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Abstract
Statins have become a cornerstone of risk modification 
for ischaemic heart disease patients. A number of 
studies have shown that they are effective and safe. 

However studies have observed an early benefit in terms 
of a reduction in recurrent infarct and or death after a 
myocardial infarction, prior to any significant change in 
lipid profile. Therefore, pleiotropic mechanisms, other 
than lowering lipid profile alone, must account for this 
effect. One such proposed pleiotropic mechanism is the 
ability of statins to augment both number and function 
of endothelial progenitor cells. The ability to augment 
repair and maintenance of a functioning endothelium 
may have profound beneficial effect on vascular repair 
and potentially a positive impact on clinical outcomes 
in patients with cardiovascular disease. The following 
literature review will discuss issues surrounding endo-
thelial progenitor cell (EPC) identification, role in 
vascular repair, factors affecting EPC numbers, the role 
of statins in current medical practice and their effects on 
EPC number.
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Core tip: Statin therapy is a cornerstone of current 
management in coronary artery disease. Conventional 
thinking of stain therapy is for reduction of low-
density lipoproteins. However a number of studies 
have observed an early benefit prior to any significant 
change in lipid profile. Therefore alternative pleiotropic 
mechanisms to account for this have been proposed. 
One such proposed mechanism is the ability of statins 
to augment both number and function of endothelial 
progenitor cells (EPCs). The following literature review 
discusses issues surrounding EPC identification, role in 
vascular repair, the role of statins in current medical 
practice and their effects on EPCs.
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INTRODUCTION
The maintenance of endothelial integrity is essential for 
the preservation of a healthy vasculature[1]. This integrity 
results from a balance between on-going endothelial 
damage and the rate of vascular repair. Disruption of 
endothelial integrity or impairment of endothelial repair 
mechanisms is a central step in both the initiation and 
progression of atherosclerosis[2]. Endothelial repair is 
dependent on undifferentiated cells migrating to sites 
of vascular injury[3-5] then differentiating into mature 
endothelial cells[6-13]. These undifferentiated cells 
are called endothelial progenitor cells (EPCs) have a 
central role in vascular repair by virtue of their ability to 
proliferate, migrate to site of vascular injury and then 
differentiate into mature vascular endothelium[13,14]. 
EPCs perpetuate this cycle by secreting pro-angiogenic 
cytokines[15]. 

Statins form the corner stone of treatment of coron-
ary artery disease. The safety and efficacy of statins 
in reducing cardiac events by decreasing serum LDL-
cholesterol has been well described[16-18]. Recently 
however studies have shown the early beneficial effect 
of statins occurs before any significant change in lipid 
profile. This led to the hypothesis that cardiovascular 
benefits of statins may occur via alternative mech-
anisms other than reduction of LDL-cholesterol 
alone[19,20]. One such proposed mechanism is the ability 
of statins to augment both number and function of 
EPCs. 

The following literature review discusses issues 
surrounding EPC identification, role in vascular repair, 
factors affecting EPC numbers, the role of statins 
in current medical practice and their effects on EPC 
number.

RESEARCH AND LITERATURE
We performed a review of various studies within the 
literature available on endothelial progenitor cell and 
statins. The authors searched various databases 
(EMBASE, OVID, PubMed) using the keywords: 
“Endothelial progenitor cells”, “statin”, “pleiotropic 
effects”. We studied the various publications that we 
obtained from the search results. Full text manuscripts 
were obtained. We only included papers in the English 
language. 

EPCS
Cellular identification and staging of differentiation 
has been made possible by specific surface receptors 
called epitopes that allow immunophenotyping. This 

process allows identification of subset of cellular surface 
molecule termed cluster of differentiation (CD). Cellular 
subtypes may be defined by the presence or absence of 
a particular CD molecule. Therefore “CD” may be “+ “or 
“-” denoting either presence or absence of a particular 
CD, and is used to describe stem cells rather than fully 
differentiated cell types. Certain cell types may have 
variable CD marker expression during maturation for 
example, and therefore classed as bright (high), mid 
(mid) or dim (low) denoting intensity of expression[21,22].

Vascular repair had previously been thought to be 
due to migration and proliferation of fully differentiated 
endothelial cells, in a process called angiogenesis[23]. 
Asahara et al[24] identified putative cells with cell 
surface marker CD34+, alternately named kinase 
insert domain receptor (KDR/VEGFR) markers capable 
of differentiating into endothelial cells both in vitro 
and in vivo[24-26]. Subsequent studies recognised that 
in fact undifferentiated cells subsequently termed 
EPCs migrated to sites of neovascularization and then 
differentiate into endothelial cells[24,26] in a process called 
vasculogenesis[27]. EPCs are derived from pluripotential 
stem cells within the bone marrow. These then evolve 
into mature endothelial cells[24] accounting for only 
0.001%-0.0001% of peripheral blood cells in an 
unstressed state[28]. Circulating EPCs may be isolated 
from bone marrow or the circulation as mononuclear 
cells[24,29,30], expressing a variety of endothelial surface 
markers[31]. However, there currently remains a lack of 
consensus on phenotypic and functional definition of 
endothelial precursor cells[32,33]. 

EPCs are a diverse group of cells of different line-
ages that have angiogenic potential, but are not always 
necessarily able to differentiate into functional endothelial 
cells as would be suggested from their name[32]. EPCs 
are derived from CD34+ hematopoietic progenitor 
cells[6,24,29,31], with the subset of EPCs characterized by 
co-expression of endothelial marker proteins[6,29,31]. 
Studies have identified 3 markers associated with 
early functional EPCs including CD133, CD34, and the 
vascular endothelial growth factor receptor-2 (VEGFR-2) 
also known as kinase insert domain receptor (KDR, 
Flk-1 or CD309)[7,31]. Therefore EPCs express markers of 
both hematopoietic stem cells (CD34 and CD133) and 
endothelial cells (CD146, vWF, and VEGFR2)[26,28,29,31,34-37]. 
The presence of certain cell surface markers are depend 
on the stage of maturations of the EPC. For example the 
cell surface marker CD133, a 120-kDa trans-membrane 
polypeptide, is expressed on bone marrow derived 
hematopoietic stem and progenitor cells in peripheral 
blood[37]. The expression of CD133 on EPCs declines 
during maturation within the peripheral circulation. 
Currently there remains some uncertainty as to when 
EPCs lose the CD133 surface marker, whether during 
transmigration from bone marrow to circulation or later 
whilst in the peripheral blood system[38]. Nevertheless 
the loss of CD133 represents the transformation into 
more mature EPCs that are endothelial-like cells[37]. 
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Whereas the expression of CD34 a cell surface marker 
found on immature pluripotential stem cells[31] that acts 
as an adhesion molecule, although the precise function 
remains unclear, gradually increases as the CD133 
decreases as the EPC matures[37]. During the course 
of maturity EPCs begin to have increased expression 
of other markers specific to endothelial cells such as 
VEGFR-2, VE-cadherin, and von Willebrand factor 
(vWF)[37]. 

The expression of CD34+, CD133+, and/or VEGF2+ 
has been used as identifying markers of EPCs in a 
number of studies[28,32,39-41]. Whereas as other studies 
advocate the use of CD133+ either alone or in com-
bination with CD34+/VEGFR-2+ cells for identification 
of EPCs[31,42]. In contrast, other studies have suggested 
that CD133+ are haematopoietic cell lines and have 
not been identified in and therefore unable to form 
endothelial phenotypic EPCs[7,40,43]. Ingram et al[28] 
proposed that CD45- cells incorporated “true” circulating 
EPCs and verified by other studies[28,39,40,43]. Interestingly, 
CD34+/VEGFR2+ and diminished (dim) CD45 (CD45dim) 
cells have been found to have greater correlation with 
coronary heart disease severity and response to statin 
therapy[44,45]. 

In summary, the maturity of the EPC is marked by 
the gradual loss of CD133, gradual increased expression 
of CD34+ and the appearance of CD31, VE-cadherin and 
vWF cell surface markers (Table 1).

EPCS AND CORONARY ARTERY DISEASE 
Endothelial integrity is essential for healthy vasculature, 
and can be thought of as a balance between continued 
endothelial damage and the capacity to repair by a 
pool of EPCs[9,46]. It is now generally accepted that 
cardiovascular risk correlates with EPC numbers. 
Highlighting the integral relationship between endothe-
lium and atherosclerosis[47-51], disruption of endothelial 
integrity by endothelial cell injury has been shown to 
be a stimulus for the development of atherosclerosis[2], 
but also as a stimulus for augmentation of EPC number 
and function[9,52,53]. Continued endothelial damage[54] 
may lead to an eventual reduction of the number of 
EPCs. Elevated EPC numbers have been shown to be 
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associated with augmented formation of collaterals in 
coronary artery disease[55] and restoration of endothelial 
vasodilator function[9]. A reduction in EPC numbers may 
lead to deficient endothelial repair and progression 
of atherosclerosis, with further EPC depletion and per-
petuation of atherosclerosis[9,56]. However, it is uncertain 
whether low numbers of circulating EPCs represents 
enhanced usage by vascular repair processes, or 
reduced production by bone marrow. 

CD34+ VEGFR2+ EPCs cells have been shown to 
be reduced in patients with atherosclerotic coronary 
and peripheral disease[57]. Vasa et al[56] found not only 
reduced numbers, but also impaired function of EPCs in 
patients with coronary artery disease. Elevated numbers 
of EPC have been associated with freedom from 
myocardial infarction, hospitalization, revascularization 
and cardiovascular death in patients with coronary artery 
disease[56,58]. Furthermore the predictive value of EPC 

count has been shown to be independent of traditional 
cardiovascular risk factors[9,46,59]. In fact, the extent of 
the reduction in EPC numbers has been associated not 
only with coronary artery disease burden[60], but also the 
presence of symptoms[61,62]. 

Finally, elevated numbers of circulating CD34+/
CD133+/VEGFR2 EPCs have been observed after an 
acute myocardial infarction[42,63]. This may be regarded 
as a consequence of cardiac ischaemia together with 
raised inflammatory and haematopoietic cytokines 
stimulating EPC mobilisation from the bone marrow[64-66]. 

A similar response is seen following coronary angio-
plasty[67], and interestingly, the combination of an 
acute coronary syndrome (ACS) treated by angioplasty 
provoked an enhanced EPC response[68]. Therefore, EPC 
may have a central role not only in repairing coronary 
vessels after plaque rupture, but also after any coronary 
intervention. 

STATIN THERAPY
Statins act by competitively inhibiting 3 hydroxy-3-
methylglutaryl Coenzyme A (HMG CoA) reductase, the 
rate limiting step in the mevalonate pathway producing 
isoprenoids including cholesterol. The competitive 
inhibition of HMG CoA reductase induces the expression 
of LDL receptors within the liver, thereby increasing the 
catabolism of plasma LDL, with a consequent decrease 
in LDL-cholesterol levels[69]. 

The safety and efficacy of statins in reducing car-
diac events by decreasing serum LDL-cholesterol has 
been well described[16-18]. Statin therapy has been 
shown to reduce death and cardiovascular events in pri-
mary prevention of atherosclerosis[70], stable coronary 
artery disease[16,71-73], ACS[74,75] and secondary pre-
vention[72]. Statins also appear to reduce development 
of atherosclerotic lesions[76,77] and decrease plaque 
burden[13,78]. 

The beneficial effect of intensive statin therapy 
was studied in a prospective meta-analysis of 90056 
patients from 14 randomised trials and found greater 

Endothelial progenitor cells
Bone marrow Circulation

Early EPCs Mature EPCs
  CD133+ + +/- -
  CD34+ + + +
  VEGFR2+ + ++ +++
  CD31+ - + +
  VE-cadherin - + +
  vWF - + +

Table 1  Table to show cell markers during development of 
endothelial progenitor cell

EPC: Endothelial progenitor cell; VEGFR: Vascular endothelial growth 
factor receptor.
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circulating EPC in patients receiving statin therapy 
compared to statin naïve patients. Interestingly two 
types of EPCs were detected, early and late EPCs. The 
early EPCs were found to form elongated cells whereas 
the late EPC population gave rise to cobblestone-like 
colonies with strong proliferation capacities seen in-
vitro cell culture. The numbers of early EPCs were 
significantly higher in patients not receiving statin 
therapy whereas late EPCs were significantly higher 
in patients receiving statin therapy. The study also 
observed that long term statin therapy specifically 
maintained late EPCs in circulation with a CD34+/
CD144+ phenotype. Rodent studies have found rosuvas-
tatin resulted in a greater than 3 fold increase in EPC 
numbers when compared with placebo as long as 10 wk 
after myocardial infarction[56]. Long-term atorvastatin 
10 mg for 12 mo markedly increased EPC number with 
an associated decrease in oxidative DNA damage[35]. 
However to the contrary, Hristov et al[96] found reduced 
numbers of circulating EPCs in CHD patients on long-
term statin treatment. 

Statins appear to have a dose dependant effect on 
EPC count. A double blinded randomised pilot study 
found greater number of circulating CD34+ VEGFR-2+ 
EPCs after 12 wk of therapy with pravastatin 20 mg 
when compared to atorvastatin 10 mg[97]. Similarly, in 
ACS patients’ intensive statin therapy with atorvastatin 
80 mg after primary or rescue PCI was associated with 
greater EPC count at 4-mo follow up as compared to 
20 mg atorvastatin. The authors found no beneficial 
effect in an improvement of LV function[98]. Furthermore 
statin reloading in patients on moderate statin therapy 
undergoing percutaneous coronary intervention has 
been shown to increase EPC count[99,100] this correlates 
with the beneficial effect of statin reloading of high dose 
statin in patients on chronic therapy[80] mentioned above.

PLEIOTROPIC EFFECTS OF STATIN 
THERAPY
Several proposed intracellular signaling mechanisms 
accounting for the pleiotropic effect of statin therapy 
have been put forward. Figure 1 below summarizes 
the positive and negative effects on EPC proliferation, 
mobilisation and longevity but also the effect of statin 
therapy.

Nitric oxide pathway
The first proposed intracellular signaling mechanisms 
involves nitric oxide pathway. The endothelium releases 
nitric oxide (NO), a primary mediator of smooth muscle 
tone that causes vasodilatation through the activity of 
endothelial-type nitric oxide synthase (eNOS)[101-104]. 
NO has an central role in vascular homeostasis with its 
bioavailability dependent on expression of endothelial 
eNOS[105], presence of eNOS substrate and or co-
factors[106], phosphorylation of eNOS[107,108] or due to 
excessive depletion of NO such as seen with presence of 

cholesterol reduction was associated with better 
patient outcomes[19]. The study found that the 5-year 
incidence of major adverse cardiac events, coronary 
revascularization and stroke was reduced by one fifth for 
every millimoles per liter reduction in LDL cholesterol, 
which was irrespective of the initial lipid profile[19]. 

Another meta-analysis found aggressive statin 
therapy was associated with reduced peri-procedural 
myocardial infarction and a 44% risk reduction in major 
adverse cardiovascular events at 30-d irrespective 
of clinical presentation[79]. Moreover, the ARMYDA-
RECAPTURE study[80] found reloading of the high 
dose statin, atorvastatin 80 mg in 383 NSTEMI and 
stable angina patients on chronic therapy prior to per-
cutaneous coronary intervention (PCI) had a 50% 
reduction in 30-d major adverse cardiac events in both 
group with a greater reduction in NSTEMI group[80].

These studies led to the universal adoption of 
statin therapy in patients with coronary artery disease 
irrespective of presentation from stable angina to 
ACSs[81,82]. 

THE EFFECT OF STATIN THERAPY ON 
EPCS
Several studies have shown the early beneficial effect 
of statins occurs before any significant change in lipid 
profile. This led to the hypothesis that cardiovascular 
benefits of statins may occur via alternative mechanisms 
other than reduction of LDL-cholesterol alone[19,20]. 
These potential beneficial effect(s) may represent a 
potential therapeutic target for ischemic heart disease 
patients, and therefore is of great interest. There have 
been a number of mechanisms proposed to account 
for pleiotropic effects of statin therapy. These include 
reduction in vascular inflammation[83], reduction of 
platelet aggregability and thrombus deposition[77,84-86], 
enhancement of fibrinolysis[87] and increased endo-
thelium derived NO production[88-90]. However the 
mechanism that has evoked the most interest is the 
impact of statins on EPCs[70]. 

Statin therapy has been associated with greater 
numbers of circulating EPCs by enhancing mobilization, 
differentiation, increasing longevity, enhance homing 
to sites of vascular injury with augmentation of re-
endothelisation by enhancing expression of adhesion 
molecules on EPC cell surface membrane[3,70,91-94]. 

However, the duration of the effect on EPC number 
by statin therapy continues to remain contentious. 

In one study, atorvastatin therapy was shown to 
significantly increase circulating EPC as soon as 1 wk 
with plateauing after 3-4 wk with a 3-fold increase 
of EPCs from baseline in a stable angina population 
was also observed[70]. Whereas Deschaseaux et al[95] 
investigated whether EPCs could be firstly detected 
and secondly characterized in patients receiving long-
term statin therapy defined as 4 wk. The group found a 
significantly greater number of CD34+, CD34+/CD144+ 
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regulate protein expression at post-transcriptional 
stage[127]. This down regulating effect occurs by targeting 
3’ untranslated regions resulting in either degradation of 
target mRNA or impairing translation[128]. Furthermore 
miR-221 and miR-222 have been observed to regulate 
proliferation and differentiation of CD34-positive 
haematopoietic progenitor cells by reducing expression 
of c-kit receptor factor impairs haematopoietic progenitor 
cell proliferation[129]. Increased miR-221 and or miR-221 
expression in EPC down regulates EPC differentiation and 
mobilisation via c-kit and or eNOS pathways in coronary 
artery disease patients[127]. Atorvastatin has been shown 
firstly to decrease miR 221 and miR 222, and secondly 
increase EPC numbers[127]. Cerda et al[130] found both 
atorvastatin and simvastatin increased NO levels and 
NOS3 mRNA expression, whereas ezetimibe did not. 
Atorvastatin, simvastatin and ezetimibe have all been 
shown to down-regulate the expression of miR-221, 
whereas miR-222 was reduced only after atorvastatin 
treatment. The magnitude of the reduction of miR-221 
and miR-222 after treatment with statins correlated with 
an increment in NOS3 mRNA levels[130]. The eNOS and 
miR221/222 are thought likely to be components of the 
same pathway[131]. 

The PI3K/Akt/mTOR pathway
The third proposed pleiotrophic mechanism involves 
the phosphoinositide 3-kinase (PI3K)/protein kinase B 

excessive reactive oxygen species[109]. However the main 
functions of NO is as a cellular signaling molecule[101], 
an angiogenic factor involved in stimulation, promotion, 
and stabilization of new blood vessels together with 
VEGFs, FGFs, Angiopoietins, PDGF, MCP-1, TGF, various 
integrins, VE-cadherin[110-113]. Statin therapy has been 
proposed to both enhance expression and activity of 
eNOS[114] a prerequisite stage for statin-mediated EPC 
mobilisation[115]. Statins are known to augment eNOS 
activity[116-118], increase eNOS expression and restoration 
of endothelial function[104,119-121]. Statins have also been 
associated with increased EPC longevity via several 
pathways including inhibition of p27[122], down regulating 
TNF-α or IL-1β expression[123] and prolonging eNOS 
expression[122] and finally by increasing eNOS mRNA 
half-life[124,125]. Kosmidou et al[126] found simvastatin 
and rosuvastatin prolonged expression by increasing 3’ 
polyadenylation of eNOS mRNA. Laufs et al[88,124] firstly 
noted simvastatin and lovastatin reversed the down-
regulation of eNOS expression caused by hypoxia and 
secondly simvastatin reversed down regulation of eNOS 
expression induced by oxidized LDL[88,124] a recognised 
cause of atherosclerosis. 

miR 221 and miR 222 levels
A second observed pleotropic mechanism of statin 
therapy has been a decreased level of micro non-coding 
RNAs called miR 221 and miR 222. These negatively 

Figure 1  Simplified diagram illustrating the positive and negative effects on endothelial progenitor cell proliferation, mobilisation and longevity together 
with proposed mechanisms of action of statin therapy. EPC: Endothelial progenitor cell; NO: Nitric oxide; eNOS: Endothelial nitric oxide synthase; VEGF: Vascular 
endothelial growth factor; mRNA: Messenger ribonucleic acid; TNF: Tumor necrosis factor alpha; IL-1: Interleukin 1; P13k-AKT: Phosphoinositide 3-kinase - protein 
kinase B pathway; NAD(P)H oxidase: Nicotinamide adenine dinucleotide phosphate-oxidase; miR : Micro non-coding ribonucleic acid.
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Thirdly, by preventing mitochondrial apoptosis and 
preservation of cardiomyocyte function via the up-
regulation of the PI3K/Akt/mTOR intracellular signalling 
pathway by inhibition of Rho kinase[144,145]. However, 
the RISK pathway has been shown the down regulated 
with chronic statin therapy[158] and has been shown 
to become reactivated by statin re-loading[159]. The 
latter may account for the increase in EPC count in 
patients on chronic statin therapy reloaded with statin 
therapy[80,99,100].

Oxidative stresses
Finally, EPC mobilisation and or function may also be 
affected by oxidative stress[153,160]. Oxidative stresses 
occur secondary to generation of oxygen free radicals 
or reactive oxygen species (ROS). Oxidative stress has 
a central role in cardiovascular disease, and a pivotal 
role in atherosclerosis[161]. Cellular oxidative stress seen 
with oxidized low-density lipoprotein (ox-LDL) has a 
central role in the pathogenesis of atherosclerosis. 
LDL is oxidised by reactive oxygen species from both 
circulating cells and cells on vascular walls[162,163]. In 
essence, LDL oxidation is a result of a chain reaction 
of free radicals converting polyunsaturated fatty acids 
into lipid peroxides and as a consequence, formation of 
active aldehydes[164]. The biochemical reaction forming 
ox-LDL have been found to cause senescence of 
EPCs[165]. Whereas high density lipoprotein is regarded 
as atheroprotective due to some part of its antioxidant 
properties also has a positive effect on EPC number 
and function[166]. There are a number of endogenous 
antioxidants exerting protective effects by scavenging 
ROS. An indirect way ROS effects EPCs includes ROS 
reacting with NO forming a potent oxidant[167] with a 
consequent decrease in NO. Decrease in NO either by 
excessive oxidation or impaired production reduces 
EPC mobilisation and/or function[161,168]. Secondly, direct 
exposure to oxidative stresses or in disease conditions 
with high oxidative stress, for example diabetes, is 
associated with induced EPC apoptosis with signifi-
cant reduction in EPC numbers[168,169], mobilisation, 
function[170] and reduced ability to migrate and or inte-
grate into vasculature[161,171]. 

In an attempt to counteract the effects of oxidative 
stress EPCs produce superoxide dismutase[172]. Intere-
stingly, cardiovascular risk factors have been found to 
alter and or reduce the EPC antioxidant ability. Healthy 
volunteers have found to express higher levels of 
antioxidative enzyme catalases including glutathione 
peroxidase and manganese superoxide dismutase when 
comparing patients with cardiovascular disease[173,174]. 
The underlying pathophysiological mechanism currently 
remains undetermined. The antioxidant pleiotropic effect 
of statins may include indirect mechanism increasing 
NO bioavailability accounting for antioxidant properties 
contributing to an increase in EPC mobilisation and or 
function[114,175]. Secondly statin therapy has also been 
shown to inhibit activation of NAD(P)H oxidase and ROS 
release[176] but also activate catalase and thioredoxin 

(Akt)/mammalian target of rapamycin (mTOR) signaling 
pathway plays. The PI3K/Akt/mTOR pathway plays a 
central role in multiple cellular processes, including cell 
proliferation, angiogenesis, metabolism, differentiation 
and longevity[132,133]. PI3K generates phosphatidylinositol 
3,4,5-triphosphate (PIP3) an important lipid secondary 
messenger which in turn plays a central role in several 
signal transduction pathways[134,135] including activation 
of the serine/threonine kinases PDKl and Akt. Akt 
controls protein synthesis and cell growth via the pho-
sphorylation of mTOR[136]. The PI3K/Akt pathway has 
been associated with angiogenesis through the regula-
tion of the NO signaling pathway[137]. The PI3K pathway 
releases a group of angiogenic factors including VEGF. 
VEGFR2 has a central role in VEGF-induced angio-
genesis[138]. VEGF is required for the migration of endo-
thelial cells and via PI3K-Akt dependent manner allows 
formation of capillary like structures[139]. Studies have 
shown that NO production may be induced by VEGF and 
appears to be attenuated by the inhibition of PI3K[140]. 
This is thought to occur via phosphorylation of eNOS 
at the serine 1177 residue by Akt[107,141], required for 
the VEGF induced endothelial cell migration[142]. Factors 
that stimulate the PI3K/Akt protein kinase pathway, 
including statins, have been shown also to activate 
eNOS[87,141,143]. In turn, the expression of eNOS appears 
to be fundamental for mobilization of EPC and any 
impairment in PI3K/Akt/eNOS/NO signaling pathway 
may result in decreased EPC number[91,92]. 

The PI3K/Akt/mTOR intracellular pathway via 
inhibition of the Rho kinase has also been shown to 
preserves mitochondrial permeability transition pore 
preventing mitochondrial apoptosis, and therefore 
death, while conserving cardiomyocyte function[144,145]. 

These proposed mechanisms may account for 
difference in the effect of statin therapy in acute or 
chronic therapy. Statins given during acute ischaemic 
stress have been shown to firstly potentiate adenosine 
receptors[146,147] eventually leading to downstream 
regulation of eNOS and therefore increases NO pro-
duction. Secondly statins augment activation of the 
reperfusion injury salvage kinase (RISK) pathway[148]. 
This results in enhanced activity of the PI3K/Akt/mTOR 
intracellular signal pathways[149], leading to preservation 
of mitochondrial function and cardio-protection. Short-
term high dose statin therapy have shown an increase 
in both EPC mobilisation from bone marrow and 
augmented function[92,150-154]. 

Whereas chronic statin therapy has been linked to 
a phenomenon termed pre-ischaemic conditioning, 
protecting the myocardium against ischaemia[155]. 
This is believed to be secondary to statin induced NO 
availability by up regulation of eNOS and stabilisation 
of eNOS mRNA. Secondly, by increased production of 
NO and superoxide radicals improves vascular function 
and reducing vascular inflammation respectively[88,156]. 
Statins also inhibit isoprenylation of a number of Ras 
superfamily GTPase including Rho, Ras and Rab[157] 
NO inhibitors resulting in increased NO bioavailability. 
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knowledge regarding the pleiotropic effect(s) of statins 
on EPCs. Further studies are required to elucidate and 
fully understand any pleiotropic effect and this may 
guide future beneficial therapeutic interventions. 
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