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Abstract 

Prognosis research is an important part of medical research as it seeks to understand, 

predict, and improve future outcomes in people with a given disease or health condition. 

This thesis focuses on the application and development of statistical methods for prognosis 

research, with a particular focus on the identification of prognostic factors and the 

performance of risk prediction models.  

The first part of the thesis considers the use of a single study for prognostic factor and 

prediction model research. Prognostic factors of adverse outcome in monochorionic 

diamniotic twin pregnancies are investigated and difference in nuchal translucency and 

crown-rump length were found to have prognostic value. The instability of developing a 

prediction model in small sample sizes is also illustrated. Then, a review of published 

prediction models is conducted which reveals potential concerns that measurement error 

may affect the predictors included in many models, and a lack of clarity about the timing 

of predictor measurements and the intended moment of using the proposed models. 

Recommendations for improved reporting are provided. A real example is then used to 

illustrate how displacing the collection of a time-varying predictor from the intended 

moment of model use leads to substantial differences in the predictor-outcome 

association, and the subsequent performance of the prediction model.  

The second part of the thesis focuses on the synthesis of IPD from multiple studies. An IPD 

meta-analysis is used to validate existing stillbirth prediction models and demonstrates that 

the models should not be recommended for clinical practice due to poor predictive 

performance and insufficient clinical utility. Finally, a novel analytic method is developed 

to calculate the power of an IPD meta-analysis to examine prognostic factor effects with 
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binary outcomes, based on published study aggregate data, to help researchers decide on 

the benefit of the IPD approach in advance of collecting IPD. 
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1 Introduction 

This chapter aims to provide the foundations of the thesis, by presenting a detailed 

background to prognosis and risk prediction research, and other relevant topics such as 

measurement error and individual participant data (IPD) meta-analysis. Fundamental 

statistical methods are described, establishing core terminology and key concepts. The 

chapter concludes by outlining the aims and rationale for the thesis, including an overview 

of the structure of subsequent chapters.  

 

1.1 Overview of the thesis 

Predicting a patient’s risk of future outcome events is an important part of medical research 

as it enables optimal treatment, informs clinical decision making and helps patients 

understand their risk. Prognosis research can be used to help predict future outcomes in 

patients with a particular disease or health condition (Hemingway et al., 2013) by 

identifying prognostic factors (predictors) and developing prediction (prognostic) models. 

Many studies are published each year which examine potential prognostic factors of 

outcome risk (Riley et al., 2013), and/or develop a prediction model, utilising values of 

multiple predictors to enable individualised risk (Steyerberg, 2010). Such models are 

intended “to assist clinicians with their prediction of a patient’s future outcome and to 

enhance informed decision making with the patient” (Steyerberg et al., 2013) and thus the 

predictions from the models should have optimal performance when being practically 

implemented - the “intended moment of using the model” (Moons et al., 2014).  
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However, when developing such models, there are various methodological challenges and 

issues that need to be considered. For example, measurement error may affect the 

observed predictor values, which could potentially lead to biased estimates of predictor-

outcome associations (Carroll et al., 2006, Gustafson, 2003, Prentice, 1982, Rothman et al., 

2008). However, there has been little research into the impact that measurement error in 

the predictors may have on the predictions made and on the model performance. A recent 

study has found that measurement error in the predictors can reduce the area under the 

curve (AUC) and increase the Brier score (Khudyakov et al., 2015), but in general the impact 

of measurement error in prediction model research is relatively neglected. Hence, 

previously developed models and models currently being developed without consideration 

of measurement error, may be unknowingly providing misleading estimates of a patient’s 

risk and the model may not perform as well as expected in practice.  

A specific aspect of measurement error in the predictors is whether the predictors used in 

the model development were generally measured at the same time that the model is 

intended to be used in practice. The TRIPOD (Transparent Reporting of a multivariable 

prediction model for Individual Prognosis or Diagnosis) statement recommends to clearly 

define when the predictors used in the development of the model were measured (Collins 

et al., 2015) and states that “all predictors should be measured before or at the study time 

origin and known at the intended moment the model is intended to be used” (Moons et 

al., 2015). However, it is a concern that in many prognosis studies the timing of predictor 

measurement may differ from the intended moment of model implementation, which itself 

may lead to errors and misleading predictions. 
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IPD meta-analysis is another area of growing methodological interest for prediction 

models, where IPD from multiple existing studies are used to increase the quality and 

quantity of data available. Utilising IPD can improve the ability and power to examine the 

prognostic effects of a factor, or the development and/or validation of prediction models. 

However, completing an IPD meta-analysis project is a huge undertaking, requiring a 

substantial investment in terms of time and funding and can take years to complete. Yet, 

despite such large investment in the project, the final meta-analysis may still not have 

sufficient power to detect the effect of interest.  

This thesis is focused on the application and development of statistical methods for 

prognosis research, with a particular emphasis on various methodological aspects including 

(i) the measurement error that may be present within the predictors used to develop 

prediction models, (ii) the impact of measuring a time-varying predictor after the intended 

moment of using the prediction model in practice, and (iii) the use of IPD from multiple 

studies to evaluate prognostic factor effects with binary outcomes, and for validating 

existing prediction models. 

 

1.2 What is prognosis research? 

Prognosis is the study of the risk (probability, likelihood) of future outcomes and events, so 

foreseeing, predicting, or estimating the probability of a future outcome. There are many 

uses for prognosis research, for example, it can be used in weather forecasting (Inness and 

Dorling, 2013), in sport (Crowder et al., 2002, Hughes and Franks, 2015) or in medicine 

(Steyerberg, 2010). In medicine, the focus of this thesis, prognosis research is used to 

understand and improve health outcomes (i.e. death or recurrence of cancer) in particular 
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diseases and clinical conditions, by identifying prognostic factors that are associated with 

outcome risk and by developing prediction models that estimate an individual’s risk of 

experiencing a particular health outcome (Moons et al., 2009a, Riley et al., 2013, 

Steyerberg et al., 2013).  

Prognosis research is central to medicine and can be used to inform clinical research and 

clinical practice, as all screening, diagnostic and therapeutic actions aim to improve 

prognosis (Steyerberg, 2010). Screening can be used to detect early signs of disease, but 

the usefulness of the screening can be assessed by estimating the improvement in 

prognosis that is achieved by screening. Diagnostic tests can be used to detect an 

underlying disease, but then prognosis research is needed to evaluate whether the 

prognosis of patients whose disease is detected early is better than those who follow the 

natural course of the disease. Prognosis research is also used for making therapeutic 

decisions, to identify the best treatment option for a particular patient given his/her clinical 

condition and characteristics.   

 

1.2.1 Prognosis research framework 

Prognosis research consists of four inter-related themes, as described in a series of four 

articles which were published by the PROGRESS (PROGnosis RESearch Strategy) 

partnership in 2013 (Hemingway et al., 2013, Hingorani et al., 2013, Riley et al., 2013, 

Steyerberg et al., 2013), aiming to improve prognosis research. These articles introduce the 

framework of the four themes of prognosis research, with each article focusing on a specific 

theme: 
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1. Fundamental prognosis research (Hemingway et al., 2013): understanding overall 

outcomes in populations and settings in relation to current diagnostic and 

treatment practices 

2. Prognostic factor research (Riley et al., 2013): discovering and evaluating specific 

factors (predictors) that are associated with prognosis 

3. Prognostic model research (Steyerberg et al., 2013): the development, validation 

and impact of models that predict individual risk of a future outcome 

4. Stratified medicine research (Hingorani et al., 2013): the use of prognostic 

information to help tailor treatment decisions to an individual or group of 

individuals with similar characteristics. 

A brief description of what each of the aspects of the prognosis research framework is, why 

it is important and a clinical example, is given below. The focus of this thesis is on prognostic 

factor research (theme 2) and prognostic model research (theme 3). The terms prediction 

model and prognostic model are used interchangeably, as are predictor and prognostic 

factor. 

 

1.2.1.1 Fundamental prognosis research 

Fundamental prognosis research aims to describe and summarise future outcomes in 

people with a specific disease or health condition, in relation to current diagnostic and 

treatment practices (Hemingway et al., 2013). This could be expressed as an absolute risk 

(or rate) of a particular endpoint among groups with the same characteristics or in the same 

clinical setting and is often referred to as an average prognosis (overall risk) in a particular 

group.  
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Fundamental prognosis research is needed to inform health care professionals in order to 

assist clinical decision making and is also needed to assess the population burden of 

diseases and enable comparisons of effectiveness of health care systems. Fundamental 

prognosis research may also generate hypotheses for prognostic factor research, the 

second aspect of prognosis research. 

Fundamental prognosis research provides the initial answer to “What is the prognosis of 

people with a given disease?”, for example, what is the overall mortality of people with 

coronary heart disease? Bhatnagar et al. (2015) aimed to answer this question, 

investigating the mortality, prevalence, treatment, and costs of cardiovascular disease as a 

whole and of coronary heart disease in patients in the UK in 2014. They found that in 2012, 

cardiovascular disease was the most common cause of death in the UK for women, 

accounting for 28% of all female deaths. They then looked at regional variations, to assess 

whether the prognosis is different in different parts of the country, which found that 

mortality from cardiovascular disease varied widely throughout the UK, with the highest 

age-standardised cardiovascular disease death rates in Scotland (347/100,000) and the 

North West of England (320/100,000). This could then be compared over time to assess 

whether the prognosis is worsening or improving, and whether more research is needed to 

improve the outcome of those with coronary heart disease, particularly in certain areas of 

the country.  

 

1.2.1.2 Prognostic factor research 

A prognostic factor (predictor) is a measure that, among people with a given start point, is 

associated with a subsequent endpoint (Riley et al., 2013). Prognostic factor research aims 
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to discover and evaluate factors that are associated with prognosis. Prognostic factor 

research is important as prognostic factors can change how diseases and health conditions 

are defined, can inform treatment recommendations and individual patient management, 

can provide a building block for prognostic models and can be potential predictors of 

treatment response for stratified medicine. They can also be used to monitor disease 

progression.   

Prognostic factor research starts off with an exploration of factors and their association 

with the outcome, often the factors are identified by biological reasoning, but can be 

evaluated in hypothesis-free studies which aim to discover previously unsuspected factors. 

After exploration of prognostic factors, replication and confirmation is required, in multiple 

independent studies, together with the assessment of the prognostic value of the factor 

over and above other factors. 

To do this, a regression model, usually linear, logistic or survival (detailed in Section 1.3), is 

fitted to the outcome including the prognostic factor of interest in the model. This provides 

an unadjusted estimate of the association between the prognostic factor and the outcome. 

Then to evaluate the prognostic value of the factor, over and above other factors, the 

model can be adjusted for other known prognostic factors, which will provide an 

adjustment estimate of the effect size.  

Continuing with the example of prognosis in coronary heart disease patients, after finding 

the average prognosis of particular groups of patients, researchers may want to investigate 

whether certain individual-level factors are associated with prognosis as this may enable 

certain factors to be targeted (such as smoking) in order to improve prognosis in individuals 

(under a causal assumption), or to explain a decline or improvement in prognosis, as Unal 
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et al. (2004) did. They found that coronary heart disease mortality decreased by more than 

50% in England and Wales between 1981 and 2000 and approximately 60% of the decrease 

was attributable to reductions in major prognostic factors, particularly smoking.  

Factors that are repeatedly found to be associated with prognosis, in multiple independent 

studies, could then be considered for use in developing a prediction model which would 

enable individualised prediction of a patient’s future outcome. 

 

1.2.1.3 Prognostic model research 

Using a single predictor to estimate a patient’s future prognosis rarely gives an adequate 

estimate (Moons et al., 2009a), and hence to improve the prediction, multiple predictors 

are combined to develop a model which can be used to estimate the risk of a specific 

outcome for individual participants. Prognostic model research is the formal combination 

of multiple predictors for which risks of a specific endpoint can be calculated for individual 

participants. Other terms often used to describe a prognostic model are prognostic (or 

prediction) index or rule, risk (or clinical) prediction model and predictive model. 

Prognostic models aim to assist clinicians with their prediction of a patient’s future 

outcome, using values of multiple predictors to make an individualised prediction of a 

future outcome occurring in a particular patient. This can help clinicians to make informed 

decisions with the patient, in terms of treatment choices.  Prognostic models can also be 

used to help identify participants who are at risk of a poor outcome, to assign priority based 

on clinical need and to improve the design and analysis of randomised therapeutic trials.   
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The main use of prognostic models is to inform individuals about the future course of their 

illness and to guide doctors and patients in making joint decisions about their treatment. 

But it is important to remember that predicting outcomes is not the same as explaining the 

cause of the outcome.  

A well-known and widely used simple example of a prognostic model is the Nottingham 

Prognostic Index (NPI) (Haybittle et al., 1982), which predicts the survival probability of 

women with newly diagnosed breast cancer by combining information on tumour grade, 

number of involved lymph nodes and tumour size. The formula for the NPI is:  

NPI = (0.2 × tumour diameter(cm)) + lymph node stage + tumour grade 

Lymph node stage is coded as 1 = no nodes affected, 2 = ≤3 glands affected and 3 = >3 

glands affected. Tumour grade is scored as 1, 2 or 3. The values of these predictors from a 

specific person can be inputted to calculate the NPI score, with a lower score suggesting a 

good outcome. The risk was categorised as high (>4.4), medium (2.8 to 4.4) and low (<2.8) 

and survival curves can be plotted for these risk groups, which allows patients and clinicians 

to visually observe the risk. 

The development of prognostic models is discussed in more detail in Section 1.4. 

 

1.2.1.4 Stratified medicine research 

Stratified medicine research aims to identify those who will have the most clinical benefit 

or least harm from a specific treatment to allow the targeting of treatments dependent on 

certain characteristics (Hingorani et al., 2013). Prognosis research, particularly the 

development of prognostic models, is a fundamental component of stratified medicine. It 
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enables the assessment of priorities for stratified medicine, through fundamental 

prognosis research and prognostic factor research. The use of prognostic models in 

stratified medicine can help identify those at the greatest risk, which are those who will 

have the largest absolute benefit from the treatment if the relative treatment effect is the 

same for all patients. Alternatively, statistical modelling can be used to identify those who 

will have the greatest benefit from the treatment due to the presence of individual factors 

that are predictive of an improved treatment response, i.e. when the relative treatment 

effect is shown to be different for different subgroups of patients in a randomised trial.  

An example of how stratified medicine is used in practice is the primary care management 

of lower back pain to improve patient outcomes and economic benefits (Hill et al., 2011) 

by targeting treatment based on the patients prognosis (low, medium or high risk). This is 

estimated from a prognostic model which was developed to identify patient subgroups for 

initial treatment (Hill et al., 2008). 

 

1.2.2 Sources of data 

Different types of studies can be used for prediction research, such as retrospective studies, 

prospective studies, registry data and case-control studies. Each type of study has its 

advantages and disadvantages, but the study design seen as the best for prediction 

research is a prospective cohort study (Moons et al., 2014). 

A retrospective study is simple and has low costs, but patients are identified retrospectively 

which means that previously recorded data needs to be relied on and this may lead to 

selection bias if any information is missing or incorrectly recorded. Similarly, the recording 

of the predictors and the outcome needs to have been reliable and the predictors available 
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to be used to develop the prediction model and for prognostic factor research will be 

limited to those that were recorded in the study. Sample size and generalisability may also 

be an issue if the data being used is a single centre study.  

Prospective studies allow better identification of included participants, as the inclusion and 

exclusion criteria can be specified prior to recruiting participants. Predictors, outcomes, 

and time-points can also be better defined prior to the study commencing, meaning that 

prospective cohort studies are more desirable than retrospective studies for prognostic 

factor research and for developing a prediction model.  

Prediction models are commonly developed using data from registries, where data 

collection is prospective but its primary purpose is not for prediction research (Steyerberg, 

2010). Again, using registry data for prediction research is relatively simple and low cost, 

but there are usually no pre-defined assessments made and outcome measurement is not 

assessed in line with a protocol. Advantages of registry data are that it can often be linked 

to many other sources to gain additional information, they include large sample sizes and 

have a wide representation of patients. 

A nested case-control study can be an efficient option for prediction research when an 

outcome is relatively rare (Lee and Krischer, 2017), but this study design is seldom used in 

prediction research.  

 

1.3 Statistical models used for prediction research 

Below, statistical models and methods for prognostic factor and prediction model 

development are introduced, starting with linear and logistic regression models. 
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1.3.1 Linear regression 

While continuous outcomes are common in medical research, and often receive the most 

attention in regression modelling literature (Steyerberg, 2010), they are not quite as 

common in clinical prediction models, but are included here for completeness. A linear 

regression model can be used when the outcome is continuous. The linear regression 

model can be written as  

𝑌𝑗 = 𝛼 + 𝜷𝑿𝒋 + 𝑒𝑟𝑟𝑜𝑟 

 

(1.1) 

Where 𝑗 represents each person, 𝛼 refers to the intercept and 𝜷 = (𝛽1, … , 𝛽𝑘) is the set of 

𝑘 regression coefficients that relate the predictors 𝑿𝒋 = (𝑋𝑗1, 𝑋𝑗2, … , 𝑋𝑗𝑘) to the outcome 

𝑌. The error is calculated as the observed 𝑌 minus the predicted 𝑌 (�̂�). This error is 

assumed to have normal distribution and be independent of 𝑿.  

The regression coefficients, 𝛽𝑖, represent the increase in the estimated outcome, given a 

one unit increase in the value of 𝑋𝑖. Therefore, after estimation, the estimated outcome 𝑌𝑗 

for patient 𝑗, is related to a linear combination of the predictors, and can be calculated by 

inputting patient 𝑗’s individual values of 𝑿 into (1.1). Often penalisation or shrinkage is 

needed to improve model estimation, to help address the problem of overfitting to the 

dataset at hand. 

 

1.3.2 Logistic regression 

The logistic regression model is the most commonly used model for binary outcomes when 

the follow-up is relatively short and thus complete for (most) patients (Harrell, 2001, 

Steyerberg et al., 2013). The binary outcome, 𝑌𝑗 = 0 or 1, for person 𝑗, is linked via a logit-
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transformation of the outcome event probability to a linear combination of a set of 𝑘 

predictors, 𝑿𝒋 = (𝑋𝑗1, 𝑋𝑗2, … , 𝑋𝑗𝑘), and regression coefficients, 𝜷 = (𝛽1, … , 𝛽𝑘). The logit 

function (Figure 1.1) is used to restrict predictions to the interval < 0, 1 >. If we define the 

binary outcome to be 𝑌𝑗 = 0 or 1, with 𝑌𝑗 = 1 meaning the outcome of interest occurs for 

patient 𝑗, and 𝛼 to be the estimated intercept, the logistic regression model is written as a 

linear function in the logistic transformation: 

 

𝑙𝑜𝑔𝑖𝑡 (Prob(𝑌𝑗 = 1)) = 𝑙𝑜𝑔 (
Prob(𝑌𝑗 = 1)

1 − Prob(𝑌𝑗 = 1)
)  

                                                         = 𝛼 + 𝜷𝑿𝒋. 

 

(1.2) 

The regression parameters, 𝜷, are usually estimated by the method of (penalised) 

maximum likelihood to give the fitted model: 

𝑙𝑜𝑔𝑖𝑡 (Prob(𝑌𝑗 = 1)) = �̂� + �̂�𝑿𝒋. 

 

(1.3) 

The regression parameters can be written in terms of odds ratios (OR), which are usually 

reported instead of the coefficient. The odds ratio for variable 𝑖, comparing two individuals 

who differ by one unit, interpreted as the estimated increase in the odds given the one-

unit increase, is: 

 

Odds Ratio(Xi) =
exp(�̂�𝑖[𝑋𝑖 + 1])

exp (�̂�𝑖𝑋𝑖)
= exp (�̂�𝑖[𝑋𝑖 + 1] − �̂�𝑖𝑋𝑖) = exp(�̂�𝑖) . 

 

(1.4) 
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Based on the fitted model, an estimated probability for a new patient, 𝑗, can be calculated 

by back transforming and replacing the 𝑋’s with patient 𝑗’s individual predictor values in 

the following equation: 

Prob(𝑌𝑗 = 1) =
exp(�̂� + �̂�𝑿𝒋)

1 + exp(�̂� + �̂�𝑿𝒋)
 . 

(1.5) 

 

 

 

 

 

 

 

 

 

 

1.4 Developing a prediction model 

There are several things to consider when developing a prediction model such as what the 

candidate predictors are, how missing data will be handled, how continuous predictors will 

be dealt with and how the final model will be chosen. After the model has been developed, 

Figure 1.1: Logit function 
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the performance of the model should be assessed, and the model should be validated. 

These topics are discussed in detail below. 

 

1.4.1 Selecting candidate predictors 

Before a prediction model can be developed, the predictors to be used in the development 

of the model (candidate predictors) need to be identified. Potential predictors can be 

patient demographics, type and severity of disease, history characteristics, comorbidities, 

physical function status or subject health status and quality of life measures. There are two 

main methods to identifying predictors: using factors that are already known to be 

predictors, for example from systematic reviews, or using data-driven methods to test 

which predictors are (significantly) associated with the outcome.  

Ideal candidate predictors are clearly defined, are measured reliably and as they would be 

in usual clinical practice and are simple to measure (Moons et al., 2012b, Steyerberg, 2010).  

 

1.4.2 Sample size 

The number of candidate predictors also needs to be considered, especially when the 

sample size is small. The statistical power to develop a prediction model is often based on 

the number of outcome events per the number of candidate predictors. When the number 

of participants experiencing an outcome relative to the number of predictors being 

considered is small, overfitting typically occurs (Steyerberg, 2010). Historically, it has been 

recommended that there are at least 10 outcome events per candidate predictor (Peduzzi 

et al., 1996) as a general rule of thumb. For studies using a continuous outcome, a 
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recommended rule of thumb is 20 participants per candidate predictor (Harrell, 2001, 

Moons et al., 2014), although a suggestion of 2 participants per predictor has been made 

(Austin and Steyerberg, 2015). However, more recent research has shown this is not a good 

way of determining sample size. Ogundimu et al. (2016) has shown that the sample size 

does not only depend on the events per the number of candidate predictors, but also the 

prevalence of binary predictors. Further, Riley et al. (2020) state that “the sample size 

should be at least large enough to minimise model overfitting and to target sufficiently 

precise model predictions”. Riley and colleagues advise that the actual required sample size 

is context specific and depends not only on the number of events relative to the number 

of candidate predictor parameters but also on the total number of participants, the 

outcome proportion and the expected predictive performance of the model (Riley et al., 

2020). Hence, even if a dataset is used which has greater than 10 EPV, if a rare binary 

predictor is included then this can still create imprecise estimates. 

Penalisation techniques, such as uniform shrinkage estimated via bootstrapping, or 

penalised regression methods such as ridge regression, the least absolute shrinkage and 

selection operator (lasso), and elastic net (Hoerl and Kennard, 1970, Hoerl and Kennard, 

2000, Tibshirani, 1996, Zou and Hastie, 2005), are recommended to address overfitting. 

Yet, shrinkage and penalty terms are estimated with uncertainty from the development 

data set (Riley et al., 2021a). 

 

1.4.3 Missing data 

The next thing to consider when developing a prediction model is how to handle the data, 

for example, how to deal with any missing data. 
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Missing data can be a problem in all kinds of medical studies, prediction modelling being 

no exception, particularly as data from existing registries are increasingly being used in 

prediction modelling studies and these databases are especially prone to missing data 

(Moons et al., 2014). Missing data can occur when participants do not respond to 

questions, when equipment/technology fails, when participants withdraw from a study 

before the end, or because of data entry issues. The amount and type of missing data can 

have a big impact on the model development and the accuracy of the predictions from the 

model. The method in which to handle the missing data is also an important consideration 

(Kang, 2013).  

A common but potentially naive approach to missing data is complete case analysis. When 

complete case analysis is performed, all participants with a missing value for any variable 

are deleted, but this can leave a non-random subset of the participants if the data are not 

missing completely at random (which they rarely are) (Royston et al., 2009), and hence 

yields invalid predictive performance and biased predictor-outcome associations (Donders 

et al., 2006, Harrell, 2001).  

Multiple imputation is acknowledged as usually the preferred method of handling missing 

data, if the data is missing at random (Janssen et al., 2010). Missing at random means that 

the data are missing independently of any unobserved data, and so are related to observed 

covariates and outcomes. Multiple imputation creates multiple copies of the dataset, 

replacing the missing values by imputed values (Sterne et al., 2009), which are drawn from 

a posterior distribution. Standard statistical methods are applied to each of the imputed 

datasets and the results are averaged to give an overall estimate. Multiple imputation 

techniques are available in several commonly used techniques, but care needs to be taken 
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as the validity of the results depends on the modelling being completed carefully and 

appropriately (Sterne et al., 2009). 

 

1.4.4 Continuous predictors 

The handling of continuous predictors within the prediction model needs to be considered 

before developing the model. Dichotomising or categorising continuous data should be 

avoided (Royston et al., 2006), as this loses information and hence reduces the power to 

detect genuine predictors and their relationship with outcome (Cohen, 1983). 

Continuous predictors may also have a non-linear relationship with the outcome. Ideally, 

the linearity of the relationship should be assessed, and a suitable transformation 

performed if non-linearity is apparent. Two ways of executing a transformation is to use 

fractional polynomials (Royston et al., 1999) or to use restrictive cubic splines (Durrleman 

and Simon, 1989). Briefly, fractional polynomials provide flexible parametrisation for 

continuous variables by transforming the variable for different values of powers, or 

combination of powers, from a predefined set (−2, −1, −0.5, 0, 0.5, 1, 2, 3). Restrictive cubic 

splines split up the range of predictor values and fits a separate curve to each segment, 

defined so that the resulting overall curve is smooth and continuous.  

 

1.4.5 Selection of final model 

Once the candidate predictors have been selected and the methods of handling the data 

have been decided, the modelling of the data can commence to develop the prediction 

model.  
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A prediction model could be developed for a continuous outcome, such as pain rating, in 

which case a linear regression model could be used. More commonly they are developed 

for a binary event, for example death or diagnosis. The two main methods used are a 

logistic regression model or a time-to-event model (survival analysis). The logistic 

regression model was introduced in Section 1.3.  

The method of selection of predictors to be included in the multivariable prediction model 

can be a source of bias in the model development (Moons et al., 2014). There is no 

consensus on the best method for selection of the final predictors, though some 

recommendations have been made. A popular method is to use automatic selection 

procedures, including forward selection, backward selection, and stepwise selection. If 

automatic selection methods are used, then backward elimination is preferred to forward 

elimination, as this method starts with the full model and removes predictors deemed to 

have little predictive value after full adjustment, rather than starting with an empty model 

and building up (Royston and Sauerbrei, 2008), potentially missing important predictors. 

The worst approach is inclusion based on significance in univariable (unadjusted) analysis 

(Royston et al., 2009, Sun et al., 1996). Two concerns when using this form of model 

selection are firstly that this is likely to introduce error, as the correlation between the 

predictors is not properly controlled for, and secondly that predictors are not included in 

the final model because they were not significant in the univariable model simply due to 

chance.  

Predictor selection based on significance can produce optimism due to overfitting, and the 

variables selected highly depend on the significance level used.  An alternative approach is 

to include all the candidate predictors within the final model, which can reduce the 
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potential for overfitting, but it can often be impractical to include all candidate predictors.  

Another approach is to use a penalised regression, such as the lasso or elastic net, which 

includes variable selection in the model estimation (Tibshirani, 1996, Zou and Hastie, 2005). 

 

1.4.6 Model performance 

The discrimination and calibration of a prediction model are two of the main measures 

used when assessing the performance of a model.  

 

1.4.6.1 Discrimination 

Discrimination is how well a model separates those who experience an event from those 

who do not experience an event. Discrimination can be presented by the receiver operating 

characteristic (ROC) curve for logistic regression models, and quantified using measures 

such as the concordance statistic (C-statistic), net reclassification improvement (NRI), and 

integrated discrimination improvement (IDI).   

The most common of these is the C-statistic, which is equivalent to the area under the curve 

(AUC) for a logistic regression model (Steyerberg, 2010) and has also been extended to the 

Cox PH model setting (Harrell et al., 1996). The C-statistic is the probability that for any 

randomly selected pair of individuals, one who experiences the outcome of interest and 

one who does not, the model assigns a higher probability to the individual who experiences 

the outcome. In the survival setting, the Harrell’s C-statistic is the probability that for any 

randomly selected pair of individuals, the model assigns a higher probability to the 
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individual who survives longer. A C-statistic of 0.5 indicates that the model is no better than 

chance, and a value of 1 indicates that the model perfectly classifies the individuals.  

 

1.4.6.2 Calibration 

The calibration of a prediction model is the amount of agreement between the observed 

outcomes and the predictions (Steyerberg, 2010). Calibration is the ability of the model to 

accurately predict the absolute risk level across groups of similar individuals (Crowson et 

al., 2013).  

Calibration can be graphically assessed by plotting the predicted probabilities against the 

observed probabilities and fitting a calibration slope. The calibration slope is a smooth non-

linear line fitted between these predicted and observed probabilities on the logit scale. The 

calibration slope would be equal or very close to 1 for good calibration. However, a slope 

<1 indicates overfitting of the model, whereas a slope >1 indicates underfitting. 

 

Another measure of calibration is the ‘calibration-in-the-large’. For a logistic regression 

model this is the difference between the mean number of predicted events and the mean 

number of observed events. It can be calculated by regressing the observed outcome on 

the predicted probabilities, which provides a measure of effect size and a confidence 

interval as well as a p-value and does not require the data to be grouped, hence is preferred 

over using the Hosmer-Lemeshow test (Van Calster et al., 2019). 

The ratio of expected (E) to observed (O) events can also be used to assess calibration. For 

logistic regression models this can be calculated by dividing the number of expected events 
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by the number of observed events. The ratio should be close to one if the model calibrates 

well.  

 

1.4.6.3 Other measures 

Overall performance statistics can also be used such as R2, which measures the proportion 

of explained variation, or the Brier score which measures the overall model fit. The Brier 

score is the average squared difference between the observed outcome and the predicted 

probability (Harrell, 2001). Other measures used to assess model performance at a 

particular threshold are sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV). Sensitivity is the true positive rate whereas specificity is the true 

negative rate, and PPV and NPV are the proportions of positive and negative results that 

were a true positive or true negative result, respectively. The clinical utility can also be 

examined using decision curves, which is a weighted function of sensitivity, specificity, and 

outcome prevalence (Vickers and Elkin, 2006).  

 

1.4.7 Model validation 

When a performance measure is calculated in the same dataset as the model was 

developed in, this is known as the apparent predictive performance, and this tends to be 

biased (Moons et al., 2014). Hence, the performance of a prediction model should not be 

solely evaluated in the development dataset but should also be evaluated in an 

independent dataset. This is known as external validation. However, there are also ways to 

perform validation within the development data, a process known as internal validation.  
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1.4.7.1 Internal validation 

There are several approaches to internal validation. One method is to split a large dataset 

into two samples: a training/development sample and a validation sample (Picard and Berk, 

1990). Data are often split randomly, which means that the data are likely to only differ due 

to chance (Altman and Royston, 2000). Another approach would be to continue enrolling 

participants into the study after the development sample has been recruited and enrol 

these additional participants into a validation sample. Data splitting is simple, but means 

that the sample size for the development of the model is smaller than it could be, which 

could mean that the parameter estimates are not as precise as they could be if all the data 

were used (Steyerberg, 2010) and is not providing a truly independent dataset for 

validation so does not give a true indication of how the model will perform in other 

populations. Hence, splitting the data set at a single point for validation is not considered 

a useful technique for validation of a prediction model. 

Rather than splitting at a single point, cross validation could be used which splits the data 

multiple times at different points, using different parts of the data for the development 

and validation each time. This can be done by leaving a single observation out of the 

analysis each time and then predicting the outcome for that individual by using the model 

developed for the remaining participants, then summarising the performance for each time 

this is repeated. Another method of cross validation is to use 5 or 10-fold cross validation, 

by dividing the data into parts (e.g. 5 or 10), developing the model in all but one of these 

parts and testing the model in the other part, repeating for each part and then averaging 

the model performance (Steyerberg, 2010).  
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Internal validation could also be performed using resampling techniques such as 

bootstrapping to estimate the amount of optimism in the developed model which can then 

be used to shrink the estimated regression coefficients in the prediction model (Efron, 

1983, Efron and Tibshirani, 1994). Bootstrap samples of the same size of the original sample 

are drawn with replacement and a prediction model is developed in each bootstrapped 

sample. This model is then evaluated in the bootstrapped sample and the original sample, 

and the difference in the performance is the optimism of the model, which is averaged over 

the number of bootstrap samples to calculate the best estimate of optimism. Optimism 

adjusted performance measures can then be derived. In particular, the optimism adjusted 

calibration slope is often used as a uniform shrinkage factor to penalise predictor effects 

post-estimation. Bootstrapping is preferred for internal validation as it does not require 

any of the data to be excluded. 

 

1.4.7.2 External validation 

Internal validation of a prediction model is necessary to account for overfitting within the 

development data but does not provide information on the generalisability or 

transportability of the model. Hence, external validation should also be performed (Moons 

et al., 2012a). External validation evaluates the model developed in a completely external 

dataset to that it was developed in, but with a similar patient population to the 

development data. The external dataset could be collected at a different time or at a 

different location to that of the original data.  

A framework developed by Debray and colleagues (Debray et al., 2015) proposes three 

steps to external validation studies: 
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1. Investigate extent of relatedness; investigate how related the individuals from the 

validation sample are with the development sample. 

2. Assess model performance; assess the performance observed when the existing 

prediction model is tested in the development and validation sample. 

3. Interpretation of model validation results; examine how well the model reproduces 

the target population of the development sample or how well the model transports 

to a different but related target population. 

To increase the generalisability of the model, external validation of the model should be 

performed in multiple independent external datasets including participants from different 

settings and different populations, to assess how well the model works in different 

scenarios.  

Although external validation is viewed to be an essential part of the model development 

(Altman et al., 2009), still very few studies do externally validate the prediction model, as 

will be discussed further in a review of recently published prediction models in Chapter 3. 

 

1.5 Why is the timing of measurements important? 

The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual 

Prognosis or Diagnosis) statement recommends to clearly define when the predictors used 

in the development of the model were measured (Collins et al., 2015), and states that “all 

predictors should be measured before or at the study time origin and known at the 

intended moment the model is intended to be used” (Moons et al., 2015). This is because 

if a prediction model is to be used to predict the probability of a patient experiencing a 
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future outcome, then including a predictor that will not be known at the time that the 

model will be applied will be of little value. This is particularly true if the predictor is time-

dependent and not measurable at baseline (point of using the prediction model), as the 

use of these predictors can produce biased estimates and impact the study’s conclusions 

(van Walraven et al., 2004). The same issue applies for prognostic factor research: factors 

under investigation should be measured at or before the start-point when prognosis is 

clinically relevant. 

For example, a prediction model could be developed using the last recorded blood pressure 

measurement in the patient’s primary care record, but if the clinician then has the patient’s 

current blood pressure available when making a prediction at the time of the patient 

consultation, this means there is a time difference between the measure used to develop 

the model and the measure used when implementing the model, potentially creating a 

prediction model which is sub-optimal when applied in practice. 

Another example is if researchers collect baseline information on predictiors from 

participants three weeks after their consultation with their general practitioner, and use 

this baseline information to develop a prediction rule for the outcome of the consultation 

(measured six months after the consultation). If this model is to be applied at the point of 

care (the consultation), the predictor values may be different to those that were measured 

at the baseline and hence the model may not perform as well as expected when used at 

the point of care as a result of this.  

The impact of measuring a time-varying predictor after the intended moment of model use 

will be examined in a real example in Chapter 4.   
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1.6 Measurement error 

1.6.1 What is measurement error? 

Measurement error is a difference between the measured values of a variable and the true 

values of the variable, or if the variable is categorical, the classification to an incorrect 

category. All variables are generally measured with some degree of error (Armstrong, 

1998). 

The term measurement error is generally used when the variable of interest is continuous, 

whereas when the variable is categorical, the error is commonly referred to as 

misclassification. Mismeasurement is a term that has been used to denote error from both 

continuous and categorical variables (Gustafson, 2003). Within this thesis, the term 

measurement error will be used generally, and misclassification will be used when 

specifically referring to categorical variables. 

Measurement error is common within clinical studies, particularly observational studies 

(Guolo, 2008). Some of the main reasons that measurement error may occur are: 

• Fluctuations in human samples/biological variability (e.g. blood pressure changing 

in a short period of time) 

• Inaccuracy of measurement instruments (e.g. if scales being used to measure 

weight were not calibrated correctly) 

• Imperfect recall  (e.g. when asking a patient to report previous symptoms, they may 

not remember correctly) 

• Cost/resource limitations (e.g. using family history instead of genetic testing for 

diseases such as breast cancer) 
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• Subjective nature of measures (e.g. patients could report pain levels differently) 

• Laboratory or measurer error (e.g. inaccuracy of blood tests analysed in a 

laboratory) 

• Timing error (e.g. using most recently recorded values recorded in health records 

rather than current values) 

 

1.6.2 Differential and non-differential measurement error 

Non-differential measurement error occurs when everyone has the same probability of 

measurement error or misclassification, so the distribution of the variable measured with 

error depends only on the actual variable and not on the outcome variable. If 𝑿 is the true 

unmeasured variable, 𝑾 is the error-prone measure of 𝑿, 𝒁 is a precisely measured 

variable and 𝒀 is the outcome variable, then the measurement error in 𝑾 is non-

differential if no additional information on 𝒀 is contained in 𝑾 other than what is available 

in 𝑿 and 𝒁, so the conditional distribution of 𝒀 given (𝑾, 𝑿, 𝒁) is the same as the 

distribution of 𝒀 given (𝑿, 𝒁). When the conditional distribution is not the same, so the 

error depends on the actual value of other variables (Rothman et al., 2008), the error is 

differential. Non-differential misclassification is present if all participants have the same 

probability of being misclassified (Sorahan and Gilthorpe, 1994). Measurement error is 

typically non-differential, for example, if the association between blood pressure and 

myocardial infarction is being studied, but blood pressure is measured with error due to 

fluctuations in the patient and inaccuracy of the blood pressure instrument, no more 

information will be gained about the patient’s likelihood of a myocardial infarction from 

the measure of blood pressure recorded than the patient’s true measure of blood pressure. 
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There are feasible situations in which the error can be classified as differential, for example, 

when a surrogate measure is used in place of the true measure, there may still be an 

association between 𝑾 and 𝒀, even after adjusting for 𝑿.  Another example where the 

measurement error may be differential could be in a case-control study, where recall bias 

may lead to different error in the cases and controls (Armstrong, 1998).   

The parameters of a model given the true measures, even when those true measures are 

not observable, can typically be estimated when non-differential measurement error is 

present, but not when the measurement error is differential (Carroll et al., 2006).  

 

1.6.3 Additive and multiplicative measurement error 

Additive measurement error is when a measured (surrogate) variable 𝑾 is equal to an 

unobservable (true) variable 𝑿 plus some error, 𝑼: 

𝑾 = 𝑿 + 𝑼 (1.6) 

 

In this model, the additive measurement error is non-differential, unbiased and normally 

distributed. The measurement error is said to be unbiased if 𝐸[𝑾|𝑿] = 𝑿 (Gustafson, 

2003). 

Multiplicative measurement error occurs when the amount of error in 𝑾 is proportional to 

the actual value of 𝑿: 

𝑾 = 𝑼 ×  𝑿 (1.7) 
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Separate methods of analysis for additive and multiplicative measurement are not needed 

(Gustafson, 2003). 

 

1.6.4 Dependent and independent measurement error 

Dependent error is error that depends on the errors of other measured variables, 

otherwise it is known as independent (or nondependent) (Rothman et al., 2008). 

Dependent errors most often occur when the explanatory variables and the outcome are 

recorded in the same way (Lash and Fink, 2003), e.g. by questionnaire or interview, because 

if a particular patient is likely to over exaggerate a response, their other responses are also 

likely to be over exaggerated and hence the errors of one variable are dependent on the 

errors of the other variables. Dependent errors can logically be avoided by using separate 

sources for collecting information on explanatory variables and the outcome (Kristensen, 

1992). 

 

1.6.5 Impact of measurement error 

Analysis which does not account for measurement error, i.e. treats 𝑾 as if it is equal to 𝑿, 

is referred to as naïve (Gustafson, 2003). In assessing measurement error, careful attention 

must be given to the type and nature of the error (Carroll et al., 2006) because different 

types of error have different impacts on the inferential results and the different available 

techniques to correct for the error (Guolo, 2008).  

There are three main effects of classical measurement error being present in predictor 

values (Carroll et al., 2006). Firstly, it may lead to biased estimates of the parameters 
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derived from statistical models (rather than just less precise inferences (Gustafson, 2003)). 

Secondly, it creates a loss of power for detecting relationships, and thirdly, it masks the 

features of the data, meaning that it is harder to spot relationships via graphical methods.  

Measurement error in the outcome does not greatly bias the parameter estimates, just 

adds uncertainty (Gustafson, 2003), whereas measurement error in the predictor does bias 

the parameter estimate, however, not always necessarily towards the null (Fosgate, 2006). 

This can be seen in a linear regression model using scatter plots in Figure 1.2. The top-left 

plot shows the relationship between a predictor 𝑿 and the outcome 𝒀, randomly simulated 

from a bivariate normal distribution both with mean 0 and standard deviation 1, and a 

correlation coefficient equal to 0.5. The line on the plot shows the line of best fit. In the 

top-right plot, 𝑾 was observed in place of 𝑿, where 𝑾 was obtained by adding random 

normally distributed error to 𝑿. We can see here that by adding error to the predictor, the 

slope of the regression line is flatter, hence the parameter estimate is biased.  Whereas in 

the bottom-left plot, error has been added to the outcome to create 𝒀*, and we can see 

that the addition of this error does not change the estimate of the slope greatly, just 

increases the uncertainty. The bottom-right plot shows the relationship between the 

predictor measured with error, 𝑾, and the outcome measured with error, 𝒀*. We can see 

that the regression line is similar to that when regressing 𝒀 on 𝑾, with more uncertainty. 

Hence, throughout this thesis, the focus will be on measurement error in the predictors 

rather than the outcome. 
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Figure 1.2: Scatter plots showing the effect of measurement error in a predictor and the 
outcome in a linear regression model. 

 

 

1.6.6  Measurement error in prediction models 

It has been reported that there may not be a need to account for the measurement error 

within the prediction model. Carroll et al. (2006) state that if a true predictor (𝑋) is 

measured with error and this error-prone predictor (𝑊) is used to develop a prediction 

model to predict a participants outcome (𝑌), then if it is this same error-prone measure 

(𝑊) that is available in practice when implementing the prediction model, rather than the 

true predictor (𝑋), then there is little issue with using 𝑊 to develop the prediction model. 

Although, a problem may arise under two circumstances: 
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1. When a prediction model is developed in one population but is intended to be used 

to predict the outcome in another population. 

2. When a surrogate for 𝑋 is used to develop the prediction model, but the true value 

of 𝑋 will be available when applying the model. 

Another viewpoint could be that a prediction model should provide the most accurate 

estimate possible, and if a predictor used in the development of a model is measured with 

error then the estimates of the predictor outcome associations will be sub-optimal. Even if 

the same predictor is then measured with this same error when applying the model in 

practice, this does not necessarily mean that the probability of outcome being estimated 

from the model is a true estimate of a patient’s predicted probability, as using a predictor 

measured with error when implementing the model may not cancel out the bias, but could 

potentially underestimate a participants probability of future outcome.  

Therefore, measurement error within prediction models could produce sub-optimal 

predictions of a patient’s future outcome. Indeed, measurement error in prediction models 

has been shown to reduce the AUC and increase the Brier score (Khudyakov et al., 2015), 

but this study focused on the gain in prediction performance from using error-free 

predictors instead of error-prone predictors, rather than the gain in prediction 

performance from accounting for the measurement error in the model when the true 

error-free values are not known. The study also only evaluated the scenario where only 

one error-prone predictor was included in the prediction model. 

Another study found that both random and systematic error in self-reported health data 

influences the calibration, discrimination and predicted risks (Rosella et al., 2012). This 

study assessed the impact of random and systematic error in self-reported height and 
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weight on the performance of a model used to predict diabetes. The authors found that 

random error reduced the calibration and discrimination, and biased the predicted risk 

upwards, whereas systematic error reduced the calibration and biased the predicted risk 

in the direction of the bias but had no effect on the discrimination.  

However, in general the impact of measurement error in prediction model research is 

relatively neglected. 

 

1.7  Individual participant data (IPD) meta-analysis for prognosis 

and prediction studies 

Multiple studies are often conducted to investigate the same prognostic factors; however, 

they often have conflicting findings and are of variable quality. Similarly, multiple 

prediction models are frequently developed with the aim of predicting the same outcome. 

This motivates the need for evidence synthesis: the combination of data from multiple 

studies to provide an overall summary of current knowledge (Riley et al., 2021b). There is 

an increasing interest in synthesis of prognostic factor effects and the synthesis of data for 

the external performance of prediction models (Debray et al., 2017, Riley et al., 2013, 

Steyerberg et al., 2013). The statistical technique used to combine quantitative data 

obtained from multiple research studies is known as meta-analysis. Traditionally, most 

meta-analyses have used aggregate data extracted from study publications, but there is a 

growing demand for meta-analyses that utilise the IPD (Harbord et al., 2008, Macaskill, 

2004, Macaskill et al., 2010, Rutter and Gatsonis, 2001), the raw patient level data recorded 

for each participant in a research study, to calculate and synthesise the effect of interest 



 

35 
  

from each study. IPD meta-analysis projects offer novel opportunities for the development 

of clinical prediction models and can allow the performance of existing models to be 

externally validated across different populations. Existing prediction models often show 

poor predictive performance when tested or applied in other populations or settings than 

used for model development, however, IPD meta-analysis can allow researchers to update 

or tailor the existing model equation to improve the performance in particular populations 

or settings (Riley et al., 2016).  

 

1.7.1  Rationale for IPD meta-analysis 

Compared to using aggregate data (e.g. prognostic factor estimates) from publications, IPD 

projects can potentially provide substantial improvements to the quantity and quality of 

data available (Riley et al., 2021b). The quality of the data is improved as detailed checks 

are used to ensure the completeness, validity, and internal consistency of data items for 

each study. 

There is also a  greater ability to standardise outcome and covariate definitions across the 

studies, and it can support more flexible and sophisticated analyses than possible with 

aggregate data as there is no need to be restricted by the original analysis methods of the 

study. IPD meta-analyses can allow continuous variables that may have previously been 

categorised to be analysed on their continuous scale, and likewise, potential non-linear 

relationships can be examined.  

Another advantage of using IPD over aggregate data is that unpublished studies can be 

included, as can any outcomes that were not reported for published studies, or participants 

who were inappropriately excluded from the original analyses (Macaskill, 2004, Macaskill 
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et al., 2010, Nikoloulopoulos, 2017). This can help evade potential reporting biases (Higgins 

et al., 2009), increase the quantity of information available for analyses, and therefore 

boost the statistical power to detect genuine effects (Riley et al., 2011).  

 

1.7.2  Statistical methods for an IPD meta-analysis 

There are two approaches to analysing an IPD meta-analysis; two-stage and one-stage 

(Burke et al., 2017, Simmonds et al., 2005). The two-stage approach first uses standard 

regression analysis in each study separately to obtain the aggregate data needed for the 

second stage. The second stage then uses standard common-effect or random-effects 

meta-analysis models to synthesis the aggregate data and produce summary results and 

forest plots (Riley et al., 2021b).  

The one-stage approach analyses the IPD from all the studies in one model whilst allowing 

for the clustering of participants within studies (Abo-Zaid et al., 2013). The one-stage 

approach requires a hierarchical (multilevel) regression model appropriate to the type of 

outcome data being synthesised. The one-stage approach utilises a more exact statistical 

likelihood than the two-stage meta-analysis approach, which results in better statistical 

properties, particularly when the included studies have few participants or outcome events 

(Altman et al., 2007, Macaskill et al., 2010, Putter et al., 2010).  

However, the results of a one-stage and two-stage IPD meta-analysis are usually similar, 

with the two-stage performing just as well as the one-stage approach in most situations 

unless the outcome event is sparse (Burke et al., 2017). The two-stage approach is often 

preferred (Chu and Cole, 2006, Leeflang et al., 2012), as the second-stage uses well-known 

meta-analysis methods that are relatively straightforward, is often computationally faster 
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than the one-stage approach and naturally separates the within-study information from 

across-study information. 

 

1.7.2.1 Meta-analysis assuming a common-effect model 

Consider the aim to summarise a prognostic factor effect or the performance of a 

prediction model. In the second stage of the two-stage approach, the estimates (e.g. log 

odds ratios or calibration slopes) obtained in the first stage are combined using either a 

common-effect model or random-effect model. The common-effect model assumes the 

prognostic effect or model performance is the same in every study.  

Define 𝛾𝑖 to be the estimate of a particular effect of interest, either the prognostic factor 

effect or measure of model performance, where 𝑖 = 1 to 𝐼 studies, and let  �̂�𝑖
2 be the 

associated variance of 𝛾𝑖. The common-effect meta-analysis model assumes that the true 

effect, 𝛾, is the same in all studies, and that 𝛾𝑖 are estimates of this common effect as given 

by (Riley et al., 2013, Whitehead and Whitehead, 1991):  

𝛾𝑖~𝑁(𝛾, 𝑆𝑖
2) (1.8) 

This assumes that the effect estimates from the first stage are normally distributed and 

that their variances are known. Maximum likelihood (ML) estimates can be used to fit the 

model in (1.8) which leads to the following analytic solutions for the summary effect 

estimate (𝛾) and its variance (var(𝛾)): 

𝛾 =
∑ 𝛾𝑖𝑤𝑖

𝐼
𝑖=1

∑ 𝑤𝑖
𝐼
𝑖=1

 (1.9) 
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var(𝛾) =
1

∑ 𝑤𝑖
𝐼
𝑖=1

 (1.10) 

It can be seen from equation (1.9) that the summary result,  𝛾, is a weighted average with 

the weight of each study, 𝑤𝑖, defined by:  

wi =
1

𝑆𝑖
2 (1.11) 

Hence, the meta-analysis gives more weight to the estimates from studies with the smallest 

𝑆𝑖
2 values (i.e., those with more precise effect estimates, which is generally the studies with 

the largest number of participants or outcome events). 

 

1.7.2.2 Meta-analysis assuming a random-effects model 

The assumption of a common effect across all included studies is usually inappropriate, as 

the prognostic factor effects or model performance will usually differ across studies 

(Higgins et al., 2009). This is known as between-study heterogeneity. To allow for 

unexplained between-study heterogeneity in the parameter of interest, the 𝛾𝑖 can be made 

random (Riley et al., 2009), so the true effects are allowed to be different but are assumed 

to be from a particular distribution (Levis et al., 2017). The meta-analysis then needs to 

summarise this distribution of the 𝛾𝑖. If we extend the model in (1.8), the meta-analysis 

model with random effects is: 

𝛾𝑖~𝑁(𝛾𝑖, 𝑆𝑖
2) (1.12) 

𝛾𝑖~𝑁(𝛾, 𝜏2) (1.13) 

As with the model in (1.8), the estimates of 𝑆𝑖
2 are assumed to be known. The between-

study variance of the true prognostic effect (or model performance parameter) is denoted 
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by 𝜏2. If 𝜏2 is equal to zero, then there is no between-study heterogeneity in the parameter 

of interest, and the model in (1.13) reduces to the common-effect meta-analysis as in (1.8). 

The ML estimate solution for  𝛾 is a weighted average of the treatment effect estimates 

where: 

𝛾 =
∑ 𝛾𝑖𝑤𝑖

∗𝐼
𝑖=1

∑ 𝑤𝑖
∗𝐼

𝑖=1

 (1.14) 

and 

var(𝛾) =
1

∑ 𝑤𝑖
∗𝐼

𝑖=1

 (1.15) 

where  

wi =
1

𝑆𝑖
2 + �̂�2

 (1.16) 

Each study’s weight (𝑤𝑖
∗) now depends on the sum of the two estimated variances: the 

variance of the study’s prognostic effect estimate (𝑆𝑖
2)  and the between-study variance of 

the prognostic effect (𝜏2). Hence, 𝜏2 must also be estimated in order to derive the summary 

prognostic effect estimate (𝛾) when assuming random prognostic effects, and this is best 

done using restricted maximum likelihood (REML) (Riley et al., 2021b).  

 

1.7.3  Issues with IPD meta-analysis 

Despite the benefits of IPD meta-analysis over traditional aggregate data meta-analysis, it 

still faces some challenges. IPD meta-analysis projects can be incredibly time consuming 

and costly in terms of obtaining, cleaning and analysing the data, requiring more time and 

resources than for conventional aggregate data (Macaskill, 2004, Macaskill et al., 2010, 
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Nikoloulopoulos, 2017). Negotiating and maintaining relationships with investigators from 

different countries, settings and disciplines can also take considerable time and effort (Kuss 

et al., 2014, Nikoloulopoulos, 2017). Yet despite the extensive efforts to obtain IPD from all 

identified authors, it may still be unavailable for some studies, leading to an availability bias 

in the analyses (Ahmed et al., 2012). Similarly, publication bias may also be an issue in 

identifying suitable studies for inclusion. Issues from primary study deficiencies may also 

remain, such as differences in outcome definitions, differences in methods of 

measurement or differences in the predictors available in each study. Another issue that 

could arise when undertaking an IPD meta-analysis are continuous predictors may have 

been categorised by the study authors, making it impossible to harmonise the continuous 

predictors across studies.  

 

1.8  Aims and outline of the thesis 

The broad aim of the thesis is to apply and develop statistical methods for prognosis and 

risk prediction research. In particular, the thesis aims to: 

• Apply statistical methods for prognosis and prediction research in novel clinical 

examples, to provide new findings about prognostic factors and prediction models. 

• Investigate the added prognostic value of potential prognostic factors for the 

development of complications in monochorionic (MC) twin pregnancies, to improve 

knowledge of complications in MC twin pregnancies. 

• Review recent prediction model articles to ascertain the potential for measurement 

error in the predictors used and how often it was acknowledged and/or accounted 

for. 
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• Review recent prediction model articles to establish whether the predictors in the 

models were generally measured at the same time that the model is intended to be 

used in practice. 

• Illustrate methodological issues for prediction model development when predictors 

are measured at a different time point to the intended moment of use of the model. 

• Externally validate existing prediction models across several population groups for 

predicting stillbirth, using IPD meta-analysis. 

• Propose a method for estimating the power of an IPD meta-analysis project for 

evaluating potential prognostic factors. 

The thesis has seven chapters. Chapters 2 to 4 focus on statistical approaches and issues in 

prognosis research conducted in a single study. Chapters 5 and 6 focus on the use of IPD 

for prognosis research studies. An outline of the chapters is given below. 

 

Chapter 2 Prognostic value of first-trimester ultrasound measurements and serum 

biomarkers for adverse outcomes in monochorionic twins 

Chapter 2 presents an applied prognostic factor study which investigates the added 

prognostic value of two ultrasound measurements and three serum biomarkers for the 

development of complications later in monochorionic twin pregnancies, to showcase key 

statistical approaches for examining potential prognostic factors. The chapter also aims to 

highlight how developing a prediction model may not always be appropriate. The work 

arising from this chapter has been published in Diagnostic and Prognostic Research (Mackie 

et al., 2019), for which I contributed to the study design, conducted all statistical analyses, 
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contributed to the interpretation and reporting of the results and drafted the methods and 

results sections of the manuscript. 

 

Chapter 3 Measurement error and timing of predictor values used in prediction model 

research: a systematic review of current practice and reporting 

Chapter 3 provides a systematic literature search to identify recent prediction models with 

the aim of evaluating the potential for measurement error of values of included predictors 

within the models, and to observe if and how authors accounted for any measurement 

error. The review also examined whether the timing of the predictor measurements was 

clearly stated, and if so, its relation to the intended moment of use of the prediction model.  

The work arising from this chapter has been published in Journal of Clinical Epidemiology 

(Whittle et al., 2018), for which I led the completion of the review and drafted the initial 

manuscript. This work has also been presented at the 38th International Society of Clinical 

Biostatics Conference (ISCB). 

 

Chapter 4 The effect of measuring time-varying predictors at a different time point to 

that of the intended moment of use: an illustrative example 

Chapter 4 illustrates the effect that measuring a time-varying predictor after the intended 

moment of using a prediction model has on the predictor-outcome associations and model 

performance. The direction and magnitude of predictor-outcome associations of a 

multivariable prediction model were compared under two scenarios: using a time-varying 

predictor of interest, ascertained by the treating physician at the point of care (i.e. the 
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intended moment of use) and using the same predictor, but ascertained by a self-complete 

questionnaire mailed several days after the point of care. The work arising from this 

chapter has been published Diagnostic and Prognostic Research (Whittle et al., 2017), for 

which I designed the study in collaboration with colleagues, prepared and analysed the 

data, and drafted the initial manuscript. This work has also been presented at the 37th 

International Society of Clinical Biostatics Conference (ISCB), and the Young Statisticians 

Meeting 2016. 

 

Chapter 5 External validation of prediction models for stillbirth using individual 

participant data (IPD) meta-analysis: the IPPIC study 

Chapter 5 utilises individual participant data from multiple studies (the IPPIC study) to 

externally validate existing prediction models that have been developed across several 

population groups for predicting stillbirth. The predictive performance of three previously 

identified prediction models are assessed and compared using discrimination and 

calibration statistics. Decision curve analysis is used to assess the clinical utility of the 

prediction models, and the model performance is pooled and summarised across data sets 

using a two-stage IPD meta-analysis. The results arising from this chapter have been 

published in Ultrasound in Obstetrics & Gynaecology (Allotey et al., 2022) for which I am a 

joint co-author having conducted all statistical analyses, contributed to the interpretation 

and reporting of results and drafted the methods and results sections of the manuscript.  
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Chapter 6 Calculating the power to examine prognostic factor effects when planning 

an individual participant data meta-analysis with a binary outcome 

Chapter 6 derives a method to estimate the power of a planned IPD meta-analysis project, 

in advance of collecting the IPD, for a project which aims to synthesise the IPD to examine 

the effect of a (potential) prognostic factor on a binary outcome. The chapter modifies 

previously published methods that calculated the power of an IPD project to identify a 

treatment-covariate interaction. Extensions are provided for adjusting the power for the 

presence of other correlated adjustment factors and for allowing for heterogeneity 

between studies. The work arising from this chapter is currently being written up for 

submission to Research Synthesis Methods. 

 

Chapter 7 Discussion 

Chapter 7 contains an overview of the principal findings from the thesis, a discussion of the 

strengths and weaknesses of the work completed, implications for future studies 

developing prediction models and carrying out prognostic factor studies and 

recommendations for further research. 
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2 First-trimester ultrasound measurements and maternal 

serum biomarkers as prognostic factors in 

monochorionic twins 

2.1 Introduction 

This chapter presents a prognostic factor study in a real clinical dataset, to showcase key 

statistical approaches for examining potential prognostic factors. Logistic regression 

models are fitted to assess the association between potential prognostic factors and 

adverse outcomes in monochorionic twin pregnancies, after adjusting for the effect of 

previously identified prognostic factors. This chapter also highlights how it might not 

always be sensible to develop a prediction model, even when the C-statistic from fitting a 

multivariable model is apparently promising. The clinical findings of this chapter were 

published in Diagnostic and Prognostic Research (Mackie et al., 2019), for which I 

undertook all aspects of statistical analysis and the interpretation and reporting of results. 

The findings of the work also contributed to the rationale for a paper showcasing the issues 

of instability of prediction models in small datasets, for which I am a co-author (Riley et al., 

2021a).  

 

2.2 Medical terms glossary 

A glossary of the medical terms relating to pregnancy used throughout this chapter which 

may not be commonly known are given below. 
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Aneuploidy screening Screening tests that are conducted during the 12-week 

ultrasound to give information on the baby’s risk of 

certain chromosome disorders (such as Down Syndrome). 

Concordant Twins inheriting the same genetic characteristic are 

known as concordant. 

Congenital abnormalities Structural or functional anomalies that occur during 

intrauterine life. 

Crown-rump length The measurement of the length of the fetus from the top 

of the head (crown) to the bottom of the buttocks (rump). 

Dichorionic twins A form of multiple gestation in which each twin has a 

separate placenta (blood supply) and amniotic sac. 

Fetal biometry  A measurement taken during a standard ultrasound. 

Fetal growth restriction Babies that are smaller and lighter than they should be for 

the number of weeks of pregnancy. 

Fetal/amniotic sac  A thin-walled sac that surrounds the fetus during 

pregnancy. 

Fetoplacental doppler 
assessment 

An assessment of the blood flow going to the baby and 

within its cord, heart, and brain. 

Monochorionic 
diamniotic twins 

The product of a single fertilized egg, resulting in 

genetically identical offspring, each with their own 

amniotic sac. 

Monochorionic 
monoamniotic twins 

identical twins that not only share a placenta, but also 

share the same amniotic sac. 
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Nuchal translucency 
 

The amount of fluid behind a baby's neck in the first 

trimester of pregnancy measured during an ultrasound. 

Parity The number of times a woman has previously given birth. 

TAPS A rare condition that occurs when there are unequal 

blood counts between the twins in the womb, meaning 

one twin is not receiving the appropriate amount of 

oxygen and nutrients it needs to develop properly. 

Twin-twin transfusion 
syndrome 
 

A prenatal condition in which twins share unequal 

amounts of the placenta's blood supply resulting in the 

two fetuses growing at different rates. 

 

 

2.3 Clinical rationale for this chapter 

Multiple pregnancies are at an increased risk of adverse outcomes, with monochorionic 

diamniotic (MCDA) twins being at higher risk of pregnancy loss and morbidity compared to 

dichorionic twins (Hack et al., 2007). This is due to MCDA twins sharing a single placenta. 

In 10-15% of MCDA twin pregnancies, twin-twin transfusion syndrome (TTTS) occurs 

because of unbalanced anastomoses (Moldenhauer and Johnson, 2015), which 

subsequently increases the risk of fetal growth restriction (FGR) in either one or both 

fetuses (Oepkes and Sueters, 2017). International guidelines recommend intensive 

antenatal surveillance to detect adverse outcomes complicating monochorionic (MC) 

twins, principally TTTS and FGR. This involves regular monitoring via ultrasound scans from 

16 weeks gestation at two weekly intervals to evaluate the liquor volume in each fetal sac, 
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fetal biometry and often fetoplacental Doppler assessment (Khalil et al., 2016) (ACOG, 

2016, Neilson and Kilby, 2008, NICE, 2011). Such obstetric surveillance requires 

ultrasonographic expertise and health economic resources, it is time-consuming and 

targets all MC twins as a ‘high-risk population’. Additionally, this intensive surveillance may 

increase maternal anxiety and affect mental health. If it was possible to predict which MC 

twin pregnancies were at higher risk of developing complications, it would allow clinicians 

to stratify care, and those at higher risk could undergo more frequent surveillance or be 

assessed earlier in a tertiary referral centre. This motivates the need for prognostic factor 

research and the potential development of prediction models in this field, to help identify 

those at most risk of poor outcomes. 

 

2.4 Objectives 

2.4.1 Clinical objectives 

The pre-specified primary clinical objective was to assess if there was an association 

between a pre-determined list of potential prognostic factors and a fetal composite 

adverse outcome, to improve knowledge of complications of MC twin pregnancies. In 

particular, the aim was to investigate whether ultrasound measurements and serum 

biomarkers add prognostic value over and above standard clinical characteristics that are 

already routinely measured. Secondary objectives were to investigate whether these 

factors were associated with other, secondary outcomes. The aim here was not to develop 

a clinical prediction model to use in practice, but to explore the relationship between each 

potential prognostic factor and the outcome, whilst adjusting for previously identified 

prognostic factors. 
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2.4.2 Methodological objectives 

Alongside the clinical objectives, for this thesis the statistical objective of the chapter was 

to highlight how developing a prognostic model with the data at hand may not always be a 

sensible idea. Clinical collaborators suggested that, following the prognostic factor 

evaluations, it was important to develop a prognostic model to predict the occurrence of a 

fetal adverse outcome in women with a MCDA twin pregnancy, including all the prognostic 

factors of interest and the previously identified prognostic factors. However, a 

methodological concern was that the sample size to do this was insufficient. To 

demonstrate this, the instability of developing a prognostic model with the data available 

is examined, by using bootstrapping to (i) estimate the amount of overfitting and to 

calculate a shrinkage factor, (ii) estimate the uncertainty in the shrinkage factor, and (iii) 

assess the lack of stability in model fit and model predictions. Although a multivariable 

model including all the prognostic factors of interest was fitted, again the aim was not to 

develop a prediction model to be used in practice, but to emphasize that developing a 

prediction model may not be appropriate by estimating the amount of instability such a 

model would have. 

 

2.4.3 Chapter outline 

The outline of this chapter is as follows. Section 2.4 begins by defining the data used, the 

prognostic factors of interest and the outcomes that were considered. This is followed by 

a description of the statistical methods. Section 2.5 presents the results of the analyses of 

the prognostic factor study, culminating with the results from fitting a prognostic model 



 

50 
  

and the optimism and instability associated with this model in Section 2.5.3. The chapter 

concludes with a discussion of the results found in Section 2.6. 

 

2.5 Methods 

2.5.1 Participants 

An existing multicentre, international cohort of MC twin pregnancies formed by routinely 

prospectively collected data was provided by colleagues from the University of 

Birmingham, who also provided the clinical rationale for this project. A protocol was 

published prior to analysis (Mackie et al., 2017). All women with a MCDA twin pregnancy 

in the West Midlands and North Thames regions who had undergone first trimester 

aneuploidy screening between October 2014 and September 2015, or women with a MCDA 

twin pregnancy who booked at the Royal Prince Alfred Hospital, Sydney between June 

2011, and April 2016, and for whom a first trimester blood sample was stored, were eligible 

for inclusion. Chronicity had to have been determined in the first trimester based on: a 

single placental mass, a thin inter-twin membrane, and the presence of the ‘T’ sign, absence 

of Lambda sign (Sepulveda et al., 1996). If the twins were a different sex, or postnatally the 

pregnancy was diagnosed as dichorionic based on placental assessment, these pregnancies 

were excluded. These women were booked at 29 different secondary and tertiary care 

maternity units (28 in the UK, 1 in Australia), depending on geographical area and were 

under consultant-led care due to the high-risk nature of multiple pregnancies. Women 

were not eligible for inclusion if they had a miscarriage prior to 14 weeks gestation, a 

monochorionic monoamniotic pregnancy, a higher order multiple pregnancy, or the 

pregnancy was affected by serious structural or congenital anomalies, whether concordant 
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or discordant, as the aetiology of their adverse outcomes, such as growth restriction, 

preterm birth or intrauterine demise would be different to pregnancies not affected by 

structural or congenital anomalies, and would therefore increase heterogeneity within the 

cohort. Where outcome data were missing due to the time-period and setting diversity, 

women were not contacted for further details, thus these pregnancies were excluded.  

Pregnancies were cared for according to local and national guidelines. Postnatal outcome 

data until discharge from hospital were retrospectively collected from hospital notes. No 

further follow-up data was collected.  

 

2.5.2 Potential prognostic factors 

The ultrasound and biomarkers to be examined for their prognostic ability were pre-

defined before data collection and analysis, following advice from clinical collaborators at 

the University of Birmingham.  

 

2.5.2.1 Ultrasound measurements 

Nuchal translucency (NT) and crown-rump length (CRL) are measured as standard practice 

during routine ultrasound scans in women who consent to first trimester aneuploidy 

screening in the UK or Australia (FASP, 2015) (FMF, 2004). These were performed by 

sonographers and fetal medicine doctors in the local units who were approved by the Fetal 

Medicine Foundation to perform these scans. NT discordance (%) was calculated as the 

smallest NT subtracted from the largest NT, divided by the largest NT, and multiplied by 

100. CRL discordance (%) was calculated as per NT discordance. These measurements were 

treated as continuous variables within analyses (Royston et al., 2006). 
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2.5.2.2 Biomarker measurements 

Three serum biomarkers (AFP, sFlt-1, PlGF) were measured on stored maternal serum 

samples that were initially analysed for β-hCG and PAPP-A. The β-hCG and PAPP-A are 

measured as standard practice in women who consent to participate in the UK or Australian 

aneuploidy screening programme and hence these measurements were not repeated for 

this study.  

Further details on all the potential prognostic factors of interest are given in Table 2.1.
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Table 2.1: Potential prognostic factors of interest 

Factor How measured When measured Biological role and clinical use Lower 
limit of 
detection 

Upper limit 
of detection 

Nuchal 
translucency 

By accredited 
sonographers as part of 
the National Aneuploidy 
screening programme 

11+2 weeks–14+1 weeks, 
which is calculated based on 
the CRL which must be 
between 45-84mm 

Measurement of lymphatic fluid at the back of the 
fetus’s neck. High measurement indicates high risk 
of chromosomal or cardiac problems. Discrepancy 
between twins may indicate adverse outcome. 

0.1cm Infinite 

Crown-rump 
length 

By accredited 
sonographers as part of 
the National Aneuploidy 
screening programme 

11+2 weeks–14+1 weeks, 
which is calculated based on 
the CRL which must be 
between 45-84mm 

Measurement of the length of the baby used to 
date the pregnancy. Discrepancy between twins 
may indicate adverse outcome. 

1mm Infinite 

sFlt-1 Clinical laboratory with 
experience of performing 
these assays for pre-
eclampsia prediction 

Sample taken at 10+0–14+1 
weeks gestation, stored at          
-80°C and analysed 6 years 5 
months to 0 years 5 months 
later 

Produced by the syncytiotrophoblast and prevents 
angiogenesis. High level indicates pre-eclampsia in 
singleton pregnancies prior to the appearance of 
signs and symptoms. 

10pg/mL 85000pg/mL 

PlGF Clinical laboratory with 
experience of performing 
these assays for pre-
eclampsia prediction 

Sample taken at 10+0–14+1 
weeks gestation, stored at          
-80°C and analysed 6 years 5 
months to 0 years 5 months 
later 

Produced by the syncytiotrophoblast and promotes 
angiogenesis. Low level indicates pre-eclampsia in 
singleton pregnancies prior to the appearance of 
signs and symptoms. 

3pg/mL 10000pg/mL 

AFP Clinical laboratory 
accredited to perform 
testing as part of 
National Aneuploidy 
screening programme 

Sample taken at 10+0 -14+1 
weeks gestation, stored at         
-80°C and analysed 6 years 5 
months to 0 years 5 months 
later 

Human function is unknown, but abundant in 
fetuses. Low level indicates increased aneuploidy 
risk in twin pregnancies in the 2nd trimester as part 
of the Quad test. 

1U/mL 1000U/mL 
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2.5.3 Outcomes 

The primary outcome for the study was a fetal adverse outcome composite defined as at 

least one of the following: TTTS, antenatally detected growth restriction, postnatally 

detected growth restriction, twin anaemia plycythaemia sequence (TAPS), twin 

oligohydramnios-polyhydramnios (TOPS) or intrauterine fetal death (IUFD). 

Individual complications were also examined as secondary outcomes, as well as a neonatal 

composite outcome and a maternal composite outcome. Secondary outcomes were 

defined as:  

I. TTTS: defined and staged as per Quintero criteria (Quintero et al., 1999). Pregnancies 

affected by TTTS with concurrent growth restriction were not included in the antenatal 

or postnatally detected growth restriction groups 

II. Antenatally detected fetal growth restriction: abdominal circumference (AC) or 

estimated fetal weight (EFW) <10th centile in either/both fetus(es) and/or growth 

discordance >20% recorded at least twice over ≥ 2-week period 

III. Postnatally detected growth restriction: birthweight <9th centile on the World Health 

Organization Growth Charts (RCPCH, 2016) 

IV. IUFD: sub-classified as either single IUFD (sIUFD) or double IUFD (dIUFD). The pregnancy 

was considered a miscarriage if the pregnancy loss occurred at 14-24weeks and a 

stillbirth if ≥24 weeks. 

V. Spontaneous preterm birth (PTB): between 24 and 34 weeks gestation. Iatrogenic PTB 

delivery was not included.  

VI. Neonatal composite outcome: neonatal death, respiratory distress syndrome, assisted 

ventilation (Continuous positive airway pressure [CPAP] or endotracheal [ET] tube) for 
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>24 hours, intraventricular haemorrhage or other brain injury, necrotising enterocolitis, 

neonatal encephalopathy, chronic lung disease, severe jaundice requiring 

phototherapy, severe infection e.g. septicaemia, meningitis, exchange transfusion, 

cardiac impairment, neurological impairment. 

VII. Maternal composite outcome: gestational diabetes mellitus, severe infection, 

hypertensive disorders (pregnancy induced hypertension requiring medication, pre-

eclampsia, eclampsia or HELLP syndrome), placental abruption, venous 

thromboembolism, disseminated intravascular coagulopathy, High-Dependency or 

Intensive Care Unit admission, cerebrovascular event, renal or liver failure, pulmonary 

oedema, massive obstetric haemorrhage (>2L EBL), acute fatty liver. 

 

2.5.4 Existing prognostic factors 

The aim was to examine the added prognostic value of the ultrasound and biomarker 

variables, and therefore the multivariable analyses adjusted for the prognostic effect of 

standard clinical information considered (by the clinical collaborators) to be existing 

prognostic factors: maternal BMI, age, smoking status, ethnicity, parity, and mode of 

conception (Table 2.2). The neonatal outcome was also adjusted for gestational age at 

delivery and steroid and antenatal magnesium sulphate administration. The existing 

prognostic factors were forced into the multivariable model (i.e. no variable selection was 

used), as is recommended (Riley et al., 2019b). 
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Table 2.2: Existing prognostic factors 

Prognostic 
factor 

How measured When 
measured 

Categorical or 
continuous data 

Outcomes it 
may affect 

Maternal 
body mass 
index (BMI) 

Height and weight 
measured and 
calculated according 
to: kg/m2 

Booking Continuous All 

Maternal age From date of birth Booking Continuous All 

Maternal 
smoking 
status 

Maternal reporting 
as documented in 
notes 

Booking Categorical: 
Never smoked 
(ref. group) 
Current smoker 
Ex-smoker 

All 

Maternal 
ethnicity 

Maternal reporting 
as documented in 
notes 

Booking Categorical: 
White (ref. group) 
Other/mixed 
Oriental 
South Asian 
African-Caribbean 

All 

Parity Maternal reporting 
as documented in 
notes 

Booking Categorical: 
Nulliparous(ref. 
group) 
Multiparous 1 
Multiparous 2+ 

All 

Mode of 
conception 

As documented in 
the notes 

Booking Categorical: 
Natural 
conception (ref. 
group) 
Assisted 
conception 

All 

Gestational 
age at delivery 

As documented in 
the notes 

Delivery Continuous Neonatal 
composite 

Steroid 
administration 

As documented in 
the notes 

Throughout 
pregnancy 

Categorical: 
Yes steroids 
No steroids (ref. 
group) 

Neonatal 
composite 

Magnesium 
Sulphate 
(MgSO4) 
administration 

As documented in 
the notes 

Throughout 
pregnancy 

Categorical: 
Yes MgSO4 
No MgSO4 (ref. 
group) 

Neonatal 
composite; 
Spontaneous 
preterm 
birth 
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Other existing prognostic factors that were unable to be adjusted for were social 

deprivation (due to not having an adequate measure of this) and tocolysis (as insufficient 

data were present to adjust for this). 

 

2.5.5 Missing data 

Multiple imputation was performed to replace missing predictor (prognostic factor) values 

using a chained equation approach, with predictive mean matching for continuous 

variables, based on maternal age, BMI, log(AFP), log(sFlt-1), log(PIGF), ethnicity 

(categorised as white vs. non-white), assisted conception, steroid use, magnesium sulphate 

(MgSO4), smoking status, country of antenatal care, parity, gestation at delivery, NT 

discordance (%), CRL discordance (%) and fetal adverse outcome composite. Ten imputed 

datasets were created for missing maternal BMI and smoking status that were then 

combined across all datasets using Rubin’s rule to obtain final model estimates. An old rule 

of thumb regarding an appropriate number of imputations was that 3 to 10 imputations 

would typically suffice (Rubin, 1987). Hence, in this work, 10 imputed datasets were 

created following this rule of thumb to err on the side of caution. However, it has been 

shown that this advice only ensured the precision and replicability of the point estimates, 

but not the estimates of the standard error, and White et al. (2011) suggest that the 

number of imputations should be greater than or equal to the percentage of missing 

observations in order to ensure an adequate level of reproducibility, which has since gained 

in popularity and is now the accepted rule of thumb. The work in this chapter was carried 

out towards the beginning of my PhD programme and therefore, if I was carrying out this 
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study again, I would now be following this advice and creating at least 19 imputed datasets 

(the greatest percentage of missing data that is being imputed). 

 The neonatal outcome contained 14 missing observations, but imputation was not 

considered necessary, as the missing outcome was deemed plausibly missing at random 

conditional on the set of factors included in the multivariable model. Hence, these 

pregnancies were not included in the neonatal composite outcome but were included in 

the other outcomes. 

 

2.5.6 Statistical analysis 

Maternal and fetal characteristics at baseline were summarised using frequencies and 

percentages for categorical variables and mean and standard deviation (SD) or median and 

inter-quartile range (IQR) for continuous variables (depending on the normality of the 

variable). Univariable logistic regression models were fitted individually to each of the five 

predictors of interest (NT, CRL, AFP, sFlt-1 and PIGF) to assess their unadjusted association 

(odds ratio) with the primary outcome (pregnancy composite outcome) and with each of 

the 10 secondary outcomes (neonatal composite outcome, maternal antenatal and 

postnatal composite outcome, antenatally detected growth restriction (per pregnancy), 

antenatally detected growth restriction (per twin), postnatally detected growth restriction 

(per pregnancy), postnatally detected growth restriction (per twin), TTTS, single IUFD, 

double IUFD and spontaneous preterm birth).  

Multivariable logistic regression models were fitted, with random effects as necessary, to 

examine the independent prognostic value of each of the five factors separately, with 

adjustment for standard characteristics already deemed likely to be prognostic of adverse 
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outcome: maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 

mode of conception. The spontaneous preterm birth outcome was additionally adjusted 

for administration of MgSO4. The neonatal composite outcome was also adjusted for 

gestation at delivery, administration of steroids, and MgSO4. For both single and double 

IUFD, it was not possible to adjust for all the previously identified prognostic factors due to 

a lack of convergence, hence, these models were both adjusted for maternal age, BMI, 

ethnicity, and mode of conception only.  

For outcomes relating to individual babies (rather than per pregnancy), a random intercept 

term at the level of the mother was included in the logistic regression models where it was 

sensibly estimable, to account for clustering of multiple babies per women. Only the 

association with baby specific prognostic factors, NT and CRL, were estimated for these 

outcomes. The individual baby’s value of NT and CRL were used for these outcomes in place 

of the discordance.  

Clustering by hospital was also adjusted for by putting a random effect on the intercept 

which allowed for heterogeneity in baseline risk across hospitals. 

The three serum biomarkers (AFP, PlGF and sFlt-1) were log transformed as they were 

highly skewed, and all continuous prognostic factors were included in the models as a linear 

term. All potential prognostic factor measurements remained as continuous variables 

during analysis, and no cut-offs were applied.  

As part of a sensitivity analysis, fractional polynomials were used to assess for the 

possibility of a non-linear relationship between each of the prognostic factors and the 

primary outcome (Royston et al., 1999) (using the fp command in Stata). Fractional powers 

(-2, -1, -0.5, 0, 0.5, 1, 2, 3) of NT discordance, CRL discordance, log(AFP), log(PlGF) and 
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log(sFlt-1) were considered individually, adjusting for the previously identified prognostic 

factors. For simplicity, fractional polynomials were considered in the complete case data 

only. 

To gauge the potential increase in discrimination performance of a prognostic model that 

includes each potential prognostic factor in addition to existing factors, the change in 

apparent C-statistic (increase in the area under the curve) for each outcome was calculated 

(i.e., the difference in apparent C-statistic for models with standard characteristic including 

or excluding each factor). No adjustment for potential model overfitting was made during 

the calculation, as this was only for illustration of the potential impact of including the 

factors.  

The Akaike’s Information Criterion (AIC) was not considered here (as in Chapter 4), as the 

AIC is generally used to compare the fit of multiple models and the aim in this chapter was 

to investigate the individual relationships of the potential prognostic factors rather than 

compare the models. 

 

2.5.7 Sample size 

The dataset used for the analyses in this chapter was an existing cohort of fixed size, and 

hence no sample size calculation was completed. However, due to the rarity of MCDA 

twins, this represents the largest available data to be used for assessing prognostic factors. 

Retrospectively, a power calculation was conducted to estimate the size of odds ratio that 

the study would have 80% power to detect. For the primary outcome, composite fetal 

adverse outcome,  there was 80% power to detect an odds ratio of 1.034 for the association 
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with the percentage discordance in CRL. For log(sFlt-1) there was an 80% power to detect 

an odds ratio of 3.49. 

 

2.5.8 Developing a prognostic model and examining instability 

To examine the instability of developing a prognostic model in this available dataset, a 

multivariable logistic regression model was fitted to the primary outcome (including all the 

predictors of interest and all adjustment factors), followed by a bootstrap investigation. No 

variable selection process was used, and apparent model performance was summarised 

using the C-statistic (discrimination) and the calibration slope (calibration). Then, 

bootstrapping was used to assess the amount of overfitting and the uncertainty in the 

estimation of shrinkage needed. One hundred random bootstrap samples were used, with 

replacement, from the original data (before imputation) and the imputation procedure was 

applied to each bootstrapped dataset. The same model as above was then fitted to each 

imputed bootstrapped datasets, and within each bootstrap, imputed results were again 

combined using Rubin’s rules. In each bootstrapped dataset, the apparent performance 

was calculated by calculating the C-statistic and the calibration slope. The test performance 

of each these models was also calculated by fitting the bootstrapped model in the original 

imputed dataset (i.e. estimating the predicted probabilities in the original imputed data 

using the coefficients of the model from the bootstrapped data). The optimism of each 

model was then calculated as the mean value of the difference between the apparent and 

test performance measures in each of the bootstrapped models. The shrinkage factor could 

then be estimated as the optimism in the calibration slope subtracted from the mean 

apparent performance measure. The estimated shrinkage factor was applied uniformly to 
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the coefficients of the original model and an updated intercept was calculated using the 

new coefficients after shrinkage. The uncertainty in the shrinkage factor was also 

summarised by the 95% interval of values based on the bootstrap procedure. An optimism 

adjusted C-statistic was also calculated.  

 

2.5.9 Sensitivity analysis: Firth’s correction 

The use of Firth’s correction for dealing with sparse events has been gaining 

recommendations for prognostic factor research, specifically to address potential upward 

bias in odds ratios. Hence, the analyses for the primary outcome were repeated using 

Firth’s correction, which is a penalisation method aiming for unbiased estimates of odds 

ratios for each predictor (whereas, the uniform shrinkage is aimed at calibration of the 

prognostic model as a whole).  

 

2.6 Results 

2.6.1 Summary of data 

A total of 177 pregnancies (354 babies) were included in the study. The maternal and fetal 

characteristics are summarised in Table 2.3. The average age of the mother was 30.4 years 

(SD 5.4) and had an average BMI of 24.9 (SD 5.4). Most of the mothers had never smoked 

(77.4%), were white (64.7%) and were first time mothers (60.5%). The median gestational 

age at delivery was 35.4 weeks (IQR 33.0, 36.6). The numbers of missing values for each of 

the baseline characteristics and adjustment factors are also given in Table 2.3. There was 

no or minimal missing data in most of the factors, except for BMI which had 19% missing. 



 

63 
 

The number (%) of each of the outcome events that occurred are given in Table 2.4. Values 

are given per pregnancy unless otherwise stated. There were 55 (31.1%) participants who 

did not experience an adverse outcome event and delivered two healthy babies after 34 

weeks gestation. The primary outcome, fetal adverse outcome composite occurred in 94 

(53.1%) of the included pregnancies. 

Table 2.3: Maternal and fetal characteristics 

 
Total cohort 
(n=177, 354 babies) 

Missing; N (%) 

Maternal age; mean (SD) years 30.38 (5.43) 0 

Maternal BMI; mean (SD) kg/m2 24.87 (5.41) 16 (19.04) 

Maternal Smoking status; n (%)  13 (7.34) 

Never smoked 127 (77.44)  

Current smoker 12 (7.32)  

Ex-smoker 25 (15.24)  

Maternal ethnicity; n (%)  4 (2.26) 

White 112 (64.74)  

Mixed 10 (5.78)  

Oriental 22 (12.72)  

South Asian 19 (10.98)  

African-Caribbean 10 (5.78)  

Parity; n (%)  0 

0 107 (60.45)  

1 48 (27.12)  

2 18 (10.17)  

3 2 (1.13)  

4 2 (1.13)  

Assisted conception; n (%) 24 (13.95) 5 (2.82) 

Gestational age at delivery;  
median (IQR) weeks 

35.43 (33.00, 36.57) 0 

Steroid administration; n (%) 125 (71.02) 1 (0.56) 

Magnesium sulphate administration; n (%) 12 (6.82) 1 (0.56) 

Nuchal translucency (NT); median (IQR) % 
discordance 

11.76 (5.55, 21.15) 0 

Crown-rump length (CRL); median (IQR) % 
discordance 

4.22 (1.75, 7.02) 0 

AFP; median (IQR) U/mL 29.29 (23.40, 41.50) 1 (0.56) 

sFlt-1; median (IQR) pg/mL 2163 (1645, 2945.5) 1 (0.56) 

PlGF; median (IQR) pg/mL 60.45 (40.89, 89.02) 1 (0.56) 
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Table 2.4: Outcomes 

Outcome N (%) 

Uncomplicated monochorionic diamniotic twin 
pregnancy, delivered >34 weeks gestation 

55 (31.07) 

Fetal adverse outcome composite 94 (53.11) 

Twin-twin transfusion syndrome 23 (12.99) 

Antenatal growth restriction 41 (23.16) 

Antenatal growth restriction (per fetus) 73 (20.6) 

Postnatal growth restriction 43 (24.29) 

Postnatal growth restriction (per baby) 54 (15.25) 

Intrauterine fetal death (single) 11 (6.21) 

Intrauterine fetal death (double) 12 (6.78) 

Spontaneous preterm birth 12 (6.78) 

Maternal antenatal and postnatal composite 46 (25.99) 

Neonatal composite 91 (26.76) 

 

2.6.2 Primary outcome: Fetal composite adverse outcome 

Table 2.5 gives the unadjusted and adjusted odds ratios (OR) and 95% confidence intervals 

(CI) for the association between each of the prognostic factors and the primary outcome, 

fetal composite adverse outcome. The adjusted results show the added value of the 

prognostic factors over and above standard previously identified factors, along with the 

added discrimination of adding each particular prognostic factor of interest to the model 

with all of the standard adjustments factors included.  

There was evidence of an unadjusted association between the pregnancy composite 

outcome and both the percentage discordance between the baby’s nuchal translucency 

(OR 1.03 95% CI 1.01, 1.05) and percentage discordance between the baby’s crown-rump 

lengths (OR 1.16 95% CI 1.06, 1.27). These associations both remained after adjustment 

with an estimated 3% (aOR 1.03 95%CI 1.01, 1.06) increase in the odds of an unfavourable 

outcome for each 1% increase in NT discordance, and an estimated 17% (aOR 1.17 95% CI 

1.07, 1.29) increase in the odds of an unfavourable outcome for each 1% increase in CRL 
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discordance. The baseline C-statistic for the model including only standard characteristics 

was 0.59, and the increase in the C-statistic when each prognostic factor was additionally 

included was quite high with the NT discordance increasing the C-statistic by 0.045 and the 

addition of CRL discordance increasing the C-statistic by 0.103. There was no evidence of 

any associations between the serum biomarkers and the primary outcome, though 

confidence intervals were wide and so firm conclusions about prognostic value are not 

possible.  

Table 2.5: Fetal adverse outcome composite - Unadjusted and adjusted results 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) aOR (95% CI)  

NT (% discordance) 1.03 (1.01, 1.05) 1.03 (1.01, 1.06) 0.045 

CRL (% 
discordance) 

1.16 (1.06, 1.27) 1.17 (1.07, 1.29) 0.103 

log(AFP) 1.91 (0.93, 3.94) 2.08 (0.94, 4.59) 0.026 

log(sFlt-1) 1.12 (0.52, 2.40) 1.03 (0.42, 2.50) <0.001 

log(PlGF) 0.73 (0.44, 1.22) 0.65 (0.37, 1.13) 0.014 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception 

 

2.6.2.1 Sensitivity analysis: Firth’s correction 

Table 2.6 gives the adjusted odds ratios (95% CIs) for the relationships between each 

potential prognostic factor and the primary outcome, after using Firth’s correction. 

Previously identified relationships remained, albeit with the odds ratios being marginally 

shrunk in comparison to before using Firth’s correction. The attenuation in the estimates 

was greater for the prognostic factors that had a larger odds ratio to begin with, i.e. for 

log(AFP) the odds ratio reduced from 2.08 before Firth’s correction to 1.96 after. However, 

the conclusions of the analysis did not change. 
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Table 2.6: Adjusted results for the primary outcome (fetal adverse outcome composite) after 
using Firth's correction 

 Before Firth’s correction 
After Firth’s 
correction 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Adjusted* 
prognostic effect 

 OR (95% CI) aOR (95% CI) aOR (95% CI) 

NT (% 
discordance) 

1.03 (1.01, 1.05) 1.03 (1.01, 1.06) 1.03 (1.01, 1.05) 

CRL (% 
discordance) 

1.16 (1.06, 1.27) 1.17 (1.07, 1.29) 1.16 (1.06, 1.27) 

log(AFP) 1.91 (0.93, 3.94) 2.08 (0.94, 4.59) 1.96 (0.92, 4.23) 

log(sFlt-1) 1.12 (0.52, 2.40) 1.03 (0.42, 2.50) 1.03 (0.44, 2.43) 

log(PlGF) 0.73 (0.44, 1.22) 0.65 (0.37, 1.13) 0.67 (0.39, 1.14) 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception 

 

2.6.2.2 Sensitivity analysis: Fractional polynomials 

When accounting for a potential non-linear relationship between each of the prognostic 

factors and a fetal adverse outcome, the best fitting relationships (defined by the deviance) 

were: a squared relationship for NT discordance, a linear relationship for CRL discordance,  

a cubic relationship for log(afP) and a fractional power of -2 for both log(PlGF) and log(sFlt). 

Hence, some potential non-linear relationships were identified, nevertheless, the 

differences in the AIC were very small for all the models that allowed for non-linear 

associations compared to the models assuming a linear association, with the greatest 

difference in AIC being 0.958 (for log(afp)). Hence, further research, with larger sample 

sizes, is needed to examine non-linearity for these continuous factors. 
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2.6.3 Illustration of the issues of developing a prognostic model with this 

dataset 

The results of the multivariable model for the primary outcome, fetal adverse outcome 

composite, are presented in Table 2.7. The model included all the potential prognostic 

factors of interest from the prognostic factor study (NT % discordance, CRL % discordance, 

log(AFP), log(sFlt-1) and log(PlGF)), and all the previously identified existing prognostic 

factors from Section 2.4.4 (age, BMI, smoking status, ethnicity, parity, and assisted 

conception). The C-statistic from the multivariable model was 0.741, which appears to 

demonstrate a reasonably well discriminating model. However, using bootstrapping to 

estimate and then adjust for the amount of optimism in the model, gave an optimism-

adjusted C-statistic of 0.670, which is substantially smaller, and indicates that there was a 

large amount of optimism due to overfitting.  

After bootstrapping, the shrinkage factor was calculated to be 0.654 (95% CI 0.387, 0.921). 

Therefore, the best estimate is that the overfitting needs to be corrected by shrinking the 

beta coefficients (log odds ratios) in the multivariable model by 34.6%. This is a large 

shrinkage factor, indeed guidance that came out around the same time as this work 

suggests aiming for a shrinkage of 0.9 or above (Riley et al., 2019a). The coefficients of the 

multivariable model after applying the shrinkage factor are also given in Table 2.7, which 

are shown to be attenuated. 

However, the use of a shrinkage factor does not resolve the issue of small sample size for 

model development. There is still instability in the shrunken prognostic model, as 

highlighted by the uncertainty in the shrinkage factor. The mean is 0.654, but the 95% range 

from bootstrapping is 0.387 to 0.921, suggesting there could be a lot of error in the 
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shrinkage factor applied, and thus even after adjusting for overfitting, the model is unlikely 

to be robust for practice, as we cannot be confident what the actual predictor effects 

should be.  

Due to the time-consuming nature of imputing data within bootstraps, a pragmatic 

approach of using 100 random bootstrap samples was taken to examine the instability. 

However, as a sensitivity analysis, the analysis was re-run using 500 bootstrap samples, 

which produced an optimism adjusted c-statistic of 0.665 and a shrinkage factor of 0.628 

(95% CI 0.381, 0.876), so overall very similar to when using 100 bootstrap samples.  

 

Table 2.7: Coefficients from prognostic model for risk of a fetal adverse outcome before and 
after shrinkage 

  Before shrinkage After shrinkage 

  Coefficient Coefficient Odds Ratio 

Predictor Scale    

NT 
% 

discordance 
0.028 (-0.001, 0.057) 0.0182 1.018 

CRL 
% 

discordance 
0.188 (0.077, 0.300) 0.123 1.131 

AFP log 0.891 (-0.022, 1.805) 0.583 1.792 

sFlt-1 log -0.203 (-1.225, 0.820) -0.133 0.876 

PlGF log -0.292 (-0.903, 0.319) -0.191 0.826 

Age years 0.042 (-0.028, 0.112) 0.027 1.028 

BMI kg/m2 0.017 (-0.060, 0.094) 0.011 1.011 

Smoking status 1=current 0.659 (-0.795, 2.112) 0.431 1.539 

Ethnicity 1=non-white -0.026 (-0.793, 0.742) -0.017 0.983 

Parity 1=nulliparous 0.662 (-0.094, 1.419) 0.433 1.542 

Assisted conception 1=yes -0.084 (-1.189, 1.022) -0.055 0.947 

Constant  -3.505 (-12.934, 5.924) -4.481  
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2.6.4 Secondary outcomes 

2.6.4.1 Twin-twin transfusion syndrome (TTTS) 

Unadjusted and adjusted odds ratios (95% CIs) for the association between each prognostic 

factor and TTTS, and the increase in C-statistic after adding each factor to the baseline 

model, are given in Table 2.8. There was evidence of an association between percentage 

discordance between the babies nuchal translucency and TTTS, with an estimate 6% 

increase (aOR 1.06 95%CI 1.03, 1.10) in the odds of TTTS for each percent increase in NT 

discordance. The log transformed AFP was associated with TTTS both when the model was 

unadjusted and when adjusted (aOR 3.24 (1.00, 10.48)), however the confidence interval 

is very wide, such that the actual magnitude of prognostic effect is uncertain. The log 

transformed PlGF was associated with TTTS, with an estimated 58% decrease (aOR 0.42 

95% CI: 0.19, 0.93) in the odds of TTTS for each unit increase in log(PlGF), though again with 

a wide confidence interval. The baseline C-statistic (for the model with only standard 

prognostic characteristics) was 0.617, and the increase in the C-statistic when each 

prognostic factor was included was quite high for NT (0.137), AFP (0.067) and PlGF (0.074). 

Table 2.8: Twin to twin transfusion syndrome (TTTS) 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) aOR (95% CI)  

NT (% discordance) 1.05 (1.02, 1.08) 1.06 (1.03, 1.10) 0.137 

CRL (% discordance) 1.07 (0.96, 1.20) 1.09 (0.97, 1.23) 0.032 

log(AFP) 3.04 (1.05, 8.78) 3.24 (1.00, 10.48) 0.067 

log(sFlt-1) 1.91 (0.62, 5.88) 1.64 (0.44, 6.03) 0.006 

log(PlGF) 0.43 (0.20, 0.91) 0.42 (0.19, 0.93) 0.074 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception. 
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2.6.4.2 Antenatally detected growth restriction 

Unadjusted and adjusted odds ratios (95% CIs) for the association between each prognostic 

factor and antenatally detected growth restriction, per pregnancy, along with change in C-

statistic from adding each factor to a baseline model with just the standard characteristics,  

are given in Table 2.9. The results are given for antenatally detected growth restriction, per 

fetus in Table 2.9. There was evidence for an unadjusted association between the 

percentage discordance in CRL and antenatal growth restriction within the pregnancy, and 

this association remained after adjustment for the previously identified predictors, with an 

estimated 20% (aOR: 1.20 95% CI: 1.08, 1.34) increase in the odds of antenatal growth 

restriction for each 1% increase in CRL discordance. The increase in the C-statistic when 

adding CRL discordance was fairly large, at 0.119 (baseline C-statistic 0.616). There was no 

clear evidence of a relationship between the individual babies CRL and antenatal growth 

restriction in the individual baby (aOR 1.11 95% CI 0.97, 1.26). 

 

Table 2.9: Antenatally detected growth restriction (per pregnancy) 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT (% discordance) 1.01 (0.99, 1.03) 1.01 (0.99, 1.04) 0.014 

CRL (% discordance) 1.17 (1.06, 1.30) 1.20 (1.08, 1.34) 0.119 

log(AFP) 1.55 (0.67, 3.55) 2.10 (0.82, 5.40) 0.032 

log(sFlt-1) 1.25 (0.50, 3.13) 1.47 (0.49, 4.35) 0.011 

log(PlGF) 0.91 (0.50, 1.66) 0.88 (0.44, 1.76) -0001 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception. 
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Table 2.10: Antenatal growth restriction (per fetus) 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic 
effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT 0.62 (0.15, 2.56) 0.67 (0.13, 3.35) 0.007 

CRL 1.12 (0.99, 1.27) 1.11 (0.97, 1.26) 0.004 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception. 

 

 

2.6.4.3 Postnatally detected growth restriction 

Unadjusted and adjusted odds ratios (95% CIs) for the association between each prognostic 

factor and postnatally detected growth restriction, and change in C-statistics, are given in 

Table 2.11 for the outcome per pregnancy and Table 2.11 for the outcome per baby. There 

was no clear evidence of associations between any of the prognostic factors and 

postnatally detected growth restriction.  

 

Table 2.11: Postnatally detected growth restriction (per pregnancy) 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic 
effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT (% discordance) 1.01 (0.98, 1.03) 1.01 (0.98, 1.03) <0.001 

CRL (% discordance) 1.05 (0.95, 1.15) 1.04 (0.94, 1.15) 0.012 

log(AFP) 0.88 (0.39, 1.98) 0.88 (0.35, 2.20) <-0.001 

log(sFlt-1) 0.63 (0.25, 1.59) 0.65 (0.22, 1.88) 0.006 

log(PlGF) 1.55 (0.84, 2.85) 1.62 (0.80, 3.29) 0.017 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception. 
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Table 2.12: Postnatal growth restriction (per baby) 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic 
effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT 0.81 (0.39, 1.68) 0.75 (0.36, 1.55) 0.003 

CRL 0.96 (0.90, 1.01) 0.97 (0.91, 1.02) 0.002 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception. 
  

 

2.6.4.4 Intrauterine fetal death 

The results for the associations between each prognostic factor and intrauterine fetal death 

are given in Table 2.13 for single IUFD and in Table 2.14 for double IUFD. The clustering of 

babies within mothers for IUFD was not able to be accounted for using a random effects 

model due to small numbers and minimal variation within the clusters which created 

convergence issues; hence, a fixed-effect model was used. There was evidence for an 

unadjusted and adjusted association between log(PlGF) and both single (aOR 0.34 95%CI 

0.12, 0.98) and double intrauterine fetal death (aOR 0.18 95%CI 0.05, 0.58). Discordance in 

CRL was also found to be associated with single intrauterine death (aOR 1.19 95% CI: 1.01, 

1.40). The baseline C-statistic was 0.625 and 0.783 for single IUFD and double IUFD, 

respectively.  

Table 2.13: Single intrauterine fetal death 

 Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT (% discordance) 1.01 (0.98, 1.05) 1.02 (0.98, 1.06) <-0.001 

CRL (% discordance) 1.17 (1.00, 1.36) 1.19 (1.01, 1.40) 0.085 

log(AFP) 0.68 (0.16, 2.87) 0.80 (0.17, 3.90) -0.004 

log(sFlt-1) 1.27 (0.27, 6.04) 1.79 (0.30, 10.64) <-0.001 

log(PlGF) 0.35 (0.13, 0.97) 0.34 (0.12, 0.98) 0.057 
*Adjusted for maternal BMI, maternal age, maternal ethnicity, and mode of conception. 
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Table 2.14: Double intrauterine fetal death 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT (% discordance) 1.02 (0.98, 1.06) 1.02 (0.98, 1.06) -0.005 

CRL (% discordance) 1.06 (0.91, 1.24) 1.12 (0.94, 1.33) 0.019 

log(AFP) 1.33 (0.34, 5.21) 0.97 (0.18, 5.33) <-0.001 

log(sFlt-1) 4.13 (0.92, 18.58) 8.21 (1.02, 66.24) 0.035 

log(PlGF) 0.23 (0.08, 0.63) 0.18 (0.05, 0.58) 0.080 
* Adjusted for maternal BMI, maternal age, maternal ethnicity, and mode of conception. 

 

2.6.4.5 Maternal antenatal and postnatal composite 

The unadjusted and adjusted odds ratios (95% CIs) for the associations between each 

prognostic factor and the maternal composite outcome are given in Table 2.15. No clear 

evidence of associations were found.  The baseline C-statistic for the model including only 

the standard characteristics was 0.728. 

Table 2.15: Maternal composite outcome 

 
Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT (% discordance) 1.01 (0.99, 1.03) 1.01 (0.98, 1.03) 0.001 

CRL (% discordance) 0.96 (0.87, 1.06) 0.97 (0.87, 1.07) -0.001 

log(AFP) 0.56 (0.25, 1.26) 0.55 (0.21, 1.42) 0.010 

log(sFlt-1) 1.36 (0.57, 3.27) 1.26 (0.44, 3.58) -0.004 

log(PlGF) 0.78 (0.44, 1.39) 0.70 (0.34, 1.42) 0.004 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
and mode of conception. 
 
 
 

 

2.6.4.6 Spontaneous preterm birth 

No clear evidence of associations were found between any of the prognostic factors and 

spontaneous preterm birth (Table 2.16). The baseline C-statistic for the model including 

only the standard characteristics was 0.676. 
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Table 2.16: Spontaneous preterm birth 

 Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT (% discordance) 1.00 (0.64, 1.04) 0.99 (0.95, 1.04) -0.013 

CRL (% discordance) 0.93 (0.77, 1.11) 0.92 (0.76, 1.11) -0.004 

log(AFP) 0.96 (0.24, 3.81) 0.76 (0.15, 3.80) -0.009 

log(sFlt-1) 0.38 (0.08, 1.84) 0.30 (0.05, 1.90) 0.026 

log(PlGF) 0.69 (0.26, 1.82) 0.70 (0.25, 1.98) 0.006 
*Adjusted for maternal BMI, maternal age, maternal ethnicity, parity and magnesium sulphate. 

 

2.6.4.7 Neonatal composite 

No clear evidence of associations were found between the neonatal composite outcome 

and either NT discordance or CRL discordance, as shown in Table 2.17. The neonatal 

outcome had missing data for 14 babies, hence only 340 babies were included in this 

analysis. The baseline C-statistic for the model including only the standard characteristics 

was 0.790. 

Table 2.17: Neonatal composite outcome 

 Unadjusted 
prognostic effect 

Adjusted* 
prognostic effect 

Change in C-statistic 

 OR (95% CI) OR (95% CI)  

NT 0.93 (0.30, 2.89) 1.07 (0.33, 3.50) <0.001 

CRL 0.99 (0.91, 1.08) 1.00 (0.91, 1.09) -0.001 
*Adjusted for maternal BMI, maternal age, maternal smoking status, maternal ethnicity, parity, 
mode of conception, gestation at delivery, administration of steroids, and magnesium sulphate. 

 

2.7 Discussion 

2.7.1 Summary of clinical findings 

The study provides evidence that an increasing percentage difference in NT and CRL is 

associated with a fetal adverse outcome composite, including after adjustment for 

standard prognostic factors defined by maternal variables. Increasing inter-twin CRL 
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discordance was also associated with IUFD and antenatally detected growth restriction, 

whilst an increasing discordance in inter-twin NT was associated with the development of 

TTTS. 

 

2.7.2 Strengths and limitations 

This study has the benefit of investigating the prognostic values of inter-twin NT and CRL 

percentage discordance as a continuous variable whereas other studies dichotomised the 

data using non-validated ‘cut-offs of abnormality’ which loses important information (often 

equivalent to throwing away one third of the data) (Altman and Royston, 2006).  

Although associations were found between a few of the prognostic factors and outcomes, 

the issue of multiple testing needs to be considered, as we would expect 1 in every 20 tests 

performed to be found to be significant simply by chance.  

Overfitting may also be an issue due to having a small sample size. However, the clinical 

focus here was to examine the relationships between the potential prognostic factors and 

the outcomes of interest rather than determine the performance of the models predicting 

these outcomes. Furthermore, no predictor selection was performed based on statistical 

significance to reduce the potential for overfitting.  

Due to the relative scarcity of MCDA twins in the UK and Australian general obstetric 

populations, sample size was an issue within this study. There was large uncertainty in 

many of the estimates, due to the small number of outcomes occurring, and so the results 

should be interpreted with caution. To address this, post-publication, this chapter includes 

findings from logistic regression using Firth’s correction to deal with sparse data bias for 
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the primary outcome. This found the overall conclusions did not change, however the odds 

ratios were marginally reduced. 

The risk of the composite fetal adverse outcome (94/177 pregnancies, 53.1%)) 

demonstrates how high-risk MCDA twin pregnancies are, and how important research in 

this area is, particularly given the potentially fatal outcome of these complications. 

Although the use of a composite outcome is less desirable than individual outcomes, they 

were created to enable meaningful statistical analysis within this relatively specialised area 

of obstetrics. The conditions included in the primary outcome of the composite fetal 

adverse outcome are all monitored in the same way: with at least 2-weekly ultrasound 

scans, and the potential sequelae of TTTS, TAPS and growth restriction are the same: IUFD. 

The conditions were examined individually as well, but if viewed pragmatically, the clinical 

action for being higher-risk for one of the conditions in the fetal adverse outcome 

composite group could be similar for all conditions, for example increased monitoring, and 

a lower threshold to refer to a tertiary fetal medicine centre. As the study included women 

who underwent antenatal care at 28 different UK maternity units, the results are 

generalisable to the UK obstetric population and possibly to other high-income countries, 

however the study should be repeated in other cohorts to account for different obstetric 

populations. The results may be less applicable to those in developing countries, who lack 

the resources to conduct prognostic testing and such intensive antenatal surveillance. 

A major strength of this study is that the potential prognostic factors evaluated were 

evaluated by appropriately accredited NHS laboratories, and the assays are readily 

accessible, easily and reliably measurable on an automated platform, and only require a 

small amount of maternal blood thus presenting no risk to the mother or fetuses. The 
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ultrasound measurements used are easily calculable and although ultrasound may be 

subject to inter-operator variability, all health care professionals performing these 

assessments require additional certification, which is a national programme in the UK and 

thus the variability should be negligible. Consequently any prognostic factors with sufficient 

predictive ability would be clinically useful and feasible to measure at a national level, as 

with first trimester aneuploidy screening. However, any potential measurement error in 

the prognostic factors was ignored because information on measurement error was not 

collected, i.e. from repeated biomarker/ultrasound measurements, and was not available 

from another source, e.g. from a standalone test study.  

 

2.7.3 Clinical implications and future research 

The aim of this study was to identify individual prognostic factors of complications in MC 

twin pregnancies. The RCOG MC twin pregnancy guidance recommends that “screening for 

TTTS by first trimester nuchal translucency measurements should not be offered” (Kilby 

2016) and the findings of this study support that NT % discordance, and individual NT 

measurements alone should not be used to predict TTTS.  

Although the changes in individual biomarkers do not accurately predict outcome, and their 

individual predictive ability was thought to be too low to justify combination in a prognostic 

model, as illustrated in Section 2.5.3, the findings are exciting from a pathophysiological 

perspective as they suggest that physiological changes occur before the appearance of the 

ultrasound signs of polyhydramnios and oligohydramnios, and IUFD. This supports that first 

trimester prognostic factors may exist, and warrant further investigation. Interestingly no 

potential prognostic factors affected both growth restriction and TTTS supporting that they 
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have different pathological mechanisms. The lack of animal models and scarcity of MCDA 

twin pregnancies makes the pathophysiology difficult to investigate. No longitudinal 

studies have been performed prospectively recruiting women with MCDA pregnancies in 

the first trimester, prior to the appearance of the clinical signs of MC twin complications, 

and comparing those who subsequently develop a complication. This would help 

determine whether the differences in the biomarkers are because the biomarker is 

abnormal earlier in pregnancy, or that it does not increase. 

 

2.7.4 Developing a prognostic model 

This chapter also has methodological implications, as it provides an example of developing 

a prognostic model using a dataset where some of the predictors are not very prevalent 

and outcomes are quite sparse. The results demonstrate large potential optimism in the 

model coefficients and the model’s predictive performance, such that overfitting is a major 

problem, with the optimism-adjusted C-statistic much lower than the apparent C-statistic. 

Further, adjusting for this overfitting using a uniform shrinkage is shown unlikely to be 

reliable, as the shrinkage factor is estimated with large imprecision. This finding convinced 

clinical collaborators that developing a prognostic model was not sensible using this 

dataset, and motivated subsequent methodology work to show the issue of penalisation 

and shrinkage methods in small sample sizes (Riley et al., 2021a). 
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2.7.5 Conclusions 

This study has demonstrated the potential prognostic ability of individual first trimester 

ultrasound measurements and maternal serum biomarkers. Currently, there are no 

established prognostic models for predicting adverse outcome in MC twins. This study has 

identified potential individual prognostic factors in the first trimester (fetal biometric and 

maternal serum biomarkers) that show promise but require further robust evaluation in a 

larger, prospective series of MC twin pregnancies, so that their usefulness both individually 

and in combination can be defined (Riley et al., 2013). When larger datasets are available, 

these markers could potentially be combined with standard prognostic variables to form a 

prognostic model ready for internal and external validation. 

Statistically, this chapter also highlighted how it may not always be beneficial to develop a 

prognostic model, even in a situation where some of the individual factors are identified as 

having prognostic ability. In particular, overfitting may not be reliably addressed when 

using penalisation methods if the sample size is small. 

Some of the variables examined in this chapter could be subject to measurement error, and 

the impact of this error on their prognostic value is unclear, or indeed if it should be 

addressed. Therefore, in the following chapter, a systematic review of prognostic models 

is performed to ascertain how susceptible to measurement error the predictors used in the 

final models are and how often the measurement error was acknowledged or accounted 

for within the development of the models.  

  



 

80 
 

 

  



 

81 
 

3 Measurement error and timing of predictor values used 

in prediction model research: a systematic review of 

current practice and reporting 

 

3.1 Introduction  

3.1.1 Chapter rationale  

The previous chapter demonstrated a prognostic factor research study, where five 

biomarkers were investigated for their independent prognostic value. However, one of the 

limitations noted was that potential measurement error in the biomarker values was 

ignored, because such error information (e.g. from repeated biomarker values per 

individual, of a biomarker assumed to be in a stable state) was not collected and was not 

available from another source (e.g. a standalone re-test study). Moreover, it is not clear 

whether or how measurement error should be examined in prognosis and risk prediction 

model research. Ideally, such studies should include measurement of predictors that 

reflects how they will be measured in practice, which may or may not involve measurement 

error. Hence, whether this is the case in current practice, or if measurement error is even 

considered, is not clear. 

To address this, in this current chapter, a systematic review of recently published prediction 

models is performed to ascertain how susceptible to measurement error the predictors 

used in the final models are and how often the measurement error was acknowledged or 
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accounted for within the development of the models. A brief summary of methods that 

might be used to account for measurement error were discussed in Chapter 1.  

A particular aspect of measurement error in the predictors is timing error, so whether the 

predictors used in the model development were measured at the moment the model is 

intended to be used in practice. When time-dependent predictors are not able to be 

measured at `baseline’ this creates time-dependent bias, which has been shown to often 

have an impact on the estimates of key predictors and study conclusions (van Walraven et 

al., 2004). Additionally, the TRIPOD (Transparent Reporting of a multivariable prediction 

model for Individual Prognosis or Diagnosis) statement recommends to clearly define when 

the predictors used in the development of the model were measured (Collins et al., 2015)  

and states that “all predictors should be measured before or at the study time origin and 

known at the intended moment the model is intended to be used” (Moons et al., 2015). 

Nevertheless, for a range of practical and ethical reasons, researchers may design prognosis 

studies that collect time-varying predictor information after the intended moment of use.  

Therefore, this review investigates whether the timing of predictor measurement and 

intended moment of model use is clearly reported in articles developing clinical prediction 

models, and if they coincide. Alongside these aims, the review will also examine the quality 

of the reporting of the prediction models using key domains listed within the Checklist for 

critical Appraisal and data extraction for systematic Reviews of prediction Modelling 

Studies (CHARMS) (Moons et al., 2014).  

The results of this review were published in the Journal of Clinical Epidemiology (Whittle et 

al., 2018). 
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3.1.2 Chapter aims 

The specific objectives of this chapter are: 

• To review the methodology and reporting within a sample of approximately 30 

articles developing prediction (prognostic/diagnostic) models for individualised risk 

prediction using regression-based approaches, across the different domains of the 

CHARMS checklist; 

• To examine how susceptible to measurement error the predictors used in the final 

models are; 

• To examine if and how authors accounted for any measurement error; 

• To review whether the timing of the predictor measurements was clearly stated, 

and if so, its relation to the intended moment of use of the prediction model. 

 

3.1.3 Chapter outline 

This chapter begins with a detailed description of the methods of the review in Section 3.2, 

defining the search strategy, the inclusion/exclusion criteria, how the articles to be 

included were selected and the information that was to be extracted. The results are then 

split into two sections. The first section, Section 3.3, describes the studies that were 

included in the review, using a flow chart to show how many articles were excluded at each 

stage and why articles were excluded, followed by a review of the methodology and 

reporting of the model development in the articles included. The second section, Section 

3.4, then discusses the intended moment of using the models developed; whether the 

predictors were measured at this time or not; the susceptibility to measurement error of 

the predictors included in the final models, and whether this was adjusted for. The chapter 
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concludes with a discussion of the results found in Section 3.5, presenting key findings and 

the strengths and limitations of the review.  

 

3.2 Methods 

3.2.1 Search strategy 

A systematic search was carried out to identify articles reporting the development of a 

multivariable prediction model for either individualised diagnosis or prognosis risk 

classifications. A priori, the research team decided that approximately 30 articles would be 

sufficient. In addition to pragmatic reasons, the team considered that 30 was likely to be 

sufficient in providing qualitative saturation of the general standards of reporting, and in 

particular whether measurement error and incorrect timings was a general concern for the 

prediction model field. 

The search was carried out on 27th November 2015 in the Medline database, for full-text 

articles published in English. After screening the first 500 titles and abstracts, it was 

estimated that the required 30 papers should be identified by searching 1000 titles; hence 

the most recent 1000 results were exported for screening.  The search strategy used was 

an adaptation of a published search string for finding prognostic and diagnostic prediction 

studies in Medline (Geersing et al., 2012), which adapted the Ingui filter (Ingui and Rogers, 

2001). The search filter was adapted by changing the term “OR ‘Multivariable’” to “AND 

(Multivariable OR Multivariate)” to refine the search further to studies developing 

multivariable prediction models for individualised prediction, which would hopefully 

remove other studies just examining associations between specific diagnostic/prognostic 
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factors and an outcome but not developing a prediction model. The search filter searched 

for the terms in the title and abstract only (excluding the one mesh term specified, and the 

term ending in “.ti” which searched the title only). The search filter used in this study is 

given in Table 3.1 below.   
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Table 3.1: Search Filter – an adaptation of the search strategy by Geersing et al. (2012) 
which uses a variation of the Ingui filter (Ingui and Rogers, 2001) 

1. Validat$ 

2. Predict$.ti 

3. Rule$ 

4. 1 OR 2 OR 3 

5. Outcome$ 

6. Risk$ 

7. Model$ 

8. 5 OR 6 OR 7 

9. Predict$ 

10. 8 AND 9 

11. History 

12. Variable$ 

13. Criteria 

14. Scor$ 

15. Characteristic$ 

16. Finding$ 

17. Factor$ 

18. 11 OR 12 OR 13 OR 14 OR 15 OR 16 OR 17 

19. Decision$ 

20. Identif$ 

21. Prognos$ 

22. 9 or 7 or 19 or 20 or 21 

23. 18 and 22 

24. Clinical$ 

25. Logistic Models/ 

26. 7 OR 24 OR 25 

27. 19 AND 26 

28. 23 OR 7 

29. Prognostic 

30. 28 AND 29 

31. Stratification 

32. ROC Curve[Mesh] 

33. Discrimination 

34. Discriminate 

35. C-statistic 

36. C statistic 

37. “Area under the curve” 

38. AUC 

39. Calibration 

40. Indices 

41. Algorithm 

42. 4 OR 10 OR 23 OR 27 OR 30 OR 31 OR 32 OR 33 OR 34 OR 35 OR 36 OR 
37 OR 38 OR 39 OR 40 OR 41 



 

87 
 

43. Multivariable 

44.  Multivariate 

45. 43 OR 44 

46. 42 AND 45 

 

3.2.2 Inclusion/Exclusion criteria 

Relevant articles were those that met any of the following inclusion criteria: 

• Studies developing a clinical prediction (prognostic/diagnostic) model for 

individualised prediction in human participants, based on a multivariable regression 

model; 

• Studies updating a previously developed prediction model for individualised 

prediction, by adding new predictors to a multivariable regression model. 

  

Articles were considered as not relevant due to any of the following exclusion criteria: 

• Studies developing a model using non-regression-based techniques; 

• Studies validating a previously developed prediction model; 

• Studies creating a risk score from an existing prediction model; 

• Studies using a multivariable model to examine whether a particular predictor is 

associated with the outcome when adjusting for other factors (predictor 

finding/prognostic factor research); 

• Studies estimating the prognostic effect (e.g. hazard ratio) of a previously 

developed score; 

• Studies updating a previously developed prediction model without adding any new 

predictors to the model; 

• Studies investigating the optimal cutoff value of a previously developed model. 
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3.2.3 Selection of articles 

The titles and abstracts of the 1000 most recently published articles found using the search 

string were screened for inclusion. The full article was obtained for any articles which were 

deemed to be potentially eligible or for any articles in which it was unclear from the title 

and abstract whether they met the eligibility criteria. These full articles were then screened 

for suitability and categorised into one of three groups: ‘include’, ‘exclude’ and ‘unsure’. 

The selection of articles until this stage was undertaken by a single reviewer (RW). Articles 

in the ‘include’ and the ‘unsure’ groups were sent to two additional reviewers. Both 

reviewers checked all ‘unsure’ articles, and the ‘include’ articles were split between the 

two reviewers to check they met the eligibility criteria. Any ‘unsure’ articles on which an 

agreement could not be reached were checked by a fourth reviewer and the decision to 

include/exclude was based on the verdict of the fourth reviewer. Although the aim was to 

identify 30 articles, any articles in excess of this that met the eligibility criteria were also 

retained for inclusion, to avoid any potential selection bias concerns when choosing which 

articles to remove. 

 

3.2.4 Extraction of information 

Data were extracted from the selected articles by a single reviewer (RW). The following 

items shown in Table 3.2, where available, were extracted from each article and were 

based on the CHARMS checklist (Moons et al., 2014), with the addition of information 

related to the intended moment of using the model and measurement error: 
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Table 3.2: Items to be extracted from each article 

Design and aim • Prognostic versus diagnostic prediction model 

• Intended scope of the review 
− Clinical area 
− Aim of prediction model (e.g. inform therapeutic 

decision making, inform referral or withholding from 
invasive diagnostic testing, inform patients of 
probability of event) 

• Source of data (e.g. cohort, case-control, randomised trial or 
registry data) 

Outcomes to be 
predicted 

• Definition and method for measurement of outcome 

• Type of outcome (e.g. single or combined endpoints; binary or 
time to event) 

Candidate 
predictors 

• Number and type of predictors (e.g. demographics, patient 
history, physical examination, additional testing, disease 
characteristics) 

• Definition and method for measurement of candidate 
predictors 

• Timing of predictor measurement 

• Handling of predictors in the modelling (e.g. continuous, linear, 
non-linear transformations or categorised) 

Sample size • Number of participants 

• Number of outcomes/events 

• Number of outcomes/events in relation to the number of 
candidate predictors (events per variable) 

Missing data • How much missing data 

• Handling of missing data (e.g. complete-case analysis, 
imputation, or other methods) 

Model 
development 

• Modelling method (e.g. logistic or survival) 

• Method for selection of predictors for inclusion in multivariable 
modelling 

• Method for selection of predictors during multivariable 
modelling 

Intended 
moment of using 
the model & 
timing of 
predictor 
measurements 

• Intended moment of use 

• Timing of the measurement of predictors included in the final 
model, and whether it matched the  intended moment of using 
the model 

Measurement 
error of 
predictors 
 

• Susceptibility to measurement error for the predictors included 
in the final model 

• Whether measurement error was accounted for and, if so, how 

Model 
performance 

• Calibration (e.g. calibration slope, calibration plot, Hosmer-
Lemeshow test) 
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 • Discrimination (e.g. C-statistic, D statistic, log-rank) 

• Classification measures (e.g. sensitivity, specificity, predictive 
values, net reclassification improvement) 

Model evaluation 
 

• Method used for testing model performance: internal (e.g. 
random split of data, resampling methods, none) or external 
(e.g. temporal, geographical, different setting, different 
investigators) 

• In case of poor validation, whether the model was adjusted or 
updated (e.g. intercept recalibrated, predictor effects adjusted, 
new predictors added) 

 

3.2.5 Categorisation of susceptibility to measurement error 

Measurement error is a difference between the measured values of a variable and the true 

values of the variable, or if the variable is categorical, the classification to an incorrect 

category. Measurement error of predictors is not something that is usually quantified in a 

prediction model study, therefore a subjective decision needed to be made about whether 

it existed. The level of susceptibility to measurement error for each predictor used in the 

final models of the included articles was classified into two categories:  

• Low risk: Unlikely to be measured with error, or possibly/likely to be measured with 

error but expected to be unimportant. 

• High risk: Possible or likely to be measured with error and may be important. 

For example, age and sex are both extremely unlikely to be measured with error, and any 

error in age recorded would be expected to be negligible. Thus, age and sex would be 

classed as ‘low risk’ with regards to important measurement error. Whereas, blood 

pressure could be measured with error, as error in blood pressure measurement commonly 

occurs because of improper techniques such as talking during measurement or wrong cuff 

size (Handler, 2009) and blood pressure is also commonly measured with error due to 

biological variability (Grassi et al., 2012). This error could be large and could be important 
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when developing a prediction model for hypertension, for example, because blood 

pressure is an important component of the diagnostic evaluation for hypertension. Hence, 

blood pressure would be classed as ‘high risk’ of important measurement error. Another 

high-risk example would be BMI, which the extent of the measurement error would depend 

on the way in which it was measured, but there would be a high chance it would be 

measured with some error. 

To categorise the list of predictors into the two groups of susceptibility to measurement 

error, first the literature was searched for any potential publications discussing 

measurement error in any of the predictors of interest. For those where no evidence could 

be found, the categorisations were made based on the judgement of the reviewer, which 

was corroborated by a postdoctoral academic General Practitioner. 

For the predictors that were classed as at ‘high risk’ of measurement error, a justification 

for this reasoning was then given linking to the main reasons for measurement error 

presented in Chapter 1 (see Section 1.6): 

• Fluctuations in human samples/biological variability 

• Inaccuracy of measurement instruments 

• Imperfect recall  

• Cost/resource limitations  

• Subjective nature of measures  

• Laboratory or measurer error 

• Timing error 

 



 

92 
 

3.2.6 Timing of predictors and intended moment of model use 

First, the included articles were searched for any information describing when the 

predictors were measured and when the model would be intended to be used in practice. 

If this was not explicitly stated then, wherever possible, information given in the articles on 

where the predictor information came from and the setting they were measured in were 

used to establish a likely time of measurement. If the intended moment of use of the model 

was not stated then, again where possible, information on what the model would be used 

for and the predictors that would be used within the model were considered to make a 

decision on the most probable intended moment of use.  

 

3.3 Results Part 1: Description of included studies and quality of 

reporting 

In this first part of the results of the review, a detailed description is given of which articles 

were included within the review, at what stage articles were excluded, and why they were 

excluded. This is followed by a summary of the design and aims of the included articles, 

alongside detailed information about the quality of reporting and characteristics of the 

development of the models. Part 2 will cover measurement error and timings of predictor 

measurement.  

 

3.3.1 Literature search and inclusions 

A total of 1000 titles and abstracts were extracted from Medline and screened for inclusion. 

Of these, 876 were excluded based on not meeting the inclusion criteria from screening 
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their title and abstract (Figure – Section 3.3.2). Study eligibility was then assessed for 124 

full-text articles by the first reviewer, and 32 were deemed suitable for inclusion, 82 were 

deemed ineligible and for 10 studies a decision could not be reached. The 32 articles for 

inclusion were split between the second and third reviewers for double checking, and there 

was 100% agreement that all these should be included. The 10 unclear articles were sent 

to both the second and third reviewers and there was agreement between them for six of 

these articles. The remaining four studies without agreement were reviewed by a fourth 

reviewer and the decision of this reviewer was taken as final. Of these 10 studies, three 

were ultimately excluded due to focusing on prognostic factor, rather than prediction 

model, research. 

This left 39 articles for inclusion. However, after beginning the extraction of information 

from the included articles, six further studies were identified as not meeting the eligibility 

criteria due to being either prognostic factor research (n=1), not using regression methods 

(n=3), being unable to access supplementary tables (n=1), or estimating the prognostic 

effect of previously developed score (n=1). With agreement from the three additional 

reviewers, these articles were excluded. Therefore, a total of 33 papers, published in 2015, 

were included in the final review. A separate reference list of included articles is given in 

Appendix A and will be referred to numerically throughout the remainder of the chapter.  
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3.3.2 PRISMA flowchart 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Titles and abstracts screened, identified 
through Medline  

(n = 1000) 

Records excluded  
(n = 876) 

Full-text articles assessed for eligibility  
(n = 124) 

Exclude  
(n = 91) 

• Unable to access full article 
(n=4) 

• Predictor finding research 
(n=75) 

• Prognostic effect of previously 
developed score (n=5) 

• Non-clinical topic (n=1) 

• Validating previously 
developed model (n=2) 

• Non-regression based 
techniques (n=3) 

• Investigating optimal cut off 
value (n=1) 

 

Studies included in review  
(n = 33) 
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3.3.3 Study design and aim 

The 33 included articles consisted of 27 prognostic model studies and six diagnostic model 

studies. The most common clinical condition that a model was developed for was cancer, 

with 15 (45.5%) of the articles developing a prognostic model for an outcome in cancer 

patients [1-3, 5, 6, 10, 11, 16, 19, 20, 21, 25, 26, 29, 33] and three (9.1%) developing a 

diagnostic model for a particular form of cancer [13, 18, 32]. Of the remaining prognostic 

models developed, one article each developed a prognostic model for an outcome in 

patients with each of the following clinical conditions: trauma [4], HIV [7], endoscopic 

retrograde cholangiopancreatography (ERCP) [9], aneurysms [12], pressure ulcers [15], 

myocardial infarction [17], paediatric cardiac catheterization [22], liver transplant [23], 

sport concussion [24], atrial fibrillation [27], Crohn’s disease [28] and coronary artery 

disease [30]. The remaining diagnostic models were developed to diagnose a patient with 

abdominal trauma [14], non-alcoholic fatty liver disease (NAFLD) [8] and acute 

encephalopathy with biphasic seizures and reduced diffusion (AESD) [31].  

In eight (24.2%) of the articles included [1, 2, 7, 10, 16, 23, 24, 26], the prediction model 

was developed using data from a prospective cohort study. The remaining 25 articles 

developed the prediction model using data from a retrospective cohort/registry database. 

The intended aim of the prediction model in the included articles was most commonly to 

inform therapeutic decision making (e.g. decisions on surgical treatment or chemotherapy) 

(n=21, 63.6%) [1, 3, 4, 9, 11-14, 16, 17, 19-21, 23-28, 30, 33]. Other aims of the prediction 

models were to withhold low risk individuals from invasive diagnostic testing or 

unnecessary treatment [2, 6, 10, 32], to inform patients of the risk of an event occurring 

[22, 29], for research purposes [8, 15], to enable early diagnosis of a condition [18, 31], to 
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predict relapse [5] and to identify patients at highest risk for dying to enable targeting of 

factors (e.g. smoking, depression) that increase mortality [7]. 

 

3.3.4 Candidate predictors 

In six (18.2%) of the articles included [3, 6, 8, 9, 28, 33], the candidate predictors considered 

in the development of the prediction model was either not stated or unclear. In the 

remaining 27 articles, a full list of the candidate predictors could be established.  

Twenty-six of these 27 articles had one or more continuous predictors. Of these 26, there 

were nine (34.6%) which categorised or dichotomised at least one of the continuous 

candidate predictors, but kept at least one of the continuous predictors as continuous [2, 

5, 7, 17, 21, 25, 26, 30, 32]; only four kept all of the continuous predictors as continuous in 

the model development [4, 12, 19, 27], whilst eight categorised/dichotomised all 

continuous predictors [10, 11, 16, 18, 20, 22, 29, 31]; in two studies all continuous 

predictors were kept as continuous within the model but then categorised/dichotomised 

to simplify for use in practice (e.g. nomogram) [1, 23]; and in three it was unclear how the 

continuous predictors were handled [13, 15, 24].  

In only five (19.2%) of the 26 articles was the linearity assumption of the effect of any of 

the continuous predictors explicitly considered, or a justification given for why non-

linearity was not examined. In these studies, the linearity was considered by using the Box-

Tidwell test [17], using restricted cubic splines [13], using fractional polynomials [19], using 

a log transform and including interactions [28] and by “suitably transforming individual 

factors where necessary” [1]. 
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3.3.5 Sample size 

The number of patients included in the analysis was reported in all 33 of the included 

articles. The median number of patients included in the model development was 501.5 (IQR 

193, 2371). The number of outcome events was clearly reported in 28 out of the 32 (87.5%) 

studies with a binary outcome. In the studies where it was reported, the median number 

of outcome events was 88 (IQR 48, 414). 

It was not possible to calculate the number of events per candidate predictor for 9 of the 

32 (28.1%) studies considering a binary outcome, either because the number of candidate 

predictors considered was not clear [3, 9, 13, 15, 28], the number of events experienced 

was not clearly reported [4, 19, 29], or neither the number of events nor candidate 

predictors were clear [6]. In the 23 studies with a binary outcome that did report the 

number of outcome events and clearly reported the candidate predictors, the median 

number of events per candidate predictor (also known as events per variable (EPV)) was 5 

(IQR 2, 14.6), ranging from 0.75 to 59. Only seven of these 23 studies [2, 5, 8, 10, 12, 16, 

22] had an EPV greater than or equal to 10 as is recommended by Peduzzi et al. (1996), and 

only four had an EPV greater than 20 as recommended by Austin and Steyerberg (2017). 

Thus, the vast majority of the studies may have too few events relative to the number of 

predictors considered to produce reasonably precise estimates.  

For the one study modelling a continuous outcome [24], the number of participants was 

76, and 58 predictors were considered, giving 1.3 participants per each predictor 

considered, well below the recommendation of 20 (Harrell, 2001, Moons et al., 2014), and 

even below the recommendation of 2 by Austin and Steyerberg (2015), who found that in 
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linear regression models only 2 subjects were required per predictor for adequate 

estimation of regression coefficients, standard errors and confidence intervals.  

 

3.3.6 Missing data 

Some information on the amount of missing predictor values was given in just 10 (30.3%) 

of the 33 included studies [4, 5, 9, 11, 14, 16, 18, 21, 26, 28]. However, one of these [18] 

did not quantify the amount of missing data but stated that two variables (smoking and 

alcohol status) were not shown because of insufficient data.  

In 17 out of the 33 (51.5%) studies, the method of handling missing data was not reported. 

Of the remaining 16 studies, nine reported the use of complete case analysis [4, 7, 9, 11, 

15, 17, 19, 24, 26] with two of these studies [4, 7] using multiple imputation during a 

sensitivity analysis. Only one study used multiple imputation to deal with missing predictor 

values [3]. Other approaches to the handling of missing data were case-deletion [16, 28], 

including a missing category in the analysis [21], excluding variables with lots of missing 

data [31] and reporting as negative if the result of the test was uninterpretable [30]. One 

study reported excluding participants in the univariable analysis if they had any missing 

data but it was not clear how they had handled participants with missing data in the 

multivariable analysis [5].   

 

3.3.7 Model development 

A total of 23 out of the 33 studies (69.7%) used a logistic regression model when developing 

their prediction model [1-4, 6, 8-10, 12-15, 17, 18, 21-23, 25-27, 31-33], and six used a Cox 
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proportional hazards model [7, 11, 19, 20, 28, 30]. Other methods used to develop models 

with binary outcomes were joint modelling [5], a competing risk model [16] and a non-

mixture cure model [29]. One study developed a prediction model for a continuous 

outcome, using a linear regression model [24]. 

In 24 out of the 33 studies (72.7%), it was clearly reported how the predictors were selected 

for inclusion in the final multivariable model. Of these 24 studies, 15 considered predictors 

for inclusion in the multivariable model only if they were significant in univariable analysis 

[1, 8, 9, 11, 14, 16, 18, 20, 21, 23, 25, 29, 31-33], with an additional four studies using a 

combination of selecting predictors based on a priori hypotheses and their significance in 

univariable analyses [7, 15, 27, 28].  

In 22 out of the 33 studies (66.7%), a stepwise selection method was used to select the 

variables for the final prediction model based on multivariable analysis. Of these, four used 

forward selection [9, 10, 26, 33], 11 used backward selection [3, 11, 16, 18, 19, 21-23, 28, 

29, 32], one used interactive stepwise selection [7], and in six it was unclear whether 

forward or backward selection was used [1, 14, 15, 20, 24, 25]. Other methods of selection 

of the final predictors were to minimise the Akaike’s Information Criterion/Bayesian 

Information Criterion [2, 27], keep statistically significant predictors in the model [5, 12], 

adaptive least absolute shrinkage and selection operator (LASSO) [8], bootstrap resampling 

[17], include all predictors significant in the univariable analyses [31] and compare four 

different models using the AUC [30]. In three studies it was unclear how the final predictors 

were selected [4, 6, 13].  
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Two of the 33 studies [18, 28] included a subset of predictors regardless of their significance 

because they were routinely used in clinical practice or had strong previous evidence of 

being associated with the outcome.  

 

3.3.8 Model performance 

Calibration was assessed in only eight out of the 33 studies (24.2%) included, of which three 

performed a Hosmer-Lemeshow test [1, 15, 17] and five graphically assessed the 

calibration [3, 6, 7, 10, 13]. One study presented the gradient of the calibration slope [10]. 

Conversely, only five out of 33 studies (15.2%) did not evaluate the discrimination of the 

model [20, 21, 24, 29, 33]. Fourteen (50%) out of the remaining 28 studies presented the 

receiver operating characteristic (ROC) curve and a value of the C-statistic [1, 3, 4, 6, 8-11, 

13, 14, 18, 25-27], 12 (42.9%) reported only the C-statistic [2, 7, 12, 15-17, 19, 22, 23, 28, 

30, 32], one study used the Fisher’s test to confirm whether the scoring system effectively 

differentiated between the groups [31] and one study calculated the average accuracy [5]. 

In addition to the ROC curve and the C-statistic, two studies [17, 27] also reported the 

integrated discrimination improvement (the difference in predicted probabilities in those 

who do and do not experience the event of interest), with one of these [27] additionally 

reporting the net classification improvement (net proportion of events reclassified 

correctly plus the net proportion of non-events reclassified correctly).  

Thirteen out of the 33 studies (39.4%) reported the sensitivity and specificity [1, 3-5, 8, 10, 

11, 14, 23, 25, 26, 32, 33], and nine (27.3%) reported the PPV and NPV based on their model 

predictions according to a chosen cut-point of risk [1, 3, 6, 8, 10, 14, 23, 26, 32]. 
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3.3.9 Model validation 

Of the 33 included articles, only three [8, 13, 28] externally validated the model (i.e. 

evaluating the model in a completely independent dataset to the development data), 

whereas 17 (51.5%) used some form of internal validation using one of the following 

methods: randomly split data [1, 8], fivefold cross-validation [2], bootstrap resampling [3, 

5, 7, 13, 14, 16, 19, 23, 26, 28], split by date [6, 9], randomly split data and used 

bootstrapping [4], or 10% validation sample [15]. Of these 17 studies, seven [3, 5, 7, 14, 19, 

26, 28] provided an optimism adjusted measure of performance (i.e. C-statistic), but none 

of the studies used a shrinkage factor to adjust the estimated coefficients of included 

predictors for potential overfitting (optimism).  

 

3.4 Results Part 2: Measurement error and intended moment of 

model use 

This section assesses whether the predictors included in the final models were susceptible 

to measurement error, and whether this was adjusted for in the models or was discussed 

in the articles. The section also details the intended moment of using the models and 

whether the predictors were measured at this time point or not. 

 

3.4.1 Measurement error 

In the 33 articles reviewed, there was a total of 151 different predictors in the final 

prediction models. Many of the predictors were included in several different models, for 

example, age and gender were in many of the models (13 models and 5 models, 
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respectively). Of the reported predictors included in the final models, 51 (33.7%) were 

categorised as high risk of being susceptible to measurement error, and the remaining 100 

(66.2%) were categorised as low risk. As there was very little mention of measurement 

error within any of the studies, the categorisations of susceptibility to measurement error 

into ‘high risk’ and ‘low risk’ had to be made based on the methods reported in Section 

3.2.5 rather than from information given in the articles. These categorisations are given in 

Appendix B for each of the 151 different predictors in all the models examined, which are 

further grouped into key reasons for likely measurement error in those deemed to be at 

high risk.  

Despite one third of the included predictors being susceptible to measurement error, very 

few studies acknowledged, or accounted for, measurement error in their included 

predictors. One study [1] mentioned measurement error as a general limitation due to the 

study being from a single centre and two studies used repeated measurements of a 

predictor within the modelling process [2, 5], which may have alleviated the issue to some 

extent. The first of the studies that used repeated measures [2] used generalised estimating 

equations (GEE’s) to fit models accounting for the correlations among multiple biopsies 

that were performed on the same patients. The authors state that GEE’s yield the same 

mean predictions as maximum likelihood, but result in inflated standard errors, wider 

confidence intervals and diminished statistical significance that more accurately reflect the 

amount of uncertainty in the data. There is no mention of measurement error within the 

article, and so it assumed that the authors have not made use of the repeated measures in 

a conscious effort to reduce measurement error, but to take advantage of all the data 

available (which may consequently potentially minimise measurement error). The second 

study using repeated measures [5] used joint modelling of longitudinal measures of CA125 
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with the stated purpose of estimating the time trend of CA125 rather than explicitly 

accounting for measurement error (although again, this may consequently account for 

measurement error). 

Despite only two of the reviewed articles including repeated measurements in the 

modelling process, repeated measurements of at least one of the candidate predictors 

were actually reported to be available in six (18.2%) of the articles. One of the studies [8] 

had data available from a data registry, and if there was more than one value available for 

a predictor, recorded within a 12 month period, then they used the average of the values. 

Multiple pain scores were recorded in one study [9] and the authors explored different 

ways of using these multiple measures in the prediction modelling, for example, first 

recorded, highest score, change in score, median score, last reported and area under the 

pain curve. The area under the curve was used within the model development because it 

was reported to have the highest correlation with the outcome. Two models were 

developed within one of the studies reviewed [15], from two different time frames: firstly 

using data available only at the first encounter and secondly using data available from the 

whole course of care. The final study with repeated measures recorded [23] had multiple 

blood test results within the first 24 hours after a liver transplant and used the highest of 

these values within the modelling. Although multiple measurements were recorded, only 

the two studies discussed above [2, 5] used methods which could have lessened the impact 

of measurement error, the other four articles [8, 9, 15, 23] did not address measurement 

error. Of these 6 articles that repeated measures were available, 4 of these had repeated 

measures that we categorised as being high risk [5, 8, 9, 23], one of which used the 

repeated measures within the modelling [5]. In the remaining 28 (84.8%) of the articles, 

there was no indication that repeated measurements were recorded. 
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Examples of those predictors that were considered at high risk of error are given in Table 

3.3 with a reason and explanation for why they may have been measured with error. One 

example of a predictor at high risk of error and used in several of the final prediction models 

is prostate specific antigen (PSA). Roehrborn et al. (1996) conclude that there is significant 

variability between two serum PSA measurements obtained within a short time interval, 

which is due to chance alone. Biomarkers such as CA125, creatinine, C-reactive protein, 

serum albumin and other serological markers are also likely to change if a second sample 

was assessed, meaning they are measured with error due to biological variability causing 

discrepancies away from an underlying (mean) value (Braga and Panteghini, 2016). There 

is also the possibility of laboratory error being present in these biomarkers, as the 

equipment or methods used to take the measurements within the laboratory may not be 

accurate.  

In another example of a predictor likely measured with error, Ali et al. (2007) found that 

the depth of myometrial invasion (DMI) was different in 29% of cases when the DMI was 

reassessed. The area under a patient’s pain curve could also be measured with error as it 

is a subjective measurement that may be affected by various things including how the 

question is asked, the setting in which the question is asked or when the question is asked. 

It could also be subject to recall error if the patient is asked about previous days pain levels. 

Another example is pulse rate, where Kobayashi (2013) found that error occurred when 

pulse rates were objectively scored for various durations (e.g. 10, 15 or 30 seconds) rather 

than for a whole minute, so the error in a pulse rate could depend on how long the pulse 

was taken for. A patient’s primary tumour diameter is another example of a predictor 

susceptible to measurement error. This is because if a histologist determined the diameter 
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under a microscope there would be little deviation from the true value, whereas if a 

surgeon recorded the diameter using an endoscopy then this could be recorded with error 

and could have an effect on the therapy chosen to be used (Mori et al., 2015). BMI is also 

another predictor susceptible to error, and again the amount of error would depend on 

how it was measured. If measured by a clinician then there is unlikely to be much 

measurement error, but if measured by the patient and recalled this may be subject to 

error (Hill and Roberts, 1998). 
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Table 3.3: Explanation of reasons for measurement error in example predictors at high risk 
of error 

Predictor Key Reasons Explanation 

Area under 
pain curve 

Subjective/subject to 
recall 

Requires patient to report pain, which is a 
subjective measure and could report the same 
pain differently at a different time/by a 
different method or if previous scores were 
not provided (Scott and Huskisson, 1979), and 
recall incorrectly (Daoust et al., 2017) 

Body Mass 
Index 

Inaccuracy of 
measurement 
instruments/imperfect 
recall 

Scales may not be calibrated correctly, or 
patient reported weight may be incorrect (Hill 
and Roberts, 1998) 

CA125 Biological variability/ 
laboratory error 

Assay imprecision can contribute considerably 
to result variations in a conventional 
laboratory setting (Tso et al., 2006) and 
changes can occur due to normal biological 
variation (Tuxen et al., 1999) 

Creatinine on 
admission 

Biological variability/ 
inaccuracy of 
measurement method 

Bias and imprecision may occur by use of 
different measurement methods (Peake and 
Whiting, 2006) and changes can occur due to 
normal biological variation (Reinhard et al., 
2009) 

C-reactive 
protein 

Biological variability Within-individual variability exists, so a second 
sample may produce different results (Macy et 
al., 1997) 

CRUSADE 
score 

Biological 
variability/measurer 
error 

May be different if calculated again shortly 
afterwards as includes measure that vary and 
may be affected by measurer error such as of 
blood pressure (Handler, 2009)  

Emergency 
room pulse 
rate 

Biological 
variability/inaccuracy 
of measurement 
method 

May change if measured a couple of minutes 
later and there may be error depending on 
how long the measurer counted for 
(Kobayashi, 2013) 

History of 
transactional 
sex 

Imperfect recall Patient may not be truthful about history 
(Sawers, 2013) 

Glomerular 
filtration rate 

Biological variability A second sample may produce different 
results due to biological variation (Delanaye et 
al., 2012) 

Human 
epididymis 
protein 4 
(HE4) 

Biological variability A second sample may produce different 
results (Braga et al., 2014) 
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Ki-67 Biological variability A second sample may produce different 
results and differences may be present from 
different laboratories (Polley et al., 2013) 

Myometrial 
invasion 
depth 

Measurer 
error/inaccuracy of 
measurement method 

Results may be different when reassessed (Ali 
et al., 2007) 

Prostate 
specific 
antigen (PSA) 

Biological variability A second sample may produce different 
results (Roehrborn et al., 1996)  

Serum 
albumin 

Biological variability A second sample may produce different 
results (Winkel et al., 1974) 

Tumour 
stage 

Subjective/measurer 
error 

May get a different result from different 
assessors dependent on experience level or 
areas of speciality 

Primary 
tumour 
diameter 

Laboratory or 
measurer error 

Measuring using an endoscopy could be 
inaccurate (Mori et al., 2015) 

 

While many of the predictors in the final models could be considered to be susceptible to 

measurement error, there were also examples of predictors that were considered to be at 

low risk of important error. For example, one model that aimed to identify trauma patients 

at high risk of pulmonary embolism included a predictor indicating if the patient arrived at 

the hospital by helicopter, and it would be unlikely this would be incorrectly classified. 

Other models included the patient’s disease location as a predictor and again, it is unlikely 

that this would not be recorded correctly.  

 

3.4.2 Intended moment of using the model 

Only eight of the articles explicitly stated exactly when the intended moment of using the 

model would be, or exactly when the predictors used in the final model were measured. 

However, for the majority of the 33 included articles it was possible to make a reasonable 

assumption about these details. If these assumptions were indeed correct, then in 30 
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(90.9%) of the 33 articles the predictor measurements were all either taken at the intended 

moment of model use or were available prior to this.  

For example, one study [20] developed a model to predict survival prognosis after surgery 

in patients with symptomatic metastatic spinal cord compression from non-small cell lung 

cancer, with the aim of being able to provide optimal treatment. Although the specific 

timing of the predictor measurements was not stated, the predictors were specified as 

preoperative characteristics. The assumption was made that the model would be intended 

to be used at the point when a treatment decision was being made, as it was reported that 

those with the most favourable survival prognosis may instead be treated with more radical 

surgery. Therefore, it was assumed that the preoperative characteristics considered as 

predictors were either measured prior to or at the point that the model would be intended 

to be used. 

In another example [18], a diagnostic model was developed to predict colorectal cancer in 

patients selected for colonoscopy in a primary health care setting, with the aim of 

identifying high risk patients to reduce the time to diagnosis and hence provide more 

efficient treatment strategies and success. As the model is to be used to help identify high 

risk patients when being considered for colonoscopy, which would happen during a GP 

consultation, it was assumed that the model would be intended to be used during a GP 

consultation when considering referral for colonoscopy. The model used predictors 

recorded in routine care data, which would all be available at the point of care, and 

although the article did not state at which time the predictors were recorded, it was 

assumed that only measurements recorded prior to colonoscopy referral were considered 

in the model development.  
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In all six of the articles in which repeated measurements of the predictors were available, 

each of the repeated measures were recorded either at or prior to the intended moment 

of using the prediction model.  For example, a model was developed [2] to predict disease 

progression in men with prostate cancer, with the aim of preventing invasive and costly 

diagnostic testing. The men included in the study were all on active surveillance, so had 

multiple biopsies undertaken following diagnosis, which were all used within the model 

development. The article states that the aim was to “identify predictors of the outcome of 

biopsy on active surveillance, including clinical, biomarker, and pathologic data from 

previous visits and biopsies” which would suggest that predictors were measured prior to 

the intended moment of using the model. 

In another example in which repeated measures were recorded [5], a model was developed 

to predict recurrence of ovarian cancer in women who had all reached complete remission 

after cytoreductive surgery and first-line chemotherapy. Repeated measures of CA125 

were used in the model development, and the measurements used were those recorded 

between the time of diagnosis and the completion of first-line chemotherapy. These 

measures must all inherently have been recorded before the intended moment of use of 

the model as recurrence could only occur in those who reached remission after completion 

of first-line chemotherapy.  

In two (6.1%) of the articles [10, 26] it was not possible to make an assumption with regards 

to when the predictors were measured in relation to when the model was intended to be 

used. In the first article [10], a prognostic model was developed to predict the specific risk 

of non-sentinel node metastases in women with breast cancer with the aim of preventing 

unnecessary axillary lymph node dissections. The model was intended to be used after 
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diagnosis of breast cancer, and as it is to be used to prevent unnecessary axillary lymph 

node dissections it could be assumed that the model would be intended to be used when 

deciding whether to perform an intraoperative axillary lymph node dissection. Little 

information was given on the predictors used in the model meaning the timing of the 

measurements of the predictors could not be deciphered, hence it was not possible to 

determine whether the predictors were measured at the intended moment of using the 

model or not. In the second article [26], a model was developed to predict unfavourable 

disease in patients with prostate cancer. The aim of the model was to avoid or postpone 

interventions in subjects with prostate cancer of low biological potential. The article states 

that the model is intended to be used in patients after radical prostatectomy, but who were 

eligible for active surveillance. The predictors included were recorded from clinical 

evaluation, prostatic biopsy and radical prostatectomy specimens, but the timing of the 

clinical evaluation and prostatic biopsy was unclear and hence it was unknown whether 

these were before, at, or after the intended moment of using the model.    

For one of the included articles [8], a classification algorithm was developed for the 

diagnosis of non-alcoholic fatty liver disease (NAFLD). The model was not developed to be 

intended to be used at a specific time but to be used to identify large scale longitudinal 

cohorts from electronic medical records for use in research studies. 

 

3.5 Discussion 

This chapter aimed to provide a review of recently published prediction models by 

evaluating the quality of the reporting, whether the predictors were measured at the same 

time that the prediction model is intended to be used, and the potential and adjustment 
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for measurement error within predictors in the development of the models. The key 

findings, limitations and implications of the review are now summarised. 

 

3.5.1 Key findings 

A summary of the key findings is given in Box 3.1.  
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Box 3.1: Summary of key findings from the review 

Measurement error and timing of predictors:  

• Many of the final prediction models included predictors likely to be 

susceptible to measurement error. 

• Error in predictors was generally not acknowledged, or accounted for. 

• Most of the articles did not explicitly state when the predictors were 

measured or the intended moment of using the model. 

• A reasonable assumption about the timing of predictors and intended 

moment of using the model could be made for the majority of the articles 

included and, based on this, there were no articles that obviously recorded a 

predictor after the time it was intended to be used. 

General reporting/development: 

• A full list of predictors considered was often not given. 

• Continuous predictors were frequently categorised in the model development. 

• The amount of missing data and the method of handling missing data was 

often not reported. 

• Predictor selection procedures were commonly not described. 

• Calibration was rarely assessed. 

• Non-linearity of predictors was rarely assessed. 

• Often, the events per candidate predictor could not be calculated due to not 

enough information being reported on the candidate predictors and/or the 

number of events. 
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3.5.1.1 Measurement error 

The main finding of the review was that many published clinical prediction models include 

predictors that are susceptible to potentially important measurement error. However, this 

was seldom acknowledged. Of 33 articles in this review only two used methods that could 

potentially account for measurement error by using repeated measurements in the 

modelling (though, even then, it was not stated that this was why the repeated 

measurements had been used). Though the impact of ignoring measurement error in the 

articles reviewed is difficult to establish, it raises an important methodological 

consideration for future prediction model research to address, particularly as 

approximately a third of the predictors used in the prediction models were categorised as 

being at high risk of being susceptible to measurement error. Indeed, measurement error 

has been found to generally have three main effects if not accounted for in medical 

research: biased estimates of the parameters, loss of power and masking the features of 

the data (making it harder to spot relationships via graphical methods) (Carroll et al., 2006).  

The direction and magnitude of bias from measurement error depends heavily on whether 

the distribution of errors for one variable depends on the actual value of the variable, the 

actual values of other variables, or the errors in measuring other variables (Rothman et al., 

2008), as well as on the true strength of the association, the prevalence of the predictors 

(Jurek et al., 2005) and whether the errors are random or systematic. Hence, the direction 

of bias from predictor measurement error is likely to be difficult to predict. However, we 

know that failing to adjust for random measurement error can lead to estimates being 

biased towards the null (Prentice, 1982) (if the error is non-differential and independent 

(Rothman et al., 2008)), which could subsequently lead to an underestimate of a patients’ 

probability of outcome if measurement error is present in the prediction model used. 
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Conversely, failing to account for systematic errors may change the results in different 

directions, which could again lead to incorrect predictions of a patients’ probability of 

future outcome. In fact, measurement error in prediction models has been shown to 

reduce the C-statistic and increase the Brier score (BS) dramatically (Khudyakov et al., 

2015), though this study focused on the gain in prediction performance from using error-

free predictors instead of error-prone predictors, rather than the gain in prediction 

performance from accounting for the measurement error in the model when the true 

error-free values are not known. The article also only evaluated the scenario where only 

one error-prone predictor was included in the prediction model. Another article assessed 

the impact of random and systematic error in self-reported height and weight on the 

performance of a model used to predict diabetes (Rosella et al., 2012). The authors found 

that random error reduced the calibration and discrimination, and biased the predicted risk 

upwards, whereas systematic error reduced the calibration and biased the predicted risk 

in the direction of the bias, but had no effect on the discrimination.  

 

3.5.1.2 Predictor timings 

This review found that over three-quarters of the articles included did not explicitly state 

the exact timing that the model is intended to be used in clinical practice, or exactly when 

the predictors used in the modelling development were measured. However, a reasonable 

assumption could be made for the majority (93.9%) of the articles included and, based on 

this, there were no articles that obviously recorded a predictor after the time it was 

intended to be used. Nevertheless, future prediction model research studies must clearly 
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report the timing of their predictors, to make it explicit that they were collected before the 

intended moment of use (or if not, to justify why).  

 

3.5.1.3 Development and reporting issues 

An important consideration when developing a prediction model is the number of 

participants in the data being used, but more importantly, the number of outcome events 

occurring in the population used to develop the prediction model. The TRIPOD statement 

(Collins et al., 2015) states that all predictors used in developing the multivariable 

prediction model should be clearly defined, including how and when they were assessed. 

The reporting of a full list of candidate predictors and how they were treated within the 

development of the model is essential to be able to calculate the EPV, but in many of the 

articles included in this review either a full list of the predictors considered was not 

explicitly stated or it was not clear whether continuous predictors were treated 

continuously within the model development. All of the articles included reported the 

number of patients used in the analyses, but in nearly a third of the studies the number of 

events per candidate predictor could not be calculated either because a full list of the 

candidate predictors was not given or the number of events occurring was not stated. In 

over two-thirds of those that the EPV could be calculated, the EPV was below the 

recommended value of 10.  

Knowing the extent of missing data and also how participants with missing data were dealt 

with is important when assessing for any potential bias within a prediction model (Moons 

et al., 2014), as the amount and type of missing data and the method of dealing with 

missing data can have a big impact on the accuracy of the predictions from the model 
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(Gorelick, 2006, Little, 1992). Again, the TRIPOD statement states that a description of how 

missing data were handled needs to be given and the number of participants with missing 

data for predictors and outcome should be described (Collins et al., 2015), as bias could 

arise due to data not being missing completely at random (Moons et al., 2015). Reporting 

of information on missing data was limited in the included articles, within no mention of 

the amount of missing data in over two-thirds of the articles and minimal information in 

the remaining. Similarly, the method of dealing with missing data was not stated in over 

half of the articles.  

The TRIPOD statement also states that all model-building procedures, including predictor 

selection, should be specified (Collins et al., 2015), in enough detail that a knowledgeable 

reader could verify the reported results and should understand the reasons for the 

approaches taken (Moons et al., 2015). Prediction models are often derived from a 

sequence of data-driven steps, but usually only the best prediction model is reported 

(Moons et al., 2009b), which is likely to lead to bias and can lead to selecting an over-fitted 

model. While this was the case for all but two of the articles in which it was clearly stated, 

almost a third of the articles did not clearly report how the predictors to be considered in 

the multivariable analysis were selected.  

Reporting of model performance is essential for the readers and future model users to be 

able to judge how well the model will perform in practice. The most important 

considerations of a model’s performance is the discrimination and calibration, with 

discrimination being the primary interest in model development studies (as they will be 

well calibrated by definition) (Moons et al., 2015). Around only a quarter of the articles 

included reported an assessment of the amount of agreement between the observed 
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outcomes and the predictions (calibration) whereas the majority did report evaluating how 

well the model identifies those who experience an event from those who do not 

(discrimination). 

As mentioned, the reporting of predictor timings was poor, along with reporting of the 

predictors considered, the number of outcome events, the amount and handling of missing 

data, the predictor selection procedures and model performance measures. The reporting 

was also sub-optimal in regard other things listed in the TRIPOD checklist (Collins et al., 

2015).  In 12% it was unclear how continuous predictors were handled, only 19% described 

whether the linearity of continuous predictors was considered, and 13% of the studies with 

a binary outcome did not clearly state how many participants had the outcome of interest.  

 

3.5.2 Strengths and limitations 

A strength of this review was that a clearly defined search strategy which was based on a 

previously published search (Geersing et al., 2012) was used, so while many of the original 

articles found may have been irrelevant, relevant papers should not have been missed. 

Although this review did not include a search of every prediction model published within a 

certain time period due to the sheer volume of prediction models published (Wessler et al., 

2015), a search of a few of the most recently published studies was deemed appropriate to 

enable a general overview of the current literature and provide qualitative saturation of 

the general standards of reporting, in particular whether the  predictors were likely to be 

susceptible to measurement error and whether this was considered and also the timing of 

the predictor measurements in relation to the intended moment of using the model. Only 
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33 papers were included, but it was judged that little would be gained from reviewing a 

larger number of articles.  

The review may have been limited by only searching one database, and by including articles 

published in English only, but as the review did not aim to capture all the evidence available 

this should have had a minimal effect on the results found.  

A limitation of the review is that many of the articles did not explicitly state the timing of 

measurements or when the model is intended to be used. Hence, the reviewer’s judgement 

had to be used and assumptions made. Based on this, all of the papers here did actually 

measure the predictors at the intended moment of using the model (or before), in those 

that it was possible to decipher this information. However, it is possible that some of these 

assumptions made were incorrect. 

Another concern within prediction models in relation to predictor timing is the relevant 

time window, or the length of the induction period, in which the predictor of interest is 

causally related to the outcome. For some prediction models, certain causal factors may 

need to be considered from much longer ago than others, i.e. with a longer induction 

period. For example, if considering asbestos exposure in relation to future lung disease, the 

association could span back many years, whereas recent asbestos exposure may not be 

related to the outcome if the induction period is only relatively short, e.g. 1-2 years. On the 

other hand, when predicting infectious diseases, the current and recent exposure of the 

patient is likely to be most important, and so a relatively short induction period would be 

needed. Hence, the duration of follow-up of predictors prior to the intended moment of 

model use should be clearly specified when developing a prediction model, however we 

did not assess this within this review. 
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When developing a prediction model, the calendar year of time in which the measurements 

were made is important (relative to the calendar time of the intended moment of model 

use), because the precision of measurements often improves when using newer 

measurement methods. Using a more recent, up-to-date data set that used more improved 

measurement techniques to develop a prediction model would potentially provide a more 

relevant and better performing model than if using an older dataset. While study 

recruitment dates are generally reported, we did not consider this in relation to when the 

article was published or would be intended to be used.  

Due to many of the included studies not actually stating a complete list of all of the 

candidate predictors considered in the model development, only the predictors included 

in the final models were assessed for their susceptibility to measurement error. However, 

measurement error in the candidate predictors could lead to the exclusion of these 

predictors in the model development stage and so measurement error in these predictors 

could be as equally as important as measurement error in the predictors in the final models.  

Again, little information was given within the included articles about any measurement 

error that may be present in the predictors. Without the availability of previous research 

on the amount of error in certain predictors, a subjective decision on whether 

measurement error was likely or important had to be made by the reviewer. Although an 

academic general practitioner also reviewed the list of predictors and gave their opinion 

on whether they would judge the predictor to be susceptible to measurement error when 

using in practice, it is possible that the way in which measurements were obtained in the 

research studies differs to the methods used in clinical practice. One difficulty with making 

a decision on whether the predictor is likely to be susceptible to measurement error was 
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that for many of the predictors it would depend on exactly how the predictor was 

measured, but often this level of detail is missing from the article. Despite this subjective 

approach to categorising measurement error, there were several predictors included in the 

final models that had corresponding published research suggesting they are likely to be 

measured with error, and this was not considered within the development of the models. 

Since the completion of this review, the Prediction model Risk Of Bias ASsessment Tool 

(PROBAST) has been published (Wolff et al., 2019). PROBAST is a tool that enables the risk 

of bias and the applicability of prediction model studies that are extracted as part of a 

systematic review to be evaluated. However, assessing the risk of bias and the applicability 

of the included studies in this review would not be relevant as the aim of the review was 

to get an overview of how prediction model studies are being reported, regardless of their 

potential bias or applicability to a particular field.  

 

3.6 Recommendations 

Based on the findings of this review, a list of recommendations for improving the reporting 

of prediction models in relation to measurement error, timing of predictors and model 

development are made in Box 3.2. 
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Box 3.2: Recommendations for improvements in the reporting of multivariable prediction 
models, based on findings of the review. 

 Measurement error and timing of predictors:  

• State exactly when and how predictors were measured. 

• Clearly state when the prediction model is intended to be used. 

• If predictors were measured after the intended moment of use of the model, 

justify why. 

• Discuss any susceptibility to measurement error in predictors used in the 

modelling process, even if it is thought not to be an issue. 

o Describe any potential error or why error is unlikely to be a problem 

o If the measurement error has been accounted for, state how.  

o If the measurement error has not been accounted for, state why. 

General reporting: 

• Define all predictors being used in the modelling process. 

• Describe how predictors were handled within the modelling (e.g. 

categorisations, considerations of linearity). 

• Specify the number of participants with and without the outcome. 

• Justify why the sample size is deemed sufficient. 

• Describe how many participants had any missing data and how missing data 

was handled in the analyses. 

• Outline model selection procedures, describing how predictors were selected 

for inclusion in the final model. 

• Report measures of model performance, including calibration and 

discrimination. 
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3.7 Conclusions and rationale for next chapter 

Although there were no clear examples within this review of a prediction model being 

developed using a predictor that was measured after the intended moment of using the 

model, it is common in prognosis studies of recurrent and long-term conditions presenting 

to primary care for information on predictors (e.g. pain intensity) to be ascertained by 

mailed self-complete questionnaires, or personal interview and examination in research 

clinics several days after their index consultation (Diehm et al., 2011, Hermsen et al., 2011, 

Licht-Strunk et al., 2009, Radanov et al., 1991, Scheele et al., 2011, Von Korff et al., 1993, 

Wardenaar et al., 2014). It was found in this review that the timing of the measurements 

and the intended moment of using the model is often not explicitly stated which could 

mean that future users of the model unknowingly estimate misleading probabilities of a 

patients’ outcome if they are using predictors measured at a different time than those used 

in the model development in relation to the timing of the model use. Hence, the impact of 

measuring predictors after the intended moment of use needs to be evaluated. To address 

this, the effect that measuring a time-varying predictor after the intended moment of using 

a prediction model has on the predictor-outcome associations and model performance will 

be assessed and illustrated using a real example in Chapter 4.  

It is possible that many published prediction models include predictors that are measured 

with error, and this is often not accounted for or even considered. Additionally, even if the 

authors considered the predictors to be measured without error, either because of the way 

they were measured, or for some other reason, this was still not stated within the articles. 

This suggests a need to assess whether ignoring measurement error in prediction models 

is a concern and whether accounting for the error will improve the predictions made and 
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the model performance. However, researchers should be considering how susceptible to 

measurement error their predictors may be when developing a model and the impact this 

may have on subsequent performance in new data (in particular, calibration of prediction).  

This review has also found that while guidelines have been published providing a checklist 

for the reporting of prediction models (Collins et al., 2015), many researchers are still 

omitting vital information when publishing their work. Prediction models are developed to 

help guide clinicians in practice, and the majority of the models developed in the articles 

included here were intended to be used to assist clinicians in therapeutic decision making. 

Poor reporting will have an impact on researchers and practitioners who are planning to 

use a prediction model already developed when assessing whether it is applicable to their 

situation. Journal reviewers and editors also need to be able to assess the generalisability 

of the model and the accuracy of the results, which may be difficult if it is not clearly 

reported within the article. Articles poorly reporting the development of prediction models 

may not be implemented in practice or may provide poor predictions if used. 

Although the review was undertaken in 2015 (and published in 2018), there is no known 

updated evidence to suggest that reporting of these issues has improved since then. The 

TRIPOD guidelines were published around the same time as this review was conducted and 

therefore it would be of benefit to update this review and investigate whether reporting 

standards have improved since. However, there have been several recent reviews of 

prediction models for specific health conditions that have found poor adherence to the 

TRIPOD guidelines (recurrent stroke in patients with transient ischaemic attack (TIA) and 

minor stroke (Abdulaziz et al., 2022), melanoma (Kaiser et al., 2022) and idiopathic 

pulmonary fibrosis (Di et al., 2022)). 
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Many of the recommendations provided here relate to general reporting guidelines that 

are already listed within TRIPOD, as is the issue of the timing of predictors. More research 

may be needed into the impact of measurement error in predictors used in prediction 

models and how this may be alleviated, before recommendations to include measurement 

error items in the TRIPOD guidelines are made.  
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4 The effect of measuring time-varying predictors at a 

different time point to that of the intended moment of 

use: an illustrative example 

 

4.1 Introduction 

The literature review in Chapter 3 found that the timing of predictor measurements and 

the intended moment of using a prediction model are often not explicitly stated. This 

chapter uses an applied example to illustrate the effect of using information on time-

varying predictors that was measured after the intended moment of use of the prediction 

model on the estimates of predictor-outcome associations (predictor effect / prognostic 

factor effect) and on the prediction model performance. The results of this chapter were 

published in Diagnostic and Prognostic Research (Whittle et al., 2017). 

 

4.1.1 Background 

Many studies are published each year which examine potential predictors (prognostic 

factors) of outcome risk (Riley et al., 2013), and/or develop a prognostic model containing 

multiple predictors for individualised risk prediction (Steyerberg, 2010). Prognostic models 

are intended “to assist clinicians with their prediction of a patient’s future outcome and to 

enhance informed decision making with the patient” (Steyerberg et al., 2013). Hence, 

predictions from these models should have optimal performance at the time that they are 

practically implemented – the “intended moment of using the model” (Moons et al., 2014). 
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The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual 

Prognosis or Diagnosis) statement recommends to clearly define when the predictors used 

in the development of the model were measured (Collins et al., 2015), and states that “all 

predictors should be measured before or at the study time origin and known at the 

intended moment the model is intended to be used” (Moons et al., 2015). In the context 

of primary care, this will typically be at the point of care – the primary care consultation. 

For a range of practical and ethical reasons, researchers may design prognosis studies that 

collect predictor information after the intended moment of use. For example, one 

approach commonly used in prognosis studies of recurrent and long-term conditions 

presenting to primary care is for information on predictors (such as pain intensity) to be 

ascertained by mailed self-complete questionnaires, or personal interview and 

examination in research clinics several days after their index consultation (e.g. (Diehm et 

al., 2011, Hermsen et al., 2011, Licht-Strunk et al., 2009, Radanov et al., 1991, Scheele et 

al., 2011, Von Korff et al., 1993, Wardenaar et al., 2014)). This approach offers several 

advantages: it permits a wider range of predictor information to be collected than would 

be possible within a time-constrained primary care consultation, it allows for greater 

standardisation of data collection procedures, and it provides a ‘cooling off period’ 

between the patient being informed about the study at the point of care and consenting to 

provide information on potential predictors that would not be considered part of routine 

care. However, this practice also carries potential limitations when the measured values of 

the predictors included in these studies are time-dependent and particularly when they 

may additionally be sensitive to the choice of measurement, mode of administration and 

other contextual influences on participants’ responses (Bowling, 2005, Podsakoff et al., 

2003, Streiner et al., 2014). In these circumstances, estimates of predictor-outcome 
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associations and prognostic model performance obtained from the study may be 

systematically different (biased) from those that would have been observed had those 

predictors been measured at the point of care. This problem is what is referred to as 

indirectness in the GRADE guidelines (Guyatt et al., 2011), the effect of which could be 

assessed in a particular prognostic model if external validation was performed in a setting 

and timeframe the same as when the model would be used in practice, as recommended 

in the REMARK guidelines (Altman et al., 2012).  

 

4.1.2 Chapter objectives 

The aim of this chapter was to illustrate this concern using a real example, showing how 

using a measure recorded shortly after a patient’s index consultation to develop a 

prediction model can provide misleading estimates if used during this index consultation. 

The specific objectives were to: 

• Compare the direction and magnitude of predictor-outcome associations of a 

multivariable prognostic model under two scenarios: 

− Using a time-varying predictor of interest, ascertained by the treating 

physician at the point of care (i.e. the intended moment of use) 

− Using the same predictor, but ascertained by a self-complete questionnaire 

mailed several days after the point of care 

• Compare the differences in the model performance measures under these two 

scenarios 
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The remainder of the chapter is structured as follows. Section 4.2 introduces the datasets 

used in the example, followed by a description of the methods used. Section 4.3 describes 

the results of the analyses which are then discussed in Section 4.4. 

 

4.2 Methods 

4.2.1 Datasets 

Secondary analyses of two primary care longitudinal data sets were undertaken: the 

Prognosis Research (PROG-RES) observation study (Mallen et al., 2006) and the Primary 

Care Osteoarthritis Screen cluster randomised Trials (POST) (ISRCTN40721988). These 

datasets were provided by Keele Clinical Trials Unit. 

 

4.2.1.1 PROG-RES 

PROG-RES is a prospective observational cohort of five general practices in North 

Staffordshire, England. Patients aged above 50 years who were consulting for non-

inflammatory musculoskeletal pain were recruited between September 2006 and April 

2007. Data were collected by the GP during the initial consultation then by means of a self-

complete questionnaire shortly after the consultation (median time between point of care 

and return of post-consultation questionnaire: 17 days (IQR 13, 27)), and at 3 months, 6 

months, 12 months, 24 months and 36 months post-consultation.  
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4.2.1.2 POST 

POST is a cluster randomised controlled trial of an intervention for ultra-brief screening 

questions for anxiety and depression, and pain intensity measurement against a control of 

just screening for pain intensity. Patients aged 50+ who consulted for suspected or 

diagnosed peripheral joint arthritis were recruited between September 2011 and 

November 2012. Data were collected by the GP during the initial consultation then by 

means of a self-complete questionnaire shortly after the consultation (median time 

between point of care and return of post-consultation questionnaire: 21 days (IQR 16, 30)), 

and at 3 months, 6 months and 12 months post-consultation.  

 

4.2.1.3 Similarities 

Both studies included a brief standardised assessment of predictors during the consultation 

(point of care) by the treating GP which they recorded on the practice computer. 

The studies had similar patient populations, recruitment procedures, and measurement of 

predictors and outcome, thereby allowing an observation of whether similar findings were 

present within the two comparable studies (Table 4.1). 
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Table 4.1: Design of the datasets 

 PROG-RES POST 

Design Prospective observational 
cohort 

Cluster RCT 

Registration  (Protocol; (Mallen et al., 
2006)) 

Current Controlled Trials 
ISRCTN40721988 

Intervention Usual care Intervention: Ultra-brief 
screening questions for anxiety 
and depression + pain intensity 
measurement 
Control: Screen for pain intensity 

Setting 5 general practices in North 
Staffordshire, England 

45 general practices in West 
Midlands, England 

Period of 
recruitment 

Sep 2006 - Apr 2007 Sep 2011 - Nov 2012 

Inclusion criteria Consecutive patients aged 
50+ years consulting for non-
inflammatory 
musculoskeletal pain 

Consecutive patients aged 50+ 
years consulting for suspected or 
diagnosed peripheral joint 
osteoarthritis 

Exclusion criteria Vulnerable patient (e.g. 
diagnosed with dementia); 
recent trauma associated 
with significant injury; 
inflammatory arthropathy 

Vulnerable patient (e.g. 
diagnosed with a terminal 
illness); nursing home resident; 
recent trauma associated with 
significant injury; inflammatory 
arthropathy, crystal disease, SpA, 
PMR 

Data collection 
points* 

In GP consultation (point of 
care), post-consultation 
questionnaire, 3m, 6m, 12m, 
24m, 36m 

In GP consultation (point of 
care), post-consultation 
questionnaire, 3m, 6m, 12m 

Candidate 
predictor of 
interest 

Current pain intensity (0-10 NRS; (Von Korff et al., 1992)) 

Timing of predictor 
measurement  

1. Point of care 
2. Post-consultation questionnaire 

Outcome of 
interest 

Patient global rating of change at 6 months (Completely 
recovered/Much improved/ Improved vs Same/Worse/Much 

Worse; (van der Windt et al., 1998)) 
Abbreviations: GP, general practitioner; IQR, Inter-quartile Range; NRS, numerical rating scale; 
PMR, Polymyalgia rheumatica; POST, The Primary care Osteoarthritis Screening Trial; PRO-
GRES, The Prognostic Research Study; RCT, Randomised Controlled Trial; SD, standard 
deviation; SpA, Spondyloarthritis. 
*Data collection points indicated in bold are the collection points used for this analysis 
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4.2.2 Predictor measurement 

The predictor of interest was current pain intensity in patients presenting to primary care 

with non-inflammatory musculoskeletal disorders, which has previously been found to be 

a predictor of unfavourable episode outcomes in several previous primary care studies 

(Mallen et al., 2007). 

The focus was on the predictor-outcome association between an unfavourable outcome at 

6 months and current pain intensity (0-10 numerical rating scale (NRS); 0=no pain (Von 

Korff et al., 1992)). Pain intensity is a time-varying predictor, and we compared its 

association with unfavourable outcome on two occasions: (i) at the point of care as 

recorded by the GP, and (ii) recorded in a questionnaire by the patient sent within the week 

following point of care. Although the questionnaire was mailed within the week after the 

patients first visit to their GP, in both studies over a quarter of the questionnaires were 

returned at least a month after their consultation. 

In both POST and PROGRESS the post-consultation questionnaires and the instructions to 

GPs measured current pain intensity in the same standardised format with the same 

anchors: “How would you rate your pain on a 0-10 scale at the present time, that is right 

now, where 0 is “no pain” and 10 is “pain as bad as could be”?” 

 

4.2.3 Outcome measure 

A primary concern of patients reporting to a GP with pain is whether their pain will improve 

in the future, and therefore, the outcome of interest in these analyses was the self-

reported patient global rating of change recorded in the 6-month post-consultation 
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questionnaire. For pragmatic reasons, and to enable the models to be easily compared, the 

categorical responses were dichotomised into having experienced a favourable outcome 

(completely recovered, much improved or improved) or an unfavourable outcome (same, 

worse or much worse) (as previously used in van der Windt et al. (1998)). 

 

4.2.4 Statistical analysis: predictor-outcome associations 

Participants were eligible for inclusion in the current analyses if they returned their 

questionnaire, consented to the use of medical records (such that their point of care 

information was available), and were successfully followed up at 6 months. 

Logistic regression models were fitted to estimate the predictor-outcome association 

between an unfavourable outcome at 6 months and pain intensity rating when recorded 

(i) at the point of care (i.e. intended point of using the prognostic results), and then (ii) in 

the post-consultation questionnaire. Separate models were fitted within the PROG-RES and 

POST datasets. Adjustment factors within all the models were age (as a linear term), gender 

and general practice, as these were all considered to be established prognostic factors. Pain 

rating was included within the models as a continuous variable, and its association with the 

outcome was included as a linear term. Only patients with complete predictor information 

at the point of care and the questionnaire, with outcome information available at 6 months, 

were included to ensure all analyses were comparable. Within the POST dataset, the 

models also included treatment arm as an additional adjustment factor, to account for any 

differences in outcomes between the treatment and control groups within the study. The 

adjusted predictor-outcome association estimates (odds ratios (OR)) and 95% confidence 

intervals (CI) from the point of care model were compared with those from the 
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questionnaire model, for each of PROG-RES and POST datasets separately. The models 

were transformed back to the absolute risk scale and predicted probabilities were plotted 

as an illustration. These were calculated from the model coefficients as shown below in 

equation (4.1) and (4.2). 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) =  𝛼 + 𝛽1𝑃𝑎𝑖𝑛𝑖 + 𝛽2𝐴𝑔𝑒𝑖 + 𝛽3𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽4𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒1,𝑖

+ 𝛽5𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒2,𝑖 + ⋯

+ 𝛽3+𝑆𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑆,𝑖 (+𝛽4+𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐴𝑟𝑚𝑖) 

(4.1) 

  

pi =
exp(𝑦𝑖)

1 + exp(𝑦𝑖)
 (4.2) 

where 𝑝𝑖 is the predicted probability for individual 𝑖 of having the event and 𝑆 is the number 

of general practices in the dataset. The confidence intervals for the predicted probabilities 

were calculated as  

95% CI = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) ± 1.96 × Standard Error (4.3) 

 

To enable the probabilities to be plotted, specific values for the adjustment factors needed 

to be chosen. Hence, the plots represented probabilities for a female patient from a 

randomly selected practice with the mean age in the dataset.  

 

4.2.5 Statistical analysis: prognostic model performance 

Next, each of the logistic regression models fitted were considered as prognostic models, 

such that they were to be (hypothetically) used for predicting individual outcome risk in 

new individuals. This allowed the focus to be on their overall predictive performance, and 
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in particular enabled the comparison of the performance of the models fitted at the point 

of care with the models fitted using the questionnaire information. The performance 

measures examined were the Akaike’s Information Criterion (AIC) and discrimination. 

The AIC measures the relative goodness of fit of a model, considering both the statistical 

goodness of fit and the number of parameters used. The formula for the AIC is 

𝐴𝐼𝐶 = 2𝐾 − 2 ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) (4.4) 

where 𝐾 is the number of parameters in the model and ln is the natural logarithm. The 

model with the lowest AIC is the preferred model, but as a rule of thumb, two models are 

essentially equivalent if the difference in their AICs is less than 3 units (when the sample 

size is greater than 256) (Hilbe, 2011). The AIC was used here (unlike in Chapter 2), as the 

AIC is a measure that can be used to compare the fit of multiple models and the primary 

aim in this chapter was to compare the model using the predictor measured at the point-

of-care with the model using the predictor measured a few days later.  

The discrimination was measured using the concordance index (C-statistic) (Hanley and 

McNeil, 1982), which is the ability of the model to differentiate between those who do or 

do not experience the outcome of interest; in this case, it is the ability of the model to 

differentiate between those who do or do not experience an unfavourable outcome at 6 

months. The C-statistic is the probability that for any randomly selected pair of individuals, 

one with an unfavourable outcome and one without, the model assigns a higher probability 

to the individual with the unfavourable outcome. For logistic regression models, as used in 

this study, the C-statistic is identical to the Area Under the receiver operating characteristic 

Curve (AUC). A C-statistic of 0.5 indicates that the model is no better than chance and a 

value of 1 indicates that the model perfectly classifies the individuals. 
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Calibration tells us the amount of agreement between the observed outcomes and the 

predictions and is always likely to be high in the dataset the model was developed in. 

Therefore, comparing the calibration of the two different models in the same dataset does 

not give a meaningful evaluation of the performance of the two models and hence no 

measure of calibration was assessed here.  

 

4.2.6 Statistical analysis: sensitivity analyses 

Sensitivity analyses were performed to evaluate assumptions made during the main 

analyses.  

 

4.2.6.1 Non-linearity 

To account for the possibility of a non-linear relationship between pain intensity rating and 

an unfavourable outcome, logistic regression models were fitted allowing for fractional 

polynomials (Royston et al., 1999) (using the fp command in Stata). Fractional polynomials 

are used in regression models as an alternative to regular polynomials to allow for flexible 

parameterisation of continuous variables. Fractional powers (-2, -1, -0.5, 0, 0.5, 1, 2, 3) of 

pain intensity rating were considered, adjusting for age, gender, general practice and 

treatment arm.  

 

4.2.6.2 Missing data 

The main analyses only included patients with complete data at all time points (i.e. point 

of care, questionnaire and outcome). As there was missing data at both the point of care 
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and the questionnaire, the use of a complete-case analysis could potentially bias the 

predictor-outcome association and cause a reduction in the statistical power of the 

analyses. As the aim of this chapter was to compare the associations and performance of 

the two models when using predictors measured at different time points rather than 

developing a prediction model to be used in practice, it was deemed not necessary to 

multiply impute the missing data. However, as a sensitivity analyses and to evaluate the 

potential impact of the missing data on the reported associations , the main analyses were 

repeated under two conditions: 

• Including all patients in the point of care model with data at that time point, 

regardless of whether they had missing information in the questionnaire or not 

• Including all patients in the questionnaire model with data at that time point, 

regardless of whether they had missing information at the point of care or not 

 

4.2.6.3 Interaction between pain and treatment arm 

The presence of an interaction between pain intensity rating and treatment arm were 

tested in the point of care and questionnaire models by including an interaction term of 

pain intensity rating with treatment arm (POST data only), as responders who received 

treatment may have had a different relationship between their pain ratings and their 

outcome than those who did not receive treatment.  
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4.2.6.4 Random effects modelling 

Within the main analyses, general practice was accounted for by including practice in the 

models as a categorical variable. As a sensitivity analysis, the assumption that the 

relationships between pain intensity ratings (at point of care and questionnaire 

measurement) and outcome were similar across general practices was assessed in POST. 

Multilevel logistic regression models, using the runmlwin command in Stata (Leckie and 

Charlton, 2013), were fitted including a random effect coefficient at the practice level. This 

relationship was not investigated within PROG-RES as five practices was deemed too few 

to reliably fit a multilevel model. 

 

4.3 Results 

4.3.1 Data description 

Of 650 potentially eligible patients mailed a questionnaire in PROG-RES, 424 (65.2%) 

returned it, consented to medical record review and had information at their consultation 

recorded, and 296 (45.5%) were successfully followed up at 6 months and had completed 

data at the point of care and baseline. The corresponding figures for POST were 2042, 1230 

(60.2%), and 756 (37.0%) (flowcharts provided in Figure 4.1 and Figure 4.2). 
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650 patients were sent the 

post-consultation 

questionnaire 
148 non-

responders to the 
questionnaire 

74 patients did 
not consent to the 

use of medical 
records 428 complete with 

records 

424 patients eligible to be 

included in analyses 

100 Non-Responders: 

• 9 patients missing an answer 
to the required question  

• 91 patients had no data 
returned for the 6 month 
questionnaire 

324 Responders (patients who gave a 

valid answer) 

Classifying into favourable/unfavourable outcome 

categories considering the question: 

“Compared to when you first saw your doctor or 

nurse with this pain 6 months ago, how do you feel 

your pain is now?” 

296 patients with complete data 
(response at point of care, 
questionnaire and 6 months) 

• 7  missing point of care pain 
rating 

• 21 missing questionnaire pain 
rating 

502 responders 

4 patients removed 
due to missing their 

point of care 
consultation date 

Figure 4.1: Participant flow - PROG-RES 
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2042 patients were sent the 

post-consultation 

questionnaire 630 non-

responders to the 

questionnaire 

5 patients removed 
due to PoC-to-

questionnaire interval 
greater than 12 weeks 

177 patients did 

not consent to the 

use of medical 

records 

1230 patients eligible to 

be included in analyses 

319 Non-Responders: 

• 317 patients missing an answer 

to the required question 

• 2 patients had missing data for 

both pain rating measurements 

911 Responders (patients who 

gave a valid answer) 

Classifying into favourable/unfavourable outcome 

categories considering the question: 

“Compared to when you first saw your doctor with 

this pain 6 months ago, how do you feel your pain 

is now?” 

756 patients with complete data 
(response at point of care, 
questionnaire and 6 months) 

• 4 missing point of care pain 
rating 

• 151 missing questionnaire 
pain rating 

1412 responders 

1235 complete with 

records 

Figure 4.2: Participant flow - POST 
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Potentially eligible patients lost to follow-up at 6 months did not differ by age or gender 

but had slightly higher mean pain ratings at the point of care and baseline in both PROG-

RES (point of care: responders mean (SD) 6.0 (2.2) vs non-responders 6.4 (2.2); 

questionnaire: 5.5 (2.6) vs 5.6 (2.5)) and in POST (6.2 (2.1) vs 6.6 (2.0); 5.3 (2.6) vs 5.8 (2.6)). 

Table 4.2 shows the characteristics of those with complete data included in the main 

analyses. The proportion reporting an unfavourable outcome at 6 months was 48.7% in 

PROG-RES and 54.5% in POST. In both studies, a significant fall in pain intensity ratings 

between point of care and the post-consultation questionnaire measurement was 

observed, tested using a paired t-test (PROG-RES: mean (SD) 5.9 (2.2) vs 5.5 (2.6); mean 

difference (SD): 0.42 (0.17), P=0.006; POST: 6.2 (2.1) vs 5.3 (2.6); 0.89 (0.09), P<0.001).  

 

Table 4.2: Sample characteristics of the datasets 

 PROG-RES POST 

Participants eligible for inclusion in main analyses 296 756 

Age (years): mean (SD) 64.8 (9.8) 65.8 (9.9) 

Male: n (%) 120 (40.5) 339 (44.8) 

Current pain intensity at point of care (0-10): mean (SD) 5.9 (2.2) 6.2 (2.1) 

Current pain intensity in questionnaire (0-10): mean 
(SD) 

5.5 (2.6) 5.3 (2.6) 

Interval between point of care and return of 
questionnaire (days): median (IQR) 

17 (13, 27) 21 (16, 30) 

Interval between point of care and return of 
questionnaire (days): range 

6, 75 3, 81 

Unfavourable outcome at 6 months: n (%) 144 (48.7) 412 (54.5) 
Abbreviations: GP, general practitioner; IQR, Inter-quartile Range; NRS, numerical rating scale; 
PMR, Polymyalgia rheumatica; POST, The Primary care Osteoarthritis Screening Trial; PRO-GRES, 
The Prognostic Research Study; RCT, Randomised Controlled Trial; SD, standard deviation; SpA, 
Spondyloarthritis. 
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4.3.2 Preliminary analyses 

In PROG-RES, a significant mean reduction in pain score overall between point of care and 

questionnaire was observed in the group who went on to experience a favourable outcome 

at 6 months (mean reduction (SD): 1.12 (0.24), P<0.001) but not in those with an 

unfavourable outcome (-0.32 (0.21), P=0.932). Similar mean reductions were seen in POST 

(favourable outcome: 1.59 (0.15), P<0.001; unfavourable outcome: 0.31 (0.12), P=0.004).  

 

4.3.3 Examination of predictor-outcome associations 

At the point of care, there was only a weak and non-statistically significant association 

found between pain intensity and an unfavourable outcome in both PROG-RES (adjusted 

OR (95% CI): 1.06 (0.95, 1.18)) and POST (1.04 (0.96, 1.12)) (Table 4.3). To translate this to 

absolute risk, the fitted models were transformed back to the probability scale. As an 

illustration, Figure 4.3 shows that for a female patient aged 65 (PROG-RES) or 66 (POST) 

from practice 30 in POST or 4 in PROG-RES, there was little change in the predicted 

probability of an unfavourable outcome as pain intensity at point of care increased, in both 

POST and PROG-RES.  

In contrast, the models estimating the independent association between the questionnaire 

pain rating and outcome found a stronger and statistically significant relationship. In PROG-

RES, for each unit increase in pain rating the odds of an unfavourable outcome increased 

by 34% (adjusted OR (95% CI): 1.34 (1.20, 1.48)) and in POST, for each unit increase in pain, 

the odds of an unfavourable outcome increased by 26% (1.26 (1.18, 1.34)) (Table 4.3). 

Transforming the models back to the absolute risk scale, Figure 4.3 shows that for a patient 

with the same adjustment factors as above, the predicted probability of an unfavourable 
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outcome increased at similar rates as pain intensity at the questionnaire increased, in both 

datasets. The change in predicted probability is far steeper for the questionnaire models 

than for the point of care models. For example, in POST, the predicted probability for an 

individual with a pain score of 8 was 0.59 when using the questionnaire model but 0.44 

when using the point of care model. 

 

Table 4.3: Predictor-outcome association between a one unit increase in pain intensity and 
an unfavourable outcome 

 Intended moment 
of using the 
prognostic results 

PROG-RES (n=296) POST (n=756) 

  Adjusted OR* 
(95% CI) 

Adjusted OR*  
(95% CI) 

Current pain intensity 
(0-10 NRS) measured at: 

   

Point of care Yes 1.06 (0.95, 1.18) 1.04 (0.96, 1.12) 

Post-consultation    
questionnaire 

No 1.34 (1.20, 1.48) 1.26 (1.18, 1.34) 

*Adjusted for age, gender, general practice (and treatment allocation - POST only)  
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Figure 4.3: Predicted probability (95% CI) of an unfavourable outcome at 6 months by pain 
intensity rating estimated from the point of care and questionnaire models (female patient 
aged 65 (PROG-RES) or 66 (POST) from practice 30 in POST or 4 in PROG-RES). 

 

 

4.3.4 Examination of prognostic model performance 

Table 4.4 shows the performance measures for the fitted models from Table 4.3. The AIC 

for the questionnaire models was lower in both datasets than the point of care models, 

with a difference of 32 units in PROG-RES and 50 units in POST, suggesting that the models 

fitted using the pain score measured in the questionnaire had a better overall fit than the 

models using the pain score recorded at the point of care. The C-statistics were higher for 

the questionnaire models than for the point of care models in both datasets, and thus the 

discrimination was larger when pain intensity was measured in the questionnaire. This 

concurs with the larger odds ratio estimates for pain intensity from the questionnaire than 

the point of care. 
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Table 4.4: Measures of model performance at the point of care and questionnaire in PROG-
RES and POST 

 Intended 
moment of 
using the 
prognostic 
results 

PROG-RES POST 

  AIC C-statistic AIC C-statistic 

Current pain intensity 
(0-10 NRS) measured 
at: 

     

Point of care Yes 421.8 0.57  
(0.51, 0.64) 

1066.2 0.66  
(0.62, 0.70) 

Post-consultation    
questionnaire 

No 389.8 0.69  
(0.63, 0.75) 

1015.8 0.72  
(0.68, 0.76) 

 

 

4.3.5 Sensitivity analyses 

4.3.5.1 Non linearity  

When accounting for a potential non-linear relationship between pain ratings and an 

unfavourable outcome using fractional polynomial models, the best fitting relationships 

(defined by the deviance) between pain and outcome in PROG-RES were: (i) a cubic 

relationship when pain was rated at the point of care, and (ii) a log-linear relationship when 

pain was from the questionnaire. The best fitting relationships for POST were: (i) a log-

linear relationship when pain was rated at the point of care, and (ii) a linear relationship 

when pain was from the questionnaire. Thus, a more complex relationship was identified 

at the point of care than at the questionnaire for both datasets. Nonetheless, differences 

in AIC were small between the models that allowed for non-linear associations and the 

previous models that assumed linear associations.  
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4.3.5.2 Missing data 

In PROG-RES there were only 7 patients missing the point of care rating and 21 patients 

missing the questionnaire score (Figure 4.1). In POST these figures were 4 and 151 (Figure 

4.2). In sensitivity analyses deriving models including the patients missing pain ratings at 

either the point of care or at questionnaire the strength of associations between pain 

intensity and outcome did not change from those found in the main analyses. The OR (95% 

CI) in PROG-RES for the point of care model was 1.06 (0.96, 1.18) which included 303 

patients, for the questionnaire model the OR (95% CI) was 1.34 (1.20, 1.48) and included 

317 patients. In POST the corresponding figures were 1.04 (0.96, 1.12), n=757 and 1.24 

(1.17, 1.31), n=904. 

 

4.3.5.3 Interaction between pain and treatment arm 

No strong evidence of an interaction between treatment arm and pain intensity ratings was 

found with the estimated odds ratios for the interactions being very close to one and their 

confidence intervals crossing one. The OR (95% CI) for the interaction term between 

treatment arm and point of care rating was 0.92 (0.78, 1.08) and for the interaction term 

between treatment arm and questionnaire pain rating was 0.92 (0.81, 1.06), in the POST 

dataset. 

 

4.3.5.4 Random effects modelling  

The odds ratios and C-statistics did not change markedly when modelling general practice 

using random effects, as can be seen in Table 4.5. Infact, for PROG-RES, the odds ratios and 

confidence intervals did not change at all. Overall, the same pattern of findings was 
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observed and hence it was decided to model as fixed effects in the main analyses for 

simplicity. 

 

Table 4.5: Predictor-outcome associations and C-statistics in PROG-RES and POST at the 
point of care and post-consultation questionnaire when fitting general practice as a random 
effect  

 PROG-RES POST 

Current pain intensity 
(0-10 NRS) measured 
at: 

OR (95%CI) C-statistic OR (95%CI) C-statistic 

Fixed-effect model 

Point of care 1.06 (0.95, 1.18) 0.57 1.04 (0.96, 1.12) 0.66 

Post-consultation    
questionnaire 

1.34 (1.20, 1.48) 0.69 1.26 (1.18, 1.34) 0.72 

Random-effect model 

Point of care 1.06 (0.95, 1.18) 0.54 1.05 (0.98, 1.13) 0.60 

Post-consultation    
questionnaire 

1.34 (1.20, 1.48) 0.68 1.26 (1.19, 1.34) 0.69 

 

 

4.4 Discussion 

4.4.1 Principal findings 

The findings in this chapter illustrate how the magnitude of predictor-outcome associations 

(prognostic factor effects) and prognostic model performance can depend on when and/or 

how time-varying predictors are measured.  In this example of patients presenting with 

musculoskeletal pain to general practice, associations between outcome risk and pain 

intensity recorded at the intended moment of use were lower in magnitude than those 

associations derived from a self-complete questionnaire mailed to patients up to one week 

later. The findings were replicated in two datasets with similar measurements, 
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strengthening the belief that similar findings are likely across a range of painful non-

inflammatory musculoskeletal disorders. Despite many published studies of 

musculoskeletal pain in primary care (Mallen et al., 2007), very few report the collection of 

time-varying predictor information by the GP at the initial point of care (Von Korff, 2013). 

When a later time is used, and/or with a different measurement method, the study’s 

predictor-outcome associations and prognostic model performance may be misleading, 

and thus it could signal that the study is at high risk of bias and not applicable for its 

intended purpose.  

 

4.4.2 Explanation for the findings 

Several phenomena may contribute to the observed discrepancy in predictor-outcome 

associations at the point of care and at a later time-point. Firstly, the timing of predictor 

measurement may be critical.  For example, most musculoskeletal disorders follow an 

episodic course and therefore, as would be expected, patients in POST and PROG-RES were 

likely to consult when their pain was more severe than usual. This creates the conditions 

for regression to the mean following the point of care (Davis, 1976, Whitney and Von Korff, 

1992). An initial reduction in group-average pain intensity rating within the first few days 

following primary care consultation has been consistently observed for acute, recurrent, 

and chronic low back pain (Artus et al., 2014, Coste et al., 1994, Costa et al., 2012, Roland 

and Morris, 1983). A similar pattern is likely across other non-inflammatory regional 

musculoskeletal pains. Although regression to the mean was evident within this study, the 

whole group mean was lower at the post-consultation questionnaire than at the point of 
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care and so regression to the mean does not, therefore, provide a full explanation for the 

findings.  

The differences found in the strengths of the predictor-outcome associations could also 

relate to differences in measurement methods. At the point of care, pain intensity 

measurement was verbally administered and recorded by the physician in a face-to-face 

consultation. Although in both studies physicians were given guidance on how to gather 

this information, we cannot know the extent to which physicians recorded their 

judgements of patients’ pain. Physician ratings tend to systematically under-estimate 

patients’ own ratings of pain (Mantyselka et al., 2001, Staton et al., 2007). Assuming that 

patients’ pain ratings were elicited and faithfully recorded at the point of care, it is 

nevertheless possible that a form of end-aversion bias (Streiner et al., 2014) may operate 

in the clinical encounter, i.e. patients avoid reporting pain at either end of the severity scale 

in fear of being judged undeserving or exaggerating (although evidence from this study 

suggests this may be true of the lower end of the scale but not of the upper end of the 

scale).  

The literature review in Chapter 3 found that many published prediction models included 

predictors that are likely to be susceptible to measurement error. The example provided in 

this chapter is no exception, such that – even if the setting and method of measurement 

were consistent – the predictor-outcome associations may not agree simply by chance 

variation. Further, if the measurement error was largest at the point-of-care, then the 

observed predictor-outcome association may be more biased at the point of care, than 

observed when measured at a later time-point. If measurement error was present, it is 

likely that in this situation it would be differential measurement error, and the impact of 



 

149 
  

differential measurement could either exaggerate or underestimate the effect. Indeed, the 

predictor-outcome associations estimated in this study at the point of care and at 

questionnaire are both likely to be biased as no adjustment was made for measurement 

error due to insufficient information. Nevertheless, this is unlikely to account for the entire 

difference in magnitude of the estimated associations at point of care and questionnaire.  

 

4.4.3 Limitations and future research 

This chapter focused on predictor-outcome associations intended to be used at the point 

of care but derived using data collected after the point of care. It may be that a review 

appointment 2-3 weeks after the first consultation may be a better ‘intended moment of 

use’ for prognostic models in this field. Either way, it is clear from this example that the 

developed prognostic model needs to use data for time-varying predictors measured at the 

time of its intended use, as otherwise discrepant associations may be included. It may be 

considered that the model using the score at the later time point should be used as this is 

performing better, but this model would be misleading if used during the consultation. For 

example, if we look at the example prediction plots in Figure 4.3, if a patient visited their 

GP and reported a pain intensity score of 8, using the model developed with the score from 

the questionnaire would give this patient a predicted probability of experiencing an 

unfavourable outcome of 0.65. If the model developed using the point of care score was 

used, their predicted probability would be approximately 0.5. 

While the problem highlighted is likely to extend to other commonly investigated 

predictors whose values are sensitive to the timing and mode of collection, this problem 

has only been demonstrated for one predictor and thus this remains to be evaluated more 
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widely. Further research should assess whether similar findings are found with other time-

varying predictors, and indeed in other clinical conditions and settings. 

The impact of the timing of the predictor measurement will depend on exactly what the 

predictor is, and if the predictor is a test result, what type of test it is. The impact may 

depend on how long this test result is ‘relevant’ for, or simply how long it takes to receive 

the results of the test. For example, it may only take a few days to receive the results of a 

blood test, however it may take several weeks to receive the results of a MRI scan, and 

therefore it would not be possible to use the results of these tests at the initial meeting 

with the health care professional. Care should be taken when planning a study, or using 

results from a previously conducted study, around exactly when tests are requested, 

completed, and results received in relation to when they will be used in practice and how 

long these results are likely to be ‘relevant’ for.  

  Dependent error is also likely within this example, as a reduction in pain after the 

consultation (measured in the post-consultation questionnaire) is intrinsically going to be 

part of the patient’s judgement at 6 months about whether or not they have improved, 

particularly because these were measured by the same method, and this bias will likely be 

greater the closer in time the post consultation questionnaire measurement is to the 

measurement of the outcome. This is a limitation of this particular example and the bias 

created by this limitation may be less likely to be encountered in other prognostic models. 

The models in this chapter were not internally validated, and therefore no adjustment for 

optimism was made to the c-statistics provided, meaning the magnitude of the c-statistics 

are likely to be overstated. However, the concern here in this chapter was not with the 

absolute magnitude of these but the relatively poorer fit and discrimination of a model 
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using a prognostic factor measurement obtained at the point of care (the intended moment 

of use for the model) than when obtained later.  

A future study in which the same mode of data collection is used at the point of care and 

at post-consultation questionnaire (e.g. patient self-administered questionnaire) is needed 

to better understand the relative contribution of timing and mode of collection and 

therefore determine whether and how improved prediction is achievable at the point of 

care.  

 

4.5 Recommendations 

Based on the findings of this chapter, a list of recommendations for developing and using 

prediction models in relation to the timing of the predictors and the intended moment of 

use of the model are made in Box 4.1. 
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4.6 Conclusions 

Irrespective of the underlying causes, the findings in this chapter imply the need for caution 

when applying predictor-outcome associations or existing prognostic models derived from 

prognosis research studies that record time-varying predictors at a different time and/or 

measurement method than is intended upon clinical application.  This argument reinforces 

the need for clearly reporting the intended moment of use in prognostic research, and 

when the predictors were measured (Collins et al., 2015). Displacing the collection of time-

• Whether developing/validating a prediction model, or using a previously 

developed model in practice, consider exactly when the model is intended to 

be used in practice. 

• When developing a prediction model, ensure any predictors to be used in the 

development of the model are measured at (or before) the intended moment 

of using the model. 

• If using a previously developed model in practice, ensure the predictor values 

to be inputted into the model are measured at the same time as those used to 

originally develop the model. 

• When considering previously published studies reporting predictor-outcome 

associations and prognostic models using time-varying predictors, assess the 

risk of bias and applicability based on when the predictors were measured in 

relation to the intended moment of using the model. 

Box 4.1: Recommendations for improvements in the reporting of multivariable prediction 
models, based on findings of the review. 
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varying predictor information from the intended moment (and mode) of use can result in 

differences in the magnitude of predictor-outcome associations, and the subsequent 

accuracy of prognostic model performance. In particular, predictors and models that 

appear to discriminate well in research studies, may fail to live up to those expectations 

when applied or externally validated at the intended moment of use. This concern is likely 

to be particularly justified when the outcome in some way incorporates the prognostic 

factor, when the interval between later measurement and outcome is short, and when the 

same mode of assessment is used to collect predictor and outcome information (Lash and 

Fink, 2003). Unless shown otherwise in validation studies using predictors measured at the 

clinically relevant time, previously developed prediction models that include time-varying 

predictors measured after the intended moment of use may overestimate individual risk of 

experiencing the outcome of interest, which also reinforces the need for external validation 

using data that reflects the intended moment of use, and clear reporting of differences 

between validation and development data (Moons et al., 2014). 

 

4.7 Direction of the remainder of the thesis 

The focus of the thesis so far has been on prognosis research in single studies. However, 

there is a growing demand for meta-analyses that utilise IPD from multiple prognosis 

research studies, as this may offer novel opportunities for the development and validation 

of clinical prediction models, or for prognostic factor research, that may not be possible 

with the individual studies alone (Riley et al., 2021b). The following two chapters will focus 

on the use of IPD meta-analyses for prognostic research. In Chapter 5, IPD will be used to 

validate existing prediction models that have been developed across several population 
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groups for predicting stillbirth. In Chapter 6, methodology work will be undertaken to 

develop a method of calculating the power of IPD meta-analysis projects which have the 

aim of synthesising the IPD to examine prognostic factor effects.  
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5 External validation of prediction models for stillbirth 

using individual participant data (IPD) meta-analysis: 

the IPPIC study 

5.1 Introduction 

Previous chapters in this thesis have focused on prognosis research using a single study to 

either investigate potential prognostic factors or to develop a prediction model. A single 

study may be sufficient for prognosis research if the data are large enough, the outcome of 

interest is not rare and the prognostic factors (predictors) of interest are prevalent enough. 

However, this is often not the case, and so there has been an increasing interest in utilising 

IPD from multiple existing studies to increase the quantity and quality of data available, 

which can in turn improve the ability and power to examine the prognostic effects of a 

factor, or the development and validation of clinical prediction models. This chapter 

provides an applied example of using IPD to validate existing prediction models which have 

been developed to predict stillbirth in pregnancy. 

The results of this chapter were published in Ultrasound in Obstetrics & Gynaecology 

(Allotey et al., 2022), and I am the joint first author, having undertaken all the statistical 

analyses. 

 

5.1.1 Background 

Stillbirth, defined by the World Health Organization (WHO) as fetal death after 28 weeks of 

gestation, accounts for around 3 million deaths worldwide annually (Organization, 2006). 
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In the UK, where stillbirth is defined as fetal death after 24 weeks, there were 3286 

stillbirths in 2013 (4.2 per 1000 births) (Manktelow et al., 2015). This remains one of the 

highest rates in Europe, with little improvement in decades (Flenady et al., 2011). Stillbirth 

has now become a top priority on UK political and medical agendas. Many professional and 

parent advocacy groups have called for focused research to understand and prevent 

stillbirth, leading to the launch in November 2015 of a Government drive to halve the 

number of stillbirths and neonatal deaths in the UK. The Royal College of Obstetricians and 

Gynaecologists has launched its ‘Each Baby Counts’ campaign, with similar aims. The Every 

Newborn Action Plan aims to reduce the national stillbirth rate to 2 or fewer stillbirths per 

1000 births by 2030.   

Until recently, as many as two thirds of stillbirths occurred in ‘low risk’ women and were 

considered ‘unexplained’ and therefore unavoidable. In fact, rigorous investigation and 

classification can identify a likely cause for stillbirth in up to 85% of cases (Gardosi et al., 

2005). When attempting to classify stillbirth according to the relevant condition at death, 

43% of stillborn babies were found to be small for gestational age (SGA) and 9% had proven 

placental insufficiency (Gardosi et al., 2005). Screening for placental insufficiency alone is 

unlikely to adequately detect all women at risk of stillbirth, and further associations must 

be explored. Ongoing research into the causes of stillbirth has identified a number of 

factors known to be associated with the risk of fetal demise, including maternal age, parity, 

medical co-morbidities, ultrasound findings such as the uterine artery Doppler and 

biochemical markers, e.g. Pregnancy-associated plasma protein A (PAPP-A), alpha-

Fetoprotein (AFP), soluble fms-like tyrosine kinase-1 (sFlt-1) and prothrombotic mutations. 

Notably, only few studies have reported on the combinations of these markers and 

absolute risk for individual pregnancies.  
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Importantly, a third of stillbirths occur in babies over 36 weeks’ gestation and up to two 

thirds after 34 weeks. At these gestations, delivery could be considered if the risk of 

stillbirth outweighed the risks of premature delivery. At present, induction of labour is 

offered as a preventative intervention to women considered to be at high risk of stillbirth 

where that balance of risk and benefit is reached – for example, post term pregnancies 

between 41-42 weeks or women with pre-existing or gestational diabetes at 37-40 weeks. 

This represents basic screening and treatment to prevent stillbirth but clearly, with many 

women thought to be low risk still suffering devastating pregnancy loss, the performance 

of the de facto screening tests currently applied for stillbirth is unacceptable. Better 

prediction of stillbirth and individualisation of risk is a key priority for stillbirth research 

identified by the UK Stillbirth Priority Setting Partnership (Heazell et al., 2015).  

 

Previous systematic reviews using aggregate data meta-analysis have evaluated various risk 

factors separately or in combination for prediction of stillbirth and perinatal mortality 

(Conde-Agudelo et al., 2015). These reviews represent the best available evidence relating 

to prediction of stillbirth and yet are limited by the heterogeneity of reporting and data in 

the primary, largely observational, studies. IPD meta-analysis offers several advantages 

compared to standard methodology that are of relevance to the prediction of stillbirth.  

There is significant international variation in the classification and definition of stillbirth, as 

WHO defines stillbirth as fetal loss after 28 weeks, but most developed countries use a 

gestational cut off from 20-24 weeks. There are some countries where perinatal deaths are 

counted together. It follows that the outcome of stillbirth reported in studies, which would 

seem to be a binary outcome, is highly heterogenous and context dependent. When added 

to heterogeneity in the population characteristics, timing of tests and cut-offs this can 
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present serious limitations to aggregate meta-analysis. With access to all the patient data, 

heterogeneity can be reduced by IPD through uniform cut-offs and definitions being 

applied across all included patients.  

Prediction models must be externally validated in datasets not used for model 

development before they can be considered for use in clinical practice, and the lack of 

external validation is a major factor in the lack of prediction models available for clinical 

use. Using raw individual participant data in multiple datasets allows existing models to be 

externally validated. 

A large scale IPD meta-analysis is particularly appropriate for the validation of prediction 

models for stillbirth, as it is an uncommon outcome with significant health implications for 

families and economic effects for health systems, and combining IPD from multiple sources 

allows greater power and ability to examine prediction model performance across multiple 

settings.  

 

5.1.2 Chapter objectives 

The aim of this chapter is to validate previously identified existing prediction models across 

several population groups for predicting stillbirth, using IPD from the IPPIC (International 

Prediction of Pregnancy Complications Network) collaborative data.  

The specific objectives are to: 

• Identify cohorts available within IPPIC for use in the validation of the prediction 

models 
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• Summarise the distributions of the linear predictors and predicted probabilities for 

each identified prediction model in the individual cohorts available 

• Assess and compare the predictive performance of the models using discrimination 

and calibration statistics 

• Use decision curve analysis to assess and compare the clinical utility of the 

prediction models. 

• Pool and summarise the model performance across datasets using meta-analysis 

 

5.2 Methods 

5.2.1 Data 

The International Prediction of Pregnancy Complications Collaborative Network (IPPIC) is a 

collaborative network of investigators from global research groups that have undertaken 

studies on clinical characteristics and biochemical and ultrasound markers in complications 

in pregnancy. The network includes 125 researchers from 25 countries who have 

contributed IPD for over two million pregnancies.  

Any prospective or retrospective cohort study, cohorts nested in randomised controlled 

trials and birth and population-based cohorts were considered for inclusion in the IPD 

dataset if they provided information on clinical, biochemical or ultrasound variables with 

information on perinatal mortality outcomes. Only singleton pregnancies were included in 

the analyses. 
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5.2.2 Models to validate 

A systematic review of primary studies reporting on prediction models for stillbirth was 

conducted prior to my involvement in the study, to identify models for external validation 

in the IPPIC cohorts by researchers in the IPPIC network (Allotey et al., 2022). The 

systematic review included a comprehensive search of MEDLINE, Embase, DH-DATA 

(database of the Department of Health’s Library and Information Services) and AMED 

(Allied and Complementary Medicine Database) databases from inception to December 

2020 to identify all studies that developed or updated prognostic models for stillbirth for 

use at any time during pregnancy. Reference lists of relevant articles and systematic 

reviews were also hand searched to identify potentially eligible studies. The search 

included terms for stillbirth, intrauterine fetal death and perinatal mortality. Study 

selection was completed independently by two researchers.  The complete search strategy 

is provided in Allotey et al. (2022) along with more details on the search process and data 

extraction.  

Each model was validated using IPD from studies that contain all predictors in the model 

and the relevant outcome (stillbirth and gestational age), with at least two outcomes 

occurring in the cohort. Ideally, as noted in the previous chapter, the time of measurement 

of the predictors and outcomes should match the setting in which the model was 

developed; however, time of predictor and outcome measurement was not always 

available or may have differed slightly. This is discussed further in the Discussion in Section 

5.4. 
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5.2.3 Imputation of missing predictor data 

Only the IPPIC cohorts that recorded all the predictors included in each prediction model 

were used for validation of that particular prediction model. If a predictor from a prediction 

model was missing for all the participants in the cohort, it was considered systematically 

missing, and therefore this cohort was not used to validate that particular model. Second 

trimester measurements of BMI and weight were used for model validation if first trimester 

values were missing in the cohort, and vice versa. Any partially missing predictors or 

outcome values missing for <95% of individuals in a cohort were multiply imputed under 

the missing at random (MAR) assumption using multiple imputation by chained equations 

(MICE) (Jolani et al., 2015, Resche-Rigon and White, 2016). Linear regression was used to 

impute for approximately normally distributed continuous variables, logistic regression for 

binary variables, and multinomial logistic regression for categorical variables. Non-normally 

distributed continuous variables were transformed before imputation. Multiple imputation 

was carried out for each individual cohort separately rather than all IPD cohorts combined. 

Fifty imputed datasets were generated for each cohort. It was recognised that more 

imputations were needed than the 10 used in Chapter 2, and ideally more than 50 imputed 

datasets would have been generated, equal to the percentage of missing observations as 

suggested by White et al. (2011). However, due to time constraints and the amount of 

computational power available, a practical approach of generating 50 imputed datasets 

was taken.  

All relevant predictors, for all prediction models to be validated using that particular cohort, 

were identified and imputed at the same time to avoid imputing values for each different 
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prediction model separately. This was to ensure a coherent set of imputed datasets, to be 

used consistently in all analyses, regardless of the prediction model being validated.  

Other predictors that were available within the cohort were also included in the imputation 

models as auxiliary variables. Auxiliary variables are believed to be correlated with the 

variables with missing data, or are associated with missingness, and can improve the 

imputed estimates and make the MAR assumption more plausible, regardless of whether 

they include missing data themselves (Enders, 2008). This has been shown to be particularly 

important when there is a high proportion of missing data (Johnson and Young, 2011), as 

there is here. The more correlated with the missing data the auxiliary variables are, the 

more they can reduce the bias and standard errors, but including them can do no harm 

irrespective of how correlated they are (Johnson and Young, 2011). 

Missing outcomes were imputed in the same way and at the same time as missing predictor 

values, using as many available variables as possible in the imputation model. Imputation 

checks were completed by looking at histograms, summary statistics and tables of values 

across imputations, as well as checking trace plots for convergence issues. 

 

5.2.4 External validation of models 

Each model was validated separately by applying the model equation to each participant 

in the cohort to calculate the linear predictor for that participant (𝐿𝑃𝑖, the estimated logit 

risk from the model for individual 𝑖), which is the value of the linear combination of 

predictors in the model equation for individual 𝑖. Also, the predicted probability of stillbirth 

(inverse logit transformation of 𝐿𝑃𝑖) was calculated for each individual.  For each prediction 

model, the distribution of 𝐿𝑃𝑖  values were summarised for each cohort. The predictive 
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performance of the models was assessed using discrimination and calibration statistics 

(Altman et al., 2009). Performance statistics were calculated in each imputed dataset and 

then averaged across imputations using Rubin’s rules to obtain one estimate and standard 

error (SE) for each performance statistic in each cohort (Rubin, 1987), with the exception 

of the c-statistic, as described in the following section. 

 

5.2.4.1 C-statistic (discrimination)  

The discrimination, as measured by the concordance statistic (C-statistic), gives the 

probability of a randomly selected woman who had the outcome (stillbirth) having a higher 

predicted probability than a randomly selected woman without the outcome. The C-

statistic is equivalent to the area under the receiver operating characteristic (ROC) curve, 

and was calculated (along with its SE) using non-parametric ROC analysis in Stata using the 

roctab command. It is likely that the distribution of the C-statistic was not normal since it 

is a proportion and therefore bounded by the value 1. Hence, the logit scale was used to 

combine C-statistics across imputations  (Snell et al., 2018). The SE for the logit(C-statistic) 

were calculated using the following formula (Debray et al., 2017) (the delta method):  

SE(logit(𝐶)) =
SE(𝐶)

𝐶(1 − 𝐶)
 

 

5.2.4.2 Calibration-in-the-large  

The calibration-in-the-large measures the extent to which the model predictions are 

systematically too low or too high across the cohort, with an ideal value of 0. The estimate 

of the calibration-in-the large and its SE were calculated by fitting the calibration model 

logit(𝑝𝑖) = 𝛼 + 𝛽(𝐿𝑃𝑖) 
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where α is the estimate of the calibration-in-the-large, when 𝛽 = 1 (fitted using an offset 

term) and 𝑖 refers to a participant.  

 

5.2.4.3 Calibration slope 

The calibration slope is the slope of the regression line fitted between predicted and 

observed risk probabilities on the logit scale. It indicates whether there is agreement 

between observed outcomes and predictions across the range of predicted risks. The 

calibration model was fitted, 

logit(𝑝𝑖) = 𝛼 + 𝛽(𝐿𝑃𝑖) 

were 𝛽 is the estimated calibration slope. Ideally, the calibration slope would be equal or 

very close to 1 for good calibration. However, a slope < 1 indicates overfitting of the model, 

whereas a slope > 1 indicates underfitting. 

 

5.2.4.4 Calibration plots 

Model calibration was also visually assessed using calibration plots in each dataset 

separately, showing the observed (O) versus expected (E) probabilities for groups of 

participants. Average predicted probabilities were obtained for individuals by pooling their 

linear predictor values across imputed datasets using Rubin’s rules, and then transforming 

to the probability scale. Participants were grouped into tenths of this average predicted 

probability using deciles of the predicted values, and O versus E was plotted for each of the 

ten groups. A lowess smoother curve was applied to show calibration across the entire 

range of predicted probabilities at the individual level (i.e. without categorisation). 

Calibration plots are presented for datasets with at least 100 events as it was decided in 

collaboration with the research team that plots for datasets with too few events would not 
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prove meaningful and it has been suggested that a minimum of 100 events (and 100 

nonevents) are required for external validation samples (Vergouwe et al., 2005). Due to the 

very low probability of an event occurring, the calibration plots were presented for the 

lower range of the observed and expected probabilities (0 to 0.02) to enable the detail of 

the plots to be viewed more clearly. Calibration plots were plotted using the pmcalplot 

command in Stata (Ensor et al., 2020). 

 

5.2.4.5 Pooled model performance 

Performance measures of prediction models that were validated in more than two 

independent cohorts were summarised using a random effects meta-analysis to calculate 

a summary estimate for the model’s discrimination and calibration performance. Random-

effects is preferred because it was expected that there would be significant heterogeneity 

between cohorts due to the differences in the background populations and selection 

procedures. Random-effects meta-analysis allows us to quantify and assess the 

heterogeneity in performance across cohorts, settings, and clinically relevant subgroups 

(e.g. defined by treatment and populations) and predict model performance in other 

similar settings using approximate 95% prediction intervals (Riley et al., 2011).  The 

random-effects model for a performance measure can be written as 

𝑌𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑘, 𝜎𝑘
2) 

𝜇𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜏2) 

where 𝑘 refers to the dataset. The model assumes normality of the within-study and 

between-study performance statistic. Based on the results of a simulation study (Snell et 

al., 2018), the C-statistic was pooled on the logit scale, as the simulation study suggested 
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this to be a more appropriate scale for pooling C-statistics in a meta-analysis. The 

calibration slope and calibration-in-the large were pooled on their original scale. Model 

performance was summarised for each statistic using the average estimate and 

corresponding 95% confidence interval calculated using the Hartung-Knapp-Sidik-Jonkman 

approach to account for uncertainty in variance estimates (Hartung and Knapp, 2001, 

Langan et al., 2019). REML estimation was used to fit the random-effects model. 

Between-study heterogeneity (𝜏2) and the proportion of variability due to between-study 

heterogeneity (𝐼2) (Higgins et al., 2003) were summarised. The approximate 95% prediction 

intervals, for potential predictive performance in a new study, were calculated using the 

approach of Higgins et al. (2009).  

Model performance across cohorts was also shown graphically using forest plots for each 

performance statistic. 

 

5.2.5 Decision curve analysis 

In addition to comparing models by discrimination and calibration performance, decision 

curve analysis (DCA) was performed to assess the clinical value of the models, on cohorts 

with at least 100 events. Decision curves allow the net benefit (i.e. benefit versus harm) of 

the models to be determined across a range of clinically plausible threshold probabilities. 

These included any values up to 0.1, given the generally very low risk of stillbirth, and the 

range was guided by the clinical collaborators on the project. The decision curves were 

compared to either simply classifying all women as having an intervention, or no women 

as having an intervention (Vickers and Elkin, 2006).  The strategy with the highest net 

benefit at a particular threshold has the highest clinical value (Vickers et al., 2016).  
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Decision curves were plotted in Stata using the dca command (Vickers et al., 2008). The net 

benefit is represented as a function of the decision threshold in decision curve plots. For a 

probability threshold (𝑝𝑡), the net benefit is calculated as: 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁
− (

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁
×

𝑝𝑡

1 − 𝑝𝑡
) 

where ‘true positives’ and ‘false positives’ represent the numbers of individuals with a 

predicted probability ≥ 𝑝𝑡 that do and do not have the outcome of interest respectively, 

and 𝑁 is the total sample size (Vickers and Elkin, 2006, Vickers et al., 2016). Clinical 

collaborators agreed that probability thresholds above 0.05% may be clinically meaningful 

to make decisions on interventions such as early induction of labour, as this would be a 

threshold they would roughly implement in practice when considering how high risk a 

mother and baby would be. 

 

5.3 Results 

5.3.1 Prediction models to be included in validation 

From 5055 citations, 17 articles were identified describing the development of 40 stillbirth 

prediction models published between 2007 and 2020. Of these, 11 articles did not publish 

the final model (Akolekar et al., 2016a, Akolekar et al., 2016b, Akolekar et al., 2011, Åmark 

et al., 2018, Aupont et al., 2016, Cantarutti et al., 2018, Familiari et al., 2016, Goyal et al., 

2015, Mastrodima et al., 2016, Malacova et al., 2020, Reddy et al., 2010)), hence could not 

be validated, and three included predictors that were not recorded within any of the 

datasets in IPPIC (Kayode et al., 2016, Payne et al., 2015, Vellamkondu et al., 2017). Within 



 

168 
  

the remaining eligible three articles (Smith et al., 2007, Trudell et al., 2017, Yerlikaya et al., 

2016), four prediction models were identified.  

The characteristics of included studies and models are described in Table 5.1. All four 

models were developed using binary logistic regression in unselected populations of 

pregnant women, and the definition of stillbirth varied between the studies. Two models 

included only maternal clinical characteristics as predictors (Trudell et al., 2017, Yerlikaya 

et al., 2016), while the other two models additionally included ultrasound markers (Smith 

et al., 2007). Only one study had at least 10 events per predictor for model development 

(Yerlikaya et al., 2016), the others did not justify why their sample size were sufficient. Using 

the PROBAST tool, the overall risk of bias for all four models was high, with all models 

assessed as being at high risk of bias in the analysis domain. Whilst the risk of bias was not 

assessed as part of this thesis, and so is not included here, more details can be found in 

Allotey et al. (2022). 

Three models were developed using UK populations (Smith et al., 2007, Yerlikaya et al., 

2016) and the fourth was developed in a population of women in the US (Trudell et al., 

2017). Whilst none of the studies indicated that the models did not perform well, none 

suggested that the models were useful (i.e. good internal validity). However, Smith et al. 

(2007) suggest that the models they developed are likely to be generalisable to other 

populations as the association between abnormal uterine artery doppler and risk of 

stillbirth did not differ between the different centres analysed in the study. Yerlikaya et al. 

(2016) indicated that the performance of their model may be overestimated as they used 

the same dataset to derive and test the model, and Trudell et al. (2017) acknowledged the 

low AUC of their model, however go on to state that “it has been demonstrated that any 
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model developed to predict a rare outcome using covariates that have individual risk that 

are relatively low for the outcome would be expected to have low discriminative accuracy”. 

They then recommend that external validation is the next step.  

There were no concerns regarding the timing of predictor measurement in any of the 

identified models.  
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Table 5.1: Stillbirth prediction model equations externally validated in the IPPIC datasets 

Model 
no. 

Author, 
year; 
AUC (95% 
CI) 

Outcome; 
Gestation 
at 
stillbirth 

Predictor 
category 

Prediction model equation for 
linear predictor(LP)* 

1a Smith et 
al. (2007) 
 
0.89 
(0.84, 
0.95) 

24-32 
weeks 

Clinical 
characteristics 
and 
ultrasound 
markers 

LP = - 9.996 + 1.896(mean 
pulsatility index) + 1.593(if 
bilateral notch present) +1.066(if 
African-American ethnicity) + 
1.517(if previous pregnancy loss)  

1b (Smith et 
al., 2007) 
 
0.70 
(0.64, 
0.77) 

≥33 weeks Clinical 
characteristics 
and 
ultrasounds 
markers 

LP = - 7.806 + 0.867(mean 
pulsatility index)  
+ 0.768(if BMI 25-29.9) + 0.768( if 
BMI≥30) + 0.624(if African-
American ethnicity)  

2 Yerlikaya 
et al. 
(2016) 
 
0.608 
 

≥24 weeks Clinical 
characteristics 

LP = - 6.02615 + 
0.01037(weight(kg) – 69) + 
0.70027(if Afro-Caribbean 
ethnicity) + 0.57994(if assisted 
conception) + 0.53367(if smoke 
cigarettes) + 0.96253(if chronic 
hypertension) + 1.28416(if APS or 
SLE) + 0.93628(if diabetic) + 
1.57086(if parous with previous 
stillbirth) 
 

3 Trudell et 
al. (2017) 
 
0.66 
(0.60, 
0.72) 

≥32 weeks Clinical 
characteristics 

LP = - 6.8772 – 0.8707(if maternal 
age < 18) + 0.2094(if maternal age 
35-39) + 0.4377(if maternal age > 
40) + 0.8536(if black race) + 
0.3423(if nulliparous) – 0.0219(if 
BMI 25-29.9) + 0.5607(if BMI 30-
34.9) – 0.5948(if BMI 35-39.9) + 
0.1593(if BMI>40) + 0.2770(if 
current smoker) + 0.6255(if 
chronic hypertension) + 0.9863(if 
pre-gestational diabetes)  

BMI=body mass index; APS=antiphospholopid syndrome; SLE=systemic lupus erythematosus. 
* For logistic regression, logit(p)=LP where the linear predictor (LP) = α + β1*x1 + β2*x2 + …, 

and absolute predicted probabilities (p) can be obtained using the transformation p=
eLP

1+eLP
. 
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5.3.2 Characteristics of the IPPIC validation cohorts  

Of the 78 cohorts in the IPPIC repository, 19 cohorts (24%) contained relevant data that 

could be used to externally validate at least one of the prediction models identified. Only 

women with singleton pregnancies in the cohorts were used for external validation. 

Seventy-four percent (14/19) of the cohorts had an overall low risk of bias, 21% (4/19) had 

a high risk and one had an unclear risk, as assessed by PROBAST. The PROBAST risk 

assessment was conducted prior to my involvement in this study, however the full results 

of the risk of bias assessment can be found in Supplementary Table 2 in Allotey et al. (2022). 

For model 1a, described in Smith et al. (2007), only six outcomes were identified within the 

IPPIC cohorts (1, 2 and 3 between 3 datasets), and hence the decision was made that this 

model could not be validated due to too few events available.  

Summary maternal characteristics and outcomes of women in the validation cohort are 

provided in Table 5.2 and Table 5.3 respectively.  The mean age was consistent across most 

cohorts, being higher in Goetzinger and lower in WHO and NICHD LR. The median BMI was 

similar across most cohorts, ranging between 20 and 25, apart from NICHD HR, POUCH and 

Van Oostwaard 2014 in which it was slightly higher. Ethnicity varied across the different 

cohorts, with 11 (58%) cohorts predominantly consisting of white women, 7 (37%) 

including a mix of ethnicities and 1 (5%) including only Asian women.  All or most (>92%) of 

the women in 7 (37%) of the studies were nulliparous and 2 (11%) of the studies only 

included women who were not nulliparous. The proportion of nulliparous women in the 

other cohorts ranged from 20% to 56%.  

A summary of missing data for each predictor and outcome in each cohort is provided in 

Table 5.4a and Table 5.4b. 
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Table 5.2: Maternal characteristics and outcomes of IPPIC individual participant datasets used for validation 

Dataset Country N 
Maternal 
age:     mean 
(SD); range 

BMI: median 
[IQR], range 

Ethnicity, n (%) 
Nulliparous, 
n (%) White Black Asian Hispanic Mixed Other 

Stork England 54635 
30.5 (5.6);  
13, 54 

23.5 [21.3, 
26.8]; 13, 54 

33257 
(62) 

7820 
(15) 

10388 (19) 5 (<1) 
1528 
(3) 

555 (1) 29313 (54) 

Test Ireland 557 
32.0 (4.8);  
18, 43 

24 [21.6, 27.1]; 
17.4, 45.2 

539 (97) 2 (<1) 10 (2) 0 (0) 6 (1) 0 (0) 557 (100) 

POP England 4212 
29.9 (5.1);  
16, 48 

24.1 [21.8, 
27.3]; 14.7, 54.7 

3,900 
(93) 

25 (<1) 91 (2) 0 (0) 1 (<1) 195 (5) 4212 (100) 

Allen England 1045 
29.9 (5.1);  
15, 48 

23.6 [21.0, 
26.8]; 14.8, 51.1 

398 (38) 108 (10) 495 (497) 0 (0) 12 (1) 30 (3) 584 (56) 

Goetzinger US 4035 
34.8 (4.4);  
16, 52 

24.4 [21.8, 
28.8]; 15.4, 62.4 

3282 
(83) 

397 (10) 1120 (3) 65 (2) 0 (0) 116 (3) 751 (20) 

Chie Japan 379390 
32.2 (5.4);  
10, 59 

20.5 [19.0, 
22.6]; 10.5, 69.8 

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
379390 
(100) 

195983 (52) 

StorkG Oslo 812 
29.8 (4.8);  
19, 45 

25.1 [22.3, 
28.4]; 16.2, 49.8 

375 (46) 61 (8) 198 (24) 12 (1) 0 (0) 
166 
(20) 

377 (46) 

Scope 
NZ, Aus, 
UK, RoI 

5628 
28.7 (5.5);  
14, 45 

24.2 [21.9, 
27.5]; 15.4, 58.5 

5061 
(90) 

65 (1) 304 (5) 24 (<1) 0 (0) 174 (3) 5628 (100) 

ALSPAC England 15038 
27.7 (4.9);  
13, 46 

21.5 [19.7, 
23.7]; 11.7, 61.3 

11769 
(97) 

127 (1) 113 (1) 0 (0) 0 (0) 76 (<1) 5704 (45) 

Antsaklis Greece 3328 
30.9 (4.8);  
14, 47 

22.7 [20.6, 
25.7]; 14.5, 50.1 

3229 
(97) 

49 (1) 32 (1) 0 (0) 0 (0) 11 (<1) 3328 (100) 
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Dataset Country N 
Maternal 
age:     mean 
(SD); range 

BMI: median 
[IQR], range 

Ethnicity, n (%) 
Nulliparous, 
n (%) White Black Asian Hispanic Mixed Other 

WHO Multiple 7273 
22.5 (5.8);  
11, 51 

23.1 [21.0, 
26.1]; 13.5, 54.8 

2222 
(31) 

756 (10) 1443 (20) 0 (0) 0 (0) 
2846 
(39) 

6710 (92) 

Andersen Denmark 2120 
30.2 (4.5);  
17, 45 

23.4 [21.2, 
26.2]; 14.9, 49.9 

1765 
(97) 

3 (<1) 31 (2) 5 (<1) 0 (0) 24 (1) 1193 (56) 

NICHD HR Netherlands 1848 
27.1 (6.3);  
15, 43 

28.4 [23.5, 
35.0]; 13.4, 68.5 

612 (33) 
1079 
(58) 

2 (<1) 148 (8) 0 (0) 7 (<1) 430 (23) 

NICHD LR US 3097 
20.6 (4.4);  
15, 39 

22.7 [20.4, 
25.7]; 13.4, 51.2 

548 (18) 
1515 
(49) 

2 (<1) 
1010 
(33) 

0 (0) 22 (<1) 3097 (100) 

POUCH US 3019 
26.4 (5.8);  
15, 47 

27.7 [24.3, 
32.9]; 15.1, 66.3 

2018 
(67) 

743 (25) 57 (2) 160 (5) 0 (0) 41 (1) 1293 (43) 

Rumbold NZ and Aus 1877 
26.4 (5.7);  
13, 44 

24.1 [21.5, 
27.6]; 13.7, 57.6 

1777 
(95) 

3 (<1) 1 (<1) 1 (<1) 4 (<1) 87 (5) 1877 (100) 

Indonesian 
cohort 

Indonesia 2223 
28.6 (5.9);  
10, 59 

22.9 [20.1, 
26.3]; 13.3, 67.6 

0 (0) 0 (0) 
2223 
(100) 

0 (0) 0 (0) 0 (0) 664 (43) 

Van 
Oostwaard 
2012 

Netherlands 425 
32.0 (4.1);  
23, 42 

24.3 [21.5, 
27.9]; 16.2, 41.8 

288 (84) 46 (13) 4 (1) 0 (0) 3 (1) 2 (1) 0 (0) 

Van 
Oostwaard 
2014 

Netherlands 639 
32.1 (4.4);  
21, 43 

25.9 [22.5, 
31.2]; 17.7, 56.5 

360 (72) 119 (24) 17 (4) 0 (0) 3 (1) 2 (<1) 0 (0) 
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Table 5.3: Number of outcomes in each IPPIC individual participant dataset used for 
validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset N Outcome, n (%) 

  ≥33weeks ≥24weeks ≥32weeks 

Stork 54635 148 (0.27) 233 (0.43) 160 (0.29) 

Test 557 4 (0.73) 5 (0.92) 4 (0.73) 

POP 4212 8 (0.19) 11 (0.26) 8 (0.19) 

Allen 1045 3 (0.29) 3 (0.29) 3 (0.29) 

Goetzinger 4035 15 (0.37) 15 (0.37) 15 (0.37) 

Chie 379390 801 (0.21) 1792 (0.47) 895 (0.24) 

StorkG 812 4 (0.49) 6 (0.74) 5 (0.62) 

Scope 5628 8 (0.14) 17 (0.30) 9 (0.16) 

ALSPAC 15038 26 (0.17) 41 (0.27) 27 (0.18) 

Antsaklis 3328 2 (0.06) 2 (0.06) 2 (0.06) 

WHO 7273 8 (0.46) 8 (0.46) 8 (0.46) 

Andersen 2120 4 (0.19) 6 (0.28) 4 (0.19) 

NICHD HR 1848 8 (0.44) 23 (1.26) 8 (0.44) 

NICHD LR 3097 6 (0.20) 13 (0.44) 6 (0.20) 

POUCH 3019 4 (0.13) 10 (0.33) 4 (0.13) 

Rumbold 1877 9 (0.48) 11 (0.59) 9 (0.48) 

Indonesian cohort 2223 6 (0.35) 12 (0.70) 6 (0.35) 

Van Oostwaard 2012 425 2 (1.05) 2 (1.05) 2 (1.05) 

Van Oostwaard 2014 639 3 (0.98) 5 (1.64) 3 (0.98) 
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Table 5.4a:  Number and proportion missing (or not recorded) for each predictor in each 
dataset used for external validation 

 

 

Dataset 

N (%) missing or not recorded 

Maternal 
age 

T1 
BMI 

T2 BMI 
T1 
Weight 

Ethnicity 
Pulsatility 
index 

Assisted 
conception 

Stork  0 (0) 
13286 
(24) 

25186 
(46) 

12173 
(22) 

1082 (2) 28109 (51) 1427 (3) 

Test  0 (0) 1 (<1) 
557 
(100) 

1 (<1) 0 (0) 0 (0) 0 (0) 

POP  0 (0) 
152 
(4) 

57 (1) 146 (3) 0 (0) 133 (3) 0 (0) 

Allen 1 (<1) 5 (<1) 
1040 
(99) 

5 (<1) 2 (<1) 1040 (99) 0 (0) 

Goetzinger  72 (2) 
606 
(15) 

4035 
(100) 

531 
(13) 

63 (2) 4035 (100) 92 (2) 

Chie 1108 (<1) 
53711 
(14) 

379390 
(100) 

51196 
(13) 

0 (0) 
379390 
(100) 

0 (0) 

StorkG 0 (0) 
414 
(51) 

245 (30) 
414 
(51) 

0 (0) 812 (100) 0 (0) 

Scope 0 (0) 
5490 
(98) 

7 (<1) 
5490 
(98) 

0 (0) 5628 (100) 0 (0) 

ALSPAC 2047 (14) 
3103 
(21) 

15038 
(100) 

9884 
(66) 

2953 (20) 
15038 
(100) 

2861 (19) 

Antsaklis 11 (<1) 
480 
(14) 

2966 
(89) 

122 (4) 7 (<1) 3204 (96) 3328 (100) 

WHO 1 (<1) 
2585 
(36) 

1078 
(15) 

4 (<1) 6 (<1) 7273 (100) 7273 (100) 

Andersen 0 (0) 
1070 
(50) 

1506 
(71) 

650 
(31) 

292 (14) 2120 (100) 2120 (100) 

NICHD HR 9 (<1) 
1711 
(93) 

157 (9) 18 (1) 0 (0) 1848 (100) 1848 (100) 

NICHD LR 99 (3) 
3024 
(98) 

177 (6) 95 (3) 0 (0) 3097 (100) 3097 (100) 

POUCH 0 (0) 1 (<1) 1 (<1) 0 (0) 0 (0) 3019 (100) 3019 (100) 

Rumbold 0 (0) 
967 
(52) 

1128 
(60) 

171 (9) 4 (<1) 1877 (100) 39 (2) 

Indonesian 
cohort 

74 (3) 
203 
(9) 

1601 
(72) 

935 
(42) 

0 (0) 2223 (100) 2223 (100) 

Van 
Oostwaard 
2012 

232 (55) 
265 
(62) 

425 
(100) 

425 
(100) 

82 (19) 425 (100) 425 (100) 

Van 
Oostwaard 
2014 

329 (100) 
388 
(61) 

639 
(100) 

639 
(100) 

138 (22) 639 (100) 639 (100) 
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Table 5.4b: Number and proportion missing (or not recorded) for each predictor in each 
dataset used for external validation 

Dataset 

N (%) missing or not recorded 

Smoker 
Hyper-
tension 

APS/ 
SLE 

Previous 
stillbirth 

Nulliparous 
Pre-
gestational 
diabetes 

Outcome 

Stork  
4053 
(7) 

0 (0) 
54635 
(100) 

54635 
(100) 

104 (<1) 
54635 
(100) 

0 (0) 

Test  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 557 (100) 11 (2) 

POP  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (<1) 

Allen 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Goetzinger  244 (6) 281 (7) 0 (0) 0 (0) 302 (7) 3406 (84) 11 (<1) 

Chie 
79224 
(21) 

0 (0) 0 (0) 0 (0) 1490 (<1) 0 (0) 10 (<1) 

StorkG 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (<1) 

Scope 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

ALSPAC 
2666 
(18) 

3001 
(20) 

15038 
(100) 

2232 
(15) 

2439 (16) 2813 (19) 77 (<1) 

Antsaklis 6 (<1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (<1) 

WHO 2 (<1) 1 (<1) 2 (<1) 
7273 
(100) 

0 (0) 1 (<1) 5548 (77) 

Andersen 2 (<1) 192 (9) 
2120 
(100) 

2120 
(100) 

0 (0) 193 (9) 0 (0) 

NICHD HR 0 (0) 0 (0) 
1848 
(100) 

1848 
(100) 

0 (0) 0 (0) 28 (2) 

NICHD LR 6 (<1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 159 (5) 

POUCH 6 (<1) 1 (<1) 
2458 
(81) 

14 (<1) 1 (<1) 0 (0) 0 (0) 

Rumbold 39 (2) 0 (0) 
1877 
(100) 

0 (0) 0 (0) 0 (0) 0 (0) 

Indonesian 
cohort 

1249 
(56) 

18 (1) 
2223 
(100) 

2223 
(100) 

667 (30) 1 (<1) 499 (22) 

Van 
Oostwaard 
2012 

242 
(57) 

273 
(64) 

278 
(65) 

0 (0) 0 (0) 278 (65) 235 (55) 

Van 
Oostwaard 
2014 

350 
(55) 

404 
(63) 

407 
(64) 

0 (0) 0 (0) 406 (64) 334 (53) 

 



 

177 
  

5.3.3 Linear predictors 

Table 5.5 gives a summary of the linear predictors and predicted probabilities for each 

model and validation cohort. These linear predictors are also presented graphically in 

Figure 5.1 by their median and range. It can be seen here that the linear predictors were 

similar for each cohort within each of the models, and also similar in model 1b and model 

2, but overall higher in model 3. These linear predictors correspond to very small, predicted 

probabilities, which is expected for a rare outcome. The median predicted probability for 

models 1b and 3 was around 0.001. It was slightly higher for model 2, ranging from 0.009 

to 0.03. Similarly, the ranges of predicted probabilities were extremely low, again being 

highest for model 2 (up to 0.6 for the Goetzinger cohort). This means that no one is 

predicted a high probability of having the outcome, even if they did have the outcome, 

which makes it difficult to discriminate between those who do and do not have the 

outcome. The four cohorts used to validate model 2 were also used to validate model 3, so 

it can be seen that model 2 is predicting a higher probability of having the outcome even 

in the same cohorts (therefore the same individuals). 
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Table 5.5: Summary of linear predictors and predicted probabilities for the models for each study used in the validation 

 

Model 
no. 

First 
author 
(year); 

Outcome 

Study N Total 
No. 

Events 
(%) 

Linear predictor Predicted probability 

Median 
Interquartile 

range 

Range 

(min to max) 
Median 

Interquartile 
range 

Range 

(min to max) 

1b 

Smith 
2007 

33+ weeks 

Stork 54635 148 
(0.27) 

-6.762 -7.112, -6.284 -7.572, -3.845 0.00116 0.00081, 
0.00186 

0.00052, 
0.02095 

TEST 557 4 (0.72) -6.767 -7.104, -6.327 -7.428, -4.025 0.00115 0.00082, 
0.00179 

0.00059, 
0.01755 

POP 4212 8 (0.18) -6.741 -7.082, -6.302 -7.524, -4.380 0.00118 0.00083, 
0.00183 

0.00054, 
0.01236 

2 

Yerlikaya 
2016 

24+ weeks 

Allen 1045 3 (0.29) -4.562 -4.655, -4.427 -5.370, -0.955 0.0103 0.0094, 
0.0118 

0.0046, 0.2780 

Goetzinger 4035 26 
(0.64) 

-3.487 -3.600, -3.064 -3.867, 0.406 0.0297 
0.0266, 
0.0446 

0.0205, 0.5992 

Chie 379390 1802 
(0.47) 

-4.697 -4.759, -4.624 -5.611, 0.738 0.0090 
0.0085, 
0.0097 

0.0036, 0.3235 

StorkG 812 
7 (0.86) -4.522 -4.622, -4.361 -5.283, 2.482 0.0107 

0.0097, 
0.0126 

0.0051, 0.0771 

3 

Trudell 
2016 

32+ weeks 

Scope 5628 9 (0.16) -6.535 -6.557, -6.326 -8.000, -4.779 0.00145 0.00142, 
0.00179 

0.00034, 
0.00834 

Allen 1045 3 (0.29) -6.535 -6.877, -6.347 -7.472, -4.911 0.00145 0.00103, 
0.00175 

0.00057, 
0.00731 
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Model 
no. 

First 
author 
(year); 

Outcome 

Study N Total 
No. 

Events 
(%) 

Linear predictor Predicted probability 

Median 
Interquartile 

range 

Range 

(min to max) 
Median 

Interquartile 
range 

Range 

(min to max) 

3 

Trudell 
2016 

32+ weeks 

ALSPAC 15038 27 
(0.18) 

-6.535 -6.877, -6.312 -7.812, -4.103 0.00145 0.00103, 
0.00181 

0.00041, 
0.01634 

Goetzinger 4035 24 
(0.59) 

-6.668 -6.690, -6.324 -7.504, -3.652 0.00127 0.00124, 
0.00179 

0.00056, 
0.02565 

Antsaklis 3328 2 (0.06) -5.909 -6.258, -5.722 -7.406, -4.070 0.00271 0.00191, 
0.00326 

0.00061, 
0.01680 

WHO 7273 63 
(0.87) 

-6.535 -6.557, -6.535 -8.000, -3.642 0.00145 0.00142, 
0.00145 

0.00034, 
0.02554 

Andersen 2120 4 (0.19) -6.535 -6.877, -6.535 -7.472, -4.663 0.00145 0.00103, 
0.00145 

0.00057, 
0.00984 

NICHD HR 1848 8 (0.43) -5.632 -6.028, -5.143 -7.748, -3.232 0.00357 0.00241, 
0.00581 

0.00043, 
0.03799 

NICHD LR 3097 7 (0.23) -6.535 -6.552, -5.681 -7.531, -4.844 0.00145 0.00143, 
0.00340 

0.00055, 
0.00782  

POUCH 3019 4 (0.13) -6.535 -6.718, -6.040 -8.000, -4.406 0.00145 0.00121, 
0.00238 

0.00034, 
0.01206 

Rumbold 1877 9 (0.48) -6.535 -6.557, -6.280 -8.000, -4.711 0.00145 0.00142, 
0.00187 

0.00034, 
0.00892 
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Model 
no. 

First 
author 
(year); 

Outcome 

Study N Total 
No. 

Events 
(%) 

Linear predictor Predicted probability 

Median 
Interquartile 

range 

Range 

(min to max) 
Median 

Interquartile 
range 

Range 

(min to max) 

3 

Trudell 
2016 

32+ weeks 

Chie 379390 897 
(0.24) 

-6.535 -6.877, -6.535 -8.000, -3.858 0.00145 0.00103, 
0.00145 

0.00034, 
0.02072 

Indonesian 
cohort 

2223 11 
(0.49) 

-6.557 -6.877, -6.535 -7.752, -4.773 0.00142 0.00103, 
0.00145 

0.00043, 
0.00839 

StorkG 812 6 (0.74) -6.557 -6.877, -6.403 -7.472, -5.211 0.001418 0.00103, 
0.00166 

0.00057, 
0.00544 

Van 
Oostwaard 
2012 

425 14 
(3.29) 

-6.668 -6.877, -6.086 -7.478, -3.887 0.001269 0.00103, 
0.00227 

0.00057, 
0.02042 

Van 
Oostwaard 
2014 

639 4 (0.63) -6.555 -6.877, -6.028 -7.519, -4.234 0.001425 0.00103, 
0.00241 

0.00055, 
0.01522 

POP 4212 8 (0.19) -6.535 -6.557, -6.326 -7.723, -4.153 0.00145 0.00142, 
0.00179 

0.00044, 
0.01547 
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Figure 5.1: Median and range of linear predictors (logit outcome probabilities) from the 
various prediction models  
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5.3.4 Performance statistics 

Table 5.6 gives the cohort-specific performance statistics, i.e. C-statistic, calibration slope 

and calibration-in-the-large (CITL), for each of the models. This table highlights the huge 

uncertainty in the results due to such rare events, as can be seen from the generally very 

large confidence intervals for the C-statistic. Focusing on those with 100+ events in 

individual studies, the Stork cohort for model 1b has 148 events with a C-statistic of 0.65 

(0.60, 0.70). The calibration slope (which can also be seen graphically in Figure 5.11) is only 

slightly below 1, however the confidence interval for this is quite large. Ideally, the CITL 

should be close to zero, but here as it is above 0 this indicates that the predictions are 

systematically too low.  

For model 2, there is one cohort (Chie) with more than 100 events, which has 1802 events. 

The confidence interval for the C-statistic is fairly narrow for this cohort as it is a much 

larger dataset than the others, however it is only just above 0.5 (C-statistic = 0.54 (95% CI 

0.53, 0.56)) which means the model is only slightly better than chance at discriminating 

between those with and without an event. The calibration slope is also much below 1 here, 

and the CITL is below 0, indicating that the predictions are systematically too large. This is 

not surprising after seeing that the predicted probabilities were higher than for the other 

models (Table 5.5 and Figure 5.1). 

For model 3, although there are a lot more cohorts included in the validation of this model, 

Chie is the only cohort with more than 100 events (897). The C-statistic is 0.53 (95% CI 0.51, 

0.55), which is again very poor. The model is also predicting systematically too low in this 

dataset as the CITL is positive.  
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Table 5.7 shows the summary estimates of the predictive performance statistics from the 

meta-analysis across all validation cohorts for each model. The summary performance 

statistics are also shown graphically for all models in the forest plots in Figure 5.2 to Figure 

5.10. The C-statistics are all quite close to 0.5, and seem to be very dominated by the large 

cohorts used to validate each of the models. The calibration slope for the model 1b is close 

to 1, however has a large confidence interval, while the calibration slopes for the other two 

models are much lower, indicating poor levels of agreement between the observed 

outcomes and the predictions. Although many of the cohorts only had a few events, 

heterogeneity was estimated as 0 for the C-statistic and calibration slope of model 3. 

However, there was heterogeneity in the CITL for this model (𝜏2=0.552). 

Direct comparison of the prediction models is difficult due to different outcomes and 

different cohorts contributing towards the validation of each prediction model. 
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Table 5.6: Study specific performance statistics 

Model 
no. 

First 
author 
(year) 

Outcome Study N Total 
No. Events 

(%) 

Performance statistic (95% CI) 

C-statistic Calibration slope Calibration-in-the-large 

1b 
Smith 
2007 

33+ 
weeks 

Stork 54635 148 (0.27) 0.650 (0.600, 0.696) 0.866 (0.574, 1.159) 0.573 (0.411, 0.734) 

TEST 557 4 (0.72) 0.817 (0.520, 0.949) 1.573 (0.157, 2.989)  1.737 (0.751, 2.722) 

POP 4212 8 (0.18) 0.560 (0.357, 0.745) 0.492 (-0.934, 1.918)  0.288 (-0.406, 0.982) 

2 
Yerlikaya 
2016 

24+ 
weeks 

Allen 1045 3 (0.29) 0.643 (0.308, 0.879) 0.541 (-1.570, 2.652) -1.524 (-2.659, -0.389) 

Goetzinger 4035 26 (0.64) 0.629 (0.417, 0.801) 0.660 (-0.099, 1.421) -1.980 (-2.371, -1.589) 

Chie 379390 1802 (0.47) 0.544 (0.529, 0.559) 0.436 (0.321, 0.552) -0.742 (-0.789, -0.696) 

StorkG 812 7 (0.86) 0.730 (0.562, 0.851) 1.043 (-0.415, 2.500) -0.408 (-1.153, 0.337) 

3 
Trudell 
2016 

32+ 
weeks 

Scope 5628 9 (0.16) 0.336 (0.200, 0.507) -1.842 (-3.769, 0.857) -0.032 (-0.686, 0.622) 

Allen 1045 3 (0.29) 0.469 (0.176, 0.785) -0.279 (-3.427, 2.869) 0.575 (-0.559, 1.709) 

ALSPAC 15038 27 (0.18) 0.477 (0.331, 0.628) -0.0449 (-1.773, 1.683) 0.149 (-0.229, 0.526) 

Goetzinger 4035 24 (0.59) 0.542 (0.271, 0.789) 0.523 (-0.700, 1.746) 1.201 (0.783, 1.619) 

Antsaklis 3328 2 (0.06) 0.430 (0.097, 0.842) -1.078 (-4.723, 2.568) -1.269 (-2.643, 0.104) 

WHO 7273 63 (0.87) 0.539 (0.404, 0.668) 0.172 (-0.725, 1.070) 1.730 (1.002, 2.459) 

Andersen 2120 4 (0.19) 0.620 (0.279, 0.873) 1.549 (-1.998, 5.096) 0.251 (-0.730, 1.232) 

NICHD HR 1848 8 (0.43) 0.611 (0.387, 0.796) 0.438 (-0.566, 1.442) -0.026 (-0.721, 0.668) 
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Model 
no. 

First 
author 
(year) 

Outcome Study N Total 
No. Events 

(%) 

Performance statistic (95% CI) 

C-statistic Calibration slope Calibration-in-the-large 

3 
Trudell 
2016 

32+ 
weeks 

NICHD LR 3097 7 (0.23) 0.638 (0.347, 0.854) 0.883 (-0.598, 2.363) 0.046 (-0.755, 0.847) 

POUCH 3019 4 (0.13) 0.639 (0.420, 0.812) 0.659 (-1.098, 2.416) -0.383 (-1.364, 0.597) 

Rumbold 1877 9 (0.48) 0.470 (0.265, 0.686) -0.676 (-2.636, 1.284) 1.073 (0.418, 1.728) 

Chie 379390 897 (0.24) 0.530 (0.511, 0.548) 0.412 (0.180, 0.645) 0.493 (0.428, 0.559) 

Indonesian 
cohort 

2223 11 (0.49) 0.693 (0.484, 0.845) 1.922 (0.066, 3.777) 1.295 (0.567, 2.024) 

StorkG 812 6 (0.74) 0.432 (0.156, 0.757) 0.287 (-1.794, 2.369) 1.581 (0.774, 2.388) 

Van 
Oostwaard 
2012 

425 14 (3.29) 0.644 (0.354, 0.856) 0.650 (-0.745, 2.046) 2.887 (1.711, 4.063) 

Van 
Oostwaard 
2014 

639 4 (0.63) 0.594 (0.239, 0.872) 0.378 (-1.484, 2.240) 1.203 (0.032, 2.374) 

POP 4212 8 (0.19) 0.631 (0.399, 0.815) 1.195 (-0.424, 2.814) 0.088 (-0.606, 0.782) 
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Table 5.7: Summary estimates of performance statistics from meta-analysis 

 

Model 
No. 

Author (year) Outcome No.  of 
validation 
cohorts 

Total 
events 

Summary estimate of performance statistic (95% CI), 
Measures of heterogeneity (I2, τ2) 

C-statistic                  Calibration slope Calibration-in-the-large 

1b Smith 2007 ≥33 weeks 3 160 0.65 (0.53, 0.75) 
I2=0%, τ2=0 

0.88 (0.26, 1.50) 
I2=0%, τ2=0 

0.76 (-0.95, 2.48) 
I2=76.6%, τ2=0.292 

2 Yerlikaya 
2016 

≥24 weeks 4 1838 0.61 (0.43, 0.77) 
I2=48.6%, τ2=0.102 

0.45 (0.26, 0.63) 
I2=0%, τ2=0 

-1.15 (-2.35, 0.05) 
I2=91.4%, τ2=0.462 

3 Trudell 2016 ≥32 weeks 17 1100 0.53 (0.51, 0.55) 
I2=0%, τ2=0 

0.40 (0.19, 0.62) 
I2=0%, τ2=0 

0.64 (0.18, 1.11) 
I2=89.1%, τ2=0.552 
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Figure 5.2: C-statistic – Model 1b 

 

Figure 5.3: Calibration slope – Model 1b 
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Figure 5.4: Calibration-in-the-large – Model 1b 

 

Figure 5.5: C-statistic  - Model 2 
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Figure 5.6: Calibration slope – Model 2 

 

Figure 5.7: Calibration-in-the-large – Model 2 
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Figure 5.8: C-statistic  - Model 3 

 

Figure 5.9: Calibration slope – Model 3 
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Figure 5.10: Calibration-in-the-large – Model 3 

 

 

5.3.5 Calibration plots 

The calibration plots for each of the cohorts with more than 100 events used for validating 

the 3 prediction models are given below in Figure 5.11 to Figure 5.13. These clearly show 

the extent of mis-calibration, highlighting that those with the highest predicted probability 

of an outcome tend to be individuals who did not have the outcome. However, predicted 

probabilities were all less than 0.2, therefore absolute risk differences remain small.  
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Figure 5.11: Calibration plot for model 1b - Stork dataset 

 

 

Figure 5.12: Calibration plot for model 2 - Chie dataset 

 

 



 

193 
 

 

Figure 5.13: Calibration plot for model 3 - Chie dataset 

 

 

5.3.6 Net benefit 

Decision curves for each of the 3 models in the cohorts with more than 100 outcomes are 

presented below in Figure 5.14 - Figure 5.16. Comparison of models was not possible due 

to different outcomes being used in each model. It can clearly be seen from these plots 

that there is no net benefit to using the models over a treat all or treat none strategy in 

these cohorts. In fact, Figure 5.15 suggests that between the threshold probabilities of 

0.005 and 0.1, model 2 shows a net harm compared with the treat none strategy. 
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Figure 5.14: Decision curves for model 1b - Stork dataset 

 

Figure 5.15: Decision curves for model 2 - Chie dataset 
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Figure 5.16: Decision curves for model 3 - Chie dataset 

 

 

5.4 Discussion 

5.4.1 Summary of the findings 

This IPD meta-analysis has evaluated existing prediction models for stillbirth. Only a fifth of 

published stillbirth prediction models reported the model equation required for 

independent external validation. Three models, that were developed in high income 

countries, could be externally validated using cohorts from the IPPIC data repository. The 

models were mostly developed using maternal clinical characteristics, but one model 

additionally included ultrasound markers. PROBAST of the original model development 

articles suggested risk of bias concerns.  
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Overall, the findings in this chapter suggest that the models that were validated do not 

perform well in the external cohorts available. The IPD meta-analysis of model 

performance showed low discriminatory ability and poor calibration, with calibration 

slopes mostly <1. However, there was a lot of uncertainty around the results due to such 

small numbers of events. Although each of the three models could be validated in at least 

one cohort with over 100 events, confidence intervals of predictive performance were wide 

for the Smith 2007 model, suggesting further validation is needed for this model. For each 

of the models, predictions were also systematically too low or too high depending on the 

cohort used to validate it (calibraton-in-the-large≠0). The models had no clear clinical utility 

as assessed by DCA and may even have net harm.  

 

5.4.2 Strengths and Limitations 

This is the first known IPD meta-analysis to examine the external validation of stillbirth 

prediction models (Kleinrouweler et al., 2016, Townsend et al., 2021a). The use of IPD from 

multiple existing studies and cohorts allowed larger sample sizes, allowed for the 

evaluation of the predictive performance of each model, and enables the overall 

performance and heterogeneity in performance to be checked across multiple settings. 

Multiple imputation of predictors and outcomes was performed for each cohort separately, 

to avoid loss of useful information, and ensure any heterogeneity across cohorts was not 

masked (Rubin, 1987, White et al., 2011). Although the definition of stillbirth in the 

validation cohorts were standardised, stillbirth was defined differently in each model, 

which prevented a head-to-head comparison of model performance.  
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A significant limitation of this study is that only three of the 40 identified existing models 

were able to be validated. This was mainly due to the failure of the studies to adhere to 

reporting standards of publishing the model equation (Collins et al., 2015, Moons et al., 

2015), despite only two of the models being published before the release of TRIPOD. Some 

cohorts used in the external validation had few observed cases of stillbirths, and only two 

had more than 100 events. Thus, even though the IPD was pooled, numbers of events were 

often still small, leading to some models with results that had wide confidence intervals. 

Predicted probabilities in the cohorts only went up to 3%, which makes it difficult for the 

models to discriminate between women who did and did not have the outcome. This 

further highlights the primary limitation of stillbirth research, which is the comparative 

rarity of the outcome.  

Prediction models should be externally validated in a similar patient population to that it 

was developed in to assess the performance of model but can also be validated in a 

different population to provide information on the generalisability and transportability of 

the model to that patient population. The three models validated in this chapter were 

developed in UK or US populations, and many of the cohorts used for validation were also 

from either the UK, US or western European countries.  

To allow as much information as possible to be included in the validation of the prediction 

models, multiple imputation was performed for data with up to 95% of data missing. Whilst 

95% of the data is thought to be a very large proportion to impute, in practice if more data 

were available to impute from, it is likely that there would be more variation in the data, 

meaning that the performance of the prediction models validated using this data would be 

expected to be even poorer than observed. 
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Although it would have been interesting to assess the relatedness of the validation cohorts 

to the development studies, as suggested by Debray et al. (2015), it was not possible to do 

so for multiple reasons including; not having access to the development data, evaluating 

several models in multiple studies, and having different outcome definitions in some cases. 

However, IPD did offer the opportunity to assess heterogeneity in performance which 

could be in part due to case-mix differences.  

The literature review in Chapter 3 found that most of the reviewed articles did not explicitly 

state when the predictors were measured. Chapter 4 then illustrated how the magnitude 

of the predictor-outcome associations and the prognostic model performance can depend 

on when the time-varying predictors were measured. This further extends to the timing of 

predictor measurement in studies used for external validation of previously developed 

prediction models, as is illustrated in this chapter. Ideally, the time of measurement of the 

predictors and outcomes should match the setting in which the model was developed. 

However, for this project, this was not always possible. For example, if first trimester values 

of BMI and weight were not available within the cohorts, then second trimester values 

were used instead. When a different time point is used for the collection of predictors than 

is the intended moment of use of the model in practice, as it was here, the study’s 

predictor-outcome associations, and more importantly when developing a prediction 

model, the prognostic model performance, may be misleading. This could imply that the 

models being validated are not applicable for their intended purpose, which may not have 

been the case if the predictors had been measured at the intended moment of use.  
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5.4.3 Comparison to existing studies 

External validation of prediction models are needed to confirm generalisability and 

transportability of a model in populations with different characteristics (Moons et al., 

2012a). However, independent data with sufficiently large sample sizes of stillbirth and 

relevant predictors for external validation of models are not readily available. This is a 

factor on why none of the published models have been recommended for use in clinical 

practice (Collins et al., 2015). This meta-analysis obtained lower summary estimates for 

discrimination to that reported in the development datasets, although this might be due to 

chance as some confidence intervals were wide (e.g. Smith 2007), and so further research 

is recommended (Smith et al., 2007, Trudell et al., 2017, Yerlikaya et al., 2016). Some 

published stillbirth models report discrimination of >0.8  (Aupont et al., 2016, Kayode et 

al., 2016), but these studies either did not report the model equation needed for an 

independent external validation (Aupont et al., 2016), or did not provide enough 

information on predictors for external validation (Kayode et al., 2016). In most cases, the 

performance of a prediction model is often overestimated when only estimated in the 

dataset used to develop the model due to overfitting, especially when there are few 

outcomes relative to the number of predictors considered (Riley et al., 2019a, Riley et al., 

2020). This study has highlighted several methodological shortcomings in the development 

of stillbirth prediction models, which is further reflected in the risk of bias assessment of 

the models.  
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5.4.4 Relevance to clinical care 

The UK government and NHS launched a care initiative in a bid to halve stillbirth rates by 

2025, which includes risk assessment as part of a wider care-bundle. The bundle does not 

include tools to help determine if a woman is at increased risk of stillbirth, instead 

individual factors have been identified to categorise women as low, moderate, or high risk 

of fetal growth restriction, the most frequent cause of stillbirth in the UK. An accurate tool 

to predict which woman is at increased risk of stillbirth would allow for personalised risk 

stratification in pregnancy, and enable clinicians to make decisions on closer surveillance, 

or timing of birth to prevent fetal death. It would also empower mothers to make informed 

decisions on their risk of stillbirth. This would be a more targeted approach than the 

currently used system of a generalised population level risk factor to identify women at risk 

of stillbirth. However, none of the models validated in this study had sufficient performance 

or clinical utility to be recommended for use in practice.  

 

5.4.5 Recommendations for further research 

Stillbirth prediction models that can be used in routine care would be especially valuable 

in low-and-middle-income countries, where the stillbirth burden is disproportionately high. 

Models that were unable to be externally validated here will need to be independently 

validated before they can be recommended for use. Apart from improvement in the model 

development process to reduce overfitting by using larger sample sizes and adjusting for 

optimism of the predictor effects (e.g. by post-estimation shrinkage or penalising the model 

coefficients), additional work is needed to identify novel prognostic factors for use in model 

development, to improve the discriminatory performance of prediction models (Riley et 
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al., 2019b). A closer examination of existing stillbirth risk-factors could potentially allow 

inaccurate risk predictors to be abandoned which would enable clinical care and research 

to be focused on the highest value predictors.  

Systematic reviews using aggregate data meta-analysis, currently represent the best 

available evidence on predictors of stillbirth, and have proposed several risk-factors to 

categorise women as high-risk (Townsend et al., 2021b). However, these studies are limited 

by heterogeneity in the data reported within the primary studies, such as in the definition 

of stillbirth (Townsend et al., 2021b). Existing primary studies are often small with 

imprecise estimates, and inconsistencies in confounding factors adjusted for in their 

analysis, which sometimes leads to contradictory factor-outcome associations. Large 

international cohorts are needed to collect richer data on risk-factors to enable 

development and validation of prediction models. To enable validation of the identified 

models, future primary studies and cohorts should record all key predictors being proposed 

in the models.  

Whilst this study has explored validation of different stillbirth prediction models, stillbirth 

is the final endpoint of several heterogeneous antecedent pathways, with varying 

biological mechanisms involved (for example, those involving fetal growth restriction, and 

those secondary to diabetes, typically with a large for gestational age infant). It is possible 

that more than one model will be needed, either for prediction at different gestational 

ages, or for stillbirths with similar phenotypes. 
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5.5 Conclusions 

This is the first assessment and independent external validation of published stillbirth 

prognostic models across multiple cohorts. Findings suggest methodological shortcomings 

in the development including overfitting of models. None of the three previously published 

stillbirth models validated in this study showed sufficient performance or clinical utility to 

be recommended for use in practice. The models all considered similar candidate 

predictors for model development, which suggest additional and better predictors 

(prognostic factors) of stillbirth may need to be identified. Further research to validate 

other existing models, and potentially to develop new models, is needed. 

 

5.5.1 Remainder of the thesis 

Completing an IPD meta-analysis project is a huge undertaking and commitment often with 

a vast amount of resources and time needed to complete it. As noted, this IPD meta-

analysis still led to some results with wide confidence intervals, despite the pooling of data. 

If it was known in advance of collecting the IPD what the power of the project would be, it 

could either allow researchers to reconsider whether to invest in the project or give them 

reassurance that the project is worth investing in, depending on how large the power is 

expected to be.  

Further, the rarity of the outcome and hence the very low predicted probabilities from the 

validated models, raises potential questions regards to whether it is appropriate to build a 

prediction model for stillbirth, particularly as the definition of the outcome is not 

standardised, or whether finding strong prognostic factors to guide stratification could be 

a more useful prognostic tool.  
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Regardless, identifying strong prognostic factors is the starting point for building useful 

prediction models, and IPD meta-analysis can help us identify these. Hence, the next 

chapter describes a method to calculate the power of an IPD meta-analysis, in advance of 

collecting the IPD, for a project which aims to synthesise the IPD to examine prognostic 

factor effects. 
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6 Calculating the power to examine prognostic factor 

effects when planning an individual participant data 

meta-analysis with a binary outcome 

 

6.1 Introduction 

6.1.1 Chapter outline 

The previous chapter utilised IPD to validate existing prediction models for stillbirth, 

however, none of the validated models were found to have clinical utility and the predicted 

probabilities from the models were all extremely low (less than 3%) due to the rarity of 

stillbirth. Some results were also found to have wide confidence intervals, despite the use 

of meta-analysis to pool the IPD. IPD meta-analysis can also be used to identify prognostic 

factors, which are the starting point of developing clinically useful models, or as discussed 

in Section 5.5.1, could be useful prognostic tools themselves in the absence of clinically 

useful prediction models. Hence, this chapter sought to develop a method to calculate the 

power of a prospective IPD meta-analysis to detect an important prognostic factor.  

 

6.1.2 Background 

There is a growing demand for meta-analyses that utilise IPD for prognostic factor studies 

as the availability of IPD from existing studies can increase the quantity and quality of data 

(Riley et al., 2021b), which in turn can improve the ability and power to examine the 
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prognostic effects of a covariate, compared to single studies or a traditional meta-analysis 

of published aggregate data. However, IPD meta-analysis projects can be time consuming 

and resource intensive, requiring additional costs, time, and expertise than traditional 

aggregate data meta-analyses. An IPD meta-analysis project can take upwards of two years 

to obtain, clean, and harmonise, then meta-analyse the IPD. Hence, researchers and 

funders need reassurance that the project is worth their investment in time and cost and 

so the researchers involved should consider how many studies are likely to provide IPD and 

the power of an IPD meta-analysis using this data. Power and sample size calculations are 

seldom considered in protocols and publications of IPD meta-analysis projects, but if it was 

known in advance of collecting the data that the project would have high power, it could 

give reassurance to both the researchers and funders that the project is worth investing in. 

Conversely, if the planned IPD meta-analysis would have low power to detect a clinically 

important effect then the researchers may reconsider investing in the project.  

Previous work has focused on calculating the power to identify a treatment-covariate 

interaction using an IPD meta-analysis (prior to IPD collection) for continuous (Ensor et al., 

2018) and binary outcomes (Riley et al., 2022). This chapter modifies these methods to 

estimate the power of a planned IPD meta-analysis project, in advance of IPD collection, 

where the primary objective is to examine the effect of a (potential) prognostic factor on a 

binary outcome.  

The outline of the chapter is as follows. Section 6.2 provides a foundation for the work 

presented by describing the two-stage approach to estimating a prognostic effect in an IPD 

meta-analysis with a binary outcome. Section 6.3 details the method for calculating the 

variance of a prognostic effect estimate in a single study, first for a binary covariate then 
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for a continuous covariate. Section 6.4 proposes a three-step approach to calculating the 

power of the planned IPD meta-analysis of prognostic factors. Section 6.5 then provides 

two examples illustrating the methods described, which is followed by an extension to 

allow for heterogeneity in Section 6.6 and some discussion in Section 6.7. Stata code is 

provided in Appendix C. 

 

6.2 A two-stage approach to estimating a prognostic effect in an 

IPD meta-analysis with a binary outcome 

To provide the foundation for the power calculations that follow in subsequent sections, 

the following section describes the two-stage approach for estimating a prognostic effect 

parameter from an IPD meta-analysis of 𝑆 studies with a binary outcome. 

It is assumed IPD are available from multiple cohort studies. Cohort studies are generally 

deemed to be the most suitable for a prognostic factor study, as it would usually be 

unethical or impossible to randomise patients to different prognostic factors for a trial, and 

case-control studies may be prone to bias (as discussed in Chapter 1, Section 1.2.2).  

In the first stage, the prognostic effect parameters are estimated using the IPD for each 

study individually. Then in the second stage, the prognostic effect estimates are pooled 

using a chosen meta-analysis model (Simmonds and Higgins, 2007). By only pooling 

prognostic effect parameters derived from within-study information (i.e. based at the 

participant-level), this approach automatically avoids study-level confounding and 

aggregation bias that may occur in meta-regression based on across-study information 

(Fisher et al., 2011, Thompson et al., 2010), or in one-stage IPD meta-analysis models that 
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do not separate out within-study and across-study prognostic relationships. The two-stage 

approach can be implemented using ipdmetan in Stata (Fisher, 2015). 

 

6.2.1 First-stage 

Consider IPD are available for each of 𝑆 cohort studies, containing a variable 𝑧𝑖𝑗 denoting a 

participant level (potential) prognostic factor of interest (e.g. the sex of participant 𝑗 in 

study 𝑖), observed for all participants in each study, and a variable 𝑦𝑖𝑗 denoting a binary 

outcome of interest (i.e. 𝑦𝑖𝑗 = 0 or 1, where 0 denotes no event and 1 denotes event 

occurred). To estimate the prognostic factor parameter in each study separately, 𝑆 logistic 

regression models could be fitted: 

 

𝑦𝑖𝑗~Bernoulli(𝑝𝑖𝑗) 

ln (
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
) = 𝛼𝑖 + 𝛾𝑖𝑧𝑖𝑗 

 
(6.1) 

 

where  𝑝𝑖𝑗 is the probability of the outcome event for participant 𝑗 in study 𝑖. 

The model is usually estimated using maximum likelihood estimation (MLE), which is the 

focus here. The prognostic factor parameter for each study is denoted by 𝛾𝑖, which 

represents the unadjusted log odds ratio (change in log odds) for a 1-unit increase in 𝑧𝑖. 

This first stage leads to 𝑆 estimates of the parameter, one for each of the 𝑖 = 1 to 𝑆 studies 

included in the IPD.  
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For a continuous prognostic factor, the model assumes the effect of the factor on the 

outcome is linear. Although in practice non-linear trends should be modelled, for the power 

calculation that follows it is more pragmatic to assume linear effects. Note also that the 

model examines unadjusted effects. This is a starting point, and additional prognostic 

factors will be adjusted for in subsequent sections.  

 

6.2.2 Second stage 

The first stage produces 𝑆 estimates of the prognostic effect parameter (𝛾𝑖) and its variance 

(𝑣𝑎𝑟(𝛾�̂�)). In the second stage, the 𝛾𝑖 values are combined using either a common-effect 

model (i.e. the true prognostic effect is assumed the same in all studies, denoted by 𝛾): 

𝛾𝑖~𝑁(𝛾,var(𝛾𝑖)) 

 

(6.2) 

or a random-effects model (i.e. the true prognostic effects are assumed random across 

studies, drawn randomly from a normal distribution with a mean of 𝛾 and between-study 

variance of 𝜏2): 

𝛾𝑖~𝑁(𝛾𝑖,var(�̂�𝑖)) 

𝛾𝑖~ 𝑁(𝛾, 𝜏2) 

(6.3) 

 

Maximum likelihood estimation can be used to fit (6.2), whereas restricted maximum 

likelihood (REML) is recommended to fit model (6.3). The summary estimate of 𝛾 will be a 

weighted average, and it summarises the difference in the log odds in participants with a 

one unit increase in 𝑧.  
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For the common-effect model, the variance of the summary prognostic effect parameter is  

var(𝛾) =
1

∑ (var(�̂�𝑖))
−1

 𝑆
𝑖=1

 (6.4) 

where 𝑆 is the total number of studies in the IPD meta-analysis.  

For the random-effects model, the variance of the summary prognostic effect parameter is 

var(�̂�) =
1

∑ (var(𝛾𝑖) + �̂�2)−1 𝑆
𝑖=1

 (6.5) 

Here, each study’s weight depends on the sum of two estimated variances: the variance of 

the studies prognostic effect parameter (𝑣𝑎𝑟(𝛾�̂�)) and the REML estimated between-study 

variance of prognostic effects (�̂�2). The smaller the 𝑣𝑎𝑟(𝛾�̂�) for a study, the more weight it 

has in the meta-analysis.  

To consider the potential power of an IPD meta-analysis project, the expected value of the 

variance of  𝛾 (𝑣𝑎𝑟(𝛾�̂�)) needs to be determined in advance. Fundamentally, this depends 

on the study variances (𝑣𝑎𝑟(𝛾�̂�)), and so Section 6.3 describes how these may be 

ascertained in advance of IPD collection.  

 

6.3 Calculating the variance of an unadjusted prognostic effect 

estimate for a binary outcome in a single study 

In this section, analytical (closed-form) solutions for 𝑣𝑎𝑟(𝛾𝑖) in a single study, based on 

Fisher’s Information matrix, are described. These solutions are challenging to obtain as 

𝑣𝑎𝑟(𝛾�̂�) will be correlated with the value of 𝛾𝑖 itself (unlike for continuous outcomes). For 

generalised linear models such as the logistic regression model, each participant-level 
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variance is a function of the participant’s predicted outcome values from the fitted model. 

So rather than considering one variance term per study (as for continuous outcomes), a 

separate variance term (𝜎𝑖𝑗
2 ) is required for each participant, conditional on their covariate 

values. For binary outcomes, a participant’s response variance is 𝑝𝑖𝑗(1 − 𝑝𝑖𝑗) and thus 

depends on their expected outcome probability (𝑝𝑖𝑗), which is conditional on the baseline 

risk in the study and the prognostic effect of any covariates. The analytic solutions for 

𝑣𝑎𝑟(𝛾�̂�) derived by Demidenko et al. (2008) have previously been extended by Riley et al. 

(2022) to calculate the power of examining treatment-covariate interactions when 

planning an IPD meta-analysis of randomised trials with a binary outcome. The following 

sections propose methods to use and amend this previous work to enable the power to be 

calculated when planning an IPD meta-analysis to examine prognostic effects in studies 

with a binary outcome. These methods are first derived for a binary prognostic factor, and 

then for a continuous prognostic factor. 

 

6.3.1 Binary prognostic factor 

Let 𝑧𝑖𝑗 be a binary covariate, such as 𝑧𝑖𝑗 = 1 for males and 𝑧𝑖𝑗  = 0 for females. After fitting 

the logistic regression model in equation (6.1) to the IPD in a single study, the variance of  𝛾𝑖 

is: 

var(𝛾𝑖) = 𝑰𝒊
−1(2,2)/𝑛𝑖 (6.6) 

where 𝑛𝑖  is the total sample size of study 𝑖, and 𝑰𝒊
−1(2,2) denotes the 2,2 element of the 

inverse of Fisher’s unit information matrix (𝑰). The word ‘unit’ refers to it being 

independent of sample size. 
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Let the design matrix 𝑿 = (1, 𝑧)′ (dropping the 𝑖 and 𝑗 for notational simplicity), then the 

2 by 2 unit information matrix for a particular study can be expressed as: 

𝑰 = 𝐸𝑧(𝑝(1 − 𝑝)𝑿𝑿′) (6.7) 

where  

𝑝 =
exp(𝛼 + 𝛾𝑧)

1 + exp(𝛼 + 𝛾𝑧)
   

and  

𝑿𝑿′ = [
1 𝑧
𝑧 𝑧2]   

As 𝑧 = 0 or 𝑧 = 1 for a binary prognostic factor, then this can be simplified to: 

𝑿𝑿′ = [
1 𝑧
𝑧 𝑧

]   
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Hence 

𝑰 = 𝐸𝑧 (
exp(𝛼 + 𝛾𝑧)

1 + exp(𝛼 + 𝛾𝑧)
(1 −

exp(𝛼 + 𝛾𝑧)

1 + exp(𝛼 + 𝛾𝑧)
) 𝑿𝑿′) 

= 𝐸𝑧 ((
exp(𝛼 + 𝛾𝑧)

1 + exp(𝛼 + 𝛾𝑧)
−

exp(𝛼 + 𝛾𝑧)2

(1 + exp(𝛼 + 𝛾𝑧))2
) 𝑿𝑿′) 

= 𝐸𝑧 ((
exp(𝛼 + 𝛾𝑧)(1 + exp(𝛼 + 𝛾𝑧))

(1 + exp(𝛼 + 𝛾𝑧))2 
−

exp(𝛼 + 𝛾𝑧)2

(1 + exp(𝛼 + 𝛾𝑧))2
) 𝑿𝑿′) 

= 𝐸𝑧 (
𝑒𝑥𝑝(𝛼 + 𝛾𝑧)(1 + 𝑒𝑥𝑝(𝛼 + 𝛾𝑧)) − exp(𝛼 + 𝛾𝑧)2

(1 + 𝑒𝑥𝑝(𝛼 + 𝛾𝑧))
2 𝑿𝑿′) 

= 𝐸𝑧 (
(exp(𝛼 + 𝛾𝑧) + exp(𝛼 + 𝛾𝑧)2 − exp(𝛼 + 𝛾𝑧)2)

(1 + exp(𝛼 + 𝛾𝑧))2
𝑿𝑿′) 

= 𝐸𝑧 (
exp(𝛼 + 𝛾𝑧)

(1 + exp(𝛼 + 𝛾𝑧))2
𝑿𝑿′) 

= 𝐸𝑧 (
exp(𝛼 + 𝛾𝑧)

(1 + exp(𝛼 + 𝛾𝑧))2
[
1 𝑧
𝑧 𝑧

]) 

 

 

 

 

 

 

 

 

 

 

(6.8) 

 

This can be expanded into a closed-form solution of: 

𝑰 =
exp(𝛼)

(1 + exp(𝛼))2
𝑴1 Pr(𝑧 = 0) +

exp(𝛼 + 𝛾)

(1 + exp(𝛼 + 𝛾))2
𝑴2Pr (𝑧 = 1) 

 

(6.9) 

where 

𝑴1 = [
1 0
0 0

]     𝑴2 = [
1 1
1 1

] 
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Thus, to derive the unit information matrix after fitting the logistic regression of equation 

(6.1) to a particular study, the assumed values of parameters 𝛼 and 𝛾 need to be specified 

along with the probabilities Pr(𝑧 = 𝑍), which are estimated as the proportion of 

participants in the study classified as 𝑧 = 0 and the proportion classified as 𝑧 = 1. 

The asymptotic variance of the prognostic effect estimate can then be derived using 

equation (6.6).  

This will be extended for the IPD meta-analysis setting in Section 6.4. 

 

6.3.2 Continuous prognostic factor 

For a continuous covariate, using both equation (6.6) and equation (6.8) again, the Fisher 

unit information matrix can be written as: 

𝑰 = 𝐸𝑧 (
exp(𝛼 + 𝛾𝑧)

(1 + exp(𝛼 + 𝛾𝑧))2
𝑿𝑿′) 

= 𝐸𝑧 (
exp(𝛼 + 𝛾𝑧)

(1 + exp(𝛼 + 𝛾𝑧))2
[
1 𝑧
𝑧 𝑧2]) 

= 𝐸𝑧(𝑩) 

(6.10) 

where 𝑩 is a 2 by 2 matrix. 

The expected value (𝐸𝑧(𝑩)) now depends on the distribution of the continuous covariate 

and on the values of the logistic regression parameters (𝛼 and 𝛾). Hence, it is not possible 

to modify equation (6.8) into a closed form solution for 𝑰. One way to derive 𝐸𝑧(𝑩) post 

estimation is to calculate each of the 4 components of 𝑩 for each participant in the study 

using the estimated logistic regression parameters and then their means provide the 
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expected values and thus form 𝑰. Then the asymptotic variance of the prognostic effect 

parameter can be derived using equation (6.6). 

This will be extended to the IPD meta-analysis setting in the next section, to consider how 

to proceed before IPD are obtained by making distributional assumptions about the 

prognostic variable of interest.  

 

6.4 Calculating the power of a potential IPD meta-analysis project 

to estimate a prognostic effect with a binary outcome 

The following sections outline a three-step process for calculating the power of an IPD 

meta-analysis project aiming to estimate a prognostic factor parameter for a binary 

outcome. The aim is to do this in advance of IPD collection, assuming that studies from 

which IPD are requested have not reported prognostic effects for the factor of interest (and 

their variances), and information regarding number of outcome events in each group of the 

binary prognostic factor is also not available (as otherwise the unadjusted prognostic effect 

estimate could be derived based on the published aggregate data).  

The overall power of the IPD meta-analysis is a function of the estimated variances of the 

study-specific prognostic factor effects (var(𝛾�̂�)), rather than simply the sum of the power 

of each study. 

Step 1 describes how to derive an estimate of the variance of the prognostic factor (var( 𝛾)) 

for each study using routinely reported aggregate data from study publications, alongside 

assumptions about the prognostic effect size in each study and (for continuous factors) the 

distribution of the prognostic factor. Step 2 uses these estimated variances to derive an 
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estimate of the meta-analysis summary result for the prognostic effect parameter. Then 

step 3 derives the power of the planned IPD meta-analysis using the values obtained in step 

1 and step 2. A method to adjust the power calculations for the presence of additional 

correlated covariates is then described. 

 

6.4.1 Step 1: Estimate the variance of the prognostic factor separately for 

each study in the planned IPD meta-analysis 

6.4.1.1 Binary prognostic factor 

The first step is to apply equation (6.9) in each study promising IPD, followed by equation 

(6.6) to obtain an estimate of var(𝛾𝑖).  

To approximate this before IPD collection, the following aggregate data is needed from 

each study: 

• Total participants in the study (𝑛𝑖) 

• Total number of events (𝑒𝑖) 

• Total participants with 𝑧𝑖𝑗 = 1 (𝑛𝑖,𝑧=1) 

• Total participants with 𝑧𝑖𝑗 = 0 (𝑛𝑖,𝑧=0) 

Assumptions also need to be made about the values of parameters 𝛼 and 𝛾. For the key 

parameter (𝛾𝑖), as is suggested in (Riley et al., 2019b, Riley et al., 2022, Schmoor et al., 

2000), it is advised to identify a minimally important value via discussion with clinical 

experts within the IPD meta-analysis project team. It is also possible to consider a range of 

potential values of 𝛾𝑖 to assess the impact on the change in power dependent on the 

assumed value of 𝛾𝑖. It is simplest to assume 𝛾 is common for all studies (i.e. 𝛾𝑖 = 𝛾).  
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Based on the assumed value of 𝛾, and the aggregate data extracted, 𝛼 can be estimated 

using the number of outcome events, the total number of participants and the proportion 

of 𝑧𝑖𝑗 = 1.  

This requires some algebra. If 𝑝𝑖,𝑧=0 is defined as the risk (i.e. number of events / total 

number of participants) of the event occurring in participants with 𝑧 = 0 in study 𝑖, and 

𝑝𝑖,𝑧=1 is the risk of the outcome occurring in patients with 𝑧 = 1 in study 𝑖, then by definition:  

 

αi = ln (
𝑝i,z=0

1 − 𝑝i,z=0
) 

= ln (
𝑝i,z=1

1 − 𝑝i,z=1
) − γi 

 

(6.11) 

Note also that a weighted average of 𝑝i,z=0 and 𝑝i,z=1 can be taken to give an approximation 

of the overall log odds, 

ln (
𝑝𝑖

1 − 𝑝𝑖
) =

(ln (
𝑝i,z=0

1 − 𝑝i,z=0
) 𝑛0 + ln (

𝑝i,z=1

1 − 𝑝i,z=1
) 𝑛i,z=1)

𝑛𝑖
 

 

(6.12) 

where 𝑝𝑖 is the overall risk in study 𝑖, which is assumed to be available alongside 𝑛0 and 𝑛1. 

By rearranging equation (6.12), an approximation of the log odds in participants with 𝑧 = 1 

can be derived (dropping the 𝑖 notation for simplicity): 
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ln (
𝑝z=1

1 − 𝑝z=1
) =

(ln (
𝑝

1 − 𝑝) 𝑛 − ln (
𝑝z=0

1 − 𝑝z=0
) 𝑛z=0)

𝑛1
 

=
(ln (

𝑝
1 − 𝑝) 𝑛 − 𝛼𝑛z=0)

𝑛z=1
 

 

 

(6.13) 

 

Where 𝑝 represents the overall risk, 𝑛 is the total sample size, and 𝑛0 and 𝑛1 represent the 

numbers in each group. Equation (6.13) can then be substituted into equation (6.11) to 

obtain an estimate of 𝛼: 

α =
(ln (

𝑝
1 − 𝑝) 𝑛 − 𝛼𝑛0)

𝑛1
− γ 

=
ln (

𝑝
1 − 𝑝) 𝑛

𝑛1
− 𝛼

𝑛0

𝑛1
− 𝛾 

=

ln (
𝑝

1 − 𝑝) 𝑛 − 𝑛1𝛾

𝑛1

1 +
𝑛0

𝑛1

 

=

ln (
𝑝

1 − 𝑝) 𝑛 − 𝑛1𝛾

𝑛1

1
𝑛1

(𝑛1 + 𝑛0)
 

=
ln (

𝑝
1 − 𝑝) 𝑛 − 𝑛1𝛾

𝑛
 

= ln (
𝑝

1 − 𝑝
) −

𝑛1

𝑛
𝛾. 

 

 

 

 

 

 

 

 

 

 

 

(6.14) 

 

Based on the values of 𝛼𝑖 (derived from (6.14)) and 𝛾𝑖 (assumed based on clinical 

discussion), and the necessary aggregate data extracted (i.e. 𝑝, 𝑛, and 𝑛1) from each study, 
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the equation (6.9) can then be applied followed by equation (6.6) to obtain an estimate of 

var(�̂�𝑖). 

 

6.4.1.2 Continuous prognostic factor 

The approach to estimate var(𝛾𝑖) for a continuous covariate is similar, but with the added 

complexity of having to specify the assumed distribution of the continuous prognostic 

factor. For simplicity, this might be assumed to be a normal distribution. But it does not 

need to be. The mean and standard deviation (SD) of key continuous prognostic factors are 

usually reported in study publications.  

The aggregate data required from each study publication are: 

• Total participants in the study (𝑛𝑖) 

• Number of outcome events (𝑒𝑖) 

• Characteristics to define the continuous prognostic factor’s assumed distribution 

(e.g. mean and SD) 

As with the binary covariate setting, assumptions are needed about the values of 

parameters 𝛼𝑖 and 𝛾𝑖. Centring the prognostic factor, 𝑧𝑖𝑗, by its mean allows 𝛼𝑖 to be 

approximated by the overall log-odds of the outcome in study 𝑖, which is simply a 

transformation of the overall risk which should be available from the study publication. As 

before, it is advised to identify a minimally important value of 𝛾𝑖 via discussion with clinical 

experts within the IPD meta-analysis project team or consider a range of values. 
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An estimate of var(𝛾𝑖) for each study can then be obtained by estimating Fisher’s 

information matrix as described in Section 6.3.2. To do this, the following is implemented 

(using Stata code) for each study: 

1. Generate a large dataset (e.g. 1 million participants) that mimics the study 

aggregate data provided in terms of the proportion of patients with the outcome 

event and the distribution of 𝑧  (e.g. a normal distribution with a specified mean 

and standard deviation); 

2. Calculate 𝑰 = 𝐸𝑧(𝑩) conditional on the specified 𝛼 and 𝛾 values for that study 

(equation (6.10)) 

3. Use equation (6.6) to calculate var(�̂�𝑖) = 𝑰−1(2,2)/𝑛𝑖 

 

6.4.2 Step 2: Estimate the variance of the prognostic factor from the 

planned IPD meta-analysis 

Step 1 produces 𝑆 estimates of var(�̂�𝑖), one for each study. The variance of the summary 

prognostic factor parameter estimate from an IPD meta-analysis of these studies can then 

be estimated, depending on whether step 1 assumed 𝛾𝑖 was common or random across 

studies. When assuming 𝛾𝑖 is common (𝛾𝑖 = 𝛾), equation (6.5) can be used to calculate the 

anticipated estimate of var(𝛾) for the IPD meta-analysis project: 

var(𝛾) =
1

∑ (var(�̂�𝑖))
−1𝑆

𝑖=1

 (6.15) 
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6.4.3 Step 3: Calculate the power of the planned IPD meta-analysis 

The final step is to calculate the power of the planned IPD meta-analysis project to detect 

𝛾. Assuming a common prognostic factor effect for all studies, and based on a Wald-test 

and a 5% statistical significance level, the power is approximately: 

Power = Prob (
𝛾

√var(𝛾)
> 1.96) + Prob (

𝛾

√var(𝛾)
< −1.96) 

= Φ (−1.96 +
𝛾

√var(𝛾)
) + Φ (−1.96 −

𝛾

√var(𝛾)
) 

(6.16) 

Here, Φ(𝑥) is the probability of sampling a value < 𝑥 from a standard normal distribution, 

var(�̂�) is the anticipated variance of the summary prognostic effect estimate (as obtained 

in step 2), and 𝛾 can be replaced with the assumed true 𝛾 (as defined in step 1). This power 

estimate is usually multiplied by 100 and reported as a percentage. 

 

6.4.4 Adjusting for other covariates 

The three-step method proposed in the previous section assumes that the prognostic effect 

of any other covariate is zero. However, in reality, it is likely that other covariates (e.g. 

existing prognostic factors) would be included in the model for adjustment and these 

additional factors may be expected to be correlated with the prognostic factor of primary 

interest. Hence, the existing power formulae described would not be valid (Schmoor et al., 

2000). 

Whittemore (1981) has shown that for continuous normal covariates, in the setting where 

there are multiple covariates, the variance of the prognostic factor of interest (var(𝛾)) can 

be approximated by inflating the variance of 𝛾 obtained in the one parameter model by the 
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variance inflation factor (VIF). The variance inflation factor (VIF), ranging from 1 upwards, 

is a measure of the amount of correlation between a set of predictors in a model. The VIF 

is defined as: 

𝑉𝐼𝐹 =
1

1 − 𝜌2
 

where 𝜌 is the multiple correlation coefficient, the proportion of the variation in the 

dependent variable that is predictable from the independent variables, and ranges from 0 

to 1. Hsieh et al. (1998) has shown that the same VIF also works well for binary covariates.  

The VIF measures how much the variances of estimated regression coefficients are inflated 

when compared to having uncorrelated predictors. Therefore, to gain a more accurate 

estimate of the power of a planned IPD meta-analysis when there are other prognostic 

factors to be adjusted for, Step 1 can be completed as described for an unadjusted 

prognostic effect, but then prior to completing Step 2, each of the 𝑆 estimates of var(𝛾𝑖) 

should be multiplied by the VIF to provide estimates of the inflated variances. These 

inflated estimates of var(𝛾𝑖) can then be used in Step 2 to estimate the variance of the 

summary prognostic factor parameter which can then be used in Step 3 to calculate the 

power. To allow the estimation of the inflated variances, an assumption needs to be made 

regarding the value of the correlation coefficient. A pragmatic approach, when other 

information in unavailable, is to assume a moderate value of 𝜌 such as 0.5. 

 

6.5 Applied examples 

The proposed methods are now applied to two examples for illustration. 
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6.5.1 Example 1: Prognostic effect of age and sex on gastrointestinal 

bleeding in patients with cirrhosis and oesophageal varices (Poynard) 

The first example considers the power of an IPD meta-analysis conducted by Poynard et 

al.(1991) and is an example considered in previous methodology papers (Kovalchik and 

Cumberland, 2012, Simmonds and Higgins, 2007). The project aimed to examine the 

efficacy of beta-adrenergic-antagonist drugs in the prevention of gastrointestinal bleeding 

for patients with cirrhosis and oesophageal varices. IPD were obtained from four 

randomised trials involving a total of 286 patients randomised to active treatment and 383 

to a control (placebo). However, here we pretend that IPD are not yet available, and the 

aim is to assess whether collecting IPD would allow sufficient power to examine prognostic 

factors. The data would essentially be analysed as a cohort study, and the focus is on 

estimating the prognostic effect of sex and age (individually) on the occurrence of 

gastrointestinal bleeding (rather than treatment effects as in the original trials).  

The aggregate data from the trials are shown in Table 6.1. Aggregate data in the 

publications were given by treatment/control groups, however, as the data have been 

combined for the purpose of these examples, a weighted mean age was calculated as: 

overall mean =  
𝑛𝐶𝜇𝐶 + 𝑛𝑇𝜇𝑇

total participants
 

Where 𝑛𝐶  and 𝑛𝑇  are the number of participants in the control and treatment groups 

respectively, and 𝜇𝐶  and 𝜇𝑇 are the mean age reported in the control and treatment 

groups, respectively. The corresponding standard deviation for age was calculated as 

(Mathematics Stack Exchange, 2018): 
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SD = √
(𝑛𝐶 − 1)SDC

2 + (𝑛𝑇 − 1)SDT
2

𝑛𝐶 + 𝑛𝑇 − 1
+

𝑛𝐶𝑛𝑇(𝜇𝐶 − 𝜇𝑇)2

(𝑛𝐶 + 𝑛𝑇)(𝑛𝐶 + 𝑛𝑇 − 1)
 

Table 6.1: Aggregate data from 4 randomised trials included in the IPD meta-analysis 
project of Poynard et al. (1991) 

Trial Total participants  Total Events 
Age in years: 

mean (SD) 
Male, % 

1 230 49 54 (10) 71 

2 174 44 54 (11) 70 

3 79 12 54 (8) 72 

4 106 26 56 (11) 75 

 

The question of interest here is: if it is assumed that this aggregate data could be obtained 

in advance (e.g. from study publications or investigators), then what is the estimated power 

of a planned IPD meta-analysis to estimate the effects of a particular prognostic factor? 

The factors of interest in this example are sex and age (individually), to provide an example 

with both a binary and a continuous covariate, and the three-step process described in 

Section 6.4 is used to undertake the power calculations.  

As previously discussed, a value (or values) of 𝛾 need to be assumed to be able calculate 

the power. It will first be assumed that the prognostic effect of any other covariate is zero, 

then the examples will be repeated making an adjustment for the presence of additional 

correlated covariates.  

For this example, a range of values from 𝛾 = ln (0.5) to 𝛾 = ln (3) were used for the sex 

covariate, which corresponds to an outcome odds that is 50% lower in males compared to 

females up to an outcome odds that is 3 times higher for males than females. For the age 

covariate, a range of values from 𝛾 = ln (0.95) to 𝛾 = ln (1.05) were used, which 
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correspond to an odds ratio that is 50% lower for every 10-year increase in age, to an odds 

ratio that 50% higher for every 10-year increase in age. Age is assumed normally distributed 

in each study, with a mean and SD as given in Table 6.1. 

A selection of the results of the power calculations between the range of assumed 𝛾 values 

are shown in Table 6.2, and plots of the calculated powers over the full range of assumed 

values are given in Figure 6.1 for sex and Figure 6.2 for age. The focus here is on unadjusted 

results, however, the results are presented following adjustment for other covariates in the 

following section. There is a power of 91% to detect the assumed prognostic effect of sex 

with an odds ratio of 0.5, and 99% power to detect an odds ratio of 3. The power decreases 

significantly the closer the odds ratio gets to 1, with only 8% power to detect an odds ratio 

of 0.9 and 17% power to detect an odds ratio of 1.25. For age, there is 99% power of 

detecting an odds ratio of 0.95 or 1.05, which again decreases significantly the closer the 

assumed odds ratio is to 1, with 19% power of detecting an odds ratio of 0.99 and 55% 

power of detecting an odds ratio of 1.02.  

 

 

 

 

 

 

 



 

226 
 

Table 6.2: Results of the power calculations for the Poynard example for a range of 𝛾 values 

Sex Age 

 �̂� 𝐯𝐚𝐫(�̂�) Power % �̂� 𝐯𝐚𝐫(�̂�) Power % 

ln(0.5) 0.04332 91.47 ln(0.95) 0.0001011 99.92 

ln(0.6) 0.04425 68.02 ln(0.96) 0.0000967 98.58 

ln(0.7) 0.04529 38.83 ln(0.97) 0.0000935 88.30 

ln(0.8) 0.04639 17.91 ln(0.98) 0.0000913 56.13 

ln(0.9) 0.04752 7.72 ln(0.99) 0.0000900 18.51 

ln(1.0) 0.04867 5.00 ln(1.00) 0.0000896 5.00 

ln(1.25) 0.05155 16.59 ln(1.01) 0.0000900 18.24 

ln(1.5) 0.05443 41.23 ln(1.02) 0.0000912 54.51 

ln(2) 0.06003 80.76 ln(1.03) 0.0000933 86.45 

ln(2.5) 0.06543 94.76 ln(1.04) 0.0000962 97.93 

ln(3) 0.07063 98.51 ln(1.05) 0.0000999 99.83 

 

Figure 6.1: Results of the power calculations for the Poynard example with sex as the 
prognostic factor for a range of gamma values (presented as odds ratios) 
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Figure 6.2: Results of the power calculations for the Poynard example with age as the 
prognostic factor for a range of gamma values (presented as odds ratios) 

 

 

6.5.1.1 Adjusting for additional covariates 

The scenario was then considered for the presence of additional covariates that were 

correlated with the prognostic factor of interest. The methods used for the unadjusted 

example were repeated, but the individual variances of 𝛾𝑖 for each study (var(𝛾𝑖)) were 

multiplied by a VIF prior to calculating the variance of the summary prognostic factor effect. 

Three different values of 𝜌 (0.25, 0.5 and 0.75) were used to calculate three VIFs, to assess 

the impact of varying levels of collinearity between the prognostic factors on the power.  

A selection of the results of the power calculations after inflating the variances for the sex 

covariate, for the values of 𝛾 presented in the example with no additional prognostic 

factors, are given in Table 6.3 and the results for age are given in Table 6.4. Plots of the 

calculated powers over the range of values for each of the VIFs are given in Figure 6.3 for 

sex and Figure 6.4 for age. 
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The results show that inflating the variances by a VIF of 1.0666 (i.e. 𝜌 = 0.25) has only a 

relatively small impact on the power calculations, lowering it by only 2.8 percentage points 

for an assumed OR of 0.6 for sex. However, as 𝜌 is increased, the VIF has a greater impact 

on the power calculations, reducing the power by more than 50% when 𝜌 is 0.75 for certain 

values of 𝛾. For example, when the OR for sex is assumed to be 1.5, the power reduces 

from 41.23% when no adjustment for other covariates is made to 20.98% when adjustment 

is made with an assumed correlation coefficient of 0.75. 

In practice, without other information, assuming a moderate correlation of 0.5 may be a 

pragmatic choice. In this scenario, this IPD meta-analysis project would be unlikely to 

provide enough power to test the prognostic ability of sex, as for an OR of 0.6, there would 

only be 56%, and the OR would likely be much closer to one than this in reality (Poynard et 

al. (1991) found a hazard ratio of 0.89). However, there may be enough power to detect a 

prognostic effect of age, dependent on the expected size of the effect. It is estimated that 

there would be 93% power to detect an OR of 1.04, which may be a reasonable OR to 

expect (however, in practice, this would require clinical input).  
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Table 6.3: Results of the power calculations for the sex covariate in the Poynard example 
for a range of γ ̂ values and different VIFs 

 �̂� 
𝐯𝐚𝐫(�̂�) 

𝝆 = 𝟎, 
VIF=1 

𝝆 = 𝟎. 𝟐𝟓, 
VIF=1.0666 

𝝆 = 𝟎. 𝟓, 
VIF=1.333 

𝝆 = 𝟎. 𝟕𝟓, 
VIF=2.286 

ln(0.5) 0.04332 91.47% 89.70% 82.23% 59.60% 

ln(0.6) 0.04425 68.02% 65.22% 55.69% 36.19% 

ln(0.7) 0.04529 38.83% 36.81% 30.58% 19.83% 

ln(0.8) 0.04639 17.91% 17.08% 14.61% 10.53% 

ln(0.9) 0.04752 7.72% 7.54% 7.03% 6.18% 

ln(1.0) 0.04867 5.00% 5.00% 5.00% 5.00% 

ln(1.25) 0.05155 16.59% 15.84% 13.62% 9.96% 

ln(1.5) 0.05443 41.23% 39.10% 32.49% 20.98% 

ln(2) 0.06003 80.76% 78.21% 68.79% 46.47% 

ln(2.5) 0.06543 94.76% 93.43% 87.33% 65.89% 

ln(3) 0.07063 98.51% 97.94% 94.74% 78.06% 

 

Table 6.4: Results of the power calculations for the age covariate in the Poynard example 
for a range of γ ̂ values and different VIFs 

 �̂� 
𝐯𝐚𝐫(�̂�) 

𝝆 = 𝟎, 
VIF=1 

𝝆 = 𝟎. 𝟐𝟓, 
VIF=1.0666 

𝝆 = 𝟎. 𝟓, 
VIF=1.333 

𝝆 = 𝟎. 𝟕𝟓, 
VIF=2.286 

ln(0.95) 0.0001011 99.92% 99.86% 99.30% 92.14% 

ln(0.96) 0.0000967 98.58% 98.03% 94.89% 78.39% 

ln(0.97) 0.0000935 88.30% 86.22% 77.88% 54.92% 

ln(0.98) 0.0000913 56.13% 53.48% 44.88% 28.76% 

ln(0.99) 0.0000900 18.51% 17.64% 15.05% 10.78% 

ln(1.00) 0.0000896 5.00% 5.00% 5.00% 5.00% 

ln(1.01) 0.0000900 18.24% 17.39% 14.85% 10.67% 

ln(1.02) 0.0000912 54.51% 51.89% 43.47% 27.85% 

ln(1.03) 0.0000933 86.45% 84.22% 75.51% 52.58% 

ln(1.04) 0.0000962 97.93% 97.21% 93.37% 75.36% 

ln(1.05) 0.0000999 99.83% 99.72% 98.83% 89.77% 
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Figure 6.3: Results of the power calculations for the Poynard example with sex as the 
prognostic factor for different values of the VIF for a range of gamma values (presented as 
odds ratios) 

 

Figure 6.4: Results of the power calculations for the Poynard example with age as the 
prognostic factor for different values of the VIF for a range of gamma values (presented as 
odds ratios) 
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6.5.2 Example 2: Prognostic effect of age and sex on pain improvement in 

patients with osteoarthritis (STEER-OA) 

In the Subgrouping and TargetEd Exercise pRogrammes for OsteoArthritis (STEER OA) 

project (Holden et al., 2017), IPD were collected from existing randomised trials to examine 

potential participant-level characteristics that interact with the effect of exercise 

interventions among people with knee and/or hip OA. Although pain and function 

outcomes were mostly analysed on a continuous scale, one binary outcome of interest was 

whether the patient had a reduction of pain (compared to baseline) by 3-6 months. There 

was a total of 31 trials that provided their IPD, and as in the previous example, the 

treatment and control arms are combined here to investigate the potential power of using 

this IPD to examine whether there is a prognostic effect of sex or age. The aggregate data 

needed to complete the three-step process described above for each trial is provided in 

Table 6.5. The mean and SD for age were calculated as described in the previous example 

due to being given for the treatment and control group separately in the trial publication. 

A range of values for 𝛾 were again considered and age was assumed normally distributed 

with mean and SD as given in the aggregate data. The same range of values of 𝛾 were used 

as in the Poynard example, however different values of 𝛾 are given in the table of results 

to illustrate a greater range in the calculated powers. The power calculation results are 

shown for the full range of assumed 𝛾 values in the plots. Two of the trials did not record 

sex, and one had only females, hence these three trials were not included in the power 

calculations for sex. 
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Table 6.5: Aggregate data from 31 randomised trials included in the IPD meta-analysis 
project of STEER OA (Holden et al., 2017) 

Trial Total participants  Total Events Age in years 
mean (SD) 

Male, % 

1 210 127 64.96 (11.69) 28.10 

2 48 24 66.17 (7.45) 29.17 

3 89 48 64.55 (8.30) 51.69 

4 199 104 61.74 (5.69) 35.18 

5 222 115 63.38 (8.63) 31.08 

6 312 111 69.74 (6.53) 37.18 

7 126 62 64.07 (8.93) 24.60 

8 152 102 70.18 (6.22) 26.32 

9 88 44 61.08 (9.67) 35.23 

10 39 17 74.23 (6.31) 23.08 

11 217 133 68.08 (8.25) 35.02 

12 48 17 63.25 (8.22) 18.75 

13 71 42 62.45 (8.71) 32.39 

14 105 52 65.32 (5.47) 17.14 

15 418 264 66.60 (8.40) 29.67 

16 218 128 58.68 (10.12) 59.17 

17 107 49 64.58 (8.50) 44.86 

18 158 84 68.82 (6.33) NA 

19 80 43 57.73 (4.12) NA 

20 87 59 63.86 (2.37) 0 

21 28 19 67.68 (6.52) 46.43 

22 32 21 72 (6.06) 12.50 

23 109 65 57.81 (9.88) 45.87 

24 109 44 67.72 (7.17) 31.19 

25 40 25 66.62 (7.17) 20 

26 34 21 70.18 (5.75) 23.53 

27 203 130 65.39 (9.12) 41.38 

28 391 188 61.68 (9.57) 36.06 

29 55 36 78.91 (7.55) 27.27 

30 200 132 68.03 (8.83) 21.50 

31 46 11 67.17 (7.50) 56.52 
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A selection of the results of the power calculations between the range of assumed 𝛾 values 

are given in Table 6.6. Plots of the calculated powers over the range of assumed prognostic 

effect values are given in Figure 6.5 for sex and Figure 6.6 for age. 

There is 100% power to detect a prognostic effect of sex with an odds ratio of less than 0.5 

or higher than 1.75. These odds ratios relate to 50% lower odds of a reduction in pain at 3-

6months for males compared to females, and 75% higher odds of a reduction in pain for 

males compared to females, respectively. The power starts to decrease as the odds ratio 

approaches 1, with a more dramatic decrease in power for odds ratios higher than 0.75, or 

lower than 1.3. There is 32% power of detecting an odds ratio of 0.9 and 51% power of 

detecting an odds ratio of 1.15. 

For age, there is 99% power of detecting an odds ratio of 0.98 or 1.02, which decreases 

significantly between these values the closer the assumed odds ratio is to 1. There is 34% 

power of detecting an odds ratio of 0.994 and 12% power of detecting an odds ratio of 

1.003. These correspond to 6% lower odds of reduction in pain at 3-6months for every 10-

year increase in age, and 3% higher odds of a reduction in pain for every 10-year increase 

in age.  
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Table 6.6: Results of the power calculations for the STEER OA example for a range of γ  ̂
values 

Sex Age 

 �̂� 𝐯𝐚𝐫(�̂�) Power % �̂� 𝐯𝐚𝐫(�̂�) Power % 

ln(0.5) 0.00508 100 ln(0.98) 0.0000155 99.92 

ln(0.6) 0.00501 99.99 ln(0.99) 0.0000153 72.92 

ln(0.8) 0.00497 88.62 ln(0.992) 0.0000153 53.83 

ln(0.85) 0.00496 63.56 ln(0.994) 0.0000152 33.81 

ln(0.9) 0.00497 32.13 ln(0.996) 0.0000152 17.69 

ln(1.0) 0.00498 5.00 ln(1.00) 0.0000152 5.00 

ln(1.15) 0.00500 50.63 ln(1.003) 0.0000152 11.98 

ln(1.2) 0.00502 73.05 ln(1.01) 0.0000153 72.07 

ln(1.25) 0.00503 88.23 ln(1.02) 0.0000155 99.89 

ln(1.5) 0.00510 99.99 ln(1.03) 0.0000159 100 

ln(1.75) 0.00519 100 ln(1.04) 0.0000164 100 

 

 

Figure 6.5: Results of the power calculations for the STEER OA example with sex as the 
prognostic factor for a range of gamma values (presented as odds ratios) 
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Figure 6.6: Results of the power calculations for the STEER OA example with age as the 
prognostic factor for a range of gamma values (presented as odds ratios) 

 

 

6.5.2.1 Adjusting for additional covariates 

The analyses conducted in this example were repeated with the supplement of adjusting 

for the presence of additional correlated covariates, as described in the previous example. 

A selection of the results of the power calculations after inflating the variances of the sex 

covariate, for the values of 𝛾 presented in the example with no additional covariates, are 

given in Table 6.7 and the results for age are given in Table 6.8. Plots of the calculated 

powers over the range of 𝛾 values for each of the VIFs are given in Figure 6.7 for sex and 

Figure 6.8  for age. 

As in the Poynard example in Section 6.5.1.1, adjusting the power calculation for a 

correlation coefficient of 𝜌 = 0.25 has only a modest impact on the power. However, as 𝜌 
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is increased, this has a considerable impact on the power available to estimate the 

prognostic factor of interest.  

If we take a pragmatic approach again and assume 𝜌 is 0.5, there would likely be enough 

power to conduct the IPD meta-analysis project if the prognostic effect of sex would be 

expected to have an OR above 1.25, which reflects a 25% higher odds of reduction in pain 

for males compared to females. However, if the relationship between sex and pain 

improvement is unlikely to be this large, then there would be insufficient power to conduct 

the project. For age, there would be sufficient power to detect an OR of 1.02 or above (or 

0.98 and below), corresponding to a 20% higher (or lower) odds of pain reduction for each 

10-year increase in age. 

 

Table 6.7: Results of the power calculations for the sex covariate in the STEER OA example 
for a range of γ ̂ values and different VIFs 

 �̂� 
𝐯𝐚𝐫(�̂�) 

𝝆 = 𝟎, 
VIF=1 

𝝆 = 𝟎. 𝟐𝟓, 
VIF=1.0666 

𝝆 = 𝟎. 𝟓, 
VIF=1.333 

𝝆 = 𝟎. 𝟕𝟓, 
VIF=2.286 

ln(0.5) 0.00508 100% 100% 100% 100% 

ln(0.6) 0.00501 99.99% 100% 100% 100% 

ln(0.8) 0.00497 88.62% 86.57% 78.30% 55.36% 

ln(0.85) 0.00496 63.56% 60.78% 51.51% 33.23% 

ln(0.9) 0.00497 31.13% 30.45% 25.35% 16.74% 

ln(1.0) 0.00498 5.00% 5.00% 5.00% 5.00% 

ln(1.15) 0.00500 50.63% 48.13% 40.18% 25.73% 

ln(1.2) 0.00502 73.05% 70.28% 60.62% 39.86% 

ln(1.25) 0.00503 88.23% 86.14% 77.78% 54.83% 

ln(1.5) 0.00510 99.99% 99.98% 99.84% 96.36% 

ln(1.75) 0.00519 100% 100% 100% 99.93% 
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Table 6.8: Results of the power calculations for the age covariate in the STEER OA example 
for a range of γ ̂ values and different VIFs 

 �̂� 
𝐯𝐚𝐫(�̂�) 

𝝆 = 𝟎, 
VIF=1 

𝝆 = 𝟎. 𝟐𝟓, 
VIF=1.0666 

𝝆 = 𝟎. 𝟓, 
VIF=1.333 

𝝆 = 𝟎. 𝟕𝟓, 
VIF=2.286 

ln(0.98) 0.0000155 99.92% 99.91% 99.53% 93.55% 

ln(0.99) 0.0000153 72.92% 72.39% 62.74% 41.50% 

ln(0.992) 0.0000153 53.83% 53.34% 44.75% 28.68% 

ln(0.994) 0.0000152 33.81% 33.47% 27.82% 18.19% 

ln(0.996) 0.0000152 17.69% 17.53% 14.97% 10.73% 

ln(1.00) 0.0000152 5.00% 5.00% 5.00% 5.00% 

ln(1.003) 0.0000152 11.98% 11.90% 10.49% 8.17% 

ln(1.01) 0.0000153 72.07% 71.54% 61.88% 40.83% 

ln(1.02) 0.0000155 99.89% 99.88% 99.39% 92.66% 

ln(1.03) 0.0000159 100% 100% 100% 99.89% 

ln(1.04) 0.0000164 100% 100% 100% 100% 

 

Figure 6.7: Results of the power calculations for the STEER OA example with sex as the 
prognostic factor for different values of the VIF for a range of gamma values (presented as 
odds ratios) 
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Figure 6.8: Results of the power calculations for the STEER OA example with age as the 
prognostic factor for different values of the VIF for a range of gamma values (presented as 
odds ratios) 

 

 

6.6 Extension: Allowing for heterogeneity 

The chapter so far has assumed a common-effect model in the second stage of the meta-

analysis, which assumes the true prognostic effect is the same in each study. This section 

illustrates a method to allow for between-study heterogeneity in the prognostic factor 

effect, based on Riley et al. (2022) proposed approach for IPD meta-analysis of interactions. 

To allow for between-study heterogeneity, a random-effects model must be assumed 

(equation (6.3)), but to do this, further assumptions must be made about the magnitude of 

the heterogeneity. The power calculation can be extended to allow for between-study 

heterogeneity in the prognostic effect:  
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Power = T (−𝑡𝑆−1,0.975 +
𝛾

√var(𝛾)
) + T (−𝑡𝑆−1,0.975 −

𝛾

√var(�̂�)
) (6.17) 

 

where T(𝑥) is the probability of sampling a value < 𝑥 from a t-distribution with a mean of 

zero and 𝑆 − 1 degrees of freedom, and 𝑆 is the number of studies expected to provide 

their IPD. The variance of the prognostic factor, var(𝛾), now needs to be estimated from 

equation (6.5), hence, an assumed value of �̂� (the between-study standard deviation of the 

prognostic factor effect) must also be given.  

As with the Hartung-Knapp-Sidik-Jokman (HKSJ) approach for deriving 95% confidence 

intervals after fitting a random-effects meta-analysis (Hartung and Knapp, 2001, Sidik and 

Jonkman, 2002), which uses a t-distribution rather than a normal distribution, a t-

distribution is used here to help reflect the extra uncertainty due to �̂� being estimated 

rather than already known. 

Riley et al. (2022) suggest that equation (6.17) is likely to over-estimate the power as it 

assumes 𝜏 is known, when actually it will be estimated. This will be of greatest concern 

when there are small numbers of studies providing IPD, and when the true 𝜏 is close to 

zero, as then 𝜏 would be poorly estimated and often too high (as the estimate is bounded 

at zero). A simulation-based approach would be a better reflection of the uncertainty in 

that situation (Ensor et al., 2018). 

Returning to the Poynard example from Section 6.5.1, Table 6.9 below shows the estimated 

power to detect a prognostic factor effect of 𝛾=ln(1.04) for age, both before and after 

adjustment for other covariates. For the random-effects model, the power calculation from 

equation (6.17) was used, deriving the variance using equation (6.5) for a range of assumed 
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𝜏 values. When adjusting for other covariates, the correlation coefficient (𝜌) was assumed 

to be 0.5. For an assumed 𝜏 of 0.005, the power is now estimated to be 72.7% when not 

adjusting for other covariates, which is considerably lower than when assuming a common-

effect model (97.9%). This is even further reduced when adjusting for other covariates, to 

57.1% (from 93.4% for the common-effect model). As would be expected, the greater the 

value of 𝜏, the greater the reduction in the estimated power. The drop off in power seems 

to be more dramatic for this example when 𝜏 increases above 0.005. In practice, if these 

estimates of power were calculated prior to collection of IPD, allowing for heterogeneity in 

the calculations would likely change the researchers/funders outlook on whether the IPD 

meta-analysis project would be worth their investment in both time and money. 

 

Table 6.9: Comparison of the power in the common-effect model and random-effect model 
for an assumed OR for age of 1.04 in the Poynard example, considering a range of  values 
for 𝜏 

𝜏 Without adjustment for 
other covariates 

With adjustment for other 
covariates (𝜌 = 0.5) 

Common-effect model 

- 97.93% 93.37% 

Random-effect model 

0.001 76.45% 60.38% 

0.0025 75.63% 59.63% 

0.005 72.71% 57.05% 

0.0075 67.91% 53.04% 

0.01 61.53% 48.03% 

0.015 46.64% 37.19% 

0.02 33.56% 27.95% 
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6.7 Discussion 

Evaluation of the power and sample size are an important aspect of planning and funding 

IPD meta-analysis projects. Previous work by Riley et al. (2022) extended the analytic 

solutions for the variance of the effect estimate (𝑣𝑎𝑟(𝛾�̂�)), originally proposed by 

Demidenko (2008), to calculate the power of examining treatment-covariate interactions.  

In this chapter, these analytic solutions have been modified further to remove the 

treatment and interaction aspect, to be used to calculate the power when designing an IPD 

meta-analysis project with the primary objective of pooling studies to estimate the effect 

of a prognostic factor for a binary outcome. Additionally, this chapter has proposed a 

solution to adjust this power calculation for the presence of additional correlated 

covariates by using a variance inflation factor. Examples have been presented in this 

chapter demonstrating the use of these methods, and Stata code has been provided in 

Appendix C to enable the power calculation to be replicated. Further, the work in this 

chapter has demonstrated the impact of allowing for between-study heterogeneity in the 

power calculation, and the dramatic impact the choice of 𝜏 can have.  

A three-step approach is proposed using an asymptotic solution for calculating variances 

of prognostic factor effect estimates, which allow the power of the planned IPD meta-

analysis project to be calculated in advance of IPD collection, using aggregate data that are 

frequently reported in study publications. The three-step approach first uses the aggregate 

data to derive the Fisher’s information matrix and an approximate estimate of the variance 

of each studies prognostic factor effect estimate, which then enables the variance of the 

summary effect estimate to be calculated from a two-stage IPD meta-analysis and finally 

the power of the IPD MA project can then be calculated. 
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If these results from the power calculations are known in advance of IPD collection, this 

would allow the researchers planning the project and the potential funders to decide 

whether the project would be worth their investment. It could also provide incentive to 

pursue IPD from additional studies, if they exist, to increase the power if necessary.  

The methods and examples in this chapter give a calculation of the overall power of the 

planned IPD meta-analysis, including all the individual studies where IPD is expected to be 

available. However, it is also possible to estimate the individual power contribution of each 

study by using the estimate of the variance (var(𝛾𝑖)) from each study in the power 

calculation (equation (6.16)), rather than the estimate of the variance of the prognostic 

factor for the planned IPD meta-analysis as a whole. This would allow researchers to assess 

the added contribution of particular studies, which depends not only on the total number 

of participants and events, but also on the distribution and variance of the potential 

prognostic factor of interest in that study. This could inform decisions regarding where to 

focus efforts in terms of IPD collection if it is clear that certain studies would add very little 

to the power of the meta-analysis.  

As with any power calculation, the approach is pragmatic to help gauge potential power 

under plausible assumptions and the actual power will change depending on various 

modelling assumptions. For example, the power could change if not all the promised IPD 

can be obtained. Other reasons that the power could change are if the assumed prognostic 

factor effects are incorrect, if the assumed distribution of a continuous covariate is wrong, 

if there is larger heterogeneity in prognostic effects than expected, or if the amount of 

correlation between the prognostic factor and adjustment covariates is incorrect. Hence, 
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for funding applications it would be wise to display a range of power calculations based on 

a range of assumptions, as shown in the examples in this chapter.  

A key issue when applying the proposed methods is the ability to obtain the necessary 

aggregate data for each of the potential studies to be included. Basic study information, 

such as the number of participants and number of outcome events should be available from 

study publications. However, information about covariate distributions may be more 

difficult to obtain, particularly for covariates other than the standard covariates such as age 

and sex, which are likely to be summarised in the baseline characteristics. In this situation, 

the study investigators can be contacted and asked to provide the summary information 

needed, which should hopefully be a reasonable request if they have already agreed to 

provide their IPD.  

A further limitation of the proposed approach is the need to approximate 𝛼 for the binary 

covariate scenario. It is approximated by using a weighted average of the risks in each group 

as an approximation for the overall log-odds of the outcome in study 𝑖, which can then be 

rearranged to approximate 𝛼. This is believed to be the best available approximation of  𝛼 

from the information available, as 𝛼 is essentially the risk in group without the prognostic 

factor of interest, therefore is the overall risk minus the risk in the group with the 

prognostic factor. However, further work is needed to evaluate how robust the power 

calculation is to deviations from this approximation of 𝛼. 

Consideration should also be given to the amount of correlation between the prognostic 

factor and adjustment variables, as it has been shown in the examples above that this can 

have a substantial impact on the power of the project, and therefore the presence of 
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additional adjustment covariates should not be ignored when calculating the power of a 

planned IPD meta-analysis project.   

When adjusting for additional covariates, the power calculations provided in this chapter 

do not consider the number of covariates included in the model, only the correlation 

between these additional covariates and the prognostic factor of interest. Therefore, when 

planning an IPD meta-analysis of this kind, consideration should be given to the number of 

covariates to be included in the model and whether the data to be obtained is large enough 

to avoid overfitting, or indeed whether all of the covariates are truly needed in the model.  

For the main part of this chapter, a common-effect meta-analysis model was assumed, 

which assumes the true prognostic effect is the same in each study. The approach taken 

was for practicality, as if a random-effects model is assumed, as was demonstrated in 

Section 6.6, this would require assumptions to be made about the magnitude of the 

heterogeneity, which is difficult to ascertain. Section 6.6 provided an illustration of allowing 

for heterogeneity in one of the previous applied examples, which showed a dramatic 

change in the estimated power dependent on what value of 𝜏 is assumed. This further 

highlights the difficulty in allowing for heterogeneity in the power calculations. However, 

it also highlights the potential for drastically overestimating the power of the planned IPD 

meta-analysis project if heterogeneity is not accounted for.  

 

6.8 Conclusions 

This chapter has proposed new methods for calculating the power of a planned IPD meta-

analysis project, in advance of IPD collection, which aims to evaluate the effect of a 
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prognostic factor on a binary outcome. The approach has been illustrated using two 

examples, which highlight the need for choosing realistic assumptions when calculating the 

power, or indeed calculating the power for a range of assumptions as in these examples, 

as the calculated power dramatically changes depending on the assumed value of  𝛾. When 

the focus is on added prognostic value of a factor, this chapter has also highlighted the 

need to account for additional adjustment covariates in the power calculations, which may 

be correlated with the prognostic factor of interest, as even a relatively small VIF can 

considerably reduce the power of the planned project. 
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7 Discussion 

This chapter provides a critical discussion of the thesis. It begins with an overview of the 

thesis content, including a summary of each of the chapters and the publications that have 

arisen. A discussion of the contributions made to applied and methodological research is 

then presented, followed by consideration of the further research needs that now arise. 

Particular attention is given to the issue of measurement error in prognosis research and 

the potential implications on prediction models. 

 

7.1 Overview of the thesis 

Prognosis research is an important part of medical research as it seeks to understand and 

improve future outcomes in people with a given disease or health condition (Riley et al., 

2013). The work in this thesis has focused on both prognosis research to identify prognostic 

factors, and on multivariable prediction models to predict a patient’s future outcome risk, 

which can inform clinical decision making and help patients understand their risk.  

The overall aims of the thesis were to apply and develop statistical methods for prognosis 

research. This has been achieved through chapters 2 to 6, in both single study and IPD 

meta-analysis settings, and led to multiple publications in statistical and clinical journals. 

Chapters 2 to 4 focused on the use of a single study for prognostic factor and prediction 

model research, with a particular emphasis on the measurement error that may be present 

within prognostic factors (predictors) and the impact of measuring a time-varying predictor 

after the intended moment of using the prediction model. Chapters 5 and 6 focused on the 

use of IPD from multiple studies for validating prediction models (Chapter 5) and calculating 
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the power of an IPD meta-analysis to examine prognostic factor effects with binary 

outcomes, based on published study aggregate data (Chapter 6). Although the focus of the 

thesis was on prognostic factor research and risk prediction modelling, many of the same 

issues apply to diagnostic models (risk of disease being already present) and risk factor 

research (factors that increase the risk of disease onset). A short summary of the chapters 

is given below. 

 

7.1.1 Summary of the chapters 

The chapters in the thesis contained a mixture of clinical application and methodological 

development related to prognosis research. Chapter 2 showcased key statistical 

approaches for examining potential prognostic factors using an applied example. The 

clinical aim was to investigate the added prognostic value of potential prognostic factors 

for the development of complications in MC twin pregnancies, to improve knowledge of 

complications in MC twin pregnancies. The chapter also illustrated why it is not always 

sensible to develop a prediction model and demonstrated the instability of developing a 

prediction model with an insufficient sample size. Measurement error in the prognostic 

factors was unknown, and so only standard methods were applied to illustrate a typical 

prognostic factor study. However, some of the variables examined in the chapter were 

potentially subject to measurement error and the impact of this error on their prognostic 

value was unclear. This motivated the work in Chapter 3, in which a systematic review of 

prediction models was performed to ascertain how susceptible to measurement error the 

predictors used in prediction models are and how often the measurement error was 

acknowledged or accounted for within the development of the models. The review also 
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examined whether the timing of predictor measurements was clearly stated, and if so, its 

relation to the intended moment of use of the prediction model. The review found that it 

is possible that many published prediction models include predictors that are measured 

with error, but that such error is often not accounted for or even considered. The review 

also found that the timing of measurements and the intended moment of using the model 

is often not explicitly stated. Therefore, Chapter 4 used a real example to illustrate the 

effect that measuring a time-varying predictor after the intended moment of using a 

prediction model has on the predictor-outcome associations (prognostic factor effects) and 

on the model performance. The direction and magnitude of predictor-outcome 

associations of a multivariable prediction model were compared under two scenarios: 

using a time-varying predictor of interest, ascertained by the treating physician at the point 

of care (i.e. the intended moment of use) and using the same predictor, but ascertained by 

a self-complete questionnaire mailed several days after the point of care. The results 

showed that displacing the collection of time-varying predictor information from the 

intended moment (and mode) of use can lead to substantial differences in the magnitude 

of predictor-outcome associations, and the subsequent accuracy of prognostic model 

performance. 

The focus of chapters 2-4 was on prognosis research using a single study to either 

investigate potential prognostic factors or to develop a prediction model. However, there 

is a growing demand for meta-analyses that utilise IPD from multiple prognosis research 

studies, as this may offer novel opportunities for the development and validation of clinical 

prediction models, or for prognostic factor research, that may not be possible with the 

individual studies alone (Riley et al., 2021b). Therefore, chapters 5 and 6 focused on the 

use of IPD meta-analyses for prognosis research. Chapter 5 provided an applied example 
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of using IPD from multiple studies to externally validate existing prediction models that 

have been developed across several population groups for predicting stillbirth. The 

predictive performance of three previously identified prediction models were assessed and 

compared using discrimination and calibration statistics. Decision curve analysis was used 

to assess the clinical utility of the prediction models, and the model performance was 

pooled and summarised across data sets using a two-stage IPD meta-analysis. The three 

models did not perform well in the external cohorts available, showing low discrimination 

and poor calibration and did not show sufficient clinical utility to be recommended for use 

in practice.  

Completing an IPD meta-analysis project is a huge undertaking and commitment often with 

a vast amount of resources and time needed to complete it. The IPD meta-analysis in 

Chapter 5 led to some results with wide confidence intervals, despite the pooling of data. 

However, if it was known in advance of collecting the IPD what the statistical power of the 

project would be, this would inform decisions about the project’s worth. For example, if 

the power is low then researchers may reconsider whether to invest in the project, but if 

the power is high it would give them reassurance that the project is worth investing in. 

Consequently, Chapter 6 described a novel method to calculate the potential power of an 

IPD meta-analysis, in advance of collecting the IPD, for a project that aims to synthesise IPD 

to examine prognostic factor effects. 

 

7.1.2 Publications and outputs arising from this thesis 

The work in this thesis has led to several publications. The prognostic factor results of 

Chapter 2 were published in Diagnostic and Prognostic Research (Mackie et al., 2019), for 



 

251 
 

which I undertook all statistical analyses and contributed heavily to the write up. The 

findings of the work in Chapter 2 also contributed to the rationale for a paper showcasing 

the issues of instability of prognostic models in small datasets, for which I am a co-author 

(Riley et al., 2021a). I led a manuscript published in Journal of Clinical Epidemiology based 

on the systematic review results in Chapter 3 (Whittle et al., 2018), which shows the current 

neglect of issues of measurement error and timing of measurement. Another first-author 

article was published in Diagnostic and Prognostic Research describing the work in Chapter 

4 (Whittle et al., 2017), highlighting the impact of different timings of predictor 

measurement. Finally, an article based on the results of Chapter 5 was published in 

Ultrasound in Obstetrics and Gynecology, for which I am joint first author (Allotey et al., 

2022), for which I led all the statistical analyses and contributed greatly to the write up. 

 

7.2 Contributions to applied and methodological research 

This thesis has contributed to both applied and methodological research as outlined below.  

7.2.1.1 Chapter 2 

The applied prognostic factor study in Chapter 2 found that the discordance between 

nuchal translucency and the discordance between crown-rump length in monochorionic 

diamniotic twins is associated with a fetal adverse outcome, which remains after 

adjustment for standard prognostic factors. Discordance between babies CRL was also 

associated with IUFD and antenatally detected growth restriction, and discordance in NT 

was associated with the development of TTTS. This chapter also highlighted how it may not 

always be valuable to develop a prognostic model, even in a situation where some of the 

individual factors are identified as having prognostic ability. An example was provided of 
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developing a prognostic model using the same dataset as that used for the prognostic 

factor study, where some of the predictors were not very prevalent and the outcome was 

quite sparse. The results demonstrated a large potential optimism in the model coefficients 

and the model’s predictive performance, with the optimism-adjusted C-statistic much 

lower than the apparent C-statistic, emphasising the problem of overfitting due to a small 

sample size. Although adjustment for this overfitting can be done using a uniform shrinkage 

factor, this was shown to be unreliable, as the shrinkage factor was imprecisely estimated 

(again due to the small sample size). This finding motivated subsequent methodology work 

to show the issue of penalisation and shrinkage methods in small sample sizes (Riley et al., 

2021a). 

 

7.2.1.2 Chapter 3 

A limitation of the work in Chapter 2 was that potential measurement error in the 

biomarker values was ignored, because such error information (e.g. from repeated 

biomarker values per individual, of a biomarker assumed to be in a stable state) was not 

collected and was not available from another source (e.g. a standalone re-test study). 

Furthermore, the impact and magnitude of this potential error was unclear. Therefore, in 

Chapter 3, a systematic review of prognostic models was performed to ascertain how 

susceptible to measurement error the predictors used in the final models were and how 

often the measurement error was acknowledged or accounted for within the development 

of the models. The review also investigated whether the timing of predictor measurement 

and intended moment of model use was clearly reported in articles developing clinical 

prediction models, and if they coincided.  
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The review found that many of the final prediction models included predictors that were 

likely to be susceptible to measurement error and this was often not accounted for or even 

acknowledged. Additionally, most of the articles did not state when the predictors were 

measured or the intended moment of using the model, which could mean that future users 

of the model unknowingly estimate misleading probabilities of a patients’ outcome if they 

are using predictors measured at a different time than those used in the model 

development in relation to the timing of the model use. This motivated subsequent work 

in Chapter 4.  

The review also found that while guidelines have been published providing a checklist for 

the reporting of prediction models (Collins et al., 2015), many researchers are still omitting 

vital information when publishing their work. Prediction models are developed to help 

guide clinicians in practice, and the majority of the models developed in the articles 

included here were intended to be used to assist clinicians in therapeutic decision making. 

Poor reporting will have an impact on researchers and practitioners who are planning to 

use an existing prediction model when assessing whether it is applicable to their situation. 

Journal reviewers and editors also need to be able to assess the generalisability of the 

model and the accuracy of the results, which may be difficult if it is not clearly reported 

within the article. Hence, articles poorly reporting the development of prediction models 

may not be implemented in practice or may provide poor predictions if used.  

 

7.2.1.3 Chapter 4 

The effect that measuring a time-varying predictor after the intended moment of using a 

prediction model has on the predictor-outcome associations (prognostic factor effects) and 
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model performance was assessed and illustrated using a real example in Chapter 4. The 

chapter found that the magnitude of predictor-outcome associations and prognostic model 

performance can depend on when and/or how time-varying predictors are measured. In 

the illustrated example of patients presenting with musculoskeletal pain to general 

practice, associations between outcome risk and pain intensity recorded at the intended 

moment of use were lower in magnitude than those associations derived from a self-

complete questionnaire mailed to patients up to one week later. The findings were 

replicated in two datasets with similar measurements, strengthening the belief that similar 

findings are likely across a range of painful non-inflammatory musculoskeletal disorders. 

Despite many published studies of musculoskeletal pain in primary care (Mallen et al., 

2007), very few report the collection of time-varying predictor information by the GP at the 

initial point of care (Von Korff, 2013). When a later time is used, and/or with a different 

measurement method, the study’s predictor-outcome associations and prognostic model 

performance may be misleading, and thus it could signal that the study is at high risk of bias 

and not applicable for its intended purpose. The findings of this chapter imply the need for 

caution when applying predictor-outcome associations or existing prediction models 

derived from studies that record time-varying predictors at a different time and/or 

measurement method than is intended upon clinical application, unless it has been 

externally validated in this setting. Previously developed prediction models that include 

time-varying predictors measured after the intended moment of use may overestimate the 

individual risk of experiencing the outcome of interest, which also reinforces the need for 

external validation using data that reflects the intended moment of use, and clear reporting 

of differences between validation and development data (Moons et al., 2015). 
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7.2.1.4 Chapter 5 

Chapter 5 presented an applied example of externally validating existing prediction models 

which have been developed to predict stillbirth in pregnancy, using IPD collected from 

multiple studies. Only a fifth of the published stillbirth prediction models that were 

identified reported the model equation required for independent external validation. 

Hence, only three models were able to be externally validated. The overall findings from 

the chapter suggest that the models that were validated do not perform well in the external 

cohorts available, with none of the models showing sufficient performance or clinical utility 

to be recommended for use in practice. The IPD meta-analysis of model performance 

showed low discriminatory ability and poor calibration, with calibration slopes mostly <1. 

However, there was a lot of uncertainty around the results due to such small number of 

events. For each of the models, predictions were also systematically too low or too high 

depending on the cohort used to validate it (calibraton-in-the-large≠0). The models had no 

clear clinical utility as assessed by decision curve analysis and may even have net harm.  

 

7.2.1.5 Chapter 6 

The IPD meta-analysis in Chapter 5 led to some results with wide confidence intervals, 

despite the pooling of data. Given the huge undertaking and commitment that an IPD meta-

analysis often is, in terms of both finance and time, it would be advantageous to know in 

advance of collecting the IPD what the power of the project would be expected to be. 

Hence, Chapter 6 described a method to calculate the power of an IPD meta-analysis in 

advance of collecting the IPD to examine prognostic factor effects. The method was also 

extended to enable the power to be adjusted for the presence of additional correlated 
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covariates, and to allow for heterogeneity between studies. The approach was illustrated 

using two examples, which highlighted the need for choosing realistic assumptions when 

calculating the power, or indeed calculating the power for a range of assumptions, as the 

calculated power dramatically changed depending on the assumed value of the prognostic 

effect estimate. The chapter also highlighted the need to account for additional adjustment 

covariates in the power calculations, which may be correlated with the prognostic factor of 

interest, as even a relatively small VIF can considerably reduce the power of the planned 

project. 

 

7.3 Further research needs 

This thesis has identified several areas of further work and recommendations for future 

research, from both the applied and methodological aspects of the thesis, which are 

discussed below.   

7.3.1.1 Chapter 2 

Chapter 2 highlighted that although it was not possible to combine the prognostic factors 

identified to develop a prediction model that would perform well externally, there is some 

evidence of early physiological changes that may occur which would support the idea that 

first trimester prognostic factors exist. While some associations were found between the 

potential prognostic factors and adverse outcomes, as this was an exploratory study the 

evidence is not yet strong enough to recommend making any changes to practice, and 

replication would be needed to strengthen these findings. In particular, it would be of 

interest to collect data longitudinally, recruiting women with MCDA pregnancies in the first 

trimester, prior to the appearance of any clinical signs of complications, to enable 
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comparison of those who do and do not develop complications. This would help determine 

whether the differences in the biomarkers are because the biomarker is abnormal earlier 

in pregnancy, or that it does not increase.  

There are currently no established prediction models for predicting adverse outcomes in 

MCDA twins. Therefore, it would be valuable to collect more data, with the aim of 

combining the identified prognostic factors with standard prognostic variables to develop 

a prediction model, which would in turn allow clinicians to identify women who may be at 

a higher risk of adverse outcomes and provide appropriate treatment pathways. Since the 

completion of this chapter, Riley et al. (2020) have published guidance on how to calculate 

the sample size required to develop a clinical prediction model, and therefore this guidance 

could be used to determine the required sample size to develop a prediction model to 

predict adverse outcomes in MCDA twins. Whilst MCDA twins are rare, and therefore 

obtaining the necessary amount of data needed to develop a prediction model may prove 

difficult, collecting IPD from multiple sources in order to conduct an IPD meta-analysis 

could help increase sample size, in which would in turn improve the stability of any 

prediction model developed. However, there was still lots of uncertainty in the 

performance measures when using IPD to validate prediction models for stillbirth in 

Chapter 5, highlighting that even after collecting IPD from multiple studies, this may not 

provide sufficient data to produce precise estimates. It may be that the focus should be on 

finding strong, reliable, prognostic factors that can be used as indicators of high risk of 

adverse outcomes. 
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7.3.1.2 Chapter 3 

The systematic review in Chapter 3 found that it is possible that many published prediction 

models include predictors that are measured with error, and this is often not accounted for 

or even considered. This suggests a need to assess whether ignoring measurement error in 

prediction models is a concern and whether accounting for the error will improve the 

predictions made and the model performance, and how the methods to account for 

measurement error could be implemented in a simple, easily interpretable way. Even if one 

(or more) of the estimates of a predictor-outcome association in a prediction model is 

biased due to measurement error, this may not be an issue if the model as a whole 

performs well in terms of the absolute risk predictions. However, more investigation is 

needed to determine the impact of different types of error under various scenarios, for a 

which a simulation study could be used to explore. The impact of measurement error in 

general is discussed further in Section 7.4. Researchers should be considering how 

susceptible to measurement error their predictors may be when developing a model and 

the impact this may have on subsequent performance in new data (in particular, calibration 

of prediction). Furthermore, consideration should be taken of potential measurement error 

when implementing previously published models in practice. However, if a prediction 

model is being used in clinical practice, it should have first been externally validated, which 

may reassure users of the model that any potential measurement error does not negatively 

impact the accuracy of predictions.  

A related issue found within the review is that authors often do not specifically state when 

predictors are being measured or when the model is intended to be used, which is critical 

for using the model, and may have implications on the accuracy of predictions made (as 

shown in Chapter 4). Whilst ultimately, better reporting of the timings of predictors 
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measurements and the intended moment of using prediction models is required, 

researchers and users of previously developed clinical prediction models need to be aware 

of potential disparities between the moment of time the model is being implemented and 

when the predictors used to develop the model were recorded, and how this may affect 

the accuracy of the predictions made. 

The review also found poor reporting standards in many of the articles reviewed. Future 

research studies should be reported following the TRIPOD guidelines (Collins et al., 2015, 

Moons et al., 2015) to enable a better and more complete presentation of prediction 

models and their performance. Otherwise poor reporting will have a negative impact on 

researchers and practitioners who are considering using a prediction model and will 

hamper assessments of whether models are reliable and applicable to their situation. 

Additionally, articles poorly reporting the development of prediction models may not be 

implemented in practice or may provide poor predictions if used. Due to completing this 

PhD on a part-time basis, and having had two full years leave of absence since enrolling, it 

has been 7 years since the search for the systematic review was conducted. The search for 

the review was completed in November 2015, only shortly after the publication of the 

TRIPOD statement, hence it would be of interest to examine whether reporting standards 

have now improved 7 years on.  However, recent reviews of prediction models for 

recurrent stroke in patients with transient ischaemic attack (TIA) and minor stroke 

(Abdulaziz et al., 2022), melanoma (Kaiser et al., 2022) and idiopathic pulmonary fibrosis 

(Di et al., 2022) have found poor adherence to the TRIPOD guidelines.  

Clearly, better reporting of prediction models is needed, and this can be encouraged in 

several ways. Education is key to ensuring these recommendations are followed in practice, 



 

260 
 

through training courses, conferences, dissemination and social media sites such as 

Twitter.  Another vital approach is collaboration. Working with research teams conducting 

prediction model studies allows us to influence the methods and reporting conducted to 

enable them to be of high quality to ultimately develop and report better prediction 

models. Finally, we must ensure that we, as researchers in the field, produce high quality 

research using the recommended guidelines, such as TRIPOD, to enable researchers 

working on projects in the future to follow good examples of reporting and development.   

 

7.3.1.3 Chapter 4 

Chapter 4 found that the magnitude of predictor-outcome associations and prognostic 

model performance can depend on when and/or how time-varying predictors are 

measured. While the problem highlighted in this chapter is likely to extend to other 

commonly investigated predictors whose values are sensitive to the timing and mode of 

collection, this problem has only been demonstrated for one predictor and thus this 

remains to be evaluated more widely. A future study in which the same mode of data 

collection is used at the point of care and at post-consultation questionnaire (e.g. patient 

self-administered questionnaire) is needed to better understand the relative contribution 

of timing and mode of collection and therefore determine whether and how improved 

prediction is achievable at the point of care. Previous studies reporting results of predictor-

outcome associations measured in this way may also need to be replicated.   

Further research should assess whether similar findings are found with other time-varying 

predictors, and indeed in other clinical conditions and settings, and in predictors that can 

be measured via multiple methods (i.e., GP assessment or self-reported). Future research 
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could also investigate whether external validation would alleviate the problem, however 

this would require the external validation to be performed using predictors measured at 

the same time, and via the same method, as what will be used in practice, to enable 

reassurance that the predictions being made will be accurate.  

The work in this chapter investigates the effect of having one predictor included in the 

prediction model that is measured at a different time and via a different method to how 

and when it would be measured in practice, however, it is plausible that there would be 

multiple predictors to be included in a prediction model that face the same problems. 

Additional research is needed to evaluate the combined effect of including multiple of 

these predictors on the performance and whether the effect would be compounded, or 

whether there would be minimal impact beyond the first predictor included of this kind.  

The findings in this chapter further reinforce recommendations made in Chapter 3. 

Researchers need to consider both the timing and the mode of predictor measurements 

when developing a prediction model, and whether these will be the same in practice. 

Additionally, users of clinical prediction models should be cautious when using a model 

with predictors measured at a different time to that of the intended moment of use of the 

model, or whether the predictors may have been measured by a different method.  

  

7.3.1.4 Chapter 5 

Chapter 5 externally validated existing stillbirth prediction models using IPD from multiple 

cohort studies. However, only three of the previously published models were able to be 

validated. The models that were unable to be externally validated here will need to be 

independently validated before they can be recommended for use, however many of them 
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could not be validated due to not enough information being provided, and the required 

data were not available for others. This highlights the fact that an IPD meta-analysis is not 

always the solution, as key predictors for many models may not be available in the IPD. For 

those models that were able to be validated, there were large amounts of uncertainty 

around the estimates of the performance measures, again showing that IPD meta-analysis 

may still not provide enough power to give precise estimates, reinforcing the need to use 

aggregate data in advance of IPD collection to estimate whether the available data will 

provide enough power.  

For those models that were unable to be validated due to not enough information being 

provided, authors could be contacted to request further information required, but for 

those models that the required data were not available, it is unlikely that data would be 

available elsewhere without collecting new prospectively collected data. Large 

international cohorts would be needed to collect richer data on potential prognostic factors 

to enable the development and validation of prediction models. To enable validation of the 

identified models, future primary studies and cohorts need to record all key factors being 

proposed in the models. 

Additionally, work is needed to identify novel prognostic factors for use in the model 

development, to improve the discriminatory performance of prediction models (Riley et 

al., 2019b). A closer examination of existing stillbirth prognostic factors could potentially 

reveal some that are not prognostic and allow subsequent clinical care and research to be 

focused on those with the highest prognostic value.  

Still birth is a rare, but very important, outcome. The rarity of stillbirth creates barriers to 

developing clinically useful prediction models, and it raises questions around whether it is 
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appropriate to develop models in data with such few events, particularly as the definition 

of the outcome is not standardised across countries. It is however a very serious outcome 

and warrants research to improve outcomes, but more consideration is needed as to 

whether a prediction model will ever be able to separate out those at high risk when the 

overall risk for everyone is so low, or whether focussing on finding strong prognostic factors 

may be a better course of action. 

Large amounts of missing data were recorded in the datasets used for validation, and 

missing data is also likely to be a problem when implementing the models in practice. 

Therefore, further research could look at pragmatic approaches to dealing with missing 

data in real time, such as the method proposed by Nijman et al. (2021), as in reality, 

patients are not always likely to have a measurement of every predictor needed for a 

model, which would then render the model unusable for that patient. 

 

7.3.1.5 Chapter 6 

Chapter 6 provided a method for estimating the power of an IPD meta-analysis with the 

aim of synthesising data to evaluate prognostic factor effects. If this power was known in 

advance of IPD collection, this would allow the researchers planning the project and the 

potential funders to decide whether the project would be worth their investment (Riley et 

al., 2021b). It could give funders the reassurance needed to fund a study which can 

potentially provide answers to questions that are unable to be answered without the use 

of IPD and may identify prognostic factors that could be useful for clinical practice, but that 

could also be used in future for developing a prediction model. The estimated power might 

also provide incentive to pursue IPD from additional studies, if they exist, to increase the 
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power if necessary. Hence, it is recommended to estimate the power of the project in 

advance of data collection using the aggregate data that is usually available in study 

publications.  

The estimates of the power could differ based on several variable assumptions that need 

to be made, such as if not all of the promised IPD could be obtained, or if the assumed 

prognostic factor effects are incorrect, if the assumed distribution of a continuous covariate 

is wrong or if the amount of correlation between the prognostic factor and adjustment 

covariates is incorrect. Hence it is recommended that, particularly for funding applications, 

it would be sensible to display a range of power calculations based on a range of 

assumptions. The calculations provided to estimate the power were also based on making 

an approximation of alpha, as the overall risk in the group without the prognostic factor of 

interest, so further work is needed to evaluate how robust the power calculation is to 

deviations from this approximation. 

Guidance on how to calculate the required sample size to develop a prediction model (Riley 

et al., 2020) and to externally validate a prediction model (Snell et al., 2021) have recently 

been published, and these methods could be further investigated to consider whether a 

planned IPD meta-analysis would provide the required level of precision of performance 

measures for external validation studies and sufficient precision of the overall outcome 

proportion for studies aiming to develop a prediction model, as well as an adequate 

shrinkage factor (ideally >=0.9), small optimism and a small mean absolute prediction error 

(as discussed in Riley et al).  

I have recently contributed to related work on this topic to calculate the power to examine 

treatment-covariate interactions when planning an IPD meta-analysis of randomised trials 



 

265 
 

with a binary outcome (Riley et al., 2022) and further related work I have been involved 

with, calculating the power of a planned IPD meta-analysis to examine treatment-covariate 

interactions with survival outcomes, is currently under review. Software packages 

incorporating each of these calculations are currently under development and will be made 

available in due course by the research team. 

Further work could consider how these methods could be adapted when implementing 

other types of statistical models or when using machine learning methods rather than 

traditional statistical approaches, as machine learning methods have been increasing 

greatly in popularity in recent years.  

 

7.4 Impact of measurement error 

The systematic review in Chapter 3 found that many published prediction models may 

include predictors that are measured with error. This is also likely to be true for the 

prognostic factor study presented in Chapter 2 and the external validation of prediction 

models in Chapter 5. However, the error was unable to be accounted for in these studies 

and the impact of the error was unknown. There are several things that need to be 

considered with regard to the impact of measurement error: 

• The magnitude of the measurement error 

• Whether the predictor subject to measurement error is highly correlated with other 

error-free predictors 

• Whether there are several predictors measured with error 

• Whether the measurement error is additive or multiplicative 
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• Whether the measurement error is biased, dependent or differential 

• Whether the measurement error model is classical or Berkson 

• Whether the variable is continuous or categorical 

The direction and magnitude of bias from measurement error depends heavily on whether 

the distribution of errors for one predictor depends on the actual value of the predictor, 

the actual values of other predictors, or the errors in measuring other predictors (Rothman 

et al., 2008). The inclusion of other predictors measured without error has no effect on the 

measurement error bias if the additional predictors are not correlated with the original 

predictor (𝑿), but if they are correlated, the bias increases. When there is more than one 

predictor measured with error, the likelihood of producing incorrect conclusions is greater, 

and the nature of the bias is not as easily estimated without knowing the magnitude of the 

measurement errors, the correlation between the underlying precisely measured 

predictors and the correlation between the measurement errors (Gustafson, 2003).  

Non-differential misclassification increases the total bias (Drews and Greeland, 1990, 

Greenland and Robins, 1985), but despite what is commonly assumed, being non-

differential alone does not guarantee bias towards the null (no effect) (Chavance et al., 

1992, Kristensen, 1992, Walker and Blettner, 1985). Only non-differential AND 

independent misclassification creates an expected bias towards the null (Rothman et al., 

2008). One example of non-differential error that does not produce a bias towards the null 

is when the probability of a subjects misclassification on one predictor depends on whether 

the subject was misclassified on a second predictor, so when the errors are dependent. 

These dependent errors can create a substantial bias away from the null even if the errors 

are non-differential for both variables (Kristensen, 1992). Non-differential measurement 
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error can also produce a bias away from the null when the variable has more than two 

levels. The impact of differential measurement error is harder to predict in advance 

compared to the impact of non-differential error (Gustafson, 2003) as bias caused by 

differential misclassification can either exaggerate or underestimate an effect (Rothman et 

al., 2008). 

Care must be taken when defining the measurement error model to be classical or Berkson, 

as defining it incorrectly often leads to incorrect conclusions, i.e. assuming a Berkson error 

model when in fact the error is classical leads to a hugely optimistic overstatement of 

power (Carroll et al., 2006). 

Misclassification error differs from measurement error in continuous predictors as the 

surrogate predictors (𝑾) cannot be expressed as a sum of the true predictor (𝑿) plus a 

noise (error) variable (𝑼). Misclassification must be characterised in terms of the 

classification probabilities, i.e. given the true classification, how likely is a correct 

classification (Gustafson, 2003). Measurement error can often plausibly be assumed to be 

independent of underlying true values, whereas misclassification error is never 

independent of the underlying value of the variable. Hence, different theory covers the 

effects of errors in categorical and continuous variables (White et al., 2001).  

In general, a binary misclassification is more damaging than measurement error in 

continuous predictors (Gustafson, 2003), and if misclassification is severe enough, it can 

eliminate any real association, or even reverse the direction of an association (Rothman et 

al., 2008). 

Measurement error in predictors that are used to develop a prediction model may not be 

a problem per se. If it is this same error-prone predictor that will be measured in practice 
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when implementing the prediction model, rather than the true predictor, then there is little 

issue with using the error-prone predictor to develop the prediction model (Carroll et al., 

2006) as it will be the prognostic value of the error-prone predictor that is of interest. 

However, if the prognostic value of a factor measured without error is of interest, either 

hypothetically or if an instrument is available that can do this, then the error will need to 

be accounted for. Consideration needs to be taken of whether measurement error in a 

predictor is actually a problem for the estimand of interest.  

 

7.5 Machine learning 

Traditional statistical modelling techniques have been the focus of this thesis, however in 

recent years there has been a rapidly growing interest in using machine learning methods 

to develop clinical prediction models (Kourou et al., 2015). Machine learning can be 

described as data analytical methods that learn from data without being explicitly 

programmed (Collins et al., 2021), using models that directly and automatically learn from 

data (Mitchell, 1997). Whereas regression based models are based on theory and 

assumptions, and benefit from human intervention and subject knowledge for model 

specification (Christodoulou et al., 2019).  

Due to the growing popularity of machine learning methods, it is inevitable that similar 

issues to those explored in this thesis will arise in machine learning in the future. In fact, 

recent reviews have found that reporting of prediction models developed using machine 

learning methods is poor (Andaur Navarro et al., 2022, Dhiman et al., 2021) and that sample 

sizes used in many published studies are too small (Shillan et al., 2019). There are currently 

no recommendations for the minimum sample sizes appropriate for developing prediction 
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models using machine learning methods, however, for there to be clear advantages in the 

use of machine learning over traditional statistical methods it may be required to have tens 

or hundreds of thousands of patients (Beam and Kohane, 2018, van der Ploeg et al., 2014). 

Yet in a recent review of prediction models developed using machine learning methods, 

the majority of studies analysed data on fewer than 1000 patients (Shillan et al., 2019).  

It has also been highlighted that machine learning models do not automatically lead to 

improved performance over traditional statistical methods (Christodoulou et al., 2019), and 

that many comparisons of machine learning and statistical methods are poorly reported 

and unfair.  

Reporting guidelines are currently under development for diagnostic and prognostic 

prediction model studies based on artificial intelligence (TRIPOD-AI)(Collins et al., 2021). 

These guidelines will be an extension to the TRIPOD statement for prediction model studies 

developed using machine learning and will hopefully empower researchers developing 

prediction models using machine learning to report key details which will allow readers to 

evaluate the study quality and interpret the findings, increasing the chances of the model 

being implemented in practice.  

 

7.6 Conclusions 

Prognosis research is a fundamental aspect of medical research, with the ultimate aim of 

improving future outcomes in people with a given disease or health condition by informing 

clinical decision making and helping patients understand their risk. The research in this 

thesis has contributed towards both applied and methodological aspects of prognosis 
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research. Clinically, the thesis has investigated prognostic factors of adverse outcome in 

MCDA twin pregnancies, and externally validated existing stillbirth prediction models. 

Methodologically, the work has contributed towards the improvement of reporting and 

methodology in prognosis research, by providing recommendations for reporting of 

prediction models in relation to measurement error that may be present in the predictors, 

and in relation to the timing of predictor measurements and the intended moment of using 

the prediction model in practice. Finally, the work in this thesis has provided a method for 

calculating the power of a prognostic factor study when synthesising IPD from multiple 

studies, which would allow researchers and funders to decide in advance of collecting the 

IPD whether the project is worth their investment, potentially saving years of wasted time 

and money.  It is hoped this body of work will have a positive impact on improving the 

quality of prognosis research in the future.  
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Appendix B 

Appendix Table B.1: Predictors in final models at low risk of important measurement error 

Bowel wall 
discontinuity 

% exophytic 
growth 

Extrathyroidal 
extension 

B-type natriuretic peptide 
(BNP) 

Diabetes Gender N classification First wound area 

Age Disease location SYNTAX groups Use of anxiolytic 

PRD1 Ablation time Liver cirrhosis Splenic injury 

Inotropic support Mesenteric 
stranding 

Persistent atrial 
fibrillation (AF) 

Consciousness level after 
seizures 

Uterine size Entropy BR2CHADS2 Procedure type 

Race Injury location Platelet count Haemoperitoneum 

Paralysis Child-Pugh score Gleason grade Endovascular repair 

Combined 
resection 

Extrauterine 
disease 

Mechanical 
ventilation 

Number of involved 
vertebra 

Bowel wall 
thickness 

Bile duct 
obstruction 

Blood glucose on 
admission 

Size of SLN metastases 

Nodal 
metastases 

Mobility of 
patients at arrival 

Visceral 
metastases 

Invasive neighbouring 
organs 

Left atrial 
diameter 

Stent 
replacement 

No. of major 
comorbidities 

Mesenteric 
pneumoperitoneum 

Single metastatic 
site 

Mean of the 
bottom 10th 
percentile ADC 

Lesion to kidney 
CT attenuation 
difference 

Billroth II anastomosis of 
reconstruction 

Peripheral 
arterial disease 

Anterior  
abdominal wall 
injury 

Injury from 
motorcycle 
accident 

History of at least one 
prior negative biopsy 

Arrival by 
helicopter 

Renal transplant 
or dialysis 

Resides in nursing 
home 

Patient age at first 
treatment 

Number of 
positive SLNs 

Extraprostatic 
extension 

Surgical volume of 
surgeons 

% Positive core for cancer 

Periductal 
invasion 

NOD2 frameshift 
mutation 

Number of CK19 
mRNA copies 

Cumulative length of 
positive cores 

Aspartate 
aminotransferase 
(AST) on 
admission 

Positive 
lymphovascular 
invasion (LVSI) 
status 

Number of 
negative sentinel 
lymph nodes (SLN) 

Multifocal intrahepatic 
cholangiocellular 
carcinoma (ICC) 

Admission to 
intensive care 
unit 

Number of 
months since last 
biopsy 

Number of fatty 
liver mentions 
extracted from 
notes over a 
lifetime 

Coronary computed 
tomography 
angiography (CCTA) 1/2/3 
vessel disease or left main 
disease 
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Short axis 
diameter 

Lesion 
attenuation on 
contrast-
enhanced 
Computed 
Tomography (CT) 
scan 

Triglyceride level 
within 12 months 
of NAFLD 
radiographic  

Endoscopic retrograde 
cholangiopancreatography 
(ERCP) manometry 

Physiologic 
category 

Distant 
metastases 

Hypercoagulability Sodium level 

% involvement of 
positive cores 

Vascular invasion Renal failure Histologic subtype 

Insulin 
dependent 
diabetes 

Maximum cancer 
length 

Arterial 
mesenteric vessel 
extravasion 

Veterans aging cohort 
study index 

Entropy apparent 
diffusion 
coefficient (ADC) 

Plasma Epstein-
Barr virus 
(EBV) DNA 

Intraoperative 
transfusion 

Para-aortic 
lymphadenectomy 

Reduced bowel 
wall 
enhancement 

Number of 
previous or 
concurrent other 
wounds or ulcers 

Admitted for 
acute hospital 
stay or emergency 
department visit 
report 

Lifetime number of non-
alcoholic fatty liver 
disease (NAFLD) icd9 
codes 
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Appendix Table B.2: Predictors in final models at high risk of important measurement error 

Key reasons for 
being at  high risk of 
error 

Predictors included in final models 

Fluctuations in 
human samples/ 
biological variability 

Serum albumin, Serologic markers, Prostate Specific Antigen (PSA) 
density, Prostate Specific Antigen (PSA), Ki-67, Human epididymis 
protein 4 (HE4), Glomerular filtration rate, Emergency room pulse 
rate, CRUSADE score, C-reactive protein, Creatinine on admission, 
CA125, Ascites 

Inaccuracy of 
measurement 
instruments 

Body Mass Index (BMI), Myometrial invasion depth, Emergency 
room pulse rate, Creatinine on admission, Weight, Ascites, 
International normalised ratio (INR1) , Infection/bioburden 

Imperfect recall Body Mass Index (BMI), Duration of convulsions, Duration of 
drowsiness, Duration of neck pain, Duration of nervousness, 
Duration of tingling, History of transactional sex, Area under pain 
curve, Congestive heart failure, Weight, Previous bleeding, 
Endoscopic retrograde cholangiopancreatography (ERCP) time, 
Time developing motor deficits, ImPACT  total symptom score, 
Eastern Cooperative Oncology Group (ECOG) performance status, 
Depression, Number of non-major comorbidities, Systemic 
illness/organ failure 

Subjective nature of 
measures 

Abdominal pain, Tumour stage, Suboptimal pelvic examination or 
enlarged uterus during preoperative evaluation, Area under pain 
curve, hypertension, Clinical stage, Malnutrition, Obesity, 
Procedure risk category, Pressure ulcer stage, ImPACT  total 
symptom score, Eastern Cooperative Oncology Group (ECOG) 
performance status, Depression, Pre-catheterisation diagnosis 

Laboratory or 
measurer error 

Tumour stage, Suboptimal pelvic examination or enlarged uterus 
during preoperative evaluation, Myometrial invasion depth, 
CRUSADE score, CA125, Histologic grade, Primary tumour 
diameter, Clinical stage, Residual tumour, Endoscopic Retrograde 
Cholangiopancreatography (ERCP) Time, Tumour size, Pressure 
ulcer stage, Ascites, International normalised ratio (INR1) , 
Peritoneal Cancer Index, Infection/bioburden, Operating time and 
age, Wound (ulcer) age at first encounter 
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Appendix C 

Example code for calculating the power of a planned IPD meta-analysis to evaluate 

prognostic factor factors prior to collecting the IPD. 

 

Appendix C1: Binary prognostic factor example 

// Run all the code in one go  

 

// START 

clear all 

 

// define the model as logit-p = alpha + gamma*z with z the 

prognostic factor of interest 

 

// Generate matrices M1 and M2 from eq6.9 

mat M1 = (1,0 \ 0,0) 

mat M2 = (1,1 \ 1,1) 

 

// Poynard application - 4 trials, sex covariate 

use "Poynard data.dta", replace 

 

// calculate total sample size of each trial 

gen events = events_C + events_T 

gen total = n_C + n_T 

mkmat total, matrix(n_trans) 

mat n = n_trans'  
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// specify gamma = assumed prognostic effect of Z - assumed 

common for each trial here  

// need to decide what this is going to be based on clinical 

evidence or use a range of values 

local exp_gamma = 1.5 

local gamma = ln(exp_gamma) 

mat gamma =  (`gamma', `gamma' , `gamma' , `gamma')  

 

// calculate total percentage male 

gen male_C=round(n_C*percent_male_C/100) 

gen male_T=round(n_T*percent_male_T/100) 

gen male =  male_C + male_T 

gen percent_male = (male / total) * 100 

 

// define number of patients by Z categories (proportion of 

z0 AND z1) 

gen n_z0 = total-male 

gen n_z1 = male 

 

gen prop_z0 = (100-percent_male)/100 

gen prop_z1 = percent_male/100 

mkmat prop_z0, matrix(prob_Z_0_trans)   

mkmat prop_z1, matrix(prob_Z_1_trans)  

mat prob_Z_0 = prob_Z_0_trans' 

mat prob_Z_1 = prob_Z_1_trans' 

 

// create matrices to calculate alpha 

gen logit_risk=logit(events/total) 

mkmat logit_risk, matrix(risk_trans) 

mat l_risk = risk_trans' 

gen n1_n=n_z1/total 

mat n_gamma = (n1_n[1] * `gamma', n1_n[2] * `gamma' , 

n1_n[3] * `gamma' , n1_n[4] * `gamma')  
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// define alpha vector 

mat alpha = l_risk-n_gamma 

 

// count total number of studies 

local studies = _N 

 

// calculate the Variance Inflation Factor (VIF) - to adjust 

for other covariates 

// set rho=0 if not adjusting for other covariates 

 local rho = 0.5 

local VIF = 1/(1-`rho'^2) 

 

// calculate the variance for each study using eq6.9 followed 

by eq6.6 (Step 1) 

tempname pow 

tempfile powerdata 

postfile `pow'  study gamma variance se   

using `powerdata', replace 

 

forvalues i = 1/`studies' { 

mat eqM1_`i' = 

exp(alpha[1,`i'])/((1+exp(alpha[1,`i']))^2)*M1*prob_Z_0[

1,`i'] 

mat eqM2_`i' = exp(alpha[1,`i']+ 

gamma[1,`i'])/((1+exp(alpha[1,`i'] + 

gamma[1,`i']))^2)*M2*prob_Z_1[1,`i'] 

mat I_`i' = eqM1_`i' + eqM2_`i' 

mat inverseI_`i' = inv(I_`i') 

mat var_`i' = inverseI_`i'/n[1,`i'] 

 

local variance = var_`i'[2,2] * `VIF' 

 

local se = sqrt(`variance') 

local prog_factor = gamma[1, `i'] 
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local study = `i' 

post `pow'  (`study')  (`prog_factor')   (`variance')   

(`se')  

} 

postclose `pow' 

 

// calculate variance of the prognostic factor from the 

planned IPD meta-analysis (Step 2) using eq6.15  

use  `powerdata', replace 

gen inv_var = 1/variance 

qui summ inv_var  

local summ_inv_var = r(sum) 

local ma_variance = 1/r(sum) 

local ma_se = sqrt(1/r(sum)) 

 

// calculate the power of the planned IPD meta-analysis using 

eq6.16 (step 3) 

disp "prognostic factor = " gamma[1,1] _newline 

"ma_variance = " `ma_variance' _newline "ma_se = " 

`ma_se' _newline  "lower = " gamma[1,1] - (1.96* 

sqrt(`ma_variance')) _newline  "upper = " gamma[1,1] + 

(1.96* sqrt(`ma_variance')) _newline  "power = " 

normal(-1.96 + (gamma[1,1] * sqrt(`summ_inv_var')))  + 

normal(-1.96 - (gamma[1,1] * sqrt(`summ_inv_var'))) 

_newline "power (%) = " 100 * (normal(-1.96 + 

(gamma[1,1] * sqrt(`summ_inv_var')))  + normal(-1.96 - 

(gamma[1,1] * sqrt(`summ_inv_var')))) 

 

 

// STOP 
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Appendix C2: Continuous prognostic factor example 

// Run all the code in one go 

 

// START 

clear all 

 

// Poynard application - 4 trials, age covariate 

use "Poynard data.dta", replace 

 

tempname pow 

tempfile powerdata 

postfile `pow'  study gamma variance se using 

`powerdata', replace 

 

// first define the logistic equation parameters for each 

study 

 

// total sample size of each trial 

gen events = events_C + events_T 

gen total = n_C + n_T 

mkmat total, matrix(n_trans) 

mat n = n_trans'  

 

// define vector alpha = logit(overall risk) - for average Z 

gen logit_prob = logit(events/total) 

mkmat logit_prob, matrix(alpha_trans) 

mat alpha = alpha_trans' 
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// specify gamma = assumed prognostic effect of Z - assumed 

common for each trial here 

local exp_gamma = 1.04 

local gamma = ln(`exp_gamma') 

mat gamma =  (`gamma', `gamma', `gamma', `gamma')  

 

// calculate the overall mean age 

gen age_mean=((n_C*age_mean_C)+(n_T*age_mean_T)) / total 

gen age_sd = sqrt(((((n_C - 1) * (age_sd_C)^2) + ((n_T - 

1) * (age_sd_T)^2))/(n_C + n_T - 1)) + ((n_C * n_T * 

(age_mean_C - age_mean_T)^2) / ((n_C + n_T) * (n_C + n_T 

- 1)))) 

 

mkmat age_mean , matrix(age_mean_trans) 

mat age_mean = age_mean_trans' 

mkmat age_sd , matrix(age_sd_trans) 

mat age_sd = age_sd_trans' 

 

// count total number of studies 

local studies = _N 

 

// generate large dataset for the simulation 

set obs 1000000 

local obs = 1000000 

set seed 1234 

gen id = _n 

 

// calculate the Variance Inflation Factor (VIF) to adjust 

for other covariates 

// set rho=0 if not adjusting for other covariates 

 local rho = 0.5 

local VIF = 1/(1-`rho'^2) 
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// generate the covariate Z of interest; assuming normal 

forvalues i = 1/`studies' { 

gen z`i' = . 

 

* using the observed mean and sd 

replace z`i' = rnormal(age_mean[1,`i'], age_sd[1, `i']) 

} 

 

// create centered z variable so that intercept is similar to 

overall effect 

forvalues i = 1/`studies' { 

 qui summ z`i' 

gen z`i'_cent = z`i' - r(mean) 

} 

 

// now generate the 2 by 2 matrix entries corresponding to 

logit-p = alpha + gamma*z 

// for each study separately  

forvalues i = 1/`studies' { 

  

gen LP`i' = alpha[1,`i'] + (gamma[1,`i'] * z`i'_cent) 

 

gen M_11`i' = exp(LP`i')/((1+ exp(LP`i'))^2) 

gen M_12`i' = z`i'_cent*exp(LP`i')/((1+ exp(LP`i'))^2) 

gen M_21`i' = M_12`i' 

gen M_22`i' = z`i'_cent*z`i'_cent*exp(LP`i')/((1+ 

exp(LP`i'))^2) 

} 

 

// calculate expected values of the cells and form I for each 

study 

forvalues i = 1/`studies' { 

qui summ M_11`i' 

local I_11`i' = r(mean) 
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qui summ M_12`i' 

local I_12`i' = r(mean) 

qui summ M_21`i' 

local I_21`i' = r(mean) 

qui summ M_22`i' 

local I_22`i' = r(mean) 

 mat I`i' = (`I_11`i'', `I_12`i'' \ `I_21`i'', 

`I_22`i'') 

mat invI`i' = inv(I`i') 

 

// calculate the variance of each study using eq6.6 (Step 1) 

mat var_`i' = invI`i'/n[1,`i'] 

local variance = var_`i'[2,2]*`VIF' 

 

local se = sqrt(`variance') 

local prog_factor = gamma[1, `i'] 

local study = `i' 

post `pow'  (`study')  (`prog_factor')   (`variance')   

(`se')  

} 

postclose `pow' 

use  `powerdata', replace 

 

// calculate the variance of the prognostic factor from the 

planned IPD meta-analysis using eq6.15 (Step 2) 

gen inv_var = 1/variance 

qui summ inv_var  

local summ_inv_var = r(sum) 

local ma_variance = 1/r(sum) 

local ma_se = sqrt(1/r(sum)) 
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// calculate the power of the planned IPD meta-analysis using 

eq6.16 (Step 3) 

disp "prognostic factor = " gamma[1,1] _newline 

"ma_variance = " `ma_variance' _newline "ma_se = " 

`ma_se' _newline  "lower = " gamma[1,1] - (1.96* 

sqrt(`ma_variance')) _newline  "upper = " gamma[1,1] + 

(1.96* sqrt(`ma_variance')) _newline  "power = " 

normal(-1.96 + (gamma[1,1] * sqrt(`summ_inv_var')))  + 

normal(-1.96 - (gamma[1,1] * sqrt(`summ_inv_var'))) 

_newline "power (%) = " 100 * (normal(-1.96 + 

(gamma[1,1] * sqrt(`summ_inv_var')))  + normal(-1.96 - 

(gamma[1,1] * sqrt(`summ_inv_var')))) 

 

 

// STOP 
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Appendix C3: Allowing for heterogeneity 

// run as above until generating inv_var 

 

// specify an assumed value of tau (the between-study 

standard deviation of the prognostic factor effect) 

local tau = 0.0075 

 

// calculate the variance of the prognostic factor using 

eq6.5 

gen inv_var = 1/(variance+(`tau'^2)) 

qui summ inv_var  

local summ_inv_var = r(sum) 

local ma_variance = 1/r(sum) 

local ma_se = sqrt(1/r(sum)) 

 

// calculate the power using eq6.17 

disp "prognostic factor = " gamma[1,1] _newline 

"ma_variance = " `ma_variance' _newline "ma_se = " 

`ma_se' _newline  "lower = " gamma[1,1] - (1.96* 

sqrt(`ma_variance')) _newline  "upper = " gamma[1,1] + 

(1.96* sqrt(`ma_variance')) _newline "power = " t(_N-1 , 

-invt(_N-1, 0.975) + (gamma[1,1] * 

sqrt(`summ_inv_var')))  + t(_N-1 , -invt(_N-1, 0.975) - 

(gamma[1,1] * sqrt(`summ_inv_var'))) _newline "power (%) 

= " 100 * (t(_N-1, -invt(_N-1, 0.975) + (gamma[1,1] * 

sqrt(`summ_inv_var')))  + t(_N-1 , -invt(_N-1, 0.975) - 

(gamma[1,1] * sqrt(`summ_inv_var')))) 
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