giving extremely accurate predictions for

the initiation pressure for thickness/radius ratios up to as large as 1.2.

Keywords: Localized bulging, rubber tubes, aneurysm, bifurcation, nonlinear elasticity.

1. Introduction

Localized bulging in an inflated cylindrical hyperelastic tube is characterized by three

distinct phases: initiation, growth and propagation, which are also shared by a large variety

of other localization problems in continuum mechanics. It is therefore a fundamental protyp-

ical problem whose understanding can help shed light on other more complicated localization

problems. The problem itself is relevant to a variety of applications, as witnessed by a series
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of recent studies on the continuum-mechanical modelling of aneurysm initiation in human

arteries (Fu et al., 2012; Alhayani et al., 2013, 2014; Rodrguez-Martnez et al., 2015), and on

localized bulging under the additional effects of swelling (Demirkoparan & Merodio, 2015),

viscoelasticity/chemorheology (Wineman, 2015a,b), and electric actuation (Lu et al., 2015).

Localized bulging in an inflated isotropic rubber tube was first documented by Mallock

(1891), and later studied experimentally and numerically by Kyriakides & Chang (1990,

1991), Pamplona et al. (2006), Goncalves et al. (2008), and Shi & Moita (1996). The

propagation stage was recognized by Yin (1977) and Chater & Hutchinson (1984) as a two-

phase deformation governed by Maxwell’s equal area rule, but the character of the initiation

stage, and its connection with the so-called limit-point instability (Alexander, 1971; Kanner

& Horgan, 2007), was not fully understood until more recently. In the early stability and

buckling analysis of a hyperelastic cylindrical tube that is subjected to the combined action of

internal inflation and axial stretching/compression, attention was mainly focused on periodic

perturbations/patterns (Shield, 1972; Haughton & Ogden, 1979a,b; Chen, 1997). The special

case when the axial mode number is zero was thought to correspond to a bifurcation into

another uniformly inflated configuration, and thus to have no relevance to localized bulging.

However, it was recognized by Fu et al. (2008) and Pearce & Fu (2010) that it is precisely

this zero mode number case that corresponds to localized bulging when nonlinear effects

are brought into play. It was further shown in Fu & Il’ichev (2015) that in the case of

fixed resultant axial force (hereafter simply referred to as axial force), the initiation pressure

for localized bulging corresponds to the maximum pressure in uniform inflation, but this

correspondence may no longer hold when other loading conditions are applied at the ends.

In particular, when the axial stretch is fixed during inflation, localized bulging may occur even

if the pressure in uniform inflation does not have a maximum. Whether localized bulging can

take place or not is also dependent on the material models used, and this issue was examined

by Pearce (2012). Stability of the localized bulging configuration in the growth stage was

studied by Fu & Xie (2010) and Il’ichev & Fu (2012), whereas imperfection sensitivity of

localized bulging have recently been examined by Fu & Xie (2012).

In most of the above-mentioned studies, the tube is modeled as a membrane without

any bending stiffness. In the present paper, we address the following questions: (1) would

localized bulging occur in a pressurized cylindrical tube of any thickness? (2) how does

bending stiffness affect the initiation pressure? and (3) what is the range of validity of the

traditional membrane theory? Our research is mainly motivated by possible applications

to the mathematical modeling of aneurysm initiation; in that context the human arteries

exhibit noticeable bending stiffness in contrast with party balloons (Fung et al., 1979; Gasser

et al., 2006).

When the tube is of arbitrary thickness, any nonlinear analysis would become extremely

difficult, if not intractable, but fortunately, the dynamical systems theory’s view provides us

with a means to determine the bifurcation point analytically. To sketch the idea, suppose

2



Re α

Im α

α1 α2−α1−α2

Re α

Im α

α2−α2

Re α

Im α

α1

α2

−α1

−α2

(a) (b) (c)

Figure 1: Movement of the five eigenvalues that are initially real as the azimuthal stretch increases. The

three plots (a), (b) and (c) correspond to when the azimuthal stretch is smaller than, equal to, or greater than

its critical value, respectively. Localized bulging occurs when α1 vanishes, making zero a triple eigenvalue.

that we consider an axially symmetric perturbation superimposed on a uniformly inflated

cylindrical tube. The incremental boundary value problem is readily available from the

classical paper by Haughton & Ogden (1979b). Suppose now further that the perturbation

depends on the axial coordinate z through eαz. Then the incremental boundary value prob-

lem reduces to the form given by (3.2) and (3.3). This is an eigenvalue problem and we may

look for eigenvalues of α such that non-trivial solutions can be found. We observe that part

of Haughton & Ogden (1979b)’s numerical computation was concerned with solutions of this

eigenvalue problem when α is replaced by −iα where i =
√−1. It can be shown that the

distribution of eigenvalues is symmetric with respect to both axes in the complex α-plane.

Suppose that we characterize the uniform inflation using the azimuthal stretch λa on the

inner surface. When λa is increased only slightly above 1, it can be shown that there are

five real eigenvalues of α of the form 0,±α1,±α2 such that 0 < α1 < α2; see Fig.1(a). As

λa increases, the two real eigenvalues ±α1 will move towards the origin. When they even-

tually coalesce at the origin, zero becomes a triple eigenvalue which signals the initiation of

a bifurcation into a localized solitary-wave type solution (Kirchgässner, 1982; Mielke, 1991;

Haragus & Iooss, 2011). When λa is increased further, the two eigenvalues ±α1 would move

onto the imaginary axis. The exponential eαz then becomes sinusoidal, and this is the situa-

tion addressed by Haughton & Ogden (1979b). It is clear from this deduction that localized

bulging must necessarily occur before any bifurcation into periodic patterns. This fact is

consistent with all experimental observations (Kyriakides & Chang, 1990, 1991; Pamplona

et al., 2006; Goncalves et al., 2008).

Thus, determination of the initiation pressure is reduced to finding the condition under

which zero becomes a triple eigenvalue of the eigenvalue problem (3.2) and (3.3). Since

it is known that when the membrane theory is used and in the case of fixed axial force,

this coalescence of eigenvalues at the origin corresponds precisely to when the pressure in

uniform inflation reaches its maximum, it is natural to ask whether this correspondence can
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be extended to the case when the exact theory of nonlinear elasticity is used. This is found

to be indeed the case.

We organize the rest of the paper as follows. After formulating the incremental problem

in the next section, we solve the above-mentioned eigenvalue problem numerically for general

real α in Section 3, and analytically for small α in Section 4. In both sections, it is verified

that in the case of fixed axial force zero becomes a triple eigenvalue when the pressure

attains its maximum in uniform inflation. It is further deduced that the bifurcation condition

corresponds to the fact that the Jacobian of the pressure and axial force becomes zero when

they are viewed as functions of the azimuthal stretch on the inner surface and the axial

stretch. In Section 5, the initiation pressure is computed using both the membrane theory

and the exact 3D theory, and the effect of bending stiffness is then quantified. We also plot

the bifurcation condition as a curve in the pressure/axial stretch plane so that the effects

of axial stretch are graphically displayed. This enables us to make a direct comparison

with the experimental results reported in Goncalves et al. (2008). In Section 6 we propose

a two-term asymptotic bifurcation condition for computing the initiation pressure; the first

term corresponds to the membrane theory whereas the second term incorporates the effect of

bending stiffness. The paper is then concluded with a summary and additional discussions.

2. Problem formulation

Our point of departure is the paper by Haughton & Ogden (1979b). We first recall some

results from this paper which are necessary for our subsequent analysis.

Consider a hyperelastic cylindrical tube that initially has inner radius A and outer radius

B. When it is uniformly stretched in the axial direction and inflated by an internal pressure

P , the inner and outer radii become a and b, respectively. In terms of cylindrical polar

coordinates, the deformation is given by

r2 = λ−1
z (R2 − A2) + a2, θ = Θ, z = λzZ, (2.1)

where (R,Θ, Z) and (r, θ, z) are the coordinates in the undeformed and deformed configu-

rations, respectively, and λz is the stretch in the axial direction which is assumed to be a

constant throughout this paper.

With incompressibility taken into account, the three principal stretches are given by

λ1 ≡ λ =
r

R
, λ2 = λz, λ3 = 1/(λ1λ2),

where the first equation defines λ as a function of r (with R eliminated using (2.1)1). Fol-

lowing Haughton & Ogden (1979b), we have identified the indices 1, 2, 3 with the θ-, z-, and

r-directions, respectively.

We assume that the constitutive behavior of the tube is described by a strain-energy

function W (λ1, λ2, λ3). In terms of the reduced strain-energy function w defined by

w(λ, λz) = W (λ, λz, λ
−1λ−1

z ), (2.2)
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the internal pressure is given by

P =

∫ λa

λb

w1

λ2λz − 1
dλ, (2.3)

where w1 = ∂w/∂λ, and the two limits λa and λb are defined by

λa =
a

A
, λb =

b

B
,

and are related to each other by

λ2
aλz − 1 =

B2

A2
(λ2

bλz − 1). (2.4)

The three principal stresses are

σii = σi − p̄, σi = λi
∂W

∂λi
, no summation on i, (2.5)

where p̄ is the pressure associated with the constraint of incompressibility.

The resultant axial force at any cross section is independent of Z and is given by

F (λa, λz) ≡ 2π

∫ b

a

σ22rdr − πa2P = πA2(λ2
aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (2.6)

where w2 = ∂w/∂λz and we have shown F explicitly as a function of λa and λz (the λb in

the equation is eliminated using (2.4) ).

We shall assume that the tube is long enough so that the end effects can be neglected

and we focus on the main section of the tube away from either of the two ends. Thus, for

our purpose the tube is effectively infinitely long. We shall also assume that during inflation

either the axial force F or axial stretch λz is fixed. The former corresponds to the situation

when one end is fixed but the other end is closed and free to move, and may or may not be

subjected to the extra pulling of a dead weight. Such a setup was used in the experiments

of Kyriakides & Chang (1991). This is also how one would usually inflate a tubular party

balloon. In this case the equation F = C, where C is a constant, can be solved to express

λz in terms of λ. The latter case of a fixed axial stretch corresponds to the situation when

the tube is first subjected to an axial extension and then both ends are fixed. Such a setup

was used in the experiments of Goncalves et al. (2008), and is also how arteries are in situ.

The volume ratio v, that is the internal volume in the deformed configuration divided by

the internal volume in the undeformed configuration, is given by v = λzλ
2
a. This quantity

is a function of λa only since λz is either fixed or eliminated with the use of F = C. Thus,

once the strain-energy function is specified, we may easily plot the dependence of P on v.

In particular, when F = C, a pressure maximum in such a plot would correspond to

dP

dλa

∣∣∣∣
fixedF

=
∂P

∂λa

+
∂P

∂λz

dλz

dλa

= 0. (2.7)
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The ordinary derivative in the above expression can be eliminated by solving

∂F

∂λa

+
∂F

∂λz

dλz

dλa

= 0. (2.8)

It thus follows that at a pressure maximum we have

∂P

∂λa
− ∂P

∂λz

∂F

∂λa

(
∂F

∂λz

)−1

= 0. (2.9)

This equation can then be solved in conjunction with F (λa, λz) = C to find the values of

λa and λz at which a pressure maximum in uniform inflation is attained. When these two

equations do not have a solution, the pressure will be a monotonic function of the internal

volume. One practical way to determine whether a pressure maximum exists or not is to

draw the contour plots of the two equations together in the (λa, λz)-plane. If, for instance,

there are two intersections, the pressure has both a maximum and a minimum. The existence

of a pressure maximum in uniform inflation is known as a limit-point instability (Alexander,

1971; Kanner & Horgan, 2007). For the majority of material models, equation (2.9) together

with F = 0 has two roots, corresponding to the fact that the pressure versus volume curve

has an N shape with a maximum and a minimum. Notable exceptions are the neo-Hookean

and Mooney-Rivlin material models.

In a similar manner, we may consider the variation of F with respect to λz when P is

fixed and the latter fact is used to express λa in terms of λz. In this case the F will reach a

maximum when
∂F

∂λz
− ∂F

∂λa

∂P

∂λz

(
∂P

∂λa

)−1

= 0. (2.10)

We remark that in writing down (2.9) and (2.10) we have implicitly assumed that ∂F/∂λz

and ∂P/∂λa are non-zero. It can be shown that in the undeformed state when λa = λz = 1

this is indeed the case since we then have

∂F

∂λz

= 3μπ(1− A2),
∂P

∂λa

= 2μπ(1− A2),

where μ is the ground state shear modulus. It seems that none of the well-known constitutive

assumptions guarantee that this is the case for all deformations, but it is known that under

the membrane assumption ∂P/∂λa is at least positive before the condition for localized

bulging is satisfied (Fu & Il’ichev, 2015). In the present 3D setting, for each material model

that we use the above assumption is checked numerically by inspecting the contour plots of

∂F/∂λz = 0 and ∂P/∂λa = 0 in the (λa, λz)-plane. We have verified that this assumption is

always satisfied at least before the bifurcation condition for localized bulging is satisfied.

It can be seen that both (2.9) and (2.10) imply the following equation:

J(P, F ) ≡ ∂P

∂λa

∂F

∂λz

− ∂P

∂λz

∂F

∂λa

= 0, (2.11)
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which states that the Jacobian of the vector function (P, F ) vanishes. It will be shown later

that this is in fact the bifurcation condition for the initiation of a localized bulge whether it

is the axial force or the axial stretch that is fixed.

To study the bifurcation of the primary deformation determined above, we consider an

axially symmetric perturbation of the form

ṙ = u(r, z)er + v(r, z)ez,

where ṙ denotes the perturbation of the position vector r, and er and eθ are the base vectors

in the r- and θ-directions, respectively. The linearized incremental equilibrium equations that

are not satisfied automatically are

χ3j,j +
1

r
(χ33 − χ11) = 0, χ2j,j +

1

r
χ23 = 0, (2.12)

where the incremental stress tensor (χij) is given by

χij = Bjilkηkl + p̄ηji − p∗δji. (2.13)

In the last equation, p̄ has already been defined in (2.5), p∗ is the incremental pressure field,

the η, with components ηkl, is the gradient of incremental displacement and is given by

η =

⎡
⎢⎣

u
r

0 0

0 vz vr

0 uz ur

⎤
⎥⎦ , vz ≡ ∂v

∂z
, vr ≡ ∂v

∂r
etc, (2.14)

and the Bjilk’s are the instantaneous elastic moduli given by

Biijj = Bjjii = λiλjWij , no summation on i or j,

Bijij =
λiWi − λjWj

λ2
i − λ2

j

λ2
i , λi �= λj, no summation on i or j,

Bijji = Bijij − λiWi, i �= j, no summation on i or j,

where Wi = ∂W/∂λi, Wij = ∂2W/∂λi∂λj etc.

The incompressibility condition takes the form

trη = ur + vz +
u

r
= 0. (2.15)

The incremental boundary conditions are

(χn− PηTn)
∣∣
r=a

= 0, χn|r=b = 0, (2.16)

where n denotes the normal to the surface where each of the boundary conditions is imposed.

These conditions reflect the fact that the internal boundary r = a is subjected to a hydrostatic

pressure P whereas the outer boundary r = b is traction-free.
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Written out explicitly, the equilibrium equations (2.12) take the form

p∗r = (rB′
1133 − B1111)

u

r2
+ (rB′

3333 + rp̄′ + B3333)
ur

r
+ B3333urr + B2323uzz

+(rB′
2233 + B2233 − B1122)

vz
r
+ (B2233 + B3223)vrz, (2.17)

p∗z = B3232vrr + (rB′
3232 + B3232)

vr
r
+ B2222vzz + (B2233 + B3223)urz

+(rB′
3223 + rp̄′ + B3223 + B1122)

uz

r
, (2.18)

and the associated boundary conditions (2.16) become

vr + uz = 0, on r = a, b, (2.19)

(B3333 − B2233 + λ3W3)ur + (B1133 − B2233)
u

r
− p∗ = 0, on r = a, b. (2.20)

In the above equations, a subscript on p∗, u or v denotes partial differentiation with respect

to the implied coordinate (as indicated in (2.14)), and the primes denote d/dr.

For our illustrative calculations, we shall use three representative material models: the

Ogden material model (Ogden, 1972), the Gent material model (Gent, 1996), and an arterial

model, for which the strain-energy function is given, respectively, by

W = μ
3∑

r=1

μ∗
r(λ

αr
1 + λαr

2 + λαr
3 − 3)/αr, (2.21)

W = −μ

2
Jm ln(1− J1

Jm

), J1 = λ2
1 + λ2

2 + λ2
3 − 3, (2.22)

and

W =
μ

2(1− k + kα)

{
(1− k)J1 + keαJ1 − k

}
, (2.23)

where μ is the shear modulus for infinitesimal deformations,

α1 = 1.3, α2 = 5.0, α3 = −2.0, μ∗
1 = 1.491, μ∗

2 = 0.003, μ∗
3 = −0.023,

and Jm, k, α are material constants. We shall take Jm = 97.2 which is typical for rubbers,

and k = 1/2, α = 1/4 which is a simple choice that gives us the desired behaviour that

when the axial force is fixed the pressure does not have a maximum in uniform inflation.

Without the first term (1−k)J1 on the right hand side, equation (2.23) has been postulated

by Delfino et al. (1997) as a possible model for arteries. This first term is added to represent

the contribution from the matrix material. Although both the Gent and Ogden models are

believed to be excellent models for rubber materials, it will be shown that they give different

predictions for localized bulging in the large stretch regime.
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3. Numerical determination of the bifurcation condition

As outlined in the Introduction, we now look for a solution of the form

u = f(r)eαz, v = g(r)eαz, p∗ = h(r)eαz. (3.1)

On substituting this into the incremental equilibrium equations and boundary conditions,

and then eliminating g(r) and h(r) in favor of f(r), we find that f(r) satisfies a single fourth-

order ordinary differential equation and two boundary conditions, which are numbered in

Haughton & Ogden (1979b) as (53), (54), and (55), respectively. For our purpose, it is more

convenient to rewrite them in matrix form as

dy

dr
= A(r, α)y, a ≤ r ≤ b, (3.2)

B(r, α)y = 0, on r = a, b, (3.3)

where y = [f, f ′, f ′′, f ′′′]T , and the coefficient matrices A and B are given by

A =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

a41 a42 a43 a44

⎤
⎥⎥⎥⎦ , B =

[
−1− α2r2 r r2 0

b21 b22 b23 r3ζ(r)

]
, (3.4)

with ζ(r) = B3232, and

r4ζ(r)a41 = 3B3232 + α2r3(B′
1122 − B′

1133 − B′
2222 + B′

2233 + B′
3223)

−3rB′
3232 + r2B′′

3232 + α2r2(B1111 + B2222 − 2B1122 − 2B3223)

−α4r4B2323 + α2r4(B′′
3232 − σ′′

33),

r4ζ(r)a42 = α2r4(2B′
2233 + 2B′

3223 − B′
2222 − B′

3333) + 3r2B′
3232 − 3rB3232

+α2r3(2B2233 + 2B3223 − B2222 − B3333)− r3B′′
3232,

r4ζ(r)a43 = r4(2α2B3223 + 2α2B2233 − α2B2222 − B′′
3232 − α2B3333)

−3r3B′
3232 + 3r2B3232,

r4ζ(r)a44 = −2r4B′
3232 − 2r3B3232,

b21 = α2r2 (B2222 + B1133 − B1122 − B2233 − rB′
3232 − B3232 + σ3 + rσ′

33)

−rB′
3232 + B3232,

b22 = α2r3(B2222 + B3333 − B3223 − 2B2233 + σ3) + r2B′
3232 − rB3232,

b23 = r2 (rB′
3232 + 2B3232) .

We have solved this eigenvalue problem using both the determinant and compound matrix

methods. It is found that the determinant method is sufficient for our current purpose

because the problem is not stiff. All of our numerical computations and algebraic manipula-

tions are carried out with the aid of Mathematica (Wolfram, 1991). Using the determinant
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method, we first solve B(a, α)y = 0 to find two linearly independent vectors, say y(1)(a) and

y(2)(a). Next, we use each of these two vectors as an initial condition and integrate (3.2)

from r = a to r = b to obtain two linearly independent solutions y(1)(r) and y(2)(r). Since

a general solution can be written as a linear combination of these two solutions, satisfaction

of the boundary condition at r = b then requires that

E(λa, α) ≡ det
{
B(b, α)[y(1)(b),y(2)(b)]

}
= 0, (3.5)

where the first equation defines the function E(λa, α), and [y(1)(b),y(2)(b)] denotes the 4× 2

matrix formed by putting the two vectors y(1)(b) and y(2)(b) side by side. Eigenvalues of α

are the roots of E(λa, α) = 0. Thus, for each λa, we may iterate on α until the above error

function is sufficiently small (typically smaller than 10−9). In this way, the dependence of α

on λa can be determined numerically. In the case of fixed axial force, the axial stretch λz is

found to be a monotonically increasing function of λa, and can be taken as an independent

parameter instead of λa.

As remarked in the Introduction, in general the eigen system (3.2) and (3.3) have both

real and complex eigenvalues, but the distribution of eigenvalues of α in the complex α-plane

must necessarily be symmetric with respect to both axes (since in the eigenvalue problem α

appears through α2 and all the coefficient functions are real). Such complex eigenvalues are

computed in the context of determining the so-called edge-resonance modes in unstressed

semi-infinite strips and cylinders; see, e.g., Zernov et al. (2006) and Pagneux (2011). For

our current purpose, however, we only need to examine the real eigenvalues. It is found that

there are five real eigenvalues as discussed in the Introduction. In Figure 2, we have shown

a typical plot showing the variation of α2
1 and α2

2 with respect to λz when A = 0.9, F = 0,

and when the Gent material model is used. It is seen that α2
1 is positive when λz < 1.1889

or λz > 3.3313. We have verified, with the aid of (2.9), that these two intervals correspond

to the two ascending branches of the pressure versus volume curve in uniform inflation, and

it is precisely when λz = 1.1889 or λz = 3.3313 that the pressure attains its maximum or

minimum, respectively. Thus, in the case of fixed axial force, localized bulging occurs when

pressure reaches its maximum in uniform inflation. This correspondence has previously been

proved analytically when the tube is modeled as a membrane without any bending stiffness

(Fu & Il’ichev, 2015).

Figure 3 shows that the two outmost eigenvalues ±α2 tend to infinity as the thickness

tends to zero, which is consistent with the fact that when the membrane theory is used,

there are only three real eigenvalues.

4. An explicit expression for the bifurcation condition

The numerical procedure used in the previous section breaks down when α is exactly

equal to zero. In this section, we derive an analytical expression for the condition under

which zero becomes a triple eigenvalue.
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Figure 2: Variation of α2
1 and α2

2 with respect to λz when A = 0.9, F = 0, and when the Gent material

model is used.

Figure 3: Variation of α2 with respect to A, showing the fact that it tends to infinity in the thin-wall limit.

When α is small, we expand the coefficient matrix A(r, α) and B(r, α) in the form

A(r, α) = A(0)(r) + α2A(1)(r) + · · · , B(r, α) = B(0)(r) + α2B(1)(r) + · · · , (4.1)

and look for a solution of the form

y = y(0) + α2y(1) + · · · , f(r, α) = f (0)(r) + α2f (1)(r) + · · · . (4.2)

The explicit expressions forA(0)(r), B(0)(r) etc are not written out here for the sake of brevity,

and we recall that f(r, α) is the first element in y. On substituting these expressions into

(3.2) and (3.3), and equating the coefficients of α0 and α2 to zero, we obtain

dy(0)

dr
= A(0)(r)y(0),

dy(1)

dr
= A(0)(r)y(1) + A(1)(r)y(0), a ≤ r ≤ b, (4.3)

B(0)(r)y(0) = 0, B(0)(r)y(1) + B(1)(r)y(0) = 0, on r = a, b. (4.4)

It can be deduced from (4.3)1 that the fourth order differential equation satisfied by f (0)(r)

can be rewritten in the compact form

d

dr

1

r

d

dr

(
rζ(r)

d

dr

1

r

d

dr
rf (0)(r)

)
= 0, (4.5)
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so that a general solution can be deduced through straightforward integration and is given

by

f (0)(r) = c1r + c2
1

r
+ c3κ1(r) + c4κ2(r), (4.6)

where c1, c2, c3, c4 are constants and

κ1(r) =
1

r

∫ r

a

t

∫ t

a

s

ζ(s)
dsdt, κ2(r) =

1

r

∫ r

a

t

∫ t

a

1

sζ(s)
dsdt, (4.7)

recalling that the function ζ(r) is defined below (3.4). On substituting this solution into

the leading-order boundary condition (4.4)1, it is found that the coefficients c3 and c4 must

necessarily vanish, but c1 and c2 are unrestricted. At the next order, the general solution is

given by

f (1)(r) = d1r + d2
1

r
+ d3κ1(r) + d4κ2(r) + c1κ3(r) + c2κ4(r), (4.8)

where d1, d2, d3, d4 are constants and the last two terms are particular integrals given by

κ3(r) =
1

r

∫ r

a

y

∫ y

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω1(s)dsdtdxdy, (4.9)

κ4(r) =
1

r

∫ r

a

y

∫ y

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω2(s)dsdtdxdy, (4.10)

with ω1(s) and ω1(s) defined by

ω1(r) = B′
1122 − B′

1133 + 3B′
2233 − 2B′

2222 − B′
3333 + 3B′

3223 + r(B′′
3223 + p̄′′)

+
1

r
(B1111 − 2B1122 + 2B2233 − B3333),

ω2(r) =
1

r
(B′′

3223 + p̄′′) +
1

r2
(B′

1122 − B′
1133 − B′

2233 − B′
3333 − B′

3223)

+
1

r3
(B1111 − 2B1122 + 2B2233 − B3333).

On substituting (4.6) and (4.8) into the boundary condition (4.4)2, we obtain a matrix

equation of the form Md = 0 where M is a 4 × 4 matrix which is not written out here for

the sake of brevity, and d is the column vector formed from the four disposable constants

c1, c2, d3, d4. It then follows that the condition for zero to become a triple eigenvalue is

detM = 0, which can be reduced to

Ω(λa, λz) = 0, (4.11)

where Ω(λa, λz) is given by

Ω(λa, λz) = 2ζ(b)(F1 − b2F2 +D1(b)− b2a−2D1(a) +D2(a)−D2(b))

−2ζ(a)(F1 − a2F2 −D1(a) + a2b−2D1(b) +D2(a)−D2(b))

+(1− a−2b2)D1(a)(F1 −D2(b)) + 2F3(F2 + a−2D1(a)− b−2D1(b))

+(1− a2b−2)D2(a)(b
2F2 −D1(b))− 2F4(F1 +D2(a)−D2(b)), (4.12)
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together with

F1 =

∫ b

a

ω1(t)dt, F3 =

∫ b

a

t

(∫ t

a

ω1(s)ds

)
dt,

F2 =

∫ b

a

ω2(t)dt, F4 =

∫ b

a

t

(∫ t

a

ω2(s)ds

)
dt.

D1(r) = B1122 − B1133 − B2233 + rB′
3223 + B3333 + rp̄′ + σ3,

D2(r) = B1122 − B1133 − 2B2222 + 3B2233 + rB′
3223 + 2B3223 − B3333 + rp̄′ − σ3.

The explicit bifurcation condition (4.11) is valid for all types of loading conditions imposed at

the two ends. Guided by what is known in the case when the tube is modeled as a membrane

and by the numerical calculations conducted in the previous section, we anticipate that

there is some connection between (2.11) and (4.11). It turns out that the contour plots of

Ω(λa, λz) = 0 and J(P, F ) = 0 in the (λa, λz)-plane always coincide. We therefore conclude

that (2.11) and (4.11) are equivalent bifurcation conditions.

5. Effect of bending stiffness

With an explicit bifurcation condition at our disposal, we are now in a position to quantify

precisely the effect of bending stiffness on the initiation pressure. We first summarize the

main results when the tube is modeled as a membrane.

When a membrane tube is subjected to uniform inflation, the strain energy per unit sur-

face area is given by Hw(λ1, λ2), where H is the thickness in the undeformed configuration,

w has the same meaning as in (2.2), and λ1 and λ2 are now the constant stretches in the

azimuthal and axial directions, respectively. The bifurcation condition for the initiation of a

localized bulge in an infinitely long tube without any imperfections is Ω(0)(λ1, λ2) = 0 with

Ω(0)(λ1, λ2) given by (6.2) in the next section; see also Fu et al. (2008, (6.2)). The pressure

Pmem and axial force Fmem are given by

Rm

H
Pmem =

w1

λ1λ2
,

Fmem

2πRmH
= w2 − λ1w1

2λ2
≡ μF̂ (λ1, λ2), (5.1)

where Rm is the constant averaged radius in the undeformed configuration and the last

equation defines the function F̂ . As discussed in Section 2, two commonly used loading

conditions correspond to fixed axial stretch or fixed axial force, respectively. In the former

case, the bifurcation condition Ω(0)(λ1, λ2) = 0 can be solved to find the value of λ1, and hence

the critical pressure, at which localized bulging takes place. In the latter case, F̂ = const

can be solved to express λ2 as a function of λ1. In the λ1λ2-plane, the curve corresponding to

this function may be viewed as the loading path that starts from the point with coordinates

(1, 1). The contour plot of the bifurcation condition Ω(0)(λ1, λ2) = 0 gives another curve in

the same plane. Localized bulging may take place only if these two curves have at least one

intersection. In the case of fixed axial stretch, the loading path is simply a horizonal line in

the λ1λ2-plane.
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(a) (b)

Figure 4: Results for a Gent material with Jm = 97.2 (left figure) and for the Ogden material (right

figure). In both figures the loading curve F̂ (λ1, λ2) = 0 or 2 (shown in dotted line) and bifurcation condition

Ω(0)(λ1, λ2) = 0 have two intersections, but they differ in that according to the Gent model localized bulging

becomes impossible when the axial force or axial stretch becomes sufficiently large, whereas according to the

Ogden model localized bulging is always possible.

Figure 5: Results for the material model given by (2.23), showing the fact that F̂ (λ1, λ2) = 0 or 0.5 and

Ω(0)(λ1, λ2) = 0 do not have any intersection and so localized bulging will not occur when F̂ is fixed.

However, localized bulging may still occur if it is the axial stretch that is held fixed during inflation.

Figures 4 and 5 depict two typical situations when such intersections may or may not

take place, respectively. Fig.4(a, b) shows results typical of material models for which

the pressure curve in uniform inflation has an N shape when the axial force is fixed. In

this case, each of the two loading curves F̂ (λ1, λ2) = 0, 2 and the bifurcation condition

Ω(0)(λ1, λ2) = 0 have two intersections, which correspond to the pressure maximum and

14



(a) (b)

Figure 6: Comparison of the membrane theory with the exact theory and two other approximate theories

that incorporate the effect of bending stiffness when the axial force is fixed at 0. The figures show variation

of the initiation pressure for localized bulging as a function of the thickness/radius ratio when the Gent

material model is used (left) or the Ogden material model is used (right).

minimum in uniform inflation, respectively. However, the Gent and Ogden material models

give different predictions in the high stretch regime: whereas according to the Ogden model

localized bulging is always possible, the Gent model predicts that localized bulging becomes

impossible when the axial force or axial stretch becomes sufficiently large. This is due to

the fact that for the Gent material model the two branches of Ω(0)(λ1, λ2) = 0 are joined at

a finite value of λ2 whereas for the Ogden material these two branches are never joined.

In contrast, Fig.5 shows results corresponding to the material model given by (2.23),

which are typical of material models for which the pressure does not have a maximum when

the axial force is fixed. In this case, there are no intersections, which means that the pressure

would be monotonic in uniform inflation. However, these results demonstrate the fact that

even if localized bulging cannot take place in the case of fixed axial force, it may still occur

in the case of fixed axial stretch. In the latter case the loading path in the λ1λ2-plane is

simply a horizontal line and it has intersections with Ω(0)(λ1, λ2) = 0 provided λ2 does not

exceed a threshold value (which is approximately equal to 1.23 in Fig.5).

We now proceed to discuss the effect of bending stiffness. We shall focus on the first

bifurcation point, and use Pcr and Pcr0 to denote the critical pressures predicted by the exact

theory and membrane theory, respectively. Fig.6 shows how good the membrane theory is in

predicting the critical pressure for localized bulging when F = 0: it shows how the critical

pressure Pcr, normalized by Pcr0, varies with respect to H/Rm (the dashed and dotted lines,

Pcr2, and Pcr3 in the figures will be defined in the next section). In the limit H/Rm → 0,

we have Pcr/Pmem → 1 and so the membrane theory becomes exact. It can be seen that

the membrane theory always under-predicts the initiation pressure, but due to the fact that

the curve is very flat near H/Rm = 0 the error is less than 5% for values of H/Rm up to

approximately 0.67.

Fig.7 shows how the contour plot of Ω(λa, λz) = 0 evolves with respect to A (we have

taken B = 1 without loss of generality). These results are based on the Gent material model
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Figure 7: Evolution of the contour plot of Ω(λa, λz) = 0 with respect to A when the Gent material model

with Jm = 97.2 is used. The right plot shows a blow-up of the left plot near λa = λz = 1.

Figure 8: Evolution of the contour plot of Ω(λa, λz) = 0 with respect to A when the Ogden material model

is used. The right plot shows a blow-up of the left plot near λa = λz = 1.

with Jm = 97.2. The first curve corresponding to A = 0.99 is graphically indistinguishable

from its membrane counterpart in Fig.4(a). It shows clearly that for each fixed λz, the larger

the wall thickness, the greater the critical value of λa. Similar behavior can be observed in

Fig.8 when the Ogden material model is used.

Fig.9 offers a different perspective on the results of Figs 7 and 8 by taking the horizontal

axis as the normalized internal pressure defined by

P̂ =
R

μH
P, (5.2)

where P is calculated using the expression (2.3). It shows that the normalized critical

pressure is a decreasing function of the axial stretch. We also observe that at each fixed

value of λz the normalized critical pressure would increase with respect to increase in the

wall thickness, as expected, but such increases are almost negligible for values of A between

1 and 0.6. This is consistent with the observations made with regards Fig.6. Results shown

in this figure can also be used directly to interpret the experimental results reported in

Goncalves et al. (2008). The authors in the latter paper conducted a series of experiments

on localized bulging in thick-walled cylindrical tubes with H/Rm ranging from 0.25 to 0.5,

and with λz fixed at a number of values in turn. All of their results show that the initiation
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(a) (b)

Figure 9: Variation of λz with respect to the normalized pressure P̂ when F = 0. (a) When the Gent

material model is used; (b) when the Ogden material model is used.

pressure decreases with increased λz, which is consistent with our theoretical predictions

displayed in Fig.9. Similar behavior was also observed in the experimental study of Ma et al.

(2014) on short-length tubular balloons. To make a quantitative comparison with the results

of Goncalves et al. (2008), we consider the specimen that they numbered as B204. Using

(5.2) together with their values for μ, A and B, and our Fig.9 to compute the dimensional

initiation pressure (i.e. the values of P , rather than P̂ ), we obtain 0.216, 0.189, and 0.168

(unit MPa) when λz is equal to 1, 1.16 and 1.32, respectively. The corresponding values

of the initiation pressure given by their Fig.7 are 0.194, 0.188, and 0.172. The agreement

is very impressive, especially considering the fact that our choice of Jm = 97.2 do not

necessarily fit their material. We observe, however, that in the above-mentioned paper

the authors used a Mooney-Rivlin material model in their numerical simulations. It can

be shown that according to this model, the critical pressure would increase when λz is

increased, which would contradict their experimental results. Furthermore, the Mooney-

Rivline material model is not suitable for modeling bulge initiation and propagation in

another aspect: according this model the diameter at the center of the bulge would grow for

ever once the bulge has initiated (because the pressure versus volume curve does not have a

minimum so that a Maxwell state corresponding to steady propagation cannot be reached).

6. A two-term approximation incorporating the effect of bending stiffness

Although (4.11), or equivalently (2.11), can be used to compute the exact initiation

pressure for localized bulging for any given material model, it involves integrals that in

general do not have closed-form expressions. In this section, we shall derive a two-term

approximation for this bifurcation condition that can be used to compute the initiation

pressure with sufficient accuracy for values of H/Rm over a sufficiently large interval.

We first introduce the wall thickness H = B −A, averaged radius Rm = (A+B)/2, and
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define a dimensionless parameter ε through

ε =
H

Rm

.

We then have

A = Rm − H

2
, B = Rm +

H

2
, a = rm − h

2
, b = rm +

h

2
,

where h and rm are the tube wall thickness and the averaged radius in the deformed config-

uration, respectively. We also have

λa = (λm − ε

2λmλz

)(1− ε

2
)−1, λb = (λm +

ε

2λmλz

)(1 +
ε

2
)−1,

where λm is the azimuthal stretch at r = rm and we have replaced H/h by λmλz. At first

sight, one may think that H/h = λmλz is only valid to leading order, but it turns out that

the above expressions satisfy the incompressibility condition (2.4) exactly.

With the use of the above expressions, it is found that the Ω(λa, λz) in (4.11) may be

expanded as

Ω(λa, λz) = ε2
4

λ3
mλ

2
z

Ω(0) + ε4
1

6λ7
mλ

4
z

Ω(1) +O(ε6), (6.1)

where Ω(0) and Ω(1) are given by

Ω(0) = λm(w1 − λzw12)
2 + λ2

zw22(w1 − λmw11), (6.2)

Ω(1) = 2λm(3 + 2λ2
mλz)w

2
1 − 4λ4

mλz(2− λ2
mλz)w1w11 − 8λmλz(1 + λ2

mλz)w1w12

+6λ2
z(1 + λ2

mλz)w1w22 + 4λ3
mλ

3
zw

2
12 + 2λmλ

2
z(1− λ2

mλz)w1w122

+2λm(1− λ2
mλz)

(
λ2
m(3− λ2

mλz)w1w111 − 2λmλz(1− λ2
mλz)w1w112

)
λ2
mλz(1− λ2

mλz)
2 (λzw1w1122 − 2λmw1w1112)− 2λ3

m(3− 2λ2
mλz)w

2
11

+λmλz(1 + λ2
mλz)

(
4λm(2− λ2

mλz)w11w12 − 6λzw11w22

)
+λ2

mλz(1− λ2
mλz)

(
4λmw11w112 − 2λzw11w122 + 3λz(1 + λ2

mλz)w111w22

)
+λ3

mλz(λ
2
mλz − 1)

(
2(3− λ2

mλz)w111w12 + 4λmλ
2
zw112w12

)
+λ3

mλ
2
z(1− λ2

mλz)
2(2w1112w12 − w11w1122 − w1111w22), (6.3)

with all the partial derivatives of w evaluated at λ1 = λm. As expected, the leading order

result Ω(0)(λm, λz) = 0 is simply the bifurcation condition in the membrane approximation

(Fu et al., 2008, (6.2)). With an error of order ε4, the expression

Ω(0) +
ε2

24λ4
mλ

2
z

Ω(1) = 0 (6.4)

then gives a two-term approximation to the bifurcation condition that incorporates the effect

of bending stiffness.
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To the same order of accuracy, we may expand the right hand sides of (2.3) and (2.6) to

obtain

P = ε
w1

λmλz
+ ε3

K1

24λ3
mλ

3
z

+O(ε5), (6.5)

F

π(B2 − A2)
= w2 − λmw1

2λz

+ ε2
K2

48λ3
mλ

3
z

+O(ε4), (6.6)

where the coefficients K1 and K2 are defined by

K1 = 2λzw1 + 2(λ3
mλ

2
z − λmλz)w11 + (1 + λ4

mλ
2
z − 2λ2

mλz)w111,

K2 = (λ2
mλz − 1)

(
2w1 − 4w12λz + 4w11λm − 2w11λ

3
mλz + w111λ

2
m

+2w112λ
3
mλ

2
z − 2w112λmλz − w111λ

4
mλz

)
.

As expected, the leading-order terms on the right hand sides of (6.5) and (6.6) correspond

to the membrane approximation (5.1). The fact that the first correction term in (6.5) is of

order ε3 in some sense explains the excellent performance of the membrane theory as shown

in Fig.6.

We note that an expansion similar to (6.5) was recently derived by Mangan & Destrade

(2015). However, their expansion was in terms of H/A and their derivatives were evaluated

at λ1 = λa. As a result, their second term is quadratic in H/A.

On substituting (6.5) and (6.6) into the equivalent bifurcation condition (2.11) and keep-

ing only the first two terms, we obtain

Ω(0) +
ε2

24λ3
mλ

2
z

Ω(2) = 0, (6.7)

where Ω(2) is given by

Ω(2) = 4w2
1λ

2
mλz − (6− 4λ2

mλz)(w
2
11λ

2
m + w2

12λ
2
z) + 3w111w22λmλ

2
z(1− λ4

mλ
2
z)

+λmλz(1− λ2
mλz)

2(2w1112w12λmλz − w1111w22λmλz − 4w1w112)

+w12λ
2
mλz(λ

2
mλz − 1)(2w111

(
3− λ2

mλz

)
+ 4w112λmλ

2
z)

+w11λmλ
2
z(−w1122λm + 2w1122λ

3
mλz + 2w122λ

2
mλz − 6w22λmλz − 2w122)

+4w11w112λ
2
mλz(1− λ2

mλz)− 4w11w12λmλz(λ
2
mλz − 2)(λ2

mλz + 1)

+2λz(1− 2λ2
mλz)(2w1w12 − w1w1112λ

2
m) + 2w1λmλ

3
z(3w22 − w122λm)

+w1λ
3
mλz(λ

2
mλz − 2)(4w11 + w1122λ

2
z) + w1λmλ

2
z(w1122 − 2w1112λ

5
mλz)

+2w1

{
w111λ

2
m(1− λ2

mλz)(3− λ2
mλz) + w122λ

2
z

}− w11w1122λ
6
mλ

4
z.

We note that although the first terms in (6.4) and (6.7) are identical, the second terms may

differ from each other by a quantity of order ε4.

The two-term bifurcation condition (6.4) or (6.7), together with the associated two-term

approximations (6.5) and (6.6) for the pressure and axial force, gives us a leading-order

theory that incorporates the effect of bending stiffness. To demonstrate its accuracy, we
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Figure 10: Comparison of the membrane theory with the exact theory and two other approximate theories

that incorporate the effect of bending stiffness when the axial stretch λz is fixed at 1.1. (a) Results when

the Gent material model is used; (b) results when the Ogden material model is used.

have shown its performance in Figs 6 and 10 for the cases of fixed axial force and fixed axial

stretch, respectively, with Pcr2 denoting the associated critical pressure. It is found in all

cases that against the exact result the relative error in predicting the initiation pressure is

less than 5% for values of H/Rm up to as large as 1.2. Similar results are obtained for the

cases when the axial stretch is fixed to be 1.2, 1.4 and 1.6, respectively.

In Figs 6 and 10 we have also shown the results when the values of λm and λz are calcu-

lated using the two-term approximations (6.7) and (6.6) but the critical pressure, denoted

by Pcr3, is calculated using a three-term expansion with the third term given by

ε5

1920λ5
mλ

5
z

(
24λ2

zw1 + 24λmλ
2
z(λ

2
mλz + 1)(λ2

mλz − 1)w11 +
(
λ2
mλz − 1

)4
w11111

+12λz(3λ
2
mλz + 1)(λ2

mλz − 1)2w111 + 12λmλz(λ
2
mλz − 1)3w1111

)
.

It is seen that there is significant improvement in the accuracy for the larger values of

H/Rm. It is further found that with the values of λm and λz calculated using the two-term

approximations but the critical pressure computed using the exact expression (2.3), the result

in each case becomes graphically indistinguishable from the exact result for values of H/Rm

up to as large as 1.33! To understand why the two-term bifurcation condition performs

so well, we have shown in Fig.11 the contour plots of the exact bifurcation condition and

its two-term approximation (6.7) for ε = 0.22, 1.08, respectively. It is seen that the two

contour plots in each case are graphically indistinguishable in a sufficiently large part on

the left; the two-term approximation only becomes increasingly poor in the large stretch

regime as ε increases. Since it is the left part of the contour plot that is associated with

the computation of the initiation pressure (see Fig.4 for two typical loading paths when the

axial force is fixed and observe the fact when the axial stretch is fixed it is usually less than

2 in many applications), this explains why the two-term approximation (6.7) is almost exact

as far as computation of the initiation pressure is concerned; the error mainly comes from

the truncation of the power series expansion of the pressure.
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Figure 11: Comparison of the contour plots of the exact bifurcation condition and its two-term approximation

(6.7) for ε = 0.22, 1.08.

7. Conclusion

This is our first study on localized bulging based on the exact theory of nonlinear elas-

ticity. It is motivated by the fact that in some applications the cylindrical tube concerned

may have walls thick enough so that the membrane theory may become invalid. Also, even if

the membrane theory can be applied approximately it would be desirable to know precisely

how good the approximation is. In this paper, an explicit bifurcation condition is derived for

localized bulging in a cylindrical tube of arbitrary thickness. Using this explicit bifurcation

condition, we are able to demonstrate that localized bulging is in fact possible for a cylin-

drical tube of arbitrary thickness. The initiation pressure varies linearly with respect to the

wall thickness in the thin-wall limit, but this dependence becomes nonlinear for thick-walled

tubes. It is also demonstrated that the membrane theory is surprisingly accurate as far

as prediction of the initiation pressure is concerned: the error involved is less than 5% for

wall thickness/radius ratios up to 0.67. A two-term approximation of the exact bifurcation

condition is proposed, and is shown to be almost exact as far as the determination of the

initiation pressure is concerned. The error mainly comes from the truncation of the power

series expansion for the pressure: for thickness/radius ratios up to as large as 1.2, the relative

error is less than 5% when two terms are kept in this expansion, and this error comes down

to around 1% when three terms are kept in the expansion and to around 0.2% when the

exact expression for the pressure is used. Thus, the two-term approximation of the exact

bifurcation condition should be sufficient for all practical applications.

We conclude the paper by highlighting the fact that contrary to popular belief, absence

of the limit point instability does not imply non-existence of localized bulging. The limit

point instability exclusively refers to the case of fixed resultant axial force (which is usually

zero, as when a party balloon is inflated), but one can envisage a number of other loading

conditions under which the resultant axial force is not fixed. In particular, for arteries it is

more appropriate to assume that it is the axial stretch that is fixed. Based on the results

in Figs 4 and 5, it is not hard to see that localized bulging is likely to be possible for ALL
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isotropic material models if the axial stretch is fixed to be below a certain threshold value

that is dependent on the material model used. Whether localized bulging can take place

or not can easily be verified by drawing the contour plot of the bifurcation condition as

explained in the present paper.
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